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Abstract

Residential water leaks pose a significant challenge, leading towater waste and financial burdens
for both consumers and suppliers. Traditional leak detectionmethods, such as visual inspections,
acoustic detections, and the use of district metered areas (DMAs), often fall short in terms of
efficiency and proactivity. Smart metering infrastructure offers a promising solution to this per-
sistent problem. This research explores the advantages of smart meters that provide real-time,
high-resolution water usage data, enabling the detection of consumption patterns and leak indi-
cations. The case of Italy exemplifies the urgency for improved water management, with high
per capita consumption and considerable water loss before reaching consumers. Italian house-
holds consume nearly double the European average, and in 2022, 42% of drinking water was
lost due to leaks. The adoption of smart meters in Italy could revolutionize water management
by reducing waste, saving resources, and alleviating financial impacts on distributors and con-
sumers alike. The objective of this thesis is to build upon prior literature on predictive modeling
of household water demand in order to develop a scalable model capable of accurately forecast-
ing residential consumption patterns and detecting leaks in the water distribution network, solely
from existing smart meter data. The model is based on an analysis of real smart meter readings
collected across a broad region in northern Italy, thereby eliminating the need for costly addi-
tional sensor equipment or manual on-site inspection. By leveraging the extensive smart meter
infrastructure already in place, the approach aims to provide a widely implementable and eco-
nomically viable solution for predictive demand modeling and leak identification in residential
areas.
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Chapter 1

Introduction

1.1 Motivation

Residential water leaks are a pervasive problem, often going unnoticed for extended periods,
which can lead to substantial water waste and increased costs for both consumers and suppliers.

Current methods for leak detection in residential settings primarily include visual inspec-
tions, acoustic methods, and the use of district metered areas (DMAs). Visual inspections are
often time-consuming and rely heavily on the experience of the inspector, while acoustic meth-
ods, which detect the distinct sounds of water escaping under high pressure from pipe leaks or
cracks, require the installation of dedicated sensors along the pipe network or require an operator
to be within 1-1.5 meters of the leak with a detection device. DMAs, which involve segmenting
the water network to monitor flow and pressure, can be effective but often require significant
infrastructure changes and investment. Despite their utility, these methods can be reactive rather
than proactive, failing to provide immediate and continuous monitoring of water usage patterns.

The implementation of smart metering infrastructure provides a dual opportunity to predict
daily water demand and to detect leaks without incurring additional costs for metering and sup-
plier companies. Smart meters, with their ability to provide real-time, high-resolution water
usage data, have opened up new avenues for enhancing water management practices. By con-
tinuously monitoring water consumption at a finer temporal resolution, smart meters generate
large volumes of data that, when analyzed statistically, can reveal consumption patterns, identify
anomalies, and signal the presence of leaks.

In Italy, residential water consumption statistics reflect a compelling case for the necessity
of improved water management. According to a study carried out by the Eurispes Institute
on the state of water in Italy, Italy places third in Europe in the ranking of countries with the
greatest water availability, behind only Sweden and France; yet, at the same time, it is the country
with the highest per capita consumption of drinking water and the second highest consumption
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in agriculture. The daily average household water consumption in Italy stands approximately
between 150 and 240 liters per person,but this statistic is heavily skewed by the amount of
water wasted or lost before it even reaches the consumer. The price of drinking water in Italy
is among the lowest in Europe per cubic meter, yet in recent years, as prices have increased and
supply diminished, many are making an effort to decrease their water consumption. Despite
this, people may be using a lot more than they think. On average, Europeans consume 125 liters
of water a day, while Italians consume 236 liters. [1] According to the Italian National Institute
of Statistics 42 per cent of drinking water was lost in 2022, meaning that a significant percentage
of treated water was lost to leaks before it even reached consumers. This not only represents
a loss of a precious resource but also a financial loss to water suppliers and an unnecessary
increase in water bills for consumers. This thesis posits that smart metering-generated water
consumption data, when elaborated and analyzed effectively, can enable the early detection of
household water leaks without incurring additional costs for metering infrastructure or supplier
companies.
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Figure 1.1: Average residential drinking water consumption per capita per day in each European
country[2]

Figure 1.2: Average non-revenue water in each European country[2]
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1.2 Thesis structure

Chapter 2 3 Background

This chapter provides an overview of water sub-metering systems that use the wireless
M-Bus communication protocol to enable automated meter readings. These systems are
commonly used for multi-tenant buildings to allow per-unit water billing based on actual
consumption. The typical architecture consists of individual water meters with integrated
wireless M-Bus connectivity installed in each unit, MUC or IoT gateways that collect wireless
transmissions from the meters, and backend software to manage the meter data. The meters
used must comply with regulations like the EU9s Measuring Instruments Directive for billing
purposes. The wireless M-Bus standard defines various communication modes optimized for
different applications, two-way communication between meters and data collectors, and open
data formats like OBIS codes to ensure interoperability. The gateways receive transmissions
from meters at regular intervals and forward the encrypted data payloads via cellular connec-
tivity to the back office system. This enables completely automated and accurate monitoring
and billing of water consumption for each tenant. Overall, wireless M-Bus is a key enabling
technology for sub-metering systems due to its optimized architecture for high-density meter
environments.

Chapter 3 3 Methodology

This chapter delineates the methodological framework adopted for the research, outlin-
ing the original procedural strategy intended and the subsequent adjustments made during its
implementation. It elaborates on the actions taken regarding the collected data, such as the
volume of data gathered, the sources from which it was acquired, and the specific details that
were either omitted or preserved to ensure anonymity without compromising the data utility
for further analysis. The chapter also details the data processing methods used to prepare the
dataset for the construction of a predictive model. This will include a thorough explanation
of the criteria for data selection and exclusion, such as the removal of readings that would
be anomalous from individual residences and the exclusion of meters with insufficient daily
readings, which were deemed inadequate for a detailed hour-by-hour analysis. Additionally,
the challenges faced during the research will be discussed, particularly those that necessitated
changes in the methodology, along with the reasons behind these changes. A particular focus
will be placed on the inability to replicate a consumption curve identical to that of the reference
model, along with a discussion of the potential factors contributing to this discrepancy.
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Chapter 4 3 Experiments and results analysis

This chapter will explore in detail possible implementations of the predictive model for
leak detection in the water pipe network of residential areas and which kind of approach to take
to effectively determine when water leaks are happening without incurring in additional costs;
for example, how the water demand curve of a real meter compares to the one generated by
the predictive model and how significant of a difference between the two would guarantee an
accurate detection without requiring an on3site operator.

Based on this premise, this chapter will also touch on an unsuccessful trial which had
the purpose of simulating the water consumption of a single household across the span of a
month using a water pump regulated by a programmable valve and monitored by a smart meter.
The failure of this experiment was not due to a fault in the predictive model, as it was never
applied, but rather due to the inability of the equipment to faithfully replicate household water
consumption.
Lastly, it will give an overview of the results obtained and a brief analysis.

Chapter 5 3 Conclusion

This chapter aims to do an overall conclusion of the work done and some final observa-
tions.
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Chapter 2

Background

2.1 Water Meters

Water meters are legally relevant devices for measuring water flow for billing purposes. As
such, they are subject to the European Measuring Instruments Directive (MID) Directive
2014/32/EU[3], which applies to measuring instruments used for legally relevant measure-
ments. The purpose of the MID is to harmonize the requirements that these instruments must
meet to be eligible for sale in the European Union. These requirements relate to metrological
performance, physical and mechanical characteristics, and legal obligations. The directive aims
to protect the market and consumers who use measurements from these instruments daily, and
is a mandatory requirement for the CE certification marking. Therefore, all water meters used
for billing, including sub-metering water meters, must be MID compliant to reliably measure
water flow and consumption.

Water flow meters for monitoring systems typically fall into four main categories:

1. Positive Displacement Meters (PD Meters): PD Meters represent a class of water me-
tering devices predominantly utilized in residential and small commercial environments.
Notable for their high accuracy at low to medium flow rates, these mechanical meters
incorporate a measuring component that moves in a manner directly proportional to the
water volume traversing the meter. An internal magnet is subsequently engaged, driving
the register to precisely record the volume of water that has traversed the meter.

2. Velocity FlowMeters: Velocity flow meters quantify the velocity and rate at which water
passes through the meter. These mechanical meters transform the flow9s velocity into a
volumetric measurement to accurately assess consumption. Within the category of veloc-
ity flow meters, there are three distinct sub-types: single-jet and multi-jet water meters,
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turbine water meters, and compound water meters. Each subtype is designed to cater to
specific flow rate conditions and measurement requirements.

(a) Single-jet and multi-jet water meters employ blade rotation driven by water jets to
measure flow, with an integrated strainer grid protecting against clogging. They
are effective for low flows and small pipes, often used domestically for secondary
billing, monitoring, and batch control, along with industrial applications. Single jet
meters use one port to create a jet that impacts a turbine, transmitting motion to
a display to measure volume; the simple, reliable design suits sub-metering roles.
Multi-jet meters utilize multiple ports surrounding a chamber, evenly distributing
force across an impeller to retain accuracy at low flows, making them ideal for large
industrial installations monitoring high usage in real-time.

(b) Turbine Flow Meters: Turbine-type meters are well-suited for large diameter pipes
with low flow rates and high volumes. They operate by using angled rotor blades that
rotate in response to fluid movement, either clockwise or counterclockwise. Blade
speed is measured by attaching a magnet to the rotor which allows accurate speed
calculations regardless of flow direction. The responsiveness of the angled blades
makes turbine meters an effective option for measuring low velocity flows in high
volume applications.

(c) Compound water meters employ both turbine and positive displacement technolo-
gies to accurately measure flows with rapid, wide fluctuations in water demand.
They utilize two meters - a large one for high flows and a smaller one for low flows.
The readings from each meter are summed to determine total usage.

3. Electromagnetic Water Meters: Electromagnetic meters, or mag meters, are highly accu-
rate volumetric flow meters containing no moving parts, which reduces maintenance and
repair costs. They operate by using a magnetic field to route liquid through a pipe. As
the liquid flows through this field, a voltage signal proportional to the flow rate is gener-
ated. The faster the flow of water, the greater the voltage, which is then translated into a
reading.

4. Ultrasonic flowmeters employ ultrasound technology to precisely measure the velocity of
fluids in real-time, thereby enabling accurate data collection and avoiding billing disputes.
With no internal moving components, these meters also have an extended operational
lifetime. Two primary ultrasonic metering methods exist: Transit Time and Doppler.
Transit Time ultrasonic meters allow a high degree of accuracy even at low flow rates.
Their versatile installation allows them to retrofit into spaces with strict spatial constraints.
Doppler ultrasonic meters utilize wrap-around sensors external to the pipe itself, rendering
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them relatively inexpensive and well-suited for applications involving flows like mining
and sewage where solids could be present. While Doppler technology is less accurate for
clean liquids, it still provides sufficient approximate readings.

2.2 About sub-metering

Water metering can be categorized into three main types: Direct metering, master metering,
and sub-metering. Direct metering involves every flat or property having its own meter, with
the utility provider responsible for both the service and the billing based on actual usage.
Master metering, on the other hand, uses a single meter for an entire block of flats, with the
utility billing the building owner or property manager, who then divides the bill among the
residents using a predetermined method, which can sometimes lead to unfair cost distribution.
Sub-metering, also known as automatic meter reading (AMR) refers to the practice of measuring
water usage at a more granular level than what is required for utility billing; this could include
tracking water consumption in individual units within a building complex, apartment building,
or even down to specific systems or devices within a facility, enabling tenants to be billed based
on their actual consumption.

Sub-metering offers numerous benefits for both tenants and property managers. Tenants
gain from a more equitable billing system that encourages mindful water usage by allowing
them to directly influence their utility bills through personal consumption choices, which
can lead to reduced overall utility costs. Property managers benefit from the ability to verify
utility bills and promptly detect damage within the water network. Sub-metering facilitates
the monitoring of water consumption patterns, enabling the early identification of leaks and
maintenance needs, potentially curbing water loss and damage. When implemented effectively,
sub-metering can lower utility expenses and minimize administrative tasks, as it allows for the
automatic calculation and billing of individual utility charges to each resident, streamlining the
process for property management.

An application of sub-metering can be demonstrated in an apartment building that has a
single cold-water meter provided by a water distribution company. As illustrated in Figure 2.1,
this example building contains two stairwells, each with two floors, and three apartments per
floor. To enable correct water billing for each apartment, a communicating master sub-meter
is installed downstream of the utility water meter, and individual smart sub-meters are placed
in each apartment unit. The purpose of this sub-metering arrangement is to monitor the water
consumption of each apartment and bill the residents accordingly based on usage. The master
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sub-meter provides a reference measurement to validate the aggregate consumption of all
apartments matches the total water usage measured by the utility company9s main building
meter.

Figure 2.1: Schematic diagram of an example application of submetering in an apartment build-
ing.

2.2.1 Water sub-meters

The water meters utilized in this study were primarily manufactured by Maddalena S.p.A. and
consisted of two distinct models:

1. SJ PLUS-EVO[4]: a single-jet traditional meter, equipped with a clip-on wireless MBUS
communication module, RADIO EVO[5], operating at 868 MHz

2. ELECTO SJ[6]: a single-jet meter with an integrated wireless MBUS communication
module, operating at 868 MHz.

Both of these meters support a fully compliant wireless MBUS protocol stack and OMS
application stack including security (cryptography) features.
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Figure 2.2: The SJ PLUS-EVO meter is available in cold or warm water versions. The model
used for the thesis is the one for cold water measurements.

Figure 2.3: The ELECTO SJ single-jet water meter
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2.3 Data acquisition architecture

Metering data is transmitted from the metering device to a data collector (MUC, concentrator,
or IoT gateway) where it is stored and subsequently forwarded to the head-end system and
meter data management system operated by the sub-metering service provider. The data
collector can be permanently installed within the building or utilized as a mobile readout device
by human operators conducting walk-by or drive-by data collection. For mobile collectors,
operators either walk or drive in proximity to each property address to gather readings using a
data receiver that retrieves the transmitted data from the built-in radio transmitter connected to
each meter.

A key enabler of submetering technology is the use of a wireless communication proto-
col shared between the metering device and data collector that is based on an open standard
for automated meter read-outs. The most widely adopted wireless protocol for smart metering
applications in Europe is Wireless M-Bus, also known as Wireless Meter-Bus, a European
standard that specifies communication between utility meters, data loggers, concentrators,
and smart meter gateways. Originally developed as a standard system for networking and
remotely reading utility meters across Europe, Wireless M-Bus is now also being utilized
as the foundation for Advanced Metering Infrastructure (AMI) and is one of the primary
communication protocols deployed for smart gas metering in Italy[7], [8]. The Wireless M-Bus
protocol is designed for battery-powered devices like water meters to operate autonomously
for up to 10 years. This extended lifespan is achieved by minimizing radio usage, keeping
the module in a low-power mode whenever possible, and optimizing awake and transmit
procedures. Following this principle, the communication is always initiated by the smart meter,
not the MUC, which is more suitable for prolonging the sensor battery life.

Smart metering devices require robust, long range wireless communication. The frequencies
most commonly utilized are around 868MHz, 434MHz, and 169MHz, which represent
license-free bands in Europe that enable superior radio wave propagation compared to 2.4GHz.
Operating within these license-free bands allows wireless radio signals to reach challenging
locations such as underground meters or those inside buildings with multiple obstructions and
walls. Additionally, the use of license-free bands provides cost benefits to utility companies
implementing smart metering solutions, as licensing is not required.
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Figure 2.4: An automated meter reading system typically includes the following hardware com-
ponents: Utility meters, transmitters, repeaters, a gateway, and billing software.
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2.4 Wireless MBUS

The traditional OSI model shown on the left hand side of Figure is commonly used to depict
stack architecture for various protocols where each layer has specific functions.

Figure 2.5: The traditional OSI model, compared to the WM-BUS basic stack

Originally, Wireless M-Bus utilized slightly different and less stringent requirements for the
protocol layers. The core layers consist of the application layer, data link layer, and physical
layer. However, more recent implementations of the protocol have started incorporating addi-
tional transport and network layers to enable advanced security features such as authentication
as well as routing capabilities for larger scale networks.

2.5 International Harmonization

With the M/441 mandate, the European parliament empowered the standards organizations Eu-
ropean Committee for Standardization (CEN), European Committee for Electrotechnical Stan-
dardization (CENELEC), and European Telecommunications Standards Institute (ETSI) to de-
velop an interoperable communication framework for smart metering across Europe. To pro-
mote adoption and interoperability, the Wireless M-Bus protocol and its application layers are
defined by a set of formal technical standard documents. Specifically for Wireless M-Bus in
the sub GHz frequency bands, there are several key documents including: ETSI EN 300-220,
which delineates permitted frequencies, bandwidths, emission limits, etc. for all sub GHz wire-
less products, not just Wireless M-Bus; and EN13757, published in 8 parts by CEN and more
specifically focused on M-Bus, addressing each part of the solution spanning the physical layer
to the application layer[9].

14



2.6 Water Metering application protocol

The Open Metering System (OMS) specification[10] was developed to meet the need for
interoperable solutions for meter reading and a unified approach across different media types
including electricity, gas, heat, and water. The OMS specification is founded on established
standards with primary communication based on the M-Bus standard (wired or wireless), EN
13757. The specification defines a Multi Utility Communication (MUC) device that acts as an
intelligent data concentrator between the automated meter management (AMM) back office
system (for billing or other functions) and the metering and actuator devices.
OMS delineates three types of communication flows: primary communication between meters
and the MUC; secondary communication as an extension of the primary communication
utilizing simple repeaters or multi-hop routing; and tertiary communication between the MUC
and the back office AMM system.

Figure 2.6: A schematic representation of the Open Metering Standard (OMS) specification and
the three types of communication flows.[11]

The data format specified for standard Open Metering System applications is Object Identi-
fication System (OBIS) coded values[12], [13]. OBIS is Part 61 of IEC62056 which defines
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identification codes for commonly used data items in electricity metering equipment, and has
been adapted for other utilities including gas and water. OBIS codes are 6-byte numbers that
uniquely identify an object in a logical device. They identify data items in energy metering
equipment through a hierarchical structure utilizing six value groups A through F: Group A
specifies the medium (for example, 0=Abstract Objects, 1=Electricity, 7=Gas, 8=Cold Water);
Group B indicates the channel; Group C denotes the physical value (Current, Voltage, Energy,
Liters, Cubic Meters); Group D identifies processing types or algorithms applied to quantities
in Groups A and C; Group E indicates further processing or classification of quantities in
Groups A to D[11]. The MUC translates the M-Bus application data format into OBIS before
sending it to the AMM via the operations data channel, while also supporting direct M-Bus
formatted data on a separate service data channel from MUC to AMM.

2.7 MUC/Gateway

The MUC/IoT gateways used in this study are the WebdynEasy WMBUS Hub gateways from
French company Webdyn.

Figure 2.7: A Webdyn WHMBUS Hub gateway

The WebdynEasy is a standalone data collector for meters and wireless M-Bus sensors that can
operate on batteries without external power supply. The purpose of the WebdynEasy WM-Bus
hub is to gather data from Wireless M-Bus-enabled devices including meters (water, gas, elec-
tricity) and sensors (temperature, humidity, etc.). This energy-efficient technology can achieve
hub battery lifespan exceeding 10 years. WebdynEasy WM-Bus enables configuration of
private communication networks. WM-Bus communication is point-to-point in a non-operated
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manner. Meters and sensors regularly transmit data frames that are received by the WM-Bus
hub, which stores the raw encrypted or transparent data contained in the frames. The Web-
dynEasy WM-Bus hub periodically sends a BSON-formatted file containing the aggregated
raw data from all sensors to a server via FTP using its integrated LTE-M/NB-IoT/2G modem.

Figure 2.8: A schematic diagram of the WebdynEasy VMBus communication network[14]
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The BSON format, an abbreviation for Binary JSON, represents a binary-encoded form
of serialization that resembles JSON documents. Similar to JSON, BSON allows for nesting
documents and arrays within other documents and arrays. Additionally, BSON includes
supplementary features that enable the encoding of data types not included in the standard
JSON specification[15].

Figure 2.9: An example of a BSON frame with meter data represented as a JSON object
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Chapter 3

Methodology

3.1 Approach

This project originally started during my internship at smart metering software company
Inkwelld Data Ltd. and was inspired by an analysis of statistics on water usage and waste across
Italy, which revealed that leaks in aging pipe infrastructure were responsible for immense
volumes of wasted water annually. I was presented with the task of devising a cost-effective
solution for detecting water leaks in residential buildings using only data from smart water
meters. The wealth of information being generated by smart metering systems presents an
untapped opportunity to extract actionable insights about potential leaks, without requiring any
additional hardware investments by utilities or metering companies.

For the purpose of this thesis, the first step was obtaining access to a dataset of real
smart meter readings from wireless MBUS systems installed in homes across Northern Italy.
My goal was to leverage this data to build a robust statistical model capable of predicting
expected normal water usage and consumption patterns in residential buildings on a daily basis.
Once developed and validated, this model could then be used to analyze incoming smart meter
data for discrepancies between actual and predicted daily water demand. I hypothesized that
when actual consumption deviated significantly higher than the levels expected by the model,
it would provide a strong indication of a potential leak on the property. Detecting when actual
water use diverges meaningfully from usual patterns could enable utilities to proactively alert
customers to likely leaks and ensure timely repair.

Overall, this project presented a meaningful opportunity to create value by devising a
clever solution that relied exclusively on mining insights from previously underutilized data.
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In the following sections, I will elaborate on the steps taken to anonymize and organize
the raw data received, then process it into a format suitable for building a predictive model. The
data processing approach follows a similar methodology to Rudy Gargano, Carla Tricarico,
Giuseppe del Giudice and Francesco Granata9s study <A stochastic model for daily residential
water demand=[16], which I used as a basis for creating the statistical model.

3.2 Developing Stochastic Models of Daily Water Demand:
Theoretical Framework

A robust methodology for developing a statistically and mathematically accurate predictive
model for water demand necessitated reviewing existing academic literature on the subject.
The aforementioned study[16] provided the most applicable framework, including clear delin-
eation of the techniques utilized to develop their predictive model, enabling replication of their
approach. In order to manage the variability in water demand, this paper puts forth a novel
approach of creating a single versatile probability distribution, termed the mixed distribution
(MD), that can be applied uniformly across all times of day, rather than considering multiple
separate distributions for each time period. Furthermore, the relationships for estimating the
standard deviation parameter of the proposed mixed distribution are expanded upon in detail,
highlighting the dependence on the number of users and meters under examination.

3.2.1 Mixed distribution parameters

Firstly, the value that will represent actual water demand in the distribution is made dimension-
less by creating a specific coefficient, termed mean demand coefficient and referred to with the
symbol µCD(t), that is found as the ratio between the average water demand registered at time t
(µQ(t)) and the average daily water demand for an entire day (µQ)[16].

µCD(t) =
µQ(t)

µQ

(3.1)

The variation coefficient parameter of the MD at time t (CV(t)) is obtained in relation to
the mean demand at time t and the number of users, which in my own research I interpreted as
individual meters. According to study, the variation coefficient is inversely proportional to both
the number of users and the demand coefficient at time t. This relationship is characterized by
the following equation[16]:

CV (t) = 0.1 +
6

(

1
4
µCD(t) ·Nus

)3/4
(3.2)
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The probability distribution of null water demand, referred to with the symbol F0, was
estimated in the reference paper through elaboration of field data. As neither the dataset nor
the specific methodology utilized for estimating this specific parameter were made available
by the authors, the results presented in the aforementioned publication were reused as a basis
for subsequent calculations and elaborations within this thesis, in lieu of access to the primary
data and analytic procedures.

The final parameter essential for the construction of the mixed distribution is the coeffi-
cient corresponding to the non-zero water demand, which exhibits a significant dependency on
the number of users, and therefore meters, considered in the analysis.

3.2.2 The importance of sample size

The importance of utilizing an adequately large sample size is emphasized in the reference
study, as it is noted that this simplifies the estimation of water demand when demand is nonzero.
Specifically, with a sufficiently large sample, the mixed distribution coefficient associated with
nonzero water demand can be treated as a single random variable that follows a unique random
variable that is continuously positive.

3.2.3 The importance of sample size

The most salient finding from the reference paper, as it pertains to the current thesis, is the
derivation of the equation to model demand flow at each discrete time step t. This equation[16],
which is contingent on the previously discussed parameters, is as follows:

Q(t) = µQ

[

1−
sqrt3

π
ln

1− F (t)

F (t)− Fo(t)
CV (t)

]

µCD(t) (3.3)

where F(t) represents a continuous positive random variable, with the sole restriction that F(t)
must be greater than F0(t) for all values of t.

3.3 Dataset Acquisition and Refinement

As previously mentioned, the data-set is a sample of meter readings from wireless MBUS sys-
tems based on the digital twin concept by Inkwell Data Ltd and deployed in residential buildings
in Northern Italy, taken between the dates of August 11th 2023 and December 27th 2023.
Figures 3.1 and 3.2 below present a subset of the initial readings prior to any further analysis or
interpretation, with names and addresses obscured.
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Figure 3.1: A list of readings collected on December 27th, 2023. (1)
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Figure 3.2: A list of readings collected on December 27th, 2023. (2) The figure has been split
into two parts for more accessible viewing.
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The raw data table contains many columns that were not needed for this analysis, such as
gateway identifier, specific addresses, names, and most identification numbers aside from the
meter IDs (meter_id column). Before removing any readings, I used the 9type9 column to extract
only cold water meters (tagged as AF, Acqua Fredda), the only ones relevant to this project.
The extraneous columns were then removed, along with all readings from other types of meters.
After this first elaboration I was left with 5.021.584 total readings from 7690 meters.

Figure 3.3 presents a table that has been refined to include only the data points pertinent to
this project. These essential data points are the precise date and time of each reading, the meter
ID, the measurement unit, and the corresponding value recorded by the meter at the specified
time.

Figure 3.3: After removing extraneous columns, the filtered dataset was imported into Matlab,
a platform better suited for the quantitative data processing and modeling required for this re-
search.

With a clean dataset containing only the necessary data points, I could begin deriving
the parameters required to generate my own mixed distribution for water demand forecasting.
First, I sorted the data by meter identification number and timestamp so that all readings for
a given meter would be clustered together chronologically. I then wrote a function named
get_daily_readings that accepts the full dataset and a meter ID as inputs and returns a subset of
the data containing readings only for the specified meter. Calling this function on the first row
of the clean data table allowed it to iterate through and extract daily readings for all meters in
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the dataset.

With the ability to analyze each meter individually, I developed a function to derive water
demand from the water readings. Since the readings for a given meter comprise a monotonically
increasing time series, demand over the full five-month period could be computed by a simple
subtraction of each reading from the prior reading. The function find_delta accepts the data
for a single meter, as extracted by the get_daily_ function, as input. It returns a new column
containing the calculated demand value for each data point, which can then be appended to the
original data table.
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3.4 Development of a predictive model using the acquired
data

3.4.1 Extracting the mixed distribution parameters: µCD(t)

With water demand data calculated for each time step, I could begin deriving the parameters
needed for the mixed distribution model, specifically µCD(t). To compute µCD, which would
become another column in the dataset, I first required the average daily water demand and the
average demand at each time step for every meter based on the equation[16]:

µCD(t) =
µQ(t)

µQ

(3.4)

Daily demand was obtained by subtracting the first reading of the day from the last, as
with the per-time step demand. I added a column to the dataset containing the daily demand
values for each meter. I also constructed a separate table, mean_meter_demand, to contain the
average daily demand calculated across all days for each meter ID. With daily demand values
calculated, I could determine the average water demand coefficient (µCD(t)) for each time step.
I created a function called find_mean_by_hour that takes as input the readings for a single
meter, sorted by hour to group readings from the same time of day across multiple dates, along
with the table of mean daily demands per meter. The function first identifies the correct average
daily demand value for the given meter based on its ID. It then averages the water demand
recorded by that meter for each hour of the day. µCD is calculated for each hour as the ratio
between the mean demand at that hour and the overall average daily demand. The function
outputs a table with one row per hour of the day, associating each hour with the corresponding
µCD value for a single meter.
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Figure 3.4: single_meter_readings is a timetable obtained by sorting the elements of the
timetable extracted by get_daily_readings by hour instead of date, mean_meter_demand is a
table which contains, associated to each meter id, the mean daily demand for that meter.

27



Finally, I merged the µCD tables for all meters, excluding those with null average hourly
demand values for all 24 hours. The null values indicated that these meters were inactive during
the data collection period. The resulting consolidated table contains 24 rows representing each
hour of the day, and 6,751 columns for the number of active meters remaining after the exclusion
process. This final table provided the complete set of µCD parameters across all active meters
and times of day required as inputs to the mixed distribution model.

After performing the data processing steps detailed in the preceding paragraphs, the dataset
took on the structure shown in Figure 3.5. This table provides an overview of the final dataset
format, including the original raw meter readings as well as the derived features such as
per-time step demand, daily demand, and µCD values calculated for each meter at each hour of
the day.

Figure 3.5: An extract from the final data table, displaying all data points associated with meter
id 19 in the first three days of data collection
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3.4.2 Outlier Identification and Removal

A critical step in preparing the data for calculating distribution parameters was removing any
outlier meters not associated with single household usage. The dataset contained numerous
meters for entire condominium complexes rather than individual households. Since the mixed
distribution aims to model household-level demand, these non-single residence meters had to
be excluded to prevent skewing the results. Obtaining a homogeneous sample of only single
household meters was essential for the distribution to reliably represent residential water usage.

To identify and discard outliers, I employed a simple filtering process based on maxi-
mum reasonable hourly and daily consumption levels for a single household. Specifically,
consultation with Inkwell Data established thresholds where any meter registering over 4 m3

of hourly usage would be deemed an outlier unrepresentative of the target single household
population. Using this criteria, I filtered the full dataset to discard all meters exhibiting outlying
consumption exceeding the 4 m3 hourly threshold. This filtration isolated the dataset to meters
aligning with expected normal ranges for a single household.

Additional dataset refinement included excluding meters with insufficient data, defined
as those transmitting on average less than five readings per day. With the distribution intended
to predict hourly water demand, meters lacking robust hourly information could not adequately
contribute to modeling the parameters.

After completing the data filtering steps to remove outliers and meters with insufficient
data, the final refined dataset retained a total sample of 5438 meters from which to derive the
mixed distribution parameters.

3.4.3 Extracting the mixed distribution parameters: CV(t)

The calculation of the CV(t) parameter relied heavily on the prepared table containing the mean
demand coefficients (µCD) for all meters, as these coefficients are part of the CV(t) equation. I
estimated CV(t) at a 15 minute time step, resulting in an array of 96 elements representing each
15 minute interval. To compute each CV(t) value, the corresponding µCD values were extracted
from the µCD table at four values per hour, or four per table row. These could be drawn from
any random column, and thus any random meter, since the table already excluded dissimilar
meters, retaining only residential household meters with comparable behaviors. Therefore, us-
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ing µCD values from different meters for each 15 minute increment did not introduce significant
discrepancies.

Figure 3.6: An example of extracted µCD values

To obtain the 96 µCD values needed from the larger table, I created a function called
create_coefficients_arrays that extracts the requisite µCD data points and also retains a record of
the µQ values for the meters from which each µCD was sampled. Maintaining this link between
the extracted µCD coefficients and the corresponding meters9 µQ parameters is necessary for
computing the final predictive water demand curve equation.

Figure 3.7: The create_coefficients_arrays function enabled efficient extraction of the needed
¿cd data while preserving the meter information required for the final calculation.
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Figure 3.8: The variation coefficient calculated using the µCD values represented in Figure 3.6

3.4.4 The predictive model

With all required parameters extracted through preprocessing of the initial dataset, and incor-
porating the fixed parameter for the distribution of null water demand from the reference study,
I was equipped to construct my own predictive model for the daily water demand pattern of a
single meter (household). This was accomplished using Equation (3.3). The code excerpt below
depicts the process to compute and plot the estimated daily demand curve for a sample meter.
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The predictive modeling enabled generation of estimated high-resolution daily water de-
mand profiles at the individual meter level based on the statistical distributions derived from the
raw meter data.

Figure 3.9: Predicted daily water demand pattern produced by the model for a sample meter,
using the parameterized equation and data processing approach described.
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Chapter 4

Experiments and Results Analysis

This chapter will focus on the analysis of the results obtained, the parameters estimated from
the collected and refined data, and the final predictive model for water demand. Specifically,
the chapter will evaluate the model9s accuracy by comparing it with the model detailed in the
referenced study[16].

4.1 Estimation of mean demand coefficient µCD(t)

While my estimated model appears visually similar, it shows generally lower values and more
variation between time steps compared to the distribution in the reference study. Several factors
may contribute to these differences. My µCD array was constructed by extracting four values
per hour from randomly selected meters, since no meter had more than one reading per hour.
However, the study utilized data with a much higher, minute-level sampling frequency, as noted
in this quote:

These two monitoring systems were realized speciocally for studying the water
demand, hence they gave reliable time series for the water request. In addition,
CE and Fr monitor- ing systems, as the oeld laboratory of PSG, provide a one
description of the water demand during the day because the time step �t equals 1
min. ([16])

The finer temporal resolution and localized scope of the study9s data may have enabled a
smoother and more consistent distribution. Additionally, my analysis used over five thousand
meters across a broad geographic area, while the study data came from a smaller set of 596
meters in a single town. The larger and more diverse sample in my work may account for the
greater variability observed. Nonetheless, the similar general shape provides evidence that my
parameterized model effectively captures the underlying daily water demand pattern, providing
validation of my modeling approach.
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Figure 4.1: The estimated mean demand coefficient obtained by the reference study (left) com-
pared to my own estimation (right)

4.2 Estimation of variation coefficient CV(t)

Similar to the µCD parameter, my estimated variation coefficient (CV) curve exhibits visual
similarity to the reference study, approaching an asymptotic value around 0.1. However, my
CV curve shows lower values overall. As noted in the reference study, CV decreases as the
number of users (meters) increases. Therefore, the lower CV values in my model can be
attributed to the much larger meter sample size.

Figure 4.2: The estimated variation coefficient obtained by the reference study, plotted along
with the discrete values of CV calculated on the source dataset (left) compared to my own esti-
mation (right)
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4.3 Single day water demand estimation

The visual similarity between my predicted daily water demand curve and the curve from the
reference study further supports the validity of my data processing and modeling approach.
Both curves exhibit near-zero estimated demand during the early morning hours from 0:00-5:00,
followed by increasing peaks after 6:00 and again in the evening from 18:00-21:00. The finer
one-minute sampling frequency of the reference study accounts for the different appearance of
their curve compared to my sparser 15-minute estimates. Additionally, the greater variability
between my adjacent time steps stems from the same factors discussed regarding the µCD

parameter extraction. Namely, the way the µCD(t) values array was constructed, larger meter
sample size and geographic distribution introduce variability not present in the original data.
Nonetheless, the consistent daily demand profile demonstrates that my model successfully cap-
tures the underlying household behavior patterns evidenced in the study, despite discrepancies
in data collection methodology.

Figure 4.3: The estimated daily water demand curve generated by the reference study (left)
compared to my own predictive model (right)

Additionally of note are the numerous zero or near-zero values present in my estimated daily
water demand curve. A likely explanation stems from the 15-minute sampling frequency
chosen for the prediction model. Each µCD value represents integrated demand over a 15-
minute interval. Within a single household, it is probable that many 15-minute periods exhibit
zero demand at such fine resolution. Decreasing the temporal resolution (i.e. increasing the
sampling period) would reduce the likelihood of zero values as more non-zero demand events
are captured in the longer measurement intervals.
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4.4 Leak detection: Threshold and possible experimentation

With a robust model now developed to generate expected household water demand, the next
challenge is transforming this model into a tool for water leak detection that can provide a
preliminary determination of whether a specific household9s water meter is detecting a leak.

I aim to approach the problem of leak detection in this manner because the generated
model is readily adaptable to any large residential area and imposes no additional costs on
distributors or metering companies. Unlike the model described in the quote from paragraph
4.1, which required installing sensors and equipment, the current model demands no new
infrastructure or on-site operators.

The proposed solution for detecting a leak on a specific residential water meter involves
generating predicted water demand data for the same number of meters in the area using the
predictive model. The mean and standard deviation of the expected water demand value at each
time step can then be calculated across all generated demand curves.

A threshold must be established whereby readings from the actual meter that persistently
exceed that level would indicate a leak is likely occurring. In consultation with Inkwell Data,
it was deemed reasonable that meter readings consistently exceeding 2-5 standard deviations
above the mean curve of the generated data throughout the day suggest a leak with enough
certainty to warrant an on-site inspection.

Figure 4.5 depicts the mean curve of the water demand generated for the same number
of meters as in the final dataset. It also shows the threshold corresponding to a demand
excess continuously equal to two standard deviations above the mean at each time step. This
threshold provides the lowest acceptable level of accuracy. Also included is the figure from
the reference study showing generated water demand for multiple meters concurrently, with
the mean calculated at each time step. Despite differences in data collection and handling to
determine distribution parameters, visual comparison shows the mean demand curve across
multiple meters calculated using the current model is similar to that of the reference study. This
similarity persists in spite of the variations in data acquisition and processing between the two
approaches.
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Figure 4.4: Simulated water demand for multiple meters with the mean demand at each 1-minute
time step overlaid, as described in the reference paper[16]

Figure 4.5: Mean water demand across generated daily water demand curves using my predic-
tion model (blue) and minimum threshold for leak detection (orange)

4.5 Attempted testing and possible future work

In order to validate the results with empirical data, an experimental simulation of household wa-
ter consumption was constructed using a simple laboratory apparatus consisting of a water tank,
a circular pipe system to circulate water from the tank through a smart meter, and an electrovalve
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to regulate water flow, programmed tomimic household usage patterns. The experiment was de-
signed to simulate daily water usage under two conditions: normal usage without any leaks, and
normal usage with an induced leak. By collecting data sets for both conditions and comparing
them to the daily water demand curves generated by the predictive model, it was hypothesized
that the model could detect the presence of a leak based on the data from the deliberately dis-
rupted system.

Figure 4.6: Schematic diagram of the laboratory setup

Upon implementation, the experimental setup proved inadequate for effectively simulating
household water usage patterns. The electrovalve system did not allow for sufficient flexibility
and precision in regulating water flow rates to accurately mimic the variable demands of ac-
tual domestic usage throughout a typical day (e.g. the difference between brief hand washing
and extended showering events, or toilet flushing). As such, the apparatus could not adequately
validate the simulation results against empirical data as intended. However, this preliminary
experiment provides a foundation for future efforts to refine the laboratory simulation of house-
hold water consumption in order to empirically substantiate the model results obtained in this
thesis. Further work should focus on enhancing the responsiveness and accuracy of the water
flow control system to more realistically replicate the range of water usage events in a household
setting over time.
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Chapter 5

Conclusion

While current leak detection methods are reliable, they remain costly and, as evidenced by
the persistently high water loss rates in Italy9s pipe networks (exceeding 40%), are often
implemented too late or infrequently to be maximally effective. This thesis sought to develop
a lower-cost, proactive leak detection approach that would overcome the need for expensive,
specialized equipment or time-consuming, localized manual inspection.

The predictive model presented here builds upon existing water demand forecasting methods,
but utilizes real smart meter data, already collected regularly across Italy for billing purposes,
to calculate the parameters for a mixed probability distribution of demand. This allows
prediction solely from widely available, routinely gathered data, without requiring additional
infrastructure expenditures.

The central aim was to demonstrate the greater utility of smart meter data for early iden-
tification of leaks across the water distribution network, beyond its current use for billing alone.
Given Italy9s high annual water loss, rising prices, and ranking as the top water consumer in
Europe, improved leak detection enabled by comprehensive smart meter data analysis could
significantly improve water efficiency and curb waste from pipe leaks nationwide.
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