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Preface

The purpose of this paper is to develop the mean field game theory with sev-
eral populations. There are several reasons to explain the developing inter-
est for mean field games, one of which is the strong connection within several
mathematical areas, including partial differential equations, probability theory,
stochastic analysis, optimal control, and optimal transportation. In particular,
several results of mean field games can be expressed and proved by analytical or
probabilistic tools [5].Another explanation for the interest in the theory is the
wide range of applications that it offers. While they were originally inspired by
works in economics [10] on heterogeneous agents, MFG models now appear un-
der various forms in several domains, which include, for instance, mathematical
finance, study of crowd phenomena, epidemiology, and cybersecurity.
Mean field games should be understood as games with a continuum of players,
each of them interacting with the whole statistical distribution of the popula-
tion. The intrinsic difficulty in proving the convergence of finite player equilibria
may be explained as follows: When taken over strategies in closed Markovian
form, Nash equilibria of a stochastic differential game with N players in a state
of dimension d may be described through a system of N quasilinear parabolic
partial differential equations in dimension N × d, which we refer to as the Nash
system. The strategy developed in this paper is thus to bypass any detailed
study of the Nash system. Instead, we focus directly on the expected limiting
form of the Nash system. This limiting form is precisely what we call the master
equation. As a result of the symmetry inherent in the mean field structure, this
limiting form is no longer a system of equations but reduces to one equation only,
which makes it simpler than the Nash system. It describes the equilibrium cost
to one representative player in a continuum of players in each populations. To
do so we exploit the connection between the MFG system and master equation
and at the end of this paper we show that the solution of the multi-popultaion
Nash system converges to the solution of the multi-population master equation.
To conclude I would like to thank Marco Cirant and Pierre Cardaliaguet for all
the ideas in the numerous stimulating discussions with them.
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1 The differential game

In the following chapter we will introduce in a non rigorous way some basic
ideas about mean field games.
The existence of time consistent Nash equilibria, based on dynamic program-
ming, requires the solvability of a strongly coupled system of Hamilton-Jacobi
equations. This system is denominated the Nash system.


−∂tvN,i(t, x)−

∑n
j=1 △xj

vN,j(t, x) +H(xi, Dxi
vN,i(t, x))+∑

j ̸=iDpH(xj , Dxj
vN,j(t, x)) ·Dxj

vN,i(t, x) = FN,i(x) in [0, T ]× (Rd)N

vN,i(T, x) = GN,i(x) in (Rd)N

(1)

Where (vN,i)i∈{1,...,N} are called value functions, H : Rd × Rd → R is the
Hamiltonian and the symbol · denotes the inner product in the d−dimensional
euclidean space Rd.
In the branch of mathematics denominated differential games theory,
differential games are just optimal control problems with N players with state(
(Xi,t)t∈[0,T ]

)
i∈{1,...,N} and control (αi,t)t∈[0,T ],i∈{1,...,N} which evolve following

this stochastic differential equation (SDE):

dXi,t = αi,tdt+
√
2dBi

t Xt0 = xi,0

where
(
(Bi

t)t∈[0,T ]

)
are d−dimensional Brownian motion and controls

(αi,t)t∈[0,T ],i∈{1,...,N} are progressively measurables with respect to the filtration
generated by the d−dimensional Brownian motion.
Each player in the differential games aims to minimize the following cost func-
tional

JN
i (t0, x0, (αj)j=1,...,N ) = E

[∫ T

t0

L(Xi,s, αi,s) + FN,i(Xs)ds+GN,i(XT )

]
.

The Hamiltonian of the problem is defined as H(x, p) = supα∈Rd{−α · p −
L(x, α)} ∀(x, p) ⊂ Rd × Rd.
By Itô’ s formula, the optimal controls of the game are:

α∗
i (t, x) = −DpH(xi, Dxi

vN,i(t, x)) i = 1, . . . , N

which provide a Nash equilibrium:

vN,i(t0, x0) = JN
i (t0, x0, (α

∗
j )j=1,...,N ) ≤ JN

i (t0, x0, αi, (α
∗
j )j ̸=i).

Therefore in this game the set of ”optimal trajectories” solves a system of N
stochastic differential equations (SDE):

dXi,t = −DpH(Xi,t, Dv
N,i(t,Xt))dt+

√
2dBi

t t ∈ [0, T ], i ∈ {1, . . . , N}.

2



In order to assume that the other players are indistinguishible we will suppose
that the maps FN,i, GN,i only depend on xi and the empirical distribution of
the variables (xj)j ̸=i:

FN,i(x) = F (xi,m
N,i
X ) GN,i(x) = G(xi,m

N,i
X ),

where mN,i
X = 1

N−1

∑
j ̸=i δxj

is the empirical distribution of the (xj)j ̸=i and

F,G maps from Rd × P(Rd) to R.
With these assumptions vN,i can be written as

vN,i(t, x) = vN (t, xi,m
N,i
X ) t ∈ [0, T ] x ∈ (R)d.

The coupled system of stochastic differential equations (SDEs) becomes:

dXi,t = b
(
Xi,t,

1

N − 1

∑
j ̸=i

δxj ,τ

)
dt+

√
2dBi

t, t ∈ [0, τ ], i ∈ {1, . . . , N},

where b : Rd ×P(Rd) → Rd and if b is bounded and Lipschitz in both variables
both marginal laws of

(
(Xi,t)t∈[0,T ]

)
i∈{1,...,N} with same initial condition as

N → ∞ converges to the solution of the Mckean-Vlasov equation

∂tm−△m+ div(m · b(·,m)) = 0.

Due to the convergence of the trajectories
(
(Xi,t)t∈[0,T ]

)
i∈{1,...,N} with the

trajectories
(
(Yi,t)t∈[0,T ]

)
i∈{1,...,N}, which satisfy the following (SDEs):

dYi,t = b(Yi,t,L(Yi,t))dt+
√
2dBi

t, t ∈ [0, τ ], i ∈ {1, . . . , N},

where L(Yi,t) is the law of Yi,t, we obtain the mean field game system (MFG
system) which describes the structure of a differential game with infinitely many
players:

−∂tu−△u+H(x,Dxu) = F (x,m(t)) in [0, T ]× Rd

∂tm−△m− div(m ·DpH(x,DxU)) = 0 in [0, T ]× (Rd)N

u(T, x) = G(x,m(T )), m(0, ·) = m0,

(2)

where m0 denotes the initial state of the population.
TheMFG system consists in aHamilton-Jacobi equation describing the value
function u of the players and a Kolmogorov equation describing the dynamics
of the distribution of the population m(t).
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2 Notations and definitions

The set P(Rd) of Borel probability measures is endowed with the Monge-
Kantarovich distance:

d1(m,m
′) = sup

ϕ 1−Lip

∫
Rd

ϕ(y)d(m−m′)(y),

where the sup is over all 1 − Lipschitz continuous maps ϕ and the measures
have finite first order moment.
When the probability measure m is absolutely continuous with respect to the
Lebesque measure, we use the same letter m to identify its density. We of-
ten consider flows of time dependent measures of the form (m(t))t∈[0,T ] with

m(t) ∈ P(Rd)∀t ∈ [0, T ].
When, at each time t ∈ [0, T ], m(t) is absolutely continuous with respect to the
Lebesque measure on Rd, we identify m(t) with its density.

If ϕ : Rd → R is sufficiently smooth and ℓ = (ℓ1, . . . , ℓd) ∈ Nd, then Dℓϕ

denominates the derivatives ∂ℓ1

∂
ℓ1
x1

. . . ∂
ℓd

∂
ℓd
xd

ϕ. The order of derivation |ℓ| denotes

ℓ1+ ℓ2+ · · ·+ ℓd. Given e ∈ Rd, we also denote by ∂eϕ the directional derivative
of ϕ in the direction of e. For n ∈ N and α ∈ (0, 1), Cn+α is the set of maps ϕ
for which Dℓϕ is defined and α−Hölder continuous for any ℓ ∈ Nd with |ℓ| ≤ n.
We set

∥ϕ∥n+α :=
∑
ℓ≤n

sup
x∈Rd

|Dℓϕ(x)|+
∑
|ℓ|=n

sup
x ̸=x′

|Dℓϕ(x)−Dℓϕ(x′)|
|x− x′|α

.

The dual space of Cn+α is denoted by (Cn+α)′ with norm

∀ρ ∈ (Cn+α)′ ∥ρ∥−(n+α) := sup
∥ϕ∥n+α=1

< ρ, ϕ >(Cn+α)′,Cn+α .

To simplify the notation we will abbreviate the expression < ρ, ϕ >(Cn+α)′,Cn+α

into < ρ, ϕ >n+α. If a smooth map ψ depends on two variables, e.g. ψ = ψ(x, y),
we set

∥ψ∥(m,n) :=
∑

|ℓ|≤m,|ℓ′≤n

∥D(ℓ,ℓ′)ϕ∥∞,

and, if moreover the derivatives are Hölder continuous,

∥ψ∥(m+α,n+α) := ∥ψ∥(m,n)+
∑

|ℓ|=m,|ℓ′|=n

sup
(x,y) ̸=(x′,y′)

|D(ℓ,ℓ′)ϕ(x, y)−D(ℓ,ℓ′)ϕ(x′, y′)

|x− x′|α + |y − y′|α

and the notation is generalized in an obvious way to mapping depending on 3
or more variables.
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2.1 Derivatives

Definition 2.1.1. We say that U : P(Rd) × Rd → R is C1 if there exists a
continuous map δU

δm : P(Rd)× Rd → R such that, for any m,m′ ∈ P(Rd),

lim
s∈0+

U((1− s)m+ sm′)− U(m)

s
=

∫
Rd

δU

δm
(m, y)d(m′ −m)(y).

Note that δU
δm is defined up to a constant, therefore we will assume without loss

of generality that
∫
Rd

δU
δm (m, y)d(m)(y) = 0.

For any m ∈ P(Rd) and any signed measure µ on Rd, we will use equivalently
the following notations: δU

δm (µ) and
∫
Rd

δU
δmdµ(y). From the above definition we

will deduce that

U(m)−U(m′) =

∫ 1

0

∫
Rd

δU

δm
((1−s)m+sm′, y)d(m′−m)(y)ds ∀m,m′ ∈ P(Rd)

and

|U(m)− U(m′)| ≤
∫ 1

0

∥∥∥∥Dy
δU

δm

(
(1− s)m+ sm′, ·

)∥∥∥∥
∞
ds d1(m,m

′)

≤ sup
m′′

∥∥∥∥Dy
δU

δm

(
m′′, ψ)

∥∥∥∥
∞
ds d1(m,m

′).

This last inequality leads to the definition of intrinsic derivative:

Definition 2.1.2. If δU
δm is of class C1 with respect to the second variable, the

intrinsic derivative DmU : P(Rd)× Rd → Rd is defined by

DmU(m, y) := Dy
δU

δm
(m, y).

The expression DmU can be understood as a derivative of U along vector
fields:

Proposition 2.1.3. Assume that U is C1, with δU
δm being C1 with respect to y,

and that DmU is continuous in both variables. Let ϕ : Rd → Rd be a Borel
measurable and bounded vector field. Then,

lim
h→0

U((id+ hϕ)#m)− U(m)

h
=

∫
Rd

DmU(m, y) · ϕ(y)dm(y).

Proof. Let us set mh,s := s(id + hϕ)#m + (1 − s)m, where # push-forward.
Then,

U((id+ hϕ)#m)− U(m)

=

∫ 1

0

∫
Rd

δU

δm
(mh,s, y)d((id+ hϕ)#m−m)(y)ds

=

∫ 1

0

∫
Rd

(
δU

δm
(mh,s, y + hϕ(y))− δU

δm
(mh,s, y)

)
dm(y)ds

=

∫ 1

0

∫
Rd

(
δU

δm
(mh,s, y + hϕ(y))− δU

δm
(mh,s, y)

)
dm(y)ds
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Dividing by h and letting h→ 0 gives the result thanks to the continuity of
DmU .

Note also that, if U : P(Rd) → R and δU
δm is C2 in y, then DyDmU(m, y) is

a symmetric matrix since

DyDmU(m, y) = Dy

(
Dy

δU

δm

)
(m, y) = Hessy

δU

δm
(m, y).

2.2 Assumptions

Throughout the paper, we will assume that H : Rd×Rd → R is smooth, globally
Lipschitz continuous and satisfies the coercivity condition:

0 < D2
ppH(x, p) ≤ CId.

3 The multi-population mean field game system

To describe the structure of a differential game with infinitely many indistin-
guishable players in various populations, one finds a problem in which each
infinitesimal player optimizes his payoff depending on the collective behavior of
the others players in his population, and the resulting optimal state of them
is exactly distributed according to the state of each of the populations. The
resulting system consists in a forward PDE called the Fokker-Planck equation
describing the dynamics of the statistical distribution of the population in equi-
librium and in a backward PDE called Hamilton-Jacobi-Bellman equation de-
scribing the evolution of the optimal expected costs in equilibrium. This is the
”multi-population mean field game system”

−∂tuλ −△uλ +H(x,Duλ) = F (λ, x, µ(t)) in [t0, T ]× Rd ∀λ ∈ Λ

∂tm
λ −△mλ − div(mλ ·DpH(x,Duλ)) = 0 in [t0, T ]× Rd ∀λ ∈ Λ

mλ(t0, x) = mλ
0 (x) in Rd ∀λ ∈ Λ

uλ(T, x) = G(λ, x, µ(T )) in Rd ∀λ ∈ Λ

µ(t, x) =
∫
Λ
mλ(t, x)ρ(dλ) in Rd

(3)

wheremλ
0 denotes the initial state of the population λ which lives in the compact

metric space of the populations Λ and ρ ∈ P(Λ). In this framework, Fλ is the
running cost of the population λ and Gλ is the running cost of the population
λ.

Theorem 3.0.1 (Existence and uniqueness). Assume that for some n ≥ 1
and for some α ∈ (0, 1) :

sup
λ∈Λ

sup
µ∈P(Λ×Rd)

(
∥F (λ, ·, µ)∥n+α +

∥∥∥∥δF (λ, ·, µ, ·)δµ

∥∥∥∥
(n+α,n+α)

)
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+ sup
λ∈Λ

Lipn

(
δFλ

δµ

)
<∞, (4)

and

sup
λ∈Λ

sup
µ∈P(Λ×Rd)

(
∥G(λ, ·, µ)∥n+2+α +

∥∥∥∥δG(λ, ·, µ, ·)δµ

∥∥∥∥
(n+2+α,n+2+α)

)

+ sup
λ∈Λ

Lipn+2

(
δGλ

δµ

)
<∞, (5)

where we defined Lipn(
δFλ

δµ ) by

Lipn

(
δFλ

δµ

)
:= sup

µ̸=µ̃
(d1(µ, µ̃))

−1

∥∥∥∥δFδµ (λ, ·, µ, ·)− δF

δµ
(λ, ·, µ̃, ·)

∥∥∥∥
(n+α,n+α)

Under the following ”multi-population monotonicity assumptions” in which we
will assume that the following functions are ρ-integrable and the resulting inte-
grals non-negative:∫

Λ

∫
Rd

(F (λ, x, µ1(t))− F (λ, x, µ2(t)))(m
λ
1 (t)−mλ

2 (t)) dx ρ(dλ) ≥ 0 (6)∫
Λ

∫
Rd

(G(λ, x, µ1(t))−G(λ, x, µ2(t)))(m
λ
1 (t)−mλ

2 (t)) dx ρ(dλ) ≥ 0 (7)

for any time t and measures mλ
1 ,m

λ
2 , where µ1 and µ2 are defined in the fol-

lowing way: µ1(t, x) =
∫
Λ
mλ

1 (t, x)ρ(dλ), µ2(t, x) =
∫
Λ
mλ

2 (t, x)ρ(dλ).

For any initial condition (t0,m
λ
0 ) ∈ [0, T ] × P(Rd), the multi-population MFG

system (3) has a set of unique classical solution {(uλ,mλ)}λ∈Λ, with uλ ∈
C1+α

2 ,2+α.
Moreover, mλ has a continuous, positive density in (0, T ] × Rd and if, in ad-
dition, mλ

0 is absolutely continuous with a C2+α positive density, then mλ is of
class C1+α

2 ,2+α.

Proof. (Existence) To prove the existence of a solution we apply Schauder
fixed point theorem.
Let C be a big constant and X be the set of time dependent measures µ ∈
C0([t0, T ],P(Λ× Rd)) such that:

sup
t∈[t0,T ],L(Xt)=µ(t)

E[|Xt|2] ≤ C

d1(µ(t), µ(s)) ≤ C|t− s| 12 ∀s, t ∈ [t0, T ]. (8)

Note that, by Ascoli-Arzela theorem, X is a convex compact space for the
uniform distance.
Given µ ∈ X, we consider the solution uλ to the Hamilton-Jacobi equation{

−∂tuλ −△uλ +H(x,Duλ) = F (λ, x, µ(t)) in [t0, T ]× Rd

uλ(T, x) = G(λ, x, µ(t)) in Rd
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Assumption (4) implies that Fλ is Lipschitz continuous in both variables for
all λ ∈ Λ, thus the map (t, x) → F (λ, x, µ(t)) is Hölder continuous in time

and space and therefore belongs to C 1
2 ,1 with a Hölder constant independent of

µ. By assumption (5), the map x → Gλ(x, µ(T )) is of class C2+α with a con-
stant independent of µ. Thus, by the theory of Hamilton-Jacobi equations with
Lipschitz continuous Hamiltonian ([3], Theorem V.6.1), there exists a unique
classical solution uλ to the above equation.
Let now m̃λ be the weak solution to the Fokker-Planck equation:{

∂tm̃
λ −△m̃λ − div(m̃λ ·DpH(x,Duλ)) = 0 in [t0, T ]× Rd

m̃λ(t0, ·) = mλ
0 in Rd

Following [4], the above equation has a unique solution in C0([t0, T ],P(Rd))
in the sense of distribution. Moreover, as DpH is bounded, µ̃ :=

∫
Λ
m̃λρ(dλ)

satisfies (8) for a constant C big enough. In particular, µ̃ belongs to X.This
can also be seen by the estimates on a linear estimates in [2] Chapter 3.3(3.16).
This defines a map Φ : X → X which, to any µ ∈ X associates the map µ̃ ∈ X.
Next we claim that Φ is continuous. Indeed let (µℓ)ℓ≥1 be a sequence in X
converging to µ ∈ X. For each ℓ ≥ 1, let uℓ and µ̃ℓ be the corresponding
solutions to the Hamilton-Jacobi and the Fokker-Planck equations respectively.
From our previous estimate, the maps (uℓ)ℓ≥1 are bounded in C1+α

2 ,2+α. So, by
continuity of F and G, any cluster point of the (uℓ)ℓ≥1 is a solution associated
with µ. By uniqueness of the solution u of this limit problem, the whole sequence
(uℓ)ℓ≥1 converges to u. In the same way, (µ̃ℓ)ℓ≥1 converges in X to the unique
solution µ̃ to the Fokker-Planck equation associated with u. This shows the
continuity of Φ.
We conclude by Schauder Theorem that Φ has a fixed point which is a solution
to the multi-population MFG system (3) restricted to population λ.
Let now (uλ,mλ) be the solution to (3) for a fixed λ and assume that mλ

0 has
a smooth density. Then mλ solves the linear parabolic equation{

∂tm
λ −△mλ −Dmλ ·DpH(x,Du)−mλdiv(DpH(x,Du)) = 0 in (t0, T )× Rd

mλ(0, ·) = mλ
0 in Rd,

with C α
2 ,α coefficient and Cα+2 initial condition. Thus, by Schauder theory, mλ

is of class C1+α
2 ,2+α. If, moreover, mλ

0 is positive, then mλ remains positive by
strong maximum principle.

(Uniqueness) Let {(uλ1 ,mλ
1 )}λ∈Λ and {(uλ2 ,mλ

2 )}λ∈Λ two set of solutions of
the multi-population MFG system. By the smooth and coercitivity assumption
on the Hamiltonian H, mλ

1 and mλ
2 are positive and smooth for all λ in Λ.

The result can be obtained computing d
dt

∫
Rd(u

λ
1 − uλ2 )(m

λ
1 −mλ

2 ) and applying

integration by parts and the fact that {(uλ1 ,mλ
1 )}λ∈Λ and {(uλ2 ,mλ

2 )}λ∈Λ are
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two set of solutions of the multi-population MFG system :

d

dt

∫
Rd

(uλ1 − uλ2 )(m
λ
1 −mλ

2 )dx =∫
Rd

[
d

dt
(uλ1 − uλ2 )

]
(mλ

1 −mλ
2 ) + (uλ1 − uλ2 )

[
d

dt
(mλ

1 −mλ
2 )

]
dx =∫

Rd

[−△(uλ1 − uλ2 ) +H(x,Duλ1 )− F (λ, x, µ1)−H(x,Duλ2 ) + F (λ, x, µ2)](m
λ
1 −mλ

2 )

+ (uλ1 − uλ2 )[△(mλ
1 −mλ

2 ) + div(mλ
1 ·DpH(x,Duλ1 ))− div(mλ

2 ·DpH(x,Duλ2 ))]dx

= −
∫
Rd

mλ
1

[
H(x,Duλ2 )−H(x,Duλ1 )−DpH(x,Duλ1 )(Du

λ
2 −Duλ1 )

]
dx

−
∫
Rd

mλ
2

[
H(x,Duλ1 )−H(x,Duλ2 )−DpH(x,Duλ2 )(Du

λ
1 −Duλ2 )

]
dx

−
∫
Rd

(
F (λ, x, µ1(t))− F (λ, x, µ2(t))

)
(mλ

1 −mλ
2 )dx,

where we used the following integration by parts formula:∫
Rd

−△(uλ1 − uλ2 )(m
λ
1 −mλ

2 ) +△(mλ
1 −mλ

2 ) = 0,∫
Rd

(uλ1 − uλ2 )

(
div(mλ

1 ·DpH(x,Duλ1 ))− div(mλ
2 ·DpH(x,Duλ2 ))

)
=

∫
Rd

−mλ
1DpH(x,Duλ1 ) · (Duλ1 −Duλ2 ) +mλ

2DpH(x,Duλ2 ) · (Duλ1 −Duλ2 ).

Integrating in time t ∈ [t0, T ] and in population λ ∈ Λ the formula
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d
dt

∫
Rd(u

λ
1 − uλ2 )(m

λ
1 −mλ

2 ) computed before we obtain:∫
Λ

∫
Rd

(G(λ, x, µ1(T ))−G(λ, x, µ2(T ))(m
λ
1 (T )−mλ

2 (T ))ρ(dλ)dx

−
∫
Λ

∫
Rd

(uλ1 (t0, x)− uλ2 (t0, x))(m
λ
0 −mλ

0 )ρ(dλ)dx =∫
Λ

∫
Rd

(G(λ, x, µ1(T ))−G(λ, x, µ2(T ))(m
λ
1 (T )−mλ

2 (T ))ρ(dλ)dx =∫
Λ

∫
t∈[t0,T ]

d

dt

∫
Rd

(uλ1 − uλ2 )(m
λ
1 −mλ

2 )ρ(dλ)dtdx =

−
∫
Λ

∫ T

t0

∫
Rd

mλ
1

[
H(x,Duλ2 )−H(x,Duλ1 )−DpH(x,Duλ1 )(Du

λ
2 −Duλ1 )

]
ρ(dλ)dtdx

−
∫
Λ

∫ T

t0

∫
Rd

mλ
2

[
H(x,Duλ1 )−H(x,Duλ2 )−DpH(x,Duλ2 )(Du

λ
1 −Duλ2 )

]
ρ(dλ)dtdx

−
∫
Λ

∫ T

t0

∫
Rd

(
F (λ, x, µ1(t))− F (λ, x, µ2(t))

)
(mλ

1 −mλ
2 )ρ(dλ)dtdx,

and combining the first and last inequality with the multi-population mono-
tonicity assumptions (6) and (7), we obtain that:∫

Λ

∫ T

t0

∫
Rd

mλ
1

[
H(x,Duλ2 )−H(x,Duλ1 )−DpH(x,Duλ1 )(Du

λ
2 −Duλ1 )

]
+mλ

2

[
H(x,Duλ1 )−H(x,Duλ2 )−DpH(x,Duλ2 )(Du

λ
1 −Duλ2 )

]
ρ(dλ)dtdx ≤ 0,

and using the fact that H is strictly convex we obtain that Duλ1 = Duλ2 ρ-almost
everywhere. This implies the unicity of set of solutions since mλ

1 and mλ
2 are

positive measures .
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4 The multi-population Master equation

The importance of the master equation has been acknowledged by several con-
tributions: see, for instance, the monograph [7] and the companion papers [8]
and [9], in which Bensoussan, Frehse, and Yam generalize this equation to mean
field type control problems and reformulate it as a partial differential equation
(PDE) set on an L2 space, and [5], where Carmona and Delarue interpret this
equation as a decoupling field of forward–backward SDE in infinite dimension.
The concept of master equation and the use of the terminology master go back
to the seminal lectures of P. L. Lions at the Collège de France [6]. The word
master emphasizes the fact that all the information needed to describe the equi-
libria of the game is contained in a single equation, namely the master equation.
The resulting ”multi-population master equation” is:

−∂tU(t, (λ, x), µ)−△xU(t, (λ, x), µ)

+H(x,DxU(t, (λ, x), µ)− F (λ, x, µ)

=

∫
Λ×Rd

△y
δU

δµ

(
t, (λ, x), µ, (λ̃, y)

)
µ(λ̃, y)dλ̃dy

−
∫
Λ×Rd

Dy
δU

δµ

(
t, (λ, x), µ, (λ̃, y)

)
·DpH

(
y,DU(t, (λ̃, y), µ)

)
µ(t)(λ̃, y)dλ̃dy in [t0, T ]× (Λ× Rd)× P(Λ× Rd),

U(T, (λ, x), µ) = G(λ, x, µ) in (Λ× Rd)× P(Λ× Rd),

(9)

where µ ∈ P(Λ× Rd) , t ∈ [t0, T ] and (λ, x) ∈ Λ× Rd.

Definition 4.0.1. We say that a map U : [t0, T ]×Λ×Rd ×P(Λ×Rd) → R is
a classical solution to the first order master equation if:
(i) U is continuous in time, space and measure ( for the d1 distance on P(Λ×
Rd)), is of class C2 in x and C1 in time ;
(ii) U is of class C1 with respect to the measure, the first order derivative

[t0, T ]× Λ× Rd × P(Λ× Rd) ∋ (t, (λ, x), µ, (λ̃, y)) → δU

δµ
(t, (λ, x), µ, (λ̃, y)),

being continuous in all the arguments except the population ones, δU
δµ being twice

differentiable in y, the derivatives being continuous in all the arguments except
the population ones;
(iii) U satisfies the multi-population master equation (9).

Theorem 4.0.2 (Existence and uniqueness). Assume that for some n ≥ 2
and for some α ∈ (0, 1) :

sup
λ∈Λ

sup
µ∈P(Λ×Rd)

(
∥F (λ, ·, µ)∥n+1+α +

∥∥∥∥δF (λ, ·, µ, ·)δµ

∥∥∥∥
(n+1+α,n+1+α)

)
+ sup

λ∈Λ
sup

µ∈P(Λ×Rd)

∥∥∥∥δ2F (λ, ·, µ, ·, ·)δµ2

∥∥∥∥
(n+1+α,n+1+α,n+1+α)

+ Lipn+1

(
δ2Fλ

δµ2

)
<∞.
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and

sup
λ∈Λ

sup
µ∈P(Λ×Rd)

(
∥G(λ, ·, µ)∥n+2+α +

∥∥∥∥δG(λ, ·, µ, ·)δµ

∥∥∥∥
(n+2+α,n+2+α)

)
+ sup

λ∈Λ
sup

µ∈P(Λ×Rd)

∥∥∥∥δ2G(λ, ·, µ, ·, ·)δµ2

∥∥∥∥
(n+2+α,n+2+α,n+2+α)

+ Lipn+2

(
δ2Gλ

δµ2

)
<∞.

where we defined Lipn(
δ2Fλ

δµ2 ) by

Lipn

(
δ2Fλ

δµ2

)
:= sup

µ ̸=µ̃
(d1(µ, µ̃))

−1

∥∥∥∥δ2Fδµ2
(λ, ·, µ, ·, ·)− δ2F

δµ2
(λ, ·, µ̃, ·, ·)

∥∥∥∥
(n+α,n+α)

Under the following ”multi-population monotonicity assumptions” in which we
will assume that the following functions are ρ-integrable and the resulting inte-
grals non-negative:∫

Λ

∫
Rd

(F (λ, x, µ1(t))− F (λ, x, µ2(t)))(m
λ
1 (t)−mλ

2 (t)) dx ρ(dλ) ≥ 0 (10)

∫
Λ

∫
Rd

(G(λ, x, µ1(t))−G(λ, x, µ2(t)))(m
λ
1 (t)−mλ

2 (t)) dx ρ(dλ) ≥ 0 (11)

for any time t and measures mλ
1 ,m

λ
2 , where µ1 and µ2 are defined in the follow-

ing way: µ1(t, x) =
∫
Λ
mλ

1 (t, x)ρ(dλ), µ2(t, x) =
∫
Λ
mλ

2 (t, x)ρ(dλ) and for any

initial condition (t0,m
λ
0 ) ∈ [0, T ] × P(Rd). Then the multi-population master

equation (9) has a unique solution U . Moreover, U and δU
δµ are continuous in

all variables except the population ones; U(t, ·, µ) and δU
δµ (t, ·, µ, ·) are bounded

in Cn+2+α and Cn+2+α × Cn+1+α respectively , independently of (t, µ).

Proof. (Existence). We will prove that the following map:

U(t, (λ, x), µ(t)) := uλ(t, x)

is a solution to the multi-population master equation, where {(uλ,mλ)}λ∈Λ is
the unique set of solution to the multi-population mean field game system (3)
and µ(t) ∈ P(Λ× Rd) has ρ, mλ(t) as marginal measures, respectively.
To compute ∂tU(t, (λ, x), µ(t)) we will compute the limit of both the quantities
in the RHS:

U(t0 + h, (λ, x), µ(t0))− U(t0, (λ, x), µ(t0))

h

=
U(t0 + h, (λ, x), µ(t0 + h))− U(t0, (λ, x), µ(t0))

h

− U(t0 + h, (λ, x), µ(t0 + h))− U(t0 + h, (λ, x), µ(t0))

h
.
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Note from the Fokker-Planck equation satisfied by mλ and the regularity of U
( [3] Corollary 3.4.4) we obtain that:

U(t0 + h, (λ, x), µ(t0 + h))− U(t0 + h, (λ, x), µ(t0))

h

=
1

h

∫ 1

0

∫
Λ×Rd

δU

δµ

(
t0 + h, (λ, x), sµ(t0 + h) + (1− s)µ(t0), (λ̃, y)

)
(µ(t0 + h)− µ(t0))dλ̃dyds

=
1

h

∫ 1

0

∫
Λ×Rd

δU

δµ

(
t0 + h, (λ, x), sµ(t0 + h) + (1− s)µ(t0), (λ̃, y)

)
∫ t0+h

t0

∂tµ(t)(λ̃, y)dtdλ̃dyds

=
1

h

∫ 1

0

∫
Λ×Rd

δU

δµ

(
t0 + h, (λ, x), sµ(t0 + h) + (1− s)µ(t0), (λ̃, y)

)
∫ t0+h

t0

ρ(λ̃)∂tm
λ̃(t, y)dtdλ̃dyds

=
1

h

∫ 1

0

∫
Λ×Rd

∫ t0+h

t0

δU

δµ

(
t0 + h, (λ, x), sµ(t0 + h) + (1− s)µ(t0), (λ̃, y)

)
ρ(λ̃)[△mλ̃(t, y) + div(mλ̃(t, y) ·DpH(y,Duλ̃(t, y)))]dtdλ̃dyds

=
1

h

∫ 1

0

∫
Λ×Rd

∫ t0+h

t0

△y
δU

δµ

(
t0 + h, (λ, x), sµ(t0 + h) + (1− s)µ(t0), (λ̃, y)

)
ρ(λ̃)mλ̃(t, y)dtdλ̃dyds

− 1

h

∫ 1

0

∫
Λ×Rd

∫ t0+h

t0

Dy
δU

δµ

(
t0 + h, (λ, x), sµ(t0 + h) + (1− s)µ(t0), (λ̃, y)

)
·DpH(y,Duλ̃(t, y))mλ̃(t, y)ρ(λ̃)dtdλ̃dyds

−−−−→
h→0+

∫
Λ×Rd

△y
δU

δµ

(
t0, (λ, x), µ(t), (λ̃, y)

)
µ(t0)(λ̃, y)dλ̃dy

−
∫
Λ×Rd

Dy
δU

δµ

(
t, (λ, x), µ(t), (λ̃, y)

)
·DpH

(
y,DU(t, (λ̃, y), µ(t))

)
µ(t0)(λ̃, y)dλ̃dy.
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On the other hand:

lim
h→0+

U(t0 + h, (λ, x), µ(t0 + h))− U(t0, (λ, x), µ(t0)))

h

= lim
h→0+

uλ(t0 + h, x)− uλ(t0, x)

h

= ∂tu
λ(t0, x) = −△xu

λ(t0, x) +H(x,Duλ)− F (λ, x, µ(t0))

= −△xU(t0, (λ, x), µ(t0)) +H(x,DxU(t0, (λ, x), µ(t0))− F (λ, x, µ(t0)).

Therefore combining the two results ∂tU(t0, (λ, x), µ(t0)) exists and it is equal
to:

∂tU(t0, (λ, x), µ(t0))

= −
∫
Λ×Rd

△y
δU

δµ

(
t0, (λ, x), µ(t), (λ̃, y)

)
µ(t0)(λ̃, y)dλ̃dy

+

∫
Λ×Rd

Dy
δU

δµ

(
t, (λ, x), µ(t), (λ̃, y)

)
·DpH

(
y,DU(t, (λ̃, y), µ(t))

)
µ(t0)(λ̃, y)dλ̃dy −△xU(t0, (λ, x), µ(t0))

+H(x,DxU(t0, (λ, x), µ(t0))− F (λ, x, µ(t0)).

This means that U has a continuous time derivative at any point (t0, (λ, x), µ(t0))
and satisfies the multi-population master equation (9) at such point. By conti-
nuity of the right-hand side and repeating the same computations at any point
we obtain that U has a continuous time derivative and satisfies (9) everywhere.
The boundary conditions are satisfied by definition.

(Uniqueness). Let V be another solution. By definition of a solution,
D2

x,y
δV
δm (t, (λ, x), µ̃(t), (λ̃, y)) is bounded and therefore DxV is Lipschitz contin-

uous with respect to the measure variable.
Let us fix (t0,m

λ
0 ) and a population λ with mλ

0 ∈ C∞(Rd).
In view of the Lipschitz continuity ofDxV , one can uniquely solve in C0([t0, T ],P(Rd))
the Fokker-Planck equation:{

∂tm̃
λ −△m̃λ − div(m̃λ ·DpH(x,DxV (t, (λ, x), µ̃)) = 0 in [t0, T ]× Rd

m̃λ(t0) = mλ
0 in Rd.

Then let us set ũλ(t, x) := V (t, (λ, x), µ̃(t)). Since V is a classical solution by
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the regularity properties of V , ũλ is at least C1,2, with time derivative:

∂tũ
λ(t, x) = lim

h→0

V (t+ h, (λ, x), µ̃(t+ h))− V (t, (λ, x), µ̃(t))

h

= ∂tV (t, (λ, x), µ̃(t))+ <
δV

δµ

(
t, (λ, x), µ̃(t), (λ̃, y)

)
, ∂tµ̃(t)(λ̃, y) >C2,(C2)′

= ∂tV (t, (λ, x), µ̃(t))+ <
δV

δµ

(
t, (λ, x), µ̃(t), (λ̃, y)

)
, ∂t

(
ρ(λ̃)m̃λ(t)(y)

)
>C2,(C2)′

= ∂tV (t, (λ, x), µ̃(t))+ <
δV

δµ

(
t, (λ, x), µ̃(t), (λ̃, y)

)
, ρ(λ̃)∂tm̃

λ(t)(y) >C2,(C2)′

= ∂tV (t, (λ, x), µ̃(t))+ <
δV

δµ

(
t, (λ, x), µ̃(t), (λ̃, y)

)
, ρ(λ̃)△m̃λ(t)(y) >C2,(C2)′

+ <
δV

δµ

(
t, (λ, x), µ̃(t), (λ̃, y)

)
, ρ(λ̃)div(m̃λ ·DpH(y,DxV (t, (λ̃, y), µ̃(t))) >C2,(C2)′

= ∂tV (t, (λ, x), µ̃(t)) +

∫
Λ×Rd

△y
δV

δµ

(
t, (λ, x), µ̃(t), (λ̃, y)

)
ρ(λ̃)m̃λ(t)(y)dλ̃dy

−
∫
Λ×Rd

Dy
δV

δµ

(
t, (λ, x), µ̃(t), (λ̃, y)

)
·DpH(y,DxV (t, (λ̃, y), µ̃(t)))

ρ(λ̃)m̃λ(t)(y)dλ̃dy

= ∂tV (t, (λ, x), µ̃(t)) +

∫
Λ×Rd

△y
δV

δµ

(
t, (λ, x), µ̃(t), (λ̃, y)

)
µ̃(t)(λ̃, y)dλ̃dy

−
∫
Λ×Rd

Dy
δV

δµ

(
t, (λ, x), µ̃(t), (λ̃, y)

)
·DpH(y,DxV (t, (λ̃, y), µ̃(t)))

µ̃(t)(λ̃, y)dλ̃dy.

Recalling that V satisfies the multi-population master equation (9) at popula-
tion λ, we obtain:

∂tũ
λ(t, x) = −△xV (t, (λ, x), µ̃(t)) +H(x,DxV (t, (λ, x), µ(t)))− F (λ, x, µ̃(t))

= −△ũλ(t, x) +H(x,Dũλ(t, x))− F (λ, x, µ̃(t))

with µ̃(t, x) =
∫
Λ
m̃λ(t, x)ρ(dλ̃) and terminal condition

ũλ(T, x) = V (T, (λ, x), µ̃(T )) = G(λ, x, µ̃(T )). Therefore the pair (ũλ, m̃λ) is
a solution of the multi-population mean field game system (3) at population
λ. As the solution of this system is unique, we get that V (t0, (λ, x), µ(t0)) =
U(t0, (λ, x), µ(t0)) if m

λ
0 has a smooth density. The equality V = U holds then

everywhere by continuity of V and U .
The proof of the differentiability of U with respect to the measure and of the
regularities of U and δU

δµ is left in [2] and it involves numerous estimates regarding
linearized system.
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5 Convergence

Notation. Throughout the rest of this paper we will make use of the classical
delta di Dirac δ, defined with the usual density:

δ(λj ,xj)(λ̃, y) =

{
1 if (λ̃, y) = (λj , xj),
0 otherwise.

In this chapter we will consider a set of classical solutions {vλ,N,i}i∈{1,...,N} of
the ”multi-population Nash system”:

−∂tvλi,N,i(t,x)−
∑N

j=1 △xj
vλi,N,i(t,x) +H(xi, Dxi

vλi,N,i(t,x)) +
∑

j ̸=i

DpH(xj , Dxj
vλj ,N,j(t,x)) ·Dxj

vλi,N,i(t,x) = F (λi, xi, µ
λ,N,i
x ) in [t0, T ]× (Rd)N ,

vλi,N,i(T,x) = G(λi, xi, µ
λ,N,i
x ) in (Rd)N ,

(12)
where we set x = (x1, . . . , xN ) ∈ (Rd)N , λ = (λ1, . . . , λN ) ∈ ΛN , mN,i

x =
1

N−1

∑
j ̸=i δxj and µλ,N,i

x = 1
N−1

∑
j ̸=i δ(λj ,xj).

Our aim is to prove that vλ,N,i converges, in a suitable sense, to the solution of
the multi-population master equation (U(t, (λi, xi), µ

λ,N,i
x )).

For N ≥ 2 and i ∈ {1, . . . , N} we define

uλ,N,i(t,x) := U(t, (λi, xi), µ
λ,N,i
x ) where x = (x1, . . . , xN ) ∈ (Rd)N

and µλ,N,i
x ∈ P(Λ× Rd) is defined with the following density:

µλ,N,i
x (λ̃, y) :=

1

N − 1

∑
j ̸=i

δ(λj ,xj)(λ̃, y) =
∑
j ̸=i

δλj (λ̃)δxj (y)

N − 1
,

which implies that µλ,N,i
x ∈ P(Λ×Rd) has as marginal measures 1

N−1

∑
j ̸=i δλj

∈
P(Λ) and mN,i

x = 1
N−1

∑
j ̸=i δxj ∈ P(Rd), respectively.

Throughout this chapter we will assume the following assumptions:
For α

′ ∈ (0, α), we have for any (t, x) ∈ [t0, T ]× Rd, µ, µ
′ ∈ P(Λ× Rd)

sup
λi∈Λ

∥U(t, (λ1, ·), µ)∥n+2+α′ +

∥∥∥∥δUδµ (
t, (λ2, ·), µ, (λ3, ·)

)∥∥∥∥
(n+2+α′ ,n+1+α′ )

+

∥∥∥∥δUδµ (
t, (λ4, ·), µ, (λ5, ·), (λ6, ·)

)∥∥∥∥
(n+2+α′ ,n+α′ ,n+α′ )

≤ C0,

and the mapping

(t, µ) → δU

δµ

(
t, (λ, ·), µ, (λ̃, ·), (˜̃λ, ·)

)
∈ Cn+2+α′

(Rd)× Cn+α′
(Rd)× Cn+α′

(Rd)

is continuous for every (λ, λ̃,
˜̃
λ) ∈ Λ3.

Also we will assume that the solution to the multi-population master equation
U is C2 in space and satisfies the regularities in Theorem 3.0.1.
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Proposition 5.0.1. For any N ≥ 2, i ∈ {1, . . . , N}, uλ,N,i is of class C2 in the
space variable with:

(i) Dxj
uλ,N,i(t,x) = 1

N−1Dy
δU
δµ

(
t, (λi, xi), µ

λ,N,i
x , (λj , xj)

)
(j ̸= i).

(ii) D2
xi,xj

uλ,N,i(t,x) = 1
N−1DxDy

δU
δµ

(
t, (λi, xi), µ

λ,N,i
x , (λj , xj)

)
(j ̸= i).

(iii) D2
xj ,xj

uλ,N,i(t,x) =
1

N − 1
DyDy

δU

δµ

(
t, (λi, xi), µ

λ,N,i
x , (λj , xj)

)
+

1

(N − 1)2
Dz

δ

δµ
Dy

δU

δµ

(
t, (λi, xi), µ

λ,N,i
x , (λj , xj), (λj , xj)

)
(j ̸= i).

(iv) D2
xk,xj

uλ,N,i(t, x) = 1
(N−1)2Dz

δ
δµDy

δU
δµ

(
t, (λi, xi), µ

λ,N,i
x , (λj , xj), (λk, xk)

)
(i, j, k) distinct,

where Dx ( Dy, Dz ) is the derivative with respect to the first ( second, third)

coordinate
(
t, (λ, x), µλ,N,i

x , (λ, y), (λ, z)
)
in the variable Rd.
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Proof.

(i) Dxj
uλ,N,i(t,x) = lim

h→0

uλ,N,i(t,x+ hxj e⃗j)− uλ,N,i(t,x)

h

= lim
h→0

U(t, (λi, xi), µ
λ,N,i
x+hxj e⃗j

)− U(t, (λi, xi), µ
λ,N,i
x )

h

= lim
h→0

1

h

∫ 1

0

∫
Λ×Rd

δU

δµ

(
t, (λi, xi), sµ

λ,N,i
x+hxj e⃗j

+ (1− s)µλ,N,i
x , (λ̃, y)

)
[
µλ,N,i
x+hxj e⃗j

(λ̃, y)− µλ,N,i
x (λ̃, y)

]
dλ̃dyds

= lim
h→0

1

h

∫ 1

0

∫
Λ×Rd

δU

δµ

(
t, (λi, xi), sµ

λ,N,i
x+hxj e⃗j

+ (1− s)µλ,N,i
x , (λ̃, y)

)
1

N − 1

[∑
k ̸=i

δ(λk,xk+hxjδjk)(λ̃, y)− δ(λk,xk)(λ̃, y)
]
dλ̃dyds

= lim
h→0

1

h

∫ 1

0

∫
Λ×Rd

δU

δµ

(
t, (λi, xi), sµ

λ,N,i
x+hxj e⃗j

+ (1− s)µλ,N,i
x , (λ̃, y)

)
1

N − 1

[
δ(λj ,xj+hxj)(λ̃, y)− δ(λj ,xj)(λ̃, y)

]
dλ̃dyds

= lim
h→0

1

h(N − 1)

∫ 1

0

δU

δµ

(
t, (λi, xi), sµ

λ,N,i
x+hxj e⃗j

+ (1− s)µλ,N,i
x , (λj , xj + hxj)

)
− δU

δµ

(
t, (λi, xi), sµ

λ,N,i
x+hxj e⃗j

+ (1− s)µλ,N,i
x , (λj , xj)

)
ds

=
1

N − 1
Dy

δU

δµ

(
t, (λi, xi), µ

λ,N,i
x , (λj , xj)

)
.

(ii) D2
xi,xj

uλ,N,i(t,x) = Dxi

( 1

N − 1
Dy

δU

δµ
(t, (λi, xi), µ

λ,N,i
x , (λj , xj))

)
=

1

N − 1
DxDy

δU

δµ

(
t, (λi, xi), µ

λ,N,i
x , (λj , xj)

)
.
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(iii) Dxj
Dxj

uλ,N,i(t,x) = Dxj

( 1

N − 1
Dy

δU

δµ
(t, (λi, xi), µ

λ,N,i
x , (λj , xj)

)
=

1

N − 1
lim
h→0

1

h

[
Dy

δU

δµ

(
t, (λi, xi), µ

λ,N,i
x+hxj e⃗j

, (λj , xj + hxj)
)

−Dy
δU

δµ

(
t, (λi, xi), µ

λ,N,i
x , (λj , xj)

)]
=

1

N − 1
lim
h→0

1

h

[
Dy

δU

δµ

(
t, (λi, xi), µ

λ,N,i
x+hxj e⃗j

, (λj , xj + hxj)
)

−Dy
δU

δµ

(
t, (λi, xi), µ

λ,N,i
x+hxj e⃗j

, (λj , xj)
)
+Dy

δU

δµ

(
t, (λi, xi), µ

λ,N,i
x+hxj e⃗j

, (λj , xj)
)

−Dy
δU

δµ

(
t, (λi, xi), µ

λ,N,i
x , (λj , xj)

)]
=

1

N − 1
DyDy

δU

δµ

(
t, (λi, xi), µ

λ,N,i
x , (λj , xj)

)
+

1

N − 1
lim
h→0

∫ 1

0

∫
Λ×Rd

δ

δµ
Dy

δU

δµ

(
t, (λi, xi), sµ

λ,N,i
x+hxj e⃗j

+ (1− s)µλ,N,i
x , (λj , xj),

(
˜̃
λ, z)

) 1

N − 1

[∑
k ̸=i

δ(λk,xk+hxjδjk)(
˜̃
λ, y)− δ(λk,xk)(

˜̃
λ, y)

]
d
˜̃
λdyds

=
1

N − 1
DyDy

δU

δµ

(
t, (λi, xi), µ

λ,N,i
x , (λj , xj)

)
+

1

N − 1
lim
h→0

∫ 1

0

∫
Λ×Rd

δ

δµ
Dy

δU

δµ

(
t, (λi, xi), sµ

λ,N,i
x+hxj e⃗j

+ (1− s)µλ,N,i
x , (λj , xj),

(
˜̃
λ, z)

)( 1

N − 1
δ(λj ,xj+hxj)(

˜̃
λ, z)− 1

N − 1
δ(λj ,xj)(

˜̃
λ, z)

)
d
˜̃
λdzds

=
1

N − 1
DyDy

δU

δµ

(
t, (λi, xi), µ

λ,N,i
x , (λj , xj)

)
+

1

(N − 1)2
lim
h→0

1

h

∫ 1

0

[ δ
δµ
Dy

δU

δµ

(
t, (λi, xi), sµ

λ,N,i
x+hxj e⃗j

+ (1− s)µλ,N,i
x , (λj , xj),

(λj , xj + hxj)
)
− δ

δµ
Dy

δU

δµ

(
t, (λi, xi), sµ

λ,N,i
x+hxj e⃗j

+ (1− s)µλ,N,i
x , (λj , xj), (λj , xj)

)]
ds

=
1

N − 1
DyDy

δU

δµ

(
t, (λi, xi), µ

λ,N,i
x , (λj , xj)

)
+

1

(N − 1)2
Dz

δ

δµ
Dy

δU

δµ

(
t, (λi, xi), µ

λ,N,i
x , (λj , xj), (λj , xj)

)
.
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(iv) Dxk
Dxj

uλ,N,i(t,x) = Dxk

[ 1

N − 1
Dy

δU

δµ

(
t, (λi, xi), µ

λ,N,i
x , (λj , xj)

)]
=

1

N − 1
lim
h→0

1

h

[
Dy

δU

δµ

(
t, (λi, xi), µ

λ,N,i
x+hxk e⃗k

, (λj , xj)
)
− δU

δµ

(
t, (λi, xi), µ

λ,N,i
x , (λj , xj)

)]
=

1

N − 1
lim
h→0

1

h

∫ 1

0

∫
Λ×Rd

δ

δµ
Dy

δU

δµ

(
t, (λi, xi), sµ

λ,N,i
x+hxk e⃗k

+ (1− s)µλ,N,i
x , (λj , xj),

(
˜̃
λ, z)

)(
µλ,N,i
x+hxk e⃗k

(
˜̃
λ, z)− µλ,N,i

x (
˜̃
λ, z)

)
d
˜̃
λdzds

=
1

N − 1
lim
h→0

1

h

∫ 1

0

∫
Λ×Rd

δ

δµ
Dy

δU

δµ

(
t, (λi, xi), sµ

λ,N,i
x+hxk e⃗k

+ (1− s)µλ,N,i
x , (λj , xj),

(
˜̃
λ, z)

) 1

N − 1

(∑
h̸=i

δ(λh,xh+hxkδhk)(
˜̃
λ, z)− δ(λh,xh)(

˜̃
λ, z)

)
d
˜̃
λdzds

=
1

N − 1
lim
h→0

1

h

∫ 1

0

∫
Λ×Rd

δ

δµ
Dy

δU

δµ

(
t, (λi, xi), sµ

λ,N,i
x+hxk e⃗k

+ (1− s)µλ,N,i
x , (λj , xj),

(
˜̃
λ, z)

) 1

N − 1

(
δ(λk,xk+hxk)(

˜̃
λ, z)− δ(λk,xk)(

˜̃
λ, z)

)
d
˜̃
λdzds

=
1

(N − 1)2
lim
h→0

1

h

∫ 1

0

[ δ
δµ
Dy

δU

δµ

(
t, (λi, xi), sµ

λ,N,i
x+hxk e⃗k

+ (1− s)µλ,N,i
x , (λj , xj),

(λk, xk + hxk)
)
− δ

δµ
Dy

δU

δµ

(
t, (λi, xi), sµ

λ,N,i
x+hxk e⃗k

+ (1− s)µλ,N,i
x , (λj , xj), (λk, xk)

)]
ds

=
1

(N − 1)2
Dz

δ

δµ
Dy

δU

δµ

(
t, (λi, xi), µ

λ,N,i
x , (λj , xj), (λk, xk)

)
.

Proposition 5.0.2. One has, for any i ∈ {1, . . . , N},λi ∈ Λ,
−∂tuλ,N,i(t,x)−

∑N
j=1 △xju

λ,N,i(t,x) +H(xi, Dxiu
λ,N,i(t,x))

+
∑

j ̸=iDpH(xj , Dxj
uλ,N,j(t,x)) ·Dxj

uλ,N,i(t,x)

= F (λi, xi, µ
λ,N,i
x ) + rλ,N,i(t,x) in [t0, T ]× (Rd)N ,

uλ,N,i(T,x) = G(λi, xi, µ
λ,N,i
x ) in (Rd)N ,

(13)

where rλ,N,i ∈ C0([t0, T ]× RNd) with supλ∈ΛN ∥rλ,N,i∥∞ ≤ C
N .

Proof. The terminal conditions of the system follow from the terminal condi-
tions of the multi-population master equation (9).
As U solves the multi-population master equation (9), computing at point
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(t, (λi, xi), µ
λ,N,i
x ), we obtain:

− ∂tU(t, (λi, xi), µ
λ,N,i
x )−△xU(t, (λi, xi), µ

λ,N,i
x )

+H(xi, DxU(t, (λi, xi), µ
λ,N,i
x )− F (λi, xi, µ

λ,N,i
x )

=

∫
Λ×Rd

△y
δU

δµ

(
t, (λi, xi), µ

λ,N,i
x , (λ̃, y)

)
µλ,N,i
x (λ̃, y)dλ̃dy

−
∫
Λ×Rd

Dy
δU

δµ

(
t, (λi, xi), µ

λ,N,i
x , (λ̃, y)

)
·DpH

(
y,DU(t, (λ̃, y), µλ,N,i

x )
)

µλ,N,i
x (λ̃, y)dλ̃dy

which by definition of µλ,N,i
x is equal to:

− ∂tU(t, (λi, xi), µ
λ,N,i
x )−△xU(t, (λi, xi), µ

λ,N,i
x )

+H(xi, DxU(t, (λi, xi), µ
λ,N,i
x )− F (λi, xi, µ

λ,N,i
x )

=
1

N − 1

∑
j ̸=i

△y
δU

δµ

(
t, (λi, xi), µ

λ,N,i
x , (λ, xj)

)
− 1

N − 1

∑
j ̸=i

Dy
δU

δµ

(
t, (λi, xi), µ

λ,N,i
x , (λj , xj)

)
·DpH

(
xj , DU(t, (λj , xj), µ

λ,N,i
x )

)

Note by previous Proposition

1

N − 1
Dy

δU

δµ

(
t, (λi, xi), µ

λ,N,i
x , (λj , xj)

)
= Dxju

λ,N,i(t,x).

Therefore ∥Dxj
uλ,N,i∥∞ ≤ C

N , and by the Lipschitz continuity of DxU with
respect to the measure variable, we have

|DxU(t, (λj , xj), µ
λ,N,i
x )−DxU(t, (λj , xj), µ

λ,N,j
x )| ≤ Cd1(µ

λ,N,i
x , µλ,N,j

x ) ≤ C

N − 1
,

which implies by the Lipschitz continuity of DpH that∣∣∣∣DpH(xj , DxU(t, (λj , xj), µ
λ,N,i
x )−DpH(xj , Dxj

uλ,N,j(t,x))

∣∣∣∣ ≤ C

N
.

Applying the results above we obtain that

1

N − 1

∑
j ̸=i

Dy
δU

δµ
(t, (λi, xi), µ

λ,N,i
x , (λj , xj)) ·DpH(xj , DxU(t, (λj , xj , µ

λ,N,i
x ))

=
∑
j ̸=i

Dxju
λ,N,i(t,x) ·DpH(xj , µ

λ,N,i
x ))

=
∑
j ̸=i

Dxj
uλ,N,i(t,x) ·DpH(xj , Dxj

uλ,N,j(t,x)) +O
( 1

N

)
.
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On the other hand we have that

N∑
j=1

△xj
uλ,N,i(t,x) = △xi

uλ,N,i(t,x) +
∑
j ̸=i

△xj
uλ,N,i(t,x)

= △xiu
λ,N,i(t,x) +

1

N − 1

∑
j ̸=i

△y
δU

δµ
(t, (λi, xi), µ

λ,N,i
x , (λj , xj))

+
1

(N − 1)2

∑
j ̸=i

Dz
δ

δµ
Dy

δU

δµ
(t, (λi, xi), µ

λ,N,i
x , (λj , xj), (λj , xj))

= △xiu
λ,N,i(t,x) +

1

N − 1

∑
j ̸=i

△y
δU

δµ
(t, (λi, xi), µ

λ,N,i
x , (λj , xj)) +O

( 1

N

)
.

Therefore combining the previous results

− ∂tu
λ,N,i(t,x)−

N∑
j=1

△xj
uλ,N,i(t,x) +H(xi, Dxi

uλ,N,i(t,x))

+
∑
j ̸=i

DpH(xj , Dxju
λ,N,j(t,x)) ·Dxju

λ,N,i(t,x)

= F (λi, xi, µ
λ,N,i
x ) +O

( 1

N

)
.

A key idea to prove convergence is comparing the ”optimal trajectories” of
vλ,N,i and uλ,N,i for any i ∈ {1, . . . , N}. To do this, let us fix t0 ∈ [0, T ),
µ0 ∈ P(Rd) and let (Zj)j∈{1,...,N} be an i.i.d family of N random variables of

law µ0. We set Z = (Zj)j∈{1,...,N}. Let also
(
(Bi

t)t∈[t0,T ]

)
i∈{1,...,N}

be a family

of N independent d- dimensional Brownian motion that is also independent of
(Zj)j∈{1,...,N}.
We consider the systems of stochastic differential equations (SDEs) with vari-

ables
(
Xt = (Xi,t)i∈{1,...,N}

)
t∈[t0,T ]

and
(
Y t = (Yi,t)i∈{1,...,N}

)
t∈[t0,T ]{

dXi,t = −DpH(Xi,t, Dxi
uλ,N,i(t,Xt))dt+

√
2dBi

t, t ∈ [t0, T ],

Xi,t0 = Zi,
(14)

and{
dYi,t = −DpH(Yi,t, Dxi

vλ,N,i(t,Y t))dt+
√
2dBi

t, t ∈ [t0, T ],

Yi,t0 = Zi.
(15)

Theorem 5.0.3. Assume that H,F and G satisfy the assumption of Theorem
4.0.2 with n ≥ 2 and for α′ ∈ (0, α), we have for any (t, x) ∈ [t0, T ] × Rd,
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(λ1, λ2, λ3, λ4, λ5, λ6) ∈ Λ6, µ, µ′ ∈ P(Λ× Rd)

∥U(t, (λ1, ·), µ)∥n+2+α′ +

∥∥∥∥δUδµ (t, (λ2, ·), µ, (λ3, ·))
∥∥∥∥
(n+2+α′,n+1+α′)

+

∥∥∥∥δ2Uδµ2
(t, (λ4, ·), µ, (λ5, ·), (λ6, ·))

∥∥∥∥
(n+2+α′,n+α′,n+α′)

≤ C0,

and the mapping

(t, µ) → δ2U

δµ2
(t, (λ, ·), µ, (λ̃, ·), (˜̃λ, ·))

from [t0, T ] × P(Λ × Rd) to Cn+2+α′
(Rd) × [Cn+α′

(Rd)]2 is continuous for any

(λ, λ̃,
˜̃
λ) ∈ Λ3.

Then we have, for any i ∈ {1, . . . , N},

E[ sup
t∈[t0,T ]

|Yi,t −Xi,t|] ≤
C

N
, ∀t ∈ [t0, T ], (16)

E
[∫ T

t0

|Dxiv
λ,N,i(t,Y t)−Dxiu

λ,N,i(t,Y t)|2dt] ≤
C

N2
, (17)

and P-almost surely, for all i = 1, . . . , N ,

|uλ,N,i(t0,Z)− vλ,N,i(t0,Z)| ≤ C

N
, (18)

where C is a constant that doesn’ t depend on t0,m0 and N .

Proof. We start proving (17). WLOG t0 = 0 and let us introduce new notations:

Uλ,N,i
t = uλ,N,i(t,Y t), V λ,N,i

t = vλ,N,i(t,Y t),

DUλ,N,i,j
t = Dxj

uλ,N,i(t,Y t), DV
λ,N,i,j
t = Dxj

vλ,N,i(t,Y t), t ∈ [0, T ].

Applying (12) on (vλ,N,i)i∈{1,...,N} and Itô’s formula we deduce that

dV N,i
t =

[
∂tv

λ,N,i(t,Y t)−
N∑
j=1

Dxjv
λ,N,i(t,Y t) ·DpH(Yj,t, Dxjv

λ,N,i(t,Y t))

+

N∑
j=1

△xjv
λ,N,i(t,Y t)

]
dt

+
√
2

N∑
j=1

Dxjv
λ,N,i(t,Y t) · dBj

t

=

[
H(Yi,t, Dxi

vλ,N,i(t,Y t))−Dxi
vλ,N,i(t,Y t) ·DpH(Yi,t, Dxi

vλ,N,i(t,Y t))

− F (λi, Yi,t, µ
λ,N,i
Y t

)

]
dt+

√
2

N∑
j=1

Dxj
vλ,N,i(t,Y t) · dBj

t .
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In a similar way, since (uλ,N,i)i∈{1,...,N} satisfies Proposition 5.0.2, we obtain
that:

dUλ,N,i
t =

[
H(Yi,t, Dxiu

λ,N,i(t,Y t))

·DpH(Yi,t, Dxi
uλ,N,i(t,Y t))− F (λi, Yi,t, µ

λ,N,i
Y t

)− rλ,N,i(t,Y t)

]
dt

−
N∑
j=1

Dxj
uλ,N,i(t,Y t) ·

(
DpH(Yj,t, Dxj

vλ,N,j(t,Y t))

−DpH(Yj,t, Dxj
uλ,N,j(t,Y t))

)
dt+

√
2

N∑
j=1

Dxj
uλ,N,i(t,Y t) · dBj

t .
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Computing the difference between the previous two exspressions, taking the
square and applying Itô’s formula we compute that:

d[Uλ,N,i
t − V λ,N,i

t ]2 =

[
2(Uλ,N,i

t − V λ,N,i
t )

(
H(Yi,t, DU

λ,N,i,i
t )

−H(Yi,t, DV
λ,N,i,i
t )

)
−2(Uλ,N,i

t − V λ,N,i
t )

(
DUλ,N,i,i

t · [DpH(Yi,t, DU
λ,N,i,i
t )

−DpH(Yi,t, DV
λ,N,i,i
t )]

)
−2(Uλ,N,i

t − V λ,N,i
t )

(
[DUλ,N,i,i

t −DV λ,N,i,i
t ]

·DpH(Yi,t, DV
N,i,i
t )

)
−2(Uλ,N,i

t − V λ,N,i
t )rλ,N,i(t,Y t)

]
dt

− 2(Uλ,N,i
t − V λ,N,i

t )

N∑
j=1

DUλ,N,i,j
t ·

(
DpH(Yj,t, DV

λ,N,j,j
t )

−DpH(Yj,t, DU
λ,N,j,j
t )

)
dt+ 2

N∑
j=1

|DUλ,N,i,j
t −DV λ,N,i,j

t |2

+
√
2(Uλ,N,i

t − V λ,N,i
t ) +

N∑
j=1

(DUλ,N,i,j
t −DV λ,N,i,j

t ) · dBj
t .

Note that H and DpH are Lipschitz continuous in the variable p.

We also recall that DUλ,N,i,i
t = DxU(t, Yi,t, µ

λ,N,i
Y t

) is bounded independently

of i,N and t and that DUλ,N,i,j
t is bounded by C

N ( due to Proposition 5.0.1 )
when i ̸= j for C independent of i, j,N and t.
By Proposition 5.0.2 rλ,N,i is bounded by C

N , therefore integrating from t to
T the above formula and taking the conditional expectation given Z we obtain
that:

E
[
|Uλ,N,i

t − V λ,N,i
t |2

∣∣Z]
+2

N∑
j=1

E
[ ∫ T

t

|DUλ,N,i,j
s −DV λ,N,i,j

s |2ds
∣∣Z]

≤ E
[
|Uλ,N,i

T − V λ,N,i
T

∣∣2|Z]
+
C

N

∫ T

t

E
[
|Uλ,N,i

s − V λ,N,i
s |

∣∣Z]
ds

+ C

∫ T

t

E
[
|Uλ,N,i

s − V λ,N,i
s | · |DUλ,N,i,i

s −DV λ,N,i,i
s |

∣∣Z]
ds

+
C

N

∑
j ̸=i

∫ T

t

E
[
|Uλ,N,i

s − V λ,N,i
s | · |DUλ,N,j,j

s −DV λ,N,j,j
s |

∣∣Z]
ds.

Note that the boundary condition of Uλ,N,i
T − V λ,N,i

T is 0 and by a convexity
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argument we obtain that

E
[
|Uλ,N,i

t − V λ,N,i
t |2

∣∣Z]
+E

[ ∫ T

t

|DUλ,N,i,i
s −DV λ,N,i,i

s |2ds
∣∣Z]

≤ C

N2
+ C

∫ T

t

E
[
|Uλ,N,i

s − V λ,N,i
s |

∣∣Z]
ds

+
1

2N

N∑
n=1

E
[∫ T

t

|DUλ,N,i
s −DV λ,N,j,j

s |2ds
∣∣Z]

.

(19)

Taking the mean of the expression above over i ∈ {1, . . . , N} we get

1

N

N∑
i=1

E
[
|Uλ,N,i

t − V λ,N,i
t |2

∣∣Z]
≤ C

N2
+

∫ T

t

C

N

N∑
i=1

E
[
|Uλ,N,i

s − V λ,N,i
s |2

∣∣Z]
− 1

2N

N∑
n=1

E
[∫ T

t

|DUλ,N,i
s −DV λ,N,j,j

s |2ds
∣∣Z]

≤ C

N2
+

∫ T

t

C

N

N∑
i=1

E
[
|Uλ,N,i

s − V λ,N,i
s |2

∣∣Z]
,

which by Gronwall’s lemma implies that there exists a costant C̃ such that

sup
0≤t≤T

[
1

N

N∑
i=1

E
[
|Uλ,N,i

t − V λ,N,i
t |2

∣∣Z]]
≤ C̃

N2
. (20)

Plugging (20) into (19) we deduce that there exists a constant ˜̃C for which

1

N

N∑
j=1

E
[∫ T

0

|DUλ,N,i
s −DV λ,N,j,j

s |2ds
∣∣Z]

≤
˜̃C

N2
.

Inserting this bound on the RHS of (19) and applying Gronwall’s lemma again

we deduce that there exists a constant
˜̃̃
C for which

sup
t∈[0,T ]

E
[
|Uλ,N,i

t − V λ,N,i
t |2

∣∣Z]]
+E

[∫ T

0

|DUλ,N,i
s −DV λ,N,j,j

s |2ds
∣∣Z]

≤
˜̃̃
C

N2
,

(21)
which proves (17).

Now we will prove (16) and (18). We start with (18).Noticing that Uλ,N,i
0 −
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V λ,N,i
0 = uλ,N,i(0,Z)− vλ,N,i(0,Z), we deduce from (21) that with probability

1 for all i ∈ {1, . . . , N},

|uλ,N,i(0,Z)− vλ,N,i(0,Z)| ≤
˜̃̃
C

N

which concludes the proof of (18).
To prove (16) we estimate the difference Xi,t − Yi,t, for t ∈ [0, T ] and i ∈
{1, . . . , N}. Due to the equation satisfied by the processes (Xi,t)t∈[0,T ] and
(Yi,t)t∈[0,T ], we have

|Xi,t − Yi,t| ≤
∫ t

0

|DpH(Xi,s, Dxi
uλ,N,i(s,Xs))

−DpH(Yi,s, Dxi
vλ(s,Y s))|ds

Using the Lipschitz regularity ofDpH, the regularity of U and Proposition 5.0.1,
we obtain

|Xi,t − Yi,t| ≤C
∫ t

0

(∣∣Xi,s − Yi,s|+
1

N

∑
j ̸=i

∣∣Xj,s − Yj,s|
)
ds

+

∫ t

0

∣∣DpH(Yi,s, Dxiu
λ,N,i(s,Y s)

−DpH(Yi,s, Dxi
vλ,N,i(s,Y s)

∣∣ds.
Taking the sup over t ∈ [0, τ ] ( for τ ∈ [0, T ]) and the conditional expectation
with respect to Z we find out that

E
[

sup
t∈[0,τ ]

|Xi,t − Yi,t|
∣∣Z]

≤C
∫ τ

0

(
E
[

sup
t∈[0,s]

∣∣Xi,t − Yi,t
∣∣∣∣Z]

+
1

N

∑
j ̸=i

E
[
sup

t∈[0,s]

∣∣Xj,t − Yj,t
∣∣∣∣Z])

ds

+ E
[∫ T

0

|DUλ,N,i,i
s −DV λ,N,i,i

s |ds
∣∣Z]

.

(22)

Summing over i ∈ {1, . . . , N} and using (21), we obtain by Gronwall’ s inequality
that there exists a constant K for which:

N∑
j=1

E
[
sup

t∈[0,T ]

|Xi,t − Yi,t|
∣∣Z]

≤ K

which concludes the proof of (16).

Theorem 5.0.4. Let the assumption of Theorem 4.0.2 of the existence and
uniqueness of the multi-population master equation stand for n ≥ 2 and let vλ,N,i
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be the solution to the multi-population Nash system (12) and U be the classical
solution to the multi-population master equation. Fix N ≥ 1 and (t0,m0) ∈
[0, T ]× P(Rd).

For any x ∈ (Rd)N and λ ∈ (Λ)N , let µλ,N
x := 1

N

∑N
j=1 δ(λj ,xj). Then

sup
i=1,...,N

∣∣vλ,N,i(t0,x)− U(t0, (λi, xi), µ
λ,N
x )

∣∣≤ C

N
.

Proof. Applying (18) we obtain that∣∣∣∣U(t0, (λi, Zi), µ
λ,N,i
Z )− vλ,N,i(t0,Z)

∣∣∣∣≤ C

N
a.e., i ∈ {1, . . . , N},

where Z = (Z1, . . . , ZN ) with Z1, . . . , ZN i.i.d. random variables with uniform
density on Rd. The support ofZ being (Rd)N , we derive from the continuity of U
and of the (vλ,N,i)i∈{1,...,N} that the above inequality holds for any x ∈ (Rd)N :∣∣∣∣U(t0, (λi, xi), µ

λ,N,i
x )− vλ,N,i(t0,x)

∣∣∣∣≤ C

N
∀x ∈ (Rd)N , i ∈ {1, . . . , N}.

Then we use the Lipschitz continuity of U with respect to µ to replace
U(t0, (λi, xi), µ

λ,N,i
x ) by U(t0, (λi, xi), µ

λ,N
x ) in the above inequality with

additional error a term of order 1
N .
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