
Università degli Studi di Padova
Dipartimento di Matematica “Tullio Levi-Civita”

Corso di Laurea Magistrale in Matematica

Markov bases and linear algebra:
connecting fibres of integer linear maps

Relatore: Laureando: Giorgio Spadaccini
Prof. Marco Andrea Garuti Matricola: 1237005

Anno Accademico 2020/2021

21 Luglio 2021

Contents

Introduction ii

1 Connectedness of some classes of fibres 1
1.1 Connecting all fibres . 1
1.2 Connecting big fibres . 6
1.3 Deducing fibre connectedness from other fibres 12
1.4 Checking the connectedness of a finite number of fibres 17

2 Improving the bound on the norm 24
2.1 A direct bound . 24
2.2 Computer algorithms to improve the bound 32

2.2.1 Introductory lemmas and considerations 33
2.2.2 The algorithms . 36
2.2.3 Comments on the algorithms . 42

Appendix 44
Codes . 44
Numerical Examples . 52

Bibliography 62

i

Introduction

Background

This thesis explores the mathematical background of the algorithm presented by Diaconis
and Sturmfels in their paper [1], the purpose of which was to extract random vectors from
a finite, yet very large subset of Nr, according to any given probability distribution π
over such set. To better understand the scenario that we want to explore, let us see a
simplified version of the example on pages 1 and 2 of [1]: consider three natural numbers
a, b, c P N and take d :“ a` b´ c. Then we can define the set:

Mpa, b, cq :“ t

ˆ

x z
y t

̇

P N2ˆ2 : x` z “ a, y ` t “ b, x` y “ c, z ` t “ du

of all the natural tables with fixed row and column sums. If we stack up the columns
into one vector, we can express this as:

M1pa, b, cq :“ t

¨

˚

˚

˝

x
y
z
t

˛

‹

‹

‚

P N4 : A

¨

˚

˚

˝

x
y
z
t

˛

‹

‹

‚

“

¨

˚

˚

˝

a
b
c
d

˛

‹

‹

‚

u with A :“

¨

˚

˚

˝

1 0 1 0
0 1 0 1
1 1 0 0
0 0 1 1

˛

‹

‹

‚

.

Now suppose that we needed to extract a vector at random from this set M1pa, b, cq. If
a, b, c are small, then so is |M1pa, b, cq|, therefore it would be very reasonable to simply
label all its elements with a natural number and then randomly extract a label according
to the distribution π. However, memorizing exact integers means that the computer
cannot use a floating-point notation to store such numbers: instead, it stores them by
simply writing them in binary notation. This means that 64 bits can only represent
the integers from ´p263 ´ 1q to 263 ´ 1 or, more reasonably in our case, from 0 to
264 ´ 1 « 1.8 ¨ 1019. Any set with a cardinality bigger than such quantity could therefore
not be labelled with the standard word size of 64 bits.
The article [1] introduces the idea of using a Markov chain to perform such extraction.
More specifically, it assumes the vector pool to be in the form of what we will call a
“fibre”.

Definition 1. Given a matrix A P Zsˆr and a vector u P Nr, we define the fibre of A
containing u as:

Fpuq “ tv P Nr : Av “ Auu “ pu` KerZpAqq X Nr.

ii

Notice that here the notation KerZpAq denotes the Kernel of the linear map fA : Zr Ñ

Zs induced by A. In other words, it is the integer null space of the matrix.
This assumption is not really much of a restriction, as many conditions can be expressed
linearly: for instance, the set Mpa, b, cq depicted above is the 2 ˆ 2 realization of the
more general case of matrices whose row and column sums are constant, a scenario which
appears for instance in Fisher’s exact test.
Furthermore, even if our pool of vectors cannot be exactly expressed in the form Fpuq,
it is very easily contained in such a fibre. Given the fact that we are setting the problem
in a way that allows us to choose the probability π, we can always decide to set πpvq “ 0
if the vector v P Fpuq is not in the pool of vectors that we were starting with. This way
the pool does not necessarily have to be a fibre, it only has to be contained in one.
Other examples of applications of this method can be found in [2].
After fixing A and defining Fpuq, Diaconis and Sturmfels use any given set B Ď KerZpAq

to upgrade fibres into graphs by drawing edges according to the following rule:

u „ v in Fpuq ðñ u´ v P ˘B (1)

where, as one may imagine, ˘B denotes the set B Y t´b : b P Bu.
For instance, we may go back to our small example M1pa, b, cq with a “ b “ c “ d “ 3

and draw the lines on M1p3, 3, 3q “ Fp
`

3 3 3 3
˘t

q using the following set B:

B :“ t

¨

˚

˚

˝

1
´1
´1
1

˛

‹

‹

‚

u

In this case, the graph looks like this:

¨

˚

˚

˝

0
3
3
0

˛

‹

‹

‚

¨

˚

˚

˝

1
2
2
1

˛

‹

‹

‚

¨

˚

˚

˝

2
1
1
2

˛

‹

‹

‚

¨

˚

˚

˝

3
0
0
3

˛

‹

‹

‚

and it is therefore connected.
If the graph Fpuq is connected, then the Markov chain performing a random walk on
this graph is also connected. If we then apply the Metropolis-Hastings algorithm, we can
turn this Markov chain into one whose stationary distribution is equal to π. This means
that, if we let the random walk Xn run for long enough (i.e. we take n any big enough),
then we have, regardless of the initial position X0:

PpXn “ vq « πpvq.

However, it is not easy to make sure a priori that the set B connects a fibre. The idea
by Diaconis and Sturmfels is, once we fix the matrix A, to try and connect all fibres at
once through means of what we will call a Markov basis.

Definition 2. Let A P Zsˆr be a matrix. A set B Ď KerZpAq that connects Fpuq for
every u P Nr is called a Markov basis.

iii

Before we go any further, it may be necessary to notice that, if we want to connect all
fibres, we need B to generate KerZpAq as a group: assume all the fibres to be connected
and consider w P KerZpAq. Take any v P Nr big enough for v ` w to also be in Nr.
Then the fact that v, v ` w P Fpvq are connected implies the existence of a chain v0 “

v, v1, . . . , vn “ v ` w, with vi ´ vi´1 P ˘B for all i. Using a telescoping sum, we can
conclude:

w “ v ` w ´ v “ vn ´ v0 “

n
ÿ

i“1

pvi ´ vi´1q P ˘B ˘ ¨ ¨ ¨ ˘ B
n times

Ď xBy.

However, the set B generating the integer null space KerZpAq is definitely not enough to
connect every fibre, as one can see from the following example taken from [3].

Example 3. Consider the setting:

A “

ˆ

0 1 2 3
3 2 1 0

̇

, B “ tb1, b2u “ t

¨

˚

˚

˝

1
´2
1
0

˛

‹

‹

‚

,

¨

˚

˚

˝

0
1

´2
1

˛

‹

‹

‚

u, u “

¨

˚

˚

˝

1
0
0
1

˛

‹

‹

‚

, v “

¨

˚

˚

˝

0
1
1
0

˛

‹

‹

‚

.

While B generates KerZpAq as a group, not all fibres are connected: for instance, there
is no way to connect u and v in the graph built on Fpuq “ tu, vu.

This means that, in order to better understand when a subset B Ď KerZpAq is a
Markov basis, we need to go further in the characterization given by Diaconis and Sturm-
fels, which involves the following algebraic tool.

Definition 4. Let R be a ring and consider A P Zsˆr. Let B Ď KerZpAq generate the
integer null space as a group. Then we define the following ideal of Rrxs :“ Rrx1, . . . , xrs:

IpRq

B :“ xt

r
ź

i“1

x
maxpbi,0q

i ´

r
ź

i“1

x
maxp´bi,0q

i ubPByRrx1,...,xrs.

When the choice of the ring does not matter or is implicit, we will denote the ideal simply
by IB.

To simplify the notation, we will often write the following.

Notation 5. Given a vector v P Rr, we define the notation:

v` :“ pmaxpvi, 0qqi“1,...,r v´ :“ pmaxp´vi, 0qqi“1,...,r.

In particular, the ideal IpRq

B can now be re-written simply as:

IpRq

B :“ xtxb
`

´ xb
´

ubPByRrxs.

Diaconis and Sturmfels then proceed to study the saturation of such ideal.

Definition 6. Let S be a commutative ring and let J be an ideal of S. Given some
elements s1, . . . , sk P S, we say that J is saturated in S with respect to s1, . . . , sk if, for
any r P S, the following equivalence of statements holds:

r P J ðñ s1r P J ðñ ¨ ¨ ¨ ðñ skr P J.

iv

In the whole thesis we will always exclusively discuss saturation of ideals in the poly-
nomial ring Rrx1, . . . , xrs with respect to x1, . . . , xr, therefore we will often just talk
about “saturated ideals of Rrx1, . . . , xrs” and imply that the elements we are referring
to are x1, . . . , xr. Following the notation on [4], we will denote the saturation of an ideal
J with respect to such elements by pJ : x8q.
Diaconis and Sturmfels then proceed to formulate the following statement.

Theorem 7. (Diaconis-Sturmfels, [1, Theorem 3.1]) Let R be a field and consider A P

Zsˆr. Let B Ď KerZpAq generate the integer null space of A as a group. Then the ideal
IB is saturated with respect to x1, . . . , xr if and only if every fibre Fpuq is connected by
B.

Then they show how, starting from a Gröbner basis of an ideal of the form IB, one
can easily obtain a set C Ě B such that IC is the saturation of IB. Using Theorem 7,
they therefore deduce that the set C yielded by this algorithm is a Markov basis. For
instance, let us see how this applies to the example we have seen above.

Example 8. Consider the setting:

A “

ˆ

0 1 2 3
3 2 1 0

̇

, B :“ tb1, b2u :“ t

¨

˚

˚

˝

1
´2
1
0

˛

‹

‹

‚

,

¨

˚

˚

˝

0
1

´2
1

˛

‹

‹

‚

u, u “

¨

˚

˚

˝

1
0
0
1

˛

‹

‹

‚

, v “

¨

˚

˚

˝

0
1
1
0

˛

‹

‹

‚

.

The ideal IB “ xx1x3 ´ x22, x2x4 ´ x23y is not saturated, and its saturation is indeed equal
to:

pIB : x8q “ xx1x3 ´ x22, x2x4 ´ x23, x1x4 ´ x2x3y “: IC , with C :“ tb1, b2,

¨

˚

˚

˝

1
´1
´1
1

˛

‹

‹

‚

u.

So C is a Markov basis now, which makes sense since u and v are now connected by the
third vector of C, in the graph built on Fpuq “ tu, vu.

The only problem with this method is that computing a Gröbner basis can be com-
putationally challenging for large numbers of generators. This is why Aoki, Hara and
Takemura introduce a different algorithm in their paper [5]: instead of extending B to a
Markov basis, they consider Fpuq as a sub-graph of u ` KerZpAq, where the latter also
has its edges drawn according to the rule defined in Line (1). Notice that u` KerZpAq is
always a connected graph, since B generates KerZpAq as a group.
The algorithm defined in [5] then allows the Markov chain to do more than just jumping
from a vector u to a vector v P Fpuq of the form u ˘ b for a suitable b P B; more pre-
cisely, given the position Xt “ u, the position Xt`1 of the Markov chain is defined by
the following process, where n :“ |B|:

1. Choose α1, . . . , αn P N at random from a Poisson distribution of a certain parameter
λ which we can decide arbitrarily;

2. Choose ϵ1, . . . , ϵn P t˘1u uniformly at random;

v

3. Compute v :“ u `
řn

i“1 ϵiαibi. This vector is reachable from u in the graph
u ` KerZpAq by adding αi times the vector ϵibi, for every i “ 1, . . . , n. If v P Nr,
i.e. if it is inside Fpuq, then define Xk`1 :“ v, otherwise start over from the first
step.

As we have already discussed, the graph u ` KerZpAq is connected and therefore, since
this algorithm allows to add any ϵibi for as many times as one wants, Xt`1 can be any
vector in the fibre. This means that this Markov chain on Fpuq is always connected, even
when the edges defined on Line (1) do not make Fpuq a connected graph.
The authors also present a variation of this algorithm where the first step uses a com-
bination of a geometric and a multinomial distribution to determine the coefficients
α1, . . . , αn, but the concept of the algorithm remains the same otherwise.
As Aoki, Hara and Takemura show in their paper [5], this algorithm can be very effec-
tive, for suitable parameters of the Poisson or the Geometric distribution. The choice,
however, is not always easy: bigger parameters allow an easier connection of connected
components that can be potentially very far apart. On the other hand, smaller parame-
ters imply a smaller average value of

řn
i“1 αi, which we can interpret as the number of

average steps “potentially outside Fpuq” that connect Xt and Xt`1. This means that
the Markov chain wastes less time “wandering” far away from the fibre and therefore we
have a faster apparent convergence to the stationary distribution.
The latter argument is what motivates Holmes to tweak the algorithm above by adding
the extra condition

řn
i“1 αn ď N in step 1, for a big enough constant N P N. In other

words, just like Aoki, Hara and Takemura do, Holmes allows the Markov chain to move
from u to a vector v P Fpuq which is reachable in the bigger graph u ` KerZpAq, even if
there is no direct edge connecting u and v and even if there is no path from u to v that
stays entirely inside Fpuq. However, he allows such jump only as long as v is “within N
steps outside of Fpuq from u ”.
It is therefore natural to try to find the minimum number of steps outside any fibre Fpuq

that the Markov chain needs to take in order to be connected. This number is introduced
by Holmes in [3] as ||B|| and will be properly explored in the second chapter.

The main results

The most prominent result of this thesis is the following Theorem from Chapter 2.

Theorem. (Corollary 53) Let A P Zsˆr be a matrix and take a set B “ tb1, . . . , bnu

generating its integer null space as a group. Set β :“ maxj“1,...,n ||bj ||8 and k :“
minprkpBq, n ´ 1q. Denote by B the r ˆ n matrix whose columns are the vectors of
B. Then:

||B|| ď n ¨
?
k ` 1

k`1
¨ βk ď n

n
2 `1βn´1.

This result presents an improvement 1 when compared to Theorem 1.3 in [3], which
bounds the norm of B with nn`1βn´1.
The background to fully understand this result and its consequences is properly explained

1The quantity n2
?
k ` 1

k`1
βk`1 is always at most n

n
2

`1βn, which is an improvement for any non-
trivial case n ě 2.

vi

in Chapter 1. However, this is not the only purpose of the first chapter. More specifically,
we are firstly going to explore the proof of Theorem 7 from [1] and [4] in more detail and
generalize it to every ring. Secondly, we are going to focus on the connection of some
classes of fibres, such as the “big fibres” and “small fibres” (sets of the form Fpuq with u
having respectively a big or a small p-norm). Lastly, we will discuss how the connectedness
of some fibres implies the connectedness of others. An example of interesting result that
comes from this kind of arguing will be the following.

Theorem (Theorem 40). Let A P Zsˆr be a matrix and take a set B “ tb1, . . . , bnu

generating its integer null space as a group. Set β :“ maxj“1,...,n ||bj ||8. Then the set:

B1 :“ tv P KerZpAq : |vi| ď ||B|| ¨ β @i “ 1, . . . , ru

is a Markov basis.

Combining this theorem with the aforementioned Corollary 53 allows us to conclude
that the set:

B1 :“ tv P KerZpAq : |vi| ď n
?
k ` 1

k`1
βk`1 @i “ 1, . . . , ru

is always a Markov Basis.
Unlike Chapter 1, the second chapter is much more oriented towards one specific goal,
improving the bound of ||B||, which we will do by coming up with an alternative to
Siegel’s Lemma for solutions of integer systems of equations. As we use this alternative
lemma, which only works for our specific case, we also want to compare it with the more
general result found by Bombieri and Vaaler in [6].
The approach of the second chapter will also yield some computer algorithms which
allow further improvement in bounding ||B||. These algorithms can not only be helpful
in the general problem of maximizing a determinant, they will also allow a substantial
improvement on the bound of ||B|| which, as described by Holmes in [3], might potentially
make the convergence of the methods described above faster.

vii

Chapter 1

Connectedness of some classes
of fibres

1.1 Connecting all fibres

As we have seen in the previous section, we will very often use the following notation.

Notation 9. Let A P Zsˆr be a matrix. With a slight abuse of notation, we will denote
by KerZpAq the null space of A in Zr. Let B “ tb1, . . . , bnu Ď KerZpAq generate it as a
group. Then we write B for the r ˆ n matrix whose columns are the vectors b1, . . . , bn.

We will omit the B from the notation where it is clear from context.
In this scenario, we are exploring the connectedness of undirected graphs of the form
pFpuq, Eq where:

Fpuq “ tv P Nr : Av “ Auu, E “ tpu, vq P Fpuq2 : u´ v P ˘Bu.

More specifically, we will study connectedness in the following sense.

Definition 10. Let pV,Eq be a graph. We will say two vertices u, v P V to be connected
if u “ v or there exists a path v0 “ u, v1, . . . , vk “ v all inside V such that pvj , vj´1q P E
for every j “ 1, . . . , k.
We will call the graph “connected” if any two vertices of V are connected in pV,Eq.

With an abuse of notation, we will often refer to Fpuq as a graph by implying the
structure we just defined, and we will be referring to the connectedness of two vectors
u, v in the same fibre by implying that we are once again referring to the connectedness
with respect to the graph pFpuq, Eq drawn above. To highlight the fact that the edges
of the graph (and therefore its connectedness) depend on the set B, we will often say
vectors or fibres to be “connected by B”.
We have already seen the key result which is Theorem 7. The proofs given in [4] and in
[1] are very similar, except for how the ideal IA (see Definition 12) is introduced. While
[4] deeply analyzes this ideal from a toric geometry perspective, the paper [1] uses it more
as a tool. However, in both cases, IA is introduced before the theorem without further

1

explanation, which may make it a bit unclear as to why such ideal is involved in the
property of connectedness of graphs.
We will therefore rely on the same overall argument as [1] and [4], but with some changes
to the proof of some implications and by focusing more on the connectedness of pairs of
vectors, rather than the whole graph. This will hopefully make the definition of IA come
naturally and will also lead to more general results, starting with the following lemma.

Lemma 11. Given a ring R and a matrix A P Zsˆr, let B Ď KerZpAq generate the
integer null space as a group. Consider two vectors u, v P Fpuq. Then they are connected
by B if and only if xu ´ xv P IB.

Proof. Assume xu ´xv P IB. Since IB is generated by the elements xb
`

´xb
´

this means
that, for suitable M P N, αi P Nr, ρi P R, bi P B, we can write:

xu ´ xv “

M
ÿ

i“1

ρix
αipxb

`
i ´ xb

´
i q “

M
ÿ

i“1

ρipx
αi`b`

i ´ xαi`b´
i q. (1.1)

Consider the set: 1

J :“ ti P t1, . . . ,Mu : αi ` b`
i P Fpuq, αi ` b`

i or αi ` b´
i is connected to uu.

Notice that the vectors αi ` b`
i and αi ` b´

i are connected by bi, so one is connected to
u if and only if the other is. This means that we have the equality:

J “ ti P t1, . . . ,Mu : αi ` b`
i P Fpuq, αi ` b`

i and αi ` b´
i are connected to uu. (1.2)

Now write xu ´ xv as:

xu ´ xv “

M
ÿ

i“1

ρipx
αi`b`

i ´ xαi`b´
i q “

ÿ

iPJ

ρipx
αi`b`

i ´ xαi`b´
i q `

ÿ

iRJ

ρipx
αi`b`

i ´ xαi`b´
i q.

This means that xu ´ xv can be expressed as the sum of two polynomials gpxq and hpxq,
where:

gpxq :“
ÿ

iPJ

ρipx
αi`b`

i ´ xαi`b´
i q, hpxq :“

ÿ

iRJ

ρipx
αi`b`

i ´ xαi`b´
i q.

Notice that all the binomials ρipx
αi`b`

i ´ xαi`b´
i q in which xu appears with a non-zero

coefficient have i P J by definition of J (and because of course u is connected to itself).
This means that all the summands in Line (1.1) which contribute to xu in xu´xv are also
summands of the sum that defines gpxq. Since xu appears with coefficient 1 in xu ´ xv,
it follows that 1 is also the coefficient of xu in gpxq.
This argument actually holds for any monomial in gpxq: if xβ appears in gpxq with a non-

zero coefficient, then it means that xβ must come from at least one binomial ρipx
αi`b`

i ´

xαi`b´
i q with i P J , therefore β “ αi ` b˘

i must be connected to u, by the equality on

1Since αi ` b`
i and αi ` b´

i are in the same fibre, the condition αi ` b`
i P Fpuq in the definition of J

is equivalent to αi ` b`
i , αi ` b´

i P Fpuq. Also, if the expression on Line (1.1) is minimal, such condition
is always satisfied and can therefore be dropped in the definition of J

2

Line (1.2). The definition of J implies that all the binomials ρjpxαj`b`
j ´ xαj`b´

j q which
contribute to xβ in Line (1.1) have j P J , therefore they all also appear in the sum that
defines gpxq. This means that the coefficient of xβ in gpxq must be the same as in xu´xv.
Since xu ´xv only has two monomials and we have already proved xu to have coefficient
1 in gpxq, this means that either gpxq “ xu or gpxq “ xu ´ xv. However, pure difference
ideals can never contain monomials. An easy way to see this is to notice that all the pure
difference binomials xb

`

´ xb
´

are contained in the kernel of the evaluation morphism
ψ1 : Rrxs Ñ R that sends every xi to 1, therefore IB Ď Kerpψ1q. However, no monomial
can be in the kernel of this map.
This means that gpxq P IB cannot be just xu and it is therefore equal to xu ´ xv, so xv

also appears in gpxq with a non-zero coefficient. Specifically, it must come from at least

one term ρtx
αtpxb

`
t ´ xb

´
t q with t P J . Using Line (1.2) once more, the fact that t P J

implies that v is connected to u, which concludes the proof of the first implication.
For the converse, assume u, v P Fpuq “ Fpvq to be connected through a chain of vectors
v0 “ v, . . . , vN “ u. This means that, up to a sign, vi ´ vi´1 P B. To simplify the
notation, assume such a sign to be a ` and set bi :“ vi ´ vi´1 for i “ 1, . . . , N . Then
this means that we can conclude the argument by using a telescoping sum:

xu ´ xv “

N
ÿ

i“1

pxvi ´ xvi´1q “

N
ÿ

i“1

pxvi´1`b`
i ´b´

i ´ xvi´1q “

N
ÿ

i“1

xvi´1´b´
i pxb

`
i ´ xb

´
i q P IB.

Notice that the fact that xvi´1´b´
i P Zrxs is because b´

i is exactly the quantity that is
subtracted when moving from vi´1 to vi. More formally, we have:

vi “ vi´1 ` bi “ vi´1 ` b`
i ´ b´

i

and therefore vi´1 ´ b´
i “ vi ´ b`

i . This means that, for every index j P t1, . . . , ru, we
have:

pvi´1 ´ b´
i qj “ vi´1,j ´ pb´

i qj “

#

vi´1,j ´ 0 “ vi´1,j ě 0 if pbiqj ě 0

vi,j ´ pb`
i qj “ vi,j ` 0 “ vi,j ě 0 if pbiqj ď 0

.

Notice that by the notation pbiqj we mean the j-th entry of the vector bi. If we remember
Notation 9, then bi is the i-th column of the matrix B, so essentially we are using the
quantity pbiqj “ bj,i.

So for every i we have xvi´1´b´
i P Zrxs and therefore xu ´ xv P IB, which is what we

wanted to prove.

Using this lemma, we now know that asking for all the vectors u, v in the same fibre
to be connected means asking for all the binomials xu ´ xv to be inside the ideal IB. It
is therefore natural to introduce the following definition.

Definition 12. Given a ring R and a matrix A P Zsˆr, define the ideal IpRq

A of Rrxs as:

IpRq

A :“ xtxu ´ xv : u, v P Nr, Au “ AvuyRrxs.

When the choice of the ring does not matter or is implicit, we will denote the ideal simply
by IA.

3

Notice that IB Ď IA for any B Ď KerpAq, since we have the implications:

b P KerpAq ùñ 0 “ Ab “ Apb` ´ b´q ùñ Ab` “ Ab´ ùñ xb
`

´ xb
´

P IA.

So all the fibres being connected (i.e. any two vectors in the same fibre being connected)
is equivalent to the other inclusion holding as well.
So in particular we have now just proved the following theorem by Sturmfels and Diaconis,
which they had previously stated only for fields.

Theorem 13 (Diaconis-Sturmfels). Let R be a ring and consider A P Zsˆr. Let B Ď

KerZpAq generate the integer null space as a group. Then the equality IB “ IA holds if
and only if every fibre Fpuq is connected.

Apart from the fact that this version can be used for any ring, the only difference
with Theorem 7 is that the latter was asking for IB to be saturated. Since Lemma 12.2
from [4] proves that IA is the saturation of IB (and the argument works for any ring R),
we notice that the two formulations actually coincide.
To give a more intuitive perspective on why the saturation is involved, let us see the
following lemma.

Lemma 14. Let R be any ring. An ideal I Ĳ Rrxs is saturated with respect to x1, . . . , xr if
and only if it is of the form I “ JXRrxs, with J Ĳ Rrx˘1s :“ Rrx1, . . . , xr, x

´1
1 , . . . , x´1

r s.
Moreover, if I “ xGyRrxs with G Ď Rrxs, then we can take J as J “ xGyRrx˘1s.

Proof. If I “ J X Rrxs with J Ĳ Rrx˘1s, then I is saturated: assume fpxq P Rrxs to
be such that xαfpxq lies in I. Since xα is invertible in Rrx˘1s and multiplying by an
invertible element does not alter the presence in an ideal, the fact that xαfpxq P I Ď J
implies that fpxq is still in J . Also, we were assuming fpxq P Rrxs, so fpxq P RrxsXJ “ I.
Conversely, assume I “ xGyRrxs to be saturated and take J :“ xGyRrx˘1s. Then of
course I Ď J and therefore I Ď J X Rrxs. For the other inclusion, take an element

fpxq “
řN

i“1 ρix
αigipxq P Rrxs X J , with gipxq P G, ρi P R for all i “ 1, . . . , N . Take a

vector β P Nr such that β`αi P Nr for every i (namely, take β with βj ě maxN
i“1p´αi,jq

for all j). Then, for such β, we have that xβ`αi P Rrxs for all i and therefore:

xβfpxq “

N
ÿ

i“1

ρix
β`αigipxq P xGyRrxs “ I.

So we proved that xβfpxq P I with fpxq P Rrxs. Since I is saturated, this implies
fpxq P I, which concludes the proof.

So what we just proved is that an ideal I Ĳ Rrxs being saturated means that we can
“play with its generators” as much as we want, even multiply by Laurent polynomials:
as long as the final result is back inside Rrxs, this element is still going to be in I.

Applying Lemma 14 to the ideal IB “ xtxb
`

´xb
´

ubPBy can therefore help us understand
the idea behind the property of saturation. Essentially, the point is that B already
generates the integer null space as a group, so every distance u ´ v is reachable in a
suitable number of jumps (i.e. by adding or subtracting a certain number of vectors in
B). While it is not necessarily true that throughout the whole path of jumps we will stay

4

inside Nr, we know that the starting and ending point of the path are indeed natural
vectors. Using the same idea as Lemma 11, this translates into xu ´ xv being generated

by txb
`

´ xb
´

ubPB in Rrx˘1s while also being in Rrxs. So for u and v to be connected,
again by Lemma 11, we need this to imply that xu ´ xv P IB, which is exactly what
saturation is about.
Before we move on to the next section, let us consider the following lemma which was
also stated in the paper [1] for the case IB “ IA and which, thanks to the new approach
coming from the first part of Lemma 11, can now be generalized as follows.

Lemma 15. Let S be a subring of another ring R, and take A,B as in Notation 9. Then:

IpRq

B X Srxs “ IpSq

B .

Proof. The inclusion IpRq

B X Srxs Ě IpSq

B is trivial.
For the other inclusion, assume by contradiction that there exists a polynomial fpxq P

pIpRq

B X SrxsqzIpSq

B . Take a total order ă on the set Nr of all the exponents and take
fpxq with a minimal leading monomial with respect to ă. Since fpxq is generated by

txb
`

´ xb
´

ubPB in Rrxs, it can be written as:

fpxq “

M
ÿ

i“1

ρix
αipxb

`
i ´ xb

´
i q “

M
ÿ

i“1

ρipx
αi`b`

i ´ xαi`b´
i q, (1.3)

for suitable M P N, αi P Nr, ρi P R, bi P B.
Let cux

u be the leading monomial of fpxq. As we have already seen in the proof of
Lemma 11, we can define:

J “ ti P t1, . . . ,Mu : αi ` b`
i P Fpuq, αi ` b`

i or αi ` b´
i are connected to uu,

which is actually the same as:

J “ ti P t1, . . . ,Mu : αi ` b`
i P Fpuq, αi ` b`

i and αi ` b´
i are connected to uu,

and we can split fpxq as fpxq “ gpxq ` hpxq with:

gpxq “
ÿ

iPJ

ρipx
αi`b`

i ´ xαi`b´
i q, hpxq “

ÿ

iRJ

ρipx
αi`b`

i ´ xαi`b´
i q.

As already discussed in Lemma 11, every monomial of gpxq with a non-zero coefficient
also appears in fpxq with that same coefficient. Indeed, if xβ appears in gpxq with
a non-zero coefficient, then it means that xβ must come from at least one binomial

ρipx
αi`b`

i ´ xαi`b´
i q with i P J , therefore β “ αi ` b˘

i lies in Fpuq and it is connected

to u. This implies that all the binomials ρjpxαj`b`
j ´ xαj`b´

j q which contribute to xβ in
Line (1.3) have j P J , therefore they all also appear in the sum that defines gpxq.
This argument allows us to conclude the following:

• Thanks to the construction of gpxq and by what we just said, xu appears in gpxq

with its coefficient being precisely cu;

5

• As discussed in the proof of Lemma 11, gpxq is not a monomial;

• Since cux
u is the leading monomial of fpxq, we have that xu is the monomial of

fpxq with the greatest exponent, with respect to ă. Since all the monomials of
gpxq are taken from fpxq, this means that they all have a smaller exponent than
u. Combining this with the previous point, we deduce that cux

u is also the leading
monomial of gpxq.

Putting all these considerations together, we conclude that if we take any monomial cvx
v

from gpxq such that cv ‰ 0 and v ‰ u, then:

• The vector v is strictly smaller than u, with respect to ă;

• The vectors u, v are in the same fibre and they are connected by B.

By Lemma 11, this means that xu ´ xv lies in IpSq

B , and therefore so does cupxu ´ xvq.

But now we can take fpxq ´ cupxu ´ xvq, which is the sum of a polynomial in pIpRq

B X

SrxsqzIpSq

B and one in IpSq

B . This means that fpxq ´ cupxu ´ xvq P pIpRq

B X SrxsqzIpSq

B .
However, the leading monomials in fpxq and cupxu ´ xvq cancel each other out, hence
this new polynomial has a smaller leading monomial, which contradicts the choice of
fpxq.

This lemma will be useful for our next section, as it allows us to assume the pure

difference binomials xu ´ xv to be always generated Zrxs-linearly in any ideal IpRq

B .

1.2 Connecting big fibres

The first section studied what happens when we try to connect all the fibres at once.
For the rest of the chapter, however, we will focus on the connectedness of some smaller
classes of fibres. In this section, for instance, we will be interested in only connecting
all the “big” fibres, i.e. fibres of the form Fpuq for a vector u with a high p-norm. A
small counterexample can show us right away that just big fibres being connected is not
enough to guarantee the connectedness of every fibre (which we know to be equivalent
to IB being saturated).

Example 16. Consider the following setting:

A “
`

1 1
˘

, B “ tb1, b2u :“ t

ˆ

4
´4

̇

,

ˆ

5
´5

̇

u.

The set B generates KerZpAq as a group: thanks to Bézout’s identity, any vector m¨

ˆ

1
´1

̇

with m P Z can be expressed as a Z-linear combination of b1 “ 4¨

ˆ

1
´1

̇

and b2 “ 5¨

ˆ

1
´1

̇

.

Also, in N2, Au “ u1 ` u2 “ ||u||1, so the fibres simply consist of the natural vectors

with the same L1-norm. It is obvious that not all fibres are connected: for instance,

ˆ

1
0

̇

6

cannot be connected to

ˆ

0
1

̇

. However, let us show that Fpuq is connected for any u

such that ||u||1 ě 10: take two vectors u “

ˆ

u1
u2

̇

, v “

ˆ

v1
v2

̇

with the same L1-norm,

and therefore in the same fibre. We want to prove their connectedness by induction on
||u ´ v||8. If ||u ´ v||8 “ 0, then u “ v and therefore the two vectors are connected.
Otherwise, for ||u ´ v||8 ě 1, we have u ‰ v. Since u1 ` u2 “ v1 ` v2 we can assume,
without loss of generality, that u1 ą v1 and u2 ă v2. Also, since u1 ` u2 “ ||u||1 ě 10,
we have ui ě 5 for at least one index i P t1, 2u.

If u1 ě 5, then we can define u2 :“ u ´ b2 ` b1 “

ˆ

u1 ´ 1
u2 ` 1

̇

P N2, which is connected to

u through u1 :“ u ´ b2 P N2. By induction, since ||u2 ´ v||8 “ ||u ´ v||8 ´ 1, we know
that u2 is connected to v. By transitivity, so is u.

Analogously, if u2 ě 5, then we can define u2 :“ u ` b2 ´ b1 “

ˆ

u1 ` 1
u2 ´ 1

̇

P N2, which is

connected to u through u1 :“ u ` b2 P N2. Once again, we can deduce by induction that
u2 (and therefore u) is connected to v.
So we just proved that all fibres Fpuq with ||u||1 ě 10 are connected, even though not all
fibres are.

However we will show that, whenever the ring R is reduced, the connectedness of big
fibres makes

?
IB saturated, rather than IB. Before we formally state this, let us make

a quick remark.

Remark 17. Given a reduced ring R and A,B as in Notation 9, we have:

p
a

IB : x8q “ IA.

In particular, we have that IA Ě
?
IB and the equality holds if and only if

?
IB is

saturated.

Proof. Firstly notice that the computations on pages 31 and 32 of [4] show that Rrxs{IA
is isomorphic to a subring of a polynomial ring Rrt1, . . . , tss, which is reduced, hence IA
is radical. Since it also contains IB, this means that

?
IB Ď IA.

Lastly, to prove the equality in the theorem, notice that, using Lemma 12.2 from [4] and
considering the inclusions IB Ď

?
IB Ď IA, we can conclude:

IA “ pIB : x8q Ď p
a

IB : x8q Ď pIA : x8q “ IA,

which implies the equality we wanted.

So now let us proceed in the same way we did for the first section, but this time with
?
IB.

Lemma 18. Let R be any ring. Given two vectors u, v in the same fibre, suppose that
there exists N such that n ¨ u and n ¨ v are connected by B for every n ě N .
Then pxu ´ xvq2N`1 P IB. In particular, xu ´ xv P

?
IB.

7

Proof. By hypothesis we know that Nu is connected to Nv and pN ` 1qu is connected
to pN ` 1qv. By Lemma 11, this can be expressed as:

#

xNu ´ xNv P IB
xpN`1qu ´ xpN`1qv P IB

“

#

pxuqN ”IB pxvqN

pxuqN`1 ”IB pxvqN`1
.

If we substitute pxuqN from the first equality in pxuqN`1 from the second (and analogously
with xv), we get:

#

pxvqN`1 ”IB pxuqN`1 ”IB x
upxvqN

pxuqN`1 ”IB pxvqN`1 ”IB x
vpxuqN

“

#

pxvqN pxu ´ xvq ”IB 0

pxuqN pxu ´ xvq ”IB 0
.

This allows us to conclude that:

pxu ´ xvq2N`1 “ pxu ´ xvq

2N
ÿ

j“0

p´1q2N´j

ˆ

2N

j

̇

pxuqjpxvq2N´j P IB.

Notice that this is true thanks to the fact that, in the summation above, at least one
between j and 2N ´ j is always at least N , hence all the summands in the summation
above are in IB.

One may wonder whether it was necessary to actually ask for nu and nv to be con-
nected for all the integers n ě N , instead of just for two consecutive integers n, n`1. The
point is that it actually makes no difference, as one can see from the following lemma.

Lemma 19. Given two vectors u, v P Nr lying in the same fibre Fpuq, the following are
equivalent:

1. There exists N P N such that n ¨ u is connected to n ¨ v for all n ě N ;

2. There exists t P N such that t ¨ u is connected to t ¨ v and pt` 1q ¨ u is connected to
pt` 1q ¨ v;

3. There exist two coprime numbers t, h P N such that t ¨ u is connected to t ¨ v and
h ¨ u is connected to h ¨ v.

Before we proceed with the proof, we need a technical lemma.

Lemma 20. Consider two coprime natural numbers h, t. Then every n ě ht can be
written as n “ αh` βt with both α, β non-negative integers.

Proof. Given h and t, take N :“ ht and n ě N .
Since G.C.D.ph, tq “ 1, we know that there is an integer solution pα, βq to the equation
above. Since pα` kt, β´ khq is still a solution for every integer k, up to taking k ą 0 big
enough, we can assume α ě 0. If we also have β ě 0, then we are done, as we found our
solution. Otherwise, consider the following set:

A :“ tpα, βq P N ˆ Ză0|n “ αh` βtu Q pα, βq,

8

which is therefore non-empty.
Take an element pa, bq P A such that b is maximal (i.e. its absolute value is minimal).
The fact that this element is in A implies that ah` bt “ n ě N and therefore:

a ě
N ´ bt

h
ě
N

h
“ t,

which means that a´ t P N. Now notice that the element pa´ t, b` hq is still a solution
to n “ αh ` βt. If b ` h were still negative, then pa ´ t, b ` hq would be in A and b ` h
would have a smaller absolute value than b, so it would contradict the minimality of pa, bq.
Therefore we conclude that b` h ě 0 and hence we can exhibit the natural solution:

n “ αh` βt with α :“ a´ t P N, β :“ b` h P N,

which concludes our proof.

Now we proceed with the proof of Lemma 19.

Proof(Lemma 19). It is clear that (1) implies (2) and, since two consecutive integers are
always coprime, that (2) implies (3). So we only need to prove that (3) implies (1).
Assume hu to be connected to hv (so xhu ´ xhv P IB thanks to Lemma 11) and tu to be
connected to tv (so xtu ´ xtv P IB).
Again by Lemma 11, we only need to prove that xnu ´ xnv P IB for any n ě ht. For any
such n, which by the previous lemma can be expressed as n “ αh` βt with α, β ě 0, we
can write:

xnu ´xnv “ xnu ´xαhu`βtv `xαhu`βtv ´xnv “ xαhupxβtu ´xβtvq `xβtvpxαhu ´xαhvq “

“ xαhupxtu ´ xtvqppxq ` xβtvpxhu ´ xhvqqpxq P IB
for some suitable polynomials ppxq and qpxq, where the last step uses the fact that
fpxq ´ gpxq always divides fkpxq ´ gkpxq for any k, fpxq, gpxq.

So now that we have seen that Lemma 18 is stated in the strongest possible way that
could come from the proof we gave, it is reasonable to ask ourselves whether the converse
also holds. If we consider the case charpRq “ 0, then the answer is yes.

Lemma 21. Consider any ring R with charpRq “ 0 and take u, v P Fpuq. If xu ´ xv P
?
IB, then there exists N such that nu is connected to nv for every n ě N .

Proof. Since by hypothesis we have xu ´ xv P
?
IB, we know that pxu ´ xvqn P IB for

any integer n bigger than a suitable N P N. Since pxu ´ xvqn P Zrxs then, by Lemma

15, this means that all these polynomials are generated Zrxs-linearly by txb
`

´ xb
´

ubPB.
Take any prime number p ě N . Then this means that:

pxu ´ xvqp “

T
ÿ

i“1

ϵix
αipxb

`
i ´ xb

´
i q with ϵi P t˘1u, bi P B, αi P Nr, T P N.

Take this equality modulo p (where the p-th power becomes a ring endomorphism):

xpu ´ xpv “

T
ÿ

i“1

ϵix
αipxb

`
i ´ xb

´
i q P IpFpq

B .

9

By Lemma 11 (this time applied with the ring R “ Fp), this implies that pu and pv are
connected by B.
Since this works for any prime number bigger than N , one can take two such primes
p1, p2 and use them in Lemma 19 to conclude that nu and nv are connected for any
n ě p1p2.

Unfortunately this type of argument does not work on rings with positive character-
istic, as we have no way of reducing modulo two different primes.
This is actually very reasonable, since a positive characteristic makes some powers behave
differently. For instance, let us tweak Example 8 so that Lemma 21 does not hold for
charpRq “ p ą 0.

Example 22. For any prime p, consider the setting:

A “

¨

˚

˚

˝

1 0 0 0 1 1
0 1 0 0 ´1 ´1
0 0 0 1 2 3
0 0 3 2 1 0

˛

‹

‹

‚

, B “ tb1, b2, b3u :“ t

¨

˚

˚

˚

˚

˚

˚

˝

´1
1
1

´2
1
0

˛

‹

‹

‹

‹

‹

‹

‚

,

¨

˚

˚

˚

˚

˚

˚

˝

1
´1
0
1

´2
1

˛

‹

‹

‹

‹

‹

‹

‚

,

¨

˚

˚

˚

˚

˚

˚

˝

0
0
p

´p
´p
p

˛

‹

‹

‹

‹

‹

‹

‚

u,

u “

¨

˚

˚

˚

˚

˚

˚

˝

0
0
1
0
0
1

˛

‹

‹

‹

‹

‹

‹

‚

, v “

¨

˚

˚

˚

˚

˚

˚

˝

0
0
0
1
1
0

˛

‹

‹

‹

‹

‹

‹

‚

.

Since adding ˘b1 or ˘b2 to a multiple of u would produce a vector outside of Nr, b3 is
the only vector that can connect multiples of u and v, therefore n ¨ u is connected to n ¨ v
by B if and only if p | n. In particular, it is false that n ¨ u and n ¨ v are connected for all
large enough values of n.
However, if we take R :“ Fp, then:

IB “ xx2x3x5 ´ x1x
2
4, x1x4x6 ´ x2x

2
5, x

p
3x

p
6 ´ xp4x

p
5yRrxs “

“ xx2x3x5 ´ x1x
2
4, x1x4x6 ´ x2x

2
5, px3x6 ´ x4x5qpyRrxs.

The element x3x6´x4x5 “ xu´xv lies therefore in
?
IB, even though there exist infinitely

many integers n such that n ¨ u and n ¨ v are not connected. 2

However, for these rings, we get a weaker version; it is not a coincidence that, in the
example above, we got n ¨ u being connected to n ¨ v if and only if p | n:

Lemma 23. Consider any ring R with prime characteristic charpRq “ p and take u, v P

Fpuq. If xu ´ xv P
?
IB, then there exists T such that nu is connected to nv for every

multiple n of pT .

2Since B1 :“ tb1, b2,
1
p
b3u is a Markov basis, we actually have the equality

?
IB “ IB1 “ IA, so

?
IB

actually contains the binomial xu ´ xv for all u, v P Fpuq.

10

Proof. Analogously to the proof of Lemma 21, we are assuming that there exists a natural
number N such that pxu ´ xvqN P IB. Take the smallest integer T such that pT ě N .
Then we have:

xp
T

¨u ´ xp
T

¨v “ pxu ´ xvqp
T

P IB
Which means that pT ¨ u and pT ¨ v are connected, and therefore the same holds for any
multiple of the two.

To sum up, we proved the following proposition.

Proposition 24. Let A,B be as in Notation 9 and take u, v P Fpuq. Then the following
are equivalent:

1. There exists N P N such that nu and nv are connected for every n ě N ;

2. The ideal

b

IpRq

B contains xu ´ xv for any ring R with charpRq “ 0;

3. Both ideals

b

IpR1q

B and

b

IpR2q

B contain xu ´ xv for any two rings R1, R2 with
different prime characteristic.

Proof. Thanks to Lemma 18 and Lemma 21, we already know that (1) and (2) are
equivalent and that (1) implies (3). For the remaining implication, if (3) holds, then
apply Lemma 23 once for each of the two rings: this yields T1, T2, p1, p2 such that pT1

1 ¨ u
is connected to pT1

1 ¨ v and pT2
2 ¨ u is connected to pT2

2 ¨ v. Using Lemma 19, we conclude
that n ¨ u and n ¨ v are connected for any n ě pT1

1 pT2
2 .

If we ask the condition in the previous proposition to hold for any pair of vectors in
the same fibre, we immediately get the following result.

Corollary 25. Let A,B be as in Notation 9. Then the following are equivalent:

1. For every u, v P Fpuq, there exists N P N such that nu and nv are connected for
every n ě N ;

2. The equality

b

IpRq

B “

b

IpRq

A holds for any ring R with charpRq “ 0;

3. Both equalities

b

IpR1q

B “

b

IpR1q

A and

b

IpR2q

B “

b

IpR2q

A hold for any two rings
R1, R2 with different prime characteristic.

Proof. Notice that the inclusion
?
IB Ď

?
IA always holds, since IB Ď IA.

On the other hand, we have the following equivalences:

xu ´ xv P
a

IB @u, v s.t. Au “ Av ðñ IA Ď
a

IB
?
IB radical

ðùùùùùùñ
a

IA Ď
a

IB. (1.4)

Together with the other inclusion, this means that the conditions on Line (1.4) are all
equivalent to

?
IA “

?
IB. Putting this together with the Proposition 24 concludes the

proof.

11

In particular, thanks to Remark 17, if R is reduced, then we have the previous corollary
with the special case of IA being radical, and the condition

?
IB “

?
IA “ IA becomes

equivalent to IB being saturated.
If we go back to the initial question of big fibres being connected, this means the following:
if R is reduced and Fpuq is connected for any u P Nr such that ||u||p ě D, then we can
obviously satisfy Statement 1 from Corollary 25 with N “ D, therefore

?
IB is saturated

and it is equal to IA.

1.3 Deducing fibre connectedness from other fibres

In this section we want to show how an affine transformation on Fpuq can possibly
simplify the problem of connecting the fibres.
Before we go on, let us expand Notation 9.

Notation 26. Given A and B as in Notation 9, let C Ď B be a Q-basis for KerQpAq as
a Q-vector space. Define C P Zrˆt as the matrix whose columns are the vectors of C (so
t :“ |C|).

Notice that B always contains a subset C as in Notation 26: since B generates KerZpAq

as a group, it generates KerQpAq – KerZpAq b Q as a Q-vector space, so we can extract
a basis C from it. We will omit the C from the notation where it is clear from context.
Given this set C and any vector u P Nr, every element v inside Fpuq (which is just
pu` KerQpAqq XNr) can now be expressed only in terms of the coordinates of v´u with
respect to the basis C. In other words, we are defining the set:

Gpuq :“ tx P Qt : u` Cx P Fpuqu

and the bijections:

ψu :
Gpuq ÝÑ Fpuq

x ÞÝÑ u` Cx
, ϕu :

Fpuq ÝÑ Gpuq

v ÞÝÑ Dpv ´ uq
,

where D P Qtˆr is a left inverse 3 of C. Notice that these are indeed bijections (and the
inverse to one another), as ψu is surjective by definition of Gpuq (plus the fact that C is
a basis of the null space) and:

pϕu ˝ ψuqpxq “ ϕupu` Cxq “ DCx “ Itˆtx “ x @x P Gpuq.

But now we need to translate the concept of connectedness from Fpuq to our new set
Gpuq. In order for us to do that, let us introduce the following graph structure on Gpuq.

Notation 27. Given A,B, C as in Notation 26 and u P Nr, set n :“ |B| and Z :“
tz1 . . . , znu with zi :“ Dbi. From now on, Gpuq will implicitly have the graph structure
pGpuq, Lq given by:

L :“ tpx, yq P Gpuq2 : x´ y P ˘Zu.

Analogously to the case of Fpuq, connectedness according to this kind of graph will be
referred to as “connectedness by Z”.

3It does not matter which inverse D we pick, as all left inverses induce the same linear map over the
column space of C (i.e. KerQpAq)

12

What we introduced is indeed the corresponding graph to the one on Fpuq, as one
can see from the following lemma.

Lemma 28. Given v, w P Fpuq, v is connected to w by B if and only if ϕupvq is connected
to ϕupwq by Z in Gpuq.

Proof. It suffices to show that, given v, w P Fpuq, we have w ´ v P ˘B if and only if
ϕupwq ´ ϕupvq P ˘Z.
Since D is a left inverse of C, the linear map induced by D is a bijection from the column
space of C to Qt. Since ˘B Ď KerQpAq and since the columns of C span KerQpAq, we
have:

w ´ v P ˘B ðñ ˘Z “ ˘DB Q Dpw ´ vq “ Dpw ´ uq ´Dpv ´ uq “ ϕupwq ´ ϕupvq,

which concludes the proof.

In other words, this lemma states that our problem did not change much: using Gpuq

instead of Fpuq means that we are jumping using different jumps (z1, . . . , zn instead of
b1, . . . , bn) on a different set. So why is this in any way helpful?
Firstly, it may be interesting to notice that, in the lemma above, when bi P C we actually
get zi being a vector ej of the standard basis of Qt. This means that, for instance, given
v, w P Fpuq, if ϕupvq, ϕupwq P Zr then we immediately know that reaching v from u takes
at most ||ϕupvq ´ ϕupwq||1 steps inside u ` KerZpAq. The concept of “minimal number
of steps” to connect two points in Fpuq will come back later on in the thesis, from the
discussion on page 18 and the subsequent Definition 36.
Most importantly though, this change of coordinates allows us to determine interesting
relationships between different graphs Gpuq. For instance, we are going to prove the
two following results, which can potentially say a lot about the connectedness of G and
therefore F .

Lemma 29. Let A,B, C be as in Notation 26 and consider any two vectors u, v P Nr.
Then:

Gpuq X Gpvq “ Gpwq, where wi :“ minpui, viq @i P t1, . . . , ru.

Theorem 30. Let A,B, C be as in Notation 26 and let u P Nr be such that Fpu´ ejq is
connected for every j for which u´ ej P Nr.
Then Fpuq X tv P Fpuq : uivi “ 0@iuc is connected.

Before we state the proof to these results, we may have to re-write Gpuq in more
explicit terms. Remember that, by its definition, Gpuq contains a rational vector x if and
only if u`Cx is in Fpuq, i.e. if u`Cx P Nr. 4 In other words, the elements in Gpuq are
the vectors px1, . . . , xtq P Qt such that:

$

’

’

&

’

’

%

u1 `
řt

i“1 c1,ixi ě 0,
řt

i“1 c1,ixi P Z
...

ur `
řt

i“1 cr,ixi ě 0,
řt

i“1 cr,ixi P Z

. (1.5)

4Since the column space of C is KerQpAq, it is automatic that u ` Cx will still have the same image
under A as u.

13

Notice that here the notation cj,i is referring to an entry of the matrix C, whose columns
are the vectors c1, . . . , ct. In other words, cj,i “ pciqj is the j-th entry of the vector ci.
Line (1.5) can be re-expressed as:

$

’

’

&

’

’

%

u1 `
řt

i“1 c1,ixi “ k1 P N
...

ur `
řt

i“1 cr,ixi “ kr P N

.

If we use the intersection of solution sets instead of the system of equations and if we
allow every ki to be any natural number, we get:

Gpuq “

r
č

j“1

´

ď

kjPN
tx P Qt : uj `

t
ÿ

i“1

cj,ixi “ kju

¯

.

If we introduce the notation Hjpαq to denote the hyperplane in Qt defined by
řt

i“1 cj,ixi “

α, then this can be written as:

Gpuq “

r
č

j“1

´

ď

kjPN
Hjpkj ´ ujq

¯

Ď Qt. (1.6)

Les us see an example to better visualize the set G.

Example 31. Consider the following setting:

A “

ˆ

1 2 1
2 4 2

̇

, B “ C “ tb1, b2u :“ t

¨

˝

1
0

´1

˛

‚,

¨

˝

´2
1
0

˛

‚u, u :“

¨

˝

2
4
1

˛

‚.

Then the set Gpuq is depicted below. The initial light blue triangle is the rational polyhe-
dron defined by only the inequalities in Line (1.5) and it contains Gpuq. The parallel lines
are the hyperplanes H1pk1q, H2pk2q and H3pk3q for all the relevant values of k1, k2, k3, in
order of appearance. The red dots are all the possible intersections of three such hyper-
planes, i.e. the points of Gpuq.

14

Now we prove the statements above.

Proof(Lemma 29). Using Line (1.5), we know that GpuqXGpvq is defined by the following
systems of equations:

$

’

’

&

’

’

%

řt
i“1 c1,ixi P Z

...
řt

i“1 cr,ixi P Z

,

$

’

’

&

’

’

%

řt
i“1 c1,ixi ě ´u1

...
řt

i“1 cr,ixi ě ´ur

,

$

’

’

&

’

’

%

řt
i“1 c1,ixi ě ´v1

...
řt

i“1 cr,ixi ě ´vr

.

The last two systems can be joined into:
$

’

’

&

’

’

%

řt
i“1 c1,ixi ě maxp´u1,´v1q “ ´ minpu1, v1q “ ´w1

...
řt

i“1 cr,ixi ě maxp´ur,´vrq “ ´ minpur, vrq “ ´wr

,

which means that Gpuq X Gpvq is defined by:
$

’

’

&

’

’

%

řt
i“1 c1,ixi P Z

...
řt

i“1 cr,ixi P Z

,

$

’

’

&

’

’

%

w1 `
řt

i“1 c1,ixi ě 0
...

wr `
řt

i“1 cr,ixi ě 0

.

15

Which, again by Line (1.5), is exactly how we define Gpwq.

Using this lemma, we now proceed with the proof of the theorem.

Proof(Theorem 30). Let J be the set of indices j such that u´ej P Nr. We are assuming
B to connect all the graphs Fpu´ejq, and therefore Z to connect all the graphs Gpu´ejq.
Notice that, by Lemma 29, these graphs are not disjointed:

č

jPJ

Gpu´ ejq “ Gpwq, where wi “ min
jPJ

pui ´ δi,jq P N.

Since w P Nr is always contained in Fpwq, this means that 0 P Gpwq, so in particular
the intersection above is non-empty. So if we take the union of these graphs, namely
Ť

jPJ Gpu ´ ejq, this subset of Gpuq is going to be a non-disjoint union of connected
graphs and therefore it will also be connected. By Lemma 28, this means that the
subgraph ψup

Ť

jPJ Gpu ´ ejqq is also going to be connected. We only need to prove the
latter to be equal to Fpuq X tv P Fpuq : uivi “ 0@iuc.
Firstly, let us use the form obtained in Line (1.6) to notice that:

Gpu´ ejq “

r
č

i‰j

´

ď

kiPN
Hipki ´ uiq

¯

X p
ď

kjPN
Hjpkj ´ uj ` 1qq “

“

r
č

i‰j

´

ď

kiPN
Hipki ´ uiq

¯

X

´

p
ď

kjPN
Hjpkj ´ ujqq XHjp´ujqc

¯

“

r
č

i“1

´

ď

kiPN
Hipki ´ uiq

¯

XHjp´ujqc “ Gpuq XHjp´ujqc,

which now means that
ď

jPJ

Gpu´ ejq “
ď

jPJ

pGpuq XHjp´ujqcq “ Gpuq X p
ď

jPJ

Hjp´ujqcq “ Gpuq X
`

č

jPJ

Hjp´ujq
˘c
.

This allows us to conclude that the connected set is:

ψup
ď

jPJ

Gpu´ ejqq “ ψupGpuq X
`

č

jPJ

Hjp´ujq
˘c

q “

“ ψupGpuqq X ψup
`

č

jPJ

Hjp´ujq
˘c

q “ Fpuq X ψu

`

č

jPJ

Hjp´ujq
˘c
.

But now notice that, for every j P J , by very definition of Hjp´ujq, we have that

x P Hjp´ujq if and only if
řt

i“1 cj,ixi “ ´uj , which is equivalent to:

0 “ uj `

t
ÿ

i“1

cj,ixi “ pu` Cxqj “ pψupxqqj .

This implies that an element x is in
Ş

jPJ Hjp´ujq if and only if the equalities pψupxqqj “

0 hold for all j P J , so we have that:

ψup
ď

jPJ

Gpu´ ejqq “ Fpuq X tv P Fpuq : vj “ 0 @j P Juc.

16

Now remember that J was the set of all indices such that u ´ ej P Nr, i.e. uj ě 1, i.e.
uj ‰ 0. So this means that, in the set tv P Fpuq : vj “ 0 @j P Ju, a component vi can
be any natural number if ui “ 0, but it has to be 0 if ui ‰ 0. This means that the set
above can be re-written as:

ψup
ď

jPJ

Gpu´ ejqq “ Fpuq X tv P Fpuq : uivi “ 0 @i “ 1, . . . , ruc.

We are saying that this subgraph is connected, which is what we wanted to prove.

An immediate application of this theorem is the following result.

Corollary 32. Let u P Nr be a vector such that:

• ui ě 1 for every i “ 1, . . . , r;

• u R KerZpAq;

• Fpu´ eiq is connected for every i P t1, . . . , ru.

Then Fpuq is connected.

Proof. Using Theorem 30, in this case with J “ t1, . . . , ru, we know that the only possible
element in Fpuq that is not connected to u would be 0 P Nr. However, since u R KerZpAq,
we conclude that 0 R Fpuq and therefore Fpuq is entirely connected.

This corollary, in particular, says that we only need the connectedness of fibres of
elements with at least a zero entry, as the remaining fibres automatically become con-
nected.
Theorem 30 and Corollary 32 may not entirely come as a surprise since, after all, up to
dividing by G.C.D.pxu, xvq, the vectors u and v appearing in xu ´ xv are always such
that uivi “ 0 for all i. However, being able to divide by a power of x while being sure
not to be altering the presence in the ideal is only possible with saturated ideals, so
this argument only makes sense if we are looking for IB to be equal to IA. This means
that the theorem and corollary above were not only helpful in properly formalizing this
concept, but they also cover more general cases, where we ask for only some of the fibres
to be connected.
Also, thanks to Theorem 30, even the remaining case of connecting u and v with uivi “ 0
for all i is simplified: we can still look for a “bridge” element w such that wjuj ‰ 0 and
wivi ‰ 0 for some suitable i, j. In this case, by applying Theorem 30 twice, u would be
connected to v by a path that goes through w.
Towards this direction, it may be interesting to notice that if u P Fpuq admits a “bridge”
element for a certain vector v, then so does u ` w P Fpu ` wq for the vector v ` w, for
whatever vector w P Nr, so in a sense one only needs to look up “small” graphs Gpuq.

1.4 Checking the connectedness of a finite number of
fibres

As the title suggests, in this section we continue the previous work of trying to understand
which fibres are “key” to the connectedness of other fibres.

17

In particular, we are interested in what we will often call “small fibres”, namely the fibres
of the form Fpuq for a small vector u.
Firstly, let us notice that it is indeed possible to only check small fibres, as suggested by
the following remark.

Remark 33. Given A and B as in Notation 9, fix a norm || ¨ || on Qr. Then there exists
a positive number T P R such that the condition:

Fpuq is connected for every u such that ||u|| ď T

implies Fpuq being connected for any u P Nr.

Proof. Choose the ring R as a field. By Corollary 4.4 from [4], we know that there is a

finite set of pure binomials txd
`

´ xd
´

udPD that generates IA, with D Ď KerZpAq. By

Lemma 11, the element xd
`

´ xd
´

belonging to IB is equivalent to d` being connected
to d´ by the set B, for any d P D. In particular, if all fibres Fpd`q are connected for any
d P D, then IB “ IA and therefore every fibre is connected.
In other words, if we set T :“ maxdPD ||d`||, then it suffices to check that Fpuq is
connected for any vector u such that ||u|| ď T .

Unfortunately this proof does not give us an estimation unless we explicitly have D,
at which point we would already have a Markov basis to connect every fibre and any
further discussion would be pointless anyway.
In the rest of this section we are going to introduce and then prove a bound for such
quantity. However, we are going to need to generalize a previous definition first.

Definition 34. Let A and B be as in Notation 9, take a natural number N . Given
u P Nr, we denote by FN puq the undirected graph whose vertices are the same as Fpuq,
but whose set of edges is:

EN :“ tpv, wq P Fpuq2 : Dm ď N, b1, . . . , bm P B, ϵ1, . . . , ϵm P t˘1u s.t. v´w “

m
ÿ

i“1

ϵibiu.

So, essentially, we are saying that we can take some steps outside Fpuq to connect
points, now.
Of course, this can translate analogously to G.

Definition 35. Let A,B, C be as in Notation 26. Take Z as in Notation 27 and consider
a natural number N . Given u P Nr, we denote by GN puq the undirected graph whose
vertices are the same as Gpuq, but whose set of edges is:

LN :“ tpv, wq P Gpuq2 : Dm ď N, z1, . . . , zm P ˘Z, ϵ1, . . . , ϵm P t˘1u s.t. v´w “

m
ÿ

i“1

ϵiziu.

If we compare Fpuq with F2puq and Gpuq with G2puq, for the following setting:

A “

ˆ

0 1 2 3
3 2 1 0

̇

, B :“ C :“ t

¨

˚

˚

˝

1
´2
1
0

˛

‹

‹

‚

,

¨

˚

˚

˝

0
1

´2
1

˛

‹

‹

‚

u, u “

¨

˚

˚

˝

1
1
1
1

˛

‹

‹

‚

,

18

then we get the following pictures:

¨

˚

˚

˝

0
2
2
0

˛

‹

‹

‚

¨

˚

˚

˝

1
0
3
0

˛

‹

‹

‚

¨

˚

˚

˝

0
3
0
1

˛

‹

‹

‚

¨

˚

˚

˝

1
1
1
1

˛

‹

‹

‚

¨

˚

˚

˝

2
0
0
2

˛

‹

‹

‚

¨

˚

˚

˝

0
2
2
0

˛

‹

‹

‚

¨

˚

˚

˝

1
0
3
0

˛

‹

‹

‚

¨

˚

˚

˝

0
3
0
1

˛

‹

‹

‚

¨

˚

˚

˝

1
1
1
1

˛

‹

‹

‚

¨

˚

˚

˝

2
0
0
2

˛

‹

‹

‚

The graph Fpuq. The graph F2puq.

ˆ

0
0

̇

ˆ

1
1

̇

ˆ

0
´1

̇

ˆ

´1
0

̇

ˆ

´1
´1

̇

ˆ

0
0

̇

ˆ

1
1

̇

ˆ

0
´1

̇

ˆ

´1
0

̇

ˆ

´1
´1

̇

The graph Gpuq. The graph G2puq.

There are two interesting remarks that we want to make at this point:

• When N “ 1, we are just taking FN puq “ Fpuq as in the previous definition;

• If we set D :“ t
řm

i“1 ϵibi : m ď N, bi P B, ϵi “ ˘1u, then taking FN puq with
respect to B is the same as taking Fpuq with respect to D, so all the considerations
made for Fpuq actually hold for FN puq as well. For instance, Corollary 32 says that
if N steps are sufficient to connect every Fpu ´ eiq then they are also sufficient to
connect Fpuq. This is also why, from now on, a lot of the arguments will only be
made for Fpuq, even though they all also hold for FN puq.

At this point one may want to weaken the initial task of looking for a set B that connects
Fpuq and, instead, look for a set B that connects FN puq for a small N , i.e. in “only a few
steps outside the graph”. In this case, we need to properly define the number of steps
needed, so we introduce the following definition.

19

Definition 36. Given a matrix A P Nsˆr and a generating set B of KerZpAq as a group,
we define νpBq as:

νpBq :“ minptN P N : FN puq is connected @u P Nruq.

We notice immediately that we are taking the maximum of a non empty set thanks to
Proposition 1.4 of the paper [3], which also implies the inequality νpBq ď ||B|| (here the
notation of “norm of B” is the same as in [3] and we give its definition again in Definition
43).
Now, we are finally ready to introduce our theorem.

Theorem 37. Let A,B be as in Notation 9 and take p P Rě1 Y t8u. Assume Fpwq to
be connected by B for every vector w P Nr that has norm:

||w||p ď
νpBqM

21{p
where M “ max

bPB
||b||p,

with 1
8

being 0, as usual. Then Fpwq is connected for every vector w P Nr.

Before we prove the theorem, we need a couple of useful lemmas.
When trying to connect two vectors u and v, the idea behind Theorem 37 is to see u
as the sum of a big component that remains the same and a smaller one that can be
connected because it has small norm (and we are covering the smaller cases).
However, this only makes sense if connectedness behaves well with the sum.

Lemma 38. Assume u, v P Fpuq to be connected and assume the same for t, w P Fptq.
Then the vectors u` t, v ` w P Fpu` tq are also connected.

Proof. There are two interesting, easy ways to prove this: the first one is constructive;
assume the vectors to be connected through the chains:

u “ u1 Ñ u2 Ñ ¨ ¨ ¨ Ñ ua “ v, t “ t1 Ñ t2 Ñ ¨ ¨ ¨ Ñ tb “ w.

Then u` t is connected to v ` w through the chain:

u` t Ñ u2 ` t Ñ ¨ ¨ ¨ Ñ v ` t Ñ v ` t2 Ñ ¨ ¨ ¨ Ñ v ` w.

Another easy argument can be made by using Lemma 11 to conclude that:

#

u, v connected

t, w connected
ðñ

#

xu ´ xv P IB
xt ´ xw P IB

.

The right-hand side implies that:

xu`t ´ xv`w “ xupxt ´ xwq ` xwpxu ´ xvq P IB

which, again by Lemma 11, means that u` t, v ` w are connected.

Now we need to better formalize the concept of splitting u into the sum of two
components, which is what we will do thanks to the following corollary.

20

Corollary 39. Take u, v P Fpuq. Since u ´ v P KerZpAq, we already know that pu ´

vq`, pu´ vq´ P Fppu´ vq`q. Assume pu´ vq` and pu´ vq´ to be connected. Then u and
v are connected.

Proof. Write u as:

u “ u´ v ` v “ pu´ vq` ´ pu´ vq´ ` v “ pu´ vq` `
`

v ´ pu´ vq´
˘

“ pu´ vq` ` a,

where a :“
`

v´pu´vq´
˘

. We want to apply Lemma 38, so we need to prove that a P Nr.
This is true because:

a “ v ´ pu´ vq´ “ pvi ´ maxpvi ´ ui, 0qqi“1,...,r “ pvi ` minpui ´ vi, 0qqi“1,...,r “

“ pminpui, viqqi“1,...,r P Nr.

So now we have that u is the sum of pu´vq` and a, both in Nr. The former is connected
to pu ´ vq´ by hypothesis, while the latter is obviously connected to itself, therefore by
Lemma 38 u is connected to:

pu´ vq´ ` a “ pu´ vq´ `

´

v ´ pu´ vq´
¯

“ v,

which is what we wanted to prove.

So this means that, instead of having to connect two vectors u and v, we can try
connecting pu´ vq` and pu´ vq´, which are smaller.
So now we are finally ready to prove our theorem.

Proof(Theorem 37). Given any pair of vectors u, v P Fpwq, we know that by definition of
νpBq “: N there must be a path that connects u and v in FN puq, so there exists a chain:

u0 “ u Ñ u1 Ñ ¨ ¨ ¨ Ñ uk “ v with ui ´ ui´1 “

Ni
ÿ

j“1

ϵ
piq
j b

piq
j , Ni ď N @i “ 1, . . . , k

where ϵ
piq
j P t˘1u, b

piq
j P B for any i, j. For every i we have therefore that:

||ui ´ ui´1||p “ ||

Ni
ÿ

j“1

ϵ
piq
j b

piq
j ||p ď

Ni
ÿ

j“1

||b
piq
j ||p ď

Ni
ÿ

j“1

max
bPB

||b||p “ Ni max
bPB

||b||p ď NM.

Now let us separate the proof into two different cases:

• If p “ `8, then notice that ui ´ui´1 has all the non-zero components of the vector
pui ´ ui´1q`, plus some extra non-zero components coming from its negative part
pui ´ ui´1q´. So this means that:

||pui ´ ui´1q`||8 ď ||ui ´ ui´1||8 ď N max
bPB

||b||8 “
maxbPB ||b||8

20
“
NM

21{p
,

which means that by hypothesis F
`

pui ´ ui´1q`
˘

is connected.

21

• If p ă `8 then notice that when we write ui´ui´1 as ui´ui´1 “ pui´ui´1q`´pui´
ui´1q´, we are actually writing it as a sum of two vectors with disjoint supports,
so:

||pui ´ ui´1q`||pp ` ||pui ´ ui´1q´||pp “

“
ÿ

j“1,...,r
pui´ui´1qją0

|pui ´ ui´1q
`
j |p `

ÿ

j“1,...,r
pui´ui´1qjă0

|pui ´ ui´1q
´
j |p “

“
ÿ

j“1,...,r
pui´ui´1qj‰0

|pui ´ ui´1qj |p “ ||ui ´ ui´1||pp ď NpMp.

This inequality has the sum of two non-negative numbers on the left-hand side,
therefore at least one of them is at most NpMp

2 . Without loss of generality, we can

assume ||pui ´ ui´1q`||pp ď NpMp

2 , which implies:

||pui ´ ui´1q`||p ď
NM

21{p
.

So this also means that by hypothesis F
`

pui ´ ui´1q`
˘

is connected.

So in both cases we end up with F
`

pui ´ ui´1q`
˘

being connected, which means that
pui ´ ui´1q` is connected to pui ´ ui´1q´ and therefore, by Corollary 39, ui is connected
to ui´1 in Fpuq. This holds for every i, therefore u is connected to u1, which is connected
to u2 and so on up until v. By transitivity, this means that u and v are connected.
Since this holds for any pair u, v in any fibre Fpwq, it means that the fibres are all
connected.

We have to make two remarks about the proof of this theorem:

• If, for some index i, we have ui ´ ui´1 “ Nib
piq, then we do not need the reasoning

above to conclude that ui and ui´1 are connected, since in this special case they
would be connected by the chain:

ui´1 ÝÑ ui´1 ` bpiq ÝÑ ¨ ¨ ¨ ÝÑ ui´1 `Nib
piq “ ui.

So this means that we can focus on the case where, once we fix i, the vectors b
piq
j

are not all equal. This might be relevant if only one element has the highest norm
of B, which we called M . Indeed, instead of using NM , we can use pN ´ 1qM `M 1

with M 1 being the second highest norm of the vectors of B (which is therefore still
equal to M if more than one vector in B has norm M).

• Since the proof of Theorem 37 is essentially based on the connectedness of fibres of
the form Fpb`q or Fpb´q and since it is impossible for both b` and b´ not to have
zero entries, it suffices to only check the connectedness of the fibres Fpuq with u
satisfying the conditions of Theorem 37 and having at least one zero entry. This
also makes sense when compared to Corollary 32.

Using an analogous proof, one can also prove the following result.

22

Theorem 40. Let A,B be as in Notation 9 and take p P Rě1 Y t`8u. Then the set:

B1 :“ tv P KerZpAq : ||v||p ď νpBq ¨Mu, where M “ max
bPB

||b||p,

is a Markov basis.

Proof. As proved in the proof of Theorem 37, we already know that, for any two vectors
u, v P Fpuq, there is a chain of vectors u0 “ u, . . . , uk “ v such that:

||ui ´ ui´1||p ď νpBq ¨M @i “ 1, . . . , k

Since of course ui ´ ui´1 P KerZpAq, this implies that ui ´ ui´1 P B1 for every i, and
therefore u and v are connected by B1.

Using Theorem 1.3 from [3], we know that νpBq ď ||B|| ď nn`1βn´1 and therefore, if
we apply the two last theorems with p “ `8, we have the following corollaries.

Corollary 41. Let A,B,B be as in Notation 9 and set β :“ max i“1,...,r
j“1,...,n

|bi,j |. Assume

Fpwq to be connected by B for every vector w P Nr that has norm:

||w||8 ď nn`1βn.

Then Fpwq is connected for every vector w P Nr.

Corollary 42. Let A,B,B be as in Notation 9 and set β :“ max i“1,...,r
j“1,...,n

|bi,j |. Then the

set:
B1 :“ tv P KerZpAq : |vi| ď nn`1βn @i “ 1, . . . , ru

is a Markov basis.

These very interesting results push us to try better understand (and bound) the
quantity νpBq, which appears in these results.

23

Chapter 2

Improving the bound on the
norm

2.1 A direct bound

As already noticed right after Definition 36, we already have a bound for νpBq to start
from, which is given by ||B|| as defined in [3]. Let us see its definition.

Definition 43. Given R “ Z, consider A,B as in Notation 9. We then define the norm
of B as the smallest integer N for which there exists a set G Ď IA such that:

1. The ideal IA is generated by G;

2. Every element of G is a pure difference binomial, i.e. of the form xu ´ xv for
u, v P Nr;

3. Every g P G can be written in the form:

g “

N
ÿ

i“1

ϵimipx
b`
i ´ xb

´
i q

where the ϵi P t´1, 0, 1u, the mi are Laurent monomials, and the bi are elements of
B.

Notice that the definition of this quantity is being given on the ring Z. We have
already seen in Theorem 13 that a set being a Markov basis (and therefore generating
the ideal IA) does not depend on the choice of the ring, so the set G from Definition 43
always generates IA, even if we change ring. However, if we changed ring R, we would
not be able to establish a priori whether the number N would remain the same, so we can
not be sure whether the definition above would depend on the choice of the ring R. The
answer is that the choice of the ring is irrelevant, since we actually have the following
remark, whose proof does not depend on the choice of the ring.

Remark 44. Given A,B as in Notation 9, we have νpBq “ ||B||.

24

Proof. We already know from Proposition 1.4 in [3] that νpBq ď ||B||. Thanks to Lemma
15, we know that its proof does not depend on the choice of the ring R.
For the other inequality, we need to find a set G such that the conditions stated in
Definition 43 hold for N :“ νpBq. In order to exhibit such a set, let us take a Markov
basis H “ th1, . . . , hlu, so IA “ IH.
By definition of νpBq, every h`

i is connected to h´
i in FN ph`

i q, therefore for every i we
have a path:

h`
i “: a

piq
0 Ñ a

piq
1 Ñ ¨ ¨ ¨ Ñ a

piq
ti :“ h´

i with a
piq
k ´a

piq
k´1 “

Ni,k
ÿ

j“1

ϵ
pi,kq

j b
pi,kq

j @k “ 1, . . . , ti.

Let us now prove that the set:

G :“
␣

xa
piq

k ´ xa
piq

k´1 : i P t1, . . . , lu, k P t1, . . . , tiu
(

satisfies the conditions stated above:

• G generates IA since, for every i, it contains:

ti
ÿ

k“1

xa
piq

k ´ xa
piq

k´1 “ xa
piq
ti ´ xa

piq

0 “ xh
´
i ´ xh

`
i

and since H is a Markov basis;

• Every element of G is a pure difference binomial by definition;

• Exactly as in the proof of Lemma 11, but this time with Laurent polynomials, every

element xa
piq

k ´ xa
piq

k´1 of G can be re-written by using a telescoping sum. Fix i and

k, then set αm :“ a
piq
k´1 `

řm
j“1 ϵ

pi,kq

j b
pi,kq

j . Then we have:

xa
piq

k ´ xa
piq

k´1 “ xαNi,k ´ xα0 “

Ni,k
ÿ

m“1

xαm ´ xαm´1 “

Ni,k
ÿ

m“1

xαm´1`ϵpi,kq
m bpi,kq

m ´ xαm´1 “

“

Ni,k
ÿ

m“1

xαm´1´pϵpi,kq
m bpi,kq

m q
´

¨

´

xpϵpi,kq
m bpi,kq

m q
`

´ xpϵpi,kq
m bpi,kq

m q
´
¯

“

“

Ni,k
ÿ

m“1

xαm´1´pϵpi,kq
m bpi,kq

m q
´

¨ ϵpi,kq
m

´

xpbpi,kq
m q

`

´ xpbpi,kq
m q

´
¯

,

which is indeed the form that we wanted any element in G to be written in.

So ||B|| ď νpBq and therefore the two quantities are equal.

So this means that the quantity that we need to analyze is not just bounded by ||B||,
it actually coincides with it.
This leads us to further looking into the pre-existing work of the paper [3] where this
quantity was defined. In particular, what emerges from section 4 of such article is that
we can obtain a bound starting from the following rational polyhedral cones in Nn.

25

Definition 45. Given A,B,B as in Notation 9 and ϵ P t˘1un and δ P t˘1ur, define the
following rational polyhedral cone in Nn:

Tϵ,δ :“ tt P Nn : δi ¨

´

n
ÿ

j“1

ϵjbi,jtj

¯

ě 0 @i “ 1, . . . , ru Ď Nn.

More specifically, Holmes proves the following theorem.

Theorem 46 (Holmes, [3]). In the situation described above, assume to have a bound N
such that, for every ϵ P t˘1un and δ P t˘1ur, there exists a set of generators Vϵ,δ of Tϵ,δ
with the property ||v||1 ď N for any v P Vϵ,δ. Then:

||B|| ď N.

He then concludes that a possible set Vϵ,δ can be:

Vϵ,δ “ tv1, . . . , vdu Y
`

t

d
ÿ

i“1

λivi : λi P r0, 1q @i “ 1, . . . , tu X Nn
˘

(2.1)

where v1, . . . , vd are the smallest natural vectors in the extremal rays of Tϵ,δ.
The extremal rays are all the possible solution sets in Nn that arise from sets of n ´ 1

linearly independent equations taken from the following collection:

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

řn
j“1 ϵjb1,jtj “ 0

...
řn

j“1 ϵjbr,jtj “ 0

t1 “ 0
...

tn “ 0

ðñ

ˆ

ϵ1b1| ¨ ¨ ¨ |ϵnbn
Inˆn

̇

t “:

ˆ

Bϵ

Inˆn

̇

t “ 0.

Here the matrix Bϵ is defined according to the following notation.

Notation 47. Given a sign vector ϵ P t˘1ub and a matrix M P Zaˆb whose columns are
c1, . . . , cb, we denote by Mϵ the matrix whose columns are ϵ1c1, . . . , ϵbcb.

Holmes uses Siegel’s Lemma to conclude that v1, . . . , vd have norm at most n ¨

pnβqn´1 “ nnβn´1, where β :“ maxi,j |bi,j |. This means that Theorem 46 can be applied
with the quantity N :“ nn`1βn´1 and therefore yields the following result.

Theorem 48. (Holmes, [3, Theorem 1.3]) Take A,B as in Notation 9. Set β :“
maxi,j |bi,j |. Then we have:

||B|| ď nn`1βn´1.

The purpose of this section is that of exploring some alternatives to Siegel’s lemma.
Before we start, it may be interesting to notice that the case n “ 2 is trivial, since the
extremal rays are defined by only one linear equation. Such equation can be either of the
form ti “ 0, in which case the smallest natural solution vector comes from the standard

26

basis of Q2 and its L1-norm is 1, or of the form ϵ1bi,1t1 ` ϵ2bi,2t2 “ 0, in which case the
smallest natural solution vector is the following, up to a sign:

t “ D´1

ˆ

ϵ2bi,2
´ϵ1bi,1

̇

with D :“ G.C.D.pbi,2, bi,1q.

This means that, for the case n “ 2, we can apply Theorem 46 and have that:

||B|| ď 2 ¨ max
´

|b1,1| ` |b1,2|

G.C.D.pb1,1, b1,2q
,

|b1,1| ` |b1,2|

G.C.D.pb2,1, b2,2q

¯

.

For n ě 3, the first option we may want to introduce is the following result from [6].

Theorem 49. (Bombieri-Vaaler, [6, Theorem 1]) Given a full-rank matrix M P Zmˆn

with m ă n, there is a non-zero vector w P KerZpMq such that:

n
max
i“1

|wi| ď pD´1
a

| detpMM tq|q
1

n´m ,

where D is the greatest common divisor of the determinants of all the mˆm submatrices
of M .

Starting from the bound suggested by this theorem, we could multiply by n to get a
bound on the L1-norm, then multiply by n again to bound the L1-norm of all the vectors
of Vϵ,δ and therefore have a bound on ||B||, as per Theorem 46. However, there does
not seem to be any easy way to compute or approximate the maximum value that can
appear in Theorem 49 unless we use very crude approximations, and computing all the
determinants for all possible matrices seems computationally challenging.
This is why we need to come up with a different way to estimate such quantity. The
lemma mentioned below will be only applicable to our specific case, as it focuses on the
following:

1. We are talking about a one-dimensional null space of a matrix M ;

2. We are only interested in the L1-norm.

The idea is to compute the exact value of the norm of the smallest integer vector, a value
which will be then approximated by a more computer-friendly one.
The lemma is the following.

Lemma 50. Let M P Zpn´1qˆn be a full rank matrix and take any v P KerQpMq. Then,
for any vector ϵ P t˘1, 0un such that:

ϵi “ signpviq @i P t1, . . . , nu s.t. vi ‰ 0,

we know that the smallest L1-norm in KerZpMq is:

D´1
ˇ

ˇ det

ˆ

M
ϵ

̇

ˇ

ˇ,

where D is the greatest common divisor of the determinants of all the pn ´ 1q ˆ pn ´ 1q

submatrices of M .

27

Proof. The idea behind this lemma is the following: write M as:

M “ pv1| ¨ ¨ ¨ |vnq “

¨

˚

˝

m1

...
mn´1

˛

‹

‚

.

If we extend M with any extra row m such that

ˆ

M
m

̇

is invertible, then the last column

of its inverse is in KerQpMq. This vector would not be in Zr a priori, which is the reason

why we have to take the last column of the adjoint matrix adj

ˆ

M
m

̇

instead: consider

the vector w P Zr whose components are defined as:

wi :“ p´1qn`i detpMiq, where Mi “ pv1| ¨ ¨ ¨ |vi´1|vi`1| ¨ ¨ ¨ |vnq.

This vector is indeed in KerZpMq:

xmi, wy “

n
ÿ

j“1

mi,jwj “

n
ÿ

j“1

p´1qj`nmi,j detpMjq “ det

¨

˚

˚

˚

˝

m1

...
mn´1

mi

˛

‹

‹

‹

‚

“ 0,

where the penultimate equality holds thanks to the Laplace expansion formula.
Since KerQpMq “ xvyQ, up to taking ´w instead of w (which does not change the value
of the norm), we can assume signpwiq “ signpviq for every i. So this means that:

||w||1 “

n
ÿ

i“1

|wi| “

n
ÿ

i“1

signpwiqwi “

n
ÿ

i“1

signpviqwi “

n
ÿ

i“1

ϵiwi “

“

n
ÿ

i“1

p´1qn`iϵi detpMiq “ det

ˆ

M
ϵ

̇

,

where the last equality holds again thanks to the Laplace expansion formula for the
determinants applied to the last row.
The fact that we are choosing w or ´w means that we have to introduce the absolute

value, so we get ||w||1 “ | det

ˆ

M
ϵ

̇

|.

The only extra remark that we need to make now is that w is scalable by exactly the
G.C.D. of all its components. In other words, the smallest vector in KerZpMq (even
though technically there are two, up to a sign) is 1

G.C.D.ptwiuni“1q
w, which means that the

smallest norm is:

ˇ

ˇ

ˇ

ˇ

1

G.C.D.ptwiu
n
i“1q

w
ˇ

ˇ

ˇ

ˇ

1
“

||w||1

G.C.D.ptwiu
n
i“1q

“

| det

ˆ

M
ϵ

̇

|

G.C.D.ptdetpMiquni“1q
“

| det

ˆ

M
ϵ

̇

|

D
,

which is what we wanted to prove.

28

In our case, the extremal rays are always inside Qn
ě0 and therefore we always have

ϵ “ 1, even if the practical implementation from chapter 3 will use an extra step described
later.
The value introduced by this lemma is the exact value of the smallest possible norm, so
it must be no worse than the result that we would obtain from Theorem 49. However,
one may want to know how different the two results are. As we will see in instances
such as Corollary 52, the easiest way to approximate these quantities will be ignoring
the denominator D ě 1 and using Hadamard’s inequality to estimate the determinant

as the product of the norms of its rows. If we apply this to det

ˆ

M
ϵ

̇

, then we obtain

?
n
śn´1

i“1 ||mi||2. On the other hand, if we apply the same inequality to
a

detpMM tq,
consider that the diagonal entries of MM t alone are ||mi||

2
2, so Hadamard’s inequality

will work less effectively.
If we want to make a more general comparison instead, then we might have to use a
slightly more general formulation of Hadamard’s inequality for determinant in order to
compare the two, such as the following lemma.

Lemma 51. Given a matrix M “

¨

˚

˝

m1

...
mn

˛

‹

‚

P Rnˆn, choose a non-empty set of indices

J “ tj1, . . . , jku Ď t1, . . . , nu. Set MJ :“

¨

˚

˝

mj1
...

mjk

˛

‹

‚

. Then:

| detpMq| ď

b

| detpMJM t
Jq| ¨

ź

iRJ

||mi||2.

Also, the equality holds if and only if the rows of MJc form an orthogonal basis of
KerRpMJq.

This result seemed new at first but, during the polishing of the thesis, it emerged that
this result was already available, since for example it can be found as Lemma 1 in [7].
For convenience of the reader, we also leave an elementary proof:

Proof. Without loss of generality, we may assume J “ t1, . . . , ku and therefore Jc “

tk ` 1, . . . , nu. Also, the case detpMq “ 0 makes the lemma trivially true, so we can
assume all the rows of M to be linearly independent.
First assume mk`1, . . . ,mn to be an orthogonal basis of KerRpMJq. Then the equality
holds:

| detpMq| “
a

detpMM tq “

d

det
´

ˆ

MJ

MJc

̇

`

M t
J | M t

Jc

˘

¯

“

“

d

detp

ˆ

MJM
t
J MJM

t
Jc

MJcM t
J MJcM t

Jc

̇

q “

29

“

g

f

f

f

f

f

f

f

f

e

detp

¨

˚

˚

˚

˚

˚

˝

MJM
t
J 0

0

||mk`1||22 0 0 ¨ ¨ ¨ 0
0 ||mk`2||22 0 ¨ ¨ ¨ 0
...

...
. . .

...
...

0 ¨ ¨ ¨ ¨ ¨ ¨ 0 ||mn||22

˛

‹

‹

‹

‹

‹

‚

q “

“

g

f

f

edetpMJM t
Jq ¨

n
ź

i“k`1

||mi||
2
2 “

b

detpMJM t
Jq ¨

n
ź

i“k`1

||mi||2.

To generalize this to any matrix MJc , write the vectors mk`1, . . . ,mn as:

mj “ vj ` uj with vj P xm1, . . . ,mkyK
R , uj P xm1, . . . ,mkyR.

Also, by applying the Gram-Schmidt algorithm on the vectors vj , we can re-write them
as:

mj “ v1
j ` uj `

j´1
ÿ

i“k`1

α
pjq

i v1
i with α

pjq

i P R@i, j

where v1
k`1, . . . , v

1
n form an orthogonal basis of KerRpMJq. By the multilinearity of the

determinant, we know that:

detpMq “ det

¨

˚

˚

˚

˝

MJ

v1
k`1 ` uk`1

...

v1
n ` un `

řn´1
i“k`1 α

pnq

i v1
i

˛

‹

‹

‹

‚

“ det

¨

˚

˚

˚

˝

MJ

v1
k`1
...
v1
n

˛

‹

‹

‹

‚

.

Using the previous base case, this is equal to:

b

| detpMJM t
Jq| ¨

n
ź

i“k`1

||v1
i||2.

Now notice that, since we decomposed mj into the sum of orthogonal vectors, we have,
for every j:

||v1
j ||2 “

g

f

f

e||mi||
2
2 ´ ||uj ||22 ´

j´1
ÿ

i“k`1

||α
pjq

i v1
i||

2
2 ď ||mi||2

and the equality holds if and only if uj “ 0 for all j and α
piq
j “ 0 for all i, j. In other

words, we have:

detpMq ď

b

| detpMJM t
Jq| ¨

n
ź

i“k`1

||mi||2

and the equality holds if and only if mi “ v1
i for all i ě k`1, so if and only if mk`1, . . . ,mn

are already an orthogonal basis of KerRpMJq.

This means that, if we want to compare the two results, the norm of the smallest
vector w P KerZpMq would be bounded by:

30

• If we use Lemma 50 (and Lemma 51):

||w||1 “

det

ˆ

M
1

̇

D
ď

a

| detpMM tq| ¨ ||1||2

D
“

a

| detpMM tq| ¨
?
n

D
.

• If we use Theorem 49:

||w||1 ď n ¨
r

max
i“1

|wi| ď n ¨

a

| detpMM tq|

D
.

So, even if we do not immediately use Hadamard’s inequality on the two matrices and we
explicitly compute the determinants, we still have that Lemma 50 works better in this
case, by a factor of at least

?
n.

Now that we analyzed this lemma, let us use it in order to get an easily-computable
bound of the norm, as a corollary.

Corollary 52. Consider A,B, B as in Notation 9, then take 1 k :“ minprkpBq, n ´ 1q

and let ρj1 , . . . , ρjk be the rows of the matrix B with the highest euclidean norms. Then:

||B|| ď n ¨
?
k ` 1

k
ź

i“1

||ρji ||2.

Proof. We have seen that the vectors vi in Line (2.1) are generators of the integer null

space of full-rank pn ´ 1q ˆ n submatrices M of

ˆ

Bϵ

Inˆn

̇

“

ˆ

ϵ1b1| ¨ ¨ ¨ |ϵnbn
Inˆn

̇

. Since

changing the signs of the columns does not alter the euclidean norms of the rows, we may

assume M to be a submatrix of

ˆ

B
Inˆn

̇

instead.

First assume k “ n´ 1. By Lemma 50 we know that the minimal vector in an extremal
ray of Tϵ,δ has norm:

||vi||1 “ D´1 det

ˆ

M
1

̇

ď det

ˆ

M
1

̇

,

where M is a full rank pn´1qˆn submatrix of

ˆ

B
Inˆn

̇

. Applying Hadamard’s inequality

by rows yields:

||vi||1 ď det

ˆ

M
1

̇

ď
?
n ¨

n´1
ź

i“1

||mi||2 ď
?
n ¨

n´1
ź

i“1

||ρji ||2,

where m1, . . . ,mn´1 are the rows of M , which have a smaller norm then the rows ρji , by
definition.
This means that we can use this bound instead of Siegel’s lemma and use Theorem 46
with N :“ n3{2 ¨

śn´1
i“1 ||ρji ||2 to get the result we wanted to prove.

For the case k “ rkpBq, simply notice that this implies that only k of the total n´1 rows

1By the Rank–nullity theorem we know that rkpBq “ r ´ rkpAq.

31

of M can actually be taken from B. The remaining ones need to be taken from Inˆn, so
they have norm 1, so we only have the product of the k rows with the highest norm.
Also, since at least n ´ 1 ´ rkpBq rows of M come from the identity matrix, we can
compute the Laplace expansion formula for determinants on such rows. Since these rows
are vectors from the standard basis of Qn, we essentially get to delete such rows together

with as many columns, and reduce the matrix

ˆ

M
1

̇

to a pk` 1q ˆ pk` 1q matrix. Since

we are just removing columns, the norms of the rows can only decrease, while the norm
of 1 becomes

?
k ` 1 instead of

?
n. This implies that, if k “ rkpBq, then we can use

Theorem 46 with N :“ n
?
k ` 1

śk
i“1 ||ρji ||2 to prove our claim.

While we will see in the next chapter how this bound can be easily computed by a
machine, it may be really hard to compute this quantity without one. If we bound the
norm of every row by

?
k ` 1β, where β is the highest entry of B in absolute value, then

we immediately get the following result.

Corollary 53. Consider A,B, B as in Notation 9, and let β :“ max i“1,...,r
j“1,...,n

|bi,j | and

k :“ minprkpBq, n´ 1q. Then:

||B|| ď n ¨
?
k ` 1

k`1
¨ βk ď n

n
2 `1βn´1.

If we compare this with Theorem 48 then, for the non-trivial cases n ě 3, we see that
this bound is an improvement by a factor of at least n

n
2 ą 1.

It may be relevant to notice that, unlike the actual value of ||B||, both these bounds
actually worsen if one keeps expanding the set B, as the rows in B get a higher norm and
β potentially increases.
As already discussed in the introduction, the improvement on the bound of ||B|| might
be relevant in several ways, such as the following improvement of Corollary 42.

Theorem 54. Let A P Zsˆr be a matrix and take a matrix B whose set of columns
B “ tb1, . . . , bnu generates KerZpAq as a group. Set β :“ max i“1,...,r

j“1,...,n
|bi,j | and k :“

minprkpBq, n´ 1q. Then the set:

B1 :“ tv P KerZpAq : |vi| ď n
?
k ` 1

k`1
βk`1 @i “ 1, . . . , ru

is a Markov basis.

2.2 Computer algorithms to improve the bound

In this section we will explore how some algorithms can be defined in order to try and
compute the bound suggested by Lemma 50 and Corollary 52. In particular, we will
see an algorithm that computes Hadamard’s bound from Corollary 52 in a finer way and
also an algorithm that tries to explicitly bound the highest absolute determinant through
means of local maximums, in a sense that we will clarify in Section 2.2.2.

32

2.2.1 Introductory lemmas and considerations

Before we start introducing some algorithms, we need a couple of preliminary remarks.
The first remark will help us deal with the fact that the extremal rays are defined by

sub-matrices of

ˆ

Bϵ

Inˆn

̇

, with ϵ being any possible sign vector.

Naively, one would check any possible full-rank pn ´ 1q ˆ n submatrix M of

ˆ

Bϵ

Inˆn

̇

,

for any ϵ, and then only compute the determinant det

ˆ

M
1

̇

for the matrices M whose

null space is generated by a vector in Nr. However, there is a much more efficient way
suggested by some elementary remarks.

Remark 55. Consider a full-rank matrix M P Zpn´1qˆn. Then there exists a sign vector
ϵ P t˘1un such that KerpMϵq is generated by a vector in Nr

Proof. Take a non-zero vector v P KerZpMq and consider the vector ϵ P t˘1un defined as
ϵi :“ signpviq (with signp0q “ 1). Then we have:

0 “ Mv “ MϵIϵv for v P Zr,

where I is the identity matrix Inˆn. This means that we can write:

Mϵu “ 0 with u :“ Iϵv “ psignpviqviq
n
i“1 “ p|vi|q

n
i“1 P Nn,

which concludes the proof.

As the sign vector described above will recur often, let us properly introduce it in our
notation.

Definition 56. Let M P Zpn´1qˆn be a full-rank matrix and let v P KerRpMq be such
that its first non-zero component is positive. Then we define the vector εpMq P t˘1un as:

εpMqi :“ signpviq @i “ 1, . . . , n,

where signp0q :“ 1.

We may now proceed to our second remark.

Remark 57. Consider the rational polyhedral cones Tϵ,δ as defined in Definition 45.
Then the set:

P :“
ď

ϵPt˘1u
n

δPt˘1u
r

tℓ : ℓ is an extremal ray of Tϵ,δu

actually coincides with:

Q :“ tKerZpMεpMqq X Nn : M is an pn´ 1q ˆ n full-rank submatrix of

ˆ

B
Inˆn

̇

u.

33

Proof. As we already noticed on page 26, and thanks to Remark 55, we have the trivial
inclusion Q Ď P.

For the converse, let M be a full-rank sub-matrix of

ˆ

Bϵ

I

̇

:“

ˆ

Bϵ

Inˆn

̇

whose null space

is spanned by a natural vector w. Then M 1 :“ Mϵ is a full-rank sub-matrix of:

ˆ

Bϵ

I

̇

ϵ

“

ˆ

pBϵqϵ

Iϵ

̇

“

ˆ

B
Iϵ

̇

and, as seen in the proof of Remark 55, its null space is spanned by the vector pϵiwiqi.
Since we were assuming w P Nr, this means that εpM 1q “ ˘ϵ, which allows us to conclude
that:

KerpMq “ KerppMϵqϵq “ KerpM 1
ϵq “ KerpM 1

˘εpM 1qq “ KerpM 1
εpM 1qq.

Notice that we may easily assume M 1 to be a submatrix of

ˆ

B
I

̇

instead of

ˆ

B
Iϵ

̇

: we are

only computing the half-line in Nn which is orthogonal to the rows of M 1, and taking I
instead of Iϵ simply means changing the sign of all the rows of M 1 taken from the identity
matrix, which does not affect orthogonality.

In other words, we just proved that the collection of all the extremal rays of all the
rational polyhedral cones Tϵ,δ that come from any possible ϵ P t˘1un and δ P t˘1ur is
equal to the collection of all the half-lines KerpMεpMqq XNn that come from any full-rank

pn ´ 1q ˆ n sub-matrix M of

ˆ

B
Inˆn

̇

. The latter is a much smaller collection to check.

These remarks together mean that one can try the following strategy:

• Take any pn´ 1q ˆ n submatrix M from

ˆ

B
Inˆn

̇

;

• Compute KerQpMq;

• If it has dimension strictly larger than 1, then M is not full-rank, so move forward
to the next submatrix (i.e. go back to step 1);

• If it has dimension 1, take any vector w P KerQpMq and compute ϵ :“ psignpwiqqi;

• Compute | det

ˆ

M
ϵ

̇

|, then move forward to the next submatrix (i.e. go back to

step 1);

• Take the maximum of all these determinants.

Notice that the formulation of Lemma 50 also covers the case when a computer approxi-
mates zero-components of w into “slightly” positive or negative numbers, when computing
signpwiq.
This strategy, however, has two flaws: one is that we still check

`

n`r
n´1

˘

different combi-
nations, a number which increases very quickly as n grows. The other is that, once we
compute the null space of M , we might as well just take a generator of KerZpMq and
compute its L1-norm explicitly.

34

This pushes us to look for a different strategy, which is that of trying to determine

in advance which combinations of rows of

ˆ

B
Inˆn

̇

are going to give a higher absolute

determinant.

Lemma 58. Take a full-rank matrix M P Raˆn with a ă n and a matrix W P Rpn´aqˆn

whose rows are a basis for KerRpMq. Then | det

ˆ

M
V

̇

| and | detpVW tq| are related by

multiplication with a positive constant which does not depend on the matrix V P Rpn´aqˆn.

Proof. Since W is full-rank, we can take a left inverse T P Rpn´aqˆn of W t. Now notice
that:

ˆ

M
T

̇

¨

ˆ

M
W

̇t

“

ˆ

MM t MW t

TM t TW t

̇

“

ˆ

MM t MW t

TM t Ipn´aqˆpn´aq

̇

.

Since M , and therefore MM t, is full-rank, we know that the block matrix on the right-

hand side is full-rank, therefore so is

ˆ

M
T

̇

. Let us denote by E its inverse, which we

write as pD|W tq, where D P Rnˆa. Its last columns are given by W t exactly because
the rows of W are orthogonal to M and T is a left inverse of W t. Using again the block
matrix product, we have that, given any matrix V P Rpn´aqˆn:

det

ˆ

M
V

̇

detpEq “ det
`

ˆ

M
V

̇

¨ pD|W tq
˘

“ det

ˆ

MD MW t

V D VW t

̇

“

“ det

ˆ

Iaˆa 0
V D VW t

̇

.

This is a block lower triangular matrix, therefore its determinant is:

det

ˆ

M
V

̇

detpEq “ detpIaˆaq ¨ detpVW tq “ detpVW tq,

so this means that:

ˇ

ˇ

ˇ
det

ˆ

M
V

̇

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

detpVW tq

detpEq

ˇ

ˇ

ˇ
“

1

| detpEq|
¨ | detpVW tq|.

Since E does not depend on V , this concludes the proof.

Essentially, what we proved is that if we have a matrix U (which acts as “pool of
available rows”) and we want to complete the matrix M to a square matrix by adding
rows from U , then we can take the set:

M :“
!

ˆ

M
V

̇

P Rnˆn : V is a pn´ aq ˆ n-submatrix of U
)

and Lemma 58 says that the matrices in M with the highest absolute determinant are
the ones such that the quantity | detpVW tq| is maximal.
For instance, it may be interesting to notice that, once we fix M , εpMq is indeed a sign

35

vector ϵ (taken from the pool of rows t˘1un) that maximizes | det

ˆ

M
ϵ

̇

|. Indeed, given

a vector w P KerRpMq, we have:

|xϵ, wy| “

ˇ

ˇ

ˇ

n
ÿ

i“1

ϵiwi

ˇ

ˇ

ˇ
ď

n
ÿ

i“1

|ϵiwi| “

n
ÿ

i“1

|wi| “

n
ÿ

i“1

signpwiqwi “ |xεpMq, wy|,

therefore ϵpMq maximizes |xϵ, wy| and hence, using Lemma 58, it also maximizes | det

ˆ

M
ϵ

̇

|.

2.2.2 The algorithms

Thanks to all the considerations made in Chapter 1 and in the previous section, we may
now design two algorithms to compute the bound in a more precise way than Corollary
52. Let us therefore introduce them, while keeping in mind that these algorithms will
assume n ą 2 since the case n “ 2 is trivial, as discussed on page 26.

Hadamard’s inequality computation

This algorithm is definitely the simplest one that we are going to see. All it does is

explicitly computing the n ´ 1 highest norms of rows in U :“

ˆ

B
Inˆn

̇

, then using

Corollary 52 to output a bound on the norm. There are only two remarks to improve
this algorithm:

• Order the rows of U “

ˆ

B
Inˆn

̇

in a decreasing order with respect to their euclidean

norm, and call such ordered rows ρ1, . . . , ρr`n. If we take the rows ρ1, . . . , ρn´1,
which have the highest norm, then, as seen in Corollary 52, one may bound

| det

ˆ

M
ϵ

̇

| with
?
n
śn´1

i“1 ||ρi||2. However, there is room for improvement: say

that rk

¨

˚

˝

ρ1
...

ρn´1

˛

‹

‚

“ k ă n ´ 1. Then, since M is always full-rank, only at most

k vectors between ρ1, . . . , ρn´1 can be rows of M . So it actually makes sense to
only use ||ρ1||2, . . . , ||ρk||2, ||ρn||2, . . . , ||ρ2n´2´k||2 in the product above, instead of
||ρ1||2, . . . , ||ρn´1||2.

Analogously, if k1 :“ rk

¨

˚

˝

ρ1
...
ρk

˛

‹

‚

ă k, then out of the k rows that we take from

ρ1, . . . , ρn´1 there are only at most k1 rows that can come from ρ1, . . . , ρk, which
means that instead of using ||ρ1||2, . . . , ||ρk||2 one can actually use:

||ρ1||2, . . . , ||ρk1 ||2, ||ρk`1||, . . . , ||ρ2k´2´k1 ||2

This technique can proceed iteratively.

36

• If rkpBq ă n ´ 1 then, as already discussed in the proof of Corollary 52, there
are not enough linearly independent rows of B to cover all the rows of the matrix
ˆ

M
ϵ

̇

, therefore at least n´ 1 ´ rkpBq rows of this matrix come from the identity

matrix. Using the Laplace expansion on these n´1´ rkpBq rows, one by one, leads

to the deletion of n´1´rkpBq columns from the matrix

ˆ

M
ϵ

̇

, together with these

rows from the standard basis of Qn. After this computation, we are left with the
computation of the determinant of a prkpBq ` 1q ˆ prkpBq ` 1q matrix which is a

submatrix of the initial matrix

ˆ

M
ϵ

̇

. We cannot know a priori which columns or

rows determine such submatrix. However, if we want to use Hadamard’s inequality,
then we only need to compute the norms of the rows of such submatrix. If we want
to make sure to have a bound then, for every row, we can compute the euclidean
norm that we obtain with the highest rkpBq ` 1 coefficients of such row (highest in
absolute value).
Also, the fact that we end up with a prkpBq ` 1q ˆ prkpBq ` 1q implies that the last
row has norm

a

rkpBq ` 1 instead of ||ϵ||2 “
?
n.

The second point is easy to implement. For the first one, we deploy the following tech-
nique, starting from the matrix U which is our pool of rows.

Algorithm 1. (Find the independent rows with the highest euclidean norm)

1. Arrange the rows of the matrix U in decreasing order, according to their euclidean
norm (or the euclidean norm of the subvector with the rkpBq ` 1 highest entries, if
rkpBq ă n´ 1).

2. We start by looking for n´ 1 rows, or at least “as many linearly independent rows
as possible”, which means that we look for k :“ minpn´ 1, rkpBqq rows.

3. If U has exactly k rows, then it is full-rank and you can take all of them and be
done. Otherwise, go on.

4. Split U in consecutive k ˆ n submatrices (i.e. without skipping rows, so Ui having
rows ρi¨k, . . . , ρpi`1q¨k´1). Of course the last submatrix can have less than k rows,
so as to be able to split U even when its number of rows is not a multiple of k.

5. Starting from i “ 1, check ∆i :“ rk

¨

˚

˝

U1

...
Ui

˛

‹

‚

´ rk

¨

˚

˝

U1

...
Ui´1

˛

‹

‚

. This is the number of rows

we can add from Ui. The smallest N such that we have the inequality:

rk

¨

˚

˝

U1

...
UN

˛

‹

‚

“

N
ÿ

i“1

∆i ě k

is the number of sub-matrices that we need to take our rows from.

37

6. To take ∆i rows from Ui, we repeat the process: go back to step 2, but with Ui

instead of U and with ∆i instead of k. Of course this does not apply if ∆i “ 0, in
which case we skip the whole block Ui, as it has no new possible vectors to add.

Notice that, technically, we are being imprecise in step 5: potentially, we can take more
than ∆i rows from Ui. We can take up to rkpUiq ě ∆i rows. However, doing so would
mean taking such vectors instead of other vectors from some previous Uj with j ă i.
Since these previous blocks have rows with a higher norm, the bound holds anyway. In
other words, this model does not necessarily look for the combination of vectors with the
highest determinants, but rather the one that makes the Hadamard bound the highest.
This is made possible by the ordering of the rows from step 1, combined with the structure
of the algorithm which prioritizes the rows that come first.
A way to implement this algorithm in Sage can be found in the appendix.

Local maximums computation

This algorithm deploys Lemma 58 in a more extensive way.
To explain this method, let us first take a step back and ignore the fact that we need
the last vector of the matrix to be a sign vector ϵ. Let us assume to have the general
problem of having to maximize the absolute determinant of a nˆn matrix whose n rows
are taken from the same pool of rows U .
The idea is to start looking at “local maximums” by using the following algorithm.

Algorithm 2. (Find a local maximum-General case)

1. Given a matrix U of available rows, take a full-rank submatrix M P Znˆn with rows
m1, . . . ,mn.

2. Take any vector w P Ker

¨

˚

˝

m2

...
mn

˛

‹

‚

and look for a row r of U that maximizes |xw, ry|.

3. Replace M with

¨

˚

˚

˚

˝

m2

...
mn

r

˛

‹

‹

‹

‚

.

4. Start over from point 2 and keep on going until n consecutive steps do not change
the quantity |xw, ry| in step 2 (i.e. no row can be substituted to get a higher absolute
determinant, by Lemma 58).

Notice that every time we substitute a row the determinant does not decrease. Com-
bining this with the fact that we start from an invertible matrix in step 1, this means
that the output matrix is always invertible. Also, now it is clear that the meaning of the
expression “local maximum” is referred to the fact that there are no better matrices up
to only changing one row.
However, this does not make such matrix a global maximum. If we write Mmax for the

38

n ˆ n submatrix of U which does have the maximum absolute determinant, then what
we can tell is the following:

| detpMmaxq| “ | detpMmaxM
´1Mq| “ | detpMmaxM

´1q| ¨ | detpMq|.

Since we know the determinant of the local maximum M , it means that we only need to
determine the maximum possible determinant of the n ˆ n submatrix MmaxM

´1 of the
matrix UM´1. So now we have two possibilities:

• Iterating the process, by looking for the maximum absolute determinant obtainable
from UM´1

• Using Hadamard’s inequality to yield an estimation of the determinant

In a way, we will use both ideas: after finding a local maximum M , we can use the previous
Hadamard algorithm to estimate the biggest absolute determinant that can come from
UM´1 and deduce an immediate bound. As we have seen, such algorithm actually
outputs the set of independent rows with the highest norms. These would potentially be
the rows of the global maximum Mmax, so it might make sense to try and find a new
local maximum, starting from these rows. At this point, to check the validity of this new
local maximum, one would repeat the process we just depicted. One can keep on going
for as long as the bound decreases. The resulting algorithm is the following.

Algorithm 3. (Bound the global maximum-General case)

1. Use Algorithm 1 to detect the set of linearly independent rows ρj1 , . . . , ρjn of U
which have the highest norm.

2. From ρj1 , . . . , ρjn , find a local maximum M through means of Algorithm 2.

3. The determinant detpMmaxq whose absolute value is the highest possible is equal to
detpMq multiplied by the maximum absolute determinant coming from an nˆn sub-
matrix of V :“ UM´1. Using Hadamard’s estimation on V , we get an immediate
bound, which consists of detpMq multiplied by the product of the euclidean norm of
n rows of V .

4. Denote by r1
k1
, . . . , r1

kn
the rows of V taken with the same technique as point 1,

which are the same used in point 3 to compute Hadamard’s bound on V . Using
those same indices, go back to point 2 with ρk1 , . . . , ρkn instead of ρj1 , . . . , ρjn , still
being rows of U (and not of V).

5. Stop when the bound does not improve after some consecutive steps of this type.

When we introduced the idea of recursion and moving from the maximums of U to
the maximums of V “ UM´1, we did not mention what we did in step 4, which is staying
in U instead of actually starting over from V . This is because it does not really make
any difference. Indeed, once we have the new local maximum:

D :“

¨

˚

˝

m1
1M

´1

...
m1

nM
´1

˛

‹

‚

submatrix of V “ UM´1,

39

then the algorithm would proceed by checking the highest determinant from:

V ¨D´1 “ V ¨ p

¨

˚

˝

m1
1

...
m1

n

˛

‹

‚

M´1q´1 “ UM´1M

¨

˚

˝

m1
1

...
m1

n

˛

‹

‚

´1

“ U

¨

˚

˝

m1
1

...
m1

n

˛

‹

‚

´1

.

So, as we said above, we might as well just stay in U and evaluate

¨

˚

˝

m1
1

...
m1

n

˛

‹

‚

as local

maximum.
If, instead of the classic Hadamard’s inequality, one wanted to use Lemma 51, this may
be done in the following way: group all the rows of UM´1 whose norm is strictly larger
than one into one submatrix L of UM´1. Then, given any local maximum D submatrix

of UM´1, up to a permutation of its rows, write it as D “

ˆ

DJ

DJc

̇

with DJ being the

submatrix of all the rows taken from L (i.e. with norm larger than 1). Then we may use
Lemma 51:

| detpDq| ď

b

| detpDJDt
Jq|

ź

jPJc

||dj ||2 ď

b

| detpDJDt
Jq|.

Since DJ is a sub-matrix of L, we have that DJD
t
J is a principal submatrix of LLt.

This means that an alternative to the classic Hadamard computation might be taking
the maximum of all the possible | detpP q| over all the principal submatrices P of LLt.
This algorithm is based on the idea that many of the vectors in UM´1 seem to have the
tendency to have a small norm, while typically only at most n rows have a higher norm.
This makes such computation much more doable than the general case with r ` n rows.
The algorithm we obtain is the following.

Algorithm 4. (Bound the global maximum-General case-v2)

1. Use Algorithm 1 to detect the set of linearly independent rows ρj1 , . . . , ρjn of U
which have the highest norm.

2. From ρj1 , . . . , ρjn , find a local maximum M through means of Algorithm 2.

3. The determinant detpMmaxq whose absolute value is the highest possible is equal to
detpMq multiplied by the maximum absolute determinant coming from an nˆn sub-
matrix of V :“ UM´1. Using Hadamard’s estimation on V , we get an immediate
bound, which consists of detpMq multiplied by the product of the euclidean norm of
n rows of V .

4. Another bound for the quantity of point 3 is given by the greatest absolute minor of
LLt (and L is as defined on page 40) that can be obtained with at most n´ 1 rows
and columns. Take the minimum between the two bounds.

5. Denote by r1
k1
, . . . , r1

kn
the rows of V taken with the same technique as point 1,

which are the same used in point 3 to compute Hadamard’s bound on V . Using
those same indices, go back to point 2 with ρk1 , . . . , ρkn instead of ρj1 , . . . , ρjn , still
being rows of U (and not of V).

40

6. Stop when the bound does not improve after some consecutive steps of this type.

So now how do we do all of this in our setting, which is that of only choosing n ´ 1
vectors from U plus one sign vector? One adaptation of Algorithm 2 might be alternating
two kinds of steps: one adjusts the sign vector according to the other n ´ 1 rows, while
the other changes one of the n´ 1 rows to increase the determinant.
More specifically, this leads us to the following algorithm, the code of which can be found
in the appendix.

Algorithm 5. (Find a local maximum-Specific case)

1. Given a matrix U of available rows, take a full-rank submatrix M P Zpn´1qˆn with
rows m1, . . . ,mn´1 and consider the vector ϵ :“ εpMq.

2. Take any vector w P Ker

¨

˚

˚

˚

˝

m2

...
mn´1

ϵ

˛

‹

‹

‹

‚

and look for the row r of U that maximizes

|xw, ry|.

3. Replace M with

¨

˚

˚

˚

˝

m2

...
mn´1

r

˛

‹

‹

‹

‚

and ϵ with εp

¨

˚

˚

˚

˝

m2

...
mn´1

r

˛

‹

‹

‹

‚

q.

4. Start over from point 2 and keep on going until n ´ 1 consecutive steps do not
change the quantity |xw, ry| in step 2 (i.e. no row can be substituted to get a higher
absolute determinant, by Lemma 58).

This allows us to implement an adaptation of Algorithm 3 and Algorithm 4:

Algorithm 6. (Bound the global maximum-Specific case)

1. Use Algorithm 1 to detect the set of linearly independent rows ρj1 , . . . , ρjn´1 of U
which have the highest norm.

2. From ρj1 , . . . , ρjn´1
, find a local maximum H :“

ˆ

M
ϵ

̇

:“

¨

˚

˚

˚

˝

m1

...
mn´1

ϵ

˛

‹

‹

‹

‚

through means

of Algorithm 5.

3. The determinant det

ˆ

Mmax

ϵmax

̇

whose absolute value is the highest possible is equal

to detH ¨ det

ˆ

M 1

εpM 1qH´1

̇

, where M 1 is a submatrix of V :“ UH´1 which max-

imizes | det

ˆ

M 1

εpM 1q

̇

|. Using Hadamard’s estimation on V , we get an immediate

bound. It is the product of the euclidean norm of n ´ 1 rows of V and the norm
||εpM 1qH´1||2 ď ||εpM 1q||2 ¨ ||H´1||2 “

?
n||H´1||2.

41

4. Denote by r1
k1
, . . . , r1

kn´1
the rows of V taken with the same technique as point 1,

which are the same used in point 3 to compute Hadamard’s bound on V . Using
those same indices, go back to point 2 with ρk1

, . . . , ρkn´1
instead of ρj1 , . . . , ρjn´1

,
still being rows of U (and not of V).

5. Stop when the bound does not improve after some consecutive steps of this type.

Algorithm 7. (Bound the global maximum-Specific case-v2)

1. Use Algorithm 1 to detect the set of linearly independent rows ρj1 , . . . , ρjn´1 of U
which have the highest norm.

2. From ρj1 , . . . , ρjn´1
, find a local maximum H :“

ˆ

M
ϵ

̇

:“

¨

˚

˚

˚

˝

m1

...
mn´1

ϵ

˛

‹

‹

‹

‚

through means

of Algorithm 5.

3. The determinant det

ˆ

Mmax

ϵmax

̇

whose absolute value is the highest possible is equal

to detH ¨ det

ˆ

M 1

εpM 1qH´1

̇

, where M 1 is a submatrix of V :“ UH´1 which max-

imizes | det

ˆ

M 1

εpM 1q

̇

|. Using Hadamard’s estimation on V , we get an immediate

bound. It is the product of the euclidean norm of n ´ 1 rows of V and the norm
||εpM 1qH´1||2 ď ||εpM 1q||2 ¨ ||H´1||2 “

?
n||H´1||2.

4. Another bound for the quantity of point 3 is given by
?
n||H´1||2 ¨ α, where α is

the greatest absolute minor of LLt (and L is as defined on page 40) that can be
obtained with at most n´ 1 rows and columns. Take the minimum between the two
bounds.

5. Denote by r1
k1
, . . . , r1

kn´1
the rows of V taken with the same technique as point 1,

which are the same used in point 3 to compute Hadamard’s bound on V . Using
those same indices, go back to point 2 with ρk1

, . . . , ρkn´1
instead of ρj1 , . . . , ρjn´1

,
still being rows of U (and not of V).

6. Stop when the bound does not improve after some consecutive steps of this type.

2.2.3 Comments on the algorithms

To test the algorithm, we can try the code shown in the section “Numerical Examples”
of the Appendix.
After running this code several times, it seems that the Hadamard’s computation algo-
rithm produces a worse bound overall, but in a very short amount of time. On the other
hand, the Local maximums algorithms (Algorithm 6 and Algorithm 7) seem to yield a
closer bound in most cases, for example with many sparse matrices, even though they
are also more time-consuming (especially Algorithm 7).
While, by construction, Algorithm 7 produces a bound which is never worse (but often

42

better) than the one from Algorithm 6, it is also true that the former can take more time
to run and can lead to memory errors, for big matrices. Also, the improvement of the
bound does not seem to be very relevant, when compared to the order of magnitude of the
bound itself. This is why Algorithm 6 is probably the best choice, overall. Alternatively,
it might be a good idea to try executing Algorithm 7 and, in case it reveals to be too
time-consuming, to choose Algorithm 6 instead.
Another option might be adjusting Algorithm 7 by skipping step 4 whenever the matrix
L has too many rows.
Another algorithm, which we did not introduce due to its slowness, used Theorem 54 to
compute the following Markov basis:

B1 :“ tv P KerZpAq : ||v||8 ď n
?
k ` 1

k`1
βk`1u,

where β “ maxbPB ||b||8 and k :“ minprkpBq, n ´ 1q. This set corresponds to the set
of integer points of a polyhedron (defined by the equations Av “ 0 and the inequalities

´n
?
k ` 1

k`1
βk`1 ď vi ď n

?
k ` 1

k`1
βk`1), which SageMath has a specific implemen-

tation for. However, the number of points increases very quickly with n, making this
algorithm impractical.
That being said, this method might be a nice starting point to try and define new algo-
rithms that could find a Markov basis, together with the work in Theorem 37 and Section
1.3.

43

Appendix

Codes

Hadamard’s inequality computation (Section 2.2.2)

1 import numpy as np

2 import heapq

3

4

5 def Indep_rows(U,U_prev ,maximum=None):

6 #U is the matrix from which we take the rows

7 #if it is an iteration , U_prev collects all the rows from the previous

blocks

8 n=len(U[0])

9 l=len(U)

10 l_prev=len(U_prev)

11 if maximum ==None:

12 maximum=l

13

14 #count how many vectors from the block U you can add to the ones taken

from U_prev

15 rk_new=Matrix(QQ ,U+U_prev).rank()

16 rk_old=Matrix(QQ ,U_prev).rank()

17 Delta=rk_new -rk_old

18 top=min(Delta ,maximum)

19

20 #if you can add none , skip to the next block

21 if top == 0:

22 return []

23 #if all the vectors in the block are linearly independent , add as many

as you need

24 elif Delta == l:

25 return [l_prev+i for i in range(top)]

26 #otherwise , split into smaller blocks and take from each block as many

vectors as you need

27 else:

28 t=0

29 indices =[]

30 i=0

31 last_row =0

32 while t<top:

33 indices_new=Indep_rows(U[last_row:min(last_row+top -t,l)],U_prev

+U[0: last_row],top -t)

34 last_row=min(last_row+top -t,l)

44

35 i=i+1

36 t=t+len(indices_new)

37 indices=indices+indices_new

38 return indices

39

40

41 def Hadamards_inequality(B):

42 n=len(B[0])

43 Id=[list(x) for x in np.identity(n)]

44 B=[list(x) for x in B if list(x)!=list(np.zeros(n))]

45

46 #check if you need to remove some entries when computing the norms

because the rows of B are not enough:

47 rkB=Matrix(QQ,B).rank()

48 if rkB >= n-1:

49 eu_norms =[np.linalg.norm(x) for x in B]

50 else:

51 B_abs =[[abs(y) for y in x] for x in B]

52 eu_norms =[np.linalg.norm(heapq.nlargest(rkB+1, x)) for x in B_abs]

53

54 #order the vectors according to the norms you computed , in decreasing

order:

55 order=list(reversed(np.argsort(eu_norms)))

56 eu_norms =[eu_norms[i] for i in order]

57 B=[B[i] for i in order]

58

59 #run Indep_rows () to undertand which rows have the highest determinant

60 indices=Indep_rows(B,[],min(rkB ,n-1))

61

62 #compute and return the bound

63 product=prod([eu_norms[i] for i in indices])

64 Bound=n*np.floor(sqrt(min(n,rkB +1))*product)

65

66 return Bound

Listing 2.1: Sage code for Hadamard’s inequality comptuation

Local maximums computation (Section 2.2.2)

1 import numpy as np

2 import heapq

3

4

5

6 def doubleLocalMax(U,eps ,multi):

7 n=len(U[0])

8 r=len(U)-n

9

10 count_steps =0 #number of useless consecutive steps

11 while count_steps < n-1:

12 ker=Matrix(QQ, [eps]+[U[multi[i]] for i in range(n-2)]).

right_kernel ().basis()

13

14 #find vector that maximizes the scalar product , and therefore

determinant

15 scal_prod= np.abs(Matrix(QQ ,U)*ker [0])

45

16 ind=np.argmax(scal_prod)

17

18 #if you’re substitution did not make a difference , count a useless

step

19 if scal_prod[ind] == scal_prod[multi[n -2]]:

20 count_steps= count_steps +1

21 #otherwise , the useless steps go back to zero

22 else:

23 count_steps =0

24 #put the index you just changed in the last position , so it is

going to be analyzed again in n-1 steps

25 multi = [ind]+ multi [0:n-2]

26

27 #do the same but for eps , i.e. find eps(M)

28 ker=Matrix(QQ, [U[multi[i]] for i in range(n-1)]).right_kernel ().

basis()

29 eps=[int(x) for x in np.sign(ker [0])]

30

31 return [eps ,multi]

32

33

34

35

36 def Indep_rows(U,U_prev ,maximum=None):

37 #U is the matrix from which we take the rows

38 #if it is an iteration , U_prev collects all the rows from the previous

blocks

39 n=len(U[0])

40 l=len(U)

41 l_prev=len(U_prev)

42 if maximum ==None:

43 maximum=l

44

45 #count how many vectors from the block U you can add to the ones taken

from U_prev

46 rk_new=Matrix(QQ ,U+U_prev).rank()

47 rk_old=Matrix(QQ ,U_prev).rank()

48 Delta=rk_new -rk_old

49 top=min(Delta ,maximum)

50

51 #if you can add none , skip to the next block

52 if top == 0:

53 return []

54 #if all the vectors in the block are linearly independent , add as many

as you need

55 elif Delta == l:

56 return [l_prev+i for i in range(top)]

57 #otherwise , split into smaller blocks and take from each block as many

vectors as you need

58 else:

59 t=0

60 indices =[]

61 i=0

62 last_row =0

63 while t<top:

64 indices_new=Indep_rows(U[last_row:min(last_row+top -t,l)],U_prev

+U[0: last_row],top -t)

65 last_row=min(last_row+top -t,l)

46

66 i=i+1

67 t=t+len(indices_new)

68 indices=indices+indices_new

69 return indices

70

71

72

73

74

75 def Hadamard(U,rkB):

76 n=len(U[0])

77 l=len(U)

78 U_abs =[[abs(y) for y in x] for x in U]

79

80 #check if you need to remove some entries when computing the norms

because the rows of B are not enough:

81 rkB=Matrix(QQ,B).rank()

82 if rkB >= n-1:

83 eu_norms =[np.linalg.norm(x) for x in U_abs]

84 else:

85 eu_norms =[np.linalg.norm(heapq.nlargest(rkB+1, x)) for x in U_abs]

86

87 #order the vectors according to the norms you computed , in decreasing

order:

88 order=list(reversed(np.argsort(eu_norms)))

89 eu_norms =[eu_norms[i] for i in order]

90 U=[U[i] for i in order]

91

92 #run Indep_rows () to undertand which rows have the highest determinant

93 indices=Indep_rows(U,[],n-1)

94

95 #compute and return the product

96 product=prod([eu_norms[i] for i in indices if eu_norms[i]>1])

97

98 return [product ,[order[x] for x in indices]]

99

100

101

102

103

104

105 def Local_maximums(B,N=None ,k=None):

106 n=len(B[0])

107 r=len(B)

108 Id=[list(x) for x in np.identity(n)]

109 U=B+Id

110 rkB=Matrix(ZZ,B).rank()

111

112 #maximum number of jumps within local maximums

113 if N==None:

114 N=10

115 #maximum number of consecutive useless jumps

116 if k==None:

117 k=2

118

119 _,init=Hadamard(U,rkB)

120 exact=false

121 maxDet=np.Infinity

47

122 eps =[1 for i in range(n)]

123 num_bounces =0

124

125 for i in range(N):

126 #find a local maximum

127 eps ,multi=doubleLocalMax(U,eps ,init)

128

129 #check "how global" the local maximum is by taking UM^{-1}

130 M=Matrix(QQ ,[eps]+[U[multi[i]] for i in range(n-1)])

131 M_inv=M.inverse ()

132 V=Matrix(QQ,U)*M_inv

133

134 #check the highest possible determinant from UM^{-1} with Hadamard ’

s inequality

135 maximum_ratio ,init=Hadamard ([list(x) for x in V],rkB)

136

137 #add the norm of the last vector which is eps*M^{-1}

138 maximum_ratio=maximum_ratio*sqrt(n)*M_inv.norm()

139

140 #check if you got the biggest determinant , or at least bound it

141 if maximum_ratio <= 1:

142 exact = true

143 maxDet=abs(M.det())

144 break

145 else:

146 newBound=maximum_ratio*abs(M.det())

147 #check if the new bound is more effective

148 if maxDet <= newBound:

149 num_bounces=num_bounces +1

150 if num_bounces >= k:

151 break

152 else:

153 maxDet=newBound

154 num_bounces =0

155

156

157 return n*np.floor(maxDet)

Listing 2.2: Sage code for Algorithm 6 (Local maximums computation)

Local maximums computation - v2 (Section 2.2.2)

1 import numpy as np

2 import heapq

3 import itertools as it

4

5

6

7 def doubleLocalMax(U,eps ,multi):

8 n=len(U[0])

9 r=len(U)-n

10

11 count_steps =0 #number of useless consecutive steps

12 while count_steps < n-1:

13 ker=Matrix(QQ, [eps]+[U[multi[i]] for i in range(n-2)]).

right_kernel ().basis()

48

14

15 #find vector that maximizes the scalar product , and therefore

determinant

16 scal_prod= np.abs(Matrix(QQ ,U)*ker [0])

17 ind=np.argmax(scal_prod)

18

19 #if you’re substitution did not make a difference , count a useless

step

20 if scal_prod[ind] == scal_prod[multi[n -2]]:

21 count_steps= count_steps +1

22 #otherwise , the useless steps go back to zero

23 else:

24 count_steps =0

25 #put the index you just changed in the last position , so it is

going to be analyzed again in n-1 steps

26 multi = [ind]+ multi [0:n-2]

27

28 #do the same but for eps , i.e. find eps(M)

29 ker=Matrix(QQ, [U[multi[i]] for i in range(n-1)]).right_kernel ().

basis()

30 eps=[int(x) for x in np.sign(ker [0])]

31

32 return [eps ,multi]

33

34

35

36

37 def Indep_rows(U,U_prev ,maximum=None):

38 #U is the matrix from which we take the rows

39 #if it is an iteration , U_prev collects all the rows from the previous

blocks

40 n=len(U[0])

41 l=len(U)

42 l_prev=len(U_prev)

43 if maximum ==None:

44 maximum=l

45

46 #count how many vectors from the block U you can add to the ones taken

from U_prev

47 rk_new=Matrix(QQ ,U+U_prev).rank()

48 rk_old=Matrix(QQ ,U_prev).rank()

49 Delta=rk_new -rk_old

50 top=min(Delta ,maximum)

51

52 #if you can add none , skip to the next block

53 if top == 0:

54 return []

55 #if all the vectors in the block are linearly independent , add as many

as you need

56 elif Delta == l:

57 return [l_prev+i for i in range(top)]

58 #otherwise , split into smaller blocks and take from each block as many

vectors as you need

59 else:

60 t=0

61 indices =[]

62 i=0

63 last_row =0

49

64 while t<top:

65 indices_new=Indep_rows(U[last_row:min(last_row+top -t,l)],U_prev

+U[0: last_row],top -t)

66 last_row=min(last_row+top -t,l)

67 i=i+1

68 t=t+len(indices_new)

69 indices=indices+indices_new

70 return indices

71

72

73

74

75

76 def Hadamard(U,rkB):

77 n=len(U[0])

78 l=len(U)

79 U_abs =[[abs(y) for y in x] for x in U]

80

81 #check if you need to remove some entries when computing the norms

because the rows of B are not enough:

82 rkB=Matrix(QQ,B).rank()

83 if rkB >= n-1:

84 eu_norms =[np.linalg.norm(x) for x in U_abs]

85 else:

86 eu_norms =[np.linalg.norm(heapq.nlargest(rkB+1, x)) for x in U_abs]

87

88 #order the vectors according to the norms you computed , in decreasing

order:

89 order=list(reversed(np.argsort(eu_norms)))

90 eu_norms =[eu_norms[i] for i in order]

91 U=[U[i] for i in order]

92

93 #run Indep_rows () to undertand which rows have the highest determinant

94 indices=Indep_rows(U,[],n-1)

95

96 #compute and return the product

97 product=prod([eu_norms[i] for i in indices if eu_norms[i]>1])

98

99 return [product ,[order[x] for x in indices]]

100

101

102

103

104

105 def MaxMinor(LLt ,maximum):

106 n=len(LLt)

107 num_rows=min(n,maximum)

108 if num_rows ==0:

109 return 1

110 else:

111 maxdet =0

112 for k in range(num_rows):

113 multi=list(it.combinations(range(n), k))

114 for i in range(len(multi)):

115 Minor =[[LLt[k][j] for j in multi[i]] for k in multi[i]]

116 maxdet=max(maxdet ,abs(Matrix(RR ,Minor).det()))

117 return maxdet

118

50

119

120

121

122

123 def Local_maximums_2(B,N=None ,k=None):

124 n=len(B[0])

125 r=len(B)

126 Id=[list(x) for x in np.identity(n)]

127 U=B+Id

128 rkB=Matrix(ZZ,B).rank()

129

130 #maximum number of jumps within local maximums

131 if N==None:

132 N=10

133 #maximum number of consecutive useless jumps

134 if k==None:

135 k=2

136

137 _,init=Hadamard(U,rkB)

138 exact=false

139 maxDet=np.Infinity

140 eps =[1 for i in range(n)]

141 num_bounces =0

142

143 for i in range(N):

144 #find a local maximum

145 eps ,multi=doubleLocalMax(U,eps ,init)

146

147 #check "how global" the local maximum is by taking UM^{-1}

148 M=Matrix(QQ ,[eps]+[U[multi[i]] for i in range(n-1)])

149 M_inv=M.inverse ()

150 V=Matrix(QQ,U)*M_inv

151

152 #check the highest possible determinant from UM^{-1} with both

kinds of Hadamard ’s inequality

153 L=[x for x in V if np.linalg.norm(x) >1]

154 LLt=Matrix(RR,L)*Matrix(RR,L).transpose ()

155 LLt=[list(x) for x in LLt]

156 maximum_ratio=sqrt(MaxMinor(LLt ,min(len(L),n-1)))

157 maximum_ratio_2 ,init=Hadamard ([list(x) for x in V],rkB)

158 maximum_ratio=min(maximum_ratio ,maximum_ratio_2)

159

160 #add the norm of the last vector which is eps*M^{-1}

161 maximum_ratio=maximum_ratio*sqrt(n)*M_inv.norm()

162

163 #check if you got the biggest determinant , or at least bound it

164 if maximum_ratio <= 1:

165 exact = true

166 maxDet=abs(M.det())

167 break

168 else:

169 newBound=maximum_ratio*abs(M.det())

170 #check if the new bound is more effective

171 if maxDet <= newBound:

172 num_bounces=num_bounces +1

173 if num_bounces >= k:

174 break

175 else:

51

176 maxDet=newBound

177 num_bounces =0

178

179 return n*np.floor(maxDet)

Listing 2.3: Sage code for Algorithm 7 (Local maximums computation - v2)

Numerical Examples

Using the following code:

1 num =13 #number of examples

2 S=3 #determine how sparse the matrix has to be

3 for i in range(num):

4 r=np.random.randint (6 ,17)

5 l=np.random.randint(3,r-2)

6 A=np.random.randint (0,30,size=(l,r)) #the signs are sill all +

7 A=[list(x) for x in A]

8 k=0

9 while k < r:

10 for j in range(l):

11 A[j][k]=int(np.floor(np.random.randint(-1,S+1)/S)*A[j][k])

12 k=k+1

13 B=Matrix(Matrix(A).right_kernel ().basis()).transpose ()

14 B=[list(x) for x in B]

15

16 print(’--’)

17 print(’--’)

18 print(’--’)

19 print(’Matrix:’)

20 print(Matrix(A))

21 print(’Kernel basis:’)

22 print(Matrix(B))

23 print(’Hadamard:’)

24 start=tm.time()

25 print(format(Hadamards_inequality(B),’.1E’))

26 end=tm.time()

27 print(’Requested time:’)

28 print(end -start)

29 print(’’)

30 print(’Local maximums:’)

31 start=tm.time()

32 print(format(Local_maximums(B),’.1E’))

33 end=tm.time()

34 print(’Requested time:’)

35 print(end -start)

36 print(’’)

37 print(’Local maximums -v2:’)

38 start=tm.time()

39 print(format(Local_maximums_2(B),’.1E’))

40 end=tm.time()

41 print(’Requested time:’)

42 print(end -start)

Listing 2.4: Sage code for generating examples

52

we can randomly generate some examples to determine how the algorithms perform:

1 --

2 --

3 --

4 Matrix:

5 [19 0 0 0 -25 0 -18 0 7]

6 [25 -2 16 7 5 7 0 -9 2]

7 [-25 0 0 0 -8 -29 26 0 0]

8 [-23 0 24 0 -2 0 0 0 20]

9 Kernel basis:

10 [6 0 0 0 0]

11 [0 1 0 0 0]

12 [1 0 3 0 0]

13 [2 2 2 3 0]

14 [73 580 1396 580 1740]

15 [-106 -862 -2076 -862 -2586]

16 [-90 -783 -1886 -783 -2349]

17 [-19 -334 -802 -333 -1006]

18 [13 58 136 58 174]

19 Hadamard:

20 4.1E+14

21 Requested time:

22 0.0006425380706787109

23

24 Local maximums:

25 1.1E+07

26 Requested time:

27 0.0495297908782959

28

29 Local maximums -v2:

30 1.1E+07

31 Requested time:

32 0.05146217346191406

33 --

34 --

35 --

36 Matrix:

37 [0 0 23 0 0 -10 0 0 0 0 -28 14 -26 0 -11 0]

38 [0 -13 0 0 29 0 -25 -29 5 0 0 -18 0 0 0 0]

39 [0 29 0 0 -21 18 -24 0 0 13 0 4 -4 6 0 23]

40 [0 0 0 0 0 -17 0 -20 -14 0 0 0 0 0 0 0]

41 [0 15 5 0 -7 0 0 -4 0 0 0 -5 10 0 0 0]

42 [-19 0 0 0 -7 0 0 0 -22 5 0 0 -22 0 0 19]

43 [0 0 0 16 0 0 0 0 0 0 0 0 0 -2 -17 0]

44 Kernel basis:

45 [1 0 0 0 0 0 0 0 0]

46 [1 2 0 0 0 0 0 0 0]

47 [0 0 2 0 0 0 0 0 0]

48 [0 0 0 1 0 0 0 0 0]

49 [0 0 0 0 1 0 0 0 0]

50 [2 2 2 0 0 4 0 0 0]

51 [1 0 1 0 2 0 3 0 0]

52 [1035 1245 1000 0 987 1090 735 1260 0]

53 [-1481 -1781 -1431 0 -1410 -1562 -1050 -1800 0]

54 [969 146 1377 1843 143 1677 1466 1131 2261]

55 [-33 16 -54 -99 9 -72 -65 -39 -121]

53

56 [-2081 -2502 -2010 0 -1983 -2190 -1480 -2530 0]

57 [-628 -756 -606 0 -596 -659 -446 -761 0]

58 [9197 12240 8381 -2134 9673 8925 5644 11237 -2618]

59 [-1082 -1440 -986 252 -1138 -1050 -664 -1322 308]

60 [-2696 -2976 -2721 -485 -2360 -3013 -2118 -3263 -595]

61 Hadamard:

62 6.9E+30

63 Requested time:

64 0.0009758472442626953

65

66 Local maximums:

67 1.1E+12

68 Requested time:

69 0.20803475379943848

70

71 Local maximums -v2:

72 6.2E+11

73 Requested time:

74 0.33669090270996094

75 --

76 --

77 --

78 Matrix:

79 [10 0 0 -14 1 0 -9 -14 0 -18 0 26]

80 [0 0 0 7 0 0 0 0 20 -14 0 0]

81 [0 0 0 0 0 0 0 0 0 0 0 0]

82 [0 0 -4 0 9 0 -12 29 5 0 23 0]

83 Kernel basis:

84 [1 0 0 0 0 0 0 0 0]

85 [0 1 0 0 0 0 0 0 0]

86 [0 0 1 0 0 0 0 0 0]

87 [0 0 0 2 0 0 0 0 0]

88 [0 0 0 0 1 0 0 0 0]

89 [0 0 0 0 0 1 0 0 0]

90 [0 0 0 0 1 0 2 0 0]

91 [0 0 0 0 0 0 0 1 0]

92 [966 0 1183 161 847 0 336 1687 2093]

93 [1380 0 1690 231 1210 0 480 2410 2990]

94 [-210 0 -257 -35 -184 0 -72 -368 -455]

95 [955 0 1170 161 838 0 333 1669 2070]

96 Hadamard:

97 2.0E+15

98 Requested time:

99 0.0015377998352050781

100

101 Local maximums:

102 8.4E+05

103 Requested time:

104 0.16769051551818848

105

106 Local maximums -v2:

107 7.5E+05

108 Requested time:

109 0.19174575805664062

110 --

111 --

112 --

113 Matrix:

54

114 [0 0 20 0 0 -2 0 0 0 0 0]

115 [2 0 0 0 0 -26 21 0 0 0 21]

116 [-22 0 0 -13 0 0 0 0 -8 25 0]

117 [-29 0 -16 -11 0 0 0 0 -24 0 0]

118 [0 0 0 0 0 0 0 0 0 0 0]

119 [0 0 0 0 0 0 4 0 -16 0 6]

120 [0 0 0 0 0 0 12 0 0 0 0]

121 Kernel basis:

122 [2 0 0 0 0]

123 [0 1 0 0 0]

124 [4127 0 11550 0 0]

125 [-47814 0 -133800 0 0]

126 [0 0 0 1 0]

127 [41270 0 115500 0 0]

128 [0 0 0 0 0]

129 [0 0 0 0 1]

130 [19161 0 53625 0 0]

131 [-18730 0 -52416 0 0]

132 [51096 0 143000 0 0]

133 Hadamard:

134 2.4E+11

135 Requested time:

136 0.001325845718383789

137

138 Local maximums:

139 8.5E+06

140 Requested time:

141 0.0463106632232666

142

143 Local maximums -v2:

144 8.5E+06

145 Requested time:

146 0.050093889236450195

147 --

148 --

149 --

150 Matrix:

151 [0 0 -16 0 6 0 19 0 -26 0 -7 0 27]

152 [-6 -8 -6 12 -15 -14 0 0 0 24 -7 0 0]

153 [0 0 0 0 -22 21 0 0 0 27 0 0 17]

154 [0 0 0 0 0 -5 0 0 0 0 0 0 0]

155 [-5 0 0 0 0 0 0 -8 0 0 0 0 10]

156 [0 0 0 0 -17 0 -8 6 0 0 17 0 -1]

157 [0 19 0 0 -12 -23 0 0 -24 0 -28 0 0]

158 [0 0 0 28 0 -26 0 10 22 0 0 0 -23]

159 [0 -16 0 0 0 0 28 -26 0 29 27 3 0]

160 Kernel basis:

161 [4 0 0 0]

162 [0 8 0 0]

163 [0 0 1 0]

164 [2043697 6672791 3160801 7858077]

165 [3991014 13030907 6172544 15345582]

166 [0 0 0 0]

167 [-7559184 -24681191 -11691112 -29065314]

168 [3987785 13020365 6167555 15333180]

169 [-1078458 -3521231 -1667953 -4146702]

170 [1243274 4059370 1922860 4780428]

171 [-786042 -2566471 -1215702 -3022362]

55

172 [100169250 327058651 154922860 385154278]

173 [3190230 10416292 4934044 12266544]

174 Hadamard:

175 3.7E+24

176 Requested time:

177 0.0006687641143798828

178

179 Local maximums:

180 1.5E+11

181 Requested time:

182 0.04938173294067383

183

184 Local maximums -v2:

185 1.4E+11

186 Requested time:

187 0.05536770820617676

188 --

189 --

190 --

191 Matrix:

192 [0 0 -26 11 0 0 26 -4 7 18 0 0]

193 [0 0 0 8 0 0 0 -18 0 0 -24 0]

194 [24 -9 0 27 15 0 0 22 0 0 0 -29]

195 [-24 0 -16 8 0 9 0 10 10 14 0 0]

196 [0 -14 0 0 -13 0 -23 0 0 0 0 0]

197 Kernel basis:

198 [1 0 0 0 0 0 0]

199 [0 1 0 0 0 0 0]

200 [0 0 1 0 0 0 0]

201 [0 0 0 3 0 0 0]

202 [0 6 0 0 23 0 0]

203 [0 0 0 0 0 2 0]

204 [0 -4 0 0 -13 0 0]

205 [252 3852 2320 4548 3376 3132 4756]

206 [-720 -11104 -6678 -13089 -9774 -9018 -13688]

207 [336 5180 3114 6099 4570 4203 6380]

208 [-189 -2889 -1740 -3410 -2532 -2349 -3567]

209 [192 2925 1760 3453 2573 2376 3608]

210 Hadamard:

211 6.4E+22

212 Requested time:

213 0.0013802051544189453

214

215 Local maximums:

216 3.4E+08

217 Requested time:

218 0.1366126537322998

219

220 Local maximums -v2:

221 2.6E+08

222 Requested time:

223 0.15165019035339355

224 --

225 --

226 --

227 Matrix:

228 [0 0 0 0 12 0 0 -7 0 0 0 -1 -11 -9]

229 [0 0 0 0 0 0 1 0 0 17 -8 0 0 -26]

56

230 [0 -17 -29 0 0 0 15 0 0 0 0 -7 2 0]

231 [2 0 0 0 0 -8 0 -20 -10 0 -5 0 2 -11]

232 [23 -8 0 0 7 10 0 0 0 0 0 0 6 1]

233 [0 0 -27 0 -12 -26 0 11 -17 -2 -5 -24 0 -26]

234 [0 20 0 0 0 -18 0 0 0 -27 0 0 -24 -18]

235 [14 29 0 16 0 0 0 0 0 0 0 0 2 -23]

236 Kernel basis:

237 [1 0 0 0 0 0]

238 [0 3 0 0 0 0]

239 [0 0 1 0 0 0]

240 [0 0 0 1 0 0]

241 [7 5 0 4 10 0]

242 [20542085 21209472 10139220 22982724 11989817 31989510]

243 [44216358 45652876 21824424 49469760 25807814 68856636]

244 [44647023 46097531 22036991 49951593 26059182 69527295]

245 [-136182307 -140606650 -67217214 -152362307 -79485684 -212072105]

246 [18259642 18852866 9012640 20429092 10657626 28435120]

247 [53866182 55616193 26587408 60266090 31440136 83883982]

248 [85107132 87872117 42007393 95218818 49674582 132534450]

249 [-33747723 -34844135 -16657290 -37757337 -19697568 -52554195]

250 [-2934584 -3029921 -1448460 -3283246 -1712832 -4569930]

251 Hadamard:

252 1.8E+42

253 Requested time:

254 0.0009329319000244141

255

256 Local maximums:

257 3.9E+12

258 Requested time:

259 0.11005854606628418

260

261 Local maximums -v2:

262 2.6E+12

263 Requested time:

264 0.11481714248657227

265 --

266 --

267 --

268 Matrix:

269 [7 0 0 0 0 0 0 0 17 0 0 0 0]

270 [0 0 0 6 0 0 0 0 8 0 -25 21 0]

271 [0 0 0 0 0 0 -5 0 0 0 26 0 -15]

272 [0 0 -4 -22 -17 0 18 0 -2 0 6 0 0]

273 [0 2 -14 28 2 -6 0 12 0 0 -16 25 14]

274 [0 0 12 0 0 0 0 -26 0 0 -21 0 0]

275 [-23 -1 0 -26 -6 0 0 0 -20 0 -7 0 0]

276 Kernel basis:

277 [17 0 0 0 0 0]

278 [1 2 0 0 0 0]

279 [0 0 1 0 0 0]

280 [1 2 0 3 0 0]

281 [116282 27746 476770 444522 515970 0]

282 [-543394 -129648 -2227230 -2076630 -2410351 0]

283 [143059 34137 586503 546840 634725 0]

284 [80535 19215 330072 307755 357210 0]

285 [-7 0 0 0 0 0]

286 [0 0 0 0 0 1]

287 [-99710 -23790 -408660 -381030 -442260 0]

57

288 [-118700 -28322 -486500 -453608 -526500 0]

289 [-220517 -52615 -903845 -842732 -978159 0]

290 Hadamard:

291 6.8E+31

292 Requested time:

293 0.0015988349914550781

294

295 Local maximums:

296 1.7E+10

297 Requested time:

298 0.09304547309875488

299

300 Local maximums -v2:

301 1.7E+10

302 Requested time:

303 0.10294342041015625

304 --

305 --

306 --

307 Matrix:

308 [0 19 0 0 0 0 0 13 -6 0 27 0 0]

309 [0 0 0 0 0 0 -12 0 16 19 -4 -14 0]

310 [12 0 0 0 -27 0 0 -29 -24 -6 24 0 -17]

311 Kernel basis:

312 [1 0 0 0 0 0 0 0 0 0]

313 [0 1 0 0 0 0 0 0 0 0]

314 [0 0 1 0 0 0 0 0 0 0]

315 [0 0 0 1 0 0 0 0 0 0]

316 [0 0 0 0 1 0 0 0 0 0]

317 [0 0 0 0 0 1 0 0 0 0]

318 [0 0 0 0 0 0 1 0 0 0]

319 [0 2 0 0 0 0 0 3 0 0]

320 [0 3 0 0 0 0 0 2 9 0]

321 [70 82 0 0 140 0 204 186 40 238]

322 [0 -1 0 0 0 0 0 -1 2 0]

323 [95 115 0 0 190 0 276 255 64 323]

324 [-24 -38 0 0 -51 0 -72 -75 -24 -84]

325 Hadamard:

326 9.3E+10

327 Requested time:

328 0.0018160343170166016

329

330 Local maximums:

331 1.3E+06

332 Requested time:

333 0.18780875205993652

334

335 Local maximums -v2:

336 1.2E+06

337 Requested time:

338 0.2011265754699707

339 --

340 --

341 --

342 Matrix:

343 [0 0 0 0 2 24 0 0]

344 [18 0 0 -17 3 0 0 0]

345 [-25 0 0 0 16 -23 0 0]

58

346 [0 10 0 0 0 -20 18 0]

347 [-6 -18 -14 0 -17 0 0 21]

348 Kernel basis:

349 [731 0 0]

350 [46 63 0]

351 [0 0 3]

352 [954 0 0]

353 [1020 0 0]

354 [-85 0 0]

355 [-120 -35 0]

356 [1074 54 2]

357 Hadamard:

358 5.7E+06

359 Requested time:

360 0.0004973411560058594

361

362 Local maximums:

363 2.4E+06

364 Requested time:

365 0.028583049774169922

366

367 Local maximums -v2:

368 9.7E+05

369 Requested time:

370 0.0458683967590332

371 --

372 --

373 --

374 Matrix:

375 [0 0 -11 5 -21 0 -29 0 0 0]

376 [-11 0 0 0 13 0 0 -8 -13 0]

377 [17 0 8 -1 -15 0 0 0 12 14]

378 [4 0 0 -28 0 0 16 0 0 -10]

379 [-21 0 0 18 -15 0 0 -12 0 0]

380 Kernel basis:

381 [1 0 0 0 0]

382 [0 1 0 0 0]

383 [0 0 1 0 0]

384 [59230 0 12612 75324 0]

385 [-281119 0 -59860 -357508 0]

386 [0 0 0 0 1]

387 [213781 0 45521 271872 0]

388 [440242 0 93743 559871 0]

389 [-552038 0 -117548 -702044 0]

390 [176206 0 37520 224088 0]

391 Hadamard:

392 3.3E+18

393 Requested time:

394 0.0010342597961425781

395

396 Local maximums:

397 1.5E+07

398 Requested time:

399 0.09733843803405762

400

401 Local maximums -v2:

402 1.4E+07

403 Requested time:

59

404 0.10497784614562988

405 --

406 --

407 --

408 Matrix:

409 [0 0 0 0 -18 0 0 0]

410 [23 0 0 0 4 1 0 -22]

411 [0 0 7 0 0 0 0 0]

412 Kernel basis:

413 [1 0 0 0 0]

414 [0 1 0 0 0]

415 [0 0 0 0 0]

416 [0 0 1 0 0]

417 [0 0 0 0 0]

418 [21 0 0 22 0]

419 [0 0 0 0 1]

420 [2 0 0 1 0]

421 Hadamard:

422 7.6E+02

423 Requested time:

424 0.0005559921264648438

425

426 Local maximums:

427 3.4E+02

428 Requested time:

429 0.04072856903076172

430

431 Local maximums -v2:

432 3.4E+02

433 Requested time:

434 0.04299163818359375

435 --

436 --

437 --

438 Matrix:

439 [-13 -11 0 -22 0 0 0 -10]

440 [0 0 0 0 11 0 0 0]

441 [0 0 0 3 0 13 0 0]

442 [28 -20 6 0 21 -20 6 0]

443 [28 -16 0 0 0 4 0 19]

444 Kernel basis:

445 [1 0 0]

446 [10205 16662 0]

447 [0 0 1]

448 [-8814 -14391 0]

449 [0 0 0]

450 [2034 3321 0]

451 [40792 66610 -1]

452 [8164 13332 0]

453 Hadamard:

454 7.9E+09

455 Requested time:

456 0.0008985996246337891

457

458 Local maximums:

459 5.6E+05

460 Requested time:

461 0.028952836990356445

60

462

463 Local maximums -v2:

464 5.6E+05

465 Requested time:

466 0.0314631462097168

Listing 2.5: Examples

61

Bibliography

[1] B. Sturmfels P. Diaconis. Algebraic algorithms for sampling from conditional distri-
butions. The Annals of Statistics, 26:363–397, 1998.

[2] S. Petrovic. What is... a Markov Basis? Notices of the American Mathematical
Society, 66(7):1088–1092, 2019.

[3] D. Holmes. The norm of the saturation of a binomial ideal, with applications to
Markov bases. Algebraic Statistics, 11:169–187, 2020.

[4] B. Sturmfels. Grobner Bases and Convex Polytopes. University Lecture Series. Amer-
ican Mathematical Society, 1996.

[5] A. Takemura H. Hara, S. Aoki. Running markov chain without markov bases. 08
2011.

[6] J. Vaaler E. Bombieri. On Siegel’s lemma. Inventiones mathematicae, 73:11–32, 1983.

[7] M. Różański R. Witula. Hadamard’s optimized inequality. Linear Algebra and its
Applications, 620:109–123, 2021.

62

	 Introduction
	Connectedness of some classes of fibres
	Connecting all fibres
	Connecting big fibres
	Deducing fibre connectedness from other fibres
	Checking the connectedness of a finite number of fibres

	Improving the bound on the norm
	A direct bound
	Computer algorithms to improve the bound
	Introductory lemmas and considerations
	The algorithms
	Comments on the algorithms

	Appendix
	Codes
	Numerical Examples

	Bibliography

