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Chapter 1

Introductory remarks

In this work we want to study how the Universe grew from be slightly inhomogeneous
at early times to be largely inhomogeneous today also at scales of the order of hundreds
of megaparsec, i.e. we want to study the evolution of structures of the Universe from
small overdensities to big clusters of galaxies. We assume the Universe as flat and filled
by non-relativistic matter and Dark Energy, i.e. we are neglecting relativistic particles
and the curvature of the Universe in our study (in Sect.1.1 we present how to describe in
full generality the Universe and why to restrict to this simpler scenario, see e.g. Fig.1.3).
The matter component is divided in baryonic matter (the common non-relativistic matter
of the Standard Model) and in dark matter, which is unknown kind of particles which
interact only gravitationally [20]. This last matter component had to be non-relativist
at the decoupling and so it takes the name of Cold Dark Matter (CDM) [20], in the fol-
lowing we will use simply the name DM but we always mean the cold form beside when
explicitly said and in the Chapter 5 where we discuss another candidate for DM which is
called fuzzy DM (FDM). We will restrict our study to large scales (' 10Mpc) so that at
early times and for a large part of its history the overdensity generated by the structure
formation is small, such as perturbation theories can be used [20].
The generally accepted theory of structure formation is gravitational instability, which
assumes the early Universe to be almost perfectly smooth with the exception of tiny devia-
tions in density respect to the global cosmic background density and in velocity respect to
the Hubble expansion [20]. The fluctuations in the temperature in the cosmic microwave
background (CMB) reflects these density perturbations, thus from their observation we
know that the primordial perturbations have been of the order of 10−5 [20].
Today the most accepted theory of the origin of these perturbations is that in the early
Universe quantum perturbations were present and during the inflationary phase (a phase
of accelerated and very rapid expansion of the Universe taken place before the radiation
and matter dominated epochs) they expanded to macroscopic proportions [20]. Then the
initial perturbations will grow under the effect of gravity perturbations. These can be
explained in the following manner: nearby a region with an higher density the surplus of
matter will exert an attractive gravitational force larger than the average, instead near
low density regions the deficit of matter will lead to a weaker force. Thus the overdensity
regions will expand less than the average, if pressure forces are not sufficient to coun-
teract the gravitational pull more and more matter would be incorporated by accretion

1



2 CHAPTER 1. INTRODUCTORY REMARKS

until a collapse and the formation of a gravitational stable object, instead the regions
with a density deficit will lead to the formation of voids. This interchange between struc-
tures and voids, usually called cosmic web, is shown magnificently in the simulation made
by [70] and reported in Fig.1.1, where the DM density field is reported on various scales.
On the largest no structure is discernible and the distribution appears homogeneous and
isotropic; on smaller scales a filamentary structure appears, this is the so called cosmic
web; on the smallest scale, taken in a region rich of galaxy clusters, we can observe several
DM substructures which are gravitationally bound object orbiting within the cluster halo.
These substructures are the remnants of dark matter halos that fell into the cluster at
earlier times.
The early stage of the evolution of density perturbations can be described by linear

theory and it is well know in literature [54, 56], it applies to the times just after the de-
coupling between radiation and matter at recombination and at large scales since small
scale perturbations are the first to become non linear. Actually at any cosmic epoch we
could define spatial scales such as the perturbations are still in the linear regime [20].
In this work we will present a model which try to describes the evolution of structures
beyond the linear regime. In particular we will make an analogy between the matter
distribution and a quantum matter distribution and study the latter with perturbation
techniques. We will extend the results of previous studies (e.g. [67, 73, 77, 80]), which
develop the model for a single-fluid composed of DM, to a two-fluid model composed by
baryons and DM, i.e. the aim of this work is to study the evolution of baryons under
the influence of DM gravitational potential field through a quantum-mechanical model.
Hence we study the evolution of density perturbation to understand how the present dis-
tribution of matter in the Universe formed. We will follow the evolution of both ordinary
(we will call it baryonic although it contains also electrons, but they will stick to ions
due to Coulomb attraction) and dark matter in the presence of dark energy, which is
modelled as a cosmological constant. We expect to be able to reproduce the distribution
of the intergalactic medium (IGM), which is a plasma of baryonic matter (mostly ionized
hydrogen) extending between galaxies. It has a filamentary form, as a web, and a very
small density, e.g. 1 − 10 particles for cubic meter. Thus it will be in a quasi-nonlinear
stage and then it is well suited to a perturbation approach. The small residue of neutral
hydrogen in the filamentary structures produces weak absorption lines which are seen in
the spectra of distant quasars (the Lyα forest), these observations are an efficient probe
of the high-redshift Universe [20].
The distribution of the IGM has already been studied quite successfully in the linear

regime, with analytical models, and beyond through hydrodynamical codes. In [74] vari-
ous models (which are a modification of the Zel’dovich approximation [79] and are based
on obtaining the baryon distribution from the DM one imposing a filter) for the IGM
distribution are confronted with an hydrodynamical simulation of DM. A representation
of the matter distribution is given in Fig.1.2, where we show four panels, which are slices
of thickness ≈ 0.1h−1 comoving Mpc at the same position along the z-axis at redshift
z = 3, for the IGM and the DM distribution of the hydrodynamical simulations (top
panels), the TZA field (bottom left panel) and the IGM field obtained with ZD method
(bottom right). We can observe that the IGM distribution is more diffuse, this is an effect
of the pressure, e.g. in underdense regions the gas pressure is pushing matter into the
low-density voids [74]. Anyway it is clear that the IGM resembles the underlying DM
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Figure 1.1: The dark matter density field on various scales. Each individual image shows the
projected dark matter density field in a slab of thickness 15h−1Mpc (sliced from the periodic
simulation volume at an angle chosen to avoid replicating structures in the lower two images),
colour-coded by density and local dark matter velocity dispersion. The zoom sequence displays
consecutive enlargements by factors of four, centred on one of the many galaxy cluster halos
present in the simulation. This figure is provided by [70], for any further detail check the main
text.
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Figure 1.2: Slices along the z-axis of thickness ≈ 0.1h−1 comoving Mpc (coordinates in normal-
ized units). Top panels: IGM distribution (left) and DM distribution (right), from the z = 3
output of the ΛCDM model. Bottom panels: Zel’dovich modelling of the IGM distribution from
the initial conditions of hydrodynamical simulation (left-hand panel, TZA), Zel’dovich displace-
ment added to DM particles to mimic baryonic pressure (right-hand panel, ZD). This figure is
provided by [74], for any further detail check the main text.
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distribution.
The work is organized as follows. In the following sections of this introductory chapter
we will describes the basic aspects of cosmology and gravitational instability theory. In
the second chapter we develop a quantum mechanical theory of the evolution of the large
scale structure (LSS) based on the works [37, 67, 72, 77], which results we extend to the
description of a collisional fluid (baryons) whose pressure is assumed barotropic (1.2.17).
This quantum mechanical model has two possible interpretations. The first, which is
the one we use, is that it describes through Schrödinger equations (coupled to a Poisson
equation which describes the gravitational field) a classical matter field which evolves
under the Vlaslov equation. In this case the Planck constant ℏ and the particle mass m
are assumed to be free parameters of the model (they can be set arbitrarily) which are
coupled in the single parameter ν = ℏ/m. We use this model to describe the evolution
of baryons under the DM gravitational field. The second interpretation is that the model
describes a real quantum fluid and in this case ℏ and m assume their common value. This
interpretation is interesting because it describes a new DM candidate which consists in
ultra-light axion-like particles usually referred to as fuzzy DM (FDM) [30].
In the chapter 3 we solve the Schrödinger-Poisson system using quantum perturbation
theory (QPT). We follow the work [67] which results we extend to an expanding back-
ground Universe and to the presence of baryons. In particular in this chapter we restrict
to scales much larger than the Jeans scale such as the baryon pressure can be assumed
as a perturbative correction to the dynamics (kinetic energy), due to Jeans instability
theory [50]. This perturbative expansion provides semi-analytical results which if numer-
ically solved can be computationally competitive with N-body simulations [67].
In chapter 4 we present a numerical code to solve the Schrödinger equations following the
work [5] and extending its results to our cosmological problem. This code is interesting
because it does not requires to restrict the study on very large scale (as the QPT of the
chapter 3), hence through its use we could investigate a much broad range of scales. A
similar code was already used by [80] to study a single-fluid composed by DM and it
seems a promising numerical method since it is less computationally demanding than full
N-body simulations [80].
In chapter 5 we depart a bit from the main argument of the work, i.e. the evolution of
baryons under CDM potential. Here we use the Schrödinger model we depicted in chapter
2 to study a real quantum fluid, the FDM, and in particular the properties of quantum
vortices following the work [30] (here we neglect the presence of baryons and we study a
single-fluid of DM). This is interesting because the observation of these features in DM
halos could be a probe for the FDM candidate [1, 30]. We extend the work of [30] to
the possibility of a non negligible velocity dispersion for FDM, the velocity dispersion
can be related to a pressure and an effective Jeans scale [15, 64]. We develop a simple
model, describing it as the baryon pressure (1.2.17) and so using some of the results of
the previous chapters, to show that the magnitude of the effects of the velocity dispersion
over quantum vortices is selected by the effective Jeans scale. We conclude with chapter
6 where we present our results.
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1.1 Robertson-Walker metric

We want to construct a model for the homogeneous and isotropic background Universe
and since general relativity is closely related to geometry we have to use a geometrical
model. Thus first of all we need to construct a metric, more specifically we can define the
metric tensor gij as

ds2 = gij(x)x
ixj , (1.1.1)

where ds2 represents the space-time interval between the points xi and xi + dxi.
If we suppose that we can describe the Universe as a continuous fluid and assign to each
fluid element the spatial coordinates xα(α = 1, 2, 3) hence any point in space-time can
be labelled by the coordinates xα, corresponding to the fluid element which is passing
through the point, and by the proper time t measured by a clock moving with the fluid
element. The coordinates xα are called comoving coordinates and we will make a large
use of them later in this work. One can show only from geometrical considerations that
the most general metric satisfying homogeneity and isotropy is called Robertson-Walker
metric and is of the form [20]

ds2 = (cdt)2 − a(t)2
[

d̺2

1−K̺2 + ̺2(dθ2 + sin2 θdϕ2)

]

, (1.1.2)

where we have used spherical polar coordinates: ̺, θ and ϕ are the comoving coordinates
and t the proper time; a(t) is called scale factor and it encodes the expansion of the
Universe. K is called curvature parameter and is a constant which can be rescaled such
as it can assume only the values −1, 1 and 0 [20]. In the case K = 0 the space obeys
to the Euclidean geometry and it is said to be flat; in the case K = +1 the geometry
is like on an hypersphere so the space is closed, i.e its volume is finite, but it has no
boundaries; in the case K = −1 the geometry is hyperboloidal, i.e. a curved space with
negative Gaussian curvature, and the space is open [20]. If we write the metric as (c = 1)
ds2 = dt2 − dl2 we can parametrize respectively these three cases as

dl2 = a2(d̺2 + ̺2dΩ2) , (1.1.3)

dl2 = a2(dχ2 + sin2 χdΩ2) = a2
(

d̺2

1− ̺2 + ̺2dΩ2

)

, (1.1.4)

dl2 = a2(dχ2 + sinh2 χdΩ2) = a2
(

d̺2

1 + ̺2
+ ̺2dΩ2

)

, (1.1.5)

where dΩ2 = dθ2 + sin2 θdϕ2, 0 ≤ χ ≤ π in (1.1.4) and 0 ≤ χ ≤ ∞ in (1.1.5).

1.1.1 The Friedmann equations

Now that we know the metric of our modelled Universe we can study the Einstein equation,
which relate the geometry of the Universe to its energy content. They are

Rij −
1

2
gijR =

8πG

c4
Tij , (1.1.6)

where Rij and R are the Ricci tensor and Ricci scalar, which can be derived from the
metric. Tij is the energy-momentum tensor which for a perfect fluid, as we consider the
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background Universe [20], can be written as (using from now the natural unit c = 1)

Tij = (p+ ρ)UiUj − pgij , (1.1.7)

where ρ is the energy density, p the pressure and Uk with k = 1, .., 4 the fluid 4-velocity.
Using the RW metric the time-time component of the Einstein equations yelds [20]

ä = −4πG

3
(ρ+ 3p) a . (1.1.8)

The space-time components give just 0 = 0. From the space-space components, using
(1.1.8) for simplify the addends, we obtain

ȧ2 +K =
8πG

3
ρa2 . (1.1.9)

Actually these two equations are not independent, the second can be derived from the first
if one assumes the expansion of the Universe to be adiabatic, as one should do because
outside the Universe there is nothing with which exchange heat. The adiabaticity is
described by the condition dU + pdV = 0, i.e.

d(ρa3) = −pda3 , (1.1.10)

which can be rewritten as

ρ̇ = −3 ȧ
a
(ρ+ p) . (1.1.11)

We define the Hubble parameter as H = ȧ/a which describes the rate of expansion of the
Universe, since the scale factor a describes its expansion. Then we can rewrite equations
(1.1.8), (1.1.9) and (1.1.11) in the common form

H2 =
8πG

3
ρ− K

a2
, (1.1.12)

ä = −4πG

3
a(ρ+ 3p) , (1.1.13)

ρ̇ = −3H(ρ+ p) . (1.1.14)

These are called Friedmann equations.
Since there are three variables (a, ρ, p) and we have only two independent equations
to close the system we need an equation of state for the pressure. Another important
observation is that the pressure entering in the Friedmann equations is a pure relativistic
effect. This could be seen by a Newtonian derivation of these equations, which consist in
derive them from just Newtonian dynamics and adiabaticity. It can be shown that the
equation obtained with such a Newtonian fashion are identical to the Friedmann equations
but the pressure term is missing in (1.1.13) [20].
From (1.1.12) we have to make other two important definitions. First we define the energy
density needed to make the Universe flat, i.e. K = 0, this is called critical density and is
given by

ρc(t) =
3H2(t)

8πG
. (1.1.15)
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From it we can define the density parameter

Ω(t) =
ρ(t)

ρc(t)
. (1.1.16)

With these two new definitions we can rewrite (1.1.12) as

K

a2
= H2(Ω− 1) . (1.1.17)

Hence it’s clear that if Ω > 1 (ρ > ρc) K = +1 and the Universe is closed, if Ω < 1
K = −1 and the Universe is open and if Ω = 1 K = 0 and the Universe is flat. In
addiction note that since K = const the Universe can never change from open to closed,
flat or viceversa . Thus the observation of Ω is very important to understand in which
case of geometry the Universe is, unfortunately for now the data are very near to Ω = 1
and with an error too big to determine in which situation we are [20].

1.1.2 The Cosmological constant Λ

The cosmological constant Λ is an adjunctive constant term of the Einstein equations.
Historically Einstein added it to make possible to describe a static Universe but currently
this term has proven helpful to model the accelerated expansion of the Universe. The
modified Einstein equation are [20]

Rij −
1

2
gijR− Λgij =

8πG

c4
Tij . (1.1.18)

Since today we use Λ to model an ”energy” [20] we prefer to put it on the right-hand side
of the Einstein equation, redefining the energy-momentum tensor

Rij −
1

2
gijR =

8πG

c4
T̃ij , (1.1.19)

where

T̃ij = Tij +
Λ

8πG
gij = −p̃gij + (p̃+ ρ̃)UiUj , (1.1.20)

where we defined an effective pressure p̃ and an effective density ρ̃ as

p̃ = p− Λ

8πG
, ρ̃ = ρ+

Λ

8πG
. (1.1.21)

With the redefinition of the Einstein equation (1.1.19) and through the use of the effective
pressure and density we can immediately write the Friedmann equations as

H2 =
8πG

3

(

ρ+
Λ

8πG

)

+
K

a2
, (1.1.22)

ä = −4πG

3
a

(

ρ+ 3p− Λ

4πG

)

, (1.1.23)

ρ̇ = −3H(ρ+ p) . (1.1.24)
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From (1.1.23) it’s clear that for an Universe filled only by the cosmological constant its
expansion is accelerating. This is due the fact that the fluid modelled by Λ has a negative
pressure. We call this fluid Dark Energy and today we actually see the expansion of the
Universe accelerate, hence we have a confirmation of the presence of this ”fluid” because
ordinary fluids cannot have negative pressure.
It’s important to note from the Friedmann equations that in an Universe filled only by Λ
its density and H are constant, then the scale factor has the simple expression

a ∝ eHt ∝ e(Λ/3)
1/2t . (1.1.25)

We can also define the critical ”density” for an Universe filled by Λ and the curvature
such as

Λc = 3H2 (1.1.26)

and then the density parameter associate to Dark Energy

ΩΛ =
Λ

3H2
. (1.1.27)

Observations set the value of ΩΛ today to Ω0Λ ≈ 0.7 thus we expect it to be the largest
component in the present Universe, while in the past it was smaller than the matter
or radiation contributions [20]. We report the evolution of the density of the various
components of the Universe in Fig.1.3 taken from [33], where is made use of the barotropic
equation of state w = P (ρ)/ρ. Here in particular it was allowed to Dark Energy density
to vary slightly with time, i.e. w varies with time, and this is modelled by w(z) =
w0 + waz/(1 + z) where w0 is the present value of w and wa is a small coefficient to the
time evolution of w. This model fits, besides the cosmological constant, many scalar field
and some modified gravity expansion histories [33].

1.2 Gravitational instability fundamentals

In this section we review the basic aspects of gravitational instability theory which are
relevant for the following part of this work (see e.g. [56] and [20]).
The matter content of the Universe can be described as a fluid, collisional in the case
of baryons and collisionless in the case of dark matter. In particular to be possible to
describe DM like a fluid, since it is very lightly interacting matter and so have a large
free mean path, we need to assume the velocity dispersion of DM negligible. This can be
demonstrated from the Boltzmann equations, as we report in section 1.3.
Since we are studying only non-relativistic particles another important assumption we do
is to limit ourselves to a Newtonian description of gravity, this will be a good approxi-
mation as long as we treat only small perturbations, such as the gravitational potential
is small, and scales smaller than the Hubble horizon, such as the interactions are instan-
taneous.
The first definition we need is the one of comoving coordinates x, which are coordinates
which follow the Universe expansion. We can define them from the proper coordinates r
as

r = ax . (1.2.1)
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Figure 1.3: Energy density of species in the universe as a function of (1 + z), where z is the
redshift. The dashed vertical line indicates the present time (z = 0), with the past to the left
and future to the right. Note that matter (∝ (1 + z)3 ) and radiation (∝ (1 + z)4) energy
densities scale much faster with the expanding universe than the dark energy density, which is
exactly constant for a cosmological constant Λ. The shaded region for dark energy indicates the
energy densities allowed at 1σ (68.3% confidence) by combined constraints from current data
assuming the equation of state is allowed to vary as w(z) = w0 + waz/(1 + z). This figure is
provided by [33], for any further detail check the main text.
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Note that in this coordinates the velocity is made by two components if the Universe is
not homogeneous, i.e. particles can move differently to just follow the space expansion
and so x is not constant.

ṙ(x, t) = H(t)r+ aẋ (1.2.2)

Thus the second term can be considered as a perturbation over the homogeneous back-
ground and is called peculiar velocity v = aẋ.
We will work in the comoving space so every length has to be rescaled accordingly, in-
cluding derivatives, also the time one. For a general function f we have

Df

Dt
(r, t) =

Df

Dt
(x, t)

∂f

∂t
|r + ṙ · ∇rf =

∂f

∂t
|x + ẋ · ∇xf

∂f

∂t
|r + (Hr+ aẋ) · 1

a
∇xf =

∂f

∂t
|x + ẋ · ∇xf

∂f

∂t
|r =

∂f

∂t
|x −H(x · ∇x)f , (1.2.3)

where
D

Dt
|x =

∂

∂t
+ ẋ · ∇ (1.2.4)

is the convective or Lagrangian derivative, which describes the rate of change of some
physical quantities of a particle equipped with a space and time dependent velocity field.
In the proper space the fluid equations, assuming constant entropy (i.e. adiabatic pertur-
bations) are respectively the continuity and the Euler equations [56]

ρ̇+∇r · (ρṙ) = 0 , (1.2.5)

r̈+ (ṙ · ∇r)ṙ = −
1

ρ
∇rP −∇rΦtot , (1.2.6)

where ρ(x, t) is the density, P the pressure and Φtot(x, t) is the gravitational potential,
which evolution is described by the Poisson equation

∇2
rΦtot = 4πGρ . (1.2.7)

Since we want to describe the evolution of the Universe on large scales, which we expect
to be slightly inhomogeneous, we have to introduce perturbations over the homogeneous
background. We can define them as

ρ(x, t) = ρ̄(t) + ρ̄(t)δ(x, t, ) ṙ(x, t) = H(t)x+ aẋ, Φtot(x, t) = Φ̄(t) + Φ(x, t) . (1.2.8)

These satisfy the following equations in the comoving space [56]

ρ̇+ 3Hρ+
1

a
∇ · (ρv) = 0 , (1.2.9)

∂vb
∂t

+Hvb +
1

a
(v · ∇)v = −1

a
∇Φ− 1

aρ
∇P . (1.2.10)

In the background Universe v = 0 hence the continuity equation for the background
density is

˙̄ρ+ 3Hρ̄ = 0 , (1.2.11)
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which, since H = ȧ/a, gives the common decay of matter density in an expanding homo-
geneous Universe ρ̄ ∝ a−3. If we subtract this solution to the full continuity equation we
obtain an equation for the fluctuation δ, then we can write explicitly the fluid equations
for the perturbations of baryons and DM.

• Continuity

δ̇b +
1

a
∇ · ((1 + δb)vb) = 0 (1.2.12)

δ̇DM +
1

a
∇ · ((1 + δDM)vDM) = 0 (1.2.13)

• Euler

∂vb
∂t

+Hvb +
1

a
(vb · ∇)vb = −

1

a
∇Φ− 1

aρb
∇Pb (1.2.14)

∂vDM
∂t

+HvDM +
1

a
(vDM · ∇)vDM = −1

a
∇Φ (1.2.15)

where v = adx
dt

and Φ is the peculiar gravitational potential. We have to couple to these
equations the perturbed Poisson equation, which in principle should account for both DM
and baryons

∇2Φ = 4πGa2δρm = 4πGa2ρ̄mδm ≈ 4πGa2ρ̄DMδDM ≈

≈ 4πGa2ΩDMρcδDM ≈
3

2
H2a2ΩDMδDM , (1.2.16)

where δm = (ρ̄b/ρ̄m)δb+(ρ̄DM/ρ̄m)δDM contains both baryons and DM, but since the mean
mass fraction of baryons is much smaller than the one of DM ρ̄b/ρ̄m << ρ̄DM/ρ̄m [56] we
can neglect the baryons self gravity. And ρc is the critical dentity defined as the density
for which the Universe is flat, i.e. ρc = 3H2/(4πG) [56].
To close the system of equations we need also an equation of state for the baryons, i.e.
a law for their pressure. For low to moderate baryon overdensity (δb < 10) we can write
T = T0(z)(1 + δb)

γ−1, where T0 is the Intergalactic Medium (IGM) temperature at mean
density and at redshift z [48]. Thus

Pb =
ρbkbT

µmp

=
ρ̄bkbT0(z)

µmp

(1 + δb)
γ =

kbT0

µmpρ̄
γ−1
b

ργb . (1.2.17)

Then we can compute also the pressure gradient in terms of the baryon density

∇Pb
ρb

=
γ

γ − 1
A∇ργ−1

b , A =
kbT0

µmpρ̄
γ−1
b

. (1.2.18)

Another fundamental relation was noted by Zel’dovich [79] and is very useful to bind
the density perturbations to the equation of motion. We call the comoving Lagrangian
coordinates q, which describe the initial particle distribution. Instead we define the co-
moving Eulerian coordinates as the usual comoving coordinates x describing the Universe
through its evolution. Since mass is conserved there would be the same amount of mass
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in an infinitesimal volume at the point x and at the point q. If we call η = ρ/ρ̄ = 1 + δ
we can write this conservation as

η(x, D)d3x = η(q, Di)d
3q

(1 + δ(x, D))d3x = (1 + δ(q, Di))d
3q = d3q (1.2.19)

where we assumed the initial density perturbations to be null. Hence we can relate the
density perturbations to the Jacobian J of the map of the change of coordinates between
the Eulerian and Lagrangian ones.

δ(x, D)) = J−1(x, D)− 1 (1.2.20)

Note that if the coordinate map is singular the density diverges, this event is called a
caustic and describes the structure formation due to shell-crossing, i.e. the clash of two
or more particles, arriving from different points q, in the point x at time D. We will
define in a more clever way the density perturbations in the next chapter through a
wave-mechanical study which overcome the caustic problem.

1.3 Fluid approximation

We show now that we can actually treat DM as a fluid, as we stated before. Since
external forces cannot act on CDM, due to its weakly interacting nature, the gravitational
forces must bind DM in a fluid. To demonstrate the fluid validity we need to derive the
collisionless Boltzmann equation for the DM distribution.
From the Newtonian dynamics follow

r̈ = −∇rΦ
tot
DM , (1.3.1)

where Φtot
DM is the gravitational potential generated by DM, which follows the Poisson

equation
∇2Φtot

DM = 4πGa2ρDM , . (1.3.2)

Then we write the Lagrangian for a DM particle, we will call it L′ because later we have
to ”renormalize” it and for simplicity of notation we will set the mass m = 1.

L′ =
1

2
ṙ2 − Φtot

DM =
1

2
(aẋ+ ȧx)2 − Φtot

DM (1.3.3)

We make a canonical transformation to eliminate the terms involving both x and ẋ or
quadratic in x. We can collect them in derivative of a quantity, which we call ǫ.

aȧxẋ+
1

2
ȧ2x2 +

1

2
aäx2 =

d

dt

(

1

2
aȧx2

)

=
d

dt
ǫ (1.3.4)

If we make the canonical transformation we obtain

L = L′ − dǫ

dt
=

1

2
a2ẋ2 − 1

2
aäx2 − Φtot

DM . (1.3.5)

Then from the Friedmann equation (1.1.13) we can obtain the background density

ρ̄DM = − 3aä

4πG
(1.3.6)
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and thus, since this density is independent from the position, from the Poisson equation
we obtain an expression for the background gravitational potential

Φ̄DM =
2

3
πGρ̄DMr

2 = −1

2
aäx2 . (1.3.7)

Hence in the Lagrangian remains just the perturbed potential ΦDM

L =
1

2
a2ẋ2 − ΦDM . (1.3.8)

Since the Boltzmann equation are derived from an Hamiltonian description we have to
make a Legendre transformation.
First we have to compute the conjugate momentum

p =
∂L

∂ẋ
= av . (1.3.9)

Then we apply the Legendre transformation and find the Hamiltonian

H(x,p, t) = p · x− L(x, ẋ, t) =
p2

2a2
+ ΦDM (1.3.10)

and obtain the Hamilton equations

ẋ =
∂H

∂p
=

p

a2
, (1.3.11)

ṗ = −∂H
∂ẋ

= −∇ΦDM . (1.3.12)

Finally we can write the collisionless Boltzmann equations and use the Hamilton ones to
simplify it.

df

dt
=
∂f

∂t
+ ẋ · ∇xf + ṗ · ∇pf = 0

df

dt
=
∂f

∂t
+

p

a2
· ∇xf −∇xΦDM · ∇pf = 0 (1.3.13)

We define now the first moments of the DM distribution. The zero-th order momentum
is the mean density

ρ(x, t) =
1

a3

∫

d3pf(x,p, t) , (1.3.14)

where the factor a−3 is due to the fact we are considering a comoving volume, usually
ρ ≈ mnf and since we are considering an unitary mass a−3 is actually the number density
n.
The first order momentum is the mean velocity, which we keep calling v with an abuse of
notation.

v(x, t) =
1

Na

∫

d3pvf(x,p, t) =
1

Na

∫

d3ppf(x,p, t) , (1.3.15)

where

N =

∫

d3pf(x,p, t) (1.3.16)
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is the normalization factor.
If we integrate in d3p the Boltzmann equation (1.3.13) we obtain

˙(a3ρ) + a−2∇x ·
∫

d3ppf −∇xΦDM ·
∫

d3p∇pf = 0 (1.3.17)

and, since the last term is a surface term it gives 0 contribution, we find the continuity
equation

ρ̇+ 3Hρ+
1

a
∇x · (ρv) = 0 . (1.3.18)

To find the Euler equation we have to multiply the Boltzmann equation by p and integrate
in d3p. With a couple of easy steps we obtain

a4ρv̇i + a4Hρvi − a3vivj∂jρ− a3ρvi∂jvj + a3ρ∂iΦDM + a−2

∫

d3ppipj∂jf = 0 , (1.3.19)

where ∂i =
∂
∂xi

and we used the Einstein convention on repeated indexes. To understand
the meaning of the last term we need to define the velocity dispersion tensor, which
describes how much the velocity of a particle is far away from the mean value [20].

Πij =
〈pipj〉
a2
− vivj = 1

a

[

∫

d3ppipjf
∫

d3pf
−
∫

d3ppif
∫

d3ppjf
(∫

d3pf
)2

]

. (1.3.20)

Thus we can rewrite the last term of (1.3.19) as
∫

d3ppipj∂jf = aρ∂j〈pipj〉+ a〈pipj〉∂jρ (1.3.21)

and dividing (1.3.19) by a4ρ we finally obtain

v̇i +Hvi +
1

a
vj∂jv

i = −1

a
∂iΦDM −

1

aρ
∂j
(

Πijρ
)

, (1.3.22)

which would be exactly the Euler equation if the last term would be null. The term
with the velocity dispersion couples this equation with the equation for the successive
moment, this is typical of Boltzmann equations and gives an infinite system of equations.
A method to close this system is to impose, for example, that the velocity doesn’t depart
from the mean value, i.e. Πij = 0. This condition is verified if Πij keeps null for initial
times and is actually true for Cold DM for a large rage of scales. In addition if the system
is locally termalized the velocity dispersion becomes isotropic and in particular equal to
the isotropic pressure Πij = δijp and then also in this case we obtain the Euler equation,
with a non vanishing pressure. Hence we found that in these cases (not so particular) the
CDM can be actually described as a fluid [20].

1.4 Growth factor

In this section we want to define the growth factor, which is the quantity which describe
the evolution of CDM perturbations in the linear regime. It is very important because
using it as time variable simplifies the study of matter perturbations also outside the
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linear regime.
Hence we have to linearize the equations describing the evolution of DM (1.2.13), (1.2.15)
and (1.2.16).

δ̇DM +
1

a
∇ · vDM = 0 (1.4.1)

v̇DM +HvDM = −1

a
∇ΦDM (1.4.2)

∇2Φ = 4πGa2ρ̄DMδDM =
3

2
H2

0Ω0DMa
2 1

a3
δDM (1.4.3)

We can combine this three equation taking the time derivative of the continuity equation

∂2δDM
∂t

+ 2H
∂δDM
∂t

=
3

2
Ω0DMH

2
0

1

a3
δDM . (1.4.4)

The above second order differential equation describes the linear evolution of density
perturbations of collisionless matter (DM) and is one of the fundamental equations within
the linear theory of gravitational instability. The fact that it is a second order partial-
differential equation has two important consequences. First that it has two solutions one
growing and one decaying [20]

δDM = δ1 + δ2 . (1.4.5)

And second the fact that are present only time derivatives means that the evolution of
these solution is the same throughout the cosmic volume [20]. Thus they can be separated
in a spatial varying function and in a time varying one, i.e δ = D(t)∆(x) or

δ1(x, t) = D1(t)∆1(x) , δ2(x, t) = D2(t)∆2(x) . (1.4.6)

Hence the time evolution of D(t) is given by

∂2D

∂t
+ 2H

∂D

∂t
=

3

2
Ω0DMH

2
0

1

a3
D . (1.4.7)

This result brings the following important consequences for linear gravitational instability
theories of collisionless matter [20]:

1. The density fluctuation δ will grow at the same rate at every location.

2. The topology of matter distribution will remain the same, i.e. the contours do not
change in geometrical shape.

The density grow factor depends on the choice of the FRW Universe, i.e. on the cosmo-
logical background. These properties are enclosed in the scale factor a and so also in the
Hubble parameter H, which are present in the evolution equation (1.4.7). From now on
we will use the name growth factor D(t) just for the growing mode solution.
We compute now the growth factor for an Universe filled by baryons, cold dark matter
and dark energy, in the form of the Cosmological constant. For such Universe the Hubble
parameter is given by the relation

H2(t) = H2
0 (Ω0ma

−3 + Ω0Λ + (1− Ω0)a
−2) , (1.4.8)
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where Ω0 = Ω0m + Ω0Λ (we neglected the radiation contribution [20]) and the last term
corresponds to the curvature of the Universe. Differentiating both once and twice the
above expression we get

2HḢ = H2
0H(−3Ω0ma

−3 − 2
1− Ω0

a2
) , (1.4.9)

Ḧ = H2
0H(

9

2
Ω0ma

−3 + 2
1− Ω0

a2
) . (1.4.10)

From the sum of this two equation we obtain

Ḧ + 2HḢ = H2
0H

3

2
Ω0ma

−3 . (1.4.11)

Hence H(t) evolves accordingly the same equation of the growth factor (1.4.7) in an
Universe with collisonless matter. Multiplying the equation of evolution of H by D and
the one of D by H and then subtracting the two

DḦ − D̈H + 2(ḢD − Ḋ)H = 0 = a2
d

dt
(ḊH −DḢ) +

da2

dt
(ḊH −DḢ) (1.4.12)

which can be rewritten as
d

dt

[

a2H2 d

dt

(

D

H

)]

= 0 , (1.4.13)

which has as solution the integral equation

D(t) ∝ H(t)

∫ t

0

dt

a2H2
. (1.4.14)

If we change time variables with the scale factor a

D(a) =
5Ω0mH

2H0

∫ a

0

da′H3
0

a′3H3
(1.4.15)

where the proportionality factor is defined such as lima→0D ≈ a, because for early times
the Universe will tend asymptotically to an Einstein-DeSitter Universe [20].
This can be computed using the fact that the early Universe was matter dominated so
the Hubble parameter is approximable to H2 ≈ H2

0Ω0ma
−3. Hence

D(a)
a→0≈ 5Ω

3/2
0ma

−3/2

2

∫ a

0

da′
a′3/2

Ω
3/2
0m

≈ a . (1.4.16)

The general solution to (1.4.15) can be expressed in terms of the Gaussian hypergeometric
functions 2F1 as

D(a) =− 1

15Ω
3/2
0Λ a

2 (Ω0m + Ω0Λa3)
2

(

Ω0Λa
3

Ω0m

)3/2

× (1.4.17)

×
[

(

5Ω0m + 2Ω0Λa
3
)

2F1

(

1

2
,
5

6
;
11

6
;−Ω0Λa

3

Ω0m

)

− 8Ω0m 2F1

(

−1

2
,
5

6
;
11

6
;−Ω0Λa

3

Ω0m

)]

.

It’s usefull to define also the ratio

f(a) =
d lnD

d ln a
, (1.4.18)

called dimensionless linear growth.
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Flat Universe scenario

We proceed computing an approximate relation between the growth factor D and the
scale factor a in a flat Universe. To compute f is useful to rewrite (1.4.15) as

D ∝ X1/2a−1

∫ a

0

da′X−3/2 , (1.4.19)

with

X = 1 + Ω0m(a
−1 − 1) + Ω0Λ(a

2 − 1) =
H2a2

H2
0

. (1.4.20)

Then
d lnD

da
=

1

X
(Ω0Λ −

Ω0m

2a2
)− 1

a
+

X−3/2

∫ a

0
da′X−3/2

(1.4.21)

and finally we can compute the dimensionless linear growth if function of the growth
factor

f(Ωm,ΩΛ, a) = a
d lnD

da
=
H2

0

H2

(

Ω0Λ −
Ω0m

2a3

)

− 1 +
5Ω0mH

2
0

2a2H2D
= (1.4.22)

=− 1− Ωm

2
+ ΩΛ +

5aΩm

2D
. (1.4.23)

The equation (1.4.17) is not a very manageable equation, so instead we can use as solution
to the equations (1.4.15), (1.4.23) an approximation founded by [39] which is valid for a
flat Universe. They found an approximate expression of f today and assume it to be in
a similar form at any time. This approximation is good for ”big” values of Ωm i.e. when
the Universe was matter dominated, which is just the epoch we are studying.

f(z = 0) ≈ Ω0.6
0m +

Ω0Λ

70

(

1 +
Ω0m

2

)

(1.4.24)

Then at any time

f(a) ≈ Ω0.6
m +

ΩΛ

70

(

1 +
Ωm

2

)

. (1.4.25)

Using (1.4.23) we obtain an expression for the growth factor [26]

D(a) ≈ 5Ωm

2
[

Ω0.6
m + (1 + Ωm/2)ΩΛ/70 + 1 + Ωm

2
− ΩΛ

] a =M(a)a . (1.4.26)

Invert this relation to obtain a in function of D would be very difficult, but at early time
we can find an approximate expression since in the limit a → 0 we must have a = D.
Thus we can think to use a = D inside M to don’t increase the order of the solution, i.e.

a(D) =M−1(a)D ≈M−1(D)D , (1.4.27)

where with M(D) we mean that all the omegas are computed at ”time” D, for example
Ωm ≈ Ω0m(H0/H)2D−3

If we do a Taylor expansion of (1.4.26) around a = 0 we can see how good is this
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approximation, because at such times we expect D = a. Using Ωm = Ω0m(H0/H)2a−3 =
Ω0ma

−3/(Ω0ma
−3 + Ω0Λ) and ΩΛ = Ω0Λ(H0/H)2 = Ω0Λ/(Ω0ma

−3 + Ω0Λ) we obtain

D(a) ≈ a− C Ω0Λ

Ω0m

a4 + O(a7) , (1.4.28)

with C = 0.168571. Thus errors enters only at the 4th power of a and so are very small
at early times.

In this chapter we introduced the basic principle of Cosmology and gravitational insta-
bility, for a more detailed discussion see e.g. the books [20, 56]. In particular we showed
that the DM and baryon components of the Universe can be described as a fluid, for DM
actually we had to use some approximation on the velocity dispersion (i.e. we neglect it).
We also found an approximate relation (1.4.27) for relate the scale factor a to the growth
factor D, taking the basis from the works [26, 39].
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Chapter 2

The Schrödinger-Poisson system

We introduce now a different approach to Large Scale Structure (LSS) formation respect
to the ones more common in the literature, such as the Zel’dovich [79] and Adhesion [23]
approximations or numerical studies such as cosmological N-body simulations [8] (these
studies are limited to a Newtonian treatment of gravity) and relativistic perturbation
theories (e.g. [75]), where general relativistic effects are considered. Those theories are
based on the study via Lagrangian and Eulerian perturbation theory of a collisionless fluid,
which represents the Cold Dark Matter (CDM) and can be extended to study also a system
with baryons such as in [47]. They have some problems that can be overcome by studying
the fluid with a wave-mechanical approach (namely via the Schrödinger equation). The
main disadvantages are:

1. The Zel’dovich approximation breaks down at shell-crossing, where the density be-
comes infinite and the map between Lagrangian and Eulerian coordinate is singular.

2. The Adhesion approximation introduce a fictitious viscous term.

3. Even if N-body simulations provide the most accurate results in the description of
LSS evolution, they are computationally expensive. Thus it is important to develop
semi-analytical models too [67].

We will present a wave-mechanical method for the study of large-scale structure evolution
which consists in the study of the coupled Schrödinger and Poisson equations. It was first
suggested by [77] and then it showed great results for example in [67,73,80]. In the next
section we will depict an intuitive way to pass from a fluid description to a wave-mechanical
one through the Madelung transformation [43]. Instead in the section 2.3 we will present
a clever way to relate the classic matter fields (density and velocity) to a wave-function
through the use of distribution functions and Boltzmann equations, thus without pass
through the fluid description which can have some problem when large velocity dispersions
are present. Another advantage of the wave-mechanical model is that all the physical
quantities are enclose in a single function, the wave-function, reducing so drastically the
number of equations needed to solve. This also makes the model numerically competitive
with N-body simulations.

21
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2.1 From classical to quantum fluids

In this section we want to present the relation between the ordinary fluid description and
the quantum mechanical one. In the following it will become evident that the relation
between classical and quantum fluids holds until the motion is irrotational and not singular
[37], in this regime, as we will show, there is a direct correspondence between the fluid
equations and the Schrödinger equation. After the brake of this regime we can still relate
the quantum wave-function to the properties of particles (e.g. density and velocity fields)
through the use of a distribution function and so without pass through a fluid description,
we will depict this method in Sect.2.3.
We begin with an important assumption, the velocity field is irrotational, i.e. v = −∇xφ
where φ is a general velocity potential. This is a reasonable assumption because the
rotational part of the velocity decays fast under the Hubble flow as a−1 in the linear
regime of perturbations. We can show it from the Euler equation (1.2.14), the irrotational
component of the velocity is orthogonal to gradients thus the right-hand side of the
equation is null and also the term v · ∇x, i.e.

∂virr
∂t

+Hvirr = 0, (2.1.1)

which usingH = ȧ/a gives virr ∝ a−1, higher order terms could be a source for vorticity [7]
hence this approximation is valid only at early times when vorticity has still to develop.
Therefore even if there was any vortical velocity in the early Universe it decayed rapidly
with the Universe expansion.
For be general we show the quantum-classical fluid relation for a general collisional fluid,
which evolution in an expanding FRW universe is described by the equations (1.2.12),
(1.2.14) and (1.2.16). From now on we will use the notation ∇ = ∇x for simplicity of
notation.
If we substitute v = −∇φ in the Euler equation (1.2.14), use (1.2.18) to express the
pressure and take the first integral we get the Bernoulli or Hamilton-Jacobi equation

φ̇− 1

2a
(∇φ)2 = 1

a
V , (2.1.2)

where
V = Φ− aHφ+

γ

γ − 1
Aργ−1 . (2.1.3)

We can show the validity of this relation writing in components the Euler equation (1.2.14)
and using (1.2.18) to express the pressure gradient in terms of the density. We use the
notation ,i=

∂
∂xi

and the Einstein convention on repeated indexes.

φ̇,i+Hφ,i+
1

a
φ,k φ,ki= −

1

a
Φ, i− 1

a

γ

γ − 1
A(ργ−1),i . (2.1.4)

We can write the last term on the left-hand side as

φ,k φ,ki=
1

2
(φ,k φ,k ),i . (2.1.5)

Thus the Euler equation, in vectorial form, reads

∇
(

φ̇+Hφ− 1

2a
(∇φ)2

)

= −1

a
∇
(

Φ +
γ

γ − 1
Aργ−1

)

(2.1.6)
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and its first integral give the Bernoulli equation (2.1.2).
Now we want to switch to the quantum mechanical description of fluids. First we introduce
a constant parameter ν with the same dimension of φ (and so of the kinematical viscosity),
L2/T , it is the phase space resolution in coordinates x and v. This can be understood if
we relate ν to the Planck constant ℏ via ν = ℏ/m and then to a de Broglie wavelength
λ = ℏ/vm = ν/v, thus ν = λv sets the resolution of the phase space. It is important to
note that in this contest ℏ is not necessary the proper Planck constant but just a parameter
to set the resolution of the system, also m is not necessary the mass of a particle but it
is a parameter to obtain the right dimensions [13]. Due to this definition we will see that
the parameter ν sets the magnitude of quantum effects, they are present on scales of the
size of the de Broglie wavelength. Hence ν is artificially chosen to match the classical
description by numerical simulation [51,77]. Lastly we have to observe that in some case
ℏ and m are treated actually as the Planck constant and a particle mass, this is the case
of the study of exotic dark matter candidates as fuzzy dark matter, this theory is based
on an ultra-light axion-light candidate (m ∼ 10−22 − 10−23) which then will have a very
large de Broglie wavelength and it gives results comparable with N-body simulations of
CDM on large scales [31]. Then we make the Madelung transformations [43]

1 + δ = R2 ψ = R (x, t) e−iφ/ν . (2.1.7)

From this definition derives directly the non-negativity of the density function ρ = ρ̄|ψ|2,
so the first problem, stated in the introduction, would be solved. We try to show, for
now in a not expanding Universe, that the Schrödinger equation and the fluid equations
are actually the same. If we substitute the wave-function ψ in the Schrödinger equation
(using for now just one spatial dimension for simplicity)

iℏψ̇ (x, t) =

(

− ℏ
2

2m

∂2

∂x2
+ V (x, t)

)

ψ (x, t) , (2.1.8)

it gives, with the further substitution ν = ℏ

m
in the Madelung definition of the wave-

function,

[

iℏ
∂R

∂t
+Rm

∂φ

∂x

]

e−imφ/ℏ =

[

− ℏ
2

2m

∂2R

∂x2
+
iℏ

2

∂2φ

∂x2
R + iℏ

∂R

∂x

∂φ

∂x
+

+
m

2

(

∂φ

∂x

)2

R + V R

]

e−imφ/ℏ . (2.1.9)

We can solve separately the real and imaginary parts of this equation.
Multiplying both sides of the imaginary part by 2R:

2R
∂R

∂t
= +2R

∂R

∂x

∂φ

∂x
+R2∂

2φ

∂x
, (2.1.10)

that can be rewritten as
∂R2

∂t
= +

∂

∂x

(

R2∂φ

∂x

)

, (2.1.11)
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which substituting ρ = R2 and v = −∇φ gives the continuity equation (1.2.12) in one
dimensional case.
Instead the real part is

+mR
∂φ

∂t
=
m

2

(

∂φ

∂x

)2

R− ℏ
2

2m

∂2R

∂x2
+ V R , (2.1.12)

that can be rewritten as

∂φ

∂t
− 1

2

(

∂φ

∂x

)2

=
1

m
V (x, t) +Q (x, t) , (2.1.13)

where

Q (x, t) = − ℏ
2

2m2

1

R

∂2R

∂x2
(2.1.14)

is called Bohm quantum potential and is a pure quantum term (in the limit ℏ → 0 it
vanishes). The equation (2.1.13) is the quantum version of the Hamilton-Jacobi equation
(2.1.2) in a static Universe (a = 1) with the addition of the Bohm quantum potential and
with the tranformation of the potential V → mV .
So we have derived the equations that describe the evolution of a quantum fluid. Now
instead we want to follow the opposite route: starting from the continuity, Euler and
Poisson equations we want to derive the Schrödinger equation associated to them.
First we need to derive the expression for the gradient and Laplacian of ψ, this time using
ν instead of ℏ/m:

∇ψ =

(

∇R− iR
ν
∇φ
)

e−
iφ
ν , (2.1.15)

∇2ψ =

[

∇2R− i

ν

(

R∇2φ+ 2∇R · ∇φ
)

− R

ν2
(∇φ)2

]

e−
iφ
ν . (2.1.16)

Using the continuity equation (2.1.11) written as

2
∂R

∂t
=
(

2∇R · ∇φ+R∇2φ
)

, (2.1.17)

we can simplify the expression of ∇2ψ obtaining

∇2ψ =

[

∇2R− 2i

ν

∂R

∂t
− R

ν2
(∇φ)2

]

e−
iφ
ν (2.1.18)

and rearranging the terms

(∇φ)2 = −ν
2

R
∇2ψe

iφ
ν +

ν2

R
∇2R− 2iν

R

∂R

∂t
. (2.1.19)

We need to compute also the time derivative of ψ

∂ψ

∂t
=

(

∂R

∂t
− iR

ν

∂φ

∂t

)

e−
iφ
ν , (2.1.20)
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which gives
∂φ

∂t
= − iν

R

(

∂R

∂t
− e iφ

ν
∂ψ

∂t

)

. (2.1.21)

Replacing (2.1.19) and (2.1.21) in the Hamilton-Jacobi equation (2.1.2) and neglecting
the expansion of the Universe we get:

iν

R

(

∂R

∂t
− e iφ

ν
∂ψ

∂t

)

− 1

2

(

ν2

R
∇2ψe

iφ
ν − ν2

R
∇2R +

2iν

R

∂R

∂t

)

= −V , (2.1.22)

that can be written as

iν
∂ψ

∂t
=
ν2

2

∇2R

R
ψ +

(

−ν
2

2
∇2 + V

)

ψ . (2.1.23)

This is the usual Schrödinger equation (in a non-expanding Universe) with an additional
term, equal to minus the Bohm potential present in (2.1.13), usually called quantum
pressure.

P =
ν2

2

∇2R

R
(2.1.24)

The name of this term can be better understood by observing how it arises as the Bohm
potential Q. At this point we can also say more on the parameter ν, that resembles
the Planck constant of Quantum Mechanics. As we anticipated in the introduction of
this chapter, because we are dealing with a classical system we treat ν as an adjustable
parameter that controls the quantum pressure, this is more clear observing (2.1.13) and
(2.1.14) where ℏ ∼ ν appears only in front of P = −Q. The quantum pressure term acts
as a regularizing term preventing the generations of multi-stream regions and singularities
in the density field when particle trajectories cross, in a manner similar to the viscous
term of the adhesion approximation [23]. The adhesion approximation consist in the
addition of an artificial viscous term in the hydrodynamical equation, hence transforming
the momentum equation in the Burgers’ equation

Du

Dt
= ν∇2u , (2.1.25)

where here ν represents the kinematical viscosity and also in this case, since the viscosity is
artificial, it is a controlled parameter to match N-body simulations. It can be shown that
the quantum pressure has a similar effect, it is evident in particular in the free-particle ap-
proximation (which consist in neglect the external potentials in the Schrödinger equation)
and which results we will depict in Sect.3.2. The comparison between the free-particle
and the adhesion approximation is already deeply studied in literature, e.g. in [68]. The
viscous term becomes large when particle trajectories intersect (shell-crossing), cancelling
the component of the particle velocities perpendicular to the caustic thus particles are
able to form stable structures. Since our system is composed of two ”fluids” we have to be
more precise in the multi-streaming notation, from the definition of the quantum pressure
(2.1.24) it is clear that there is a pressure generated by each fluid and it depends only on
the density field of the component which generates it. Hence we expect that it prevents
the multi-streaming between different streams of the same fluid component, e.g. the DM
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quantum pressure will prevent the shell-crossing and multi-streaming between different
DM trajectories, this is caused by the fact that the quantum pressure of one component
is enhanced by the overdensity of that single component. We could physically expect this
result because for now there is no observational prove of an interaction (different from the
gravitational one) between baryons and dark matter (it seems that even in the highly non-
linear regime of perturbation, as inside galaxy clusters, there is no collisional interaction
between baryons and DM [29]). Therefore the fact that a ”mixed” quantum pressure does
not arise can be interpreted as a adjunctive prove of efficiency of the Schrödinger-Poisson
model in describing the evolution of LSS.
Then in this section we started describing a general quantum system with the usual
Schrödinger equation and from that we derived the fluid equation; in the Hamilton-Jacobi
(2.1.13) equation the Bohm potential arises in a position (and with the dimensions) usu-
ally taken by a pressure term. It’s important to notice that we can take care of this term
in two different ways:

• putting Q in the Hamilton-Jacobi (2.1.13) and so dealing with the usual Schrödinger
equation (2.1.8), i.e. considering a quantum fluid

• putting Q in the Schrödinger equation (2.1.23) and keeping the usual classical fluids
Hamilton-Jacobi equation

We observed also that the quantum effects, in particular the quantum pressure, are regu-
larized by the choice of the phase space resolution ν [51]. Then we obtained a description
of a fluid based just on a function ψ and a resolution parameter ν. This new description
have a great potential in both analytical (e.g. [30, 67, 73]) and numerical (e.g. [77, 80])
descriptions of large-scale structure of the Universe.

2.2 CDM and ΛCDM Universe

CDM Universe

Now we want to take care of the Universe expansion. We begin the study considering
an Universe filled only by Cold Dark Matter (CDM), which is collisionless, and baryons,
which experience a pressure. Later we will introduce also Dark Energy (as a cosmological
constant) and see how the equation describing the evolution of LSS change.
First of all we rewrite the Euler (1.2.14) and Hamilton-Jacobi (2.1.2) equations in a more
useful way as firstly done by Zel’dovich, using the two new variables:

u =
dx

da
ϕ =

3

2

t2∗
a3∗

Φ . (2.2.1)

Note that in a matter dominated flat Universe from the expression of the Hubble param-
eter (1.4.8) the following equivalence is true

a3H2 = a3H2
0Ω0ma

−3 = H2
0Ω0m (2.2.2)

and since the scale factor follows a(t) = a∗ (t/t∗)
2/3 and then the Hubble parameter

H = ȧ/a = 2/(3t) with a∗ the scale factor at some set time t∗, the following relation holds

3

2

t2∗
a3∗

=
2

3a3∗H
2
∗

=
2

3Ω0mH2
0

. (2.2.3)
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Hence we can rewrite the Euler equation in the new coordinates, for example for baryons,

Dub
Da

= − 3

2a

[

ub +∇ϕ+

(

3t2∗
2a3∗

) ∇Pb
ρb

]

, (2.2.4)

and doing the same for DM we obtain a similar equation, just without the pressure
gradient. Expressing the velocity through its potential ub = −∇φb we can transform the
Euler equation (2.2.4) in the Bernoulli equation

∂φb
∂a
− 1

2
(∇φb)2 =

3

2a

[

ϕ− φb + A′ γ

γ − 1
ηγ−1
b

]

, (2.2.5)

where

A′ =
3t2∗
2a3∗

kbT0(z)

µmp

(2.2.6)

and we have done an abuse of notation, still calling φ the potential of u. We can observe
that the only difference between the Hamilton-Jacobi equation in an expanding Universe
(2.2.5) and in a non-expanding one (2.1.2) is the substitution t→ a in the time derivation
and the use of a new potential

V + P =
3

2a
(−φ+ ϕ) +

3

2a
A′ γ

γ − 1
ηγ−1
b . (2.2.7)

So we can easly rewrite the baryons Schrödinger equation (2.1.23) in an expanding Uni-
verse as

iν
∂ψb(x, a)

∂a
=

[

Qb −
ν2

2
∇2 + Vb −

3

2a

γA′

γ − 1
|ψb|2γ−2

]

ψb (2.2.8)

and similarly for DM, just neglecting the pressure term

iν
∂ψDM(x, a)

∂a
=

[

QDM −
ν2

2
∇2 + VDM

]

ψDM , (2.2.9)

where

Qb,DM =
ν2

2

∇2
√

1 + δb,DM
√

1 + δb,DM
=
ν2

2

∇2|ψb,DM |
|ψb,DM |

(2.2.10)

is the Quantum Pressure. We used the subscript b,DM to indicate that we can write
such quantity in a similar way for both DM and baryons, i.e. for a generic quantity
fb,DM = cAb,DM relative to baryons or DM, c is a coefficient equal for both baryons and
DM and Ab,DM in another function which have different values if it is evaluated for the
baryon or DM component

fb = cAb , (2.2.11)

fDM = cADM . (2.2.12)

Clearly if Ab = ADM also fb = fDM . The ”external” potential is

Vb.DM =
3

2a
(−φb,DM + ϕ) (2.2.13)



28 CHAPTER 2. THE SCHRÖDINGER-POISSON SYSTEM

We still have to couple the Schrödinger equations to the Poisson equation, which can be
expressed in the new variables (2.2.1) as

∇2

(

VDM −
3ν

2a
Arg (ψDM)

)

=
3

2a2
(

|ψDM |2 − 1
)

. (2.2.14)

Where Arg(ψDM) = −φDM/ν due to the Madelung definition of the wave-function (2.1.7)
and we rewrite the baryons potential in terms of the DM one as

Vb = VDM +
3

2a
ν [Arg(ψb)− Arg(ψDM)] = VDM +

3

2a
νArg (ψb/ψDM) . (2.2.15)

Then the CDM-baryons system is fully described by the set of equations (2.2.8), (2.2.9)
and (2.2.14), note that we almost halved the number of equation needed, this is a general
property of the Schrödinger-Poisson model since the wave-function contains information
on both the density and velocity fields [67].
So, as anticipated, we have now a density defined non-negative, as it should be, and also
the problem of shell-crossing is solved because the wave-function ψ has no singularities
(this is not a property of just the Schrödinger model, also N-body simulations can describe
the system after the shell-crossing without problems [8]).
We want now to make explicit the time dependence of the pressure coefficient A′, which
is given by the baryon mean temperature T0(z). We use a simple law, but fairly general,
of the type

T0(z) ∝ (1 + z)α ∝ a−α (2.2.16)

with α ≤ 1, it is provided by experimental observations [47].
We can define an useful quantity for describe this coefficient, the ”modified” Jeans
wavenumber, from the Jeans wavenumber in the CDM Universe (we will compute it in
the more general case of a ΛCDM Universe in App.A1), the Jeans wavenumber is a result
of linear perturbation theory and it sets the scale for which the gravitational potential is
strong enough to counter the baryon gas pressure and start the gravitational collapse of a
matter region, i.e. for k < kJ instabilities can grow, and thus sets the characteristic scale
of pressure action [7]. In CDM-baryon dominated Universe it takes the form [47]

k2J =
3

2
a−1H

2
0Ω0mµmp

γkbT0(z)
. (2.2.17)

Instead the modified Jeans wavenumber is defined in a way such as it is redshift indipen-
dent (i.e. constant in time) [47]

k̃2J = k2Ja
1−α =

3

2
a−α

H2
0Ω0mµmp

γkbT0(z)
=

3

2γA′
a−α , (2.2.18)

where we used that in a matter dominated Universe a3/t2 ∼ a3H2 = const ∼ H2
0Ω

3
0m as

showed in (2.2.2). Note that only in the case α = 1, i.e. T0 ∝ a−1 the Jeans wavenumber
is constant. Neglecting the expansion of the expansion of the Universe the comoving Jeans
wavelength for a monoatomic gas (γ = 5/3) would have dimension [50]

λJ =
2π

kJ
≈ 0.01(Ωb0h

2)−1/2Mpc ≈ 0.06Mpc , (2.2.19)
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Figure 2.1: Time evolution of the comoving Jeans wavelength (blue line), it is compared to the
modified comoving Jeans wavelength (orange line) for which is used the reference value (2.2.19).
It is used α = 0.8.

where in the last equality we used Ωb0 = 0.05 and h = 0.7, which is a correction factor
for the value of the Hubble constant H0. We can keep this value as a reference dimension
for k̃−1

J and show the time-evolution of the comoving Jeans wavelength in function of
the scale factor a in Fig.2.1, for example is used a temperature-redshift dependence of
α = 0.8. We can physically interpret k̃J such as it represents an effective scale for the gas
pressure action which remains constant during the evolution of the pressure, this in turn
can be interpreted such as only the pressure ”magnitude” varies during the time evolution
of the Universe instead its ”range of action” remains constant.
Finally we can write the Schrödinger equation for baryons (2.2.8) as

iν
∂ψb(x, a)

∂a
=

[

Qb −
ν2

2
∇2 + Vb −

9

4aα+1

1

γ − 1

1

k̃2J
|ψb|2γ−2

]

ψb(x, a) . (2.2.20)

Now the time dependence of the pressure term coefficient is factorized and take the simple
form of a−(α+1).

ΛCDM Universe

To be more general we pass to the study of an Universe where is present also Dark Energy,
modelled as a cosmological constant Λ. In this case is more useful to use the growth factor
D as time scale instead of the scale factor, thus we use the new variables [12] (with an
abuse of notation respect the Λ = 0 case):

ϕ =
2DΦ

3e(ΩDM)a2Ḋ2
, u =

dx

dD
=

v

aḊ
, (2.2.21)
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where e(ΩDM) = ΩDM/f
2(ΩDM), f(ΩDM) is defined in (1.4.18). Then using the growth

factor D as time we can rewrite the fluid equations for baryons as

∂ub
∂D

+ (ub · ∇)ub +
3e(ΩDM)

2D
(ub +∇ϕ) +

e(ΩDM)

a2D2H2ΩDM

∇Pb
ρb

= 0 , (2.2.22)

∂δb
∂D

+∇ · [(1 + δb)ub] = 0 , (2.2.23)

∇2ϕ− 1

D
δDM = 0 (2.2.24)

and similarly for DM. In the last equation, the Poisson one, we are neglecting the baryons
self gravity as we have done in the course of this work since the baryon mass mean fraction
is much smaller that the DM one.
As we have done before, assuming the velocity irrotational ub = −∇φb, we can pass to
an Hamilton-Jacobi equation for the velocity potential

∂φb
∂D
− 1

2
|∇φb|2 =

3e(ΩDM)

2D
(ϕ− φb) +

e(ΩDM)

a2D2H2ΩDM

γ

γ − 1
Aργ−1

b = 0 (2.2.25)

and then, since as in the Λ = 0 case the only difference from the Hamilton-Jacobi equation
in a non-expanding Universe (2.1.2) is the change of the time variable and the definition
of a new potential, we can easily write the Schrödinger equations

iν
∂ψb
∂D

=

[

−ν
2

2
∇2 + Vb +Qb +

e(ΩDM)A

a2D2H2ΩDM

γ

γ − 1
|ψb|2γ−2

]

ψb , (2.2.26)

iν
∂ψDM
∂D

=

[

−ν
2

2
∇2 + VDM +QDM

]

ψDM , (2.2.27)

where

A =
kbT0(z)

µmp

, Vb,DM =
3e(ΩDM)

2D
(ϕ− φb,DM) (2.2.28)

and Q is the already defined Quantum Pressure (2.2.10).
We have to couple it to the Poisson equation which after the Madelung transformations
can be expressed as

∇2 [VDM − νArg[ψDM ]] =
3e(ΩDM

2D2
(|ψDM |2 − 1) (2.2.29)

and we relate the baryon potential to the DM one

Vb = VDM + νArg[ψb/ψDM ] . (2.2.30)

Thus our system is described by the three variables ψb,DM , VDM and by the three corre-
sponding equations (2.2.26), (2.2.27) and (2.2.29). Hence we begun with a system of 5
equation and at the end we arrived to a system of just 3 equations.
We want to define a redshift independent wavenumber from the last term of the Schrödinger
equation (2.2.26) as we have done in (2.2.18). Thus we have to study the coefficient of
the pressure term to extrapolate its time dependence. From the relation for H (1.4.8) in
a flat Universe (Ω0 = 1) and using

Ωi0 =
8πGρi0
3H2

0

i = m,Λ , (2.2.31)
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we obtain

a3H2 = a3
8πG

3

(

ρm,0a
−3 + ρΛ,0

)

= H2
0

(

Ω0m + a3Ω0Λ

)

(2.2.32)

and so we write the pressure coefficient from (2.2.26) as

γkbT0(z)

µmp(γ − 1)

e(ΩDM)

D2ΩDM

a

H2
0Ω0m

1

1 + a3 Ω0Λ

Ω0m

. (2.2.33)

We can simplify this expression through the use of the Jeans wavenumber, as we have
done in the CDM Universe scenario. We computed the evolution in time of the kJ in the
case of a ΛCDM Universe in App.A1.

k2J(D) =
3a2H2ΩDMµmp

2γkbT0(a)
=

3H2
0Ω0mΩDMµmp

2aγkbT0(a)

(

1 + a3
Ω0Λ

Ω0m

)

, (2.2.34)

where we used (2.2.32) to simplify a2H2. Now we have to use the relation between
the growth factor D and the scale factor a, which, at early times, we approximate to
a =M−1(D)D with M(D) defined in (1.4.27).

k2J(D) =
3M(D)µmpΩ0mH

2
0ΩDM(D)

2DγkbT0(D)

(

1 +
D3

M3(D)

Ω0Λ

Ω0m

)

, (2.2.35)

where T0(D) ∝ a−α ∝
(

M(D)
D

)α

from (2.2.16). Then we can rewrite the pressure coefficient

(2.2.33) as
3

2e(ΩDM)(γ − 1)D2k2J
(2.2.36)

or if we define the modified Jeans wavenumber equivalent of (2.2.18) in the ΛCDM
Universe, which is time-independent,

k̃2J =

(

M(D)

D

)α−1
k2J

ΩDM(D)
, (2.2.37)

as
3Mα−1(D)

2Dα+1e(ΩDM)ΩDM(γ − 1)

1

k̃2J
. (2.2.38)

At early times the term (D/M)3(Ω0Λ/Ω0m) present in (2.2.35) is negligible and so k̃2J is
constant in time, because we are expressing the temperature as (2.2.16).
Note that at early times we can use the same approximation we used in (1.4.27), i.e. use
a = D in the omegas, to express f 2(D) = ΩDM/e(ΩDM) from the f(a) given by (1.4.25).
Finally we can rewrite the baryon Schrödinger equation (2.2.26) as

iν
∂ψb
∂D

=

[

−ν
2

2
∇2 + Vb +Qb +

3

2

Mα−1(D)

Dα+1

(

f(D)

ΩDM

)2
1

γ − 1

1

k̃2J
|ψb|2γ−2

]

ψb = (2.2.39)

=

[

−ν
2

2
∇2 + Vb +Qb +Wb

]

ψb . (2.2.40)
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Note that is very similar to the equation in the Λ = 0 scenario, the only change is in the
time dependence of the pressure coefficient

1

a(α+1)
→ Mα−1(D)f 2(D)

Dα+1Ω2
DM

. (2.2.41)

Then the dynamics of the baryon-DM system is described by the set of equations



















iν
∂ψb
∂D

=
[

−ν2

2
∇2 + Vb +Qb +Wb

]

ψb

iν
∂ψDM
∂D

=
[

−ν2

2
∇2 + VDM +QDM

]

ψDM

∇2 [VDM − νArg[ψDM ]] = 3e(ΩDM )
2D2 (|ψDM |2 − 1)

(2.2.42)

with Vb given by (2.2.30). All the ingredients to follow the evolution of the structure of
the Universe are enclose in this system of equation. We want to derive a solution of this
system in order to have a description of the evolution of density and velocity fields of
both baryons and DM. We will see in the next section how to derive these fields from the
wave function ψ.

2.3 Relation with observables

To relate the wave function with the usual fluid variables, which are the ones we can
observe, there is a method more clever than the Madelung transformation [73]. We
describe this method for a general wave-function ψ beacuse it can be applied in the same
way to both DM and baryons. We begin writing the Lagrangian for the system (remember
that for DM we have to set P = 0), in the cosmic time it is

L(x, ẋ, t) =
1

2
ma2ẋ2 −mΦ−mP

ρ
. (2.3.1)

As we stated in Sect.2.1 the mass m is actually just a parameter needed to recover the
correct dimensions, it is the real mass of a particles only in particular cases where we
are considering a true quantum system (e.g. fuzzy dark matter [31]). Using the relations
(2.2.21) we can write it in function of the growth factor D

L(x,x′, D) =
1

2
ma2Ḋ2x′2 −m3e(ΩDM)a2Ḋ2

2D
ϕ−mP

ρ
, (2.3.2)

where x′ = ∂x
∂D

. From the Lagrangian we can define the conjugate momentum

p = ∇x’L = ma2Ḋ2x′ = ma2Ḋ2u . (2.3.3)

Note that a2Ḋ2 = D2a2H2ΩDM/e(ΩDM) can be written in terms of e(ΩDM) but in this
section we will keep the notation a2Ḋ2 for compactness.
Then we construct a phase-space distribution function f (x,p) from the wave function
ψ using the Wigner function [78], which actually is a proper phase-space function only
for scales bigger than ν because otherwise it can be not defined positive everywhere [72],
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thus it is a qausi-probability function. But since we are interested in small values of ν
this won’t be a problem.

fW (x,p, D) ≡
∫

d3x′

(2π)3
e−

i
ℏ

p·x’

a2Ḋ2ψ(x+
1

2
x’, D)ψ̄(x− 1

2
x’, D) . (2.3.4)

In the exponential we can note that the following relation holds

1

ℏ

p

a2Ḋ2
=
mu

ℏ
=

u

ν
. (2.3.5)

Then the parameter m is reincorporated inside the parameter ν as expected. Since is
more common to use the momentum p in the distribution function we will set to unity
the parameter m so that we can directly use the parameter ν and do not worry for m
since it is always enclosed in ν, i.e. the exponential will be

exp

[

− i
ν

p · x’
a2Ḋ2

]

. (2.3.6)

Anyway if needed (e.g. when we deal with real quantum systems) we can retrieve m by
dimensional arguments. From the form of this exponential it is clearer that the parameter
ν choice corresponds to a coarse-graining, the integral is a sort of Fourier transform and
ν select the resolution of the Fourier space, i.e. the phase space.
We make an additional change of variable y = x′/ν for have the Wigner distribution in a
form more suitable to some analytical computation we will do in the course of this work.

fW (x,p, D) =

∫

d3y

(2π)3
e−i

p·y

a2Ḋ2ψ(x+
ν

2
y, D)ψ̄(x− ν

2
y, D) , (2.3.7)

where the ψ̄ indicates the complex conjugate of ψ. The Wigner distribution function
has the virtue of providing information about the state of the system in phase space.
This contrasts with the more conventional quantum representations, which may provide
information about position only, or about momentum only, but not both together [3]. It
can be a useful calculational tool. We have to observe that fW is not positive defined,
hence it can have some problems in the location where it becomes negative [3]. In the
original paper [78] Wigner used it to calculate the quantum corrections to the equation
of state of a gas of interacting atoms. We will show that the first two momenta of the
distribution correspond to the energy density and momentum.
An interesting property of the Wigner distribution is that it cannot be sharply peaked
due to indeterminacy principle [3], i.e.

∫

d3p d3x |fW (x,p, D)|2 ≤ (2πℏ)−1 . (2.3.8)

Suppose that fw vanishes outside a region in the phase-space of area A, then the integral
(2.3.8) yields A−1 which means that the phase-space region must satisfy A ≥ 2πℏ. Since
in our model ℏ is not the real Planck constant but it is an artificial parameter related to
the parameter ν, it actually sets the resolution of the phase-space.
Wigner in [78] demonstrated that the evolution of fW , constructed from ψ satisfying a
Schrödinger equation like

iν
∂ψ

∂D
=

[

−ν
2

2
∇2 + V

]

ψ , (2.3.9)
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is described by a Boltzman-like equation up to second order in ν, where the gradient of
V takes the place of the external forces. We can show it performing twice an integration
by parts of the Schrödinger equation which yields [72]

∂DfW = − p

a2D2
∇xfW +

i

ν

∫

d3x′

(πν)3
exp

[

i

ν
p · x′

]

×

×
(

V (x+
1

2
x′)− V (x− 1

2
x′)

)

ψ(x− 1

2
x′)ψ̄(x+

1

2
x′) . (2.3.10)

To express the last term in terms of the Wigner function we have to Taylor expand the
difference between the potentials V around x [3].

V (x+
1

2
x′)− V (x− 1

2
x′) =

∑

n=odd

2∂
(n)
x V (x)

n!

(

1

2
x’

)n

. (2.3.11)

The difference between the (x′/2)n can be rewritten as −iν∂(n)p exp[ip · x’/ν]/(2n) [3].
After resumming the various terms we can write the evolution of the Wigner function
as [3]

∂DfW = − p

a2Ḋ2
∇xfW +

∑

n=odd

1

n!

(

−1

2
iν

)n−1

∂(n)x V ∂(n)p fW . (2.3.12)

This equation at leading order differs from the Vlaslov (or collisonless-Boltzmann) equa-
tion only by a term proportional to ν2 [72], if we call f a general distribution function
solving the Vlaslov equation with an Hamiltonian H = T + Veff we can write [72]

∂D(fW − f) ≃
ν2

24
∂xi∂xj∇xVeff∂pi∂pj∇pfW + O(ν4) . (2.3.13)

This difference has a similar nature with respect to the appearance of the quantum pres-
sure in the fluid treatment of Sect.2.1, hence also when working with the Wigner distribu-
tion we have to keep ν small to don’t encounter quantum artefacts. Thus we found that
using the Wigner function we are actually following a Boltzmann description of baryons
and DM, which is better suited in the study od dark matter with respect to the fluid
description we depicted in Cap.1.2. In other words, the Wigner function describes the
distribution of particles which evolve accordingly the collisionless Boltzmann (Vlaslov)
equation.
The Wigner function is constructed in a way such as the normalized density η = 1+δ and
the mean peculiar momentum j = (1 + δ)u are obtained as the two first kinetic moments
of fW (in ordinary QM interpretation they corresponds respectively to the probability
density and the conserved probability flux [73]).

ηW (x) =

∫

d3p fW (x,p) = |ψ|2 , (2.3.14a)

jW (x) =

∫

d3p
p

a2Ḋ2
fW (x,p) =

iν

2

[

ψ∇ψ̄ − ψ̄∇ψ
]

, (2.3.14b)

where we used the notation x = (x, D) to take care of the dependece on time. Note
that with those definitions the velocity can be written as the gradient of the phase of the
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wave function (u = −∇φ with ψ =
√
ηe−iφ/ν) if and only if the amplitude and phase are

sufficiently smooth [73]. So after shell-crossing, which causes strong oscillatory behaviour,
the velocity can be no more irrotational and the vorticity can be easily extracted from
fW using the kinetic moments for the definition of the velocity uW = jW/ηW . Hence the
potential φ describes just the irrotational component of the velocity and we have to use
the definition of velocity through the kinetic momenta of fW to have a full description of
velocity. Thus we encoded simultaneously the density and velocity information in a single
function fW .
We show now that in the semi-classical limit (ν → 0) the Wigner function recover the
distribution function of a perfect fluid. We have to be particularly careful in doing so
because also the wave function depends on ν in its phase. We’ll see now that taking this
limit of the solutions of the Wigner function (2.3.7) we get the phase-space function of a
perfect fluid

lim
ν→0

fW = lim
ν→0

∫

d3x′

(2π)3
e−

ip·x′

a2Ḋ2

√

η
(

x+
ν

2
x′
)

η
(

x− ν

2
x′
)

×

× exp

[

− i
ν

(

φ
(

x+
ν

2
x′
)

− φ
(

x− ν

2
x′
))

]

=

=

∫

d3x′

(2π)3
e(−

ip

a2Ḋ2−i
∇φ(x)

ν )·x′

η (x)

lim
ν→0

fW (x,p) = η (x) δ
(3)
D

(

p

a2Ḋ2
− u (x)

)

= ffl (x,p) (2.3.15)

Note that despite the ν prefactor in (2.3.14b) the peculiar velocity is non-zero, this is
due to the dependence of ψ on ν. We can also formulate the perfect fluid distribution
function in Lagrangian coordinates using mass conservation δ = 1/J − 1, where J is
the determinant of the Jacobian xi,j of the coordinate map between Lagrangian (q) and
Eulerian (x) frames, in the following way

η (x) =

∫

d3x J−1δ
(3)
D (x− q − ξ (q)) =

∫

d3q δ
(3)
D (x− q − ξ (q))

where the integration over the Dirac delta is needed to conserve the information on the
particle trajectories and ξ is the displacement between Eulerian and Lagrangian coordi-
nates, thus we obtain

ffl (x,p) =

∫

d3q δ
(3)
D (x− q − ξ (q)) δ

(3)
D

(

p

a2Ḋ2
− uL (q)

)

(2.3.16)

where uL is the Lagrangian velocity of the fluid. Then in the semi-classical limit ν → 0
the Wigner distribution resembles the classical fluid distribution [73].
For overcome the possible negativity of the Wigner distribution we could define a coarse-
grained Wigner distribution . One possibility is to use the Husimi distribution [32, 72]
defined as

fH(x,u, D) =
1

(2πσxσu)3

∫

d3x′d3u′e
−

(x−x′)2

2σ2
x e

−
(u−u′)2

2σ2
u fW (x′,u′, D) , (2.3.17)
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where σx and σu are the resolution in position and velocity of the phase-space and in
the Wigner function we pass from the use of the momentum p to the use of the velocity
u thanks to the relation (2.3.3) as we showed previously. Since we already had the
coarse-graining parameter ν, these three parameters cannot be independent. The velocity
resolution is defined in function of the other two parameters as [37]

σu =
ν

2σx
. (2.3.18)

Hence in this representation we can separately set the resolution of position and velocity
spaces, but we always have to satisfy the constraint σxσu = ν/2. The Husimi distribu-
tion then can be interpreted as the probability density for the system to occupy a fuzzy
region in phase space, of half-widths σx and σu, centered at (x,p). In the limit σx → 0
the distribution function becomes vanishingly narrow in position, and so approximates a
position eigenfunction. Alternatively, in the limit σx →∞ it approximates a momentum
eigenfunction. Thus the Husimi representation, like the Wigner representation, is inter-
mediate between the position and momentum representations [3].
The Husimi distribution is a Gaussian filtered Wigner distribution and is everywhere pos-
itive [37]. This property of the Wigner function may explain why it has been found to
provide a qualitatively useful description of phase space structures, even though it has no
probability interpretation due to its not-positiveness. Any strongly pronounced feature
of the Husimi distribution will also show up in the Wigner function, although the latter
may also contain unphysical structures [3]. [11] showed that a Gaussian coarse-grained
Wigner function has to satisfy the condition σxσu ≥ ν/2 for be positive defined, therefore
the Husimi representation picks the smallest sufficient σu for a positive phase space distri-
bution given a σx and ν [72], or in other words ν set the best possible velocity resolution
σu given the position resolution σx.
Another good feature of the Husimi distribution is that it can be directly define from
the wave-function, and so without the need to sample the quite heavy oscillating Wigner
function to construct its coarse-grained function [72], in the following way [3, 37].

KH(x,u, D) =
exp

[

− (x−x′)2

4σ2
x
− i

ν
u · x′

]

(2πν)(D/2)(2πσ2
x)

D/4
, (2.3.19)

ψH(x,u, D) =

∫

dDx′KH(x,u, D)ψ(x′, D) , (2.3.20)

fH(x,u, D) = |ψH(x,u, D)|2 , (2.3.21)

where D is the dimension of the coordinate space and it is already used the definition
of the velocity resolution (2.3.18). Then we can choose to construct the Husimi function
directly from the wave-function or using the Wigner distribution depending on what is
simpler for the case under study, usually for numerical codes is faster the direct approach.
As we have done for the Wigner distribution we can show that the Husimi distribution
follows a Vlaslov like equation up to order O(ν2) [72].
We can relate the observables to the wave function through the Husimi function in the
same way of the Wigner one, i.e. thanks to the momenta of the distribution. Actually it
results that the momenta of the Husimi distribution are just the coarse-grained Wigner
momenta [72], as one could have expected. It is then useful to define a coarse-graining
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operator in the following way [37]

f̄(D,x,u) =

∫

d3x′d3u′

(2πσxσu)3
e
−

(x−x′)2

2σ2
x

−
(u−u′)2

2σ2
u f(D,x′,u’) = e

σ2
x
2
∆x+

σ2
u
2
∆u{f} . (2.3.22)

Then the first two momenta of the Husimi distribution results [37]

ηH = e
σ2
x
2
∆x{ηW} = e

σ2
x
2
∆x{|ψ|2} , (2.3.23)

jH = ηHuH = e
σ2
x
2
∆x{jW} = e

σ2
x
2
∆x{iν

2

[

ψ∇ψ̄ − ψ̄∇ψ
]

} . (2.3.24)

It is found that higher momenta depend also on the velocity coarse-graining [72].

2.4 Rotational flows

Thanks to the definition of the velocity field through the first order momentum of the
Wigner distribution (2.3.14) we no longer have to make the approximation of irrotational
flow. The potential φ still describes the irrotational component of the velocity but a
vortical term can arise too. Actually even for an initial irrotational flow, in two or
more dimension, an effective vorticity arises after shell-crossing, i.e. after two or more
fluid trajectories cross. This vorticity, in classical collisionless dynamics, is generated
by a density weighted averaging of the multistream velocities. The velocity field can be
decomposed in two terms

u = u‖ + u⊥ (2.4.1)

where u‖ = −∇φ is the irrotational component and u⊥ ⊥ ∇φ is the rotational component
of the velocity field. The vorticity ω is defined as the curl of the velocity, i.e.

ω = ∇× u (2.4.2)

Clearly the irrotational velocity u‖ doesn’t contribute to the vorticity.
We showed in Sect.2.1 that the rotational component of the peculiar velocity decays
rapidly as a−1 in the linear regime of perturbations. Now thanks to the wave-mechanical
model we can investigate the velocity field also outside the linear or the irrotational regime.
We would like to understand if also in the classical description is possible the arising of
vortical motion, to do so it is easier to work with the vorticity ω instead of the rotational
peculiar velocity u⊥, therefore if we take the curl of the Euler equation (1.2.14) for a
collisional fluid we obtain the time evolution equation for the vorticity [7].

∂ω

∂D
+

3e(ΩDM)

2D
ω = ∇× (u× ω)− e(ΩDM)

a2D2H2ΩDM

(∇ρ)× (∇P )
ρ2

, (2.4.3)

where we used the property of the vectorial product a× (b× c) = b(a · c)− c(a ·b). The
last term is called baroclinity and it is present only for the baryon component since the
dark matter has no pressure. The terms on the right-hand side generates the vorticity,
instead on the left-hand side the Hubble drag tends to damp it. Hence we expect to
encounter some vorticity in the evolution of the Universe both in the DM and in the
baryon fluids when their perturbations reach the non-linear regime.
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Note that with our simple model of the baryon gas pressure, i.e. a barotropic pressure,
the baroclinic term vanishes since ∇P ∝ ∇ρ (1.2.18). The barotropic assumption take
its basis on the fact that we can express also the temperature evolution in function of the
density perturbations [48] T ∝ (1 + δb)

γ−1 and so we expect that with the right choice of
the adiabatic index γ we can recover the correct vorticity which would be generated by
the baroclinic term in the presence of a more general equation of state for the pressure.
Hence in our model the vorticity in the DM and in the baryon fluid is produce in the
same way, i.e. by averaging nearby fluid streams [73].
Another important consequence of the equation (2.4.3) is the Kelvin-Helmoltz theorem
[27, 42] for the conservation of vorticity flux, which derives directly from the Stoke’s
theorem. It states that if the baroclinic term vanishes [7]

I =

∮

C(D)

u · dx =

∫

S

(∇× u)dS is a integral invariant , (2.4.4)

i.e. d I
dD

= 0.
C(D) are the curves in configuration space that follow the inviscid flow, they describe
also the boundary of a surface S and dS is its corresponding oriented surface element.
This means that the flux of vorticity is conserved and vortex lines move with the fluid.
Due to the invariance of (2.4.4) we can compute I at the initial time and since we are
considering a flow initially irrotational we have I = 0 at any time.
This theorem holds always for DM because it is collisonless, instead for the baryons it
breaks in the non-linear regime since the baroclinity term will become large, anyway as
we stated before in our simple model the baroclinity vanishes also for baryons and so the
theorem is valid for both the fluid components.
The physical motivation of this invariance can be understood in our cosmological con-
text by observing that from the Zel’dovich approximation (which is recovered by our
wave-mechanical study as we will show in Sect.3.2) for an inviscid flow the displacement
field between Lagrangian and Eulerian coordinates (and so the velocity which is its time
derivative) before shell-crossing is sourced by the gradient of the gravitational potential
and so has zero vorticity. After shell-crossing in the multi-stream regime each stream is
gravitationally coupled with the others but the displacement is still given by the gradient
of a gravitational potential, thus there is still no source of vorticity. However there is
generally an effective vorticity that arises from averaging over the multiple streams [73].
The Kelvin-Helmoltz theorem (2.4.4), which is a classical hydrodynamics theorem, can
be generalized to a quantum mechanical description. In [14] Damnsky and Sacha showed
that I is also an invariant under the evolution with a quantum Hamiltonian (i.e under
Schrödinger function) if one ensures that the integral contour goes only through regions
where the velocity is well defined over all its evolution.
We have to be careful because I has to be null for initially irrotational systems, but it is
a global condition of zero vorticity. Since in quantum system vorticity is quantized, vor-
ticity can be only produced in pairs [63], called rotons, with opposite topological charges
such as

I =
1

2πν

∮

C(D)

u · dx =
1

2πν

∮

C(D)

∇φ · dx = n+ − n− = 0 n± ∈ N (2.4.5)

where n+ is the number of vortices with positive charge, instead n− is the one of negative
charged vortices.
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Figure 2.2: The solid curves show the zeros of Re[ψ] and dashed curves the zeros of Im[ψ]. The
zeros of ψ are the crossing of the two curves and encircled by ellipses. The same ellipses are shown
on to right panel, which shows the phase φ/ν of the wave function. The color and orientation
of the ellipses correspond to the orientation of the circulation: blue/horizontal (red/vertical)
corresponds to negative (positive) winding number. This figure is provided by [37], for any
further detail check the main text.

While in classical fluid dynamics vorticity arises from averaging of multi-stream velocity,
in the quantum picture the wave function is always single valued so vorticity can only
arise from topological defects where the phase factor φ/ν undergoes a localized phase
jump of integer multiples of 2π, which could be interpreted as that the wave function
overlaps with itself. In three dimensions the defects are line-like and form a network of
vortex lines [37]. This permits us to relate vorticity to the irrotational velocity u = −∇φ
through [37,38]

∇×∇φ = ẑ2πν
Nvort
∑

i

niδ
(2)
D (x(2) − x

(2)
i ) , (2.4.6)

where for simplicity we chose the vortex lines along the ẑ direction, we denoted with x(2)

the coordinates on the plane orthogonal to the vortex line and with x
(2)
i the position of

the vortex i in this plane [38]. The defects can have more complicated forms, e.g. vortex
rings, but the contribution to the vorticity would be provided by the topological charge
in a similar way to (2.4.6) just with a more complex expression in the Dirac delta [38].
In Fig.2.2 [37] show that vortices are identified with phase singularities, which in turn

are identified with zeros of the amplitude. This is because singularities of the phase are
related to singularities of the Madelung transformation (2.1.7) which happen where the
wave-function vanishes [30]. The first panel shows in dashed and dotted the zeros of Re[ψ]
and Im[ψ]. Points where both types of zeros cross are places where ψ is also zero and
where we expect the arising of vortices. We mark the zeros of ψ with ellipses. Drawing the
same ellipses on the right panel of Fig.2.2, that is the plot of the phase φ/ν we observe
that all these points carry non-zero circulation with precisely |n| = 1 [37]. Color and
orientation denote the sign of n, with blue/horizontal n = −1 and red/vertical n = 1.
Another interesting fact on vorticity was observed by Gross in [21], on the basis of the
Feynman’s [18, 19] and Onsager’s [55] works. We study the flow in a multiply connected
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region, for example it could be a flow between concentric cylinders, and we call R the inner
radius of this region. An ideal classical vortex line has vorticity zero everywhere beside on
the singular vortex line and the vortex has a characteristic value of the velocity of 1/R.
Quantum mechanically the 1/R behaviour of the velocity can persist in the limit R→ 0
only if the real part of the wave-functions drops to zero on the vortex line, otherwise the
kinetic velocity would become infinite. But due to the uncertainty principle there must
be limitations on the definition of the singular vortex line, which thus spreads out. Hence
one expects a core in which the density will become small but not necessary null and in
which the velocity will be finite. The vorticity should spread out over the core and should
decay rapidly and in a continuous way to zero leaving the core [21].
In the previous section we show that the velocity field is better described by the first
moment of the Husimi function (2.3.24) instead by the Madelung transformation. Since
the Husimi function applies a coarse-graining to the wave-function we expect that this
operation would generate some trivial vorticity [37]. The vorticity can be easily computed
if we rewrite the smoothed Husimi velocity (2.3.24) as [37]

ηHuH = ηH exp
(

σ2
x

←−∇−→∇
)

∇φ̄ , (2.4.7)

where φ̄ = e
1
2
σ2
x∆xφ is the coarse-grained phase or velocity potential. Taylor expanding

∇× uH to leading order in σx it is found [37]

(∇× uH)i = δi,z
σu
σx

Nvort
∑

j

nj exp

[

(x− xj)
2

2σ2
x

]

+ σ2
x

(

∇
ηH,i
ηH
×∇φ̄,i

)

+ O(σ4
x) . (2.4.8)

From this expression it is clear that the vorticity predicted by the Schrödinger-Poisson
model is dominated by quantum vortices for small σx, i.e. at small scales where we
could expect that quantum effects are more relevant. Increasing the spatial resolution
parameter σx these quantum effects are smoothed out and the vorticity is dominated by
the ”artificial” vorticity generated by the coarse-graining operation [37]. Therefore the
Husimi coarse-grained vorticity arises in a similar to the vorticity predicted by classic
cosmologic perturbation theory, i.e. by the averaging of multiple streams [73].
In Fig.2.3 [37] overplot the vortices generated by the defects of the wave-function (2.4.6)
(plotted in Fig.2.2) on the coarse-grained vorticity obtained by (2.4.8). In the top panel we
use a very small smoothing scale, which is clearly too small to be in good correspondence
with the CDM vorticity shown on the left [37]. However, it clarifies that reducing σx to
ever smaller values makes ∇ × uH more and more dominated by the quantum vortices
(2.4.6), whereas letting σx to flow to large enough values that give good correspondence to
the coarse-grained CDM, the vortices are not visible and loose their apparent correlation
with ∇× uH [37].

The same results on vorticity are recovered by the work [73]. The vorticity ω = ∇×uW is
obtained from the kinetic moment (2.3.14) of the Wigner distribution and is numerically
computed through the Fourier decomposition of the curl, i.e.

ω = F−1

[

−ik× F

(

jW

ηW

)]

, (2.4.9)

where to compute F is used a fast Fourier transform (FFT). Since the vortices are point-
like (due to their topological defect nature), the inverse FFT produces heavy ringing. In
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Figure 2.3: Coarse-grained vorticity (2.4.8). Upper panels are for σx = 0.001L = 0.02Mpc with
L = 20Mpc the size of the simulation, lower panels for σz = 0.0035L = 0.07Mpc. Left panels
show the results of ColdDICE simulation for CDM, right panels those of the Schrödinger model
(ScM). Overplotted on the right are the locations of the vortices identified by the zeros of the
wave-function. This figure is provided by [37], for any further detail check the main text.
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order to avoid convolving transverse and longitudinal velocity components we can filter

the velocity field with a Gaussian exp
(

−k2

k2s

)

, where ks is a filter scale, directly in Fourier

space, so the vorticity can be computed as

ω = F−1

[

−ik× F

(

jW

ηW

)

e−(
k
ks
)
2
]

. (2.4.10)

This filter could be avoided using the Husimi distribution but anyway would give similar
results since both the methods employ a Gaussian filtering.
Ulheman and collaborators confronted the result of the Schrödinger-Poisson description
(applied to a CDM Universe), in particular of the free particle approximation which we
will present in Sect.3.2, with respect to the classic Lagrangian Perturbation theory (LPT),
i.e. the Zel’dovich approximation. For the LPT prediction of vorticity generation they
used the method of [24] to explicit carry out the multi-stream average, which is the source
of vorticity in this picture.
In Fig.2.4 [73] presented a two-dimensional computation of vorticity using as initial ve-
locity potential

φi(q1, q2) = −2 cos(q1 + cos(q2)) (2.4.11)

which represents a strongly phased plane wave, and as reference scale for the filtering the
Nyquist wave-number1 kNy. From Fig.2.4 second panel from the left, which corresponds
to a representation of vortices for small smoothing scales, it is clear that in two dimensions
vortices are point-like objects, which have positive (red) or negative (blue) sign, and also
that they are concentrated around the caustic [73]. Comparing this panel with the one
on its left, which describes the wave function, we can observe that vortices are always
associated with dark regions, i.e where the amplitude of ψ (and so the density) vanishes.
As before discussed vorticity global conservation implies (here is treated only CDM so
there is no baroclinity) that vortices has to be produced in pairs with opposite topological
charge, this effect is clearly visible in Fig.2.4. Furthermore for larger softening (third panel
from left) it becomes obvious that, averaging over these quantum vortices, one obtain a
large-scale limit which is very similar to the vorticity pattern obtained by ZA (right-most
panel).

Hence we have found that in our quantum mechanical theory of LSS evolution the arise of
vorticity is possible, provided that the vortices are generated in pairs of opposite topolog-
ical charge [73](until the non-linear regime of baryon perturbations for which is no more
needed the global conservation of vorticity). These quantum vortices are found in regions
of vanishing density as theoretically predicted [37, 73]. We found also that using large
filtering scale the predictions of the wave-mechanical approach are in good agreement
with the classical results of LPT [37,73].

1The Nyquist wavenumber is equal to half the spatial sampling distance, in other fields is more used
the respective frequency which is half the sampling rate
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Figure 2.4: Representation of the wave function ψ (left panel, shown using domain coloring),
as well of the vorticity ω (other panels), using the 2D initial conditions δi = 0, φi(q1, q2) =
−2 cos(q1 + cos(q2)). The second and third panels from the left show the vorticity obtained
using the free particle approximation, filtered with a Gaussian filter in Fourier space on scales of
1/8 and 1/64 the Nyquist wave number to highlight both the large-scale transversal modes and
the topological defects from which they arises. The right-most panel shows the corresponding
vorticity using the Zel’dovich approximation with a smoothing to facilitate comparison to the
large-scale free particle solution shown next to it. The simulation is done for times much later
than the shell-crossing D = 1 and with ν = 0.05. This figure is provided by [73], for any further
detail check the main text.



44 CHAPTER 2. THE SCHRÖDINGER-POISSON SYSTEM



Chapter 3

Perturbation Theory

There is no hope to find an analytic solution of the system of equations (2.2.42) but if we
assume that the ”potential” part of these Schrödinger equation is smaller respect to the
kinetic term (the potential components are all generated by perturbations so we expect it
to be right) we can find an approximate solution using quantum perturbation theory [67].
Short and Coles used this method in [67] for find a solution of the Schrödinger-Poisson
system in a static Universe, we will extend this approach to an expanding Universe. They
obtained results in agreement with other approaches but they observed that we have to
be careful on which value assign to ν. If it is too small the perturbation theory can
be no longer valid [67], hence if we take the semi-classical limit ν → 0 we have to be
particularly careful to don’t broke the perturbative behaviour, i.e. when higher order
terms of the perturbative expansion have the same order of magnitude of the 0th-order
term. This will be more clear looking to the expansion (3.0.31) of the external potential.
Here the objective is to find a general solution of a Schrödinger equation with a timespace-
dependent potential Φ(x, D) and then we particularize the solution to our cosmological
problem described by the Schrödinger-Poisson system (2.2.42). We neglect the quantum
pressure (2.1.14) as did [67], i.e. we study a quantum-like fluid, because since it goes as
∇ψ/|ψ| it can give problems to the perturbative expansion where |ψ| = 0 and∇ψ 6= 0. We
expect that this condition can happen, in particular it is related to quantum vorticity as
we will show in Chap.5. This can be easily understood from the fact that the presence of
the quantum pressure in the Schrödinger equation implies that we are modelling a classical
fluid and so no quantum vortices are expected. Instead if we neglect the quantum pressure
we are modelling the cosmological fluids as a quantum fluid, they can be a real quantum
fluid as FDM [31] or a classical fluid which description is recovered by the correct choice
of the parameter ν, which selects the magnitude of the quantum pressure (2.1.14) [67].
Hence the potential term in the Schrödinger equation will be given by the ”Poisson”
potential ((2.2.29) for DM and (2.2.30) for baryons) and by the gas pressure (Wb in
(2.2.40)) for the baryon component.

ΦDM = VDM , (3.0.1)

Φb = Vb +Wb . (3.0.2)

Before starting the pertubation theory we have to make another important observation.
Since the baryon gas pressure is expected to have a big impact on the dynamics on scales

45



46 CHAPTER 3. PERTURBATION THEORY

smaller than the Jeans wavelength (see App.A1) we expect that in such scales it cannot
be considered as a perturbative correction to the kinetic energy. i.e. for scales k >> kJ
the term Wb should be included in the ”free-particle” Hamiltonian Ĥ0 togheter with the
kinetic energy and we should apply the perturbation theory over this Hamiltonian in
function of the small correction given by the potential V . Since the Schrödinger equation
describing this baryon ”free-particle” Hamiltonian would require numerical computation
to obtain a solution, we restrict the perturbation theory of this chapter to scales k . kJ
such as the baryon gas pressure can considered as a perturbative term with respect to the
kinetic energy. This can be done selecting a proper coarse-graining length in the Husimi
distribution (2.3.17), i.e. σx > λJ . Anyway these scales are also the most interesting since
are the one for which Jeans instability predicts that the bounded structures we see today
can form trough gravitational collapse [50].
In the following chapter instead we will develop a full numerical method for the study of
the Schrödinger-Poisson system, following the Solid state physics work [5], and so we will
not anymore restrict to scales bigger than the Jeans one.
Now we begin with the study of the general Schrödinger equation

iν
∂ψ

∂D
=

[

−ν
2

2
∇2 + Φ

]

ψ . (3.0.3)

For simplicity of computation we use the ket representation and we report only the results
in the position representation using the relation

ψ(x, D) = 〈x|ψ(D)〉 . (3.0.4)

We want to solve pertubartively (3.0.3) using the fact that the potential Φ is small. First
of all we need to solve the general free-particle Scrhödinger equation, i.e. neglecting the
spacetime-dependent potential Φ.

iν
∂ψ

∂D
= −ν

2

2
∇2ψ (3.0.5)

The Hamiltonian describing this system is called free particle Hamiltonian and is equal
to

Ĥ0 = −
ν2

2
∇ . (3.0.6)

We can define the evolution of the wave-fuction from the initial state ket |ψi〉 = |ψ(Di)〉
via

|ψ(D)〉 = Û0(D,Di) |ψi〉 , (3.0.7)

where Û0(D,Di) is called free-particle time-evolution operator. If we substitute (3.0.7) in
the free Schrödinger equation we obtain an equation which defines Û0

iν
d

dt
Û0(D,Di) = Ĥ0Û0(D,Di) . (3.0.8)

Since the free Hamiltonian Ĥ0 is independent from time the equation can be integrated
directly giving

Û0(D,Di) = exp

[

−i(D −Di)Ĥ0

ν

]

. (3.0.9)
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Hence the free particle evolution operator Û0(D,Di) satisfies the following properties [60]

Û †
0 Û0 = Û0Û

†
0 = I unitary (3.0.10)

Û0(D,Di) = Û0(D,D1)Û0(D1, Di) (3.0.11)

Û0(Di, Di) = I (3.0.12)

Û0(D,Di)Û0(Di, D) = I (3.0.13)

Û0(Di, D) = Û−1
0 (D,Di) = Û †

0(D,Di) (3.0.14)

where Û †
0 is the adjoint operator of Û0.

It is important to introduce the eigestates and eigenkets of the free Hamiltonian Ĥ0. They
are defined from the eigenproblem

Ĥ0 |n(0)〉 = E(0)
n |n(0)〉 , (3.0.15)

where |n(0)〉 are the eigenkets and E
(0)
n the eigenstates of Ĥ0. In the following we will

study our system in a box of size L with periodic boundary conditions, which we define
in a more rigorous way in the following section. Hence it is as to think that the Universe
is filled by the repetition of this box, if its dimension are enough big this would be an
accurate approximation of the whole Universe due to its homogeneity and isotropy. For
now we just say that the states of the free Hamiltonian are discretized due to the periodic
boundary conditions [2], we will show that this is true in the one-dimensional case (3.1.11).
Anyway it is easy to pass from the discrete to the continuous case using integrals instead
of sums. The eigenkets are a complete set i.e.

∑

n

|n(0)〉 〈n(0)| = I . (3.0.16)

And they form an orthonormal basis, i.e. the eigenkets are orthogonal to each other

〈n(0)|m(0)〉 = δn,m , (3.0.17)

where δn,m is the Kronecker delta. We use this basis to expand the initial state ket

|ψi〉 =
∑

n

sn |n(0)〉 (3.0.18)

in terms of orthonormal eigenkets |n(0)〉 of Ĥ0, The coefficients of the expansion are defined
by

sn ≡ 〈n(0)|ψi〉 . (3.0.19)

If we find the eigenstates E
(0)
n and eigenvectors |n(0)〉 of the free particle Hamiltonian

solving the eigenproblem (3.0.15) we can then compute the free wave function |ψ0〉 at any
time using (3.0.7) and (3.0.18).

|ψ0(D)〉 =
∑

n

snÛ0(D,Di) |n(0)〉 . (3.0.20)

To study the higher order terms of the perturbation theory we have to add the time
dependent potential, i.e. we have to study the Hamiltonian Ĥ(D) = Ĥ0 + Φ(D). As
before we can relate the evolution of the wave-function to the initial ket via

|ψ(D)〉 = Û(D,Di) |ψi〉 . (3.0.21)
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Since we are using the full Hamiltonian the wave-function contains all the terms of the
perturbative expansion. To divide it in the different order terms we need first to ex-
pand the time-evolution operator in a perturbative series. Û(D,Di) is defined by the
Schrödinger equation

iν
d

dD
Û(D,Di) = Ĥ(D)Û(D,Di) . (3.0.22)

Hence we need to find a perturbative solution of this equation.
Also now that we are treating a system defined by the full Hamiltonian with the time-
dependent potential the initial ket can still be described by the expansion (3.0.18) in
terms of the eigenkets |n(0)〉 of the free particle Hamiltonian Ĥ0, because they still form
an orthonormal base.
Differently from the non interacting case we can no longer directly integrate (3.0.22) to
find Û(D,Di) but we can use time-dependent perturbation theory. Until now we used
the Schrödinger picture of quantum mechanics but for the perturbation theory is easier
to use the Interaction picture. We define a ket in the interaction picture from the ket in
the Schrödinger one as [60]

|ψ(D)〉(I) = Û †
0(D,Di) |ψ(D)〉 , (3.0.23)

where the dagger denotes the adjoint operator and the superscript (I) denotes quantities
in the interaction picture. Note from the definition of Û0 (3.0.9) the interaction and the
Schrödinger kets coincide at initial time because Û0(Di, Di) = I. It is straightforward to
show that in the interaction picture a general state ket evolves through [60]

iν
d

dD
|ψ(D)〉(I) = Φ̂(I)(D) |ψ(D)〉(I) , (3.0.24)

where Φ̂(I)(D) = Û †
0(D,Di)Φ(D)Û0(D,Di).

This can be shown from (3.0.23):

iν
d

dD
|ψ(D)〉(I) = iν

d

dD

(

Û †
0(D,Di) |ψ(D)〉

)

=

=

(

−Ĥ0Û
†
0(D,Di) + Û †

0(D,Di)iν
d

dD

)

|ψ(D)〉 =

=
(

−Ĥ0Û
†
0(D,Di) + Û †

0(D,Di)ĤÛ0(D,Di)Û
†
0(D,Di)

)

|ψ(D)〉 =

=
(

Û †
0(D,Di) ˆΦ(D)Û0(D,Di)

)

Û †
0(D,Di) |ψ(D)〉 =

=1, Φ̂(I)(D) |ψ(D)〉(I) ,

where between the third and forth line we used the fact that Û0 and Ĥ0 commute, i.e.
[

Û0, Ĥ0

]

= Û0Ĥ0 − Ĥ0Û0 = 0 [60].

Our objective is to determine a perturbative expansion of the time-evolution operator
Û(D,Di) in the Schrödinger picture, to do that we need first to find an expansion for
the time-evolution operator in the interaction picture, we can write the evolution of the
wave-function in this new representation as [60]

|ψ(D)〉(I) = Û (I)(D,Di) |ψi〉(I) = Û (I)(D,Di) |ψi〉 , (3.0.25)
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where
Û (I)(D,Di) = Û †

0(D,Di)Û(D,Di) . (3.0.26)

As before we can constraint the time-evolution operator in the interaction picture from
the Scrhödinger equation (3.0.24) [60]

iν
d

dD
Û (I)(D,Di) = Φ̂(I)(D)Û (I)(D,Di) , (3.0.27)

with initial condition Û (I)(Di, Di) = I with I the identity operator. The equation (3.0.27)
is equivalent to its integral form

Û (I)(D,Di) = I − i

ν

∫ D

Di

dD′Φ̂(I)(D′)Û (I)(D′, Di) . (3.0.28)

The integral equation (3.0.28) provides a convenient mean of determining a perturbation
expansion for Û (I)(D,Di). We can solve it in an iterative way, i.e. at the zeroth order we
neglect the external potential Φ̂(I) = 0

Û (I)(D,Di) = I + O(Φ) . (3.0.29)

At first order we use the 0th-order solution (3.0.29) inside the integral to don’t increase
the order of the solution

Û (I)(D,Di) = I − i

ν

∫ D

Di

dD′Φ̂(I)(D′) + O(Φ2) . (3.0.30)

To keep care of second order terms in Φ̂ we have to use the solution up to first order
(3.0.30) in the integral.

Û (I)(D,Di) =I −
i

ν

∫ D

Di

dD′Φ̂(I)(D′)+

− 1

ν2

∫ D

Di

dD′

∫ D′

Di

dD′′Φ̂(I)(D′)Φ̂(I)(D′′) + O(Φ3) . (3.0.31)

We could proceed to higher orders following this procedure and it is easy to see that we
would obtain up to the n-th order [60]

Û (I)(D,Di) =1− i

ν

∫ D

Di

dD′Φ̂(I)(D′) + ...+

+

(−i
ν

)n ∫ D

Di

dD′dD2...dDnΦ̂
(I)(D′)...Φ̂(I)(Dn) . (3.0.32)

We can express it in a more compact way observing that the following two integrals are
equivalent because they span the same space [60]

− 1

ν2

∫ D

Di

dD′

∫ D′

Di

dD′′Φ̂(I)(D′)Φ̂(I)(D′′) , (3.0.33)

− 1

ν2

∫ D

Di

dD′′

∫ D

D′′

dD′Φ̂(I)(D′)Φ̂(I)(D′′) . (3.0.34)



50 CHAPTER 3. PERTURBATION THEORY

Thus we can write, for example, the second order term of the expansion as

1

2

[

− 1

ν2

∫ D

Di

dD′

∫ D′

Di

dD′′Φ̂(I)(D′)Φ̂(I)(D′′)− 1

ν2

∫ D

Di

dD′′

∫ D

D′′

dD′Φ̂(I)(D′)Φ̂(I)(D′′)

]

=

=
1

2!

(−i
ν

)2 ∫ D

Di

dD′

∫ D

Di

dD′′
[

Θ(D′ −D′′)Φ̂(I)(D′)Φ̂(I)(D′′)+

+Θ(D′′ −D′)Φ̂(I)(D′′)Φ̂(I)(D′)
]

, . (3.0.35)

If we define the time-ordered product of operators as

T [A(D1)B(D2)] =

{

A(D1)B(D2) D1 > D2

B(D2)A(D1) D2 > D1
(3.0.36)

we can rewrite (3.0.35) as

1

2!

(

i

ν

)2 ∫ D

Di

dD1dD2T
[

Φ̂(I)(D1)Φ̂
(I)(D2)

]

(3.0.37)

and thus the whole expansion of the time evolution operator is

Û (I)(D,Di) =
∞
∑

n=0

1

n!

(

i

ν

)n ∫ D

Di

dD1...dDnT
[

Φ(I)(D1)...Φ̂
(I)(Dn)

]

. (3.0.38)

Since the time ordering operation can be taken outside the integral [60] we obtain the
expansion of an exponential, i.e.

Û (I)(D,Di) = T

[

exp

{

− i
ν

∫ D

Di

dD′Φ̂(I)(D′)

}]

. (3.0.39)

This is the most general expression of the time-evolution operator, of which is made large
use in quantum mechanics [60] and when it is computed in the time interval [Di, D0] it is
called scattering matrix S = U (I)(Di, Do) which describes the full time-evolution of the
initial state from initial time D = Di until today D = D0.
In this work we will not investigate the small corrections given by these higher order
terms. In this more general part we keep up to second order terms in the potential, but
when we need to particularize to our cosmological problem we will limit ourselves to first
order corrections.
Since our observables are related, through the Husimi distribution (2.3.17), to the wave-
function in the Schrödinger picture we want to come back to this representation. We
obtain the corresponding time-evolution operator in the Schrödinger picture from (3.0.23)

|ψ(D)〉 = Û0(D,Di)Û
(I)(D,Di) |ψi〉 , (3.0.40)

thus

Û(D,Di) = Û0(D,Di)Û
(I)(D,Di) . (3.0.41)
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Then, using the following property of the time-evolution operator Û0(D,Di)Û
†
0(D

′, Di) =
Û0(D,Di)Û0(Di, D

′) = Û0(D,D
′) and the expansion (3.0.31), we write the time evolution

operator in the Schrödinger picture as

Û(D,Di) =
2
∑

j=0

Ûj(D,Di) + O(Φ̂3) (3.0.42)

up to second order [67], with Û0(D,Di) equal to the free particle evolution operator (3.0.9),

Û1(D,Di) = −
i

ν

∫ D

Di

dD′Û0(D,D
′)Φ̂(D′)Û0(D

′, Di) (3.0.43)

and

Û2 = −
1

ν2

∫ D

Di

dD′

∫ D′

Di

dD′′Û0(D,D
′)Φ̂(D′)Û0(D

′, D′′)Φ̂(D′′)Û0(D
′′, Di) . (3.0.44)

Thus we can write the wave function as a series expansion similarly to (3.0.42)

|ψ(D)〉 =
∞
∑

j=0

|ψ(j)(D)〉 =
∞
∑

j=0

Ûj(D,Di) |ψi〉 , (3.0.45)

where, using the expansion in terms of the free Hamiltonian eigenkets (3.0.18), at the
zeroth order we recover the free particle solution (3.0.20) and the first order term is

|ψ(1)(D)〉 =
∑

n

snÛ1(D,Di) |n(0)〉 (3.0.46)

then at linear order in the potential Φ we can express the solution of the Schrödinger
equation (3.0.3) as

|ψ(D)〉 = |ψ(0)(D)〉+ |ψ(1)(D)〉+ O(Φ̂2) (3.0.47)

We have still to express our solution in the position representation. We begin defining
the free-energy eigenfunctions φ

(0)
n = 〈x|n(0)〉, then we find

ψ(1)(x, t) =
∑

n

sn 〈x|U1(D,Di) |n(0)〉 =

=
∑

n

sn

∫ D

Di

dD′ 〈x| e−i(D−D′)Ĥ0/νΦ̂(D′)e−i(D
′−Di)Ĥ0/ν |n(0)〉 =

=
∑

n

sn

∫ D

Di

dD′ 〈x| e−i(D−D′)Ĥ0/νΦ̂(D′) |n(0)〉 e−i(D′−Di)En/ν =

=
∑

n

sn
∑

m

∫ D

Di

dD′ 〈x| |m(0)〉 〈m(0)| e−i(D−D′)Ĥ0/νΦ̂(D′) |n(0)〉 e−i(D′−Di)En/ν =

=
∑

n

sn
∑

m

∫ D

Di

dD′φ(0)
m 〈m(0)| e−i(D−D′)Ĥ0/νΦ̂(D′) |n(0)〉 e−i(D′−Di)En/ν =

=
∑

n

sn
∑

m

∫ D

Di

dD′φ(0)
m e−i(D−D′)Em/ν 〈m(0)| Φ̂(D′) |n(0)〉 e−i(D′−Di)En/ν
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where we used the completness property of the eigenket base
∑

m |m(0)〉 〈m(0)| = I. We
can define the ”potential” tensor

Φm,n(D
′) = 〈m(0)| Φ̂(D′) |n(0)〉 =

∫

d3y d3z 〈m(0)| |y〉 〈y| Φ̂(D′) |z〉 〈z| |n(0)〉 =

=

∫

φ̄(0)
m (y)Φ(y, D′)φ(0)

n (y)d3 y (3.0.48)

where we use the fact the our potential Φ doesn’t affect the spatial dependence. Finally
we can write the first order correction of the wave-function as

ψ(1)(x, D) = − i
ν

∑

n

sn
∑

m

Im,nφ
(0)
m , (3.0.49)

with

Im,n(x, D) =

∫ D

Di

dD′(x) exp

[

−i(D −D′)E
(0)
m

ν

]

Φm,n(D
′) exp

[

−i(D′ −Di)E
(0)
n

ν

]

.

(3.0.50)
Thanks to the prefactor 1/ν in (3.0.49) we can understand why we have to be careful in
taking small ν, the perturbation ψ(1) can become big and if it reaches the value of the
unperturbed ψ(0) the whole perturbation theory is no more valid [67].
To particularize this solution to our Schrödinger-Poisson system is sufficient to define the
two potentials for DM and baryons

ΦDM = VDM (3.0.51)

Φb = Vb +Wb (3.0.52)

with Vb given by (2.2.30) in terms of the DM potential.
Hence the expression (3.0.49), once taken in account the proper potential, gives the
amount of correction (at first order in the potential) to the baryons or DM distribu-
tion with respect to the free particle solution, i.e. considering baryons and DM as non
interacting particles. In the section 2.3 we showed how to relate the wave-function to
the physical observables, e.g. the density and velocity fields. In the following we want to
apply those concepts to the wave-function derived from perturbation theory.

3.1 One dimensional solution

Since at linear order the distribution of baryons and DM is known with good accuracy
[47, 54] we would like to compare our solution with the linear order solution obtained in
the fluid representation of cosmic matter, to do so we need to express explicitly the wave-
function such as we can pass to the fluid observables. For the simplicity of computation
we find a solution in a 1D space for an initial overdensity of the form

δi(q) = δa cos

(

2πq

d

)

, (3.1.1)

where 0 < |δa| ≤ 1 to ensure that the initial density field is everywhere non-negative.
Anyway we will show in the next section that the results of this one-dimensional case are
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easily generalized to the three-dimensional space and to more general initial conditions.
Since plane-symmetry implies that the quantity under consideration is one dimensional
we can think of be studying a plane-symmetric density perturbation [67]. Beside sim-
plicity the restriction to the one dimensional case has another advantage, the Zel’dovich
approximation [79] is exact for DM in 1D until shell-crossing thus comparing our solution
with respect to it is an important test.
Thanks to the homogeneity of the Universe on very large scales instead of an infinite
space we can consider a segment of dimension L (which can be directly generalize to the
three dimensional case of a box of side L) equipped with periodic boundary conditions at
each extremity, defined such as L = Nd with N big and d the wavelength of the initial
overdensity. Since we are studying only scales bigger than the Jeans wavelength for keep
the baryon pressure small we have to impose that the size of the box is much bigger than
the Jeans one L >> λJ or N >> λJ/d.
We can find the initial gravitational potential solving the Poisson equation (2.2.24) at the
initial time

ϕi(q) = −
δa
Di

(

d

2π

)2

cos

(

2πq

d

)

. (3.1.2)

Now that we have set the initial conditions we can come back to our perturbative problem.
We have to find first the solution in the free-particle (0th-order) case, we need to solve
the eigenproblem (3.0.15) to obtain the eigenvector basis of the free particle Hamiltonian
Ĥ0 = −(ν2/2)∇2, which is easier in the position representation (remember that at a
general time we have to use the Eulerian coordinates x, only at the initial time we have
x = q, that is why the initial condition depends only on the Lagrangian coordinates).
Thus in one dimension

〈x| Ĥ0 |n(0)〉 = 〈x|E(0)
n |n(0)〉 (3.1.3)

−ν
2

2

d2

dx2
〈x|n(0)〉 = E(0)

n 〈x|n(0)〉 (3.1.4)

−ν
2

2

d2φ
(0)
n

dx2
(x) = E(0)

n φ(0)
n (x) , (3.1.5)

with solution

φ(0)
n (x) =

1

L1/2
exp



ix

√

2E
(0)
n

ν2



 . (3.1.6)

The prefactor (1/L)1/2 comes from the normalization of the eigenfunctions. Since we are
working in a space equipped of periodic boundary conditions, if we impose them

φ(0)
n (0) = φ(0)

n (L) (3.1.7)

1 = exp



iL

√

2E
(0)
n

ν2



 , (3.1.8)

which has for solution
√

2E
(0)
n

ν2
=

2nπ

L
, (3.1.9)
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with n an integer. The energy eigenfunction φ
(0)
n are also eigenfunction of the momentum

operator P̂ :

P̂ |φ(0)
n 〉 = −i

∂

∂x
φ(0)
n = pnφ

(0)
n

pn = νkn =
2nπν

L

kn =
2nπ

L
≡

√

2E
(0)
n

ν2
, (3.1.10)

where we used the de Broglie relation through momentum and wave number of a parti-
cle/wave in the second line. Hence we can express the free particle eigenvectors in function
of the discrete wavenumber kn in the simple form

φ(0)
n (x) =

1

L1/2
exp(iknx) . (3.1.11)

Hence the free particle eigenstates are static sinusoidal (plane waves) states with associ-
ated energy

E(0)
n =

2n2π2ν2

L2
=
ν2k2n
2
≥ 0 , (3.1.12)

which is positive defined and quantized. Actually the quantization is due to the choice
of a box with periodic boundary conditions, if there were no boundaries k would be not
discretized and so the energy levels would be continuous [60].
We shall now study the evolution of the free particle wave-function from its initial state,
which is related to the free Hamiltonian eigenvectors through (3.0.20). In the position
representation we obtain

ψ(0)(x,D) = 〈x|ψ(0)(D)〉 =
∑

n

sn 〈x| exp
[

−i(D −Di)Ĥ0

ν

]

|n(0)〉 =

=
∑

n

sn exp

[

−i(D −Di)E
(0)
n

ν

]

φ(0)
n (x) . (3.1.13)

The expansion coefficients sn = 〈n(0)|ψi〉 are given by

sn =

∫ L

0

dq 〈n(0)|q〉 〈q|ψi〉 =
∫ L

0

φ̄(0)
n (q)ψi(q)dq . (3.1.14)

We can divide the segment L in N small segments of dimension d [67]

sn =
N−1
∑

j=0

∫ (j+1)d

jd

φ̄(0)
n (q)ψi(q)dq (3.1.15)

We make a change of variable q′ = q − jd. Then the initial wave-function, which is
defined by the Madelung transformation ψi = (1+δi)

1/2 exp(−iφi/ν), is periodic of period
d. This comes from the initial conditions on the overdensity and from the fact that the
initial velocity potential is itself periodic of period d. We can show that computing the
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Hamilton-Jacobi equation (2.2.25) at initial time. The initial velocity potential is function
only of the initial density and gravitational potential and their derivatives, which are all
periodic functions. Thus the initial wave-function is not affected by the change of variable.
For the free particle eigenfunction instead we have

φ̄(0)
n (q′ + jd) =

1

L1/2
exp [−iknq − iknjd] = φ̄(0)

n (q′)e−ijknd . (3.1.16)

Hence

sn =

∫ d

0

φ̄(0)
n (q′)ψi(q

′)dq′
N−1
∑

j=0

exp(−ijknd) (3.1.17)

However thanks to the definition of kn = 2nπ/d the exponential is equal to one and so
the sum over it gives simply N .

sn = N

∫ d

0

φ̄(0)
n (q′)ψi(q

′)dq′ (3.1.18)

From the form of the eigenfucntions (3.1.11) follows that the expansion coefficients are
simply found by taking the Fourier transform of the initial wave-function [67], i.e.

sn(kn) =

√

2π

L
ψi(kn) (3.1.19)

Thus we can express the free particle wave-function as

ψ0(x,D) =
∑

n

ψi(kn) exp

[

−i(D −Di)E
(0)
n

ν

]

φ(0)
n (x) , (3.1.20)

which is totally set by its initial state ψi.
Now we want to compute the first-order correction to the wave-function, we begin comput-
ing the potential tensor Φn.m (3.0.48). Using the expression of the eigenfunctions (3.1.11)
we can express also this quantity as a Fourier transform

Φn,m =
1

L

∫ L

0

e−ikpyΦ(D′, y) =

√
2π

L
Φ(D′, kp) , (3.1.21)

where kp = km − kn. To simplify the computations we can approximate the eigenstates
of the free energy as continuous such as we can use integrals instead of series

∑

n

→ L

2π

∫ ∞

2π
L

dkn . (3.1.22)

This is a common procedure in Statistical Mechanics. We show now how this relation is
made. If the dimension of the system L is big the distance ∆kn between the wavenumbers
kn defined by the eigenstates of the free Hamiltonian would be small ∆kn → 0. Thus we
can express the sum as an integral in the following manner

∑

kn

=
∑

kn

∆kn
∆kn

→ 1

∆kn

∫ ∞

2π
L

dkn (3.1.23)
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and the wavenumber interval is set by the dimension of the system [2], i.e.

∆kn =
2π

L
. (3.1.24)

Hence, from the expression of the free Hamiltonian eigenfunction (3.1.11) and of the
expansion coefficient sn (3.1.19), the first two terms of the perturbative expansion of the
wave-function are

ψ
(1)
b,DM(x,D) = − i

ν

1

2π

∫ D

Di

dD′

∫ ∞

2π
L

dkn

∫ ∞

2π
L

dkme
ikmxψb,DMi (kn)×

× exp

[−i(D −D′)νk2m
2

]

Φb,DM(D′, kp) exp

[−i(D′ −Di)νk
2
n

2

]

(3.1.25)

and

ψ
(0)
b,DM(x,D) =

1√
2π

∫ ∞

2π
L

dknψ
b,DM
i (kn) exp

[

−i(D −Di)νk
2
n

2

]

exp (iknx) (3.1.26)

These expressions are still too complex to compute analytically the fluid observables, we
need to make some approximations or do a numerical computation. We explore this two
possibilities in the next sections.

3.2 Free particle solution

For now we limit ourselves to the study of the 0th-order solution, i.e. we neglect the
contribution of the ”external potential” Φ. Hence we are describing a free particle and
the solution will be the same for both DM and baryons since we are neglecting the pressure.
We have to remember that this is true only on the scales we are considering (k < kJ),
otherwise the pressure can have some contribution even at the 0th-order.
In the semi-classical limit (or after coarse-graining) ν → 0 (we want it to be small but
still different from zero otherwise the perturbation theory would be no more valid) this
solution resembles the Zel’dovich approximation [73,79], instead for a finite value of ν the
free particle approximation gives similar results to the adhesion approximation [23,67,73]
but in this case we will need numerical computations. The study of the semi-classical
limit is easier if we write the integral in the Fourier space of (3.1.26) as an integral in the
position space by means of the equipartition theorem.
Since the following relations hold

exp

[

−i(D −Di)νk
2
n

2

]

=
1

(2π)1/2

∫ L

0

dy
exp

[

i
2ν

y2

D−Di

]

√

i(D −Di)ν
e−ikny , (3.2.1)

ψi(kn) =
1

(2π)1/2

∫ L

0

dyψi(y)e
−ikny , (3.2.2)
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we can write (3.1.26) as (we won’t write again the 0-th index because we are considering
just this order in this section)

ψ(x,D) =
1

(2π)1/2

∫ ∞

2π
q

dkne
iknx

∫ L

0

dy

(2π)1/2
ψi(y)e

−ikny

∫ L

0

ds

(2π)1/2

exp
[

i
2ν

s2

D−Di

]

√

i(D −Di)ν
e−ikns =

=
1

(2π)1/2

∫

dy

∫

dsψi(y)
exp

[

i
2ν

s2

D−Di

]

√

i(D −Di)ν
δ(D)(x− s− y) =

=
1

(2π)1/2

∫

dsψi(x− s)
exp

[

i
2ν

s2

D−Di

]

√

i(D −Di)ν
.

If we make the change of variable q = x− s we obtain

ψ(x,D) =
1

(2π)1/2

∫ L

0

dqψi(q)
exp

[

i
2ν

(x−q)2

D−Di

]

√

i(D −Di)ν
=

∫ L

0

dqK0(x,D; q,Di)ψi(q) , (3.2.3)

where

K0(x,D; q,Di) =
exp

[

i
2ν

(x−q)2

D−Di

]

√

2πi(D −Di)ν
(3.2.4)

is the kernel or propagator for a free particle, it defines the probability to have a particle in
the position x at the time D knowing that it was in q at time Di. Then the wave-function
is defined by integrating this probability over all the possible starting points q. This is
a common result of path-integrals description of Quantum Mechanics [28], within which
usually the perturbation theory is applied to the propagator instead of the time-evolution
operator Û(D,Di). In general the propagator is defined as

K(x, D|q, Di) =

∫ x(q)

q

Dx(D)e
i
ν
S(x,q,D) , (3.2.5)

where the integral is over all the possible paths connecting the points q and x, i.e. it is a
path-integral [28]. S(x,q, D) is the Action, defined as

S(x,q, D) =

∫ D

Di

dD′L(x, ẋ, D) (3.2.6)

and L(x, ẋ, D) is the Lagrangian of the system under study. We could have obtained
the same results of the free particle approximation applying perturbation theory to this
propagator [28].
We can also pass to the 3-dimensional description just using vectors for positions and
taking the third power of the square root in the denominator of the kernel to account for
the normalization of the kernel. In this simple situation we can actually study our system
in a case more general than a box with periodic boundary condition, we can expand our
treatment to the study of the ”whole” Universe at the same time and neglect surface effects
at the borders set by the cosmological horizon. Hence we will let our spatial coordinates
vary in the interval [−∞,+∞]. The results will not change thanks to the homogeneity of
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the background Universe, it is just easier to deal with the integrals when they span the
interval [−∞,+∞].

ψ(x, D) =

∫

d3qψi(q)
exp

[

i
2ν

(x−q)2

D−Di

]

[2πi(D −Di)ν]
3/2

. (3.2.7)

For simplicity of notation we set the initial ”time” to 0, i.e. Di = 0, for a more accurate
description we should use as initial time the time of baryon recombination [25] but here
we want to test our model and not to compute a refined simulation of LSS evolution so the
approximation Di = 0 is sufficient [73]. First of all we need to set the initial conditions,
in this simple case we can use conditions more general and more physical than the simple
sinusoid (3.1.1) used by [67]. We expect that at the beginning the density fluctuations
were very small, because just passed from the quantum state to a macroscopical one
thanks to inflation(this is proven also by CMB observations) [20]. They will grow later
thanks to the effect of gravity, the initial velocity potential can instead be set by the Euler
equation (2.2.22). We should use the values of density and velocity of baryon and DM at
the epoch of baryon recombination as initial conditions [25], it is proven that at this time
baryons and DM was not identically distributed in the Universe [9], since DM decoupled
before from radiation with respect to baryons and also because DM does not experience a
gas pressure. In the works [9,25] the authors depicted several methods to obtain accurate
initial conditions when both DM and baryon evolution is involved. Anyway for now we
can keep the initial conditions generic, i.e.

ψDMi (q) = δ
(in)
DM(q)e−

i
ν
φ
(in)
DM (q) , ψbi (q) = δ

(in)
b (q)e−

i
ν
φ
(in)
b (q) , (3.2.8)

because, as said for the choice of the initial time, here we want just to test our model
and not to compute a refined simulation so we can keep us the most general as possible.
From now on we solve the free particle approximation for a general component and so
we do not use the subscript b or DM . For recover the baryon or DM result is sufficient
to use the respective initial conditions since the evolution described by the free particle
approximation is the same. We say once more that this is true because we are considering
scales bigger than the Jeans one such as the baryon gas pressure will enter in the next
order of the QPT expansion, which we study in the next section. As a matter of facts
from the equation of state (1.2.17) we obtained the pressure contributionWb in the baryon
Schrödinger equation (2.2.40) which is proportional to 1/kJ(D)2 or to the modified Jeans
wavenumber 1/k̃2J which is time independent. We want to keep this term small (with
respect to the kinetic energy) such as we can include it in the perturbative potential
Φb (3.0.2), to do so we can use the results of Jeans instability theory which says that
the pressure contributions are negligible over scales bigger than the Jeans one (see e.g
App.A1). Hence using the Husimi coarse-graining σx we can limit ourselves to scales
bigger than the modified Jeans length λ̃J = 2π/k̃J , which is the biggest Jeans scale over
all the time-evolution (see e.g. Fig.2.1 where we depicted the evolution of λj and λ̃J in
an Universe with no Dark Energy Λ), i.e. we study scales

k <
1

σx
< k̃J . (3.2.9)

Now we compute the Wigner distribution (2.3.7) for relate the wave-function to the fluid
observable. Later we will compute the Husimi distribution (2.3.17) coarse-graining the
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Wigner function and so compare the results of these two phase-space distributions. Any-
way we must use the Husimi function due to what we say on baryon pressure and scale
selection.

f 0
W (x, D) =

∫

d3x′

(2π)3
e
−i p·x′

(aḊ)2

∫

d3qψi(q)
exp

[

i
2ν

(x+ ν
2
x′−q)2

D

]

(2πiDν)3/2
×

×
∫

d3q′ψi(q
′)
exp

[

− i
2ν

(x− ν
2
x′−q′)2

D

]

(2πiDν)3/2
. (3.2.10)

The integrals over q and q′ can be simplified by the change of variables:

q+ =
q + q′

2
, q− = q − q′ . (3.2.11)

So fW becomes

f 0
W (x, D) =

∫

d3x′

(2π)3

∫

d3q+d
3q−

(2iDπν)3
δ(in)(q+ +

q−

2
)δ(in)(q+ −

q−

2
)× (3.2.12)

× exp

[

ix′ ·
(

− p

a2Ḋ2
+

x− q+

D

)]

exp

{

− i

Dν
[q− · (x− q+) +Dδφ (q+, q−)]

}

,

where we defined

δφ (q+, q−) = φ(in)
(

q+ +
q−

2

)

− φ(in)
(

q+ −
q−

2

)

. (3.2.13)

As we anticipated we can find an analytical solution for the free particle system only in
the semi-classical limit (ν → 0), where for the DM component we expect to recover the
results of the classical perturbation theory applied to the fluid description [73] and, as
we will show, we actually recover the Zel’dovich approximation [79]. We will not recover
baryon classical linear perturbation theory as [47] because we are totally neglecting the
pressure effects, for a more accurate description of baryon we need to go to the next
order of the QPT, which we present in the next section. In this limit the second complex
exponent in (3.2.12) will vary very quickly, and so cancels its contributions, unless q− is
small [73]. Thus we can approximate δφ expanding it around small q−

δφ(q+,q−) ∼ q− · ∇φ(in) (q+) + O
(

q3
−

)

, (3.2.14)

where the even terms of the expansion cancels due to the opposite sign of the two terms
in (3.2.13). Also the product between the δ(in) is approximated by small q− as

δ(in)
(

q+ +
q−

2

)

δ(in)
(

q+ −
q−

2

)

∼ δ(in)
2
(q+) + O(q2

−) . (3.2.15)

Therefore the Wigner function becomes

lim
ν→0

f 0
W (x, D) = lim

ν→0

∫

d3x′

(2π)3

∫

d3q+d
3q−

(2iDπν)3
δ(in)

2
(q+) exp

[

ix′ ·
(

− p

a2Ḋ2
+

x− q+

D

)]

×

× exp

{

− i

Dν

[

q− ·
(

x− q+ +D∇φ(in)(q+)
)]

}

. (3.2.16)
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Then integrating over x′ and q− gives simply Dirac delta functions and if we recall the
remaining integration variable q+ = q we obtain the following expression for the Wigner
function [73]

lim
ν→0

f 0
W (x,p) =

∫

d3q δ(in)
2
(q)δ

(3)
D

[

x− q +D∇φ(in) (q)
]

δ
(3)
D

[

p

a2Ḋ2
+∇φ(in) (q)

]

.

(3.2.17)
Here we can make an additional comment on the semi-classical limit, we showed the
difference between the classical Vlaslov distribution function f and the Wigner function
in (2.3.12) and it goes like

d

dD
(fW − f) ∝ ν2∂3xΦ , (3.2.18)

where we used the equivalence between the effective potential of (2.3.12) and the Φ we
defined in (3.0.1),(3.0.2). The semi-classical limit is recovered when the right-hand side
of (3.2.18) goes to 0, this clearly happens if ν → 0. But there is another condition which
can bring us nearer to the semi-classical limit leaving unchanged ν, since the external
potential Φ is sourced by perturbations it was smaller and slowly varying at the Universe
early times when perturbations where still in the linear regime [56], hence also the limit
D → 0 would correspond to the semi-classical limit. Therefore to keep both the possible
behaviours we should define the semi-classical limit as

Dν → 0 ⇒ fW ∼ f . (3.2.19)

The same arguments are valid using the Husimi distribution because it develops a sim-
ilar difference from the Vlaslov distribution f [72]. Note that this new definition of the
semi-classical limit does not change the results (3.2.17) because they are provided by the
”behaviour” of perturbations at initial time (3.2.14) and (3.2.15), but we have defined
more formally the semi-classical limit and it will be very useful in the study of the higher
order terms of QPT since the limit ν → 0 would destroy the perturbative expansion due
to the 1/νn scaling of the n-th order term (3.0.38).
Comparing the result (3.2.17) with the general distribution function in Lagrangian coor-
dinates (2.3.16) we can directly read off the displacement and the velocity which would
be obtained from the Wigner distribution [73].

xW0 (q, D) = q−D∇φ(in) (q) , (3.2.20)

uW0 (q) = −∇φ(in) (q) . (3.2.21)

From the equation of motion (3.2.20) we can immediately obtain the density function
through the conservation of mass (1.2.20)

δ0(x, D) + 1 = (1 + δ(in)(q))

(

∂x

∂q

)−1

= (1 + δ(in)(q))

(

1−D∂
2φ(in)

∂q2

)−1

, (3.2.22)

where with ∂2φ(in)/∂q2 we mean the determinant of the Hessian.
These solutions are exactly the same ones obtained from the Zel’dovich approximation [79]
if we use the same initial conditions, i.e.

δ
(in)
DM(q) = 0 φ

(in)
DM(q) = ϕ(in)(q) , (3.2.23)

δ
(in)
b (q) = 0 φ

(in)
b (q) = ϕ(in)(q) , (3.2.24)
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where we extended the DM initial conditions to be the same for both DM and baryons.
This is unphysical for baryons [9] but we use this simple model to give the idea that under
the free particle approximation DM and baryons behave in the same way. We have to
remember that this is true only because we are considering scales bigger than the Jeans
wavelength and so pressure effects are small and appear only in higher order terms of the
perturbation theory, as we will depict in the following section. These initial conditions are
justified for DM if the linear approximation of the Euler equation and negligible initial
density fluctuations are assumed [73], the peculiar gravitational potential ϕ(in)(q) should
be then estimate by observation of the DM distribution at recombination. Instead they
are not well suited for baryons because they neglect initial pressure effects and the fact
that baryons decoupled from radiation later than DM.
Thus in the semi-classical limit and to the leading order in perturbation theory we repro-
duce results from classical fluid dynamics. Anyway after shell-crossing we cannot use any
more the conservation of mass to compute the density because it is no more valid after
the Jacobian of coordinate transformation q→ x becomes singular, i.e. at shell-crossing.
Let’s see now what results would give the Husimi distribution, we have to coarse-grain the
Wigner function (3.2.12) as in (2.3.17). We use the definition of the conjugate momentum
(2.3.3) to write the Wigner distribution in function of the velocity field.

f 0
H(x,u, D) = lim

ν→0

1

(2πσxσu)3

∫

d3x′d3u′ e
−

(x−x′)2

2σ2
x e

−
(u−u′)2

2σ2
u f 0

W (x′,u′, D) =

= lim
ν→0

1

(2πσxσu)3

∫

d3x′d3u′d3q e
−

(x−x′)2

2σ2
x e

−
(u−u′)2

2σ2
u δ(in)

2
(q)×

× δ(3)D

[

x′ − q +D∇φ(in) (q)
]

δ
(3)
D

[

u′ +∇φ(in) (q)
]

=

= lim
ν→0

∫

d3q δ(in)
2
(q)

exp
[

− (x−xW
0 )2

2σ2
x

]

exp
[

− (u−uW
0 )2

2σ2
u

]

(2πσxσu)3
, (3.2.25)

where in the second line we used the previous results of the Wigner semi-classical limit
since we can still use the smallness of ν e q− to compute the integrals. From the second
line ν is still present in σu = ν/(2σx). We can compute the density as its 0th-order
momentum, i.e.

ηH0 (x, D) =

∫

d3uf 0
H(x,u, D) =

∫

d3q δ(in)
2
(q)

exp
[

− (x−xW
0 (q))2

2σ2
x

]

(2πσ2
x)

3/2
. (3.2.26)

Hence the resulting density field is just a Gaussian distribution centered on the Wigner
trajectories (3.2.20) (and so on the Zel’dovich one) with a variance given by the posi-
tion resolution σx. Defined in this way the density field does not diverge anymore at
shell-crossing, it remains well defined for the whole evolution of the particle trajectories.
Anyway this semi-classical result cannot predict the correct dynamics after the shell-
crossing event because it continues to follow the Zel’dovich approximation and so the
particles which encountered in the shell-crossing will not stick together.
We can compute also the coarse-grained velocity field from the Husimi function

ηH0 uH0 =

∫

d3uuf 0
H(x,u, D) . (3.2.27)
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Therefore the velocity field predict by the Husimi distribution is equal to the Wigner,
we could expect it because in the semi-classical limit the velocity resolution is σu =
ν/(2σx)→ 0 and so no coarse-graining is performed over the velocity.
If we do not limit our study to the semi-classical regime the free particle approximation is
able to investigate also the after shell-crossing regime and so the multi-stream regime [73].
Thus we have to keep ν finite and small such there is still some coarse-grain procedure
acting on the velocity field, the problem is that for study this regime we have to compute
the wave-function from (3.2.7) numerically, we will show later some simulations of the free
particle solution. Instead the Zel’dovich approximation breaks at shell-crossing because
it doesn’t predict any multi-stream regime, the particles continue to free stream after the
caustic, which is unphysical [79].
Note that one could obtain the same results in the semi-classical limit using the stationary-
phase approximation (SPA) [34] , which is just equivalent to a Wick rotation of the saddle-
point approximation, for computing directly ψ0 from (3.2.3) and then use this result
to compute the displacement and the Lagrangian velocity field through the moments
of the Wigner distribution (2.3.14) or of the Husimi distribution (2.3.23), (2.3.24). For
completness we report here the general (three-dimensional) result of SPA, which is treated
more rigorously in App. A2.

I (λ) = (2πλ)−3/2

∫

d3q h (q) exp

[

i

λ
g (q)

]

, (3.2.28)

lim
λ→0

I (λ) =
∑

qc

h (qc) exp
[

i
λ
g (qc)

]

|det (Hij) |1/2
exp

[

iπ

4
sign (Hij)

]

, (3.2.29)

where the sum is over the critical points qc of g (q) and Hij is its Hessian. This approx-
imation is inspired by the fact that in the limit λ → 0 the exponential term oscillates
rapidly and tends to cancel out, thus only the points more stable, i.e. the stationary
points of g(q), are not negligible.
We define the following quantities using the initial conditions (3.2.23) (3.2.24) and the
expression for ψ (3.2.7)

λ = Dν , (3.2.30)

h(q) =
√

η(in) = 1 , (3.2.31)

g(q) =
(x− q)2

2
−Dφ(in)(q) . (3.2.32)

Observe that the limit λ → 0 recovers perfectly the more formal definition of the semi-
classical limit we showed in (3.2.19), contrarily to the usual ν → 0. Then we can find the
minimum of g as

∂g

∂qi
= −(x− q)i −D∂iφ(in)(q) = 0 → qci = xi +D∂iφ

(in)(q) (3.2.33)

and its Hessian

Hij = δij −D∂i∂jφ(in)(q) . (3.2.34)
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Thus we can write the wave function as

ψSPA0 (x(q, D), D)
Dν→0
= exp

[

i

ν

(

D(∇φ(in)(q))2

2
− φ(in)(q)

)]

1 + i signHij

2
×

×
[

1−D det[∂i∂jφ
(in)(q)]

]−1/2
. (3.2.35)

It’s clear that the square modulus of this expression recover the same result for the
overdensity (3.2.22). And the minimum condition (3.2.33) gives the equation of motion

x = q−D∇φ(in)(q) . (3.2.36)

We need to compute also the gradient of the wave-function to obtain the velocity field
through (2.3.14b). To find an accurate result we first compute the gradient from the gen-
eral expression of the free particle wave-function (3.2.7) and then we apply the stationary
phase approximation.

∇xψ0(x, D) =
i

νD

∫

d3q(x− q)
exp

[

i
2νD

(

(x− q)2 − 2φ(in)(q)
)]

(2πiDν)3/2
. (3.2.37)

Now we can apply the SPA ansatz (3.2.29). We should define all the various quantities
but we can observe that they are all the same of the ones applied to ψ0 beside the function
h(q), which becomes

h(q) =
i

νD
(x− q) . (3.2.38)

Since the function g(q) is the same also the minima qc are the same that in the previous
case (3.2.33), thus apply the stationary phase approximation we obtain

∇xψ0(qc(x, D)) = − i
ν
∇qφ

(in)(q)ψ0(qc(x, D)) . (3.2.39)

Hence from the relation (2.3.14b) we obtain the Wigner momentum

jW (x(q, D), D) = η(x(q, D), D)u(x(q, D), D) =
iν

2

[

ψ0∇xψ̄0 − ψ̄0∇xψ0

]

=

= −∇qφ
(in)(q)|ψ0(qc(x, D))|2 = −∇qφ

(in)(q)η(x(q, D), D) , (3.2.40)

the velocity field

uW (x(q, D), D) = −∇qφ
(in)(q) (3.2.41)

and the velocity potential

φ(x(q, D), D) = φ(in)(q) (3.2.42)

Hence we found that the stationary phase approximation gives the same results of (3.2.20),
(3.2.21) and so of the Zel’dovich approximation [73]. Then as we showed previously we
can apply the Gaussian filtering to obtain the Husimi results.
We will use all this results for investigate the higher orders of the perturbation theory.
Instead in the following subsection we report some interesting simulation which studies
the behaviour of the free particle approximation outside the semi-classical regime.
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3.2.1 Numerical simulations

To investigate the evolution of the LSS density after shell-crossing times we no longer can
limit ourselves to the semi-classical regime Dν → 0 but we have to study in its complete-
ness the evolution of the wave-function through the free particle propagator defined by
(3.1.26) in the Fourier space or by (3.2.3) in the coordinate space. Usually in numerical
codes is more used the Fourier description.
We present now some simulations for the case of one-dimensional space divided in seg-
ments with periodic boundary conditions as we described in Sect.3.1 and presented in [67],
the initial conditions are sinusoidal given by (3.1.1).
If we define the dimensionless comoving coordinate x̄ = x/d, where d is the wavelength
of the initial density perturbation, we obtain that the free particle wave-function (3.1.26)
depends only on the parameter Γ = ν/d2 [67]. Since the Zel’dovich approximation in one
dimension is exact and in the semi-classical limit the free particle approximation recovers
it also our approximation is exact for Γ→ 0 [67]. Here we want to keep Γ finite and not
null but from the semi-classical limit observations we can expect that the free particle
approximation behaviour would be optimized by the smallest possible value of Γ [67].
Since we will test our solution on a discrete grid there is a lower bound Γc on the value
of Γ. The minimum possible sampling rate, called Nyquist rate, is defined as the the rate
for which the phase change between two neighbouring grid points must be less than or
equal to π radians, otherwise the phase is not sufficiently sampled and aliasing effects
cause the free-particle method to break down [67]. Hence we expect our problem to be
optimized for Γ = Γc. From the initial conditions the amplitude of the phase of the initial
wave-function, i.e. the initial velocity potential, is ≈ δa thus we can define the optimal
value of the Γ parameter as Γc = δa/(2π

2)Ng where Ng is the number of points on the
grid [67].
Another important consideration is that since in the free particle approximation the quan-
tum pressure is missing from the Schrödinger equation the dynamics directly take care of
its effect, i.e. it is like have an additional pressure-like term in the Bernoulli equation, as
we stated in the introduction of Chapter 2. As we will see from the simulations the quan-
tum pressure has a regularizing effect, it oppose to the gravitational collapse preventing
the formation of a caustic in a way similar to the fictitious viscous term of the Adhesion
approximation [23,68]. Since in the free particle approximation it is not present any ”ex-
ternal” potential it is important to confront the magnitude of the quantum pressure with
respect to the one of the convective term C(x, D) = −|∇φ|2/2, in this manner we can
understand when the effect of the quantum pressure is negligible or not [67]. Note also
that the quantum pressure Q ∝ ν2 ∝ Γ2, hence its magnitude will depend on the value
of the coarse-graining parameter.

In the following we will report numerical solutions provided by [67] for decreasing param-
eter Γ, so we can see the effect of the different values of it. In these simulations the initial
amplitude is set to δa = 0.01 and the grid is divide in Ng = 512 point, thus the optimal
parameter is Γc = 1× 10−6. From the value of the amplitude of the initial fluctuations is
possible to derive the shell-crossing time predicted by the Zel’dovich approximation and
so by the free particle one in the semi-classical limit. It corresponds to the time when the
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overdensity (3.2.22) diverges, i.e. for

DSC −Di =

(

∂2ϕ(in)

∂q2

)−1

=

(

δi
Di

)−1

=
Di

δa
, (3.2.43)

where we used the fact that in the linear regime φ(in) ∼ ϕ(in), which is the initial condi-
tions used by Zel’dovich [79] for find the shell-crossing. In the second equivalence we used
the Poisson equation at initial time. From the values set by [67] of δa = 0.01 and Di = 1
we obtain a shell-crossing growth factor DSC = 101.
We begin assuming Γ = 1 with Fig.3.1. On the left side the evolution of the free particle
density field with δ = |ψ|2−1 is showed in the interval 0 ≤ x ≤ d, because we constructed
the density field such as it is periodic with comoving period d. We observe that the den-
sity fluctuation field simply oscillates about the mean value δ̄ = 0 and so there is no net
growth of the initial density perturbation, this is an effect of the quantum pressure [67].
In the right-hand side the quantum pressure and the convective term magnitudes are con-
fronted and it is immediate to see that the pressure term always dominates beside when
the overdensity momentarily pass through 0. Hence it seems like the density growth is
inhibited by the quantum pressure [67]. It is somewhat reminiscent of the effect of gas
pressure [67], as Jeans showed (and it is briefly presented in App.A1) the gravitational
collapse is stopped for any Fourier mode of the overdensity with wavenumber bigger than
a critical one, called Jeans wavenumber. This modes undergo damped oscillations rather
than growth, like the free particle overdensity for Γ = 1 (or bigger) in Fig.3.1. Anyway
we have to state that the quantum and the gas pressure cannot be considered as effects
of the same nature because the gas pressure is actually a pressure which the gas feels,
meanwhile the quantum pressure is a pure quantum effect which arise from our wave-
mechanical treatment of gravitational instability [67].
Since Q ∝ Γ2 (2.1.14) we expect that its effect will be less significant as Γ decreases. In
Fig.3.2 a plot with the same structure of Fig.3.1 is shown, but this time with the coarse-
graining parameter set to Γ = 1.4× 10−3. From the left panels (a) and (b) of Fig. 3.2 we
can observe the free particle density grow as expect until D = DSC/2, the matter flows
towards initially over-dense regions. But this growth is too small to follow the one of the
Zel’dovich approximation, the effect of the quantum pressure is still to strong [67]. At
times D > DSC/2 the growth stops and somewhere the density actually start to decay,
this is because the quantum pressure has started to grow, overcoming the convective term,
and so suppressing the gravitational collapse and the density growth. This cause that at
times near shell-crossing D ≈ DSC there is a large discrepancy between the results of the
free particle approximation and the Zel’dovich one. Thus also for this value of Γ there
is a good correspondence between the two approximation only at early times, when the
density is still small and so the quantum pressure.
In [67] Short and Coles found that the quantum pressure never becomes large enough to
stop the growth of the density perturbations for values of Γ ≤ 1.4 × 10−3, but in high
density region the collapse is still strongly suppressed and so there is a poor match be-
tween the free particle and the Zel’dovich approximations.
As the coarse-graining parameter approaches its optimal value Γ → Γc the suppres-
sion effect of the pressure diminish and the agreement between the free particle and the
Zel’dovich approximations improves. In Fig.3.3 it is reported the case Γ = Γc = 1× 10−6.
Now there is a good match between the two approximation at any time, the quantum



66 CHAPTER 3. PERTURBATION THEORY

Figure 3.1: Evolution of a plane-symmetric sinusoidal density perturbation in an expanding
CDM-dominated universe. The amplitude of the initial density fluctuation is δa = 0.01. The
left-hand plots show the density fields obtained from the free-particle approximation (FP), the
linearized fluid approach (LFA) and the Zeldovich approximation (ZA) at three different values
of the linear growth factor. The parameter Γ = 1 in the free-particle approximation. The
right-hand plots show the corresponding evolution of the magnitudes of the convective (C) and
quantum pressure (P) terms, in units of d2. This figure is provided by [67], for any further detail
check the main text.



3.2. FREE PARTICLE SOLUTION 67

Figure 3.2: Evolution of a plane-symmetric sinusoidal density perturbation in an expanding
CDM-dominated universe. The layout of the plots is as in Fig. 3.1; the only difference is that
the parameter Γ = 1.4×10−3 in the free-particle approximation. This figure is provided by [67],
for any further detail check the main text.

pressure is suppressed even in high-density regions [67]. It is very important to note that,
unlike the Zel’dovich approximation, the free particle approximation leads to a density
field that remains well behaved at shell-crossing [67]. From the right-hand side it is im-
mediately evident that the convective term dominates the quantum pressure at any time.
Anyway even if the quantum pressure is small it is not 0 because we are using a finite Γ
and so it has still a role in the collapse dynamic, it is due to its presence that the density
field doesn’t diverge at shell-crossing and it remains well defined [67].

Another interesting simulation of the free particle approximation was done by Porqueres
and collaborators in [58]. They called the wave-mechanical method propagator pertur-
bation theory, because our perturbation theory on the Hamiltonian can be seen as a
perturbation theory on the propagator defined in (3.2.5). To compute the free particle so-
lution they exploited the numerical use of discrete Fourier transforms (DFT) and circular
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Figure 3.3: Evolution of a plane-symmetric sinusoidal density perturbation in an expanding
CDM-dominated universe. The layout of the plots is as in Fig. 3.1; the only difference is that
the parameter Γ = Γc = 1 × 10−6 in the free-particle approximation. This figure is provided
by [67], for any further detail check the main text.
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convolution on a periodic domain, i.e. they computed (3.1.26) as

ψ0(x, D) = DFT−1

[

exp

(

−iν k
2

2
D

)

DFT
[

e−
i
ν
φi
]

]

, (3.2.44)

where they used as initial conditions δi = 0, φi.
In [58] they noted that cosmological observations are made in a redshifted space instead
of the comoving physical space. Specifically, a particle is not observed to be at its Eu-
lerian position x but instead at its redshift space position s, because of deviations from
pure Hubble expansion, due to peculiar velocities. They find that they can pass from the
comoving physical space to the redshift one using a new propagator in addition to the
ordinary one (3.2.5), we report their method in App.A3.
In Fig.3.4 (provided by [58]) we report a comparison between the density fields obtained
with the Zel’dovich (ZA) and the PPT (free particle) approximations in comoving physi-
cal space (top panels) and in redshift space (bottom panels). It is immediately noted that
PPT and ZA generate the same structures in the density distribution both in real and
in redshift space [58]. At the far right we show the quasar flux field F, i.e. the matter
distribution inferred by observations of the Ly-α forest, modelled through the fluctuating
Gunn-Peterson approximation [22]. From the comparison of this last panels with the
Zel’dovich and free particle (PPT) approximations it is clear the wave-mechanical ap-
proach provide a good model of density distribution [58].

We want to present a last numerical simulation of the free particle approximation, it is
provided by [73] and it describes some interesting features of the wave-function evolution
after shell-crossing. This simulation is done for a Universe filled just by cold dark matter
(CDM), hence the growth factor is equivalent to the scale factor D ≡ a. Fig.3.5 shows
the evolution of the free particle wave-function in one-dimension with initial conditions

ψi(q) = e−
i
ν
φi(q), φi(q) = − cos(q) . (3.2.45)

The domain colouring technique is used in the plot to assign a unique color to each point
in the complex plane, this representation method is described in [76]. The amplitude of
the wave-function is mapped by the brightness and the phase by the color hue for each
point in the space-time (x, a).
From Fig.3.5 is evident that after shell-crossing, for a > asc, interference patterns arise.
This is due to the fact that when two (or more) fluid trajectories cross, i.e. at shell-
crossing, the wave-functions corresponding to the different trajectories overlap giving rise
to the interference patterns [73]. The interference patterns are related to the effective
vortical motion depicted in Sect.2.4 and which arises after shell-crossing due to an aver-
aging of the different fluid trajectories. In this region of space-time we have the transition
from the single-stream to the multi-stream regime. This latter regime can be quite well
described by the free particle approximation choosing an optimal value of ν [73].

Hence through these numerical simulations we have found that the free particle approx-
imation resembles very well the Zel’dovich approximation before shell-crossing (and this
implies that our approximation is well behaved since the Zel’dovich approximation is
exact in one-dimension before shell-crossing) and that our approximation is still valid
after shell-crossing behaving in a way similar to the Adhesion approximation [23,68] but
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Figure 3.4: Density fields (left and middle column) and quasar flux field in the FGP approxima-
tion (right column) in physical space (top panels) and in redshift space (bottom panels), with
the line-of-sight direction upwards. The leftmost panels use the Zel’dovich approximation and
CIC deposit, the others use the PPT formalism. In all cases we used 2563 resolution elements,
the box size (and extent of each image) used for this comparison is 256h−1Mpc at z = 2.5. The
thickness of the projected slice is 2h−1Mpc and white pixels in the CIC panels indicate zero
particles deposited. This figure is provided by [58], for any further detail check the main text.
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Figure 3.5: Time evolution of the free particle wave-function with 1D initial data given by
(3.2.45), with ν = 0.01 and evolved using a grid of 1024 cells in a CDM Universe. Using domain
colouring the plot shows both the wave-function amplitude, in terms of the brightness as 0.5|ψ|,
and the phase through the colour hue. Thus lines at constant colour corresponds to lines at
constant phase. For times a > asc a interference pattern arises due to multi-streaming. This
figure is provided by [73], for any further detail check the main text.

without the need of introduce a fictitious viscous term, the quantum pressure takes its
place.

3.3 First order solution

Now we want to investigate the successive order of the perturbation theory. Similarly
to the free particle case, the small effects of the quantum pressure are implicit in the
discussion since is is not present in the underling Schrödinger equation (3.0.3). But
it can be retrieved implicitly by numerical simulations as shown for the free particle
approximation [67] in the previous section. Also in the section we will keep the generic
initial conditions (3.2.8), thus we obtain a general results which describes the evolution
of any initial condition. For physical initial conditions one should follow the work [9,25],
which depict how to find accurate initial condition whene studying a mixed baryon-DM
system.
We start solving the DM Schrödinger equation following the quantum perturbation theory.
From the Poisson equation (2.2.29) we can express the potential ΦDM as

ΦDM(D′, kp) =

(

νFkp [Arg(ψDM(D′, y)]− 3e(ΩDM)

2D′2

1

k2p

(

|ψDM |2(D′, kp)− δ(D)(kp)
)

)

,

(3.3.1)
where Fkp is the Fourier transform and δ(D) the Dirac delta.
Inserting this expression in the first order correction (3.1.25) to the DM wave-function we
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get an integral equation defining the DM wave-function at linear order in the potential
ΦDM . We observe that the potential ΦDM is totally set by ψDM and, since we don’t
want to increase the order of the perturbative solution, we can use the free particle wave-
function (3.1.26) in the definition of Φ (3.3.1).
In the same way we can obtain a similar equation defining the baryon wave-function, but
this time the potential will depend on both ψDM and ψb, because we assumed that the
gravitation potential is generated by the DM. Using (2.2.30) we can write the potential
Φb in the Fourier space as

Φb(D
′, kp) =

(

νFkp [Arg(ψb(D
′, y)]− 3e(ΩDM)

2D′2

1

k2p

(

|ψDM |2(D′, kp)− δ(D)(kp)
)

)

+

+
3

2

Mα−1(D′)

D′α+1

(

f(D′)

ΩDM(D′)

)2
1

γ − 1

1

k̃2J
|ψb|2γ−2(D′, kp) ,

(3.3.2)

where the expression forM and f are given respectively by (1.4.26) and (1.4.25). Then as

before if we insert this expression in (3.1.25) we obtain an integral equation for ψ
(1)
b (x,D).

We could use again the equipartition theorem to write the first-order correction to the
wave-function (3.1.25) in the phase space, in terms of the free particle kernel. But, since
the potentials are easier to write in the Fourier space due to the form of the Poisson
equation, we stick to the momentum integral. Anyway we can write it in a more compact
way using the Fourier transform of the free particle kernel (3.2.4).

ψ
(1)
b,DM(x,D) = − i

ν

1

2π

∫ D

Di

dD′

∫ ∞

2π
L

dkn

∫ ∞

2π
L

dkme
−ikmxψb,DMi (kn)×

×K0(km, D;D′)Φb,DM(D′, km − kn)K0(kn, D
′;Di) . (3.3.3)

Now is easier to give a physical meaning to this integral. The term K0(km, D;D′)×
×Φb,DM(D′, km−kn)K0(kn, D

′;Di) means that the particle evolves from the time Di as a
free one until the time D’ with momentum kn, at the time D’ is scattered by the potential
Φ(D′, km− kn) and then evolves again as a free particle until the time D with momentum
km. The complete form of the probability of evolution is given by integrating this term
over all possible combination of D’ and kn, which are all the possible alternatives of points
in the Fourier space where the ”scattering” may have taken place.
This is a common result of the path-integral formulation of quantum perturbation theory
[28]. If we would go to upper order in the perturbation theory there would be more
scatterings, the same number as the order of the perturbation term, and still between
each scattering the particle can be considered free.
As we said for dark matter, we can use the free particle solution as the wave-function
inside the integral to do not increase the order of the solution.
The expression of ψ(1) through Fourier transforms can be very useful for numerical studies
but it is not analytically tractable. We can try to find an analytical solution in the semi-
classical limit Dν → 0 using the stationary phase approximation. We have to observe
immediately that it is a very crude approximation because of the i/ν prefactor in the
wave-function (3.0.3). We deal with it anyway because it could still give some interesting
result on very big scales where the perturbation are expected to be the smallest and so
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the perturbation theory can be still a crude approximation of the real behaviour. In order
to use SPA we have to pass to the coordinate space because we need the fast oscillating
exponentials with the ν at the denominator. Hence as we have done with the free particle
approximation we can use the convolution theorem and derive the following expression
for the first order correction to the wave-function.

ψ
(1)
b,DM(x, D) = − i

ν

∫ D

Di

dD′

∫

d3x′d3qK0(x, D;x′, D′)Φb,DM(x′, D′)K0(x
′, D′;q, Di)ψi(q) =

= − i
ν

∫ D

Di

dD′

∫

d3x′d3qK0(x, D;x′, D′)Φb,DM(x′, D′)ψ0(x
′, D′) , (3.3.4)

where the external potential is given by

ΦDM(x′, D′) =νArg(ψDM(x′, D′))− 3e(ΩDM)

2D′2
∇−2

(

|ψDM |2(x′, D′)− 1
)

, (3.3.5)

Φb(x
′, D′) =νArg(ψb(x

′, D′))− 3e(ΩDM)

2D′2
∇−2

(

|ψDM |2(x′, D′)− 1
)

+

+
3

2

Mα−1(D′)

D′α+1

(

f(D′)

ΩDM(D′)

)2
1

γ − 1

1

k̃2J
|ψb(x′, D′)|2γ−2 . (3.3.6)

Here we directly generalized to the three dimensional case and we used the inverse Laplace
operator ∇−2 to write the potential Vb,DM from the Poisson equation (2.2.29). We have to
observe that semi-classical limit Dν → 0 actually corresponds to λ→ 0 because D′ < D.
Since we don’t want to increase the order of the solution we can use the results of the free
particle approximation for the quantities inside the potential Φ, remember that νArg(ψ) =
−φ. Then, for small ν, we can apply SPA to solve the spatial integrals. We study the case
of a general potential Φ and later we will particularize the results to the baryons or DM.
Since we have two integrals we have to use SPA two times, we begin with the integral in
q but this integral is just the definition of the free particle wave-function (3.2.7) and thus
SPA gives the same result obtained in the previous section (3.2.35) with the stationary
condition

q = x′ +D′∇qφ
(in)(q) , (3.3.7)

where we have chose as initial time Di = 0. For the integral in x′ we define the new
variables from the SPA ansatz (3.2.29)

λ = ν(D −D′) , (3.3.8)

h(x′) =
Φ(x′, D′)

√

δ0(x′(q, D′), D′)
, (3.3.9)

g(x′) = (x− x′)2 + (D −D′)

(

D′(∇φ(in)(q))2

2
− φ(in)(q)

)

, (3.3.10)

where δ0(x
′(q, D′), D′) is the overdensity for the SPA free particle approximation (3.2.22).

The stationary points of g(x′) are given in components by

xi
′

c = xi − (D −D′)D′∂i∂kφ(in)(q)∂kφ
(in)(q) + (D −D′)∂iφ(in)(q) , (3.3.11)



74 CHAPTER 3. PERTURBATION THEORY

where the partial derivations should be respect to x′ but, since they are applied to the
initial velocity potential, the stationary condition (3.3.7) at initial time leads to∇x′ = ∇q.
We need to compute also the Hessian of g(q)

Hij = δij + (D −D′)D′∂j
[

∂i∂
kφ(in)(q)∂kφ

(in)(q)
]

− (D −D′)∂j∂iφ(in)(q) . (3.3.12)

Finally we can write the first order correction as

ψ
(1)
SPA(x(q, D), D) = lim

Dν→0
− i
ν

∫ D

0

dD′ Φ(x(q, D′), D′)

δ
1/2
0 (x(q, D′), D′)

×

× e
i

ν(D−D′)
g(x′

c)

|1 + det [(D −D′)D′∂j [∂i∂kφ(in)(q)∂kφ(in)(q)]− (D −D′)∂j∂iφ(in)(q)] |1/2
(3.3.13)

= lim
Dν→0

− i
ν

∫ D

0

dD′ψSPA0 (x(q, D′), D′)×

× Φ(x(q, D′), D′)

|1 + det [(D −D′)D′∂j [∂i∂kφ(in)(q)∂kφ(in)(q)]− (D −D′)∂j∂iφ(in)(q)] |1/2×

× exp

[

i

2ν

(

D′∂i∂
kφ(in)(q)∂kφ

(in)(q)− ∂iφ(in)(q)
)2
]

, (3.3.14)

where we expressed x in function of q thanks to the two stationary conditions, which
together give

xi = qi + (D −D′)D′∂i∂kφ(in)(q)∂kφ
(in)(q)−D∂iφ(in)(q) (3.3.15)

Unfortunately this equation is not the equation of motion of our system because there is
still a time-integral in the wave-function expression (3.3.14). This last integration can-
not be solved analytically and it is left to a numerical treatment. Due to the exploding
behviour of 1/ν after the numerical integration we have to compare (3.3.14) with the
semi-classical result of the free particle approximation (3.2.35) and we must keep only
the scales where the free particle term is the dominant one. we have to observe to that
using this SPA approximation only at very early times the semi-classical limit condition
Dν → 0 with D very small can permit us to keep ν bigger and so prevent the spoiling of
the perturbative expansion. Hence in the semi-classical limit we can obtain results only
on these scales or times (which have to be investigated by numerical studies), these results
would be far from accurate but could still give the idea on some features present in the
dynamics due to the presence of the external potential Φ.
Then we should apply the Husimi filtering (2.3.19), which we expect to behave as in the
free particle approximation, i.e. no filtering over the velocities due to the semi-classical
limit Dν → 0 and the density distribution will be a Gaussian distribution centered on
the Wigner particle trajectories. The spatial resolution instead has to be set such as the
perturbation theory is still valid as we observed above. These results could superclass
the free particle approximation but only on very big scales so we expect them to be not
very interesting. The numerical results from the study of QPT with a finite ν would
be far more interesting and we expect them to be able to investigates results until the
neighbourhoods of the Jeans scale.
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Applying numerical methods to the results of the perturbation theory up to first order
would permit us to predict the distribution of baryons and dark matter over the Uni-
verse. From the drift-kick-drift form of the first-order propagator (3.3.3), (3.3.5), (3.3.6)
we expect that the locations where the potential kick is more relevant corresponds to
higher-density loci predicted by the free particle approximation, since the components
of the potentials are bigger for higher density |ψ|2. Hence we expect that the numerical
simulation would be less computationally requiring respect a full N-body simulation.
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Chapter 4

Time-splitting spectral
approximation

In the previous chapter we found that even if we make several approximation and study
the Schrödinger-Poisson system (2.2.42) with quantum perturbation theory at the end we
need numerical computations to obtain physical results. Hence we want now to present a
numerical method which solves directly the Schrödinger equation without the need of the
perturbative expansion. Therefore we do need any more to restrict on scales much bigger
to the Jeans wavelength to keep baryon pressure small as in the previous chapter, the
pressure effects can be fully developed by the numerical code. In this chapter we present
in particular an approximation which seems to be very useful to solve numerically the
Schrödinger equations, this approximation is commonly used in the solid state physics
field for example in the study of Bose-Einstein condensates (BEC). We apply the time-
splitting spectral approximation to a general nonlinear Schrödinger equation (NLS) in
the semi-classical regime ν → 0, then we will particularize the solution to describe our
baryon-DM system (2.2.42). An overview of this method is described in [5], where a series
of numerical studies for particular realizations of the nonlinear Schrödinger equation are
presented. We have to make an important observation on the semi-classical limit, since
this numerical method was develop for Solid state physics studies it uses the common
semi-classical limit ν → 0 and not the more physical in our particular cosmological study
(3.2.19) Dν → 0. Anyway this is not a problem since this numerical method is able to
investigate also late times (see e.g. the gravitational collapse presented in Fig.4.4) and so
we do not need to limit ourselves to early times as we did for the semi-classical limit of
the higher order QPT in Sect.3.3.
We search for a solution of the following nonlinear Schrödinger equation

iνψνD +
ν2

2
∇2ψν − V (x, D)ψν − h(|ψν |2, D)ψν − ντ(D)Arg[ψν ]ψν = 0 , (4.0.1)

where the superscript ν indicates functions which depend on ν itself, ψνD ≡ ∂ψν

∂D
, V (x, D) is

a general real potential (in the original article [5] it is a electrostatic potential), h(|ψν |2, D)
is a real-valued smooth function and τ(D) is a relaxation rate. We can relate this
Schrödinger equation to our cosmological problem comparing it with the Schrödinger-

77
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Poisson system (2.2.42):

Vb,DM(x, D) =
3e(ΩDM)

2D
ϕ(x, D) , (4.0.2)

τb,DM(D) =
3e(ΩDM)

2D
, (4.0.3)

h(|ψν(x, D)|2, D) =

{

0 for DM

3
2
Mα−1(D)
Dα+1

(

f(D)
ΩDM

)2
1

γ−1
1
k̃2J
|ψb(x, D)|2(γ−1) for baryons

, (4.0.4)

where e(ΩDM) = ΩDM/f(D)2 and f(D) is given by (1.4.25) with the relation between a
and D given by (1.4.26) and we made an abuse of notation calling Vb,DM the gravitational
potential, in the previous chapters it contained also the term ντ(D)Arg[ψν ]. Since the
baryon potential Vb is provided by the gravitational potential, which is sourced by the
DM distribution through the Poisson equation (2.2.24), we will have to solve first the
Schrödinger equation for DM and then the baryons one. From this comparison with our
cosmological quantities it is clear that the relaxation rate τ(D) corresponds to the effects
of the Hubble drag due to the expansion of the Universe; the h(|ψν(x,D)|2, D) corresponds
to a pressure and the potential V simply to the gravitational potential.
We need to set also the initial conditions

ψν(x, D = 0) = ψνi (x) , (4.0.5)

which then have to be divided in the DM and baryon cases.
We have to observe that the quantum pressure is not present in the NLS (4.0.1), thus its
effect is implicit and it will be directly seen in the particle dynamics as observed in the
simulations of the free particle approximation [67].
We keep the Madelung definition of the wave function (2.1.7), for which the following
definitions hold

νArg[ψν(x, D)] = −φν(x, D) , (4.0.6)

−∇φν(x, D) =
JνW (x, D)

ηνW (x, D)
. (4.0.7)

with ηνW (x, D) and JνW (x, D) computed from the wave-function through the Wigner func-
tion as in (2.3.14), we can apply the Husimi filtering a posteriori as shown for the free
particle simulation in Sect.3.2 for the semi-classical regime. These two functions are called
quadratic macroscopic quantities due to their quadratic proportionality with respect to
the wave-function. The nonlinear Schrödinger equation (4.0.1) covers many situation
studied in Solid State Physics such as [5]:

• V ≡ 0, h(ρ) = βνρ and τ = 0: it is the cubic NLS, called the focusing NLS when
βν < 0 and the defocusing NLS if βν > 0.

• V = ω
2
|x|2 with ω > 0 a constant, h(ρ) = ρ and τ = 0: it is called Gross-Pitaevskii

equation (GPE) and it is related to Bose-Einstein condensate (BEC).

• V , h general and τ > 0: the system is equivalent to a current-relaxed quantum
hydrodynamical system for ρν and Jν , this is the case on which we are interested
and we showed how to relate the hydrodynamical and the Schrödinger systems in
Sect. 2.1.
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From mathematical studies of the NLS (4.0.1) it is well known that (4.0.1) propagates
oscillations in space and time preventing ψν from converging strongly as ν → 0 [5]. This
oscillatory nature of the solutions of the Schrödinger equation in the semi-classical regime
leads to some problem in the numerical analysis. Even for stable numerical approximation
(or under mesh size and time step restrictions which guarantee stability) the oscillations
may pollute the solution in such a way that the quadratic macroscopic quantities (ην

and Jν) and other physical observables come out completely wrong unless the spatial-
temporal oscillations are fully resolved numerically [5], i.e. using many grid points per
wave length of order O(ν). In [45, 46] they found that the best combination of time and
space discretizations, which guarantees good approximations to all smooth observables
for small but finite ν, is provided by

mesh size l = o(ν) , (4.0.8)

time step t = o(ν) . (4.0.9)

If these conditions are not fulfilled the observable inferred by the numerical analysis would
not correctly describe the real system [5].

4.1 One dimensional case

We introduce the time-splitting Fourier spectral approximation of the nonlinear Schrödinger
equations in one space dimension, for simplicity of notation. Later we will show hot it
can be generalized to a three-dimensional space. We study a periodic system, which can
be described in the spatial interval x ∈ [a, b], with periodic boundary conditions

ψν(a,D) = ψν(b,D) , (4.1.1)

ψνx(a,D) = ψνx(b,D) , (4.1.2)

with ψx ≡ ∂xψ
ν . For be consistent with Chap. 3 we set the boundaries as

a = 0 , b = L . (4.1.3)

We define the spatial mesh size l = ∆x > 0 as l = (b − a)/M = L/M with M an even
positive integer. We call the time step t = ∆D > 0 and let the grid points and the time
steps be

xj ≡ a+ jl = jl, j = 0, 1, ...,M . (4.1.4)

Dn ≡ nt, n = 0, 1, 2, ... . (4.1.5)

We call Ψν,n
j the approximation of the wave-function in a space-time step (j, n) Ψν(xj, Dn)

and Ψν,n the solution vector at time D = Dn = nt with as components the approximation
at each grid point Ψν,n

j .
The time-splitting spectral method take its basis from solve the NLS equation (4.0.1)
from time D = Dn to time D = Dn+1 in two steps. First one solves the ”kinetic” part of
the nonlinear Schrödinger equation [5]

iνψνD +
ν2

2
ψνxx = 0 , (4.1.6)
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for one time step of length t. We already know the solution of this equation, it is the free
particle approximation which was presented in Sect.3.2. Then one solves [5]

iνψνD − V (x,D)ψν − h(|ψν |2, D)ψν − ντ(D)Arg(ψν)ψν = 0 , (4.1.7)

for the same time step [Dn, Dn+1]. We can observe that the Schrödinger-like equation
(4.1.7) leaves the norm of the wave-function |ψν | invariant in time during the time step [5].
It is shown in the following way

∂D(|ψν |2) = 2Re[ψνDψ̄
ν ] =

= −2

ν
Re
[

i
(

V (x,D) + h(|ψν |2, D) + ντ(D)Arg[ψν ]
)

|ψν |2
]

= 0 . (4.1.8)

This means that the norm of the wave-function during a time step evolves accordingly
the free particle solution of (4.1.6). Hence, for solve (4.1.7), we can set the norm of ψν at
a given time inside the time step, for example at Dn |ψν(x,Dn)|.
Thanks to this invariance we can set the wave-function through the Madelung definition
(2.1.7) to [5]

ψν(x,D) = |ψν(x,Dn)| exp
(

− i
ν
φν(x,D)

)

, D ∈ [Dn, Dn + 1] . (4.1.9)

Therefore the differential equation (4.1.7) becomes

φνD(x,D) + τ(D)φν(x,D)− V (x,D)− h(|ψν(x,Dn)|2, D) = 0 . (4.1.10)

If we differentiate with respect to x this equation we obtain a differential equation for the
kinetic momentum Jν(x,D), defined in (4.0.7),

JνD(x,D) + τ(D)Jν(x,D) + [Vx(x,D) + hx(|ψν(x,Dn)|2, D)]η(x,Dn) = 0 . (4.1.11)

The equation (4.1.11) is a first order differential equation of the type

yt(t) + b(t)y(t) = g(t) , (4.1.12)

with b(t), g(t) continuous functions. It has as general integral

y(t) = e−A(t)
[

y0 +

∫ t

t0

ds g(s)eA(s)
]

, (4.1.13)

with initial conditions y0 = y(t = 0) and

A(t) =

∫ t

t0

ds b(s) . (4.1.14)

Comparing the two differential equations (4.1.11), (4.1.12) we can make the following
definitions

b(D) = τ(D) , (4.1.15)

g(D) = −
[

Vx(x,D) + hx(|ψν(x,Dn)|2, D)
]

η(x,Dn) . (4.1.16)



4.1. ONE DIMENSIONAL CASE 81

It is arrived the moment of specialize this solution to the dynamics of the baryon-DM sys-
tem. Comparing the NLS (4.0.1) with the Schrödinger equations describing DM (2.2.27)
and baryons (2.2.40) we can define the various terms of the time-splitting spectral ap-
proximation in one dimension.

Vb,DM(x,D) =
3e(ΩDM)

2D
ϕ(x,D) , (4.1.17)

τb,DM(D) =
3e(ΩDM)

2D
, (4.1.18)

h(|ψν(x,D)|2, D) =

{

0 for DM

3
2
Mα−1(D)
Dα+1

(

f(D)
ΩDM

)2
1

γ−1
1
k̃2J
|ψb(x,D)|2(γ−1) for baryons

, (4.1.19)

where e(ΩDM) = ΩDM/f(D)2 and f(D) is given by (1.4.25) with the relation between
a and D give by (1.4.26). We can observe that, since the norm of the wave-function is
constant in a time step, the time-dependence of the gravitational potential V is easily
determined by the Poisson equation

V (|ψνDM(x,Dn)|2, D) =
3e(ΩDM(D))

2D2
∇−2(|ψνDM(x,Dn)|2 − 1) . (4.1.20)

We can now find the solution of the differential equation (4.1.11). First we need to
compute

A(D) =

∫ D

Dn

3e(ΩDM)

2D′
dD′ . (4.1.21)

Then we obtain the kinetic moment in the time interval D ∈ [Dn, Dn+1]

Jνb,DM = e−
∫D
Dn

3e(ΩDM )

2D′ dD′ [

Jνb,DM(x,Dn)+ (4.1.22)

−
∫ D

Dn

dD′
[

Vx(|ψνDM(x,Dn)|2, D′)+

+hb,DMx (|ψνb,DM(x,Dn)|2, D′)
]

ηb,DM(x,Dn)e
∫D′

Dn

3e(ΩDM )

2D”
dD”

]

.

From this solution we can obtain the phase of the wave-function, i.e. the velocity potential
φν,b,DMx (x,D) = −Jνb,DM/ηνb,DM(x,Dn) in the time step under study.

φνb,DM(x,D) =− e−
∫D
Dn

3e(ΩDM )

2D′ dD′

∫ x

0

dy νIm

(

ψν,b,DMy (y,Dn)

ψνb,DM(y,Dn)

)

+ (4.1.23)

+

∫ D

Dn

dD′
[

V (|ψνDM(x,Dn)|2, D′)+

+hb,DM(|ψνb,DM(x,Dn)|2, D′)
]

e
∫D′

Dn

3e(ΩDM )

2D”
dD” ,

where we expressed Jνb,DM(x,Dn) as

Jνb,DM(x,Dn) = νIm

(

ψν,b,DMx (x,Dn)

ψνb,DM(x,Dn)

)

ηνb,DM(x,Dn) . (4.1.24)
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Substituting (4.1.23) in (4.1.9) we obtain the solution of the potential part of the nonlinear
Schrödinger equation (4.1.7).
To combine the time steps from time Dn to Dn+1 we use the Strang splitting method [71].
It consists in a three step approach: first it evolves the initial state through the solution
of (4.1.7) for a time step long ∆D/2 = t/2; then this state is evolved for a time step t
following the solution of (4.1.6), i.e. the free particle one; finally to obtain the true final
state we need another evolution for half time step t/2 following the solution of (4.1.7).
Applying this method from the initial state ψi and iterating it we recover the wave-
function at any time D. We can show how the Strang splitting method is applied to our
baryons-DM system in particular for a time step [Dn, Dn+1]. First we evolve the state
Ψν,n
j , which is the approximated wave-function obtained by the use of the time-splitting

spectral approximation to previous time steps, through the potential solution of (4.1.7)
for a time step t/2.

Ψν,∗
j,b,DM = |Ψν,n

j,b,DM | exp
[

−i
(

−Sνj (Ψν,n
b,DM ,

t

2
)+

+
i

ν

∫ Dn+t/2

Dn

dD′
[

V (|Ψν,n
j,DM |2, D′) + hb,DM(|Ψν,n

j,b,DM |2, D′)
]

e
∫D′

Dn

3e(ΩDM )

2D”
dD”

)]

,

(4.1.25)

where we defined

S
ν,n
j (Ψν,n,

t

2
) ≡ e−

∫Dn+t/2
Dn

3e(ΩDM )

2D′ dD′

∫ xj

0

dy Im

(

Ψν,b,DM
y (y,Dn)

Ψν
b,DM(y,Dn)

)

(4.1.26)

and we compute it using the approximate wave-function obtained from the previous step
[71]. Now we have to evolve this state through the free particle approximation, which can
be expressed through a discrete Fourier decomposition as [5], for a whole time step t.

Ψν,∗∗
j,b,DM =

1

M

M/2−1
∑

p=−M/2

exp

[

−
iνk2pt

2

]

Ψ̃ν,∗
p,b,DMe

−ikpxj , (4.1.27)

which resembles (3.1.20) but with a different spatial spacing. We defined the Fourier
coefficients of Ψν,∗

j as

Ψ̃ν,∗
p =

M−1
∑

j=0

Ψν,∗
j e−ikpxj , p = −M

2
, ...,

M

2
− 1 , (4.1.28)

where kp = (2πp)/l. Finally we can recover the final state at time Dn reapplying the
solution (4.1.23) of (4.1.7).

Ψν,n+1
j,b,DM = |Ψν,∗∗

j,b,DM | exp
[

−i
(

−Sνj (Ψν,∗∗
b,DM ,

t

2
)+

+
i

ν

∫ Dn+1

Dn+t/2

dD′
[

V (|Ψν,∗∗
j,DM |2, D′) + hb,DM(|Ψν,∗∗

j,b,DM |2, D′)
]

e
∫D′

Dn+t/2

3e(ΩDM )

2D”
dD”

)]

.

(4.1.29)
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Hence with this three-step procedure we have evolved the wave-function from time Dn to
time Dn+1.
A numerical method to obtain Sνj (Ψ, D) is the composite trapezoidal rule [5]

Sνj (Ψ, D) = e−
∫D
Dn

3e(ΩDM )

2D′ dD′

j
∑

l=1

l

2
Im

(

DS
xΨ|x=xl−1

Ul−1

+
DS
xΨ|x=xl
Ul

)

, (4.1.30)

with

j = 1, 2, ...,M , S0(Ψ, t) = 0

and where DS
x is the spectral approximation of ∂x [5], i.e.

DS
xΨ|x=xj =

1

M

M/2−1
∑

p=−M/2

ikpΨ̃e
ikpxj . (4.1.31)

We can observe that this scheme is somewhat similar to the propagator scheme resulting
from quantum perturbation theory. In the previous chapter from QPT we found that
the wave-function evolves first as following the free particle solution then the external
potential is applied and finally it follows again the free particle approximation, this is
commonly called a drift-kick-drift scheme. The Strang splitting method instead consist in
a kick-drift-kick scheme, more similar to the one presented in [73] in the study of the first
order correction in the propagator of CDM, anyway we expect that the two schemes will
be similar. Applying first the free particle approximation and then the potential solution
or the opposite would be exactly the same if and only if the kinetic operator and the
potential one commute, i.e. if

[

−ν
2

2
∇2,Φ(x,D)

]

= 0 , (4.1.32)

with Φ(x,D) = V (x,D)+h(|ψν |2, D)+ ντ(D)Arg[ψν ] and where the commutator is such
defined [A,B] = AB − BA. But the commutator is different from 0 due to the spatial
dependence of the potential operator. Hence we expect that the difference between the
schemes kick-drift-kick and drift-kick-drift to be of the order of the commutator applied
to the wave function, this is the error between the choice of one or the other scheme.
Since the potential term, in our cosmological study, is provided by perturbations over the
background Universe this term is small and so the error is. For the time-splitting spectral
approximation we prefer to use the scheme kick-drift-kick because in this way the norm
of the wave-function changes just one time, it is constant for the ”potential solution”
as showed in (4.1.8) thus the norm evolve only when the free particle approximation is
applied [5].
In [5] Bao and collaborators noted an important fact, the use of the trapezoidal rule to
compute Sνj leads to the lost of spectral accuracy in space in the case τ 6= 0. However the
spatial accuracy can be improved using higher order numerical integration for approxi-
mating the integral in the definition of Sνj [5]. We reported anyway this simple numerical
method because it is the method used by [5] to make some interesting numerical studies
of the nonlinear Schrödinger equation (4.0.1) when studying the case τ = 0. Observing
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the NLS (4.0.1) and the meaning of τ in our cosmological study it is immediately under-
stood that neglecting the τ term is equivalent to neglect the Universe expansion and its
dumping effect on the density growth.
We could easily generalize the just presented one-dimensional time-splitting spectral ap-
proximation to three-dimension. To do so is sufficient to discretize the space with spatial
steps over three arbitrary orthogonal axis defining the space, i.e. we have to generalize
(4.1.4) to

x1i = a1 + l1i , i = 0, 1, ...,M ; (4.1.33)

x2j = a2 + l2j , j = 0, 1, ...,M ; (4.1.34)

x3k = a3 + l3k , k = 0, 1, ...,M ; (4.1.35)

where we called (x1, x2, x3) the coordinates of the space, defined the spatial interval with
periodic boundary condition as x ∈ [a,b] and the spatial step ∆x = l = (b− a)/M .
With such definitions we can call Ψν,n

i,j,k the approximation of the wave-function in a
space-time step (i,j,k; n) Ψν(x1i , x

2
j , x

3
k;Dn) and Ψν,n the solution tensor at time D =

Dn = nt with as components the approximation at each grid point Ψν,n
i,j,k. Now we should

just follow the same procedure done in the one-dimensional case to derive the time-
splitting spectral approximation of the three-dimensional generalization of the nonlinear
Schrödinger equation (4.0.1).

4.2 Numerical simulations

We report now two interesting simulation made by Bao and collaborators and described
in [5] and one simulation made by [80] in which they used a Strang splitting method to
study the evolution of the gravitational collapse of DM. In [5] they assumed that the
relaxation rate τ is constant in time, this leads to an easier solution of the nonlinear
Schrödinger equation (4.1.7) with

A(D) = τ(D −Dn) . (4.2.1)

More for every simulation they used the space interval x ∈ [−8, 8], instead of the interval
[0, L] which we used to be consistent with the previous chapter, which is large enough
for computations such as the periodic boundary conditions don’t introduce a significant
aliasing error relative to the whole space problem [5]. The first example we want to report
is the case of a cubic nonlinearity with confining potential: V (x) = ωx2

2
, h(ρ) = βρ and

τ = 0, where ρ = ρ̄η. This NLS is usually called Gross-Pitaevskii equation (GPE) and
it is related to Bose-Einstein condensates [5] and corresponds to a particular choice of
γ = 2. BEC occurs when interacting trapped bosons are cooled down to a temperature
below the critical one, then all the particles fall in the same quantum mechanical ground
state [38]. The GPE describes the evolution of this ground state due to a change in the trap
frequencies [5]. This example is interesting mainly for the following reason. To understand
it we need to observe that there are two different interpretations of the Schrödinger-Poisson
description of CDM. One can think at it as a field theoretical approximation to the classic
Boltzmann description, as we have done until now. Or it can be interpreted as a distinct
description of DM known as fuzzy dark matter [31, 80], in which structure formation is
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driven by BEC trapped in its own gravitational potential and where the expansion of the
space sets the time dependent interaction strength [80] (in this example we are loosing
this last property due to τ = 0). The following initial conditions are chosen [5]

√

ηi(x) = e−x
2

, φi(x) = log
(

ex + e−x
)

. (4.2.2)

Fig. 4.1 shows the density ρν = ην = |ψν |2 (here we set ρ̄ = 1 to be consistent with the
notation of [5] simulations) of the solutions in space-time for the defocusing nonlinearity,
i.e. β = 1, with ν = 0.025 and for different ω’s. It is clear that the confinement becomes
stronger as ω, and so the potential, increases. These over-dense regions correspond to
regions of structure formation due to, in our cosmological counter part, the attractive
effect of the gravitational potential. The potential-well V (x) = ωx2/2 can be interpreted
as a very simple model of the attractive gravitational potential nearby shell-crossing.

The second numerical simulation we want to report from [5] studies the defocusing case
with V = 0, h(η) = (γ/(γ − 1))ηγ−1, which in our cosmological description corresponds
to a baryonic gas in an Universe with negligible peculiar gravitational potential. A sort
of free particle approximation smoothed by the gas pressure. More the time-dependent
coefficient of the gas pressure is neglect in this computation, i.e. it is set to 1.
We use the following initial conditions [5]

√

ηi(x) = e−x
2

, φi(x) =
1

e3x + e−3x
. (4.2.3)

For comparison with the Schrödinger solution Bao solved also the equivalent hydrodynam-
ical system (related through the Madelung transformation) by the use of the second-order
relaxed scheme [35]. Fig. 4.2 shows the solution of the defocusing nonlinear equation
in the hydrodynamical description, labelled as SHDE, and in the Schrödinger representa-
tion, the other lines, for various values of ν ≡ ǫ. In this figure the energy density is called
position density and the time D ≡ t for be consistent with [5] notation. From Fig. 4.2
we can observe that when the hydrodynamical solution is smooth the two observables of
the nonlinear Schrödinger equation (4.0.1) converge to the solution of the formal hydro-
dynamical limit for ν → 0 [5]. The hydrodynamical solution is smooth before breaking,
before the caustic occurs, which for this simulation happens between the times D = 0.2
and D = 1.4 for most of the values of τ (only for τ = 10.0 at D = 1.4 no caustic has
still occurred) [5], since the larger is τ later the caustic occurs. After the hydrodynami-
cal solution brakes, i.e. when two or more fluid trajectories cross (shell-crossing event),
in the Schrödinger solution an oscillatory behaviour arises. This is naturally explained
by the fact that the waves in the Schrödinger description represents particles thus when
trajectories cross the waves create interference patterns, as already seen in Fig. 3.5. In
Fig. 4.3 we reported the evolution of the energy density from the solution of the NLS
with ν ≡ ǫ = 0.01, γ = 1.4 and for different values of τ . It is difficult to observe the
net effect of the pressure comparing this figure with Fig.4.1 because here there isn’t the
confining potential, anyway we can observe that the density distribution is smooth even
at shell-crossing (apart from the oscillatory behaviour).

Another interesting numerical computation of the fuzzy dark matter evolution (BEC) is
provided by [80], in which Zimmerman and collaborators applied the Strang time-splitting
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Figure 4.1: Evolution of the energy density for the defocusing case (β = 1) of GPE with
ν = ǫ = 0.01, (a) ω = 0, (b) ω = 1.0, (c) ω = 4.0, (d) ω = 16.0. Here we used the notation ρ ≡ η
and t ≡ D. This figure is provided by [5], for any further detail check the main text.
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Figure 4.2: Numerical solution for the defocusing nonlinearity with V = 0, h(η) = (γ/(γ −
1))ηγ−1. Here, to be consistent with [5] we made the following redefinitions: energy
density≡position density, ν ≡ ǫ and η ≡ ρ. (a) τ = 0.0, (b) τ = 0.2, (c) τ = 10.0. (d)
τ = 0.0, (e) τ = 0.2, (f) τ = 10.0. For the top panels D = 0.2, for the bottom ones D = 1.0.
For all panels γ = 2.0. Here SHDE stands for the hydrodynamical solution of the problem.
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Figure 4.2: (cont.) (g) τ = 0.0, (h) τ = 0.2, (i) τ = 10.0, (j) τ = 0.0, (k) τ = 0.2, (l) τ = 10.0.
For the top panels D = 0.2, for the bottom ones D = 1.4. For all panels γ = 1.4. These figures
are provided by [5], for any further detail check the main text.
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Figure 4.3: Evolution of the energy density ρ = ρ̄η = η for the defocusing NLS with V = 0,
h(η) = γ

γ−1η
γ−1. We set ν ≡ ǫ = 0.01 and γ = 1.4 and use the notation of [5] D ≡ t. The

evolution is represented for different values of τ (a)τ = 0.0, (b) τ = 0.2, (c) τ = 1.0, (d) τ = 10.0.
This figure is provided by [5], for any further detail check the main text.
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method [71] to the Schrödinger-Poisson system describing the DM in cosmological time
t. Thus they studied the Schrödinger-Poisson system [80]

iν
∂ψDM
∂t

=

[

− ν2

2a2(t)
∇2 + VDM

]

ψDM , (4.2.4)

∇2VDM =
4πGρm0

a(t)
(|ψDM |2 − 1) . (4.2.5)

Note that the quantum pressure (2.1.14) is not present in the Schrödinger equation, thus
its effects will be implicit in this discussion but directly seen in the dynamics [67].
They solved this system in one-dimension using the dimensionless coordinates

x′ =
1

ν1/2

(

3

2
H2

0Ωm0

)1/4

x , (4.2.6)

dt′ =
1

a2(t)

(

3

2
H2

0Ωm0

)1/2

dt . (4.2.7)

The potential in the Schrödinger equation then becomes

V ′ =
a

ν

(

3

2
H2

0Ωm0

)−1/2

V . (4.2.8)

Finally we write the Schrödinger-Poisson system in the new dimensionless coordinates
(dropping the primes) [80]

i
∂ψDM
∂t

=

[

−1

2

∂2

∂x2
+ a(t)VDM(|ψDM |2)

]

ψDM , (4.2.9)

∂2xVDM = |ψDM |2 − 1 . (4.2.10)

They studied these equations in a box with periodic boundary conditions x ∈ [−L/2, L/2),
where L is the box length in dimensionless units. The problem is discretized with a
spatial grid of N points separated by ∆x = L/N and so we store the wave-function
and the potential values only at the grid point. For the simulation we will report in the
following, [80] used in particular L = 100, N = 214, the coarse-graining parameter ν = 1
and a spatial resolution of the Husimi distribution (2.3.17) σx =

√
2, such as it is equal to

the velocity resolution due to the relation σu = ν/(2σx). They chose as initial conditions

ψi(x) =

√

A cos

(

2π

L
x

)

+ 1 , A = −0.1 , (4.2.11)

with vanishing initial velocity. The potential is computed from the Poisson equation by
means of Fourier transformations [80]:

V (|ψDM |2) = F−1

[

− 1

k2
F
[

|ψDM |2 − 1
]

]

. (4.2.12)

Small k corresponds to very large scale where the Universe is homogeneous, hence δDM =
|ψDM |2 − 1 = 0, which implies that no singularity is found at k = 0 [80].
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Figure 4.4: Gravitational collapse of a sinusoidal density perturbation in an expanding back-
ground cosmology with Ωm0 = 0.3. Panel (A) depicts a snapshot in the single-stream regime
which ends with a shell crossing shown in panel (B). Matter accumulation continues during the
multi-stream evolution in panel (C) and (D). Note that the collapse is not completed in panel
D as matter still falls to the center. All distributions are normalized to their current maximum
value. The insets illustrate the associated, unsmoothed density contrast on a logarithmic scale.
This figure is provided by [80], for any further detail check the main text.
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The simulation reported in Fig.4.4 studies the collapse evolution of a perturbation and
it starts from redshift zi = 500, at which [80] make sure that the perturbation begins
its gravitational collapse right at the onset of the integration. In particular the velocity
field obtained from the Husimi distribution (2.3.17) is showed for four characteristic evo-
lutionary stages. The panel (A) depicts the single stream situation in the linear growth
regime of the overdensity. Here, matter slowly starts to fall into the gravitational well
until both streams of matter meet at its origin and form a shell crossing in phase space,
shown in the panel (B). At this point in time the distribution becomes perpendicular
to the spatial axis [80] (i.e. shell-crossing happens) and the classical dust model breaks
down. As noted before the Schrödinger-Poisson model is insensitive to such events and
comfortably evolves the system forward into the multi stream regime shown in the panel
(C) [80]. Finally the panel (D) depicts the situation at present time z = 0, where matter
of outer regions is still in free fall to the center of gravity [80].
From classical analysis one expects the approach of a dynamical equilibrium state, which
is characterized by the fact that the virial theorem holds. In particular in our case of a
perturbation gravitational collapse we would have expected a stationary core surrounded
by a circularly shaped halo of matter in phase space but our phase-space distribution
in the panel (D) of Fig.4.4 does not yet show a complete relaxation to an equilibrium
state [80]. This result is common in literature, for example in [65] the evolution of the
CDM distribution is followed by means of the Vlaslov equation (collisionless Boltzmann
equation). They found that the gravitational collapse is described similarly as in Fig.4.4 .
At late times the gravitational potential approaches a stationary state, instead the spiral
curve describing the velocity field continues to wind up indefinitely [65]. This unphysical
fact can easily explained in the following way: a state supported on a smooth curve in
phase space formally has an infinite number of particles, but it never becomes stationary
in a pointwise sense. It just weakly converges to the stationary solution as the number
of point/particles under-study tends to infinity, i.e. N → +∞ where N is the number of
grid points [65]. This problem can be solved through coarse-graining, thanks to it we can
make a continuous description of the spiral and the collapse eventually end at some time,
leading to a stationary solution [80].

4.2.1 Quantum virial theorem

Since we observed that the evolution of perturbation in the LSS density can eventually
lead to a gravitational collapse and to a dynamical equilibrium state, we would investigates
the properties of this state. We stated that it is characterized by the virial theorem [65,80]
and, since we are studying a quantum fluid (or modelling a classical one with a wave-
mechanical approach), we want to present the quantum analogue of the classical virial
theorem. Following the work of [40] we need first to derive the Ehrenfest theorem for the
evolution of an observable or better of its expectation value. We denote the expectation
value of an observable A as

< A >= 〈ψ(D)|A |ψ(D)〉 . (4.2.13)

We wrote explicitly only the time dependence of the wave-function because we are inter-
ested in the evolution in time of the observable (we keep using the growth factor as time).
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The time evolution of the states of the system is governed by the Schrödinger equation

iν |ψ̇(D)〉 = Ĥ |ψ(D)〉 , (4.2.14)

with the Hamiltonian operator Ĥ = P̂ 2/2 + V̂ given by the momentum operator P̂ and
a generic potential V̂ , which in the study of baryons will include also the gas pressure.
We can now compute the time evolution of the expectation value of a generic observable

d < A >

dD
=

1

iν
〈ψ|AĤ − ĤA |ψ〉+ 〈ψ| ∂A

∂D
|ψ〉 (4.2.15)

or in a more compact form [40]

d < A >

dD
=

1

iν
〈ψ| [A, Ĥ] |ψ〉+ <

∂A

∂D
> . (4.2.16)

This result is called Ehrenfest theorem and it useful to describe the time-evolution of the
expectation value of an observable.
For a system of N particles we can define the expectation value of the quantum virial [40]
as

GQ =
N
∑

i=1

3
∑

k=1

< P̂ k
i · R̂k

i > , (4.2.17)

where i denotes the particles, k the spatial coordinates and R̂ is the position operator. In
classical mechanics the time average of the time derivative of the virial is null, from this
conservation the classical virial theorem is obtained [40]

2(T )∞ = −
(

N
∑

i=1

ri · Fi

)

∞

, (4.2.18)

where (T )∞ is the time average over infinite times [40]. We want now to compute the
time derivative of the quantum virial GQ using the Ehrenfest theorem (4.2.15), note that
since we are studying a system at equilibrium the position and momentum operators have
not any dependence on time [40], so

dGQ

dD
=

1

iν

N
∑

i=1

3
∑

k=1

〈
[

P̂ k
i · R̂k

i , Ĥ
]

〉 . (4.2.19)

First we compute the commutator with the kinetic term of the Hamiltonian, i.e.

[P̂ k
i · R̂k

i , P̂
k2

i ] = P̂ k
i R̂

k
i P̂

k2

i − P̂ k3

i R̂k
i = P̂ k

i (R̂
k
i P̂

k2

i − P̂ k2

i R̂k
i ) =

= P̂ k
i ((iν + P̂ k

i R̂
k
i )P̂

k
i − P̂ k

i (R̂
k
i P̂

k
i − iν)) = 2iνP̂ k2

i , (4.2.20)

where in the last line we used [R̂, P̂ ] = iν, which is a common result of quantum mechanics
[40]. For the commutator [GQ, V ] is easier to use the position representation [40]

[P̂ k
i R̂

k
i , V ] =

ν

i

(

∂

∂Rk
i

Rk
i V − V

∂

∂Rk
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) +Rk
i V

∂

∂Rk
i

− V − V Rk
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∂

∂Rk
i

)

=

=
ν

i
Rk
i

∂V

∂Rk
i

. (4.2.21)
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Hence the time derivative of the quantum virial is

dGQ

dD
=
∑

i

∑

k

〈P̂ k2

i 〉 −
∑

i

∑

k

〈Rk
i

∂V

∂Rk
i

〉 . (4.2.22)

The first term is clearly two times the expectation value of the system kinetic energy
T =

∑

i

∑

k〈P̂ k2

i /2〉. If we take the time average over an infinite period a bound system
in its rest frame must satisfies

(

dGQ

dD

)

∞

= 0 , (4.2.23)

because R̂i and P̂i must be bounded [40]. From this conservative law derive the quan-
tum virial theorem, using the Ehrenfest theorem to compute the time-derivative of the
quantum virial [40],

2(T )∞ =

(

N
∑

i=1

3
∑

k=1

〈Rk
i

∂V

∂Rk
i

〉
)

∞

. (4.2.24)

We recovered the virial theorem in the exact same formulation as in classical mechanics
except for the fact that the kinetic energy and potential term have to be replaced by
their expectation values. This is the condition which define the dynamical equilibrium of
a quantum system [40], such as the one which will form after the gravitational collapse
described in Fig.4.4 [80]. We have to remark that here V is a general potential, which
will include also the gas pressure when we consider the baryon matter component.

Hence in this chapter we found that the Strang splitting-time approximation applied to
the Schrödinger-Poisson system can give good numerical results in the description of the
evolution of the large-scale structure of the Universe. We showed that this approximation
have already given nice results for the description of DM in the fuzzy/BEC form, in
particular it was able to follow the whole gravitational collapse of a perturbation as showed
in Fig.4.4 [80]. We observed also that this method could provide an useful numerical
algorithm for describing the evolution of baryons density distribution, as a matter of fact
we showed that this approach was able to reproduce hydrodynamical results, at least for a
system where the only meaningful contribution was the one of the gas pressure [5], before
shell-crossing and it was able to predict also the oscillatory behaviour after the caustic
event [5], providing a way to study the multi-stream regime.
Thus we expect that a more involved numerical computation, studying the full solution
of the nonlinear Schrödinger equation with the Strang splitting method [71] presented in
the previous section, will provide very good results in the description of the evolution of
the large-scale structure of the Universe.



Chapter 5

Vorticity as a probe for FDM

In the previous chapters we presented two methods to follow the evolution of the struc-
ture of the Universe through the solution of the Schrödinger-Poisson system (2.2.42). The
first method is semi-analytical and it consists in solving perturbatively the Schrödinger
equation via quantum perturbation theory, once the results are found anyway we need
numerical integration to compute them. The second method instead is purely numerical
and it is based on time-splitting techniques for solve the non-linear Schrödinger equation.
In this chapter we depart from the main argument of this work, i.e. the evolution of
baryons under the gravitational potential of CDM. Here we stop studying baryons and
CDM and instead we study DM in the from of ultra-light axion-like particles (FDM) [30].
We then apply the Schrödinger model we described in Chapter 2 to a quantum single-fluid.
This is another interesting application of the Schrödinger model in cosmology. In partic-
ular we will depict some features related to quantum vorticity (following the work [30])
which if observed in DM halos could be a probe for this kind of DM candidates [1, 30].

We have seen that the evolution of the initial perturbations in the density field can
lead to gravitationally bound structures (e.g. the dark matter halo of Fig.4.4). In this
chapter our purpose is to study this structures at dynamical equilibrium and in particular
the formation and evolution of quantum vortices. This will continue the introduction to
rotational motions we made in Sect.2.4 and we will follow the work [30], where Hui and
collaborators studied the dynamics of vortices in light dark matter.
We observe from the relation between fluid equations and the Schrödinger one in Sect.2.1
that the Schrödinger model, which we studied in the previous chapters, can describe both
classical fluids using ν as an adjustable parameter and quantum fluid where ν = ℏ/m
is the Planck constant rescaled by the particle mass. For light dark matter candidates
(as axion-like particles [31]) the Schrödinger model we presented in the previous chap-
ters describes a real quantum fluid, hence ℏ and m takes their ordinary mean of Planck
constant and particle mass. The parameter ν = ℏ/m, which in this context can be in-
terpreted as a reduced Planck constant, keeps providing the phase-space resolution scale
through the use of the Husimi distribution (2.3.17). For very light particles the ν param-
eter sets a macroscopic scale at which quantum effects are still present, usually the scale
of quantum effects is set by the De Broglie wavelength [30] (later in this chapter we will
investigate better how this scale is set) λdB = 2πν/ṽ, with ṽ the characteristic velocity of
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the structure under study (e.g. a DM halo). Since we adopted in Chapter 2 the Husimi
function (2.3.17) as the phase-space distribution the characteristic velocity should be of
the order of the velocity resolution (it is the dispersion around the mean value of velocity)
ṽ ∼ σu, hence the de Broglie wavelength is given by λdB ∼ 2πν/σu.Here ν is no more a
free parameter so the velocity resolution (which is left free) sets the value of the spatial
resolution through σxσu = ν/2 (2.3.18), therefore σx results set to σx ∼ λdB/(4π). Since
the spatial coarse-graining results a bit smaller than the typical length λdB over which
quantum effects are present we expect that they are resolved enough to be observable in
the phase-space distribution [66]. For example the typical value of the de Broglie wave-
length inside a dark matter halo for a DM candidate with mass m = 6 × 10−24eV is
λdB ∼ 0.06Mpc which is a significant fraction of the typical size of a galaxy [30]. This
mass, used by [30] mainly to have a better resolution due to the large λdB is a bit smaller
than the more commonly predicted FDM masses, a recent work [44] constraint the mass
from the observational data of the rotation curve of the Milky Way (MW) galaxy finding
m = 2.5+3.6

−2.0 × 10−21 eV from their model , which have a λdB ∼ 0.0025 kpc if the typical
velocity would be the same of the case studied by [30] and it has to be compared with
the diameter of the Milky way stellar disk ∼ 52− 61 kpc [62]. And giving a lower bound
m ≥ 10−23 eV [44]. A theoretical lower bound for the mass range can be provided by
the study of the inner gravitational potential of the Milky way m . 10−19 eV [6]. These
ultra-light dark matter candidates are usually called fuzzy dark matter (FDM) [31].
We will see later that the quantum vortices predicted size is comparable with the de
Broglie wavelength [30], and then we expect to survive to the coarse-graining procedure
and to be observable as sub-structures in DM halos [30]. Thus in the following we want to
investigate the properties of quantum vortices in order to use them as a probe for FDM,
i.e. if sub-structures with the properties of quantum vortices will be found by DM halos
observation it would be one more reason for the FDM hypothesis.
Since in the self-gravitating DM approximation, i.e. neglecting the baryon gravitational
potential, the DM component does not feel the baryon component in this chapter we can
concentrate ourselves to the study of a single-fluid model in order to study the quantum
vortices properties. We know that the baryon fluid is not formed by ultra-light particles
but by protons (and electrons), then this study is restricted to DM. For be more gen-
eral as possible we will provide results for both a collisonless DM and a collisonal one,
thanks to the results we obtained from the baryon study in the previous chapters, thus
extending the work [30] to the possibility of the presence of pressure effects. The study of
pressure effect for DM is justified by the fact that the effects of velocity dispersion can be
modelled by an effective pressure, in particular it would be possible also to define a Jeans
wavelength related to the velocity dispersion [57]. For be consistent with the previous
chapter we will keep the equation of state (1.2.17), but since we will show in the following
that corrections due to the pressure presence are mostly related to the size of the Jeans
wavelength we expect that it would not be difficult to generalize our results to a different
equation of state. In the following we will refer to this problem as just pressure, but we
have to remember that it is actually generated by dark matter velocity dispersion.
We have seen that in the non-linear regime of perturbations the fact that the matter
density field is given by the modulus square of the wave-function ρ = ρ̄|ψ|2 leads to inter-
ference patters, as shown for example by the free particle approximation in Fig.3.5, thus
a galactic halo, which forms after shell-crossing and so in the non-linear regime, typically
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consists of a superposition of ψ waves leading to order unity fluctuations in the mass
density field [30].
In Sect.2.4 we showed that the vortices can arise in regions of null density [37], hence
we are particularly interested in the destructive interferences between ψs which can gen-
erate the conditions necessary to the creation of vortices. These destructive loci behave
essentially like topological defects around which the phase of the wave-function, i.e. the
velocity potential, jumps or has a non-trivial winding [30]. At this point we can already
make an important observation: gravity is fundamental in the vortices generation because
it is under its effect that the density perturbations grow in the non-linear regime up to a
point to form sufficiently strong interference to make the density vanish [30]. But once the
vortices arose, the gravitational effects are negligible at least near the vortex lines since
there the matter density is very low [30]. Anyway later we will treat this observation more
rigorously. We would like also to remember here that the Kelvin-Helmholtz theorem for
the conservation of the vorticity flux (2.4.4) is a global condition, locally the vorticity
does not have to be conserved if the flow intersect a point where the fluid parametrization
(density and velocity) is ill-defined, i.e. a topological defect [73].
Since the wave-function is a function of D spatial variables, the vanishing of either its real
or imaginary part generically occurs along a co-dimension one surface. These two surfaces
will generically intersect along a co-dimension two surface, i.e. a string in D = 3. These
strings are vortices from the fluid perspective [30]. Since these surfaces generically are
infinite also the intersection string is but it would be unphysical to have vorticity which
spreads out up to infinity, thus we expect these strings to close up in vortex rings [30]. In
lower dimensions (or in non-generic circumstances in three spatial dimensions) the total
wave-function can vanish along a lower co-dimension surface, leading to the appearance
of a domain wall [30]. In the following we will able to show that the phase and density
close to a defect behave in characteristic ways.
In the vorticity study we will apply a crude approximation, we neglect the self-interaction
of dark matter, i.e. both the gravitational potential and the pressure (this term will have
a more involved study since its effects are ruled by the Jeans wavelength, thus we will
show that on some scale it is important to keep trace of its action), which actually is
related to velocity dispersion. We can justify this approximation from the fact that near
vortex lines the matter density is very low, thus both the gravitational potential (given
by the Poisson equation (2.2.24)) [30] and the pressure (1.2.17) will be small. We will see
later how far from the vortex line this approximation holds. The opposite regime (called
Thomas-Fermi regime) is well studied in literature [4,10,36,61,69,81] for BEC DM, where
self-interactions dominates over the quantum pressure [30]. But for weakly-coupled dark
matter is the ”free particle” regime which is more interesting on galactic scales [30].

5.1 Near-defect regime

We have seen in the introduction to this chapter that defects are present in the fluid
variables where the wave-function vanishes and so the matter density. Even if the dynam-
ics of the defects is in general very complicated because is described by the non-linear
Schrödinger-Poisson system, in the neighbourhoods of the defect we can depict an univer-
sal behaviour of the defects thanks to the vanishing wave-function. Since in this region
the matter density field is very low we assume that the gravitational potential and the
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gas pressure are negligible, thus the following treatment of the defects would be valid for
both collisional (as we stated in the introduction here DM is not collisional but we model
velocity dispersion as pressure, for simplicity we use anyway the notation collisional)
and collisionless DM. In Sect.5.4 we will depict the correction due to pressure effects for
collisional DM.

Domain walls in D = 1

It is instructive to begin from the simplest case, i.e. the study of a defect in one spatial
dimension. We want to show that the behaviour of the fluid variables in the vicinity of
the defect are universal. In this dimension the defect can have only co-dimension one and
thus it is a wall [30].
We assume that the density vanishes at some arbitrary time D and at the point x = 0,
hence both the imaginary and the real part of the wave-function have to vanish at this
point of space-time. Now for simplicity we study a static configuration, which does not
any more evolve in time. In the nearby of the defect x = 0 we can Taylor expand the
wave-function around its null value ψ(0) = 0

ψ(x) ∼ x∂xψ(0) + O(x2) , (5.1.1)

where we assumed that ∂xψ(0) 6= 0 and the higher-order corrections are negligible at
small distances from x = 0 [30]. In order for ψ to be well-defined when passing from the
0 its phase must jump by π (or an odd integer multiple of π), so that ψ changes its sign
crossing x = 0. This indicates that there is a wall defect in x = 0 [30].
From the Taylor expansion we can also extract the behaviour of the density near the
defect [30],

ρ = ρ̄|ψ|2 ∼ x2 . (5.1.2)

Hence the fluid density grows like x2 in the neighbourhood of the defect and this result
derive just by the fact that the wave-function vanishes at the defect, but not its spatial
derivative, therefore it is quite general [30].

Higher dimension defects

In dimensions higher then one the condition for the vanish of the real and the imaginary
parts of the wave-function set the co-dimension of the defects to two, i.e. each condition
corresponds to a two dimensional surface [30]. Therefore the defects, which are given by
the intersection of these two surfaces, are lines. Since we assume that at the infinity there
is no vorticity we expect these lines to close in vortex rings. This is consistent for example
with our expectation that dark matter haloes (or baryon galaxy clusters) are of finite size
and thus are able to support only vortex loops of finite extent [30].
Following the study of one-dimensional defects we can Taylor expand the wave-function
in the vicinity of a point where the wave-function vanishes, we choose arbitrary this point
to be the origin x = 0 (we keep studying static configurations).

ψ(x) ∼ x · ∇ψ(0) + ... (5.1.3)

Since in this higher-dimensional case the wave-function vanished along a whole line the
wave-function spatial derivative has to vanish along the line direction. Without loss of
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generality we take the tangent to the line to be pointing along the z direction (we are
just defining a reference frame). We can also introduce a set of complex coordinates in
the transverse plane [30]:

χ ≡ x+ iy , χ̄ ≡ x− iy . (5.1.4)

Then we can rewrite the Taylor expansion in the new coordinates as

ψ(χ, χ̄) ∼ χ∂̄ψ(0) + χ̄∂ψ(0) + ... ≃ aχ+ bχ̄+ .... , (5.1.5)

where ∂̄ = ∂
∂χ̄
. Since the derivative ∂ψ(0) and ∂̄ψ(0) are just constants we renamed them

as a and b for shortness of notation. From the fact that x = 0 is a zero of ψ and from the
argument principle, generalized to harmonic complex function [16], it can be shown that
when |a| > |b| the phase winds by +2π as we traverse a circle enclosing the origin (and so
the defect), while in the case |a| < |b| the winding is −2π [30]. Hence both of these cases
describe vortices with winding +1 or −1.
Then we can obtain the behaviour of the density field in the vicinity of the defects as we
have done for the 1-dimensional wall.

ρ ∼ ρ̄|ψ|2 ∼ Ax2 +By2 + Cxy , (5.1.6)

where the parameters A,B,C can be solved from a, b but their precise form is not im-
portant, in any way they are constants. Hence the density scales roughly as ∼ r2⊥, where
r⊥ is the radius in the cylindrical coordinates (i.e. the distance from the vortex), but
it is not in general axially symmetric [30]. Lines of constant density are ellipses in the
plane transverse to the vortex. We can also extrapolate a rough estimate for the velocity
profile near the defect deriving the velocity field from the first moment of the Wigner
distribution (2.3.14).

|uW | = 1

|ψ|2
∣

∣ψ∇ψ̄ − ψ̄∇ψ
∣

∣ ∼ ∇ψ
ψ
∼ r−1

⊥ (5.1.7)

The Husimi velocity (2.3.24) would correspond to a coarse-graining of this result and we
expect that if the spatial resolution does not exceed the near-defect region (where we can
neglect pressure and gravity) the velocity scaling is conserved. For the ultra-light particles
we are studying in this chapter (FDM) the quantum effects are present on scales which
are a considerable fraction of galaxy size [30], thus we expect that the near-defect regime
survives to coarse-graining, at least using a suitable spatial resolution.
Therefore from the velocity scaling we expect the fluid to have very high velocities near
the vortices.
We still have to consider the case |a| = |b|, this time the defect is not a vortex but it is a
domain wall, where the phase jumps by π as we cross the wall [30]. Lastly if |a| = |b| = 0
we should keep the next order term in the Taylor expansion (5.1.3) and the defect is
typically a vortex of higher winding [30].
Using these simple results we can infer also the non-static configurations. First we note
that the time derivative of the wave-function is, obviously, provided by the Schrödinger
equation, which in the proximity of the defect we can approximate to

iν
∂

∂D
ψ(x, D) ≃ −ν

2

2
∇2ψ − 3e(ΩDM)

2D
φ . (5.1.8)
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To keep the problem simple enough to be tractable with analytical tools we limit our
study (in this non-static case) to scales small enough to neglect the effects of the Universe
expansion. This approximation is good enough for the gravitational bound objects as for
example galactic halos [30].
In this scenario the growth factor is constant so we should use the cosmological time, and
more the velocity potential does not appear in the potential term in the right-hand side
of the Schrödinger equation. Then the Schrödinger equation (2.1.23) in a non-expanding
Universe with our previous approximations reads

iν
∂

∂t
ψ(x, t) ≃ −ν

2

2
∇2ψ(x, t) . (5.1.9)

Finally we can Taylor expand the wave-function near the defect at x = 0, t = 0.

ψ(x, t) ≃ t
∂ψ(0)

∂t
+ x · ∇ψ(0) ∼ iνt

2
∇2ψ(0) + x · ∇ψ(0) + ... , (5.1.10)

where 0 denotes the origin of both space and time. As before near the defect we can neglect
higher order terms if we assume that the first order ones are not null [30]. We can find the
location of the defect if we set (5.1.10) to 0 for small spatial and time deviations [30], i.e.
x ∼ ∆x and t ∼ ∆t. In this manner we can obtain the vortex velocity, it is the velocity
of the vortex and not of the surrounding fluid because we imposed ψ = 0 which defines
the defect.

ẋ · ∇ψ(0) = − iν
2
∇2ψ(0) (5.1.11)

By dimensional arguments we can obtain the velocity scaling [30], we call R the charac-
teristic scale over which the configurations varies,

vvortex ∼
ν

R
(5.1.12)

For curved vortices the characteristic scale is of order of the curvature, hence we expect
that the velocity is inversely proportional to the radius of the curvature of the vortex R.
This is a common result in superfluids, where smaller vortex loops move faster [30].

5.1.1 Vortex neighbourhood

Now we have to answer to the important question on the limits in the validity of the
assumption of negligible gravitational potential and gas pressure. To understand where
the effects of this last two terms stop to be negligible we have to compare them with
respect to the kinetic term of the Schrödinger equation, i.e. the Laplacian. We want to
study structures at equilibrium, which are characterized by the virial theorem (4.2.24).
Since in the present work we are not interested in the description of what happens far away
from the vortex but just to where we can neglect gravity and pressure we can consider only
the combined effect of these two quantities in an effective potential Veffective. We make a
crude confront between this effective potential and the Laplacian by means of dimensional
arguments. Clearly the Laplacian term has dimension ν2R−2. For the potential instead
we use the virial theorem (4.2.24).

R×R−1Veffective ∼ Veffective ∼ 2T ∼ ṽ2 , (5.1.13)
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where ṽ is the characteristic comoving peculiar velocity of the virialized structure sur-
rounding the vortex. This characteristic velocity is of the same order of the velocity
dispersion σu which characterize the phase-space resolution in the Husimi distribution
(2.3.17), hence we can assume ṽ ∼ σu. We can relate the velocity to an effective de
Broglie wavelength related to the coarse-graining scale through the parameter ν.

λdB ≡
h

mv
=

2πν

ṽ
∼ 2πν

σu
, (5.1.14)

where h is the Planck constant and we used the fact that we defined ν = ℏ/m. Then the
effective potential in terms of the de Broglie wavelength is Veffective ∼ ν2λ−2

dB. The limit
of the near-defect regime is found equating this last expression with the kinetic term of
the Schrödinger equation ν2R−2 which gives

R ∼ λdB . (5.1.15)

Then we found that this simple regime ends at a distance equal to the de Broglie wave-
length from the vortex [30]. Outside this region the effects of the gravitational potential
and of the gas pressure will change the scaling of the density field and we expect this
density field to vanish again far away from the vortex, for example as r⊥ exceeds the size
of the halo [30].
Another important observation is that this results is exact only for virialized structures.
For structure which have not yet reached the virialization also the Jeans scale has a role
in determining the dynamics, we know that for scales bigger than λJ gravity dominates
the effective DM pressure and leads the region to a gravitational collapse and eventually
to virialization [64]. Therefore we expect that during this collapsing regime the eventually
arose vortices do not follows the properties stated previously. Instead for scales smaller
than the Jeans wave-length the pressure dominates the gravity and so we expect that the
pressure can destroy the quantum vortices, since they are seen as sub-structures in a DM
structure and the pressure can avoid their formation as in Jeans gravitational instability
theory [50]. In Sect.5.4 we will study the region near the critical behaviour λdB & λJ
such that the pressure term is not exploding (as it will on smaller scales due to Jeans
instability theory [50]) but it gives competing contribution to the dynamics with respect
to the kinetic energy (as expected by Jeans instability theory [50]). Instead in the regime
λdB < λJ we expect that the pressure interdicts the formation of the vortices as it prevents
the formation of bounded structures in the Jeans instability theory [50], always following
the results of Jeans theory we expect that for λdB >> λJ the pressure is negligible with
respect to gravity and so the results of collisionless FDM [30] holds also for FDM with not
negligible velocity dispersion in this last regime. We will depict in Sect.5.4 the pressure
corrections to the near-defect properties in the regime λdB & λJ .
Since here the coarse-graining is done on about the de Broglie scale, σx ∼ λdB/4π due
to the phase-space resolution condition (2.3.18) σxσu = ν/2 as we already mentioned in
the introduction at the chapter, it will not introduce additional regime of solutions with
respect to the already mentioned λdB ⋚ λJ .
All the results we derived in this section are universal in the regime λdB >> λJ , i.e. do
not depend on boundary conditions (e.g. the form of the external potential) or on initial
conditions. They hold for any vortex/defect after its generation.
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5.2 Simple vortex solutions

In the previous section we presented some universal properties of vortices and of the fluid
near them, since in this region the effects of gravity and pressure are negligible. In this
section we want to show that solutions to the Schrödinger equation with these properties
actually exist, even if there were no vortices at the beginning. The pressure effect will be
investigated in Sect.5.4.
We continue to limit our study to the low-density region, neglecting gravity and pressure,
so the problem is analytically tractable. Therefore we need to solve just the Schrödinger
equations and not the Poisson one. We have to continue to use also the approximation
we introduced in the study of non-static configuration, i.e. we study scales small enough
to neglect the expansion of the Universe. Thus we use the cosmological time instead of
the growth factor. With these assumptions we will able to study the fluid flow pattern
around a vortex ring.

Domain walls

We begin searching solutions that describe domain walls, we have seen that generally these
defects arise in one spatial dimension but also in some particular case in three dimensions
(anyway this is not the case of a gravitational collapse [30]).
If we focus on a static defect in one dimension in the low-density region the Schrödinger
equation takes the simple form

∂2xψ = 0 , (5.2.1)

with general solution [30]
ψ = x+ b , (5.2.2)

where b is a constant. We can set b = 0 choosing the origin appropriately, which means
that the defect appear at x = 0 where ψ and ρ vanish. To make more apparent the
properties of the defect we rewrite ψ as an amplitude and a phase [30]

ψ = |x|eiθ, . (5.2.3)

The phase jumps from −π for x < 0 to +π for x > 0. Then we recovered the expected
properties from the previous section treatment, i.e.

• ρ ∝ |ψ|2 ∝ x2 where |x| is the distance to the defect.

• The phase jumps around the defect from −π to +π-

But this solution has an evident problem, the density diverges far away from the defect.
We expect that the gravitational interactions will correct this irregularity at infinity,
leaving unchanged the behaviour of density and velocity near the defect [30].

Vortex rings

Since vortices are localized at the intersection where both the real and imaginary parts
of the wave-function vanish, we can visualize the evolution of vortex configurations by
considering how these vanishing loci evolve in time.
Here we will study only static-configuration because are the only ones admitting analytical



5.2. SIMPLE VORTEX SOLUTIONS 103

solutions. When keeping the time evolution in the near-defect region the Schrödinger
equation describes the free particle approximation which need (outside the semi-classical
limit) a numerical solution as we showed in Cap.3.
The simplest solution in three dimension should be an infinitely long straight vortex [30],
thus we begin looking for a time-independent axial-symmetric solution. Hence we have
to solve a Laplace-like equation in the xy plane. It is convenient to work in the complex
coordinates we defined in (5.1.4), then the Schrödinger equation becomes [30]

∂∂̄ψ(χ, χ̄) = 0 . (5.2.4)

This equation is solved by an arbitrary (anti-)holomorphic function, e.g. ψ ∝ χn with n
an integer [30]. This solution has a zero of order n in x = y = 0 and thus describes a
vortex with winding n, due to the argument principle [16]. Similarly the anti-holomorphic
solutions ψ ∝ χ̄n describe anti-vortices of winding −n [30].
If we study the simplest vortex, of winding 1, which is described by the wave-function

ψ = χ = x+ iy , (5.2.5)

we observe that the real part vanishes over the yz plane located at x = 0 and the imaginary
part over the xz plane at y = 0. Therefore the defect, given by the intersection of these
two planes is a line along the z axis. For any purely holomorphic or anti-holomorphic
vortices the velocity flow is circular around the position of the defect and it winds +n or
−n time as we travel in a closed loop [30].
We can study also more complicated solutions of (5.2.4), for example an admixture of a
vortex and anti-vortex solutions [30]

ψ ∝ χ+ αχ̄ . (5.2.6)

Similarly as in (5.1.5) in the previous section the solution will behave differently for
different values of α. For α < 1 this describes a winding n = 1 solution with an elliptical
velocity. For α > 1 it describes a winding n = −1 vortex again with elliptical velocity. In
the degenerate case α = 1 the wave-function is purely real and thus this solution describes
a domain wall in the yz plane where the phase jumps by π as we cross the wall [30].
Hence we showed that the Schrödinger-Poisson system, in the vicinity of the defects,
actually admit solution with the properties we described in the previous section. We did
not show any solution for the non-static case because it is not possible to obtain analytical
solutions. Anyway this case corresponds to the free particle approximation and from the
numerical simulation made by [73] and reported in Fig.3.5 we actually see that vortices
of winding n = ±1 arise in regions of vanishing density.

Moving vortices

Until this point we found only stationary vortex configurations as solutions of the Schrödinger
equation, but we can exploit the symmetries of this equation to obtain at least solu-
tions with vortices moving at constant velocity [30]. A Schrödinger group transformation
is defined as a transformation under which the wave-function continues to satisfy the
Schrödinger equation, i.e.

ψ → T [ψ] ≡ ψ̃ with iν ˙̃ψ = Hψ̃ . (5.2.7)
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In general these transformations can act quite non-trivially on the wave-function and
lead to the most variegate vortex motions, for a more in depth study of Schrödinger
transformations check [53]. If we restrict to constant velocity motions we only need the
transformation of the wave-function under Galilean boosts [30]:

ψ(x, t)→ exp

(

−ix · v− i

2
v2t

)

ψ(x+ vt, t) (5.2.8)

where we keep neglecting the Universe expansion and so we use the cosmological time.
The velocity v = dx/dt is the boost parameter. Since the gravitational potential and the
pressure do not contain any derivatives it is immediate to see that this transformation is
invariant under the combined action of the time derivative and of the Laplacian and so
under the Schrödinger equation. We can show for example the effect of this boost on an
infinitely long vortex, with boost parameter v in the x direction [30]

ψ(x, t) = exp

(

−ixv − i

2
v2t

)

(x+ vt+ iy) . (5.2.9)

Hence now the vortex moves with velocity −v along x. Note that actually the whole
fluid is boosted under these particular transformations, so they do not represent solutions
where only the vortex is moving through a fluid at rest [30]. Beside be so simple these
solutions can lead us to interesting observations on vortex motions.
The infinitely long vortex lines, as (5.2.9), are the simplest configurations, and they cap-
ture some important aspects of the physics, but we do not expect that these precise
configurations will arise in dark matter haloes or in baryon bounded structures, which
are of finite extent. As we have seen a more realistic situation is the one of vortex loops.
Therefore we would like to observe the properties of these rings, at least in some simple
scenario. The simplest example is given by [30]

ψ(x, t) = r2⊥ −
l2

4
+ 2i

(

−az + t

q

)

, (5.2.10)

where r2⊥ = x2 + y2, a and l are parameters with units of length, q has dimension [t/L2].
The real part of the wave-function vanishes on a cylinder centered in the z axis and with
diameter l, instead the imaginary part vanishes on the xy plane with a z coordinate that
increases at a constant rate with time. The vortex is given by the intersection of these two
surfaces and then it is a ring of radius l/2 moving at vring = (aq)−1 in the +z direction.
Note that this velocity is the speed of the ring as measured relative to the rest frame of
the fluid very far from the vortex [30].
To understand the properties of the density and velocity fields near the vortex we should
study the wave-function (5.2.10) in a region such as r⊥ = l/2 + δr⊥. At the initial time
t = 0 the near-ring wave-function is [30]

ψ(x, 0) = lδr⊥ − 2aiz . (5.2.11)

From the variables (δr⊥, z) we can define a plane and describe it with the complex coor-
dinates [30]

u = δr⊥ + iz , ū = δr⊥ − iz . (5.2.12)
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Then (5.2.11) becomes

ψ(u, ū, 0) = (l/2− a)u+ (l/2 + a)ū . (5.2.13)

As we previously saw a flow around a ring described by such wave-function is elliptical
for a generic value of a, corresponding to a mix of a vortex and anti-vortex, but it will
always have winding −1 because the coefficient of ū is always the greatest. For a = l/2,
the near-ring geometry is precisely that of a pure vortex of winding −1 and in this case,
there is a relation between the size of the ring and its velocity, vring ∼ (ql)−1, which is
consistent with the results obtained by the Taylor expansion in the previous section and
with the behaviour of superfluid vortex rings [30]. We do not expect realistic vortex rings
to be circular, but anyway we generically expect the characteristic scale that governs the
dynamics, a, to continue to be a ∼ l, so that the relation between size and velocity per-
sists [30].
We pass now to the study of the density profile near the vortex. Very close to the ring,
where (5.2.11) holds, the density grows as r2⊥ as expected [30]. However very far from the
ring we have to use the full wave-function (5.2.10) and the density field is anisotropic. In
particular on the plane of the ring the density grows like r4⊥, instead in the transverse
direction it grows just as z2. Anyway these scaling depend on the fact that the ring in
the solution lies in a plane, thus we do not expect them to hold in more realistic situ-
ations [30]. The only robust result is the r2⊥ behaviour of the density in vicinity of the
ring, which is provided by the smallness of the distance from the ring δr⊥ [30].
Another interesting fact on vortices is the fact that they can appear and disappear dynam-
ically. We can analytically observe this property considering the nucleation of a vortex
ring. For example we can study the wave-function [30]

ψ(x, t) = r2 − l2

4
+ i

(

−lz + 3
t

q

)

, (5.2.14)

where r2 = x2 + y2 + z2. The real part of the wave-function vanishes over the surface of a
sphere and the imaginary part over a plane moving in the z direction. Hence this solution
describes the nucleation of a vortex ring at x = y = 0, z = −l/2 at t = −ql2/6, the ring
moves in the z direction with velocity v = 3/(ql) and its radius at height z is given by
R =

√

l2/4− z2. At time t = ql2/6 the vortex re-combines and annihilates. We expect
that the velocity of the vortex increases as the size of the ring decreases. This property is
recovered because, besides the velocity along z being constant, the vx and vy components
of the velocity change as a function of its size, when the ring shrinks to 0 the velocity
actually becomes very large [30].
Until this point we showed simple solutions of the Schrödinger equation for illustrate the
main properties of vortices. In Sect.2.4 we showed that in a quantum fluid the vortices
have to arises in couples with opposite winding. Then we want to show that such solutions
actually exist. For example we can take a wave-function of the form [30]

ψ(x, t) = x2 + y2 − l2

4
+ 2i

(

− lx
2

+
t

q

)

. (5.2.15)

The real part vanishes over a cylinder of radius l/2 with center in the z axis and the
imaginary part over a yz plane moving with time. For t > −ql2/4 no vortex is present, at



106 CHAPTER 5. VORTICITY AS A PROBE FOR FDM

t = −ql2/4 a vortex-antivortex pair nucleate at x = −l/2, y = 0 [30]. They move around
the ring x2 + y2 = l2/4 in opposite directions and recombine at t = ql2/4, after which
they annihilate. Thus the nucleation of a vortex-antivortex pair is actually a solution of
the Schrödinger equation, but in a real scenario it would take a much more complicated
form with respect to (5.2.15) [30].
The last case we want to investigate is the intersection between two vortices. The generic
behaviour of the analytic solutions we have considered so far is for the vortices to re-
connect whenever they come into contact, as opposed to becoming frustrated and forming
a defect network. We can describe the collision between two vortex lines with the wave-
function [30]

ψ(x, t) = (x+ iy)(y + iz)− t

q
. (5.2.16)

At t = 0 this describes two vortex lines oriented along the z and x axes which intersect
at the origin. Instead if we watch the full time evolution it describes two cusped vortices
coming together to the point x = 0 at time t = 0, at this time the two cusped vortices are
indistinguishable from two infinitely long vortex lines intersecting. Also for more complex
configurations, involving vortex rings, the pinch off behaviour at the intersection seems
to hold [30].

5.3 Numerical simulations

To show that all the vortex properties present in the previous section actually appears
in cosmological scenarios we present some numerical simulations done by [30]. Hui and
collaborators numerical studied with the ”SPoS” code [41] the Schrödinger-Poisson sys-
tem in three spatial dimensions for DM only. In order to study the vortex rings in detail,
they focused on simulations with a small box size (such as have a good spatial resolution)
and somewhat artificial initial conditions chosen to result in a collapsed halo. In all cases
they studied, there are no vortices in the initial conditions. Yet, vortices generically ap-
pear after the gravitational collapse brings about a superposition of waves in a virialized
halo [30]. To identify vortex lines in a simulation output we need to look for location
of high vorticity ω = ∇ × v. Since we showed that vortices arise in region of vanishing
density we imagine that we could use also such condition in order to search for vortices.
But from the simulations [30] observed that sometimes regions with low density also have
a small vorticity, hence the small density condition alone is not a sufficiently robust indi-
cator of vortex lines. Therefore the search via high-vorticity regions is more precise.
After a vortex line is identified we should check that the phase does have the required
characteristic winding around it. This is an important feature because, given limited
resolution, it might be difficult to verify that a particular point has low density or high
vorticity, but the winding phase is something that can be checked in the neighbourhood
of that point and is therefore robust. Then [30] grouped the discrete grid points cor-
responding to high vorticity ω into vortex lines using DBSCAN (Density-Based Spatial
Clustering of Applications with Noise) algorithm [17].
We begin the numerical study with a fairly simple configuration with some symmetries,
an halo (remember that the simulations here presented regard just collisionless dark mat-
ter) which forms from the coalescence of four evenly spaced density peaks. The three-
dimensional computational box in which the simulation is ran has a length of L = 0.5Mpc
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Figure 5.1: Numerical simulation of a halo formed from the collapse and merger of a symmetric
configuration of four Gaussian peaks. (a) Spherically averaged density profile (as a function of
radius) of the virialized halo that forms from the coalescence of the peaks. (b) Vortex rings
formed in the same halo. This figure is provided by [30], for any further detail check the main
text.

on each side. Hui used dark matter particle of very low mass m = 6× 10−24eV, which is
consistent with the fuzzy DM proposal. Anyway all the results we derived in the previous
sections are mass independent thus we expect that also the properties observed in the
simulations are not limited to the mass scale in consideration. Setting the mass to a so
low value has the advantage that the de Broglie wavelength is well-resolved already with
a simulation grid of 2563 points [30]. As we assumed in the derivation of the vortex prop-
erties, the Universe background expansion is neglected in the simulation. On the scales
under consideration this assumption holds quite well because the expansion effect is by
far not the dominant one [30]. The density peaks are initialized to a Gaussian profile

ρ = 250ρ̄ exp

[

−
(

r− rc
r0

)2
]

, (5.3.1)

where r0 = 0.05L is the radius of the Gaussian core, rc denotes the position of the peak’s
center and ρ̄ is the background density.
The beginning configuration is set such as the four peaks are placed on the vertices of a
square chosen to lie in the x = 0 plane and centered at the origin, with a side length of
L/10. The initial wave-function is chose to be real ψ =

√

ρ/ρ̄, thus both the initial velocity
and initial angular momentum are null. The simulation results are presented in Fig.5.1,
provided by [30]. The panel (a) shows the density profile of the quasi-stationary dark
matter halo that forms from the merging of the four initial peaks under the influence of
gravity. A soliton core, i.e. a region characterized by a coherent and stable configuration
of the DM where the density is almost constant, is formed in the inner region of size
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Figure 5.2: More detailed views of a halo depicted in Figure 5.1, formed from collapse of a
symmetric configuration of four Gaussian peaks. (a) A zoomed-in slice of the density field in
the yz plane at x = 0.05L, showing vortex rings (where the density vanishes) observed near the
halo center. (b) A zoomed-in slice of the phase Θ in the yx plane at z = 0. The colors show the
phase value and the arrows trace the velocity field in the plane. The green and yellow circles
indicate where the circular and square vortex rings in the left panel intersect the z = 0 plane.
Note that there is a pair of such rings at x = 0.05L, and a pair at x = −0.05L, due to the
symmetric nature of the initial condition. This figure is provided by [30], for any further detail
check the main text.

r ∼ 0.01L, this is a common wave-mechanical features of FDM [30] and this inner profile
is found to fit very well the cores observed in some dwarf galaxies [49]. Instead in the
outer region the density falls approximately as r−3 [30], this scaling fits quite well the
Navarro-Frenk-White (NFW) [52] profile which is the most commonly used profile for
DM halos and it derives from fitting N-body simulations.
The (b) panel of Fig.5.1 shows the vortex lines identified in the collapsed halo with the
previously described method. Since the soliton core is smooth and dense the vortices can
be found only outside it [30]. As expected from the previous considerations we have done
on the defects in three dimensions, all the vortex lines found are in the form of vortex
rings, there is no straight line.
From the measure of the three-dimensional velocity dispersion of the halo outside the
soliton core [30] inferred a de Broglie wavelength of λdB ≡ (2π)/(mσu) ≈ 0.12L. We have
to observe that the soliton core size of ∼ 0.01L is in closer to λdB/(2π) rather than just
λdB, so a bit smaller than expected. Another interesting fact is that Hui and collaborators
showed that it is possible to predict the number of vortices per de Broglie volume (λ3dB),
it should be about 1 for de Broglie volume, and their prediction was of ∼ 19 rings with
respect to the 20 rings found in the simulated halo.
In Fig.5.2 [30] presented two zoomed-in slices of the DM halo of Fig.5.1 for the density
and phase fields. The panel (a) shows the density slice in the yz plane at x = 0.05L,
the magnitude is represented by the color. Since the halo is generated from symmetric
initial conditions the plane at x = −0.05L looks similar. Near the high density center
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Figure 5.3: Density and velocity profiles around four vortices in of Fig.5.1(b). The profiles are
cross-sectional, in the sense that they depict (circularly averaged) profiles on a plane perpen-
dicular to the vortex, intersecting the vortex at some point. (a) Density profiles (solid lines) in
the radial direction; the dashed lines indicate ρlocal(r⊥/λdB)

2, where ρlocal is the mean density
interior to the location of the vortex, and r⊥ is the distance to the vortex line. This shows
that the near-vortex density profiles obey the expected r2⊥ scaling. (b) Velocity profiles (solid
lines); the black dashed line shows the tangential (circulation) velocity v‖ ∼ 1/r⊥. The vertical
dotted line in both panels shows the scale of λdB. Lines of the same color on the left and right
correspond to the same vortex. This figure is provided by [30], for any further detail check the
main text.

we can observe a circle and a square loop of low density (in blue), these correspond to
two vortex rings. The panel (b) shows the phase on the yx plane at z = 0, its magnitude
is represented by the color and the arrows indicate the velocity field projected on the
plane. The green and the yellow circles shows respectively where the circular and the
square vortices intersect the z = 0 plane, clearly there is a symmetry between the points
at x = 0.05L and the points at x = −0.05L. From this plot we can observe as the
phase smoothly varies from −π to +π around each vortex, with winding number ±1
(the velocity around the green and yellow circles rotates in opposite directions) hence the
quantum Kelvin-Helmholtz theorem (2.4.5) is respected.
Lastly we would like to see if the r2⊥ scaling of the density and the r−1

⊥ of the velocity in
the vicinity of the vortex are present in the numerical simulation. Hui and collaborators
plotted in Fig.5.3 the density and velocity profiles close to four different vortices seen in
the halo presented in Fig.5.1, here each vortex is defined by a color. The profiles are on a
plane oriented perpendicular to the local vortex line direction at the intersection between
it and the plane, then the profiles are also circularly averaged around the vortex [30].
The panel (a) shows the density profile as a function of the distance from the vortex
r⊥. As comparison to the simulation profile for each vortex the expected density profile
ρ = ρlocal(r⊥/λdB)

2 is plotted as a dashed line, where ρlocal is the mean mass density at
radii smaller than the location of the corresponding vortex. We can thus observe that
the r2⊥ scaling is a good approximation close to the vortex but it generally breaks before
r⊥ reaches the de Broglie scale (represented by the vertical dotted line in Fig.5.3). For
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all the vortex bumps are present in the density profile, these correspond to distances at
which one encounter the high-density halo core [30]. The panel (b) shows the tangential
velocity v‖ this time as comparison is reported the profile v‖ = 1/(mr⊥). Also in this
case the expected profile describes well the simulation results near the vortex and it ends
again before reaching the de Broglie scale.
To be sure that all the properties we have seen for the halo depicted in Fig.5.1 does
not arise just from the symmetric initial condition, [30] studied also a halo resulting
from the coalescence of 10 initially identical peaks randomly placed close to the center of
the simulation box. They found that all the feature founded with the symmetric initial
conditions are conserved, the vortices are just less symmetric.
For clarity we report here all the features we found in the study of vortices and the velocity
and the density fields around it [30].

• All vortices close in loops.

• The phase winds in the cross-section of each line with winding number n = ±1.

• The density profile scales as r2⊥ near the vortex.

• The velocity profile scales as r−1
⊥ near the vortex.

• The number density of vortices is roughly one per de Broglie volume λ3dB.

Hence we confirmed the theoretical properties depicted in the previous sections with
numerical simulations for dark matter. If these properties would be confirmed observa-
tionally it would be a prove for the possibility of the existence of axion-like dark matter
(FDM).

5.4 Pressure effects

In the previous sections we depicted the properties of vortices and of the density and
velocity fields near them following the work [30]. We additionally observed that in this
near-defect regime we expect the collisional and the collisionless DM to behave similarly.
In particular we showed that this regime holds for distances from the vortex smaller than
an effective de Broglie wave-length in the case of virialized structure. But we know from
the Jeans gravitational instability theory (briefly depicted in App.A1) that the gravita-
tional collapse and so the generation of bound structures is not expected to happen on
scales smaller than the Jeans wavelength λJ = 2π/kJ due to the effects of the gas pressure
(which actually is free streaming caused by velocity dispersion). Since vortices can be in-
terpreted as sub-structures in the halo [1] we expect that they cannot form if λdB << λJ .
Instead for scales comparable with the Jeans wavelength λdB ≤ λJ we expect that vortices
can still form but their dynamics and the nearby fluid are influenced by pressure effects.
We begin showing that the velocity dispersion actually give rise to a Jeans scale as gas
pressure would. We started the study of CDM neglecting its effects into the Euler-like
equation (1.3.22), now we want to study it via Jeans gravitational instability as we have
done for gas pressure in App.A1, in doing so we follow the work [64].
The Jeans gravitational instability studies the evolution of perturbations in the linear
regime, in this regime the dispersion velocity tensor is constant and given by the three
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dimensional initial fluid dispersion Πij = σ2δij [64], thus the linearised (1.3.22) is

v̇i +Hvi = −
1

a
∂iΦDM −

σ2

aρ
∂iρ . (5.4.1)

If we multiply this equation by ρ and take its divergence, and we insert it in the time-
derivative of the continuity equation (1.3.18), we obtain at linear order

∂2δ

∂t2
+ 2H

∂δ

∂t
=

1

a2
∇2Φ +

σ2

a2
∇2(1 + δ) . (5.4.2)

Then using the Poisson equation (1.2.16) for express the gravitational potential we obtain

∂2δ

∂t2
+ 2H

∂δ

∂t
= 4πGρ̄DMδ +

σ2

a2
∇2δ . (5.4.3)

This equation describes the evolution of linear perturbation under the effect of gravity
and initial velocity dispersion. Since we are treating linear perturbation we can expand
them as a sum of plane waves [64], i.e.

δ(x, t) =
1

(2π)3/2

∫

d3kδk(t)e
ik·x (5.4.4)

and we search for solution of the form [50]

δk(t) = δke
iω t . (5.4.5)

Therefore we can rewrite the equation (5.4.3) as

ω2 − 2iHω = −4πGρ̄DM +
σ2k2

a2
. (5.4.6)

Since we are studying the quantum vortices in a region small enough to neglect the
Universe expansion, we have to impose H = 0 and we can set a = 1. Then we obtain the
dispersion equation

ω2 = −4πGρ̄DM + σ2k2 . (5.4.7)

From the definition (5.4.5) we observe that the perturbations can grow in time only if ω
is imaginary. Then we can define a critical scale between the oscillatory regime (ω2 > 0)
and the unstable regime (ω2 < 0), as we have done for the Jeans scale in App.A1.

k2J =
4πGρ̄DM

σ2
, (5.4.8)

which is similar to the Jeans wavenumber in a static background Universe where the
velocity dispersion σ takes the place of the sound speed cs [64]. Thus we have shown that
the dark matter velocity dispersion acts on perturbations in a similar way to gas pressure.
We come back now to our Schrödinger model and to the study of quantum vortices.
Here we do not limit ourselves to linear perturbations, hence velocity dispersion cannot
be considered a constant any more. Since [15] showed that in DM halos the velocity
dispersion can be represented by an isotropic pressure by the relation

P (x) =
1

3
ρ(x)σ2(x) (5.4.9)
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with Πij(x) = δijσ
2(x) and P is the isotropic pressure, we can note that, beside the 1/3

factor the Euler equation (1.3.22) would be the same of the baryon one (1.2.14). Hence in
the following we will model the velocity dispersion with a gas pressure using the results
we obtained with the baryons Schrödinger equation.
As we stated before, for keep the problem analytically tractable we study regions small
enough to neglect the Universe expansion, then is useful to rewrite the Schrödinger equa-
tion for a collisional fluid using cosmological time t in an non-expanding Universe as we
first did in (2.1.23).

iν
∂ψ

∂t
= −ν

2

2
∇2ψ + Φ+ A|ψ|2γ−2ψ , (5.4.10)

where

A =
γ

γ − 1

ρ̄DMkBT0
m

. (5.4.11)

We neglected the quantum pressure in the Schrödinger equation thus its effects will be
present implicitly in the dynamics. In this case it will not be strongly suppressed by the
choice of a proper ν, since we are treating a real quantum system with ν = ℏ/m. The
Jeans wavenumber for collisional DM perturbations over a static background Universe
is [7]

k2J =
4πGρ̄DM

c2s
=

3H2
0Ω0DM

2

m

γkBT0
, (5.4.12)

where we used c2s = γkBT0
m

. Note that the form of the Jeans wavenumber is similar to
the one obtained from the velocity dispersion (5.4.8) with the sound speed cS instead
of the velocity dispersion σ. We will use this model of pressure and Jeans wavenumber
for study the effects DM velocity dispersion on quantum vortices, this is just a simple
approximation but it will make evident how the results depend on the ratio λdB/λJ . Hence
we can rewrite the coefficient A as

A =
3H2

0

2(γ − 1)
Ω0DM ρ̄DM

1

k2J
. (5.4.13)

In the case λdB >> λJ we expect that the results found in the previous sections are still
valid since on such scales the pressure effects are still negligible, due to Jeans instability
theory [50].
Instead for λdB < λJ we expect that the gas pressure, due to its stabilizing role, can destroy
the vortices. Actually it is not a stabilizing effect due to pressure but the particles tends
to free stream out the vortex and destroy it due to velocity dispersion [64]. We want to
study the regime λdB & λJ such as the pressure term is not big enough to dominates
the dynamics but it is still a competing factor with respect to the kinetic energy (always
following the results of Jeans instability [50]), hence it will introduce corrections over the
properties we depicted in the previous sections. To investigate this last scenario we study
the collisional fluid near a defect through the Taylor expansion of the wave-function. We
will not study the regime λdB < λJ because it requires numerical solutions due to the
complex form of the pressure term.
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Static configurations

We begin our study with the simplest configuration possible, i.e. a static one in a one-
dimensional space. In this scenario the wave-function has to satisfy the equation

ν2

2
∂2xψ =

3H2
0

2(γ − 1)
Ω0DM ρ̄DM

1

k2J
|ψ|2γ−2ψ . (5.4.14)

If we assume the defect to be at x = 0 (ψ(0) = 0) we can Taylor expand the wave-function
around it, this time we cannot neglect second order terms due to the pressure effects

ψ(x) ∼ x∂xψ(0) +
x2

2
∂2xψ(0) ∼ x∂xψ(0) +

3Ω0DM ρ̄DM
2(γ − 1)

H2
0x

2

ν2k2J
ψ2γ−1 ∼

∼ x∂xψ(0) +
3Ω0DM ρ̄DM
2(γ − 1)

H2
0x

2

ν2k2J
(x∂xψ(0))

2γ−1 , (5.4.15)

where in the last line we used the first order expansion of the wave-function to keep
the expression at the lowest order possible. From this expansion we can deduct the
approximate scaling of the density field

ρ = ρ̄ψ ∼ x2

(

1 + C2

(

H2
0x

ν2k2J

)2

x4γ−2 + ...

)

, (5.4.16)

with

C =
3Ω0DM ρ̄DM
2(γ − 1)

. (5.4.17)

Since this relation holds in the neighbourhoods of x = 0 we observe as the pressure
introduce a small corrective term to the density profile. We can study also the velocity
field, which is roughly given by

v ∼ ∂xψ

ψ
∼

(

1 + C
H2

0x

ν2k2J
x2γ−1

)

+ C
H2

0x
2γ

ν2k2J

x
(

1 + C
H2

0x

ν2k2J
x2γ−1

) ∼ 1

x

(

1 + C2

(

H0x
γ

νkJ

)2

+ ...

)

. (5.4.18)

The pressure provides a small correction to the near-defect velocity profile, which depends
on both the coarse-graining and Jeans scales. Actually we can rewrite the coefficient of
the spatial correction as

H0

νkJ
=
H0

σu

λJ
λdB

, (5.4.19)

which is big in the case λdB < λJ as expected.
We do not study also the three dimensional case for static configuration because it is
much more computationally involved with respect to the one dimensional case. Anyway
we can think that, similarly to the collisionless case we studied before [30], the density
and velocity field scaling will be mostly like to the one-dimensional case in function of the
distance from the vortex r⊥, but generally not isotropic.
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Dynamical configurations

Now we want to investigate the dynamical case, here we start directly from the three
dimensional case which, since we will use only dimensional arguments to study the vortex
velocity, is simple enough in terms of the pressure correction. The time evolution of the
wave-function in the vicinity of the defects is given by

iν
∂ψ

∂t
= −ν

2

2
∇2ψ +

3H2
0

2(γ − 1)
Ω0DM ρ̄DM

1

k2J
|ψ|2γ−2ψ . (5.4.20)

If we assume the defect to be at the origin of space-time (x = 0, t = 0) we can Taylor
expand the wave-function around it

ψ(x, t) ≈ t
∂ψ

∂t
(0) + x · ∇ψ(0) + 1

2
xTH(0)x+

1

2
t2
∂2ψ

∂t2
(0) + t

∂ψ

∂t
(0)x · ∇ψ(0) + ... ∼

∼ itν

2
∇2ψ(0)− it

ν
C
H2

0

k2J
ψ2γ−1 + x · ∇ψ(0) + 1

2
xTH(0)x− t2ν2

4
∇2∇2ψ(0)+

+
itν

2
∇2ψ(0)x · ∇ψ(0) + ... ∼

∼ itν

2
∇2ψ(0) + x · ∇ψ(0)− it

ν
C
H2

0

k2J

(

itν

2
∇2ψ(0) + x · ∇ψ(0)

)2γ−1

+

+
1

2
xTH(0)x− t2ν2

4
∇2∇2ψ(0) +

itν

2
∇2ψ(0)x · ∇ψ(0) + ... , (5.4.21)

where in the last line we used the first order correction to keep the lowest order possible
in ψ2γ−1 and we defined C in (5.4.17). To investigate the vortex properties we can impose
ψ = 0 and x = ∆x → 0, t = ∆t → 0 as we did for the collisionless case [30]. We then
obtain

v · ∇ψ(0) + vTH(0)∆x ∼ i
ν
C
H2

0

k2J

(

i∆t ν

2
∇2ψ(0) + ∆x · ∇ψ(0)

)2γ−1

− iν

2
∇2ψ(0)+

+
∆t ν2

4
∇2∇2ψ(0)− iν

2
∇2ψ(0)∆x · ∇ψ(0) + ... (5.4.22)

where v is the vortex velocity. We can estimate it through dimensional arguments, we
call R the characteristic dimension of the vortex.

v

(

∆x
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+

1

R
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)2(
2∆x
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− ∆t ν

R2
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]

, (5.4.23)

where in the second line we used the first order solution for the vortex velocity v = ν/R.
As done by [30] for the collisionless case for obtain a more formal solution one should split
the wave-function in its real and imaginary parts and keep them separate but, [30] showed
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that the scaling can be roughly estimate by the coefficients dimensions without give much
importance to real and imaginary splitting, therefore we limit to this rough estimate too.
Like before due to the coefficient (νkJ)

−1 = λJ/(σuλdB) the pressure correction is the
dominant term for λdB << λJ as expected. Since we are limiting ourselves to the regime
λdB & λJ the pressure term is not exploding but it provides a not negligible correction in
the vortex dynamics.
The quantity ∆x represents the shrinking of the dimension of the vortex, we expect it
to be large when the vortex nucleates or annihilates since at these points its form (and
its velocity) changes rapidly with respect to its characteristic dimension R, as seen in the
examples of Sect.5.2. The same argument is valid for the last term of the expansion since
also the vortex position in time changes rapidly there. Hence we expect the pressure ef-
fects to be relevant mostly near these events, also the correction from second order terms
is of the same nature. The minus sign in front of the correction implies that the pressure
tends to slow down the vortex and so to suppress its formation, we expect that it can
be possible that in certain regions (from Jeans instability theory [50] we expect it to be
where λdB << λJ) the pressure is strong enough to prevent the vortex formation. But
we should investigate numerically this regime since to obtain this solution we assumed
that the pressure is not the leading term in the wave-function evolution, which is true for
the scale under consideration λdB & λJ . Anyway the model here depicted is able only to
study the vortices after their formation and not to predict under which condition they
can form, therefore we are not able to show when the pressure is strong enough to deny
vortices nucleation.

Then this chapter departed a bit from the main argument of this work, i.e. study the
baryon evolution through the Schrödinger equations; here we depicted the properties of
quantum vortices and of the fluid around them studying a single-fluid Schrödinger model
for a real quantum fluid, which is composed by ultra-light (10−23 . m . 10−19 [6, 62])
axion-like particles, following the work [30]. In the last section we extended the previous
results of [30] studying also the possibility of having a large velocity dispersion modelled as
a pressure, which could destroy the quantum vortices, and for which investigation we used
some of the results obtained from the baryon theory. We limited our study of collisional
FDM to scales λdB & λJ in order to can consider the pressure small but not negligible,
the regime λdB < λJ would require a numerical study which here we did not develop.
In the studied regime we found that pressure slow down vortices and the fluid around
them. These particles are possible candidates for DM and are known under the name of
fuzzy DM [31]. If sub-structures with the depicted characteristic would be observed in
DM halos it can be a probe for this kind of DM candidates, the works [1, 30] noted that
an efficient way of observe these sub-structures would be through gravitational lensing.
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Chapter 6

Conclusions

In this work we presented a model for the description of the evolution of the large-scale
structure of the Universe (LSS). In particular we modelled the two matter components
of the Universe, baryons (collisional) and dark matter (collisionless), as a quantum fluid
described by the system of Schrödinger-Poisson equations (2.2.42). In this model the
Planck constant is a parameter which value can be set arbitrary, actually it appears al-
ways rescaled by the mass m (which it is also an arbitrary parameter of the model) in the
quantity ν = ℏ/m (hence we actually couple ℏ and m in a single parameter). This param-
eter sets the phase-space resolution, as it is clarified by the definitions of the phase-space
distributions of Wigner (2.3.7) and Husimi (2.3.17). This approach, beside modelling
classical matter through the choice of ν, is useful to describe also a ”new” candidate for
dark matter, an ultra-light axion-like particle in a Bose-Einstein condensate (BEC) state
commonly called fuzzy DM (FDM) [31], in this case ℏ and m are not parameter but
the proper quantities. This wave-mechanical method, pioneered by [77], provides both
a numerically competitive alternative to N-body simulation [77, 80] and semi-analytical
results [67,73]. Until now it was used only for the description of the evolution of DM and
only recently [59] applied the Schrödinger description to a two-component fluid, but both
collisionless. We, taking the inspiration from the DM description, extended this model
to the study of a two-component fluid made of baryons and DM. Hence, differently to
the literature, we had to take care of pressure effects (described by the equation of state
(1.2.17)) in the Schrödinger-Poisson system.
After the introductory chapter 1, in the second chapter we depicted how the wave-
mechanical description provided by the Schrödinger-Poisson system is related to the classic
description of baryons and DM, we showed that this is possible in two different ways. We
can relate the density and irrotational velocity fields of DM (baryons) to a wave-function
ψDM (ψb) through the Madelung transformation [43], in this way we showed that the
Schrödinger equation is related to the continuity and Euler equations. In this way in
the Euler equation appears an adjunctive term, which is purely quantistic, the quantum
pressure (2.1.14). This term has a regularizing action similar to a classical pressure and
its magnitude is set by the choice of the parameter ν [67]. The second way to relate
the Schrödinger-Poisson system to the classical description of the matter components of
the Universe is through the use of phase-space distribution, in particular we presented
the Wigner (which is not positive defined) and the Husimi (which is positive defined and
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so preferable) following the works [37, 72]. In the definition of the Husimi distribution
(2.3.17) we add a new coarse-graining parameter σx and define σu = ν/(2σx) such as we
can choose the phase-space resolution in both the position and velocity directions with
the limiting condition σxσu = ν/2. We showed, always following the works [37, 72], that
these two distribution are related to a Vlaslov equation up to terms of order O(ν2), hence
for small values of the parameter ν we are following a Boltzmann description of baryons
and DM which is preferable to the fluid description because DM (being collisionless) is
only approximatively described by the fluid Euler equation [20].
Following the work [37] in Sect.2.4 we showed that if we define the velocity from the first
order momentum of the Husimi distribution (2.3.24) we are able to compute the vorticity
just from the wave-function ψ. This vorticity is sources by two components: one is purely
quantistic and it arises over the defects of the wave-function due to the winding of the
phase, the other one arises from the coarse-graining of the wave-function applied by the
Husimi function in a manner similar to the vorticity in the classical description which
arises from the averaging of different fluid trajectories [73]. We showed also that the
quantum vorticity is cancelled by bigger spatial coarse-graining and over this bigger scale
the Schrödinger model predictions of the DM vorticity are in agreement with the classical
prediction of CDM [37], see e.g. Fig.2.3. We expect that if numerical simulation would be
done also the vorticity predicted for the baryon component would be in agreement with
the classical results, at least in the regions where the assumed equation of state (1.2.17)
is valid.
In the Chapter 3 we presented a solution of the Schrödinger-Poisson system through the
use of quantum perturbation theory (QPT), we followed the idea of [67] and extended
it to the study of a time-dependent potential in the expanding Universe. The work [67]
studied a single-fluid model with DM, instead we have a two-fluid composed by baryons
and DM hence we had to include also the pressure in the potential part of the Schrödinger
equation. To keep the pressure a perturbative term with respect to the kinetic energy we
had to limit the QPT study to scales above the Jeans wavelength. We showed how the
0th-order term of the perturbative expansion, the free particle solution (3.2.7), recover the
Zel’dovich approximation in the semi-classical limit Dν → 0 [67,73], which is a good test
of the Schrödinger model since the Zel’dovich approximation is exact in one dimension
before shell-crossing. Instead if ν is kept small but finite we showed that the free parti-
cle approximation is able to surpass the shell-crossing without encounter any singularity
thanks to the regularizing effects of the quantum pressure in a way similar to the classical
Adhesion approximation [68], this solution is able also to investigate the multi-stream
regime after the shell-crossing event [73] but it has to be computed numerically. Then we
found the first order correction due to the gravitational potential, Universe expansion and
gas pressure (3.3.3). This was the first time a gas pressure and the Universe expansion
was studied with the QPT, [67] limited to a static Universe with only DM and so no
pressure terms. The result (3.3.3) have the common form of first order QPT correction.
In fact the propagator of the wave-function consists in evolving the particle as free and
with momentum kn from initial time to an intermediate time D′, where the effective
potential ”kick” the particle to momentum km, then the particle is once again evolved
as free till the time D, this is usually called a drift-kick-drift scheme. The propagator
actually consist in the integration of this evolution over all possible D′ and kn. This
result, which is expressed in the Fourier space, can be numerically competitive with a
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full hydrodynamical code. Then we tried to find an analytical result in the semi-classical
limit Dν → 0 using the stationary phase approximation (SPA) obtaining (3.3.14), which
however need still a numerical integration over all the possible choice of the time D′ when
the effective potential kicks the particle.
In the chapter 4 we presented a numerical method for obtain solutions of the Schrödinger-
Poisson system, we followed the Solid state physics work [5] and particularized it to our
cosmological problem, it consists to apply the Strang time-splitting approximation [71] to
the non-linear Schrödinger equation describing the evolution of baryons or DM. It con-
sists in evolve the wave-function first through the solution of the ”potential” Schrödinger
equation (4.1.7), then with the free particle Schrödinger equation (4.1.6) and again with
the potential one. This evolution is repeated for small spatial intervals. In this case
the kick-drift-kick scheme is favourable to the drift-kick-drift because the norm of the
wave-function does not evolve during a time interval under the ”potential” Schrödinger
equation (4.1.7) [5]. We then reported some numerical simulations which show as this
method is well suited to our cosmological problem. [5] showed (e.g. in Fig.4.2) that the
numerical code recovers hydrodynamical results in the case of a particle which feels only
the pressure. We reported also a simulation by [80] where a similar code is used to de-
scribe the gravitational collapse of DM and the formation of an halo (e.g. see Fig.4.4).
Hence this method seems promising in the study of LSS evolution also in our case of a
baryon-DM system.
Finally in the chapter 5 we departed from the main argument of this work (the baryon
LSS evolution) for present some properties of quantum fluids, studied as a single-fluid
under the Schrödinger-Poisson system, which can be a probe for the axion-like candi-
dates of DM (FDM). In particular we studied the properties of quantum vortices inside
bounded structures, e.g. DM halos, following the work [30]. This is interesting because
for ultra-light axion-like candidates of DM (FDM) the quantum vortices are expected to
persist over observable scales [30]. As a matter of facts since the FDM candidate is actu-
ally a quantum fluid ℏ and m are interpreted as the Planck constant and particle mass,
we showed also that quantum vortices are expected arise over scales comparable with
the de Broglie wavelength λdB = ν/σu, where σu is the velocity resolution of the Husimi
phase-space distribution which is related to the characteristic velocity of the structure
under study as its velocity dispersion, and so for such small masses they are expected to
be present on scales big enough to be observable [30]. Therefore the observation of the
properties of quantum vortices, which can be seen as sub-structures in DM halos, can
be a probe for fuzzy dark matter [1, 30]. Since these effects are expected only in DM in
this chapter we neglected the baryons and studied a single-fluid of FDM. We extended
the results of [30] to the presence of velocity dispersion, which we modelled as a pressure
with an associated Jeans wavelength [15, 64], in particular we modelled the pressure as
the barotropic pressure we used for baryons (1.2.17). We have to stress the fact that this
is just a simple approximation, which is justified by the fact that the magnitude of the
pressure (dispersion) effects is mostly set by the scale, for a more rigorous treatment of the
relation between velocity dispersion and an effective pressure see e.g. [57]. In the regime
λdB & λJ we found that the ”pressure” gives correction to the vortices, tending to slow
them down and so we expect that this can contrast their formation. For λdB < λJ the
pressure corrections of our simple model explodes and becomes the dominant contribution
in the dynamics of vortices and the fluid around them. But, since in the derivation of these
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results we assumed the pressure to be small, we cannot actually investigate the regime
λdB < λJ , for which is required a numerical study. We expect that such a study could
find that for such regime quantum vortices cannot form due to pressure effects (which
actually represents the free streaming of DM particles) in a manner similar to the Jeans
instability theory for the formation of structure under gravitational collapse [50]. Finally
the main properties of quantum vortices and the fluid around them are

• All vortices close in loops. [30]

• The phase winds in the cross-section of each line with winding number n = ±1. [30]
• The density profile scales as r2⊥ near the vortex. [30]

• The velocity profile scales as r−1
⊥ near the vortex. [30]

• The number density of vortices is roughly one per de Broglie volume λ3dB. [30]

• Dispersion velocity introduces a term proportional to λJ/λdB which tends to dump
vortex velocity and fluid density around them.

If these features would be observed in DM halos it can be considered as a probe for fuzzy
dark matter, i.e. ultra-light axion-like particles, which makes up the missing part of the
Universe matter, or a part of it.
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A1 Jeans wavenumber

Here we want to compute the Jeans wavenumber for a collisional fluid (baryons) in an
Universe with present the Cosmological constant Λ. Historically Jeans studied perturba-
tions over a static background Universe and he found that these perturbations can grow if
the effect of gravity exceeds the balancing effect of pressures. The grow of perturbations
happens when the scales are bigger than the Jeans scale λJ = 2π/kJ , which is defined
as the scale for which the instability forces are in equilibrium with the stability ones.
We want now pass to the study of the Jeans instability for an expanding background
Universe, thus also the expansion forces has to be taken in account in the compute of the
equilibrium state. To do so we need to study the gravitational instability of a region of
the Universe filled by the baryon fluid by the study of the linear regime of the perturbed
fluid equations (2.2.22), (2.2.23) coupled with the Poisson equation

D∇2ϕb − δb = 0 . (A1.1)

Where ϕb is the peculiar gravitational potential generated by the baryons, from now in
this section we omit the subscript b for indicate baryons because we are considering an
Universe region filled by them (plus Λ).
Id we keep only linear terms in perturbations in the fluid equations (2.2.22), (2.2.23) we
obtain

δ̇(x, D) +∇ · u(x, D) = 0 , (A1.2)

u̇(x, D) +
3e(ΩDM)

2D
(u+∇ϕ) + e(ΩDM)

a2D2H2ΩDM

∇P
ρ

= 0 . (A1.3)

Since we want to make a linear approximation we can express every quantity as a combi-
nation of plane waves so that is easier to solve differential equations, for example

δ(x, D) =
1

(2π)3

∫

eik·xδk(D)d3k . (A1.4)

We search for solutions which time dependence is of the form

δk(D) = δke
iωD . (A1.5)

Then if we use this dependences in the linear equations and we assume the pressure
barotropic and given by (1.2.17), In general the pressure P (ρ, s) depends on both the
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energy density and the entropy, for its perturbations over the homogeneous Universe we
have

P (x, D) = P̄ (D) + δP (x, D) , (A1.6)

δP =
∂P

∂ρ

∣

∣

∣

∣

s

δρ+
∂P

∂s

∣

∣

∣

∣

ρ

δs = c2sδρ+
∂P

∂s

∣

∣

∣

∣

ρ

δs , (A1.7)

where P̄ (D) is the background pressure and s is the entropy per unit mass. Assume the
density barotropic correspond to neglect the entropy dependence of the pressure P (ρ).
From the definition of the barotropic pressure (1.2.17) we can compute the adiabatic
sound speed c2s:

c2s =

(

dP

dρ

)

ρ̄

=
γkbT0
µmp

. (A1.8)

Hence we obtain
ωδk + k · uk = 0 , (A1.9)

ωuk +
3e(ΩDM)

2D
(−iuk + kϕk) +

e(ΩDM)c2sk

D2a2H2ΩDM

δk = 0 , (A1.10)

Dk2ϕk + δk = 0 . (A1.11)

To have non trivial solution the determinant of the matrix made by the coefficients of the
above three equations has to be null, thus we have

det





ω k 0
e(ΩDM )c2sk
D2a2H2ΩDM

ω − i3e(ΩDM )
2D

3e(ΩDM )
2D

k

1 0 Dk2



 = 0

k2ω2 − ik23e(ΩDM)

2D
ω − k2

(

e(ΩDM)k2c2s
D2a2H2ΩDM

− 3e(ΩDM)

2D2

)

= 0 . (A1.12)

The equation (A1.12) is called dispersion relation and the Jeans wavelength is defined as
the wavelength for which ω = 0. This is the critical wavelength between the regime of
instability (ω2 < 0) and of acoustic waves (ω2 > 0) [50]. Hence we have found

k2J =
3a2H2ΩDMµmp

2γkBT0
(A1.13)

where we used c2s = (γkbT0)/(µmp). For scales bigger than λJ = 2π/kJ the perturbations
are growing in amplitude, instead on smaller scales the perturbations are oscillating sound
waves. Hence the Jeans wavelength represents the scale at which there is the transition
between these two regimes [50].

A2 Stationary phase approximation

The stationary phase approximation is a basic principle of asymptotic analysis stated
already by Stokes and Kelvin. This method relies on the cancellation of sinusoids with
rapidly varying phase. If many sinusoids have the same phase and are added together
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they add constructively, otherwise if these sinusoids have phases which rapidly change with
the frequency they will add incoherently, which can generate constructive or destructive
addition at different times.
We will show how this method works in the simplest case in our study, i.e. in the free
particle approximation. We want to solve the integral defining the free particle wave
function (3.2.7), which we report here

ψ(x, D) =

∫

d3qψi(q)
exp

[

i
2ν

(x−q)2

D−Di

]

(2πi(D −Di)ν)3/2
=

=

∫

d3q
√

1 + δi(q)
exp

[

i
ν

(

(x−q)2

2(D−Di)
− φi(q)

)]

(2πi(D −Di)ν)3/2
, (A2.1)

where we used the Madelung definition of the wave-function ψ =
√
1 + δe−iφ/ν . It is clear

that this integral is over sinusoids of phase

1

ν

(

(x− q)2

2(D −Di)
− φi(q)

)

. (A2.2)

Since we are interested in the semi-classical limit ν → 0 the phase is rapidly varying.
Thus the dominant contribution to the integral comes from the points where the phase
varies least rapidly in q, i.e. at the stationary points. For compactness of the notation
we introduce the function

g(q) =
(x− q)2

2(D −Di)
− φi(q) , (A2.3)

where we wrote explicitly only the dependence in q because the integral is over it only.
The stationary points qc satisfies the conditions g,j (qc) = 0, which leads to

qc = x− (D −Di)∇qφi(qc) . (A2.4)

We can Taylor-expand the function g about the stationary point qc

g(q) = g(qc) +
1

2

3
∑

k=1

3
∑

l=1

(qk − qck)g,kl (qc)(ql − qcl ) + O((q− qc)
3) , (A2.5)

where we used the fact that g,k (qc) = 0. If we substitute this expansion in the integral
(A2.1) we obtain

ψ(x, D) =
∑

qc

(1 + δi(qc))
1/2

(2πi(D −Di)ν)3/2
exp

[

i

ν
g(qc)

] ∫

d3p exp

[

−1

2
pTM(qc)p

]

, (A2.6)

where we computed also the amplitude (1 + δi(qc))
1/2 at the stationary points since from

these points the most relevant contribution comes and we made the change of variable
p = q− qc. We defined the complex matrix Mkl(qc) = −ig,kl (qc)/ν and the superscript
T indicates a transpose vector.
The remaining integral is a three-dimensional complex Gaussian integral (M is a purely
imaginary quantity) which can be evaluated using standard techniques

∫

d3p exp

[

−1

2
pTM(qc)p

]

=

(

(2π)3

detM(qc)

)1/2

exp

[

iπ

4
sign (ImM)

]

, (A2.7)
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where ImM is the imaginary part of the matrix M. Thus we have obtained the wave-
function under the SPA

ψ(x, D) =
∑

qc

(1 + δi(qc))
1/2

(2πi(D −Di)ν)3/2
exp

[

i

ν
g(qc)

](

(2π)3

detM(qc)

)1/2

exp

[

− iπ
4
sign (ImM)

]

.

(A2.8)
In order the relation (A2.7) to hold we need det[M(qc)] 6= 0, this implies that this relation
is true only before shell-crossing. We can show that in the following manner, first note
that the definition of the function g(q) (A2.3) implies

g,kl (q) =
Hkl(q)

D −Di

Hkl = δkl − (D −Di)φ,kl . (A2.9)

Thus we can express M and its determinant through the new matrix H as

M(qc) = −
i

ν(D −Di)
H(qc) , (A2.10)

det[M(qc)] =
i

ν3(D −Di)3
det[H(qc)] . (A2.11)

Since H is also the Jacobian of the coordinate transformation between Lagrangian q
and Eulerian x coordinates, defined by the stationariness condition (A2.4), it is non zero
before shell-crossing occurs. Because before shell-crossing only one particle can depart
from the point q and arrive at the point x at time D we can assume that there is only one
stationary point qc satisfying the condition (A2.4), hence we can neglect the sum over
the stationary point in (A2.8).
Finally the wave-function resulting from the stationary phase approximation is

ψSPA(x, D) =

(

1 + δi(qc)

det[H(qc)]

)1/2

exp

[

i

ν
g(qc)

]

exp

[

iπ

4
sign (ImH)

]

. (A2.12)

A3 Redshift space propagator

Porqueres and collaborators observed in [58] that, since all cosmological observations are
made in a redshift space rather than in a comoving physical one, it would be helpful to
have an ”instrument” for translate directly our theoretical results in the redshift space.
We assume the approximation of a distant observer, which implies that the redshift dis-
tortion can be chose to coincide with a single Cartesian axis. We can summarize the
redshift effect as the fact that we doesn’t observe a particle in its Eulerian position x but
instead in its redshift space position s, due to the deviations from the Hubble flow caused
by our peculiar motion. In Lagrangian perturbation theories (LPT), as the Zel’dovich
approximation [79], we can describe this effect as [58]

s = x+ f(D) (Ξ · êLOS) êLOS , (A3.1)

where êLOS is a unit vector pointing along the line-of-sight, Ξ is the displacement field
between Lagrangian and Eulerian coordinates, Ξ ≡ x − q, and f = d logD/d log a is
defined in (1.4.18). This is quite obviously simply a velocity dependent displacement, and
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it can therefore be trivially included in an additional propagator from Eulerian to redshift
space, hence with the same form of the free particle propagator (3.2.4), given as [58]

KRSD(s;x, D) = N exp

[

i

ν

((s− x) · êLOS)2
2f(D)(D −Di)

]

, (A3.2)

with N a normalisation factor that has to be suitably chosen [58]. Thus to find the
wave-function, and then all the observables, in the redshift space we have to apply this
propagator to the solution in comoving physical space [58], i.e.

ψ(s, D) =

∫

d3xKRSD(s;x, D)ψ(x, D) . (A3.3)

Actually it is possible to define a single propagator which brings the particle from the
initial (Lagrangian) position to the position in the redshift space at time D [58]. For ex-
ample we can define it for the free particle approximation from the free propagator (3.2.4).

ψ(s, D) =

∫

d3xd3qKRSD(s;x, D)K0(x, D;q, Di)ψi(q) , (A3.4)

We can express the product of the two propagators as a single one in the Fourier space
using the convolution theorem, i.e.

ψ(s, D) =

∫

d3qd3x
d3t√
2π

d3u√
2π

d3v√
2π
eit·qeiu(x−q)eiv·[(s−x)·êLOS ]êLOSψi(t)e

− iν
2
(D−Di)u

2

e−
iν
2
(D−Di)v

2

=

=
1√
2π

∫

d3vψi((v · êLOS)êLOS)e−
iν
2
(D−Di)[(v·êLOS)

2+v2]ei(v·êLOS)(s·êLOS)

=
1√
2π

∫

d3keik·[êLOS(s·êLOS)]ψi(k)KRL(k, D) (A3.5)

where in the last line we made the change of variable k = (v · êLOS)êLOS. Thus we found
that we can express the free particle propagator from Lagrangian to redshift coordinates
in the Fourier space as [58]

KRL(k, D) = exp

[

− iν
2

(

k2 + f(D)(k · êLOS)2
)

(D −Di)

]

. (A3.6)

From the form of the Fourier transform in (A3.5) k · [êLOS(s · êLOS)] it’s clear that the
propagator affects only the points along the line of sight, i.e. in the directions orthogonal
to the line of sight the redshift and the Eulerian space coincide, this is due to the distant
observer approximation we made.
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