
University of Padova

Department of Information Engineering

Master’s degree in Automation Engineering

Development of a simulator for 3D pattern
recognition scanners

Author Supervisor

Alessandro Rossi Prof. Ruggero Carli

Company’s supervisor

Ing. Roberto Polesel

July 2, 2018

Academic Year 2017/2018

ii

My deepest gratitude to Prof. Ruggero Carli,
for his guidance and enthusiasm.

A special thanks goes to Roberto,
for the opportunities that has offered me,

and to Euclid Labs’ team,
for their experience and support.

A precious thanks to my awesome family,
for untiring love and support.

To Emanuele, Marco and Maricarmen,
that have definitely made this journey unforgettable.

This work is dedicated to Alessia,
and our future together.

iv

v

Abstract

Shape reconstruction using coded structured light is considered one
of the most reliable techniques to recover object surfaces. Having a cali-
brated projector-camera pair, a light pattern is projected onto the scene
and captured by the camera. Correspondences between projected and
recovered patterns are found and used to extract 3D surface information.
The aim of this work is to develop a simulator capable of emulating
such a model. In absence of real data, an accurate simulator would
allow the company to generate test datasets useful to train deep learning
systems for future development of artificial intelligence algorithms. After
a brief introduction on the discussed topics, a detailed explanation of the
particular reconstruction method will be given. The design, together with
the software implementation, of a simulator will follow. Special emphasis
will be placed on its limits, highlighting possible future improvements too.
Finally the algorithm is tested with different types of objects analysing
quality, precision and deviation from the results obtained using real scan-
ners. The thesis was carried out in collaboration with Euclid Labs, which
shared its experience and provided the necessary tools to perform the
tests.

vi

vii

Sommario

La ricostruzione delle superfici tramite luce strutturata è consider-
ata una delle tecniche più affidabili per la generazione di immagini 3D.
Data una coppia proiettore-camera calibrata, un pattern luminoso viene
proiettato sulla scena e catturato dalla camera. Le corrispondenze tra
pattern proiettato e catturato vengono poi utilizzate per estrarre le co-
ordinate 3D della superficie. L’obiettivo di questo lavoro è di realizzare
un simulatore in grado di emulare tale modello. In mancanza di dati
reali, un simulatore accurato permetterebbe all’azienda di generare test
dataset utili ad allenare sistemi di deep learning per l’implementazione
futura di algoritmi di intelligenza artificiale. Dopo una breve introduzione
dell’argomento, nella prima parte ci soffermeremo sulla descrizione del
particolare metodo ricostruttivo e successivamente si sposterà l’attenzione
sulla progettazione e realizzazione pratica del simulatore. Si presterà
particolare enfasi ai limiti di quest’ultimo, mostrandone i miglioramenti
rispetto alle soluzioni esistenti e i possibili perfezionamenti futuri. Infine
si testerà l’algoritmo con diverse tipologie di oggetti analizzando qualità,
precisione e scostamento dai risultati ottenuti con alcuni scanner a luce
strutturata. La tesi è stata realizzata in collaborazione con Euclid Labs,
che ha condiviso la sua esperienza e ha fornito gli strumenti necessari ad
effettuare le prove.

viii

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Structured light reconstruction 2
1.2 Report structure . 3

2 Problem Formulation 5
2.1 State of the art . 5
2.2 Our approach . 5

2.2.1 Simplified natural behaviour 6
2.2.2 Ray casting . 6
2.2.3 Ray tracing . 7

2.3 Mathematical complements 8
2.3.1 Ray/triangle intersection 8
2.3.2 Snell’s law . 10
2.3.3 Homogeneous transformations 10

2.4 Rendering pipeline . 12

3 Simulator design 15
3.1 Design . 16
3.2 Framework . 17

3.2.1 GPU computing 18
3.2.2 Compute shader 20
3.2.3 GPGPU example 23

3.3 Implementation . 25
3.4 Encountered problems 33

3.4.1 Memory buffer structure 33
3.4.2 Shader matrix ordering 34
3.4.3 TDR issue . 35

x CONTENTS

4 Results 37
4.1 GPU vs CPU . 38
4.2 Tests on 3D models . 39
4.3 Comparison with Zivid scanner 42
4.4 Comparison with Photoneo scanner 45
4.5 Baseline analysis . 48

5 Conclusions 57
5.1 Future developments . 57

Bibliography 59

List of Figures

1.1 Examples of codified patterns (binary codes). 2

1.2 Projected grid deformation seen from camera’s perspective. 2

2.1 Ray casting technique. 7

2.2 Ray tracing technique. 8

2.3 Demonstration of no refraction at angles greater than θc. 10

2.4 Representation of a point P in different reference frames. 11

2.5 Rendering pipeline diagram. 13

3.1 Representation of a conventional light technique. 16

3.2 Representation of our approach. 17

3.3 Modelling of the simulator. 18

3.4 Relative bandwidth speeds between CPU, GPU and their
correspondent memories. 19

3.5 Visualization of the thread groups within a dispatch call. 21

3.6 Example of a dispatch and numthreads invocations. . . 22

3.7 Screens of developed simulator. 26

3.8 Projection result example. 29

3.9 Reconstruction result example. 33

4.1 Side view of the scanned parallelepiped. 37

4.2 Front and side views of the scanned mechanical part. . . 38

4.3 Reconstruction times using CPU and GPU. 39

4.4 Reconstruction times using CPU and GPU (with few points). 40

4.5 Reconstruction overlaid on 3D model without Snell’s law. 41

4.6 Reconstruction overlaid on 3D model using Snell’s law. . 41

4.7 Zivid scanner. 42

4.8 Reconstruction overlaid of the parallelepiped, in three
different poses, compared to Zivid scanner. 43

4.9 Reconstruction overlaid of the complex object compared
to Zivid scanner. 45

xi

xii LIST OF FIGURES

4.10 Photoneo PhoXi 3D L scanner. 46
4.11 Reconstruction overlaid of the parallelepiped, in three

different poses, compared to Photoneo scanner. 47
4.12 Two closer views of the Figure 4.11a. 47
4.13 Reconstruction overlaid of the complex object compared

to Photoneo scanner. 48
4.14 Camera tilting effect. 49
4.15 Reconstruction coverage, over different baseline values, at

a working distance of 40 cm. The two crosses represent
actual scanner data. 50

4.16 Reconstruction results at different baselines, at a working
distance of 40 cm. 51

4.17 Reconstruction results at different baselines, at a working
distance of 40 cm (backside of the object). 52

4.18 Reconstruction coverage, over different baseline values, at
a working distance of 60 cm. 53

4.19 Reconstruction results at different baselines, at a working
distance of 60 cm. 54

4.20 Reconstruction coverage, over different baseline values, at
a working distance of 100 cm. 55

List of Tables

3.1 Notebook specs. 35
3.2 Workstation specs. 35

4.1 Reconstruction performance on 3D model. 42
4.2 Zivid data-sheet. 42
4.3 Reconstruction performance compared to Zivid scanner. . 44
4.4 Photoneo PhoXi 3D L data-sheet. 46
4.5 Reconstruction performance compared to Photoneo scanner. 46

xiii

xiv LIST OF TABLES

Chapter 1

Introduction

Three-dimensional reconstruction constitutes a fundamental topic in
computer vision, having different applications such as object recogni-
tion and classification, pick and place, in-line quality control, collision
avoidance, range sensing, industrial inspection, biometrics and others.
The developed solutions are traditionally categorized into contact and
non-contact techniques [1]. The former have been used for a long time
in industrial inspections and consist of a tool which probe the object
through physical touch. The main problems of contact techniques are
their slow performance and high cost of using mechanically calibrated
passive arms. Besides, the fact of touching the object is not feasible for
many applications. Non-contact techniques were developed to cope with
these problems, and have been widely studied. They can be classified into
two different categories: active and passive. In passive approaches, the
reflectance of the object and the illumination of the scene are used to de-
rive the shape information: no active device is necessary [2]. For example,
think about stereo-vision, where the scene is first imaged by cameras from
two or more points of view and then correspondences between the images
are found. The main problem experimented when using this approach
is a sparse reconstruction since density is directly related to the object
texture. This complicates the process of finding correspondences in the
presence of texture-less surfaces. On the other hand, in active approaches,
suitable light sources are used as internal vector of information. Between
those, two of the best most popular methods are definitely time-of-flight
and structured light.

1

2 CHAPTER 1. INTRODUCTION

1.1 Structured light reconstruction

We have just seen several ways to build a 3D image, but, as the thesis
title suggests, from now on we will focus on structured light scanner. The
latter is a scanning device for measuring three-dimensional shape of an
object using projected light models and a camera system. In this case,
one of the cameras is substituted by an active device which projects a
structured light pattern onto the scene. This active device is modelled as
an inverse camera, being the calibration step a similar procedure to the
one used in a classical stereo-vision system. It is essentially based on the
projection of a sequence of codified patterns, like those shown in Figure
1.1.

Figure 1.1: Examples of codified patterns (binary codes).

The deformation induced by the surface of the object is acquired
by the camera and then used for the computation of three-dimensional
coordinates. A deeper explanation of the principle behind this technique
will be provided in Chapter 3.

Figure 1.2: Projected grid deformation seen from camera’s perspective.

Depending on the camera resolution, such a system allows digitizing
several hundred thousand points at a time. Projecting a narrow band

1.2. REPORT STRUCTURE 3

of light onto a three-dimensionally shaped surface produces a line of
illumination that appears distorted from other perspectives than that
of the projector, and can be used for geometric reconstruction of the
surface shape using a triangulation procedure. A faster and more versatile
method is the projection of patterns consisting of many stripes at once,
or of arbitrary fringes, as this allows for the acquisition of a multitude
of samples simultaneously. Seen from different viewpoints, the pattern
appears geometrically distorted due to the surface shape of the object.
Although many other variants of structured light projection are possible,
parallel stripes patterns are widely used. The latter are called binary
codes and are those shown in Figure 1.1.

1.2 Report structure

This report is organized as follows: in Chapter 2, after a brief presen-
tation on state of the art solutions, we will focus on a detailed description
of our approach to structured light reconstruction, together with a few
mathematical complements needed to understand the following chapters.
In Chapter 3, we will present the design of the simulator and its im-
plementation, highlighting the problems encountered and the solutions
adopted. There we will take a closer look to the tools and libraries used
for the realisation of the simulator. One of the most significant part
is Chapter 4, where we will present qualitative and quantitative tests
that remark pro and cons of our algorithms. We will focus on precision
analysis in different contexts and difficulties. In order to validate the
results obtained from the simulator, we will compare it with two real
scanners. The work ends with Chapter 5, reporting conclusions and
future improvements.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Problem Formulation

2.1 State of the art

Over the past years, structured light projection systems have been
widely studied. Shirai and Suwa in 1971, proposed a slit line projection
to recognise polihedric objects [3]. In 1973, Agin and Binford generalised
this idea to recognise curvilinear objects [4]. Two years later, Popplestone
et al. proposed a more general system which recognises either polihedrics
or curvilinear objects [5]. To improve the accuracy of the system, an
alternative way is to project a grid of dots or lines over the scene to
cover the entire range of the camera. Asada et al. proposed to use a
pattern made by a set of vertical, parallel and equidistant, stripe lines [6].
Furthermore in 1986, in order to obtain 3D surface properties, Stockman
et al. have proposed the widely known projection of a grid [7]. Then,
an easier correspondence problem has to be solved, we have to identify,
for each point of the imaged pattern, the corresponding point of the
projected pattern. The correspondence problem can be directly solved
codifying the projected pattern, so each projected light point carries some
information. A detailed survey on recent progress in coded structured
light is presented by [8]. Salvi et al. presents an exhaustive analysis of
different coding strategies used in active structured light, focusing on
the advancements presented in the last years. There, a new classification
regarding the strategy used to create the pattern is proposed [1].

2.2 Our approach

As mentioned in the previous section, in the last forty years, many
studies on possible projection techniques and different types of patterns

5

6 CHAPTER 2. PROBLEM FORMULATION

have been conducted. All of those works are focused on solving or optimiz-
ing a particular problem without providing a solid basic model. Therefore,
in this work, we wanted to develop a fast algorithm to reconstruct a scene
by projecting a very simple pattern, i.e. a grid of points. Our idea takes
inspiration by the natural behaviour of light. Therefore, before proceeding
with the simulator design, in order to give a clearer explanation, some
complements are now provided.

2.2.1 Simplified natural behaviour

By simplifying what happens in nature, a light source emits a ray of
light that travels, eventually, to a surface which interrupts its progress.
Imagine the beam as a stream of photons travelling along the same path.
By ignoring relativistic effects, in a perfect vacuum, such a ray will be
a straight line. Each beam, when it hits an object, can give rise to four
different phenomena: absorption, reflection, refraction and fluorescence.
A surface can absorb part of the light beam, resulting in a loss of intensity
of reflected or refracted light. It may also reflect all or part of the ray,
in one or more directions. If the surface has any transparent properties,
it refracts a portion of the light beam into itself in a different direction
while absorbing some of the spectrum. Less commonly, a surface may
absorb a portion of the light and fluorescently re-emit the light at a
longer wavelength color in a random direction, though this is rare enough
that it can be neglected from most rendering applications. At this
point, reflected and/or refracted rays may hit other surfaces where their
absorbent, refracting, reflecting and fluorescent properties again affect
the progress of incoming rays. Some of these beams travel in such a way
that they hit our eyes, causing us to see the scene and thus contributing
to the final rendered image.

2.2.2 Ray casting

To simulate the model we have just described, Arthur Appel presented
in 1968 the first “ray tracing” algorithm used for rendering, and has since
been called “ray casting” [9]. The idea behind this algorithm, represented
in Figure 2.1, is to shoot rays from the camera, one for each pixel, finding
the nearest object that blocks the path of that beam. The simplifying
hypothesis is made that if a surface faces a light, the latter will reach
that surface and will not be in shadow. It may seem counter intuitive
to send rays away from the camera rather than into it, as light does in
reality, but doing so is many orders of magnitude more efficient. Since

2.2. OUR APPROACH 7

most of the rays from a given light source do not crash directly into the
camera, a “forward” simulation could potentially waste a huge amount
of computation on light paths that are never recorded. One important
advantage ray casting offered over older scanline algorithms1, was its
ability to easily deal with non-planar solids, such as cones and spheres.
If a mathematical surface can be intersected by a ray, it can be rendered
using this method.

C

Figure 2.1: Ray casting technique.

2.2.3 Ray tracing

The next important research breakthrough came from Turner Whitted
in 1979 [10]. Previous algorithms, such as ray casting, traced rays from
camera to scene until they hit an object without recursively tracing
the others. Whitted took inspiration from Physics and continued the
process. Therefore, when a ray hits a surface, it can generate up to three
new types of rays: reflection, refraction and shadow. A reflection ray is
traced in the mirror-reflection direction. The closest object it intersects
is what will be seen in the reflection. Refraction rays travelling through
transparent material work similarly, with the addition that a refractive
ray could be entering or exiting a material. A shadow ray is traced toward
each light. If any opaque object is found between the surface and the
light, the surface is in shadow and the light does not illuminate it. This
technique is capable of producing a very high level of realism, generally
higher than that provided by older methods, at the price of a greater
computational cost. This makes ray tracing more suitable for applications

1algorithms for visible surface determination, using a particular vertices sorting.

8 CHAPTER 2. PROBLEM FORMULATION

where rendering time is negligible, as for visual effects in movies, and less
suitable for real-time applications, where speed is a key factor.

C

Figure 2.2: Ray tracing technique.

2.3 Mathematical complements

Before proceeding with the next chapter, concerning the simulator
design, some mathematical principles, that will be useful afterwards, are
now provided.

2.3.1 Ray/triangle intersection

We will see in the next chapter that for every point in the pattern
grid we will throw a ray passing through it. At that point we will need
to check if that ray hits a mesh in the scene. Since a mesh is a set of
triangles, this operation is based on a ray-triangle intersection method;
in particular we have chosen the Möller-Trumbore algorithm [11].
A ray R(t) with origin O and normalized direction D is defined as

R(t) = O + tD

and a triangle is defined by three vertices V0, V1 and V2. In the ray/triangle
intersection problem we want to determine if the ray intersects the triangle.
Previous algorithms have solved this by first computing the intersection
between the ray and the plane in which the triangle lies, and then testing
if the intersection point is inside the edges. Instead, Möller-Trumbore
algorithm uses minimal storage, i.e only the vertices of the triangle need
to be stored, and does not need any preprocessing. The memory savings

2.3. MATHEMATICAL COMPLEMENTS 9

are significant, ranging from about 25% to 50%, depending on the amount
of vertex sharing. A point, T (u, v), on a triangle is given by

T (u, v) = (1− u− v)V0 + uV1 + vV2

Computing the intersection between the ray, R(t), and the triangle,
T (u, v), is equivalent to imposing R(t) = T (u, v), which yields:

O + tD = (1− u− v)V0 + uV1 + vV2

Rearranging the terms gives:

[
−D V1 − V0 V2 − V0

]
t

u

v

 = O − V0 (2.1)

This means the coordinates (u, v) and the distance, t, from the ray origin
to the intersection point, can be found by solving the linear system of
equations above. Denoting E1 = V1 − V0, E2 = V2 − V0 and T = O − V0,
the solution to Equation (2.1) is obtained by using Cramer’s rule:

t

u

v

 =
1

| −D,E1, E2|

|T,E1, E2|
| −D,T,E2|
| −D,E1, T |

 (2.2)

From linear algebra, we know that

|A,B,C| = det(A,B,C) = −(A× C) ·B = −(C ×B) ·A

Hence, Equation (2.2) could be rewritten as
t

u

v

 =
1

(D × E2) ·E1

(T × E1) ·E2

(D × E2) ·T

(T × E1) ·D

 =
1

P ·E1

Q ·E2

P ·T

Q ·D

where P = D × E2 and Q = T × E1. These factors can be reused in the
implementation to speed up computations.

10 CHAPTER 2. PROBLEM FORMULATION

2.3.2 Snell’s law

Snell’s law is a formula used to describe the relationship between
angles of incidence and refraction. It could be of particular interest in
order to improve the realism when using a rendering algorithm like the
ray casting one. In particular, we can use this law to compute the power
of the reflected ray, i.e. the one which carries information about the
point hit. Looking at Figure 2.3, it can be seen that the power of the
reflected ray increases as the refraction angle θ2 grows. The latter can be
computed inverting formula (2.3), knowing the angle of incidence θ1 and
the refraction indices n1 and n2.

n1 sin θ1 = n2 sin θ2 (2.3)

This happens until we reach the critical angle θc, defined as the angle of
incidence that provides an angle of refraction of 90 degrees. In that case
we have the phenomenon of total internal reflection that can be seen in
the third case of Figure 2.3. This particular angle can be computed using
the formula below, obtained by the Snell’s law.

θc = arcsin

(
n1

n2

)

incident

refracted

n1

n2

θ1

θ2

re
fle

ct
ed

θc θc

Figure 2.3: Demonstration of no refraction at angles greater than θc.

2.3.3 Homogeneous transformations

As will be explained in detail in the following chapter, regarding the
simulator design, homogeneous transformations will play an essential
role. Indeed, in order to speed up the ray/mesh intersection process and

2.3. MATHEMATICAL COMPLEMENTS 11

to allow movement and rendering of objects in the scene, it is essential
to be able to perform computations on sets of points lying on different
reference frames. In this section, we introduce 4D vectors and the so-
called “homogeneous” coordinate. As we will see, 4D vectors and 4× 4
matrices are nothing more than a notational convenience for what are
simple 3D operations.

O0

O1

P

z0

y0

x0

x1

y1z1

T 0
1

Figure 2.4: Representation of a point P in different reference frames.

Let’s consider two different reference frames, O0 − x0y0z0 and O1 −
x1y1z1, and an arbitrary point P in space. Let P 0 and P 1 be the vectors
of coordinates of P with respect to the first and second reference frame
accordingly. Let T 0

1 be the vector describing the origin of the frame 1
with respect to frame 0, and R0

1 be the rotation matrix of frame 1 with
respect to frame 0. On the basis of simple geometry, the position of P 1

with respect to the reference frame 0 can be expressed as:

P 0 = T 0
1 +R0

1P
1 (2.4)

Hence, this equation represents the coordinate transformation of a vector
between two frames. To have a compact representation of the relationship
between the coordinates of the same point in two different frames, the
homogeneous representation of a generic vector P can be introduced as
the vector P̃ , formed by adding a fourth unit component:

P̃ =

P
1

 =

x

y

z

1

 .

12 CHAPTER 2. PROBLEM FORMULATION

By adopting this representation for vectors, the coordinate transformation
can be written in terms of a 4× 4 matrix:

A0
1 =

R0
1 T 0

1

O> 1

which is termed homogeneous transformation matrix [12]. It can be easily
observed that the coordinate transformation (2.4) can be compactly
rewritten as:

P̃ 0 = A0
1P̃

1

As we will see in a moment, this transformation is the basis of the
rendering pipeline and will be widely used to simplify operations on
vectors and points within the 3D world. Here, we do not give details on
how to build rotation or translation matrices, but we provide an example
to emphasize the basic concept. Let’s assume that we want to rotate
a vector around the z-axis by an angle α. The corresponding rotation
matrix is:

Rz(α) =

cosα − sinα 0

sinα cosα 0

0 0 1

Hence, the desired transformation can be expressed as:

x0

y0

z0

1

 = A0
1P̃

1 =

cosα − sinα 0 0

sinα cosα 0 0

0 0 1 0

0 0 0 1

x1

y1

z1

1

2.4 Rendering pipeline

In this section we will try to understand in detail one of the core
mechanics of any 3D graphics engine: the chain of matrix transformations
that allow to represent a 3D object on a 2D monitor. We have already
seen, in Section 2.3.3, how a transformation could be represented in matrix
form. From there we will show the typical sequence of transformations
needed to go from local space, where each object lives, to viewport space.

2.4. RENDERING PIPELINE 13

LOCAL
SPACE

WORLD
SPACE

VIEW
SPACE

PROJECTION
SPACE

VIEWPORT
SPACE

worldMatrix viewMatrix

projectionMatrix

Figure 2.5: Rendering pipeline diagram.

As we can see from Figure 2.5, everything starts within the local
space, which is a specific vector space where each model lives, and it’s
represented with the canonical 3D coordinates system. More specifically,
all the vertices of a particular model are relative to the origin of its local
space. The first step, when we want to render a 3D scene, is to put all
the models in the same world space. Since every object lies in its own
position and orientation in the world, each one has a different local-to-
world transformation matrix (worldMatrix). With all the objects at the
right place, we now need to project them to the screen, and this is usually
done in three steps.
The first step moves all the objects in another space termed view space.
The latter is an auxiliary space used to simplify computations and keep
everything elegant and encoded into matrices. The idea is that we need
to render to a camera, which implies projecting all the vertices onto
the camera screen that can be arbitrarily oriented in space. The math
simplifies a lot if we could have the camera centred in the origin and
looking towards the z-axis. The view space does exactly this, remapping
the world space, using the viewMatrix, so that the camera is in the origin
and looks down along the z-axis.
The second step performs the actual projection starting from the view
space. All we have to do is to project our scene onto the imaginary
screen of the camera. Before flattening the image, we still have to move
into another space, the projection one. The latter is a cuboid which
dimensions are normalized between −1 and 1 for every axis. This space
is very convenient for clipping, i.e anything apart from [1,−1] is outside
the camera view area, and simplifies the flattening operation, i.e. we
just need to drop the z value to get a flat 2D image. To go from the
view space into the projection space we need another matrix, termed
projectionMatrix, and its values depend on what type of projection we

14 CHAPTER 2. PROBLEM FORMULATION

want to perform. The two most used projections are the orthographic
and the perspective one. Briefly, the former is a parallel projection. Each
line that is originally parallel will remain so after this transformation.
Conversely, the second one is not a parallel projection and originally
parallel lines will no longer be after this operation.
The last step flats the image dropping the z component, scale everything
to the viewport width and height and, finally, transform all the vertices
into pixel coordinates.

Summarizing, by following the chain of transformations described
above, it is possible to display a 3D scene on a 2D monitor. Obviously,
we could also follow the opposite procedure, with the only difference
that each transformation from one space to another will be obtained by
inverting the matrices shown in Figure 2.5.

Chapter 3

Simulator design

Summarizing what has been told so far, a conventional structured
light technique is derived from the stereo vision. In the latter, which
is inspired by the human vision, a pair of cameras is used to capture
an object from two different perspectives. For every image point A
captured on the first image, an algorithm tries to estimate a corresponding
image point B on the second one using epipolar constraints. Having the
correspondence, i.e. the position of the same object point on both images,
the algorithm computes 3D position of the captured object point using
the triangulation principle. Although the idea is very simple, the search
for image correspondences is an ill-posed problem.
On the other hand, in the structured light approach, one of the cameras is
substituted by a pattern projector, which emits a well defined structured
illumination. Most often, the source of the structured illumination is a
conventional 2D projector, similarly to the technology used for multimedia
presentations. Camera and projector are located on a well known baseline,
determined by a system calibration, and are focused towards the scanning
area. A simple representation of the entire system is shown in Figure 3.1.

15

16 CHAPTER 3. SIMULATOR DESIGN

Projector Ca
me

ra

Object

Figure 3.1: Representation of a conventional light technique.

This is the main chapter of the work. In the first part, we present the
design of the simulator in a schematic way. We proceed with a digression
on the development tools that we decided to use. The chapter ends with
the practical implementation. In the discussion, we will focus on the
main problems encountered, along with the solutions adopted.

3.1 Design

Before starting with the design of the simulator, it is very useful to
describe the stages through which we arrive at the final 3D reconstruction,
emulating a structured light scanner. Specifically, we can highlight five
steps.

1. The projector emits a set of coding patterns projected in a specified
succession, one after another. These coding patterns encodes a
spatial information.

2. The camera captures the scanning area once per every projected
pattern.

3. For every image point A, the algorithm decodes the spatial infor-
mation encoded in the succession of intensity values captured by

3.2. FRAMEWORK 17

the image point A, under different structured light patterns.

4. This spatial information encodes the corresponding image point B
in the view of the projector.

5. With the correspondence, the algorithm computes an exact 3D
position of the object point.

P C

A B

Figure 3.2: Representation of our approach.

Before going into the details of the practical implementation, we
proceed illustrating framework and software development tools used to
realise the simulator.

3.2 Framework

The proposed simulator, see Figure 3.3, is composed by three entities:

Core represents all the CPU-side code that is used to
manage the user interaction.

Graphics engine represents all the GPU-side code which allows to
view the world and results onto display.

18 CHAPTER 3. SIMULATOR DESIGN

Scanning engine contains all the algorithms that allow to recon-
struct the scene by emulating a structured light
3D scanner. The first part of the work is done on
the CPU-side and then all computations are done
on GPU exploiting parallelism.

Core Graphics
engine

Scanning
engine

Figure 3.3: Modelling of the simulator.

The graphics engine was designed taking inspiration from the Direct3D
Rendering Cookbook [13]. In this book, Stenning provides a practical
guide for creating a DirectX11-based graphics engine which allows to
render 3D shapes or meshes imported from external graphics files (.fbx,
.stl, etc.). The framework proposed by Stenning adapts well to our needs
since it was developed using the SharpDX library, a C# wrapper for
DirectX11. However, the most interesting part of this work is represented
by the core and scanning engine. Both were written in C# using SharpDX,
although, to take advantage of the GPU power, it was necessary to
write the reconstruction algorithms in HLSL1. The latter is a proprietary
shading language developed by Microsoft, similar to GLSL for OpenGL
libraries and Nvidia’s CUDA language. It has a C-like syntax and only
allows for basic operations as well as a few intrinsic functions that provide
additional operations on vectors and matrices.

3.2.1 GPU computing

In computer science, with GPGPU, acronym for general-purpose
computing on graphics processing units, we mean the use of a graphics
processing unit (GPU) for purposes other than traditional use in computer
graphics. The most attractive feature of GPGPU regards the massive
theoretical power offered, and consequently the reduced processing time,
when compared to similar processing carried out by the CPU. From a
purely performance point of view, we can go up to ten times faster than
using traditional CPUs. This explains the reason why we decided to
develop algorithms using GPU computing exclusively. In order to prove

1High Level Shader Language

3.2. FRAMEWORK 19

this fact we will give, in Chapter 4, some comparisons between processing
times using GPU and CPU.

CPU

RAM

GPU

VRAM

10 GB/s

1 GB/s

100 GB/s

Figure 3.4: Relative bandwidth speeds between CPU, GPU and their
correspondent memories.

Figure 3.4 shows relative memory bandwidth speeds between CPU
and RAM, CPU and GPU, and GPU and VRAM. These numbers are
just qualitative values to show the order of magnitude difference between
bandwidths. It can be seen that transferring memory between CPU
and GPU is the bottleneck. This is particularly important because, in
GPGPU programming, the user generally needs to access the computation
results back on the CPU. This requires copying the results from video
memory to system memory, which is slow, but may be a negligible issue
compared to the speed up from doing the computation on GPU. What
we have observed explain why it is advisable to transfer all the input
data, leave all the processing to the GPU, and finally transfer the results
back to CPU for reading, rather than using the GPU to make a few
counts each time. Instead, for graphics purposes, we typically use the
computation result as an input to the rendering pipeline, so no transfer
from GPU to CPU is needed.

Direct3D 11 can be used to perform extremely flexible rendering
operations. However, there is a particular pipeline stage available for
performing computations which may be useful for our purposes. The
latter allows GPU to be used in such many applications as ray tracing and
physical simulations, and in some cases, it can even be used for artificial
intelligence computations. This pipeline stage is the compute shader,
and it represents the implementation of a technology often referred to as
DirectCompute. The greatest benefit of using DirectCompute, over other
rendering APIs, such as CUDA and OpenCL, is that the performance of

20 CHAPTER 3. SIMULATOR DESIGN

a particular algorithm can easily scale with the user hardware. In other
words, if a user has a high-end gaming PC with two or more high-end
GPUs, then an algorithm can easily provide additional complexity to
a game without needing to rewrite any code. The threading model of
the compute shader inherently supports parallel processing of resources,
so adding further work when more computational power is available is
trivial. This is even more true for GPGPU applications, in which the
user typically processes as much data as possible, as fast as possible. If
an algorithm is implemented in the compute shader, it can easily scale to
the current system capabilities.

3.2.2 Compute shader

It is a new type of shader, which is very similar to the existing vertex,
pixel and geometry shaders, with much more general purpose processing
capabilities. The compute shader is not attached specifically to any stage
of the graphics pipeline, but interacts with the other stages via graphics
resources such as render targets, buffers and textures. Unlike a vertex
shader, which is executed once for each input vertex, or a pixel shader,
which is executed once per each pixel, the compute shader does not
need to have a fixed mapping between the data it is processing and the
threads that are doing the processing. One thread can process one or
many data elements, and the application can control directly how many
threads are used to perform the computation. The compute shader also
allows unordered memory access, i.e. the ability to perform writes to
any location in a buffer. The last major feature is thread group shared
memory. This allows threads’ groups to share data, thus reducing band-
width requirements significantly. Together, these features allow more
complex data structures and algorithms to be implemented that were not
previously possible in Direct3D, and can improve application performance
considerably.

We will see, in Section 3.2.3, a summary of the main steps needed to
compile the shader, start the GPU processes and finally read the results.
Now we will provide a general intuition on how parallel GPU thread
processing works. Actually, since several thousand threads can be active
on the GPU simultaneously, it is important to have a solid understanding
of how to harness all of these threads to fully exploit GPU power.

3.2. FRAMEWORK 21

+Z

+X

+Y

Figure 3.5: Visualization of the thread groups within a dispatch call.

Figure 3.5 helps to understand what happens when a dispatch com-
mand is called. It takes three unsigned integer parameters as input: x,
y and z. These three parameters indicate how many groups of threads
we would like to “dispatch” to execute the desired process. These three
parameters provide the dimensions of a three-dimensional array of thread
groups that will be instantiated, where the size of each parameter can
range from 1 to 65535. In the example of Figure 3.5, the application calls
Dispatch(3,3,3), so a total of 3 · 3 · 3 = 27 thread groups are created.
Each group of threads would be identified by a unique set of indices within
the specified dispatch arguments, ranging from 0 to size− 1 in each of
the three dimensions. Notice that the dispatch call defines how many
groups of threads are instantiated, and not how many threads are instan-
tiated. The number of threads instantiated is defined by specifying how
many threads will be created for each thread group with a numthreads

function attribute preceding the compute shader HLSL program. As in the
dispatch call, this statement defines the size of a three dimensional array,
except that this array is made up of threads instead of thread groups. The
size of each of these parameters depends on the shader model used but,
for Shader Model 5 (cs 5 0), the x and y components must be greater
than or equal to 1, the z component must be between 1 and 64, while the
total number of threads (x · y · z) cannot exceed 1024. Moreover, in order
to optimize the GPU cores’ occupancy, each component in numthreads

must be multiple of 32 or 64 depending on whether Nvidia or AMD chips
are used. Each of these threads can also be uniquely identified by its
integer indices, ranging from 0 to size−1 in each of the three dimensions.
For example, if a compute shader calls numthreads(32,32,1), a total

22 CHAPTER 3. SIMULATOR DESIGN

of 32 · 32 · 1 = 1024 threads are instantiated for each thread group. If
we use the dispatch call example from above, we would have a total of
27 · 1024 = 27648 threads instantiated.

A relevant problem at this point is how to access the individual threads
inside the shader. We have already told how the compute shader can
only read data from a memory buffer. Fortunately, each call function has
a few intrinsic parameters that provide indexes for the selected group
and the current thread within the group. The main ones are listed below:

SV GroupID gives the indices for which thread group a compute
shader is executing in. Possible values vary across
the range passed as parameters to dispatch.

SV GroupThreadID gives the indices for which an individual thread
within a thread group a compute shader is execut-
ing in. Possible values vary across the range spec-
ified for the compute shader in the numthreads

attribute.

From the geometric interpretation of the thread locations discussed above,
we can also consider an overall unique identifier for each of the threads
within the complete dispatch call. This identifier could essentially locate
the thread with an X, Y , and Z coordinate within the three-dimensional
grid. These indices are given by SV DispatchThreadID, computed from
the following formula:

SV DispatchThreadID = SV GroupID · numthreads+ GroupThreadID (3.1)

0,0,2 1,0,2 2,0,2

0,1,2

0,2,2

1,1,2

1,2,2

2,1,2

2,2,2

0,0,1 1,0,1 2,0,1

0,1,1

0,2,1

1,1,1

1,2,1

2,1,1

2,2,1

0,0,0 1,0,0 2,0,0

0,1,0

0,2,0

1,1,0

1,2,0

2,1,0

2,2,0

0,0,0

0,1,0

0,2,0

0,3,0

0,4,0

...

0,30,0

0,31,0

1,0,0

1,1,0

1,2,0

1,3,0

1,4,0

...

1,30,0

1,31,0

2,0,0

2,1,0

2,2,0

2,3,0

2,4,0

...

2,30,0

2,31,0

3,0,0

3,1,0

3,2,0

3,3,0

3,4,0

...

3,30,0

3,31,0

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

31,0,0

31,1,0

31,2,0

31,3,0

31,4,0

...

31,30,0

31,31,0

X

Y

Z

Figure 3.6: Example of a dispatch and numthreads invocations.

Retrieve the above example for which 27 thread groups were in-
stantiated, each one containing 1024 threads. A representation of that

3.2. FRAMEWORK 23

operation is given in Figure 3.6. Now, in order to give an example of
index computation, we select a group and a thread within that group:

SV GroupID = (2, 1, 0) , GroupThreadID = (2, 4, 0)

Remember that we called numthreads(32,32,1), and, using Equation
(3.1), we can obtain the unique thread identifier:

SV DispatchThreadID = (2, 1, 0) · (32, 32, 1) + (2, 4, 0) = (66, 36, 0)

We conclude this section, regarding the use of compute shaders, with
a recommendation to the reader. The choice of allocating a number
of thread groups or threads themselves is individual and very complex.
As mentioned above, it also depends on which graphics chip is used as
hardware. Therefore, since the optimisation is essentially based on this
choice, an incorrect combination would lead to a waste of computing
power. The advice is to rely on trial and error finding the combination of
values that gives the best results.

3.2.3 GPGPU example

To clear up the above concepts, we now provide an example on how to
use GPGPU to do a very simple task. In particular, we want to perform
a McLaurin series of the exponential, given by the following formula:

ex =
∞∑
n=0

xn

n!

The idea is to compute all the coefficients of the series using GPU. So, let’s
explain the key steps for compiling and running a shader. In Algorithms
1 and 2, external C# and shader HLSL pseudo codes are shown. As already
explained in the previous section, the shader function does not return
anything, but it works through the use of special buffers called Unordered
Access View (UAV). First and foremost, a UAV buffer and a staging copy,
which will only be used to read results back on CPU, are created from the
C# code. Afterwards, a shader program is compiled and used to create a
shader object through the device interface, which can then be loaded into
the compute shader stage through the device context interface. We now
run the code inside the Example.hlsl file using the Dispatch command
which will execute the function as many times as we want. This function
does nothing more than writing the coefficients of McLaurin’s series to
our buffer. At the end of the Dispatch call, we can read the results by

24 CHAPTER 3. SIMULATOR DESIGN

making a copy of the buffer associated with the UAV on a “staging” type
and doing a Map operation. Please note that the Dispatch method is
asynchronous. This means that the code will continue to work even if the
shader has not finished its task, unless some functions access the buffer.
For example, an instruction that forces the compute shader code to end
is the Flush method. Normally, it will be preferable to go ahead with
the rendering while GPU finishes the computation.

struct ResultData {
float functionResult;
int x;
float padding1;
float padding2;

}
// Creating buffer and its view

accessView = CreateUAV(out buffer);
resultBuffer = CreateStaging();

// Compiling shader and loading buffer view

shaderCode = Compile("Example", "CS", "cs 5 0");
shader = new ComputeShader(device, shaderCode);
ComputeShader.SetUnorderedAccessView(0, accessView);
ComputeShader.Set(shader);

// Starting 64× 64 thread groups

Dispatch(64, 64, 1);

CopyResource(buffer, resultBuffer);
Flush();

// Resetting compute shader when finished

ComputeShader.SetUnorderedAccessView(0, null);
ComputeShader.Set(null);

// Mapping results back to CPU for reading

MapSubresource(resultBuffer, out stream);
ResultData[] result = stream.Read();
UnmapSubresource(buffer, 0);

Algorithm 1: C# example code.

3.3. IMPLEMENTATION 25

struct BufferStruct {
float value;
int x;
float padding1;
float padding2;

}
RWStructuredBuffer<BufferStruct> outBuffer;

// Factorial and McLaurin methods

float Factorial(int n) { ... }
float McLaurin(float x) { ... }
// Starting 32× 32 threads for each group

[numthreads(32, 32, 1)]

void CS(uint3 ID : SV DispatchThreadID) {
int stride = 32 * 64;
int idx = ID.y * stride + ID.x;
outBuffer[idx].value = McLaurin(idx/1000);
outBuffer[idx].x = idx;
outBuffer[idx].padding1 = 0;
outBuffer[idx].padding2 = 0;

}

Algorithm 2: Example.hlsl file.

3.3 Implementation

As we have already told at the beginning of Section 3.2, we will not
explain in detail how the graphics engine is made. However, a detailed
discussion can be found in the Direct3D Rendering Cookbook [13] which
also provides the C# code using the SharpDX libraries. Instead, we design
the core in order to allow user interaction and additional transformations
with scene objects. All these computations are performed parallel to
the rendering pipeline and, as soon as they are finished, are passed to
the graphics engine that displays them. These operations are accessible
through the menu bar on the top. From Figure 3.7a, we can find three
different sub-menus:

Camera allows the user to control the camera, by changing its
position and orientation, and to control the lighting
inside the scene.

Selected Model provides the user with a series of possible operations

26 CHAPTER 3. SIMULATOR DESIGN

and transformations on the selected mesh. For ex-
ample, it is possible to resize, move and rotate it, or
even to remove it from the scene.

Scanner contains commands to start the reconstruction, em-
ulating a particular scanner, or score computation,
which we will discuss in detail later.

(a) Example of user interaction.

(b) A mesh is added to the scene.

Figure 3.7: Screens of developed simulator.

3.3. IMPLEMENTATION 27

To control the camera, it is straightforward to multiply the camera
view matrix, discussed in Section 2.4, by a homogeneous matrix which
represents the rotation or translation that we would like to perform.
While, to change the lighting, we simply need to switch the pixel shader
used. In Figure 3.7a we can observe a demo of the program where a
190× 230 mm plane is placed at the world’s origin. While, in Figure 3.7b
we can see the view from the camera after having added a mesh to the
scene.

The functions performed on the selected model are a bit more inter-
esting. First of all we need to provide a method to select a mesh in the
scene. This is quite simple using a MousePicking algorithm as the one
shown in Algorithm 3, where, given the mouse coordinates, we compute
the direction of the ray passing through that point.

Data: mouseX, mouseY

Result: Ray(origin, rayDir)

x = 2 · mouseX/screenWidth - 1;
y = 1 - 2 · mouseY / screenHeight;
temp = transform((x,y,-1), inverse(projectionMatrix));
rayDir = transform(temp, inverse(viewMatrix));

Algorithm 3: MousePicking algorithm.

Once we have selected an object in the scene, we are able to resize,
move and rotate it along each axis. This is done by multiplying the world
matrix of the selected object, discussed in Section 2.4, by an homogeneous
matrix which represents the desired scaling, translation or rotation.

The most interesting and original part concerns the scanner functions.
Here we will go on a step-by-step description of what is done, providing
some useful flowcharts too. First of all, we would like to inform the reader
of the simplification made with respect to the model described in Section
3.1. Indeed, to simplify implementation, only one pattern, and not a
succession, is projected. However, it would not be difficult to extend
this functionality. The reconstruction algorithm is based on two steps:
the former is to project all the pattern points on the scene, while the
second one determines correspondences between the latter and the points
captured by the camera.

The projection procedure is summarised in the flowchart of Algorithm
4. Given a pattern, for each point, we generate a ray passing through
that point and with origin that of the projector. Then, for each mesh of
the scene, the actual projection algorithm is called.

28 CHAPTER 3. SIMULATOR DESIGN

Start

W ∈ R4×4,
proj.origin ∈ R3, mesh

∀point in pattern

ray.origin = origin
ray.direction = point - origin

Projection algorithm

Is it the
last one?

End

no

yes

Algorithm 4: Projection procedure.

The projection algorithm, outlined in Algorithm 5, is used to search for
all the intersections between ray and mesh. Basically, the algorithm does
nothing but looking for intersections with all mesh triangles, applying the
Möller-Trumbore method described in Section 2.3.1. Iteration on all mesh
triangles is an heavy operation, as most models have tens of thousands
of triangles. It is therefore very useful to firstly check if the ray hits
the bounding box containing the object. Otherwise, we can immediately
move to the next ray, saving a lot of computational power and drastically
reducing the time. Another expedient concerns the discussion made in
Section 2.4. Actually, the coordinates of the vertices of each mesh triangle
are relative to the mesh reference frame, while the ray lives in the world
reference frame. It is thus needed to transform the coordinates of the
vertices using the worldMatrix of the mesh. Even better is to transform
the ray’s origin and direction using the inverse of the worldMatrix, so
as to bring it into the mesh reference system. It is easy to prove that the
last is the best way, since we only do one transformation compared to
transforming tens of thousands of vertices each time. It is important to
emphasize that, applying this trick, is then necessary to transform the

3.3. IMPLEMENTATION 29

coordinates of the intersections found with respect to the world reference
frame. The last thing to observe, at the end of the diagram in Algorithm
5, regards removing all redundant intersections. Indeed, each ray could
intersect more than one triangle, but we are only interested in the closest
point to the origin of the projector, as the others are all occluded or in
shadow.

As an example, a result of the projection stage is given in Figure
3.8. The scanned object is a mechanical piece of steel and the projected
pattern consists of a grid of 500× 500 dots. The working distance was set
to 40 cm. This choice was made in order to obtain a good level of detail
but, at the same time, to cover the entire object. Indeed, the density of
the projected points decreases with the distance of the scanner from the
scene.

Figure 3.8: Projection result example.

When all pattern points have been projected, the first step is finished,
so we move onto the reconstruction procedure, which is summarized in
the diagram of Algorithm 6. Given the list of projected points, for each
one, we compute the ray passing through that point and with origin
that of the camera. At this point, for each mesh of the scene, the actual
reconstruction algorithm is invoked.

30 CHAPTER 3. SIMULATOR DESIGN

Start

ray, mesh, point ∈ R3, W ∈ R4×4

∀ triangle in mesh.triangles

ray.Intersects(triangle,
out intersection)

Is it the
last one?

End

ray.Intersects(mesh.box)

Transform(ray, W−1)

Transform(intersection, W)

Store intersection

Delete redun-
dant intersections

no yes

yes

noyes

no

Algorithm 5: Projection algorithm.

3.3. IMPLEMENTATION 31

Start

W ∈ R4×4,
cam.origin ∈ R3, mesh

∀point in projected points

ray.origin = origin
ray.direction = point - origin

Reconstruction algorithm

Is it the
last one?

End

no

yes

Algorithm 6: Reconstruction procedure.

The reconstruction algorithm, outlined in Algorithm 7, is used to find the
final 3D point cloud obtained by the structured light scanner. Basically,
similarly to what we did in the projection algorithm, we look for all the
intersections between each camera ray and all mesh triangles. Even in this
case, we use the two expedients of before regarding the transformation
of ray coordinates and the prior verification of incidence on the mesh
bounding box. Looking at the scheme, we notice a particular difference
from before. The intersection, computed by the Möller-Trumbore method,
is stored only if the angle between the ray and the normal of the considered
triangle is less than a certain threshold. Actually, it would be much more
realistic to use Snell’s law, introduced in Section 2.3.2, to calculate the
power of the reflected beam, and thus, make the intersected point in
the final point cloud more or less visible. To simplify this operation, we
decided to discretize and evaluate a certain threshold beyond which the
ray is not reflected and, consequently, does not carry the information of
the intersected point to the camera. Finally, the intersection is stored
in the 3D point cloud if it is more or less equal to the projected point
considered.

32 CHAPTER 3. SIMULATOR DESIGN

Start

ray, mesh, point ∈ R3, W ∈ R4×4

∀ triangle in mesh.triangles

ray.Intersects(triangle,
out intersection)

Is it the
last one?

End

ray.Intersects(mesh.box)

Transform(ray, W−1)

Transform(intersection, W)

Store intersection

Delete redun-
dant intersections

ray.Angle(triangle)
< threshold

no

yes

noyes

no

yes

no yes

Algorithm 7: Reconstruction algorithm.

3.4. ENCOUNTERED PROBLEMS 33

Finally, we got a list of reconstructed points by emulating a structured
light scanner. That list could be sent to the graphics engine for on-
screen viewing, or it can be used to initiate a score computing, which
we will discuss in detail in Chapter 4. As an example, a result of the
reconstruction stage is given in Figure 3.8. The scanned object is the
same used previously in the projection procedure.

Figure 3.9: Reconstruction result example.

3.4 Encountered problems

We thought of describing to the reader the main problems encountered
during the design and debugging of the simulator, also listing the solutions
adopted. The three problems we are going to deal with have significantly
slowed down the project. Since there is not much documentation on the
net, we thought it would be useful to describe them in detail.

3.4.1 Memory buffer structure

For efficiency, memory buffers are mapped such that values do not
straddle GPU registers. Each register is four floats in size, i.e. 16 bytes, so
buffer structures must be multiple thereof on the GPU. The C# structure
should be padded accordingly to use it as a convenience for mapping data
and to avoid misalignments in memory. In other words, we need to ensure

34 CHAPTER 3. SIMULATOR DESIGN

that the location of those bytes in memory will not differ in the CPU and
GPU versions of the structure. Therefore, the solution involves inserting
manually the appropriate padding to ensure proper 16-byte alignment.
Let’s give an illustrative example. Suppose we need the information
about the bounding box of a particular mesh inside a shader function. A
bounding box is characterised by the minimum and maximum points, i.e.
two float3 variables in C#. Each variable is an array of three floats so in
total it occupies 12 bytes. The fastest way is to create a constant buffer
containing the two vectors. However, the two points are represented in
memory by 24 bytes, while we need a multiple size of 16 bytes. Therefore,
we need two integer paddings (4 bytes each) in order to reach a size of 32
bytes. The right HLSL code is provided below.

cbuffer BoundingBox : register(b0) {
float3 minMeshBox;
int padding1;
float3 maxMeshBox;
int padding2;

}

Algorithm 8: Memory alignment example.

3.4.2 Shader matrix ordering

Debugging a shader is very complex as there are no simple analysis
tools for HLSL like the most common programming languages. It is
therefore necessary to verify that each operation carried out on the data
is correct. In this regard, we found that loading a 4 × 4 homogeneous
matrix inside a buffer, the latter was automatically transposed into the
shader. We then discovered this was due to the matrix ordering type
defined inside the shader. Actually, data in a matrix is loaded into
constant registers before a shader runs. There are two choices for how
the matrix data is read: in row-major order or in column-major order.
Column-major order means that each matrix column will be stored in
a single constant register, and row-major order means that each row
of the matrix will be stored in a single constant register. This is an
important consideration for how many constant registers are used for a
matrix. Therefore, since C# math libraries use row-major order, we had
to transpose matrices, before loading into buffer, so that they were in
column-major order for HLSL.

3.4. ENCOUNTERED PROBLEMS 35

3.4.3 TDR issue

The main problem encountered during the debugging of the simulator
concerns the overcoming of the Timeout Detection and Recovery (TDR).
Actually, the GPU scheduler, which is part of the DirectX graphics kernel
subsystem, detects if the GPU is taking more than the permitted amount
of time to execute a particular task. The default timeout period in
Windows Vista and later operating systems is 2 seconds. If the GPU
cannot complete the current task within this period, the operating system
suspends the GPU and diagnoses that it is frozen. There are two possible
solutions to that problem. The former, which is not suitable for a final
software product, consists in completely disabling TDR or increasing it as
needed. Specifically, this can be done by editing the corresponding registry
key in the operating system. The latter, much more elegant, consists in
modifying the GPU process to avoid reaching the TDR. Specifically, to
prevent timeout detection from occurring, we should ensure that graphics
operations take no more than 2 seconds in end-user scenarios. Obviously,
whether TDR is exceeded or not depends on the hardware used to run
the program. In our case, most of the tests reported in Chapter 4 were
performed using a laptop with the specifications listed in Table 3.1. By
using patterns of a million or more points, we have experienced the video
driver suspension. Therefore, for demonstration purposes, we decided
to completely disable timeout. The same issue did not occur using the
workstation offered by Euclid Labs, with specifications from Table 3.2.

CPU Intel Core i7-4720

RAM 8 GB DDR3

GPU Nvidia GTX 960M

640 CUDA cores

VRAM 2 GB GDDR5

Table 3.1: Notebook specs.

CPU Intel Core i9-7900X

RAM 64 GB DDR4

GPU Nvidia Titan V

5120 CUDA cores

VRAM 12 GB HBM2

Table 3.2: Workstation specs.

36 CHAPTER 3. SIMULATOR DESIGN

Chapter 4

Results

In this chapter we want to validate the goodness and robustness of our
simulator through several tests. For this purpose, we will first evaluate
the reconstruction on some 3D models, and then compare it with the
results obtained using Zivid and Photoneo scanners. The most interesting
and unedited part, reported in Section 4.5, concerns the analysis of the
reconstruction by changing the fundamental parameter of each scanner,
i.e. the baseline. The latter will show how the proposed simulator can be
a valid tool to provide customers a quick idea of the most suitable baseline
for a particular scenario, and consequently recommend a scanner rather
than another. Moreover, in the future this system could be incorporated
into a larger project to study and design new 3D scanners.

Two different mechanical parts were used to perform tests. The
former, a 50× 50× 20 mm parallelepiped, is a very simple solid and it
is useful for making precision measurements and comparisons with the
results obtained by the scanners. The second one is a complex mechanical
piece, shown in Figure 4.2, and it is suitable for evaluating shadow and
occlusion phenomena.

Figure 4.1: Side view of the scanned parallelepiped.

37

38 CHAPTER 4. RESULTS

Figure 4.2: Front and side views of the scanned mechanical part.

In the following sections, we will talk about score and coverage,
i.e. the tools used to evaluate the simulator and compare the results.
Actually, we are interested in comparing the point cloud resulting from
the reconstruction algorithm either with the 3D model or with the point
cloud obtained from a real scanner. To make this comparison, we used an
algorithm, developed by Euclid Labs, which tries to superimpose point
clouds by moving one of the two until coverage is maximized. To be more
precise, we define with R the set of simulated point and with P the set
of points belonging to the real model or the real scanner reconstruction.
Then, we define the intersection between the two sets with Ω = {R ∩ P}.
At this point, with ”score” we mean the ratio between the cardinalities of
Ω and R. On the other hand, with ”coverage” we mean the ratio between
the cardinalities of Ω and P .

score =
|Ω|
|R| , coverage =

|Ω|
|P |

4.1 GPU vs CPU

Initially, all the work presented in this thesis was developed entirely
to be performed on CPU, using parallel computing to exploit all the
available power. However, we immediately realized that, by increasing
the number of projected points, the time required for the reconstruction
gradually became too high. So we had to move our algorithm to GPU
rewriting some portions of code. In order to highlight the improvements
achieved through this step, we decided to compare the execution times
of the entire scanning algorithm using CPU and GPU. Figure 4.3 shows

4.2. TESTS ON 3D MODELS 39

the execution times as the number of projected points increases, from
100 thousand to 4 million. Both trends are polynomial and we can easily
observe how the GPU outperforms the CPU. For example, projecting a
pattern of 4 million points, the GPU takes 32 seconds against the 7.5
minutes needed by the CPU to complete the scanning. This is due to the
fact that a mid-range GPU has about a thousand cores, while a common
CPU only 4. Therefore, parallel computing is much more optimized using
graphics cards. However, it is interesting to note that this is no longer
the case when only a few points are considered. Figure 4.4 shows the
execution times trend in the case of a few thousand projected points. We
can immediately notice that, for less than 10 thousand points, CPU takes
less time to reconstruct the scene. This is because the GPU, whatever
the input, takes about a second to start the processes. In conclusion, in
case of a few points it is convenient to use CPU. Otherwise, in all other
cases, GPU always has the best.

×1060 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

50

100

150

200

250

300

350

400

450

500

#points

co
m
p
u
ta
ti
on

ti
m
e
(s
)

GPU
CPU

Figure 4.3: Reconstruction times using CPU and GPU.

4.2 Tests on 3D models

As already mentioned, a 3D model is nothing more than a set of
triangles, while we need a point cloud in order to make a comparison. So,
we need an algorithm which allows ”sampling”. Essentially, the latter
divides each mesh triangle into smaller ones, and then generates a point

40 CHAPTER 4. RESULTS

×1030 5 10 15 20 25 30 35 40 45 50 55
0

1

2

3

4

5

6

7

#points

co
m
p
u
ta
ti
on

ti
m
e
(s
)

GPU
CPU

Figure 4.4: Reconstruction times using CPU and GPU (with few points).

cloud by taking all the vertices, avoiding repetitions. These first tests
were used to evaluate the reconstruction capacity of the simulator. We
first sampled our complex 3D model, and then launched the scanning
using the algorithm described extensively in the previous chapter. The
result of overlapping is shown in Figures 4.5-4.6, depending on whether
Snell’s law is implemented or not. In violet we find the points resulted
from the sampling of the 3D model, while in orange we observe the point
cloud reconstructed by the simulator. The working distance was set to
40 cm and, in the first phase, one million points were projected, arranged
along a 1000× 1000 grid.

The scoring algorithm provided us with the data presented in Table
4.1, depending on the number of points of the projection pattern. We
got a very good score, while the coverage is low, but we can expect that
since the sampling takes into account the whole object and not only the
part facing the scanner. After all, this is only a qualitative assessment
of how the reconstruction algorithm works. Please note that, comparing
the two figures, we can observe that, using Snell’s law, the reconstruction
changes considerably and it is much more faithful to reality. Indeed, as
the camera is placed within the scene, the power of the reflected ray at
the steepest points is too weak to return to the sensor, and so, Snell’s
law should be implemented. However, this will be confirmed in Sections
4.3 and 4.4, where we will see the behaviour of real scanners.

4.2. TESTS ON 3D MODELS 41

Figure 4.5: Reconstruction overlaid on 3D model without Snell’s law.

Figure 4.6: Reconstruction overlaid on 3D model using Snell’s law.

42 CHAPTER 4. RESULTS

points Score [%] Coverage [%]

∼ 200 K 99.18 26.47

∼ 1 M 99.91 26.85

∼ 4 M 100 27.03

Table 4.1: Reconstruction performance on 3D model.

4.3 Comparison with Zivid scanner

Together with Euclid Labs, we decided to emulate the Zivid scanner,
which currently represents the state of the art regarding 3D structured
light scanners [14]. It consists of a high dynamic range full color camera
(right, Fig. 4.7) and an active lighting projector (left, Fig. 4.7). Within a
tenth of a second it returns a 3D point cloud with RGB colors captured
with the same sensor chip.

Figure 4.7: Zivid scanner.

Acquisition rate ∼ 100 ms

Working distance 0.6− 1.1 m

Field of view 780× 490 mm @ 1.1 m

Depth resolution 0.2 mm @ 1.1 m

Baseline 135 mm

Table 4.2: Zivid data-sheet.

4.3. COMPARISON WITH ZIVID SCANNER 43

For this test session, the working distance was set to 60 cm. During
the projection phase, we used a 1000× 1000 grid for a total of one million
points. In order to asses the likelihood of the simulator in emulating
the Zivid scanner, we took a series of precision measurements by moving
the parallelepiped along a 10 × 10 cm chessboard. For each pose, we
captured the scene with the scanner and saved the corresponding point
cloud. After that, we replicated the pose of the object in the simulator
and launched the reconstruction. We evaluated the overlap using the
algorithm described at the beginning of this chapter, and the results of
the comparison are reported in Table 4.3. We immediately notice how, in
general, the results are excellent, and confirm that the simulator emulates
well the Zivid model. We also tried to evaluate performance by moving
the parallelepiped further away or rotating it, and some results are visible
in Figure 4.8. Even in such cases, the simulator continues to replicate
the behaviour of the scanner well. In Figure 4.8c, we can see some points
that do not belong to the object, recognized by the scanner but not by
the simulator. This is due to light reflection and noise phenomena that
are not easily replicable mathematically.

(a) (b)

(c)

Figure 4.8: Reconstruction overlaid of the parallelepiped, in three different
poses, compared to Zivid scanner.

44 CHAPTER 4. RESULTS

δx [mm] δy [mm] Score [%] Coverage [%]

0 0 99.98 96.98

20 0 100 99.13

40 0 100 99.88

-20 0 100 98.61

-40 0 100 99.57

0 20 100 98.82

0 40 100 99.29

0 -20 100 98.39

0 -40 100 97.72

40 40 100 99.91

40 -40 100 99.84

-40 40 97.13 99.82

-40 -40 99.92 98.77

Table 4.3: Reconstruction performance compared to Zivid scanner.

We also compared the results obtained with the second test object, the
more complex one. Looking at Figure 4.9, we can notice major differences,
indeed simulator performance drops a bit. In particular, we obtained a
score of 94.64% and a coverage of 99.33%. This is due to the fact that
our simulator is not able to perfectly emulate the Zivid model. Actually,
as expected, the choice to use ray casting method leads to simplify a bit
the model. On the contrary, by following the principle of ray tracing, we
could have better replicated the phenomena of reflection and refraction,
which are very common in nature and ”dirty” the results obtained by
the scanner. However, it should be noted that it may be useful to have a
noiseless result for use in detection and recognition algorithms and, in
this case, the simulator is preferable to the scanner.

4.4. COMPARISON WITH PHOTONEO SCANNER 45

Figure 4.9: Reconstruction overlaid of the complex object compared to
Zivid scanner.

4.4 Comparison with Photoneo scanner

Together with Euclid Labs, we decided to emulate another 3D scanner,
in particular the Photoneo PhoXi 3D L, which is also based on structured
light technique [15]. However, instead of using simple white light like
in a normal multimedia projector, it exploits a proprietary projection
system based on coherent laser radiation, which allows better access
to every corner of the scanning area. From Table 4.4, showing the
scanner specifications, we carefully observe that the baseline is much
larger than before. Given the larger size and baseline of this scanner
compared to Zivid, we can easily imagine that Photoneo is more suitable
for capturing larger scenes. However, for comparison purposes, working
distance and projected pattern remained unchanged. The test procedure
is also identical to that described in the previous section.

46 CHAPTER 4. RESULTS

Figure 4.10: Photoneo PhoXi 3D L scanner.

Acquisition rate ∼ 400 ms

Working distance 0.87− 2.156 m

Field of view 1300× 975 mm @ 2 m

Depth resolution ∼ 1 mm @ 2 m

Baseline 550 mm

Table 4.4: Photoneo PhoXi 3D L data-sheet.

δx [mm] δy [mm] Score [%] Coverage [%]

0 0 99.78 96.73

40 0 95.84 97.34

-40 0 95.46 96.04

0 40 99.88 99.28

0 -40 99.22 99.44

40 40 95.38 96.85

40 -40 96.91 98.40

-40 40 90.33 96.54

-40 -40 99.11 98.76

Table 4.5: Reconstruction performance compared to Photoneo scanner.

4.4. COMPARISON WITH PHOTONEO SCANNER 47

(a) (b) (c)

Figure 4.11: Reconstruction overlaid of the parallelepiped, in three differ-
ent poses, compared to Photoneo scanner.

Figure 4.12: Two closer views of the Figure 4.11a.

Figure 4.11a shows the overlap with the lowest score among those
listed in Table 4.5. We went deep to identify the reason for such a drop
in performance and, rotating the view, we obtained the detail of Figure
4.12. We immediately observe that, in addition to the noise that is always
present, the reconstruction carried out using Photoneo (in violet) has a
bending error on the edge of the scanned object. This error, however,
is not repeated in the simulated reconstruction (in orange) which more
faithfully reproduces the squared shape of the parallelepiped.

As done previously for the Zivid scanner, we also compared the results
obtained with the second test object, the more complex one. Looking at
Figure 4.13, we can notice major differences, indeed score and coverage
drop a bit. In particular, we obtained a score of 89.52% and a coverage of
87.96%. The reason may be addressed to the problem observed previously

48 CHAPTER 4. RESULTS

in Figure 4.12. However, even in this case, the result of the simulator is
to be preferred to that of Photoneo because it is noiseless. Therefore, it
is more suitable for use in detection and recognition algorithms.

Figure 4.13: Reconstruction overlaid of the complex object compared to
Photoneo scanner.

4.5 Baseline analysis

In this section we will show how the simulator can be a valid tool to
evaluate occlusion and shadow phenomena. For commercial purposes, this
feature is certainly the most relevant. Actually, it would save valuable
time in deciding which 3D scanner is best suited to solve a particular
problem without having to test it on site. Thanks to the simulator and
the 3D model of the object to be recognized, it is possible to analyse
different configurations. For example, we can change the baseline and/or
the working distance and see the effect on the reconstruction in “real
time”. With the aim of showing, at least in part, this characteristic, we
still take into consideration the complex object of Figure 4.2 in three
separate sessions, where the working distance differs. It should be noted
that the following results and graphs take account of two simplifying
assumptions.

4.5. BASELINE ANALYSIS 49

1. We consider a baseline between 50 and 800 mm. Below 50 mm
would not be significant, as it would be very difficult to achieve at
a constructive level. While, as will be confirmed by results, beyond
800 mm, performance drops drastically and cannot be taken into
account for common industrial applications. Moreover, negative
baseline values are considered. In the latter case, the camera is
located on the left of the projector and no longer on the right.

2. We do not take into account the fact that, when the inclination of
the camera varies, we have a different thickness of the projected lines.
Indeed, a series of projected lines of equal thickness could appear as
in Figure 4.14, if the angle between baseline and camera normal is
very small. We would be in a situation where, by reconstructing the
first line, we have a lot of well defined pixels, while, by reconstructing
the furthest, we have a few blurred pixels.

Figure 4.14: Camera tilting effect.

We also remind the reader that the following results are to be considered
qualitatively, given the high number of variables involved in addition
to the baseline: camera and projector angles, working distance, relative
position of the scanner with respect to the object, number of points
projected, and more.

First session

The first tests session was carried out by setting the working distance
to 40 cm, the same as in the previous sections of the chapter.

50 CHAPTER 4. RESULTS

100 200 300 400 500 600 700 800
0

10

20

30

40

50

60

70

80

90

100

baseline (mm)

co
ve
ra
ge

(%
)

Figure 4.15: Reconstruction coverage, over different baseline values, at
a working distance of 40 cm. The two crosses represent actual scanner
data.

Figure 4.15 shows the coverage trend as the baseline increases from
50 to 800 mm. Remind that the coverage is generally low because the
sampling, unlike reconstruction, takes into account the whole object and
not only the part facing the scanner. The score values have not been added
to the graph because they always stand at high values, i.e. between 99.5%
and 99.8%. We immediately notice that, increasing the baseline, there is
a marked reduction in coverage. This is natural since the scanner is very
close to the scene and, as the camera moves away from the projector,
most of the object remains occluded. Furthermore, the angle of view is
greatly reduced and, according to Snell’s law, the power of the reflected
rays becomes weaker and weaker to the point that they are no longer
caught by the camera. We can also see two crosses which represent the
coverage values obtained by comparing the real scanners reconstructions
with the sampled model. Remind that Zivid and Photoneo scanners
have a baseline of 135 and 550 mm correspondingly. It can be seen that
these two values belong approximately to the trend line obtained using
the simulator. Photoneo has a lower coverage than Zivid because it is
suitable for longer working distances (refer to specification tables 4.2-4.4).
Always bear in mind that these results are qualitative. It was not possible
to carry out measurements with a great precision and, therefore, data

4.5. BASELINE ANALYSIS 51

coming from scanners must be taken with a grain of salt.

(a) b = 100mm (b) b = 300mm

(c) b = 500mm (d) b = −100mm

Figure 4.16: Reconstruction results at different baselines, at a working
distance of 40 cm.

Figure 4.16 shows four special cases highlighting how shadows and
occlusions affect the final result. Remembering the object shapes, reported
in Figure 4.2, we notice how at a baseline of 500 mm the most protruding
parts cause a large shadow zone which ruins the reconstruction. We could
have guessed it even just looking at the previous plot, but it is not always
good to trust the pure numerical value. A clear example is provided
in Figure 4.16d, where the baseline is set to −100 mm, i.e. camera is
located 100 mm on the left of the projector. The corresponding coverage
rate is 27.1%, practically identical to the one obtained with a baseline

52 CHAPTER 4. RESULTS

of 100 mm. This would lead us to think that the two configurations are
equivalent but, finely observing the corresponding figures, we note that
some characteristics of the object are correctly recognized only in the
case of a positive baseline. Other times, however, the numerical results
agree with the graphical ones. This is the case shown in Figure 4.17,
which represents the superimpositions obtained by reconstructing the
back of the object. There, we achieved 23.61% coverage with a 100 mm
baseline and 25.98% coverage with a −100 mm baseline. In this case,
both looking at rates or reconstructions, we deduce that it is better to use
a configuration in which the camera is placed on the left of the projector.

(a) b = 100mm (b) b = −100mm

Figure 4.17: Reconstruction results at different baselines, at a working
distance of 40 cm (backside of the object).

By superimposing the simulated point cloud on the real one, we are
sufficiently able to evaluate the goodness of a particular configuration.
Moreover, with a minor code update, it would be possible to select the
indexes of all the unrecognised points to highlight the shadow or occluded
areas. This may be useful to observe whether or not unrecognised areas
are important characteristics of the tested object.

Second session

The second tests session was carried out by setting the working
distance to 60 cm. The reconstruction algorithm was run several times,
changing the baseline, and coverage rates were collected in the graph of

4.5. BASELINE ANALYSIS 53

Figure 4.18. We can immediately notice how the trend is more constant
compared to the previous scenario. Actually, values remain nearly always
above 20%. The main reason is that, as the camera moves away from the
scene, its view angle increases and, as a result, the final reconstruction is
less prone to shadows and occlusions.

100 200 300 400 500 600 700 800
0

10

20

30

40

50

60

70

80

90

100

baseline (mm)

co
ve
ra
ge

(%
)

Figure 4.18: Reconstruction coverage, over different baseline values, at a
working distance of 60 cm.

We can see especially from Figure 4.19c that, using a greater working
distance, the reconstruction covers more regions of the object. Even
if the result is better with a lower baseline, we can still recognize the
most important features. A further comment concerns that, from the
several figures shown so far, as the working distance increases, the points
resolution significantly decreases. To confirm this, we specify that, using
the same object pose and baseline, at a working distance of 40 cm we
reconstruct about 40 thousand points while, at 60 cm, only 10 thousand.
Actually, the points of the projected pattern are less dense as the distance
between scanner and scene increases. So, in order to compensate for
this loss of resolution, we are forced to increase the number of projected
points, i.e. to reduce the gap between pattern lines.

54 CHAPTER 4. RESULTS

(a) b = 100mm (b) b = 300mm

(c) b = 500mm (d) b = −100mm

Figure 4.19: Reconstruction results at different baselines, at a working
distance of 60 cm.

Third session

The last tests session was carried out by setting the working distance
to 100 cm. Looking at the plot in Figure 4.20, we can observe that now the
coverage remains almost constant also by increasing the baseline. On the
other hand, the points resolution has drastically decreased, i.e. points are
less dense compared to previous cases. Indeed, for this reason, we decided
not to report reconstruction examples like in the two previous scenarios.
A longer working distance may be necessary for technical/mechanical
reasons or it may be useful if the object is particularly large. Therefore,
remind that, in these cases, it is preferable to increase the number of

4.5. BASELINE ANALYSIS 55

pattern points to balance the loss of resolution.

100 200 300 400 500 600 700 800
0

10

20

30

40

50

60

70

80

90

100

baseline (mm)

co
ve
ra
ge

(%
)

Figure 4.20: Reconstruction coverage, over different baseline values, at a
working distance of 100 cm.

After observing results, however, we are not able to decide mathemat-
ically the most suitable baseline for a particular working distance. There
are two main reasons. The former is that we do not own a mathematical
index of “goodness” to automatically determine the best option. This
index, for example, could represent the percentage of interesting features
of the object that have been correctly reconstructed. For this purpose,
score and coverage indices, are not sufficient. The other reason is that,
as we said before, there are many variables involved in choosing the best
configuration and not all of them have been considered in the proposed
simulator. Therefore, we have obtained a powerful tool to evaluate in
real time the result of a 3D reconstruction and then decide on the best
configuration to solve a particular problem.

56 CHAPTER 4. RESULTS

Chapter 5

Conclusions

Reconstruction through pattern recognition, or structured light, has
become one of the preferred techniques for recognizing 3D objects in
the industrial field. Indeed, thanks to the presence of a projector and a
camera that recognizes the pattern emitted, this technology allows its use
also in dark environments and it is not sensible to brightness changes. In
this work we presented a completely new simulator capable of emulating
a generic 3D structured light scanner. We emphasized the key steps in
the design, highlighting problems and their possible solution, as well as
the importance of developing code for GPUs.

After a wide discussion of the theory behind pattern recognition recon-
struction, and a detailed presentation of the algorithms’ implementation,
we devoted a long test session to validate and analyse the behaviour of
our simulator. We used two 3D systems to acquire scans, both based
on structured light technique: PhoXi Photoneo and Zivid. Thanks to
them, we were able to verify that the results obtained by the simulator
were plausible. Therefore, we confirmed that model not only fits the two
scanners studied, but is also able to reproduce any other based on the
same technology. However, the most interesting study is certainly the
one according to the baseline. We found that, increasing the baseline,
coverage decreases but it still depends a lot on the working distance
chosen.

5.1 Future developments

The proposed simulator can be a valid tool to provide customers a
quick idea of the most suitable baseline for a particular scenario, and
consequently recommend a scanner rather than another. In addition,

57

58 CHAPTER 5. CONCLUSIONS

it could help to study occlusion and shadow phenomena in depth for
the possible design of new 3D scanners. Nevertheless, there are several
upgrades that can be made in order to expand its functionalities. First
and foremost, a significant improvement in results could be achieved by
using ray tracing principle instead of ray casting one. By using the former,
as already mentioned in Chapter 2, we would trace the path of the rays
even after the first collision. This would allow us to evaluate reflection
and refraction phenomena on surfaces, making the model more realistic.
We would certainly get a higher level of detail, but we should ensure that,
by increasing computational complexity, the process does not take too
long. Besides, the simulator offers a good level of interactivity to the user,
but most of the variables (baseline, working distance, type of projected
pattern) must be changed within the code, which is then compiled. An
important improvement would be to make these variables accessible
externally, so that the user can select the desired specifications before
launching the reconstruction. A further step would be to incorporate the
optics into the simulator. In this way, the user will be able to choose
the type and specifications of the lenses, and to emulate some distortion
effects, like barrel or pincushion ones, directly on the display.

Actually, the work presented is part of a larger project launched by
Euclid Labs. In the field of artificial intelligence, deep learning certainly
plays a fundamental role. One of the main problems regards the difficulty
in finding the data needed to train these systems. With this aim in mind,
Euclid Labs would like to design and build a 2D/3D image simulator in
order to generate test datasets. To do this, it is necessary to emulate
as many 3D scanner types as possible, not only structured light ones,
and 2D cameras. Given the importance of generating images in a very
short time, it will be necessary to fully exploit the power provided by the
GPUs, and then design the code to avoid exceeding the TDR, as seen in
Section 3.4. This project is very ambitious, but it certainly represents a
fundamental step to evolve in the robot programming world.

Bibliography

[1] Joaquim Salvi, Sergio Fernandez, Tomislav Pribanic, and Xavier
Llado. A state of the art in structured light patterns for surface
profilometry. Pattern Recognition, 43(8):2666 – 2680, 2010.

[2] Giovanna Sansoni, Marco Trebeschi, and Franco Docchio. State-of-
the-art and applications of 3d imaging sensors in industry, cultural
heritage, medicine, and criminal investigation. Sensors, 9(1):568–601,
2009.

[3] Yoshiaki Shirai. Recognition of polyhedrons with a range finder.
Pattern Recognition, 4(3):243–250, 1972.

[4] Gerald J Agin and Thomas O Binford. Computer description of
curved objects. In Proceedings of the 3rd international joint con-
ference on Artificial intelligence, pages 629–640. Morgan Kaufmann
Publishers Inc., 1973.

[5] Robin J Popplestone, Christopher M Brown, A Patricia Ambler, and
G Crawford. Forming models of plane-and-cylinder faceled bodies
from light stripes. In IJCAI, pages 664–668, 1975.

[6] M Asada, H Ichikawa, and S Tsuji. Determining of surface properties
by projecting a stripe pattern. In Proc. Int. Conf. on Pattern
Recognition, pages 1162–1164, 1986.

[7] George Stockman and Gongzhu Hu. Sensing 3-d surface patches
using a projected grid. In Computer Vision and Pattern Recognition,
pages 602–607, 1986.

[8] Joan Batlle, E Mouaddib, and Joaquim Salvi. Recent progress in
coded structured light as a technique to solve the correspondence
problem: a survey. Pattern recognition, 31(7):963–982, 1998.

59

60 BIBLIOGRAPHY

[9] Arthur Appel. Some techniques for shading machine renderings of
solids. In Proceedings of the April 30–May 2, 1968, spring joint
computer conference, pages 37–45. ACM, 1968.

[10] Turner Whitted. An improved illumination model for shaded display.
In ACM Siggraph 2005 Courses, page 4. ACM, 2005.

[11] Tomas Möller and Ben Trumbore. Fast, minimum storage
ray/triangle intersection. In ACM SIGGRAPH 2005 Courses, page 7.
ACM, 2005.

[12] Carli Ruggero. Robotics, Vision and Control: lecture notes. Univer-
sity of Padova, 2017.

[13] Justin Stenning. Direct3D Rendering Cookbook. Packt Publishing
Ltd, 2014.

[14] Zivid Labs. https://www.zividlabs.com. [Online; accessed 8 June
2018].

[15] Photoneo. Phoxi 3d scanner technology overview. http://www.

photoneo.com/phoxi-3d-scanner/. [Online; accessed 11 June
2018].

[16] Frank Luna. Introduction to 3D Game Programming with DirectX
11. Mercury Learning & Information, USA, 2012.

[17] Allen Sherrod. Beginning DirectX 11 game programming. Cengage
Learning, 2011.

[18] Fletcher Dunn and Ian Parberry. 3D math primer for graphics and
game development. CRC Press, 2015.

[19] Pooya Eimandar. DirectX 11.1 Game Programming. Packt Publish-
ing Ltd, 2013.

[20] Alexander Hornberg. Handbook of machine vision. John Wiley &
Sons, 2007.

[21] Jason Zink, Matt Pettineo, and Jack Hoxley. Practical Rendering
and Computation with Direct3D 11. A. K. Peters, Ltd., Natick, MA,
USA, 1st edition, 2011.

BIBLIOGRAPHY 61

[22] P. Corke. Robotics, Vision and Control: Fundamental Algorithms In
MATLAB® Second, Completely Revised, Extended And Updated Edi-
tion. Springer Tracts in Advanced Robotics. Springer International
Publishing, 2017.

[23] Cenedese Angelo. Control System Design: lecture notes. University
of Padova, 2018.

[24] Photoneo. http://www.photoneo.com. [Online; accessed 11 June
2018].

[25] Photoneo. 3d scanning knowledge base photoneo wiki. http://wiki.
photoneo.com/. [Online; accessed 11 June 2018].

