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Abstract
Heating, Ventilation and Air Conditioning (HVAC) systems consist of all the
equipment that control the conditions and distribution of indoor air. Indoor
air must be comfortable and healthy for the occupants to maximize their
productivity. Moreover, HVAC energy consumption is between 20% and 40%
of the total energy consumption in developed countries and accounts around
33% of the global CO2 emissions. So the study of HVAC systems plays an
important role in building science.

The aim of this project is to identify mathematical models that will be
employed by intelligent control algorithms which guarantee human comfort
indoors, energy saving and less CO2 emissions at the same time. Three models,
based on first-principle physical knowledge, are proposed for CO2 concentration,
temperature and humidity, respectively, for a room in the Q-building at KTH.
Thermodynamic equations and an original estimation of the number of the
occupiers of the room are employed.

Validation shows that models have really good performances, even with a
short training dataset. Discussions on the obtained results are given and some
ideas for future work are proposed.
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1
Introduction

Heating, Ventilation and Air conditioning (HVAC) systems consist of compo-
nents working together to introduce, distribute and condition air in a building
for human comfort.

HVAC systems play a major role in the control of Indoor Air Quality (IAQ)
and thermal comfort. Indeed, poor ventilation, improper temperature and
humidity cause a bad “indoor environmental quality”. People spend 80-90%
of their time indoors: they are less productive and more often get sick with a
bad IAQ, since it can cause irritation of the eyes and nose, fatigue, headache
and shortness of breath. To guarantee a good IAQ, HVAC systems typically
employ a control that mantain a fixed setpoint of fresh air ventilation based
on the designed occupancy of the space. This is an inefficient method, since
it often provides much more fresh air than necessary, especially in the spaces
with frequently varying occupancy, such as laboratories and conference rooms.
To cope with this problem, Demand Controlled Ventilation (DCV) is employed:
DCV uses CO2 sensors to control the supply of fresh air. In fact, people are the
main source of indoor air contaminants and the variation of CO2 concentration
is a quite accurate way to monitor the occupancy, which makes it possible to
set the fresh air amount according to people demand. DCV is definitely more
efficient than the fixed ventilation method, since it avoids excessive ventilation
and saves energy.

Over the past few years energy saving has become an important topic.
The percentage of buildings contribution to the total energy consumption is
between 20% and 40% in developed contries and is rapidily increasing, as the
population grows and the demand for building services and comfort levels
is rising [15]. HVAC systems account for the greatest amount of the energy
consumption in a building. Indeed, this has markedly grown over recent years,
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since comfortability is not considered luxury anymore, but it is required. For
instance we can consider the U.S. situation in the year 2010 according to
the Buildings Energy Data Book 2010 (U.S. Department of Energy): Figure
1.1 shows that buildings energy consumption takes 41% of the total energy
consumption, while the heating, cooling and ventilation consumptions are about
half of the total buildings consumption. Hence, improving the efficiency of

Figure 1.1: U.S. energy consumption year 2010.

HVAC systems can be very helpful for the energy saving. It has been estimated
that an intelligent control could reduce HVAC systems energy consumption
by 20-30% [7]. The energy saving would also have a positive effect on the
CO2 emissions as buildings account for about 33% of global CO2 emissions. A
significant part of CO2 emissions are in fact caused by the combustion of fossil
fuels to provide heating, cooling, lighting and the power for home appliances
and electronic devices.

A smart way to implement an intelligent control algorithm is the employment
of a Wireless Sensor Network (WSN). A WSN consists of a group of sensor
nodes which are spatially distributed in a measurement area. Each sensor node
is equipped with a transducer which can provide an electric signal, changes of
which depend on a physical variable like temperature, pressure and illumination
intensity. Sensors in the WSN can communicate among themselves and the
“main” node, which receives all the data and forwards them to the processing
unit.

Wired sensors are usually employed in typical HVAC systems: however
they are pretty expensive and they cannot be arbitrarily located because of the
cables. On the contrary, WSNs are cheaper and more flexible: a greater number
of sensors can be used, offering more accurate measurements, the network
can be built and turned down quite easily without changes in the rest of the
environment, sensors can be reprogrammed in every moment, more complex
algorithm can be implemented and sensors can be placed everywhere, as they
work on stand-alone energy supply.
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This project is implemented at the Royal Institute of Technology (KTH),
Stockholm. Here, improving the existing HVAC system is in need. In fact,
according to the analysis in [8], there are some buildings which do not use
energy in a proper way. For example, half of the Q-building energy for cooling
or heating is consumed during not working hours. Moreover, it is pointed out
in [8] that existing temperature and CO2 sensors at KTH are not very accurate:
this is another reason why the present control is inefficient.

1.1 Previous Work
In the literature there are many work studying identifications for HVAC systems.
They can be classified into two groups: Black Box (no a priori information)
and Grey Box (based on physical knowledge) model approaches. Due to the
difficulties in thermodynamics models, black box is the most common choice:
linear parametric models, as ARX, ARMAX, BJ and OE have been successfully
implemented to model HVAC systems.

Chi-Man Yiu et al. [4] dealt with a black box identification for an air
conditioning system: a MIMO ARMAX model was estimated, parameters of
which were evaluated using the Ricorsive Extended Least Squares Method
(RELS), and compared it with a SISO ARMAX model.

Mustafaraj et al. [5] tested different temperature and humidity models for an
office: BJ, ARX, ARMAX and OE were identified with the black box technique.
In that environment, BJ outperformed ARX and ARMAX, but it is noticed
that the difference is only in the assumption of the noise model, which could be
suitable only for that system: it could not be concluded that the BJ is better
than ARX and ARMAX.

Mustafaraj et al. developed their previous work in [6]: NoNlinear AutoRe-
gressive models with eXternal inputs (NNARX) for temperature and humidity
were estimated, and their performances were compared with linear ARX models.
They also considered the effect of the carbon dioxide concentration in the mod-
els, as there was correlation between occupancy and CO2 level, demonstrating
that the accuracy of the model was improved.

Haizmann [1] used the black box method and identified an OE model for
the temperature of a small conference room on the 6th floor of the Q-building
at the Royal Institute of Technology (KTH). This work did not obtain a robust
model: it suffered of a lot of hardware problems and the author was not able
to get reliable data.

Recently, Wu and Sun [7] proposed a physics-based temperature model of a
room in an office building and compared it with a black box identified ARMAX
model. They employed thermodynamics equations to determine the structure
and the order of a linear regression model (grey box approach).

Qi and Deng [10] studied a MIMO control strategy for the Air Conditioning
system (A/C) to control both indoor air temperature and humidity. The model
of the A/C system was derived from energy and mass conservation principles.
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Maasoumy [3] estimated a temperature model for three rooms of a building
and designed an optimal control algorithm for HVAC systems. The thermal
circuit approach, which uses analogies with electric circuits, was employed.

1.2 Contribution of the Thesis
This project proposes, using observed data, mathematical models that describe
the dynamics of temperature, humidity and CO2 level of a room, which can be
used to implement an intelligent control for the HVAC system.

Three MISO ARMAX models are proposed for CO2 level, temperature and
humidity, respectively, following the Grey Box approach. Physical knowledge
and an estimation of the number of occupiers of the room based on CO2 level
are employed. Models are identified with the measurements taken in May 2012.

Validation shows that these are really good models according to the defined
metrics, even with a short dataset, and they outperform the temperature models
in the previous results [1] and [7].

1.3 Overview of the Thesis
The thesis is organised as follows:

• Chapter 2: we introduce the background. HVAC components, WSN
sensors type and topology and the plant of our test-bed are described;

• Chapter 3: we identify the models: structure of the models, methods of
identification, data pre-processing and the identified models are described;

• Chapter 4: we validate the models: employed validation metrics, com-
parison between different model types and with past work are presented;

• Chapter 5: we discuss the obtained results and suggest some ideas about
how this project can be continued and improved.



2
Test-bed Setting

Experiments are taken in the test-bed placed in the room A 225 (LAB3) on the
2nd floor of the Q-building at KTH. This room has an area of about 80 m2, a
volume of about 270 m3, four windows of 0.64× 4 m2 on the external wall and
one window on one internal wall of 2.5 m2 (see Figure 2.6 for the map of the
test-bed). It is equipped with an HVAC system and a Wireless Sensor Network
(WSN).

2.1 HVAC System in the Test-bed
KTH campus is equipped with a SCADA system (centralized system which
monitors and controls the whole plant) connected to all ventilation, heating
and cooling units. In the Q-building there are three separate ventilation units
for fresh air supply and several cooling and heating units to supply cooling coils
and radiators. Some temperature and CO2 sensors are located in the building
and linked to the “central building system” which consists of three single board
computers (complete computer built on a single circuit board), called Soft PLC.
Indeed, each ventilation unit is controlled by a Soft PLC, which is connected
to a respective group of sensors, cooling and heating units. Soft PLCs have the
internet access and can be manually controlled, using the web interface of the
SCADA system, from a remote location: it is possible to change the state of
the actuators and monitor the measurements of the sensors.

Rooms with special functions, like laboratories and conference rooms, are
equipped with sensors and actuators: they can be controlled by the related
Soft PLC, which is programmed to keep, using respectively heating and cooling
actuators and Demand Controlled Ventilation (DCV) method (see Chapter 1
for definition), a temperature of 22°C with a ±1°C dead band and a CO2 level
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(a) Fresh air inlet (b) AC

(c) Radiator (d) Air outlet

Figure 2.1: HVAC components in the testbed.

below 850ppm.
The actuators in the test-bed are: four fresh air inlets, four AC units, two

outlets and four radiators, whose pictures are depicted in Figure 2.1. We will
explain more in details how these components work in the following sections.

2.1.1 Fresh Air Inlet
In Figure 2.2 it is depicted a schematic drawing of the fresh air inlet.

¬Damper
­ Pressure measurement
® Air Box

Figure 2.2: Inlet working.

Fresh air is supplied in the duct by one of the ventilation units, while the damper
regulates the airflow which comes into the room. The opening percentage of the
damper can be set in the SCADA web interface. The pressure measurement in
the air box is used during the installation process: the position of the damper
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can be fixed depending on the desired airflow. The airflow q ( l
s) is calculated as

q = k
√
p, (2.1)

where p is the pressure (Pa) and k is a factor given by the company which
produces the inlet. The position of the damper can then be adjusted to obtain
the value of measured pressure that gives, using the equation (2.1), the desired
airflow . If the damper position is regulated with a motor (not fixed), it is still
possible, using the pressure measurement, to check the value of the airflow at
given damper positions.

2.1.2 Air Conditioning
In Figure 2.3 a schematic drawing of the air conditioning unit in the test-bed
is illustrated. Its working is based on the induction principle.

¬ Primary air
­ Induced room air
® Mixed air

Figure 2.3: AC working.

The primary air, supplied by one of the ventilation units, is injected in a plenum,
a housing where it is created and stored air with a greater pressure than the
atmospheric one. The plenum is equipped with nozzles of various sizes, which
are little pipes from which the air can be discharged. Due to the high pressure
in the plenum, the air comes out through the nozzles at high velocity and
creates a zone with lower pressure, as an increase in the velocity produces a
decrease on the pressure. This depression induces the room air to be sucked up
through the heat exchanger, which consists of a coil where chilled water flows.
The sucked room air is then cooled with the heat exchanger, mixed with the
primary air and discharged into the room from the sides of the device, as we
can see in Figure 2.3. The AC unit can be used also to heat the room: the only
difference with the cooling process is that the water that is flowing in the coil
is hot. The maximum airflow coming from the AC in the testbed is about 20 l

s .
It should be noticed that the effect of the air coming out from the AC on

the CO2 level is negligible: the mixed air has a CO2 level close to the room
one and the airflow is relatively low if it is compared with the inlet. Because of
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this fact, which has also been verified in practice, the effect of the AC is not
considered in the CO2 model.

As for the inlet, there is a damper in the primary air duct whose opening
percentage can be set from the SCADA web interface. The heat exchanger is
activated according to the state of the damper (open or closed).

2.1.3 Radiator
Similar to the other components, the radiator is equipped with a valve, whose
opening percentage can be set from the SCADA interface. In this project the
radiator was always turned off, as in the period when measurements were taken
the weather was warm enough. Therefore the functioning of the radiator will
not be treated in detail.

2.1.4 Air Outlet
As it can be seen in Figure 2.1d, the air outlet is just an hole in the wall, where
a tube which allows the air to flow through is located. In the tube there is
a damper whose opening percentage can be regulated from the SCADA web
interface. As the tube communicates with the room outside, when the damper
is completely open the room air is then discharged.

2.2 WSN in the Test-bed
Our WSN uses wireless sensors TMote Sky whose example is depicted in Figure
2.4a. TMote Sky follows industry standards, like USB and IEEE 802.15.4: it

able to communicate as an OPC client to an OPC server, the

internet access also allows the PLCs to be manually controlled

over the SCADA system and mirror its stored sensor data on

the SCADA system server for archiving purposes. The Soft

PLCs are programmed to deliver the constant temperature of

22◦C with ±1◦C dead band and a CO2 level below 850ppm

(part per million) defined by KTH Environmental and Building

Department.

Considering the building HVAC deployment and the ne-

cessity of having a test-bed zone with independent sub areas

(rooms) for multiple thermal level experiments, we selected

the building 2nd floor as our primary test-bed zone. The floor

is accommodating four laboratories, one conference hall, one

storage room and one study room. The thermal level and air

quality of each of these areas can be separately monitored

and controlled over the SCADA system by demand controlled

ventilation (DCV) and the individual actuators for heating and

cooling.

Currently in the test-bed zone sixteen wireless Sensor with

temperature/humidity sensors and four motes with CO2 sensor

are deployed.The motes follow the star network communica-

tion typology and are distributed in the test-bed zone is as

following:

1) Water tank lab:

• Ten temperature/humidity sensors

• Four CO2 sensors

2) PCB manufacturing Lab

• Three temperature/humidity sensors

3) Storage room

• One temperature/humidity sensors

4) Outside Q building

• One temperature/humidity sensors

5) 2nd floor corridor

• One temperature/humidity sensors

The center of the current sensor network is the water

tank lab, with ten temperature/humidity sensors and four

CO2 sensors, further more six temperature/humidity sensors

are deployed on the surrounding area of the water tank lab

including one sensor outside of the building for measuring the

outdoor weather conditions.

A. Wireless Sensor Network
During the recent years Wireless Sensor Network has

emerged as suitable tools in the home automaton sector.

WSN consists of nodes which function as sensors, actuators

or routers, and communicate with each other to accomplish

an objective. Today these nodes low cost, low power, and

portable devices are commonly known as motes. The motes

as shown in Fig. 10, support IEEE 802.15.4 protocol intended

for use in low-power wireless devices and equipped with on

board temperature, humidity and light sensors and can also be

attached to external sensors such as CO2 or motion sensors.

Our aim in this project as shown in Fig. 11 is to use Wireless

Sensor Network (WSN) for remote data collection and data

transfer to a PC running National Instruments LabVIEW

for data processing and control. Using LabVIEW as our

development environment allows us to run more complex

control algorithms and acknowledge different user settings

like price scheduling and weather data. LabVIEW is also

capable of acting as an OPC client which lets us to interact

with a broad range of industrial devices such as PLC capable

to communicate over an OPC server. Currently the remote

data collection with a sampling time of 30 second and data

processing by labView is finalized and in use, the actuation

process is currently accomplished manually over the web

interface of the SCADA system and needs jet to be automated.

One of the primary advantages of deploying a wireless

sensor network in buildings is its low deployment cost and

freedom from requiring a messy wired communication back-

bone. Today a mote with an approximate price of 100 USD is

a good alternative to the current fixed mounted sensors used

in the building automation segment with similar prices.

The use of a WSN reduces installation cost but as downside

they face limitations in terms of energy as they rely on on-

board batteries. Since the dynamic changes significant for

evaluating thermal comfort are relatively slow a battery power

mote with an optimal sampling time of 5 to 10 minutes

can function between 1–2 years without the necessity of any

battery exchange.

Fig. 10. A TelosB mote with humidity, temperature and light sensors.

B. Sensors Data Experiments
Studies show that a common reason for bad HVAC perfor-

mance and correspondingly high energy consumption is the

deployment of CO2 sensor with low accuracy [10]. Carbon

dioxide (CO2) sensors are often deployed in buildings with

high and varying concentration of occupancy for monitoring

the buildings air quality. Today CO2 sensor are commonly

used for demand controlled ventilation (DVC) a method to

regulate the fresh air flow similar a thermostat regulating the

temperature of room aiming to save energy by avoiding exces-

sive ventilation rates. Accurate measurements are needed for

successful demand controlled ventilation resulting to energy

efficiency. However previous studies show that many CO2

(a) Tmote Sky

SH-300-DTH
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(c) T/H sensor

Figure 2.4: Sensors in the testbed.

is then easy to interface it with other devices. TMote Sky is equipped with
onboard temperature, humidity and light sensors. However, it was noticed in
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[1] that the integrated temperature and humidity sensor measurements were
influenced by the heat of the TMote Sky surrounding components. To overcome
this problem, each TMote Sky was located in a box and another temperature
and humidity sensor (Sensirion® SHT71, see Figure 2.4c) was used, which was
fixed outside the box (isolated from the TMote board). TMote Sky is able to be
attached to other external sensors: each CO2 sensor (Soha Tech® SH-300-DTH,
see Figure 2.4b) was then connected to a TMote Sky.

Motes (TMote Sky equipped with either temperature and humidity or CO2
sensors) are organised in a star topology: as it can be noticed in Figure 2.5, the
central node, called coordinator, receives the data from the other sensors and
forwards them to the main mote called base, which is connected to a laptop.
The data processing is accomplished using LabVIEW, a National Instruments®
software. LabVIEW was chosen because it allows to implement real-time data
acquisition and complex control algorithms: it is then a suitable environment
for the future works. Furthermore, it offers the possibility to create a graphical
interface and monitor the data capture, giving the user an easy way to notice
errors in the system.

Figure 2.5: Star topology.

2.3 Test-bed Map
Figure 2.6 illustrates how sensors are located inside and outside the test-bed
room: orange circles stand for temperature and humidity sensors and green
one for CO2 level. Numbers in the circles are the identifiers of the sensors.
Locations of the ducts of air inlet, air outlet and AC, the radiator and the
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windows can also be seen. Moreover, we use different colours to distinguish the
“outside” walls (brown) from the “inside” one (black).

Figure 2.6: Test-bed LAB3: temperature and humidity sensors (orange circle), CO2 level
sensors (green circle), air outlet ducts (red arrow), fresh air inlet ducts (blue arrow), Air
Conditioning ducts (black arrow), Radiators (red arrow), Outside wall (Brown line), windows

(blue line).



3
Modeling and Identification

In this chapter we are going to describe the identification procedure applied to
the HVAC system in the test-bed. The main problem of the identification is
the limited set of data avalaible. Indeed, we have just collected measurements
less than one week. The reason is that, to take informative measurements, a
sufficient number of occupiers in the test-bed is needed. Unfortunately, this
happens only when students have been in the test-bed to do some experiments
for one of their courses. All models are based on the presence of people in
the test-bed and we can obtain informative data only when the number of
occupiers varies.

We have divided the “good” measurements into two groups:

• identification data: measurements from 16/05/2012 10:56:00 to 18/05/2012
08:00:00 are used to identify the model;

• validation data: measurements from 18/05/2012 09:05:00 to 19/05/2012
17:30:00 are used to validate the models.

3.1 Physics-based Models
Three MISO models, for CO2 level, temperature and humidity, are proposed to
model the HVAC system in the test-bed.

3.1.1 CO2 Concentration
The CO2 concentration relies on the number of the occupiers of the room and
on the effect of the air inlet and air outlet ducts. When inlets and outlets are
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turned on, room air is discharged through the outlets, while air with a lower
CO2 concentration is flowing in the room at the same time.

As we see in Figure 2.6, in our test-bed we have four CO2 sensors: 3,4 and
17 which measure the room concentration and 18 which gives the concentration
of the fresh air of the inlet. The mean of measurements of sensors 3 and 4 is
used as room CO2 concentration.

So the equation that represents the dynamics of CO2 level in the room is
d

dt
C(t) = kN(t) + βIN

[
I(t)− C(t)

]
+ d(t), (3.1)

where C(t) is the CO2 concentration in the room, N(t) is the number of
occupiers of the room, I(t) is the CO2 concentration of the air inlet duct, k > 0
and βIN > 0 are the unknown parameters and d(t) is the disturbance.

Applying the forward difference approximation we obtain
d

dt
C(t− 1) ≈ Cn − Cn−1

∆t , (3.2)

where ∆t is the sampling interval, Cn and Cn−1 are the sampled value C(n∆t)
and C((n− 1)∆t). Substituting (3.2) in (3.1) we obtain

Cn − (1− βIN∆t)Cn−1 = k∆tNn−1 + βIN∆tIn−1 + ∆tdn−1,

which can be rewritten

(1 + a1q
−1)Cn = KNNn−1 +KIIn−1 +Kddn−1, (3.3)

where KN = kKd, KI = βINKd, Kd = ∆t and a1 = KI − 1.
The relation above can be seen as a difference equation of a MISOARMAX

model (where θ is the vector of the parameters to be estimated and ni the
number of inputs)

A(q, θ)y(t) =
ni∑
i=1

Bi(q, θ)ui(t− nki) + C(q, θ)e(t). (3.4)

Estimation of the Number of Occupiers

One of the original ideas of this project is to use the room CO2 concentration
to estimate the number of the occupiers of the room. Our idea is to use the
model found for the CO2 level in the previous section to get an estimation of
the number of the occupiers. Neglecting the noise, from (3.3) it follows that

Nn−1 ≈
Cn + a1Cn−1 −KIIn−1

KN

. (3.5)

With this approximation it is possible to use measurements of CO2 concentration
instead of those of the number of people in the temperature and humidity
models. For our application it is not required to know the exact number of
people but how much they affect the level of CO2, temperature and humidity.
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3.1.2 Temperature
We propose two different models for the temperature, depending on how the
measurements of sensors 5,6,7,8,15 of the test-bed (see Figure 2.6) will be
treated.

In both models we apply the concepts of thermal resistance of [3], which
associate the conduction of heat with the electrical resistance. In particular,
under the steady-state condition, the heat flow for conduction is given by

qcond = kA

L
(T1 − T2), (3.6)

where k ( W
mK) is the thermal conductivity (which depends on the wall material),

A is the surface of the wall, L is the thickness of the wall, T1 and T2 are the
temperatures of two sides of the same wall. If we define the thermal resistance
for conduction Rcond ( K

W) as

Rcond = L

kA
,

Equation (3.6) becomes
qcond = T1 − T2

Rcond

. (3.7)

In the same way we can define the thermal resistance for convection starting
from the formula of heat for convection under steady state

qconv = hA(Ts − Tinf),

where h ( W
m2K) is the convection heat transfer coefficient, A the surface of the

wall, Ts is the temperature of the wall surface, Tinf is the temperature of the air
inside (INT ) or outside (EXT ) the room (see Figure 3.1). Defining Rconv = 1

hA

( K
W) we obtain a relation similar to (3.7).

The equivalent resistance Req ( K
W) that describes the heat transfer for a

wall is given by
Req = 1

h1A
+ L

kA
+ 1
h1A

,

as it is depicted in Figure 3.1 (Figure 2 in [3]), where TINT , TEXT , TS,1,
TS,2 are respectively the inside, outside, internal surface and external surface
temperatures and qx is the overall heat given by qx = TINT−TEXT

Req
.

Mean Temperature Model

In this model we consider the temperature of the room Ti as the mean of the
measurements of sensors 5,6,7,8,15,

Ti = T5 + T6 + T7 + T8 + T15

5 .
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Figure 3.1: Heat transfer through a plane wall: TINT , TEXT , TS,1, TS,2 are respectively
the inside, outside, internal surface and external surface temperatures and qx is the overall

heat (Figure 2 in [3]).

For a room in steady-state, the energy balance can be expressed as (following
[7] and [3])

ρV C
d

dt
Ti = ṁACCAC(TAC − Ti) + ṁairCair(Tair − Ti)

+
∑
j∈Ni

R−1
ji (Tj − Ti) + d

(
t, N(t−∆t), φ(t)

)
, (3.8)

where Ti is the temperature of the air in the test-bed, TAC is the temperature
of the air of the AC duct, Tair is the temperature of the air inlet duct, Tj,
j ∈ Ni are the temperatures of the neighbor rooms and outside (see Figure
2.6, e.g. room A231, room A221b), Ni is the set of the neighbor rooms, N is
the number of persons, φ represents the effect of solar flux, d is the overall
disturbance, V is the room volume, ρ is the room air density, C ( J

kg·K) is the
specific heat capacity of the air in the room, ṁAC (kg

s ) is the mass flow rate of
the AC duct , ṁair (kg

s ) is the mass flow rate of the air inlet duct, Rji ( K
W) the

thermal resistance of the wall that divedes two adjacent rooms.
We can approximate d in (3.8) as a linear function of N and consider (3.5) as
the estimate of the number of the occupiers obtaining

ρV C
d

dt
Ti ≈ ṁACCAC(TAC − Ti) + ṁairCair(Tair − Ti) +

∑
j∈Ni

R−1
ji (Tj − Ti)

+
[
c0C(t) + c1C(t−∆t)− f1I(t−∆t)

]
+ v(t), (3.9)

where v(t) is the disturbance and the other symbols are defined in previous
sections.
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To obtain the discrete model, we choose a “weighted” version of the central
difference approximation

d

dt
Ti ≈ k1

Ti,n+1 − Ti,n
∆t + k2

Ti,n − Ti,n−1

∆t , (3.10)

where k1 > 0, k2 > 0 and k1 + k2 = 1. Applying the approximation (3.10) to
(3.9) we obtain

Ti,n+1 + βi1Ti,n + βi2Ti,n−1 = αACTAC,n + αairTair,n

+
∑
j∈Ni

αjiTj,n + α0Cn + α1Cn−1 + αIIn−1 + αvn,

where αAC = αṁACCAC , αair = αṁairCair, αji = α
Rji

, α0 = αc0, α1 = −αc1,
αI = −αf1, α = ∆t

ρV Ck1
, βi1 = 1−2k1

k1 + αAC + αair +∑
j∈Ni

αji, βi2 = k1−1
k1 . This

model can be seen as an ARMAX model and rewritten as

(1 + βi1q
−1 + βi2q

−2)Tn = αACTAC,n−1 + αairTair,n−1 +
∑
j∈Ni

αjiTj,n−1

+(α0 + α1q
−1)Cn−1 + αIIn−2 + αvn−1.

(3.11)

Central Temperature Model

In this model we assume that the temperature of the room Ti is the measure
provided by sensor 15 which is located in the middle of the room. We consider
the measurements of sensors 5,6,7,8 as the temperatures of the wall surfaces:
we insert in the formula also the effect of the heat transfer of the wall for
convection.

In this case the energy balance becomes

ρV C
d

dt
Ti = ṁACCAC(TAC − Ti) + ṁairCair(Tair − Ti)

+
∑
j∈Ni

R−1
ji (Tj − Ti) +

∑
k∈Nwall

hwkSwk(Twk − Ti)

+ d
(
t, N(t−∆t), φ(t)

)
,

where Nwall is the set of sensors that are close to the wall, hwk ( W
m2K) is the

convection heat transfer coefficient of the wall k, Swk is the surface of the wall
k. Following the same procedure of the mean temperature model, we have
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(1 + βi1q
−1 + βi2q

−2)Tn = αACTAC,n−1 + αairTair,n−1

+
∑
j∈Ni

αjiTj,n−1 + (α0 + α1q
−1)Cn−1 + αIIn−2

+
∑

k∈Nwall

αwkTwk,n−1 + αvn−1,

(3.12)

where αwk = αhwkSwk, βi1 = (1−2k1)
k1 + αAC + αair +∑

j∈Ni
αji +∑

k∈Nwall
αwk.

3.1.3 Humidity
The model for the humidity is obtained in a similar way to the model of the
temperature. The humidity of the room is considered to be equal to the mean
of the humidities provided by sensors 5,6,7,8 and 15.

We assume that the humidity of the room depends on the humidity of
the air coming out from the inlet and the AC ducts, the temperature of the
room, the number of occupiers of the room and other unknown factors. So the
equation is

d

dt
H = λAC(HAC −H) + λair(Hair −H) + h(t, Ti, N),

where HAC and Hair are respectively the humidities of the air coming from the
AC and the inlet and h(t, Ti, N) is the disturbance that depends on time, room
temperature and number of persons.

We can approximate h(t, Ti, N) with a function that is linear in Ti and N
and obtain, using for N the approximation (3.5),

d

dt
H(t) ≈ λAC(HAC −H) + λair(Hair −H) + λTTi

+
[
c0C(t) + c1C(t−∆t)− f1I(t−∆t)

]
+ z(t),

where z(t) is the disturbance, λAC and λair [1
s ] are unknown gains, λT (%RH

sK ) is
the temperature unknown gain and the other terms has the same meaning as
in Section 3.1.2.

Applying the “weighted” central difference approximation as in the temper-
ature model (see Section 3.1.2) we obtain

Hn+1 + δi1Hn + δi2Hn−1 = γACHAC,n + γairHair,n + γTTi,n

+ γzn + γ0Cn + γ1Cn−1 + γIIn−1,

where γAC = λACγ, γair = λairγ, γ0 = c0γ, γ1 = −c1γ, γI = −f1γ, γ = ∆t
kH1

,
δi = 1−2kH1

kH1
+ γAC + γair, δi2 = kH1−1

kH1
, kH1 the weighting constant of the

difference approximation. The model can be written as
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(1 + δi1q
−1 + δi2q

−2)Hn = γACHAC,n−1 + γairHair,n−1 + γTTi,n−1

+γzn−1 + (γ0 + γ1q
−1)Cn−1 + γIIn−2,

(3.13)

which is an ARMAX model.

3.2 Identification Methods
The models proposed above are ARMAX systems of some orders.

For all the models, the Prediction Error Method (PEM) is used to identify
the unknown parameters. A SISO model can be considered as example

y(t) = G(q, θ)u(t) +H(q, θ)e(t),

where θ is the vector of the parameters to be estimated, u(t) is the input, y(t)
is the output and e(t) is a zero mean white noise with finite variance. The
PEM method minimizes, with respect to θ, the function of the prediction error
εF (t, θ)

VN(θ, ZN) = 1
2N

N∑
t=1

ε2
F (t, θ), (3.14)

where ZN is a vector which contains the collected input-output data ( ZN =
[y(1) u(1) y(2) u(2) . . . y(N) u(N)]). The prediction error is given by the
difference between the output and the predictor values, εF (t, θ) = y(t, θ)−ŷ(t, θ),
where

ŷ(t, θ) = H−1(q, θ)G(q, θ)u(t) + [1−H−1(q, θ)]y(t).
For the central temperature model, parameters are also estimated with

the Least Squares (LS) method, as one of our objectives is to compare our
work with [7], where this method was used. After the temperature model is
rewritten in the form y = Xβ, where y and X are the observed data and β is
the parameter to be estimated, it is used the backslash operator in matlab®
to apply the LS method (β = (XTX)−1XTy).

For the PEM method, the System Identification Toolbox in matlab® (see
[12]) with the command armax is employed, which allows to specify the orders
of the model. Actually we do not know the order of the polynomial C(q)
in the ARMAX model (see (3.4)), because in all models, CO2 (3.3), mean
temperature (3.11), central temperature (3.12) and humidity (3.13), a generic
noise is considered. Therefore different orders for C(q) are tried for each model.
Worth noticing, one of the differences of the two types of identification for
the temperature is the treatement of the noise: with LS it is considered as an
unknown disturbance without any assumption on the structure, while with
PEM its structure is determined choosing the order of C(q).
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The three models are also identified using the structured state space
model estimation. Given a system in the state space form (θ is the parameter
to be estimated){

x(n+ 1) = A(θ)x(n) +B(θ)u(n) + v(n)
y(n) = C(θ)x(n) + e(n) ,

where v(·) and e(·) are uncorrelated zero mean white noises with covariance
matrices R1(θ) and R2(θ) respectively, it is possible to determine the equation
of the one-step predictor and then apply again the PEM method, minimizing
the cost (3.14) with respect to θ. The optimal one-step predictor of y(t) is
given by the Kalman filter

x̂(n+ 1|n) = A(θ)x̂(n|n− 1) +B(θ)u(n) +K(θ)
[
y(t)− C(θ)x̂(t|t− 1)

]
,

ŷ(n|n− 1) = C(θ)x̂(n|n− 1),
where

K(θ) = A(θ)P (θ)CT (θ)
[
C(θ)P (θ)CT (θ) +R2(θ)

]−1
,

and P (θ) is the solution of the Riccati equation

P (θ) = A(θ)P (θ)AT (θ) +R1(θ)−K(θ)C(θ)P (θ)AT (θ).

We can consider again the CO2 model to give an example of this approach. A
state space realization of the CO2 model (3.3) is

x(n+ 1) = −a1x(n) +
[
KN KI

] [N(n)
I(n)

]

C(n) = x(n) + e(n)

x(0) = x0

,

where x(·) is the state, x0 is the initial condition, e(·) is a white noise and
the other symbols have the same meaning of the equation (3.3). This fixed
structure model is created with the matlab® function idgrey and unknown
parameters a1, KN and KI are identified with the PEM method (pem function).

Actually, this is a realization of a particular ARMAX model (C(q, θ) =
A(q, θ), see (3.4))

Cn = KN

1 + a1q−1Nn−1 + KI

1 + a1q−1 In−1 + e(n). (3.15)

Equation (3.15) could look like an Output Error model (OE) equation: however,
the MISO OE in general has, for each input, transfer functions with different
denominators. This model is used to try a different structure of the noise, as it
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is nothing known about it. A similar approach is used for both temperature
and humidity models.

Recently, a new identification approach based on nonparametric esti-
mation of impulse responses has been proposed [16]. In the last part of the
project, we will use this method to see what happens with a completely different
approach. However, because of the limited time left, we do not analyze deeply
the theory of this approach and we will give the reader only an idea about it.

We briefly recall that parametric approaches usually fix the maximal com-
plexity of the model a priori, before seeing the data (e.g., orders of numerators
and denominators for ARX, ARMAX, BJ). Nonparametric techniques instead
do not pose this limitation, in the sense that, before seeing the data, the
maximal complexity of the model is virtually unbounded. Here we focus on
a particular and novel nonparametric technique, that looks directly for the
impulse response of the system within an infinite-dimensional space of functions,
without any guess or physical formulation about the most suitable structure,
but considering that the to-be identified system is LTI. Indeed, the space of
the possible estimation outcomes is restricted to the continuous with some
derivatives bounded energy functions, which have also to decay esponentially
to zero, as BIBO stable LTI systems impulse responses are requested.

To be more specific, if we consider the general MISO system (m inputs)

yt =
∞∑
i=1

fiut−i +
∞∑
i=0

giei, (3.16)

where, for each time instant t ∈ Z, yt ∈ R, et ∈ R and ut ∈ Rm×1, ft ∈ R1×m

and gt ∈ R, then the 1-step ahead linear predictor is given by

ŷt|t−1 =
m∑
k=1

[ ∞∑
i=1

hki u
k
t−i

]
+
∞∑
i=1

hm+1
i yt−i,

where hki = {hki,t}t≥0, k = 1 . . .m+ 1 are the predictor impulse responses. The
nonparametric model that we consider directly estimate these impulse responses.
Therefore, for the MISO system (3.16), while the parametric identification
method computes

θ̂ = arg min
θ∈Θ

N∑
t=1

(
yt − ŷt|t−1(hθ)

)2
,

where we highlighted the fact that the impulse response relies on the parameter
θ, the nonparametric method

ĥ = arg min
h∈H

N∑
t=1

(yt − ŷt|t−1(h))2 + η||h||2H,

where H is the set of possible estimation outcomes1 and η||h||2H is the term that
weights the regularity of the function, namely, it takes into account exactly

1It can be shown that this is a dense subset of the continuous functions [16].
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our a priori believes: the system has to be a stable LTI and so the impulse
response must decay exponentially. This nonparametric method then trades
off the fitting of the data and the regularity of the estimation outcome, and
belongs to the family of the so-called Tikhonov regularization methods [17].

The matlab® function SSpline, which implements this method, is em-
ployed to identify the CO2 and the temperature models. The function returns
an idpoly object for the identified model.

The code of SSpline has kindly been provided by Gianluigi Pillonetto,
Assistant Professor of Control and Dynamic Systems at the Department of
Information Engineering of the University of Padova, and we are very thankful
to him.

3.3 Data Pre-processing
Before being used for identification, the data collected in the test-bed will be
preprocessed in some way.
For the raw data we have the following problems:

• each sensor may lose data;

• measurements of different sensors are not aligned, namely, not all the
measurements are available at the same time instant;

• we have non-accurate measurements of the temperature, humidity and
CO2 level of the air coming out from the inlet.

Interpolation is used to solve the first two problems. First, a new time vector
is defined, whose components differed by the chosen sampling time tInt (180s).
The actual sampling time in the test-bed is 30 seconds: this means that every
30 seconds each sensor is supposed to send a measurement of either temperature
and humidity or CO2 level to the coordinator (see Section 2.2). However, data
are resampled, because of the slow dynamics which we are dealing with, for
temperature, humidity and CO2 level.

The matlab® function interp1 is employed, which returns, using the
known measurements, the interpolated points corresponding to tInt. The
function allows to choose different methods of interpolation: linear and cubic
spline interpolation are tried.

Let us now consider the third problem. As seen in Section 2.1, it is possible
to manually open or close the damper between the inlet duct and the central
ventilation system. The problem is that even with the damper completely
closed, there is a low air flow coming out from the duct. As the sensor used
to monitor the CO2 concentration of the air inlet is placed just outside the
duct (see Figure 3.2), the measurements provided by this sensor are always
equal to the lower concentration air coming from the central ventilation system.
We use this measurement when the inlet is turned on; when it is off the inlet
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Figure 3.2: T/H and CO2 sensors of the fresh air inlet.

concentration is assumed to be equal to the sensor 17 one. Indeed sensor
17, as it can be seen in Figure 2.6, is pretty near to the inlet. This solution
is reasonable: if no air is flowing in the room, with the damper closed, the
CO2 concentration of the inlet should gradually come close to the room CO2
concentration near the inlet, and then the closest CO2 sensor is considered.
There is a similar problem for the temperature of the inlet: following the same
approach, temperature measurements of sensor 19 (see Figure 2.6) are taken
when the inlet is off. Actually, the problem of the weak airflow coming with the
closed damper exists only during “work time”, from 6:00 to 17:00. In fact, out
of this range of time, the central ventilation system (not under our control) is
automatically turned off and no air is coming in the ducts of both AC and inlet
(and with damper closed either). This is considered as a disturbance: indeed,
when the weak flow is not coming into the room, the CO2 and temperature
increase, but the models do not take it into account with any input terms.
However, we will see in Chapter 4 that this effect is really relevant and in future
work it should not considered just as disturbance.

Last but not least, we consider removing the physical equilibrium offsets
from the data. In fact, the identified model is a linearized version of the true
system around the operating point. A more accurate model can be obtained
using data without offset, since linear models are not able to explain arbitrary
differences between the input and output. However, our models will not have
all zero inputs and hence it is not such a big problem. To see this fact, let us
consider the CO2 model without noise

Cn = −a1Cn−1 +KNNn−1 +KIIn−1. (3.17)

Supposed the system stable (|a1| < 1), if data with offsets are used, in free
response it will close zero instead of the equilibrium point, with bad conse-
quences on its performances. Nevertheless, the concentration of the inlet I on
the right-hand side of (3.17) can never be zero (see Section 2.1) and the system
will never be in free response. Therefore, the main problem that one could
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have with data with offsets (system in free response which goes to zero) never
happens with our formulation, and good models can be identified using data
with offsets. By the way, we have tried to determine an equilibrium point to
shift the data around for CO2, temperature and humidity, but better results
can only be obtained with CO2 model. Indeed, CO2 level is not too sensitive
to weather changes as temperature and humidity: the minimum value of CO2
is used as equilibrium point.

A common way to deal with raw data is to remove the mean to all the
dataset both identification and validation data. However, our models intend
to be used for the online control and hence we should not use the mean of
“future” data (validation data). A tradeoff could be to subtract the mean of
the identification data to the validation data, but it is not possible due to the
too much different conditions of the two datasets.

3.4 Identified Models
In this section we are going to identify the models proposed in Section 3.1.

3.4.1 CO2 Models
As we have seen in Section 3.1, in order to identify the CO2 model (3.3), we
need to determine the parameters a1, KN and KI . These parameters will
be estimated with two methods which differ on the assumption on the noise
structure, polynomial model estimation (poly) and structured state space
model estimation (ss).

Parameters Estimation by Polynomial Approach

With this method we assume a general ARMAX structure for the model and
the parameters, which are estimated using the PEM method, are depicted in
Table 3.1.

a1 KN KI

-0.8964 2.108 0.0579

Table 3.1: Parameters of CO2 model (3.3) identified by polynomial approach.

Parameters Estimation by State Space Approach

In Table 3.2 we can see the parameters estimated with the state space method,
which sets the C(q) polynomial equal to the A(q) one (see Section 3.2). As we
can notice in Table 3.2, the parameters of this method are close to those of the
polynomial approach, and we guess that also the performances will be similar.
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a1 KN KI

-0.8569 2.686 0.0812

Table 3.2: Parameters of CO2 model (3.3) identified by state space approach.

3.4.2 Temperature Models

In Section 3.1.2 we have described the two types of temperature model that we
consider: the first is based on the average temperature of the room and the
second on the temperature of the sensor located in the middle of the room.
We want to see the difference between the two models because single sensor
measurements are noisy and this may cause more problems in the identification
procedure. As we have done in Section 3.1.2, we will call them respectively
mean temperature and central temperature models.

It should be pointed out that in the temperature models we do not consider
the measurements coming from the other rooms and outside. The reasons are:

• the sensor placed outside is too sensitive to the sun and the wheather
conditions, giving unlikely measurements of temperature and humidity.
Probably, the sensor is not suitable to stay outside;

• the conditions of the other rooms surrounding do not affect the test-bed
too much and neglecting them does not change anything.

Mean Temperature Models

The model that we consider is (removing the terms of the surrounding of the
room ∑

j∈Ni
αjiTj,n):

(1 + βi1q
−1 + βi2q

−2)Tn = αACTAC,n−1 + αairTair,n−1

+(α0 + α1q
−1)Cn−1 + αIIn−2 + αvn−1.

(3.18)

As for the CO2, the model (3.18) model is identified with different noise
structure with polynomial and state space methods. The obtained parameters
are listed in Table 3.3.
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poly ss
βi1 -1.179 -0.8655
βi2 0.2567 0.1381
αAC 0.0043 0.0106
αair 0.0762 0.2719
α0 0.0013 0.0027
α1 -9.96·10−4 -17.2·10−4

αI -3.06·10−4 -9.8·10−4

Table 3.3: Parameters of temperature model (3.18) identified by polynomial (poly) and
state space (ss) approaches respectively.

Central Temperature Models

For this model, temperature measurements from sensor 15 (see Figure 2.6) are
considered as temperature of the room. The model, removing the contribute∑
j∈Ni

αjiTj,n becomes:

(1 + βi1q
−1 + βi2q

−2)Tn = αACTAC,n−1 + αairTair,n−1

+(α0 + α1q
−1)Cn−1 + αIIn−2

+
∑

k∈Nwall

αwkTwk,n−1 + αvn−1.
(3.19)

The obtained parameters can be seen in Table 3.4.

poly ss
βi1 -1.037 -0.0951
βi2 0.1036 0.2211
αAC 0.0086 0.0033
αair 0.1331 0.3221
α0 0.0022 0.0027
α1 -0.0018 -0.0027
αI -4.66·10−4 -5.58·10−5

αw1 -0.0502 -0.0871
αw2 0.03 1.195
αw3 -0.0451 -0.2799
αw4 -0.004 0.0166

Table 3.4: Parameters of temperature model (3.19) identified by polynomial (poly) and
state space (ss) approaches respectively.
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Symbols w1, w2, w3 and w4 stand for the walls near sensor 5, sensor 6,
sensor 7 and sensor 8 (see Figure 2.6), respectively.

3.4.3 Humidity Models
The identified parameters of the humidity model (3.13) for the two identification
approaches (polynomial and state space) are listed in Table 3.5.

poly ss
δi1 -1.6696 -0.1487
δi2 0.6844 -0.6206
γAC -2.83·10−4 0.0085
γair 0.0147 0.2693
γT 2.16·10−4 -0.0814
γ0 0.0016 0.0068
γ1 -0.0018 -0.0073
γI 4.98·10−5 4.9·10−4

Table 3.5: Parameters of humidity model (3.13) identified by polynomial (poly) and state
space (ss) approaches respectively.

3.4.4 Nonparametric Estimated Models
The nonparametric approach is tried to identify a different model for CO2 and
temperature. As seen in Section 3.2, the matlab® function SSpline is just
employed to get the idpoly object of the identified models. We will not treat
any details about the identified models, since we do not analyze deeply the
theory of the method. It is anyway possible to study their performances, as
the System Identification Toolbox can be employed with idpoly objects.

This attempt is to see what happens with a novel Black Box method and
give some ideas for future work.
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4
Validation of Models

In this chapter each identified model in Section 3.4 will be analyzed, showing
its performances under the metrics which we are going to define in the following
section.

4.1 Validation Metrics
When the models of CO2, temperature and humidity are identified, it is
necessary to define some metrics to evaluate their goodness. Our validation
method consists of three metrics: Fit, Mean Absolute Error (MAE) and Mean
Squared Error (MSE).

Fit is defined as

fit := 100 ·
(

1− || ŷ− y ||
|| y− 1

N

∑N
i=1 y(i) ||

)
, (4.1)

where N is the number of components of the validation dataset, y is the
N × 1 vector of the output measurements and ŷ is the N × 1 vector of the
simulated model output. More precisely, each component of ŷ is the model
response calculated using initial conditions and current and past values of
input measurements, but not output measurements as prediction does. MAE
is defined as

MAE := 1
N

N∑
i=1
| y(i)− ŷ(i) |,

and MSE as
MSE := 1

N

N∑
i=1

(y(i)− ŷ(i))2,
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where the symbols have the same meaning of equation (4.1). As we can guess
from their names, MAE gives an average of the absolute errors, while MSE an
average of the squared errors. The main difference is that with MAE the errors
are weighted equally, while with MSE larger errors are weighted more heavily
due to the square.

4.2 CO2 Models
As seen in Section 3.4.1 and 3.4.4, three CO2 models have been obtained: poly,
ss and nonparametric.

4.2.1 CO2 Poly and SS Models

Given the parameters a1, KN and KI (see Section 3.4.1) it is possible to predict
with iteration and therefore validate the model. The comparison between the
CO2 measurements and the predicted output for the two models is depicted in
Figure 4.1: the fit results 46.5% for the polynomial approach and 47.5% for
the state space one. The two models have similar performances, as it could be
guessed looking at the parameters listed in Table 3.1 and 3.2. This result is
also confirmed by MAE and MSE coefficients, as it can be noticed in Table 4.1.
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Figure 4.1: Validation of CO2 models: real measurements and predictions of model (3.3)
with parameters identified by polynomial (fit 46.5%) and state space (fit 47.5%) approaches.



4.2 CO2 Models 29

MAE MSE
(ppm) (ppm)

CO2 poly 111.4 2.64·104

CO2 ss 109.3 2.54·104

Table 4.1: Comparison beween MAE and MSE of CO2 model (3.3) identified by polynomial
(poly) and state space (ss) approaches.

4.2.2 Nonparametric CO2 Model
The CO2 model has also been identified with the Non Parametric method
(NP), which uses the same inputs but different model structure. Performances
are shown in Figure 4.2 and Table 4.2. Figure 4.2 and Table 4.2 show that
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Figure 4.2: Validation of the CO2 model identified with NonParametric (NP) method: real
measurements and predictions of CO2 NP model, fit 77.8%.

MAE MSE
(ppm) (ppm)

CO2 poly 111.4 2.64·104

CO2 NP 49.1 4.25·103

Table 4.2: Comparison beween MAE and MSE of the CO2 model identified by polynomial
(poly) and NonParametric (NP) approaches.
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the model identified with the NonParametric method predicts well the changes
in the test-bed.

4.2.3 Estimation for the Number of Occupiers
Figure 4.3 shows the comparison between the estimation and the record of
the number of occupiers. The estimation appears acceptable. Moreover, for
our purpose, the high accuracy of this estimation is not required. Indeed, it is
mainly used to get a theoretical formulation for the temperature and humidity
models, which replaces the number of occupiers with CO2 measurements, as
inputs of the models.
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Figure 4.3: Estimation of the number of the people in the test-bed: real measurements
and estimation (3.5) using identification data.

4.3 Temperature Models
Temperature models identified in Section 3.4.2 are here validated. A tempera-
ture model is also identified with the nonparametric method, using the same
data of the mean temperature model.

4.3.1 Mean Temperature Models
The performances of the models are shown in Figure 4.4 and Table 4.3. It
should be noticed that the ss model is better than the poly one: as we have
already said for the CO2, it should not be considered a general result. In fact,
the type of the noise is never known and it is possible that for another test-bed
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the structure assumed by the state space estimation could be unsuitable. It
may be better not to assume a specific structure of the noise, as we have done
in the polynomial estimation.
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Figure 4.4: Validation of mean temperature models: real measurements and predictions
of model (3.18) with parameters identified by polynomial (fit 75.3%) and state space (fit

82.6%) approaches.

MAE MSE
(°C) (°C)

Temperature poly 0.12 0.0311
Temperature ss 0.0875 0.0178

Table 4.3: Comparison beween MAE and MSE of mean temperature model (3.18) identified
by polynomial (poly) and state space (ss) approaches.

4.3.2 NonParametric Temperature Model
The nonparametric method is also employed to identify the mean temperature
model: Figure 4.5 and Table 4.4 show the performances of this model. To
identify this model, data without offsets are employed, since the same data
used for the mean temperature model gives bad results. However, this is a
tricky issue, since temperature equilibrium point is sensitive to the weather
changes (see Section 3.3). The best result is obtained removing the minimum
value of identification data to the overall dataset. Figure 4.5 and Table 4.4
show that the mean temperature model outperforms the nonparametric one.
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Figure 4.5: Validation of temperature model identified with NonParametric (NP) method:
real measurements and predictions of NP temperature model, (fit 59.6%).

MAE MSE
(°C) (°C)

Temperature poly 0.12 0.0311
Temperature NP 0.1739 0.05

Table 4.4: Comparison beween MAE and MSE of temperature model identified by polyno-
mial (poly) and NonParametric (NP) approaches.

4.3.3 Central Temperature Models
It should be kept in mind that in this model the effect of the heat transfer
across the walls is considered using measurements of sensors 5,6,7 and 8 (see
Figure 2.6). The identified parameters, the behaviour with the validation data
and MAE and MSE coefficient can be seen respectively in Table 3.4, Figure 4.6
and Table 4.5. In this case the ss approach is better than the poly one.
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Figure 4.6: Validation of central temperature models: real measurements and predictions
of model (3.19) with parameters identified by the polynomial (fit 64.5%) and state space

(fit 72.7%) approaches.

MAE MSE
(°C) (°C)

Temperature poly 0.2036 0.0769
Temperature ss 0.1522 0.0438

Table 4.5: Comparison beween MAE and MSE of mean temperature model (3.19) identified
by polynomial (poly) and state space (ss) approaches.

4.4 Humidity Models
The parameters of humidity model (3.13) have been estimated in Section 3.4.3.
The performances of the models are shown in Figure 4.7 and Table 4.6. In
this case, the better humidity model is obtained with the general structure
ARMAX model (poly).
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Figure 4.7: Validation of humidity models: real measurements and predictions of model
(3.13) with parameters identified by polynomial (fit 80.5%) and state space (fit 73.8%)

approaches.

MAE MSE
(%RH) (%RH)

Humidity poly 0.3327 0.2044
Humidity ss 0.4461 0.339

Table 4.6: Comparison beween MAE and MSE of the humidity model (3.13) identified by
polynomial (poly) and state space (ss) approaches.

4.5 Validate the Models in a Different Period
The identified models (identification data 16/05/2012 10:56:00 to 18/05/2012
08:00:00) are tested in the duration of about 1 day of the following month,
from 12/06/2012 08:55:00 to 13/06/2012 14:00:00. In this period we weirdly
had people in the test-bed and we collected data. In Figure 4.8, 4.9, 4.10, 4.11
and 4.12 we can see the behaviour of the poly CO2, the NP CO2, the poly
mean temperature, the NP mean temperature and the humidity models. The
ss models are slightly better (for CO2 and temperature) in this situation, but
we decide to report only the more general poly models results. We observe that
the performances of the CO2 and temperature models are good. The humidity
one is not so good due to the very limited set of data that we dealt with.
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Figure 4.8: Validation of CO2 model: real measurements and predictions of model (3.3)
with parameters identified by polynomial approach (fit 40.7%) using validation data of a

different month.
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Figure 4.9: Validation of CO2 NP model: real measurements and predictions of CO2 NP
model (fit 64%) using validation data of a different month.
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Figure 4.10: Validation of temperature mean model: real measurements and predictions of
model (3.18) with parameters identified by polynomial approach (fit 57.1%) using validation

data of a different month.
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Figure 4.11: Validation of the NP temperature model: real measurements and predictions
of the NP temperature model (fit 51.1%) using validation data of a different month.
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Figure 4.12: Validation of the humidity mean model: real measurements and predictions
of model (3.13) with parameters identified by polynomial (fit 34.3%) using validation data

of a different month.

Different from the CO2 level, the temperature and the humidity models are
sensitive to the weather changes. Probably, the set of the identification data for
the humidity is so different from the day considered in June and the model does
not work as well as it did for predictions of the days in May. This indicates that
the models should be trained in a longer set of data under different weather
conditions “to be prepared” for all types of validation dataset.

It is noticed that the nonparametric approach has good performances also
in this analysis: our suggestion is then to try again to use this method in future
work and test its performances in a longer set of data to be sure to have a
general result. However, it should be pointed out that this method is a Black
Box approach, which neglects all physical characteristics of the system.

4.6 Comparisons with Previous Work
So far we have shown the performances of our models implemented in two ways.
Since temperature models are our main results, it is useful to compare them
with some previous work in this field.

4.6.1 Comparison with the Reference
Our idea is based on [7]: the innovation is to consider the effect of the people
in the temperature dynamics, introducing some terms based on the CO2 level.
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The model presented in the reference is given by

Trm(n+ 1) = Trm(n− 1) + 2∆t
[
PrmTrm(n) + PdischTdisch(n)

+PoaToa(n) + ∆E(n)
]
,

(4.2)

where Trm is the temperature of the room, Tdisch is the discharge air temperature,
Toa is the outside air temperature, ∆t is the sample interval, ∆E is the
disturbance and Prm, Pdisch and Poa are the parameters to be identified. To make
a fair comparison, a new model should be identified for our test-bed. Since our
test-bed does not provide us with enough accurate outside measurements, the
model (4.2) is not applicable in our case. The effect of the outside temperature
may be included through the wall and the window temperatures, which are
considered a linear function of Trm and Toa (see [7] for details). We consider
the following model

Trm(n+ 1) = Trm(n− 1) + 2∆t
[
PrmTrm(n) + PdischTdisch(n)

+Pwai
Twai

(n) + Pwdi
Twdi

(n) + ∆E(n)
]
,

(4.3)

where Twai
is the temperature of the internal surface of the external wall,

Twdi
is the temperature of the internal surface of the window and Pwai

and
Pwdi

are other two parameters to be identified. The reason to consider only
the external wall with its window temperatures is due to the fact that the
temperature difference between the room and the outside air is 2200% greater
than the difference between two rooms in average, and the heat convenction is
more involved there. There are still three problems: there is no sensor to give
the measurement of the temperature of the window surface, we have two air
discharge devices (AC and inlet) and the model (4.3) is unstable. In fact, an
equivalent equation is

(1− 2∆tPrmq−1 − q−2)Trm(n) = 2∆t
[
PdischTdisch(n− 1)

+Pwai
Twai

(n− 1) + Pwdi
Twdi

(n− 1) + ∆E(n− 1)
]
,

and we can see that the polynomial on the left-hand side is unstable for every
Prm. Therefore, our solutions are:

• consider only one term PoutTout for both wall and window, using the
measurements of the sensor 7 (see Figure 2.6), which is pretty close to
the window and the wall;

• introduce a new parameter to get a stable model, as it was done in
Section 3.1.2, employing the weighted central difference approximation,
see equation (3.10);

• split the discharge air term into two terms PACTAC and PinlTinl, since in
our test-bed we have both the AC and the inlet which discharge air, see
Chapter 2.1.
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Finally, the model that we will use is

(1 + Prm1q
−1 + Prm2q

−2)Trm(n) = PACTAC(n− 1) + PinlTinl(n− 1)
+PoutTout(n− 1) + PE∆E(n− 1),

(4.4)

where it is applied the same approach of Section 3.1.2. Unknown parameters
Prm1, Prm2, PAC , Pinl and Pout are then estimated with the Least Squares
method.

The performances of model (4.4) are compared with the central temperature
model, which in this case is identified with the Least Squares Method, as in [7].
We can see the identified parameters for the two models in Table 4.7 and the
performances in Figure 4.13 and Table 4.8.

βi1 -0.696
βi2 -0.2087
αAC 0.0111
αair 0.1424
α0 0.0025
α1 -0.0021
αI -4.32·10−4

αw1 -0.0668
αw2 0.0567
αw3 -0.07
αw4 0.0283

(a)

Prm1 -0.7556
Prm2 -0.1406
PAC 0.0046
Pinl 0.0389
Pout 0.0665

(b)

Table 4.7: Parameters of central temperature model (3.19) (a) and reference model (4.4)
(b) identified by LS method.

MAE MSE
(°C) (°C)

Central temperature model LS 0.2106 0.0785
Reference model 0.2623 0.1197

Table 4.8: Comparison beween MAE and MSE of the reference model (4.4) and the central
temperature model (3.19) identified by LS method.
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Figure 4.13: Comparison with the reference: real measurements, predictions of the reference
model (fit 56%) and predictions of the central temperature model with parameters identified

by LS method (fit 64.4%).

4.6.2 Previous Thesis Work
Another similar work is Florian Christian David Haizmann’s master thesis
project [1], which was done last year at KTH. Florian identified an Output Error
(OE) model for a small conference room on the 6th floor of the Q-building at
KTH, using the black box method. The model only considered the temperature
and had the following structure

y(t) =
2∑
i=1

(
Bi(q)
Fi(q)

ui(t− 1)
)

+ e(t),

where y(t) is the temperature, u1 is the binary input related to the AC (on/off),
u2 is the number of occupiers of the room, B1(q) = b11, B2(q) = b21 + b22q

−1,
F1(q) = 1 + f11q

−1, F2(q) = 1 + f21q
−1 + f22q

−2 are the polynomials whose
coefficients have to be identified and e is a white noise.

Since our test-bed is completely different from the one in Florian’s, we
need to identify a new model, employing his technique and introducing some
adjustments to make a fair comparison. In our test-bed there is also the air inlet
(see Section 2.1) as input, whose effect has to be considered in the model. When
the black box method is used, the orders of the polynomials to be identified are
just a guess, looking for the best result with some tries. Finally, the model is

y(t) =
3∑
i=1

(
Bi(q)
Fi(q)

ui(t− 1)
)

+ e(t), (4.5)
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where y(t) is the temperature, u1 is the number of occupiers of the room,
u2 is the binary input related to the AC (on/off), u3 is the binary input
related to the inlet (on/off), B1(q) = b11 + b12q

−1, B2(q) = b21 + b22q
−1,

B3(q) = b31 + b32q
−1, F1(q) = 1 + f11q

−1 + f12q
−2, F2(q) = 1 + f21q

−1 + f22q
−2,

F3(q) = 1 + f31q
−1 + f32q

−2 are the polynomials, coefficients of which are the
parameters to be identified and e is a white noise. In Table 4.9 we can see the
obtained coefficients of the model (4.5).

b11 0.03535
b12 -0.03462
b21 -0.00707
b22 0.00781
b31 -0.5589
b32 0.5427

(a)

f11 -1.122
f12 0.1255
f21 -1.986
f22 0.9863
f31 -0.9635
f32 -0.03428

(b)

Table 4.9: Parameters of temperature model (4.5): Bi coefficients (a) and Fi coefficients
(b) for i = 1, 2, 3.

Figure 4.14 and Table 4.10 show the perfomances of this model. Clearly, this
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Figure 4.14: Validation of temperature model (4.5): real measurements and predictions of
OE model (4.5) identified with the approach of the previous thesis work (fit 36.8%).

model is not suitable for our test-bed: in most of the data the output of the
model is far from the real measurements, especially when all inputs are zero
(from about sample 200) and the model is in free response. The last peak of the
temperature, where this model has more difficulties, is due to the automatic
close of the inlet (see Section 3.3).
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MAE MSE
(°C) (°C)

Temperature poly 0.12 0.0311
OE model (Florian) 0.2704 0.1386

Table 4.10: Comparison beween MAE and MSE of the temperature model (4.5) and the
mean temperature model (3.18) identified by polynomial approach.

It should be underlined that:

• Florian chose a mean equilibrium temperature value to subtract to the
data (see Section 3.3), according to the data that he had collected: in our
test-bed we obtain the better result removing the minimum temperature
value of the identification data. The same value is employed to remove
trends in the validation data.

• in this model both AC and inlet are binary inputs (0 off, 1 on) while in
our model we use the temperature of the air coming out from the two
HVAC components.



5
Conclusions and Future Work

In this chapter we summarize our results and give some ideas for future work.

5.1 Discussion of Our Method and
Improvements

Three physics based models for CO2 level, temperature and humidity, respec-
tively, have been proposed and identified. The performances of these models
are satisfying: models are able to predict the changes in the test-bed, even with
a short training dataset. We have derived the physics-based temperature and
humidity models in a novel way by employing an estimation of the number of
the occupiers of the room based on the CO2 level. Experimental results show
that it has been a good idea and our models outperform those in the previous
work ([1] and [7]), as seen in Chapter 4.

Identified models have also been validated in a day with data collected one
month later the identification period (see Section 4.5): the aim was to analyse
their behaviour under different conditions. CO2 and temperature models still
work well, while the humidity results are not satisfying, which implies that the
models should be trained with more data.

As final part of the project, we have also tried a novel method of non-
parametric identification, which is described in [16]. We directly employed its
matlab® implementation: models show good performances, but it should be
kept in mind that all physical characteristics are neglected and a larger dataset
should be uset to get a general result.

Before moving on to the next stage, one should solve some problems. The
sensor which gave the external temperature should be replaced with one less
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sensitive to the sun and the weather conditions. It could be interesting to
consider the effect of the outside conditions in the model and compare the
performances with ours. Moreover, we think that the contribute of neighbor
rooms can definitely be neglected: only the heat convection of the inside walls
surfaces should be taken into account, as we have done in our actual central
temperature model (see equation (3.19)). However, sensors should be located
to be in contact with the wall surface, and not just near, as in our test-bed.

Another important issue to be analyzed is to determine the equilibrium
point for temperature and humidity according to the weather changes: this
problem was also noticed in the previous thesis work [1], but it is still not
solved. An accurate value of the equilibrium point could be helpful to get
better results, as the identified model is a linearized version of the real system
around that value (see Section 3.3).

We should consider the problem of the inlet measurements which we dis-
cussed in Section 3.3. When the damper of the inlet was closed, a weak airflow
continued to come into the room, introducing a relevant disturbance. Mea-
surements of respectively sensor 17 and sensor 19 were therefore employed for
CO2 and temperature when the inlet was off, because they were the nearest
sensors. In future work these sensors should be placed closer, in order to get
more accurate measurements when the inlet is off. A solution should be found
also for the problem of the automatic closing of the central ventilation system
(see Section 3.3). To understand the importance of this problem Figure 4.1 and
4.4 can be considered: the peak of CO2 and temperature around sample 550,
where inputs were all zero, was only due to the closing of the system. This
effect should be considered in the models.

The main problem of this work is that we have a short dataset. It is
indispensable to be sure to get at least one-two months of data in the next
stage of this work, in order to have enough time to solve possible new problems
and identify robust models. In fact, in the literature, months of measurements
are normally used for the identification. In this way, it could be possible to
make our models more robust and suitable for all seasons.

5.2 A New Approach: Hybrid Models
In Chapter 4 we have seen that the identified models work pretty well, even
with the limited set of data that we have employed. Moreover, models are able
to predict changes in the test-bed with different working conditions of AC and
inlet. This is a really good point for our models, since the dynamics when AC
and inlet are on or off is completely different.

We therefore think that a good idea may be to identify multiple models
according to the state of the inlet or the AC: AC off inlet off, AC off inlet on,
AC on inlet off and AC on inlet on. To limit the number of models we suggest
to start to get different models for the two states of just the inlet: in fact, the
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airflow of the inlet is definitely stronger than the AC one, following a more
marked changes in the dynamics.
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