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Abstract

The thesis is the �nal result of a fellowship work developed in collaboration with the
Department of Biology of University of Padova.
It consists on the implementation of a web software, that will be released by the
computational biology team led by Professor Chiara Romualdi.
The project is focused on Graphite Web, an already-existing public web server so-
lution for analysis and visualization of biological pathways using high-throughput
gene expression data of both microarray and RNA-seq experiments and the goal of
this work is to improve its implementation in terms of performance and usability.

The analysis of the gene expression is useful in investigating some diseases, for
instance di�erent types of tumor.

Graphite Web is a software that provides di�erent types of analysis which gives
to researchers the chance of testing performances of di�erent algorithms on data.
At the moment this software is merely an application that receives the requests of
analysis and returns the corresponding results.
For each analysis it performs expensive operations, wasting a lot of time and RAM.
The work tries to solve this problems focusing on three aspects.
First of all, when a client executes twice the same analysis, the actual implementation
does not use some shared-results from previous operations, but it analyzes all the
data again.
In order to avoid this redundancy of time and resources we implemented a new design
for Graphite Web that manages the persistently of data exploiting a database.
An other improvement lies in the fact that in the new version each transfer of data
happens in streaming so we save RAM.
Finally we implemented a system that manages the concurrency and parallelism in
order to can execute more operations at the same time.

We extended the Graphite Web software's architecture, developing a multi-tier
architecture and implementing it in Python.

The back-end of the resulting application consists in a HTTP server (based on the
gunicorn library and gevent) which has the aim of managing multiple independent
requests concurrently.
Furthermore the new version of Graphite Web release can track and save every
operation carried out by the user. This feature is going to be helpful to researchers
to save time during the analysis of huge amounts of data such as high-throughput
gene expression.

In the �rst chapters of this thesis we performed the analysis of a case study on
ovarian cancer dataset of RNA-seq using current version of Graphite Web in order
to discover its limits, then we explained the implementation of the new version.





Abstract

La tesi è il risultato del lavoro svolto durante una borsa di studio presso il Dipar-
timento di Biologia dell'Università degli studi di Padova dove si è implementato un
software web con il gruppo di biologia computazionale guidato dalla Prof.ssa Chiara
Romualdi.

L'obbiettivo del progetto è la re-implementazione di Graphite Web, un web server
che mette a disposizione una serie di analisi statistiche su dati di espressione genica
(microarray e RNA-seq).
Al momento il software consiste semplicemente in un'applicazione che riceve delle
richieste di analisi, le esegue e ne restituisce il risultato. Per ogni analisi vengono
eseguite delle operazioni computazionalmente pesanti, che impiegano tempo e con-
sumano molta RAM.

Durante il progetto si è concentrato lo sviluppo sui seguenti tre aspetti.
Prima di tutto sulla ridondanza delle operazioni: se un utente esegue due volte la
stessa analisi tutte le operazioni di controllo ed analisi già eseguite non vengono
sfruttare ma ripetute ogni volta.
Per risolvere questo problema, nella nuova versione viene sfruttato un database che
permette di tenere traccia di ogni task eseguito.
Un altro miglioramento consiste nel gestire il trasferimento dei dati utilizzando lo
streaming con lo scopo di risparmiare RAM.
In�ne si vuole sfruttare il calcolo concorrente e parallelo per poter eseguire più
operazioni alla volta così da risparmiare tempo durante l'esecuzione dei task più
pensati.
La nuova versione di Graphite Web è organizzata in un'architettura multi-strato
implementata principalmente in Python. Il software consiste in un server HTTP
basato su gunicorn e gevent.
La combinazione di questi miglioramenti rende l'utilizzo del software più snello,
facendo risparmiare tempo ai ricercatori durante l'analisi di dati high-throughput di
espressione genica, che sono dati di grandi dimensioni.

Nei primi capitoli della tesi si eseguirà un'analisi con Graphite Web di una caso
studio su un dataset, di tipo RNA-seq, di tumore all'ovaio, poi verranno analizzati
i limiti del software.
Successivamente spiegheremo l'implementazione della nuova versione.
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Chapter 1

Introduction

In this chapter we give to the reader the essential notions of biology to understand the
importance of analysis on expression data speaking about DNA, RNA and proteins.

Then we explain the Gene Set Analysis that has the aim of identifying the dif-
ferent groups of functionally related genes with possibly moderate, but coordinated,
expression changes across di�erent biological conditions.

Finally, we introduce two Bioconductor packages developed by the computational
biology team of University of Padova that allows to perform Gene Set Analysis
exploiting pathways information: graphite and clipper.

1.1 DNA, RNA and proteins

Every single somatic cell, about 1014 in human body, contains a copy of the DNA
(deoxyribonucleic acid). In the eukaryotic cells the DNA is stored in the nucleus and
it contains all the biological information essential for life. According to the model
of Watson and Crick of the year 1962, its structure consists in two helical chains
formed by the nucleotides. The two chains are related by nitrogenous bases, known
as nucleobases.
In every cell there are four di�erent DNA nucleotides, each de�ned by a speci�c

nucleobase: adenine (A), thymine (T), guanine (G), and cytosine (C), they bind
together in characteristic way as shown in �gure 1.1.

A genome is the complete set of genetic information, stored in long molecules of
DNA called chromosomes, 46 in human cells, useful to code proteins necessary to
life. The human genome contains 3.2 · 109 base pairs so it has a storage capacity of
2 · 3.2 · 109 bit, approximately 700 Mb.

Small sections of DNA, called genes, code for an operative biological product:
functional RNA (fRNA) or RNA that contains assembly information for proteins
that are molecules required by the organism for essential life functions [4].
RNA (ribonucleic acid) is a single-stranded nucleic acid like the DNA with a di�er-
ent base: uracil (U) instead of thymine, which is formed by short sequences and so
it degrades more easily than DNA.
There are various types of RNA that play di�erent roles working as transfer RNA
(tRNA), messenger RNA (mRNA) and others which control gene expression.
Less than 2 % of Homo Sapiens' DNA is coding (exons) while 98 % is non-coding

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Structure of DNA: nuclobases bound together (according to base pairing
rules (A with T, and C with G) with hydrogen bonds to build double-stranded DNA
(dsDNA).

(introns and intragenic) and at the moment we have classi�ed about 24000 over
30000 supposed genes.
The mRNA is subjected to splicing in which introns are removed by some enzymes
and proteins are involved in this process.
The alternative splicing allows the synthesis of di�erent proteins from the same
transcripts. At the moment we have veri�ed about 48000 over 150000 supposed
transcripts.
During the normal activity of every organism, genes are continuously copied, tran-
scripted and translated, in speci�c way that depends on the cellular kind, on the
phase of the cellular life and on the external stimuli.
The gene expression is the passage of a gene, �rst at the mRNA in the cytoplasm
(transcription process) and after that to the proteins (translation process).
The proteins, after their assembly, undergo some post-translational changes in order
to de�ne their properties.
The diversi�ed gene expression allows a series of biological processes, such as cellular
di�erentiation, development, cellular activity in space and in time, answer and the
adaptation to the external stimuli.

The proteins and the functional RNA contain the information which regulate
the transcription, thanks to their interaction aptitudes with the di�erent molecules,
especially the DNA, which are inside the cell.
The key to understand the cell di�erentiation through time space is the protein
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expression (see �gure 1.2a).
For instance we know proteins called enhancer that in�uence the gene expression in
the phase of transcription.
Because of missing of the protein expression's data, we approximate it with the one
of the RNA, as shown in �gure 1.2b.

(a) Model of the interactions be-

tween regulatory molecules.

(b) Simpli�ed model: the RNA ap-

proximates the protein expression.

Figure 1.2: System models that describe the regulation of the gene expression.

In this way we can study gene regulatory networks using the high-throughput
technologies, like RNA-seq where the measure is the gene expression.
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1.2 Gene sets analysis

The goal of Gene Sets Analysis (GSA) is to identify the di�erent groups of func-
tionally related genes with possibly moderate, but coordinated, expression changes
across di�erent biological conditions.
In general, the a priori de�nition of gene sets is obtained from Gene Ontology or
from biological pathways.

The Gene Ontology (GO) is an ontology to describe the functional annotation,
that is information about the function of genes and gene products, as knowledge of
gene and protein roles in cells, in biological processes [1].
The GO de�nes three types of controlled vocabularies: cellular component (CO),
molecular function (MF) and biological process (BP).
There are di�erent kinds of database that contribute to GO, such as Berkeley
DrosophilaGenome Project (BDGP), dictyBase (Dictyostelium discoideum), Reac-
tome.
The Gene Ontology is structured as a directed acyclic graph (DAG), and each term
has de�ned relationships to one or more other terms in the same domain, and some-
times to other domains [13].
Gene products, represented by identi�cation code, are associated with the GO terms
that describe their properties; in this way each GO term may contain a list of genes.

Figure 1.3: Circadian rhythm pathway is a network whole the relative GO:0007623
is a merely list of 1991 genes and gene products annotated.

Instead pathways are models delineated within the entire cellular biochemical
network that help us to describe and to understand the speci�c biological processes.
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A pathway can be de�ned as a set of interactions between physical or genetic cell
components, often describing a cause-and-e�ect or time-dependent process, that
explains observable biological phenomena [2] where genes and their relations are
nodes an edges.

The main di�erence between them is that a GO term contains a list of genes
that has no explicit connections among them (apart from being involved in the same
function) while genes in the same pathway are structured in a network with some
explicit biological interactions [5], for example see �gure 1.3 that shown circadian
rhythm pathway.
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1.3 Two Bioconductor packages: graphite and clipper

GSA methods are based on two fundamentally di�erent null hypotheses, these are
called competitive and self-contained.
Suppose have to two groups of samples with two given phenotypes, the �rst type
hypothesizes the same level of association of a gene set with the given phenotype as
the complement of the gene set.
The main drawbacks of competitive methods are (i) the assumption that genes are
independent; and (ii) the use of a cut-o� threshold for the selection of di�erentially
expressed genes (DEGs).
The second type only considers the genes within a gene set and hypothesizes that
there is no gene in the gene set associated with the phenotype, relaxes the assumption
of independence among genes belonging to the same gene sets and does not require
arbitrary cut-o�s.
Self-contained methods are divided into non-topological when applied to biological
pathways, most of them use merely the list of genes belonging to a pathway, and
topological that exploit the topological information.

To realize topology-based GSA (TGSA), we need to convert pathways into gene
networks inside which each node is a measurable variable that is gene expression.
In order to solve this problem we use graphite, a Bioconductor package that takes
pathway information from four distinct database (Biocarta; KEGG; NCI/Nature
Pathway Interaction Database; Reactome) and converts them using speci�c rules
(see [10] for more details).

A pathway is a graph that models a biological process in which nodes are gene
products like protein complexes, gene family members and chemical compounds
while edges are their interactions.
With the purpose of carry out the TGSA analysis, a pathway has to be converted
into a gene/protein network using graphite.

Since we expect that only some portions of pathways are altered, it is important
to �nd out the signal paths within a pathway mostly involved in a biological problem.
In this context, clipper, a Bioconductor package, is a two-step empirical approach

(a) DAG

(b) moraliza-

tion

(c) triangula-

tion

(d) consecutive

cliques

Figure 1.4: Example of a DAG (a), the corresponding moral graph (b), and one
possible triangulation of the DAG (c). Finally the corresponding cliques (d) formed
by relative nodes: c1 (1-2-3), c2 (2-3-4) and c3 (3-4-5)

.

that, after selecting signi�cant pathways, identi�es within those pathways the signal
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paths having the greatest association with a speci�c phenotype.
In particular, clipper needs to convert the graph. Such conversion might require
some or all of the following steps: moralization (�gure 1.4b), triangulation (�gure
1.4c), clique identi�cation (�gure 1.4d) and junction tree construction (�gure 1.5),
more details are in [5].

Clique identi�cation �nds out the cliques of the triangulated graph, i.e. the
complete sub-graphs having all their vertices joined by an edge; junction tree con-
struction builds a new hyper-tree having cliques as nodes and satisfying speci�c
properties.

Figure 1.5: Example of a junction tree. The red cliques are signi�cant. In this case
the relevant path is only c1-c2-c3-c4-c9-c-10 in according that we accept only one
black clique, not signi�cant, between two red ones.

The �rst step of clipper consists on testing the whole pathway, modelling data,
cases and controls in the two experimental conditions with two graphical Gaussian
models with the same indirect graph G:

M1(G) = {Y ∼ NP (µ1,Σ1), K1 = Σ−1
1 ∈ S+(G)} (1.1)

M2(G) = {Y ∼ NP (µ2,Σ2), K2 = Σ−1
2 ∈ S+(G)} (1.2)

where Y is the multivariate distribution of expression, P is the number of genes
(vertices of the graph), K1 and K2 are the concentration matrices (inverse of the
covariance matrices) of the two models and S+(G) is the set of symmetric positive
de�nite matrices with null elements corresponding to the missing edges of G [5].
The strength of the link between genes is tested with H0 : K1 = K2 while the
di�erential expression of pathway is tested with H0 : µ1 = µ2.

In the second step clipper identi�es the relevant signal paths (list of consecutive
signi�cant cliques) only for pathways detected in the previous phase.
For each pathway and the corresponding moralized graph, the approach is based on
three main steps:

1. construction of the junction tree;

2. test on cliques in mean or variance;

3. identi�cation of paths as list of consecutive cliques;

4. computation a path score proportional to the signi�cance of the cliques (see
�gure 1.5).
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The path with the maximum score is then selected. Finally the clipper results
consist on a number of relevant signal paths as you will see in the next chapter.



Chapter 2

Case Study

The purpose of this chapter is to show how to perform a typical statistical analysis
using Grapithe Web and how it allows the pathways visualization.

Then we speak about the limits of the current implementation of Graphite Web.

2.1 Ovarian Cancer

The ovaries are two organs which are part of the female reproductive system.
They are situated in the pelvis, one on each side of the uterus: the hollow, pear-
shaped organ where a fetus grows.
Each ovary is about the size and shape of an almond. These ovaries make eggs and
female hormones, chemicals that control the way certain cells or organs work in the
body.
The ovarian cancer is the kind of cancer that can infect an ovary.[6]

In 2012, ovarian cancer occurred in 239,000 women and resulted in 152,000 deaths
worldwide. This makes it, among women, the seventh-most common cancer and the
eighth-most common cause of death for cancer.[7]

Ovarian cancer is subdivided into stages using the FIGO (International Feder-
ation of Gynecologists and Obstetrics) system. The stages are shown in table 2.1.

I Cancer is completely limited to the ovary.

II
Pelvic extension of the tumor or primary peritoneal tumor,
involves, one or both ovaries.

III
Cancer found outside the pelvis or in the, retroperitoneal lymph,
nodes, involves one or both ovaries.

IV Distant, metastasis (i.e. outside, of the peritoneum).

Table 2.1: FIGO stages of ovarian cancer.

The symptoms of this cancer are usually absent in the �rst stage, this is the
reason why it is diagnosed late, quite often after it has reached the second stage.
Because of it the study of RNA expression can give useful information about the
progress of the cancer study.

9
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In this thesis we test the �rst two stages of the cancer compared to the third one,
with the purpose of analyze if occur some statistical di�erences between them.
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2.2 Dataset pre-processing

We examined RNA-seq expression data belonging to patients a�ected by ovarian
cancer, the data are provided by The Cancer Genome Atlas (TCGA) project.
RNA-seq is the high throughput sequencing of cDNA, which derives from a process
of a reverse transcription, using NGS technologies.
RNA-seq executes the sequencing of RNA molecules and pro�les the expression of
a single gene by counting the number of times that its transcripts have been se-
quenced.
The summarized RNA-Seq data is widely named as count data (e.g. table 2.2 ).

sample 1 sample 2 � � sample N
gene 1 5 3 � � 8
gene 2 17 23 � � 42
gene 3 10 13 � � 27
� � � � � �
� � � � � �
gene P 1507 1225 � � 1455

Table 2.2: Count data contains genes in rows and samples in columns, thus the
matrix contains the counts of transcript expression for every sample.

From TCGA-OC dataset we test patients in stages I and II vs stage III after
normalization and �ltering using a custom R script.

The count data is a�ected by some bias thus it is necessary to e�ectuate a pre-
process it before executing the statistical analysis. Count data are often a�ected by
crucial systematic bias that have to be removed before any subsequent analysis.

(a) MvA plot before normalization (b) MvA plot after normalization

Figure 2.1: MvA plot for a single patient where A is the mean of the log-intensities
and M is the di�erence of the log-intensities, between two samples.
The red line corresponds with zero while green one with the mean. In fact after
normalization they overlap as we wanted.
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Normalization is the transformation of the data that should reduce this bias and
it can be done within and between experiments to make counts comparable.
Normalization assumes the following hypotheses:

1. the largest fraction of the samples is not di�erentially expressed;

2. symmetry between over and under expressed genes;

3. di�erential expression does not depend on the mean.

We normalize the dataset using the Trimmed Mean of M-values (TMM). In �gure
2.1 we show MvA plot before and after normalization, each patient data is scaling
on a reference patient.
Finally it is useful to �lter the genes that are expressed at a very low level expression
in each subject according to a threshold.
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2.3 Statistical Analysis with Graphite Web

Graphite Web is a web tool for pathway analyses and network visualization for gene
expression data [11]. It provides di�erent statistical analyses and it is based on
graphite.
Here we perform a clipper analysis as an example of a typical use of Graphite Web.
Graphite Web pipeline is divided in the following steps: Graphite Web requires as

Figure 2.2: Graphite Web user experience.

input �le a tab-delimited text �les where the �rst row should contain sample names
(the sample name represents the sample class) and the �rst column the gene IDs.
In this case we group I and II stages as class A and III stage as class B such as
in table 2.3. We perform a clipper analysis for Homo Sapiens using the KEGG
database.
The result consist on the list of selected pathways, shown in table 2.4, ordered by
mean and variance test.

http://graphiteweb.bio.unipd.it/
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EntrezID A A A A B B B B
100133144 94 90 27 79 103 74 66 49
100134869 184 173 45 146 172 120 52 36
10357 111 229 99 25 91 32 106 256
645851 47 44 54 24 36 40 24 20

Table 2.3: An extract of count data input. The full matrix has 22 samples for
population A and 240 samples for population B with 16618 genes (EntrezID) to
test.

serial Pathway p value Mean p value Var
1 Long-term depression 0 0
2 Melanogenesis 0 0
3 Axon guidance 0.01 0
4 Gap junction 0.01 0
5 Hepatitis C 0 0.01

Table 2.4: First 5 selected pathways.

Figure 2.3: A portion of long-term depression pathway in which the most relevant
paths are coloured.

For each of these pathways you can see in detail the relevant paths.
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For example in the case of long-term depression pathway there are two relevant
paths, in �gure 2.3 one of these is coloured according to its score.

In this case we uploaded a RNA-Seq data of 19,4 MB contains 16618 rows and
262 columns (not very large) and exploiting a connection with 70 MBps in upload
(very fast), the software takes 33 s to upload the �le and to perform the analysis.
Now if we try to upload the same �le, the system executes again the same operations
wasting time.
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2.4 The aim of this thesis: a solution for limits of

Graphite Web

Today, thanks to high-throughput technologies such as NGS sequencers, we can gen-
erate hundreds of gigabases of DNA and RNA sequencing data in a few days of work.
Anyway, these raw results require further analysis before to be usable by researchers,
and the manipulation of such big-data is time-consuming and even the simple trans-
mission of them through the web requires a huge amount of time and resources.

Graphite Web is a web server able to provide di�erent types of analysis which
gives to researchers the chance to test di�erent algorithms performances on data.
The actual version of the software is a simple application that can run some statistical
analyses on expression data.
In the case of a client requests twice the same analysis, the software executes again
all the operations that have been already performed.
These operations are computationally expensive and we want to avoid this situation.
In this project we work in the following limits for the actual version of Graphite Web:

• since a typical dataset can reach up 100 Mb, the state-of-the-art solution would
be to stream data, while the current version just keeps to allocate more RAM
for them;

• at the moment no database is used to store the results. Instead, when a
database is implemented we could store both the knowledge of biology and the
performed operations;

• the application works only with a single process right now. With this system,
all the requests are execute one on one, generating a long queue of pending
operations before to e�ectively run them.

In order to solve these problems, we have designed a new architecture of Graphite
Web and its implementation consists in a database to store data, a business logic
that works using streaming and a server that uses concurrent and parallel computing.
In the next chapter we describe how we implemented these solutions.



Chapter 3

A multi-tier architecture for

Graphite Web

In this chapter we describe the requirements analysis that explains how the software
should run.

Next we see the multi-tier architecture of Graphite Web that is formed by the
following parts:

• storage tier: it is responsible for the data persistence mechanisms (�le system
and database);

• business logic tier: this part controls the application's functionality;

• presentation tier: this is the topmost level of the application and it communi-
cates with other tiers in order to display information.

This structure allows to make each part of application independent from others.

3.1 Requirements analysis

The goals of the system is to manage the knowledge of biology delivered by di�erent
pathway database and to allow some statistical analyses through the web.
In particular, the system has to satisfy the following requirements:

1. has to manage the updating of the knowledge of biology;

2. has to permit statistical analysis only between entities with the same version;

3. has to manage large datasets (e.g. 100 MB) without loading them all in mem-
ory but using streaming;

4. has to track any executed operations;

5. has to work asynchronously in case of expensive operations;

6. has to implement a mechanism of garbage collection.

The entities are divided into three main categories:

17
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1. biological data: knowledge bases, nodes, interactions and pathways;

2. user data: microarray or RNA-Seq dataset;

3. analysis data: the result of di�erent kinds of analysis;

The system does not aim to manage the biological relations between entities because
they are treated by biological database.
In fact, the software keeps track of the version of every entity, in this way the analysis
can be performed only between the entities with the same version.
Lastly, the system should be easy to maintain with the possibility to extend its
features.
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3.2 Storage tier

In the design of the software every entity is uniquely represented by its content in
terms of bytes, which we will called "blob", and by some metadata which describe
it.
The database is a collection of structured data, which have a di�erent form and
which are logically related to each other: it is possible to obtain information from
these data.
Its contents is de�nable as a table of records, and every record has some di�erent
�elds. In general, a record can contain several �elds describing di�erent types of
content.
We could save the blobs inside a database �eld but if we consider that a typical
expression matrix (dataset) can reach up 100 MB, we prefer to store it inside the
�le system.
In this way we have more control of blob storage mechanism independently of a
speci�c database.

3.2.1 File system

A typical blob size of nodes, pathways and interactions can be around 20 MB while
dataset is about 100 MB.

To ensure both e�ciency and simplicity in the storage of blobs we have decided to
exploit the �le system. In order to manage stored blobs we use two tables: BLOBS
and BLOB_HINTS, as shown in �gure 3.1.

Figure 3.1: The tables relative to the phase of storing blobs: BLOBS and
BLOB_HINTS.

The table BLOBS helps to describe a blob with metadata, in which:

• id is the primary key;

• name is the �lename;

• hash is the hash code that depends on the content of the blob;

• ref_count is the number of other entities that are linked to this blob;

• ctime is the creation time;
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• atime is the last access time;

• size is the size of blob in bytes.

The table BLOB_HINTS represents the hint to save a �le with a certain �lename
and it is useful for the garbage collection how we explain in the next section.

Writing a blob

The phase of writing of blob consists on the following steps:

1. we assign a name, generated as a random UUID (universally unique identi�er)
to the new blob, e.g. 'c9acb2e6-e7d0-4af3-ba77-ee50d7499183';

2. we save this name in BLOB_HINTS with the ctime as the current time;

3. inside a default folder /blobs we create a �rst subfolder named with the �rst
char ('c') of name and inside this an other subfolder named with the second
and third chars ('9a');

4. the �le is written in streaming in this computed path ('/blobs/c/9a/c9acb2e6-
e7d0-4af3-ba77-ee50d7499183');

5. when the previous operation has been completed we compute a �le hash code
using SHA512 algorithm;

6. we save name ('c9acb2e6-e7d0-4af3-ba77-ee50d7499183') and hash in the table
BLOBS.

In this way, thanks to the support of these two tables, we prevent concurrency
problems that may happen when two processes try to save simultaneously to the
same �le.
In fact the hash code, di�erently to the �lename, depends on the content of blob and
this involves that in the worst case we save two identical �les in di�erent paths for the
same blob. In the �rst time we insert a record both in BLOB_HINTS and BLOBS
while in the second times only in BLOB_HINTS. Then the garbage collector will
delete the duplicated �les as explained in the next section.

Deleting blob

The deletion of unused �les is a job for the garbage collector that periodically controls
if some �les are obsoletes.
This process exploits the tables BLOBS and BLOB_HINTS and consists in the
following steps:

1. we delete all records from BLOB_HINTS where etime (expiration_time) <
current time that corresponds to the case of duplicated �les explained previous;

2. we unlink these duplicated �les;
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3. we delete records in BLOBS where ref_count = 0 and atime is passed from a
certain period of time;

4. we unlink these obsolete �les.

In this easy way we manage also the deleting mechanism of blobs.

3.2.2 Database

In this section we explain the conceptual schema of the database.
A knowledge_base represents the version of biology information that we use for an
analysis on data expression in a speci�c moment.

The following �elds are common for more tables: ref_count is the number of
references that use the relative instance, ctime: is the creation time, atime is the
last access time.
The last two are useful to the garbage collection mechanism how explained in the
previous section.

We model the biological data with the following entities: knowledge_base (KB),
node, pathway and interaction. The corresponding tables areKNOWLEDGES_BASES,
NODES, PATHWAYS and INTERACTIONS.
A KB can contain many nodes, pathways and interactions and this involves a one
to many relation among them.
The allowed states of a KB are:

• open: the phase of �lling in with nodes, pathways and interactions;

• active: only one KB can be active at a time, we can execute a statistical
analysis only on active KB, in this state KB are not modi�able;

• closed: is an old version of KB that will be erase from garbage collector we
will satisfy the condition to delete an entity that depends on ref_count and
atime as already explained.

Nodes are characterized by species (human or other), biotype (gene or mirna) and
its blob.
Pathways and interactions are characterized by species (human or other) and their
blobs.
The relations one-to-many from nodes, pathways and interactions to KBs and blobs
are implemented as shown in �gure 3.2.

The user data corresponds to microarray or RNA-Seq data. These are uploaded
by users in order to carry out statistical analyses but, before of this, the user data
have to be validated.

For this reason the insertion of expression data happens in two phases, using two
di�erent tables:

1. validation: the relative blob has to be validated in terms of format and meaning
of data, for this reason it is saved in table VALIDATIONS and it stays here
until is not validated;
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Figure 3.2: Tables that describe the biological data.

2. dataset: when a validated blob (validation) becomes a dataset, it is moved
from VALIDATIONS to DATASETS ; the validation process of a dataset can
pass or fail.

Figure 3.3: Tables that describe the user data.
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VALIDATIONS and DATASETS have the same hash, vtime is the validation time
that serves to notify when a process takes too long to validate a dataset; type is
microarray or RNA-Seq.
An analysis can be in state "to do" or "in progress". The �eld metas is a json that
contains parameters about the speci�c dataset.
DATASETS has more �elds, which are: blob_validated that is a modi�cation of the
original blob to execute in better way the analysis, validation_result and valida-
tion_msg that describe the result of a validation process; �gure 3.3 shown these
tables.

The analysis data are represented in similar way to user data how you can see
in �gure 3.4.

In the business logic we explain how we exploit these tables to carry out validation
and analysis in an e�cient way.

Figure 3.4: Tables that describe the analysis data.

PostgreSql (https://www.postgresql.org/)is an open source object-relational
database management system (ORDBMS), for implement the storage tier we use
PostgreSql 9.5.

We model dataset, and also analysis, with two tables. With this approach we
insert redundancy in the conceptual schema and the tables are not normalized.
But in this way we can manage the concurrency in easy way avoid one or more �elds
set with NULL.
We have to think to concurrency because in the system more processes could run in
the same time and in the worst case they could try to execute the same operation.
To allowed the mechanism of validation and analysis we exploit the NOTIFY com-

https://www.postgresql.org/
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mand of PostgreSql.
It sends a noti�cation event together with an optional "payload" string to each client
application that has previously executed LISTEN channel for the speci�ed channel
name in the current database.
In our case there are two channel: "validation" and "analysis" so that di�erent
process can communicate between them.
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3.3 Business logic tier

The business logic is developed in Python. The application allowed to manage the
version of knowledge bases and its components. It also provides many types of
analysis on the current version of the knowledge base.
The project is divided in two essential modules:

• storage: can access to database and provides an interface to model to execute
queries;

• model: de�nes logic rules between di�erent entities.

3.3.1 Storage module

The storage module has the responsibility to give to the model some methods to
access the database so that the model can carry out the essential operations for
running the application.
These methods can be divided in the following groups:

• saving blob operations:

stream_blob(blob_id) -> stream

add_blob(stream) -> blob

• insertion of biology entities:

insert_kb(kb_version) -> None

insert_nodes(kb, species , biotype , blob) -> bool

insert_pathways(kb, species , blob) -> bool

insert_interactions(kb, species , blob) -> bool

• registration of data expressions or analyses:

register_expr_data(kb, species , biotype , blob ,

expression_type) -> validation_info

register_anlysis(metas , analysis_type) ->

analysis_info

• request if there are validations or analyses that are available to execute:

get_dataset_to_validate () -> Optional[bytes]

get_analysis_dependencies () -> Optional[

analysis_dependencies]

• updating validations or analyses executed:

update_dataset(dataset_hash , blob , metadata ,

validation_result , validation_msg) -> None

update_analysis(analysis_hash , blob , metas ,

analysis_result , analysis_msg) -> None
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• some useful queries:

highest_open_kb () -> Optional[kb_version]

highest_kb () -> Optional[kb_version]

has_nodes(kb, species , biotype) -> bool

has_nodes_by_kb_and_species(kb, species) -> bool

has_nodes_by_kb_and_biotype(kb, biotype) -> bool

has_validation(validation_hash) -> bool

has_analysis(analysis_hash) -> bool

We take care to store blobs using streaming because we want to save resources for
each operation.

When the model adds a new entity, such as a pathway, it has to add the relative
blob and only then it can insert the pathway in the database.

All queries, in PostgreSQL, are implemented as atomic transitions using Psy-
copgs, a Python module to communicate with PostgreSQL.

3.3.2 Model module

This module contains the logic rules to each application operation, these are imple-
mented in speci�c functions and are divided for type of entity:

• knowledge_bases: the state of a new KB is open, in this state we can insert
nodes, pathways and interactions but we can't perform any analyses.
If for each species saved in database there is almost a node and a pathway
of genes, then the KB can pass to the active state in which we can execute
analyses.
When we want to update the biology information we create and populate a
new KB and at the moment of its activation the previous KB will be closed.

• nodes: for a given species, a node can be a gene or mirna and its biological
information is stored in a blob that may change for di�erent KB versions;

• pathways and interactions: for a given species, its biological information is
stored in a blob that may change for di�erent KB versions;

• datasets: it can be microarray or RNA-Seq; it is relative to a speci�c species
and before we save a dataset we must check if nodes and interactions of its
species are stored in the database.
After the storage of the corresponding blob, we insert a record in VALIDA-
TIONS with a hash as the primary key that depends on the dataset metadata
and KB.
When an external process validates the dataset, this is moved in DATASETS
populating it with the same metadata and with the result of the validation
process (passed or failed).

• analyses: for one or more datasets we can perform analyses.
After the check if there is at least one gene dataset, we insert a record in
ANALYSIS with a hash as the primary key that depend on the speci�c analysis
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and KB.
When an external process executes the analysis, this is moved in RESULTS
populating it with the same metadata and with the relative blob that contains
the result of analysis.

The model module can perform all checks thanks to the interface exposed by storage
module.
A sub-module common has the goal of provides common utilities to other module,
such as enum or recurrent pieces of code.
In �gure 3.5 we show the structure of the Python module of model.

Figure 3.5: The Python package of model that contains a module for each entity to
manipulate.
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3.4 Presentation tier

3.4.1 Server module

We implemented the server according to Web Server Gateway Interface (WSGI) de-
�nes in a document called PEP-3333 [3].
A Web Browser communicates with a Web Server using Hypertext Transfer Protocol
(HTTP) which functions as a request-response protocol. In this process of commu-
nication, we send a request to the Web server and expect a response in return [8].
We use the following HTTP request methods:

• GET: this fetches information from the given server using given URI (Uniform
Resource Identi�er);

• PUT: this creates or overwrite all the current rappresentation of the target
resources, when we intend to create a new URL;

• POST: this can submit data to the server that we wish to process.

A Uniform Resource Locator (URL), commonly informally termed a web address is
a reference to a web resource that speci�es its location on a computer network and
a mechanism for retrieving it.
In order to mapping URL pattern of the application we use the Python package
Wheezy Routing.
We implemented these GET handler:

• http://host/kb: returns information about all KBs saved in the database;

• http://host/kb/lastOpen: returns number of highest open KB;

• http://host/kb/{version}: returns information about KB for the passed ver-
sion;

• http://host/validation: returns a validation to carry out; if there are none then
it waits some seconds to try again, this because someone could register a new
dataset meantime;

• http://host/dataset/{dataset_hash}: returns validation information about dataset
hash passed (microarray or RNA-Seq), previous registered; if there are none
then it waits some seconds to try again because the validation process may be
in progress;

• http://host/analysis : returns an analysis to carry out; if there are none then it
waits some seconds to try again because someone could require a new analysis;

• http://host/analysis/{analysis_hash}: returns analysis information about anal-
ysis corresponding to the hash passed; if there are none then wait some seconds
to try again because the analysis process may be in progress;

We implemented these PUT handler:



3.4. PRESENTATION TIER 29

• http://host/kb/{version}: inserts a new KB with passed version;

• http://host/kb/{version}/activate: actives the corresponding KB;

• http://host/kb/{version}/{species}/{biotype}: inserts a new node for species
and biotype in a speci�c KB;

• http://host/kb/{version}/{species}/interactions : inserts a new interaction for
species in a speci�c KB;

• http://host/kb/{version}/{species}/pathways : inserts a new pathway for species
in a speci�c KB;

• http://host/RNA-Seq/{species}/{biotype}: registers a RNA-Seq dataset that
will be validated if it is in according of the correct format;

• http://host/microarray/{species}/{biotype}: registers a microarray dataset that
will be validated if it is in according of the correct format;

• http://host/analysis/{analysis_type}: register an analysis to execute.

We implemented these POST handler:

• http://host/dataset/{dataset_hash}: validates a dataset, it receives the meta-
data;

• http://host/result/{analysis_hash}: updates the result of an analysis, it re-
ceives the metadata;

These routes can be used by a client to execute some operations.
The Graphite Web server is built on the WSGI implementation delivered by

Guinicorn that is a Python WSGI HTTP Server for UNIX.
We implemented a standalone application that is built on the Gunicorn framework
(http://gunicorn.org/). We run it using as asynchronous worker gevent (http:
//www.gevent.org/) that is a Python networking library that uses greenlet (michro-
threads with no implicit scheduling) to provide a high-level synchronous API .

3.4.2 Web client

We have two types of client: system administrator and user (typically a research).
The role of system administrator is to manage and update the knowledge of biology
(through insertion of nodes, pathways and interactions) that will be used to execute
statistical analyses from user.
In order to deliver these two di�erent functionalities we need of two html web sites:

• Dashboard site: only for system administrator operations such as insertion of
KBs, nodes, pathways and interactions;

• Graphite Web site: user interface that leads a researcher to load its expression
data and to require a particular type of analysis.
Then its must show the result of analysis.

http://gunicorn.org/
http://www.gevent.org/
http://www.gevent.org/
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We implemented these using react.js that is a framework, delivered from Facebook,
that implements the Model-View-Control pattern.
This section is not the focus of this thesis because is developed by another student.



Chapter 4

Software development

In this chapter we explain the technical requirements that drove the implementation
and the application development life cycle that we followed during this project.

4.1 Technical requirements speci�cations

We developed the software in according to the the following technical requirements:

• the programming language to adopt is Python 3.5;

• we have to adopt the test driven development (TDD) method;

• we have to manage the version control;

• we have to set up a continuous integration framework.

The �rst requirement is because the Python language is largely used by biologists so
in the future someone, in this area, could extend the Graphite Web functionalities.
Moreover Python is a very �exible and permits to implement many kinds of opera-
tions at di�erent levels, e.g a software web or numerical analyses.

The other requirements help us to work in team with minimum e�ort and max-
imum e�ciency.

4.1.1 Python programming language

Python (https://www.python.org/) is widely used in computer science and in
particular by computational biologists.
Python is an high-level Object-oriented programming language that support also
other paradigms. It was created by Guido van Rossum in 1991.

Python is a dynamically typed language: the check of variable types is performed
only at run-time.
The bene�t of this approach lies in the fact that typing phase is �uent and rapid
but, in on other hand, it is easy to make a mistake when to software structure is
complicated.
To avoid this problem we use mypy (http://mypy-lang.org/) that is an experi-
mental optional static type checker for Python that aims to combine the bene�ts of
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dynamic and static typing.
Python supports the optional annotation of types: both in variables and function
or method parameters (both input and output).
If we annotate our code, we can check the coherence of these annotations using
mypy.

Python language generates code documentation exploits docstring. A docstring
is a string literal speci�ed in source code that is used, like a comment, to document
a speci�c segment of code.
During all phases of development we wrote the docstring for each essential method.
Then, in order to auto generate API documentation for modules we used pdoc
(https://github.com/BurntSushi/pdoc), a Python tool, to creates the documen-
tation of Graphite Web source code in javadoc style.

We decided to adopt Pycharm (https://www.jetbrains.com/pycharm/)as Python
IDE (Integrated development environment) delivered by Jet Brains to be more pro-
ductive. Pycharm provides these useful functionalities:

• smart completion of code;

• code inspections;

• on-the-�y error highlighting and quick-�xes;

• automate code refactorings as rename and delete, extract method, introduce
variable, and others;

• debugging, testing and pro�ling;

• connection to various types of database;

• version control integration;

• an interactive Python console;

• a Linux shell.

The debug functionality of Pycharm is essential to be productive, it allows to watch
the content of variables during the execution of the application or the tests.
The Python Standard Library contains many built-in packages to manage various
aspects of an application such as zip, json, stream, audio and many others. In few
speci�c cases we used external Python package, they are the following:

• psycopg2: to connect to the PostgreSql database;

• wheezy.routing: to manage the url patterns;

• gevent: to provide concurrent computing with micro-thread that optimizes the
use of resources;

• gunicorn: to implement the server, it is a pre-fork worker model and provides
parallel computing;

• zipstream: to generate �le zip in streaming.

https://github.com/BurntSushi/pdoc
https://www.jetbrains.com/pycharm/
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4.1.2 Test driven development

The basic concept of test driven development is to write a failing test, before writing
any code. The tests should drive the development by failing in a way that allows to
write a piece of code.
Writing our test �rst forces us to think about the problem we are try to solve [9].
This process is a cycle consisting in:

1. to write a failing simple test;

2. to make the test pass;

3. to refactor: here we could also add new functionalities not yet tested;

and then again at the �rst step because we could need to add more tests.
In order to test the model and the storage, we structured the test module in two
main sections:

• unit test in the folder test/unit/ in which we test the model and the storage
independently;

• integration test in the folder test/integration/ in which we test the integration
of the model with the storage.

The unit test veri�es individual unit of code, typically as method, in isolation to see
if given certain conditions its responds in the excepted way.
This because if any of the smaller part of the application do not function has ex-
pected, the application as a whole can fail completely.
We run tests with PyTest (http://doc.pytest.org/en/latest/) as alternative
test runner to the built-in one. It o�ers many options as targeting speci�c test to
execute, it support the debugging and it can check the coverage of test.

With the purpose of isolate a part of application during the test we exploit mocks.
Python provides a built-in mock library to help developers in this work.
A mock is a dummy implementation of a piece of code that simulates the behaviour
of the real application returning what we expected.
For example we want to test the model independently by type of storage and so we
use mocks.

4.1.3 Version control

Version control is a system that records changes to a �le or set of �les over time so
that you can recall speci�c versions later.
We version the source code with Git (https://git-scm.com/) that is an open

source distributed version control system.
This means that the server has a backup of original �les and when clients fetch a
repository they make a local copy of �les. Then they work on these �les and push
their changes on the server.
Git makes easy the teamwork by tracking each change of code. Each save is called
commit and it is uniquely identi�ed by a hash.

http://doc.pytest.org/en/latest/
https://git-scm.com/
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Figure 4.1: Git work�ow of Graphite Web development.

Git runs in a similar way to a timeline: starting from a point, a commit, we can
create alternative time lines called branch.
In general the main develop branch is called master and each developer can, starting
from here, work in a personal branch. This branch, when the work is �nished, can
be merged in the master.
In Graphite Web the main branch is called develop and when a programmer wants
to implement new features works in his branch; �gure 4.1 shows the typical Graphite
Web work�ow.
This approach is largely adopted when it is necessary to work for a project in many
developers at a time.

4.1.4 Continuous integration

When a system is under versioning and the team work following the TDD is a good
practice to set up a system integration software as Jenkins (https://jenkins.io/)
that provides these main functionalities:

• automatic build and history of the performed builds;

• automatic test and history of the result of tests;

Jenkins is a Web server written in Java with an user experience that periodically,
or when a developer pushes updates, run a build that consists in testing the entire
software with exiting tests and eventually in running some scripts.

https://jenkins.io/
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4.2 The application development life cycle

The phases of development follow, in general, the division of entities.
Firstly we implemented the following steps for the the biological data, then for the
user data end �nally for the analysis data.
For each entity the steps consists in writing:

• the unit test;

• the corresponding model;

• the storage test;

• the storage;

• the integration test of model with storage.

The next step is implement the server. We prepared the server module and client
in Python.
The client executes various requests to the server using the Python request module
and we run this like a test.
This simple test consists in the following operations executed via HTTP request:

1. we run the server in localhost;

2. we populate the database with various KB version and create one that has
nodes, pathways and interactions. We activate it so that we can perform
analyses;

3. we try the activate command verifying that it works as we expected in various
cases;

4. we upload a dataset and validate it;

5. we request an analysis and carry out it.

In this way we verify all implemented operations also through the server, they suc-
cessfully run.
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Chapter 5

Conclusion

5.1 Analysis of code

The PEP-8 is the o�cial document that de�nes the style guide for Python code, e.g.
the naming convention or the max line-code's length [12].

Pylint (https://www.pylint.org/) is a Python tool that creates a report show-
ing some of the areas in code that do not meet the PEP-8 de�ned standard.
It helps the coding checking:

• line-code's length;

• if variable names are well-formed according to your coding standard;

• if imported modules are used.

It performs the error detection, e.g. checking if declared interfaces are truly imple-
mented and if modules are imported and much more. Moreover it detects duplicated
code.

Here we show some signi�cant tables generated by Pylint:

type number perc
code 2826 66.78
docstring 286 6.76
comment 117 4.18
empty 943 22.28

Table 5.1: The project contains 2826 line of source codes.

type number
convention 446
refactor 51
warning 120
error 6

Table 5.2: This table shows the category of check: convention no respected, need of
refactor, warning and error.
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module error warning refactor convenction
model.knowledgebase 0.00 2.50 1.96 2.02
model.blob 0.00 0.00 0.00 0.22
model.nodes 0.00 4.17 1.96 1.35
model.interactions 0.00 4.17 1.96 1.35
model.pathways 0.00 4.17 1.96 0.90
model.microarrayexpr 0.00 4.17 0.00 0.45
model.rnaseqexpr 0.00 4.17 0.00 0.45
model.validation 0.00 3.33 0.00 1.35
model.analysis 0.00 5.00 0.00 2.24
storage.persistent 0.00 0.83 9.80 2.69
storage.unique�le 0.00 0.83 1.96 1.57
storage.stream 0.00 0.00 3.92 2.02
server.server 0.00 0.00 0.00 0.24
server.handlers.knowledgebases 0.00 5.00 0.00 2.24
server.handlers.nodes 0.00 0.83 0.00 0.45
server.handlers.interactions 0.00 0.00 0.00 0.45
server.handlers.pathways 0.00 0.00 0.00 0.45
server.handlers.userdata 0.00 2.50 0.00 1.12
server.handlers.validation 33.33 5.83 0.00 1.12
server.handlers.analysis 33.33 3.33 0.00 1.79

Table 5.3: This table shows the percentage of error/warning by module. We show
only the most signi�cant modules.

The global evaluation gives to Graphite Web source code a rate of 7.19/10, it is
a good score but we can improve the quality of code following the information given
by Pylint. During the development we have implemented test for each essential

module statements miss perc cover
model.knowledgebase.py 65 4 94
model.blob.py 7 0 100
model.nodes.py 43 1 98
model.interactions.py 39 1 97
model.pathways.py 39 1 97
model.microarrayexpr.py 21 21 0
model.rnaseqexpr.py 17 0 100
model.validation.py 29 1 97
model.analysis.py 42 7 83
storage.persistent.py 155 10 94
storage.unique�le.py 45 5 89
storage.stream.py 40 12 70

Table 5.4: This table shows the percentage of coverage for the most signi�cant
modules.

functionality.
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Coverage (https://coverage.readthedocs.io/en/coverage-4.2/) is a Python
tool that provides coverage information for the full program. In table 5.4 we show
the coverage of some modules.

In the global analysis we have 3049 statements and we covered 73%, it is a
positive result.

https://coverage.readthedocs.io/en/coverage-4.2/
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5.2 Concluding remarks

Graphite Web is a Web server that provides di�erent types of analysis and which
gives to researchers the chance of testing performances of di�erent algorithms on
data.
For example it provides simple algorithms as �sher test or more complex as clipper
that after selecting signi�cant pathways, identi�es within those pathways the signal
paths having the greatest association with a speci�c phenotype.

The goal of this project was to improve the implementation of Graphite Web to
solving its limits.
The new version of Graphite Web server was built on the WSGI implementation
delivered by guinicorn that is a Python WSGI HTTP Server.
In particular, we implemented in Python the following solutions:

• each transmitted data from and to server is sent as a stream to avoid to waste
memory resources;

• the �le system is used to save data and a PostgreSQL database manages the
corresponding metadata. The database stores both the knowledge of biology
and all performed operations;

• we implemented a gunicorn server that uses gevent as worker. With this
solution we make the system able to use concurrent and parallel computing in
order to can perform more analyses at the same time.

We structured the project as multi-tier architecture formed by this tier:

• storage that consists in the integration of �le system and database;

• business logic that de�nes rules of the application, it is divided in two module:
the storage (part of application that communicates with the database) and the
model (part of application the provides methods to manage the entities);

• presentation that consists in the programmatic presentation delivered by server
module and in the presentation of data that we can implement as a web site.

At the moment we are still working on the new version of Graphite Web to
improve the quality of the implementation and to integrate all the statistical analyses
provided by the old version.
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