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Abstract

This work examines asset allocation problems in the long run, with a focus on how

different assumption on the allocation problem can change the resulting optimal port-

folios. The starting point is to assume constant expected returns, this specification is

then relaxed in order to allow for return predictability. For an investor whose objective

is to maximize its terminal wealth with i.i.d. returns, when parameter uncertainty is not

accounted for, the allocation toward the risky component of the portfolio is constant

with respect to the investment horizon. Conversely, when the investor incorporates pa-

rameter uncertainty the allocation is decreasing as the time horizon increases, even in

a constant expected returns environment. This confirms that not including parameter

uncertainty in the analysis lead to a non negligible over-allocation. These findings are

confirmed with different asset classes and are present even when a multiplicity of risky

securities are involved in the analysis. Furthermore when the assumption on return pre-

dictability is included, optimal allocation toward the risky component of the portfolio

become increasing as the investment horizon grows. This work is complemented with

various sensitivity analysis, which allows us to conclude that this over/under allocation

phenomena is strongly dependent also from other assumption like investment horizon,

risk free rate and risk aversion coefficients
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Introduction

Long run asset allocation has always been a topic that got a lot of attention, both from

practitioners as well as from the academic world. The purpose of this work is to study

the determinants and this optimal investment strategy, rather than studying the allocation

per se. The rationale of this comes from the fact that each investor will have its own

tailored made strategy, that can be driven by some specific parameters. Studying how

the generic allocation is changing with respect to such specification, can help us outline

a generic framework, and draw broader conclusions. Much of our focus will be not

only on the parameters underlying the problem (e.g: risk aversion, investment horizon,

investment universe), but also on the generic assumption that the investor makes on

returns.

Throughout our work, we distinguish between four possible combinations of as-

sumption that the investor can make on the estimation of returns. First of all, the investor

can decide whether to incorporate parameter uncertainty or not. Given this choice, for

each of the two approach he can then choose whether to assume constant expected re-

turns, or whether to account for return predictability. Comparing these four cases one

with the other, enables us to draw some conclusion on what is really driving long run

allocation choices. Now we briefly motivate why we chose to study these assumption,

and how the thesis is structured in order to analyze the problem.

Accounting for parameter uncertainty is fundamental, especially for highly risk

averse individuals. As outlined by Michaud (1989), the Markowitz’s optimization al-

gorithm tend to maximize estimation errors, because the investor is not able to estimate

with certainty expected returns and variances, which will contain an intrinsic error term.

With the Markowitz methodology, we tend to assign more weight to those securities and

asset classes that have strong expected returns and high negative correlations, while as-

signing low weight to those assets with low expected returns and positive correlation.
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According to Michaud (1989), the securities to whom we tend to give more importance,

are precisely those more likely to be subject to large estimation errors. In light of this,

it is very important to accept that we cannot estimate with certainty returns and vari-

ances of expected returns, thus it is very important to account for parameter uncertainty.

The effects of parameter uncertainty on the long run asset allocation have been studied

by both Barberis (2000) and Bawa et al. (1979) extensively. Barberis (2000) focused

more on the horizon effect (defined as a decrease in risky asset allocation) induced by

the length of the investment horizon itself, while holding sample size still. Bawa et al.

(1979) instead dedicated more attention on how estimation risk is affected by the use

of different samples, and in particular how the uncertainty is driven by the size of the

sample.

Regardless of uncertainty, the investor can decide whether to maintain the assump-

tion of constant expected returns or not. The latter specification is supported by the

evidence, historically established in literature, of long run predictability of returns. The

works of Campbell (1987), Campbell and Shiller (1988), and Fama and French (1998)

have shown how, by using a predictor variable, expected returns show some degree of

of predictability in the long run. This ability to forecast returns, seems to increase as the

investment horizon of returns increase (see Valkanov (2003))), and this is suitable for

our purpose, since are studying allocation at long investment horizon. As a such, it is

important to incorporate predictability in returns, in order to better form the expectations

on future returns.

The first chapter of the thesis is dedicated to the study the environment of constant

expected returns, in which the investor can choose whether to account for parameter

uncertainty or not. First of all we show that the optimal allocation toward stocks (✦),

is constant with respect to the investment horizon in the case in which the investor has

a power utility function, its objective is to maximize the terminal wealth, and assumes

constant expected returns. Such that an investor with one month investment horizon

and an investor with a 30 years investment horizon, will allocate the same proportion

of initial wealth toward stock. This results has been widely acknowledged in literature

and is ought to Samuelson (1969) and Merton (1969). Moreover, when the investor

gives up the assumption on certainty of estimated parameters and he acknowledges that

he is uncertain about them, the horizon irrelevance result is no longer valid even while

keeping the constant expected returns assumption. This was first noticed by Barberis

10



INTRODUCTION

(2000), and we show how the horizon effect is a sizable factor, that drives long-run

optimal allocation to stocks to be lower than the short-run ones, by about 10percentage

points (on average, depending on risk aversion and investment horizon). Moreover,

this horizon effect is strongly driven by the sample used in order to estimate the initial

parameters, by reducing the estimation sample to a most-recent one (10years sample),

the horizon effect nearly doubles in size, becoming an even more important factor to

incorporate in the analysis.

In the second chapter, we explore optimal investment strategies with a multiplicity

of assets. While assumption on the utility function and constant expected returns are

maintained, we enlarge the investment universe available to the investor. Initially, we

simply add another security and we show how the result of horizon irrelevance is con-

firmed. The allocation mix between the three asset is the same, irrespectively of the in-

vestment horizon When we incorporate parameter uncertainty, we confirm the presence

of the "horizon effect" also with multiple assets. This implies that the share invested

by a short-run investor is higher than the one invested by a long-run investor, for all the

asset tested. The analysis is repeated for an an investor who has 5 assets available in his

universe, and the results found are somehow different. While the horizon irrelevance

results is still present, the effect of uncertainty is mixed with diversification effect given

by the combination of different assets. The allocations obtained are no more strictly

decreasing along with the investment horizon. This does not imply that the underlying

uncertainty effect is disappeared, it is just blurred by some other effects.

In the third chapter, we give up the assumption of constant expected return assuming

them to be time-varying. Relaxing this assumption is necessary in order to account for

potential predictability in returns. Along with Barberis (2000), we use as a predictor

variable the dividend yield. First of all, we outline the theoretical relationship between

dividend price ratio and future expected returns (according to Cochrane (2016) Camp-

bell and Kandel and Stambaugh (1996)). Then we provide also econometric evidence

of this relationship, and along with Fama and French (1998) andValkanov (2003), we

justify that predictability increases as the investment horizon increase. Lower is the

frequency of returns, higher is our forecasting ability. After giving the economic intu-

ition and the econometric justification about predictability of returns using the dividend

yield, we incorporate this concept in a portfolio choice environment. The results show

that, due to mean reversion in returns that slows down the evolution of volatility of cu-
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mulative expected excess returns, stocks in the long run appear less risky. This imply

that the optimal fraction of wealth that the investor finds optimal to invest in the risky

component of the portfolio, is again sensitive to the investment horizon. But now it will

increase along with ❫❚ , in the sense that a long-run investor is much likely to allocate

more to stocks that its corresponding short-run peers. Nevertheless, the results we found

seem to be strongly driven by the assumption that we make on the value of the predic-

tor variable, and the values with which it enters the regression equation. As a such, it

is important also in the predictability environment to take into account uncertainty in

parameter, assuming that we are uncertain about the regression’s outcome (both in term

of ☛ as well as in term of ☞). Accounting for uncertainty will make our assumption

on the predictor variable’s value to be less relevant in our analysis, and allows us to

demonstrate the existence of a sort of "convergence-effect" in allocation that account

for predictability.

Throughout the various chapters, the results obtained changing the assumption on

the initial problem are compared with what is defined as baseline scenario, identified

by an investor who assumes constant expected returns and does not account for pa-

rameter uncertainty. This comparison helps us to realize how important is to take this

phenomenon into account, in order to avoid over-exposure to risks.

Strategic Asset Allocation

Strategic asset allocation can be defined as the way in which an investor decides to al-

locate its wealth between different asset classes, for a long horizon. The investment

horizon is usually really long, ranging between 10 and 50 years, and the re-balancing

frequency is low. The goal of strategic asset allocation is generally twofold: it should

represent the objective of the organization, and should help to construct a portfolio able

to represent the risk/return trade off of the investor. In the sense that, being such a long-

horizon choice, should represent the desire of the investor to undertake risks, and the

corresponding return that he would like to obtain given the risk assumed. The determi-

nation of the strategic asset allocation (S.A.A.) should reflect expectations on the struc-

tural behavior of economic variables, and should not be influenced by cyclical shocks.

This long-run allocation can be compared with tactical asset allocation (T.A.A.), which

instead is supposed to target short and medium run variations in the economic cycle and
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INTRODUCTION

market sentiment. Nevertheless T.A.A. and S.A.A. should not be threated as two differ-

ent blocks, but should interact one with the other. Strategic asset allocation provides the

reference allocation and asset mix in the long run, which will be cyclically adjusted with

tactical choices, that are driven by shorter-term phenomena. Exactly because these two

allocation pillars should "cooperate" one with the other, they should not be confused.

A recent example of this confusion comes from the widespread behavior of investor,

to change its strategic allocation after some shocks occur. A recent example of this, is

coming from the two recent financial shocks: the dot-com bubble and the great finan-

cial crisis. In the later 90s, investors (and institutional investors as well) were piling up

stocks in their portfolio, due to the fact that the return of this asset class where outper-

forming all the others. This led to the burst of the dot-com bubble, which undermined

trust of investors in the stock market, and led them to partly revise their portfolio. In the

subsequent period, between 2003 and 2007, investors started again to heavily rely on

portfolio largely composed by stocks, which exposed them to severe losses during the

great financial crisis in 2008. After this shock, investors radically changed their strate-

gic mix, shifting much of their wealth toward fixed income instruments. This signals a

confusion between strategic asset allocation and tactical asset allocation. While these

two shocks belong to the short-run market cycle thus should be addressed by tactical

choices, the lack of trust and the rise of fear and uncertainty led many investor to revise

their strategic asset mix. The magnitude of these shocks was so big, that they make

investors change their structural expectations on the economy.

Looking at the historical time series of different asset classes, we can try to see

how an investor can decide its strategic mix. In particular, we want to see whether

the common practice of investing more to stocks if the investment horizon is long, is

supported by the data. The practice to tilt a long horizon portfolio toward stocks rather

than toward bonds, is usually done because in the long run stocks tend to outperform

all the other asset classes. Stocks are, by nature, riskier than bonds. The owner of

a fixed income instrument, has the contractual right to receive back the amount lent,

and additionally he can receive periodical payments of interests. This guarantee is not

present for owners of stock, who can benefit from the increase in value of the instrument

or from the payment of dividends, but has no guarantee that the invested amount will be

repaid. As a such, stock investment should somehow repay the investor for the greater

risk suffered. If we look at historical annual data of returns for US stock,T-Bills and
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T-Bonds, we can find evidence of this. In table 1, we compare the average returns

that an investor could have obtained with the different asset classes, in nominal terms.

As expected, stock return have the highest average returns, but this is also very much

dependent by the evaluation period, and in order to check this, we test this result using

four different periods. The first period contain all the observations from 1952 onward

Table 1: Summary of average returns

S&P 500 3-month T.Bill 10-year T. Bond

1952-2016 12.01% 4.42% 6.07%

1984-2016 12.15% 3.64% 7.89%

2000-2016 6.07% 1.67% 5.72%

2007-2016 8.64% 0.74% 5.03%

Table 2: Risk premium of stocks

Stocks - T.Bills Stocks - T.Bonds

1952-2016 7.59% 5.94%

(2.21%) (2.49%)

1984-2016 8.51% 4.26%

(2.86%) (3.47%)

2000-2016 4.39% 0.34%

(4.53%) (6.12%)

2007-2016 7.90% 3.62%

(6.06%) (8.63)%

and will be used also throughout the thesis as the "baseline scenario" (instead of using

annual data, we will use monthly continuously compounded returns). The other periods

tested are shorter and more recent, and we used them in order to check the presence of

the previously mentioned shocks. Across these four different periods, we can see that

the return of the 10-year bond instrument is relatively stable, while the two other asset

classes look more volatile. If we were to consider only the last 16 years of data, stock

returns and bond returns were essentially equal, with a risk premium almost equal to

zero. This can signal that an investor owning shares was suffering a higher risk, while

receiving roughly the same return. The 2000-2016 can serve an example of possible risk

incurred by owning a lot of risky asset in the portfolio. People who had a sizable amount

of wealth invested in stocks suffered great losses, essentially due to the two recent great
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INTRODUCTION

financial shocks above mentioned (the dot-com bubble and the great financial crisis).

Such shocks can significantly undermine the wealth of investor over-exposed to stocks,

and strongly decrease trust. Besides the shocks, we can still see how, for longer samples,

both average yearly returns (table 1) and the respective risk premiums (table 2) are

generally much higher for stock holdings. This can still suggest that, in the very long

run, heavy investment in stock can be the way to go. This argument is also supported by

the findings of figure 1, where we calculate the cumulative nominal returns since 1952.

If in 1952 an investor would have allocate its wealth in stocks instead of bond, he would

have obtained a clearly better performance.

Figure 1: Cumulative returns in nominal terms, 1952–2016

Cumulative nominal return, calculated from yearly returns. The initial

point is 1951, which is assumed to be equal to 100. In the graph values

are in hundreds of dollars, and the scale is in logarithm base 10.

Evidence from the data support the general guideline given by investment advisors,

who suggest that investor with longer horizon should allocate more wealth to stocks,

with respect to short run investors. Despite this idea is very widespread and backed

by the data, it is against some historical findings in literature, which showed that an

investor that estimates returns as i.i.d. should always allocate its wealth in the same

way, regardless of the investment horizon.

In this work we try to investigate whether it is correct for a long-run investor to

allocate more of its wealth to stock, and how the optimal strategy can change with

respect to different assumption.
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1

Allocation with parameter uncertainty

In this chapter we analyze investment strategies of an investor whose purpose is to max-

imize expected utility at the end of a pre-defined period of time (investment horizon).

The main focus of the whole chapter is on the importance of the assumption that the

investor makes on the first two moments of the returns distribution. In particular, we

are interested in studying how to these assumption drive the percentage of wealth that

an investor finds optimal to invest in the risky component of its portfolio. In order to

do so, we dedicate section 1 to 4 to define the investment framework, specifying util-

ity function, investment universe and the algorithm used to solve the problem. After,

we explore the resulting optimal allocation that we find with two different assumptions

on returns: whether the investor incorporates parameter uncertainty on its estimation or

when he does not account for it. In section 1.5 we show the resulting optimal investment

strategy for the latter case, confirming the result found by Samuelson (1969) of horizon

irrelevance, such that the fraction of wealth invested is constant over time, regardless

of the investment horizon. Then we show the resulting optimal investment strategy for

the case in which the investor does incorporate parameter uncertainty, and we show that

in this case the allocation is decreasing over time, and that this horizon effect can arise

also in a context of independent and identically distributed returns. We then focus on

analyzing the importance of the sample of data used in the problem, and we show how,

by changing it, we end up with completely different optimal investment strategies. We

use four different panel that we define ad-hoc and that help us to better understand the

effect of different sample specification. In particular, much of our attention is dedicated

to show that a reduction in sample size also cause an increase in uncertainty, which im-
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1. ALLOCATION WITH PARAMETER UNCERTAINTY

ply a greater horizon effect in the resulting allocation. Finally, we perform a sensitivity

analysis on interest rates of the risk-less component of the portfolio, showing the siz-

able positive impact that a low interest environment has on the fraction of wealth that

an investor finds optimal to invest in risky assets.

1.1 Investment universe

As a starting point, the investment universe that we set for our investor will be quiet sim-

ple, and identical to the one of Barberis (2000). His work will not only provide us the

starting point and guidance, but will also be the benchmark against which we will com-

pare some initial findings. The investor optimizes its allocation choices between a risky

asset and a non-risky one. The risky asset is defined as the continuously compounded

return on the SP500 index, in the period between 1952 and 18 April 2017. Returns are

calculated on a monthly basis, obtaining a sample of 954 months.The risk-less asset is

instead a rate held constant for the whole investment horizon. For the initial part of the

section, we keep it constant at the exact same rate used by Barberis (2000), which is

0.34% monthly.

1.2 The asset allocation framework

For the purpose of our analysis, we consider a buy-hold investor, which is defined as an

investor who, at a given starting point in time t, perform an allocation choice with the

informations available at that time and, given its allocation decision, does not change it

until the end of the investment period, regardless of the new information flow that he

receives. For example, an investor who has a 30-year investment horizon, decides how

to allocate at the starting point and then freezes its allocation until the defined period

is over. This strategy is compared to the one of a myopic re balancing investor. An

investor that myopically re balances is defined as someone who does not consider new

informations coming after each period, and at each interval he comes back to the allo-

cation of the initial period t. The re balancing is called myopic because does not take

into consideration the additional flow of informations that he receives. Albeit this dif-

ferentiation is relevant from a theoretical point of view, Barberis (2000) examines both
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1.2. The asset allocation framework

of these approach and founds results essentially identical in term of optimal allocation

and with respect to the factors that determines these choices. For these reason, we will

restrict our analysis only to the buy-hold investor. As previously said, our investor has

to make a decision of how to allocate its wealth at a starting point in time. Moreover,

he also fixes an investment horizon ❫❚ , which is essentially the point in time until which

he hold the allocation chosen. The ultimate goal is to maximize its final wealth (namely

the ❲t✰ ❫❚ ), which is defined as follows:

❲❚✰ ❫❚ ❂ ✭✶� ✦✮❡①♣
✏
r❢ ❫❚

✑
✰ ✦❡①♣

✏
r❢ ❫❚ ✰ r❚✰✶ ✰ r❚✰✷ ✰ ✿✿✿✰ r❚✰ ❫❚

✑
✿ (1.1)

Of course the investor cannot estimate with certainty how will its wealth in t✰ ❫❚ periods

ahead, but he estimates an expected utility. We thus have to represent the investor’s

objective function in expected value terms❊t✭❲❚✰ ❫❚ ✮. In order to calculate and optimize

the expected wealth, we need to define how much satisfaction we can obtain from each

allocation. Therefore, we need to define an utility function that allows us to rank the

wealth obtained by the different allocations. As specified by Campbell and Viceira

(2002), in order to obtain a tractable model of portfolio choice, we need to make some

assumptions about the distribution of asset returns as well as the type of utility function.

We choose a power utility function combined with log-normal asset returns. A power

utility function tells us that relative risk aversion is constant, while absolute risk aversion

is declining with respect to wealth (that in our case is fixed at 1 at investment time). The

main motivation of this choice arises from the necessity to study long-term portfolio

choice, and therefore the log-normality assumption of asset returns is particularly handy.

This because log-normality can be extended easily to multi-period returns, since the

product of two log-normal random variables is still log-normal. Having said that, we

will define the power utility function as:

✉ ✭❲ ✮ ❂
❲ ✶�❆

✶� ❆
✿ (1.2)

where ❆ is the risk aversion coefficient that will shape our choices. Stating the utility

function allows us to finally explicitly write the optimization problem that the investor
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1. ALLOCATION WITH PARAMETER UNCERTAINTY

faces:

♠❛①t❊t

✥
❢✭✶� ✦✮ ❡①♣✭r❢ ❫❚ ✮ ✰ ✦ ❡①♣✭r❢ ❫❚ ✰❘❚✰ ❫❚ ✮❣

✶�❆

✶� ❆

✦
(1.3)

with ❘❚✰ ❫❚ defined as:

❘❚✰ ❫❚ ❂ r❚✰✶ ✰ r❚✰✷ ✰ ✿ ✿ ✿✰ r❚✰ ❫❚ (1.4)

Equation 1.3 is saying that we are looking for the optimal fraction of wealth to allocate

to stocks, identified by the weight ✦, that maximizes the terminal expected utility. The

expected value in 1.3 not only indicates that the investor must estimated its expected

utility, but it also signals that he must perform this calculation conditionally of the in-

formations that he has at the starting point t. This is the assumption common to all the

approaches that we will follow during this and the following chapter: the investor uses

the past history as an input to perform its optimization. Given this initial assumption, we

then give two possibilities to our investor for the estimation of future expected returns:

either take into account parameter uncertainty or ignore it in full.

1.3 Including parameter uncertainty

In this first chapter, we assume that the investor does not reject the constant expected

return null hypothesis, which is exactly equal to say that he does not allow for any pre-

dictability/time variation in expected return. Given this assumption, he will hypothesize

future expected returns to be defined as realization of an independent and identically

distributed random variable. This assumption will be kept whether we assume cer-

tainty in parameters, as well as when we do not. Keeping this assumption for both

the cases, will not only enable us to isolate the "pure" effect of parameter uncertainty

(without additional consequences of predictability, see chapter3), but will also allow

us to demonstrate that parameter uncertainty can arise and have a sizable effect also

in a constant expected returns environment. The choice that the investor faces when

deciding whether to incorporate uncertainty or not, is whether he will estimate returns

as ♣✭❘❚✰ ❫❚ ❥r❀ ✖❀ ✛
✷✮, assuming ✖ and ✛✷ as fixed and given (case 1) or either estimating

♣✭❘❚✰ ❫❚ ❥r✮, therefore explicitly incorporating uncertainty in parameters.
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1.3. Including parameter uncertainty

1.3.1 Case 1: No uncertainty

We will consider first the situation in which the investor does not take into account

uncertainty in parameters. In this case, the problem that the investor faces can be defined

as follows:

♠❛①✦

❩
✉✭❲❚✰ ❫❚ ✮♣✭❘❚✰ ❫❚ ❥r❀ ✖❀ ✛

✷✮❞❘❚✰ ❫❚ (1.5)

We can see how, in equation 1.4, the returns’ distribution assumes no uncertainty on

the estimation of the parameters. As previously mentioned, in this case the investor

uses ♣✭❘❚✰ ❫❚ ❥r❀ ✖❀ ✛
✷✮ in order to represent its belief in future returns. In order to gen-

erate returns then, still keeping the assumption of them being independent and identical

realization of the same process, he computes them as follows:

r❚✰✶ ❂ ✖✰ ✎t✰✶
...

r❚✰ ❫❚ ❂ ✖✰ ✎t✰ ❫❚

(1.6)

Thus, the sum of future expected returns ❘❚✰ ❫❚ ❂ r❚✰✶✰ r❚✰✷✰ ✁ ✁ ✁✰ r❚✰ ❫❚ is normally

distributed according to:

❘❚✰ ❫❚ ✘ ◆✭✖ ❫❚ ❀ ✛✷ ❫❚ ✮ (1.7)

The resulting allocation, are shown in the figures in the next section with a blue line.

1.3.2 Case 2: Uncertainty

In contrast to the approach just outlined, the investor could opt for an estimation pro-

cess in which he does take into account uncertainty. It has been well acknowledged

in literature that the degree of confidence that an investor should give to ✖ and ✛,

is far from 100%. For this reason, much of the past research tried to show how an

investor can still base its observation on historical moments of the returns’ distribu-

tion, but in parallel he can take into consideration that these estimates are neither fixed

and neither certain. Keeping the assumption for which stock dynamics evolves as

rt ❂ ✖ ✰ ✎t a Brownian motion, the investor could forecast his expected future re-

turns as ♣✭r❚✰ ❫❚ ❥❘✶❀❥❀ ❘✶❀❥✰✶ ✿ ✿ ✿ ❘✶❀❚ ✮ thus without making assumptions on ✖ and ✛.

The uncertainty on them is explicitly accounted for, by constructing ♣✭r❚✰ ❫❚ ❥r✮ (where
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1. ALLOCATION WITH PARAMETER UNCERTAINTY

r=❘✶❀❥✰✶ ✿ ✿ ✿ ❘✶❀❚ ), as a predictive distribution. The problem that the investor faces can

be therefore represented by the following equation:

♣✭❘❚✰ ❫❚ ❥r✮ ❂

❩
♣✭❘❚✰ ❫❚ ❀ ✣❥r✮❞✣ ❂

❩
♣✭❘❚✰ ❫❚ ❀ ✣❥r✮♣✭✣❥r✮❞✣ (1.8)

where ✣=❬✖❀ ✛❪. In equation 1.8 we can see how, in contrast with 1.4, the investor

forecasts expected returns only conditionally on historical returns, without making any

further assumptions on the parameters ✖ and ✛ which are explicitly integrated out. The

problem that the investor faces, can finally be expressed as:

❩
✉✭❲❚✰ ❫❚ ✮♣✭❘❚✰ ❫❚ ❥✣❀ ③✮♣✭✣❥r✮❞✣❞❘❚✰ ❫❚ (1.9)

In order to integrate out uncertainty, the investor should create its forecast using a

bayesian environment. The following steps are borrowed from Barberis (2000) who

himself relies on the methodology outlined by Zellner (1971). The starting point is the

specification of a prior distribution, that will be the baseline for the calculation of the

posterior. We can express it as:

♣✭✖❀ ✛✷✮ ✴
✶

✛✷
(1.10)

with 1.10 being an uninformative prior, that summarizes our prior knowledge about

parameters distribution. Then, following the approach of Zellner (1971) and using its

conversion tables, we have that:

✛✷❥r ✘ ■●

✥
❚ � ✶

✷
❀
✶

✷

❚❳
t❂✶

✭rt � ✖r✮✷

✦

✖❥✛✷❀ r ✘ ◆

✒
✖r❀
✛✷

❚

✓ (1.11)

For the sake of notation, r indicates the average return of the stock over the estimation

sample. ❚ acts as a discount factor, playing the role of the uncertainty about the dis-

tribution of average historical excess returns, and ❚ itself is defined as the size of the

estimation sample. As we can see, ❚ also enters into both the scale and the shape pa-

rameters of the inverse gamma distribution in 1.11. The steps to be followed in order to

perform the integration over the uncertainty consists in:
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1.3. Including parameter uncertainty

✎ First we take a reasonably large number of draws (we use 1000000) from ♣✭✛✷❥r✮,

which is an Inverse Gamma distribution.

✎ For each of the simulation of ✛✷ previously drawn, we sample another time from

♣✭✖❥r❀ ✛✷✮, which is a normal distribution centered around the mean and with a

dispersion which depends from the ✛✷ we generated, and from the size of the

sample ❚ .

✎ After step one and two, we end up having a matrix with dimensions ♥s✐♠ ✂ ✷,

that can be described as ✷
✻✻✻✻✹

✖✶❀ ✛✶

✖✷❀ ✛✷
...

✖♥s✐♠❀ ✛♥s✐♠

✸
✼✼✼✼✺

For each of these columns, we sample the last time from a normal distribution

defined as:

❘❚✰ ❫❚ ✘ ◆✭✖ ❫❚ ❀ ✛✷ ❫❚ ✮ (1.12)

where this time ✖ and ✛ are generated through the first two steps.

The intrinsic difference between accounting or not for parameter uncertainty, is given

by step 1 and 2. While if we estimate ♣✭❘❚✰ ❫❚ ❥r✮, we take ✖ and ✛✷ as fixed and given, if

instead we use ♣✭❘❚✰ ❫❚ ❥r❀ ✖❀ ✛
✷✮ these parameter are described a distribution themselves.

The way in which we can compare the two approach is twofold: we can take a look

at how different are the expected returns forecast with the two methods, or we look at

how these two methodologies affect the asset allocation choices, with a particular focus

on the long-run.

Before looking directly at the consequences that taking into account for uncertainty

has on the optimal fraction of wealth to allocate to the risky component of the portfolio,

we briefly describe the algorithm used to solve the problem, and the data that has been

used to produce the graphs.
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1. ALLOCATION WITH PARAMETER UNCERTAINTY

1.4 A sketch of the algorithm

In order to perform the maximization of the utility function described in 1.3, we solve

the problem numerically since there is not a closed form solution of our utility function.

Regardless of the way in which returns expectations are formed, the integral in equation

and , are approximated by taking the average, over the number of simulations, of the

wealth calculated using each of the simulated return. The formula used can be written

as follows:

✶

◆❙✐♠

◆❙✐♠❳
✐❂✶

✭
❢✭✶� ✦✮ ❡①♣✭r❢ ❫❚ ✮ ✰ ✦ ❡①♣✭r❢ ❫❚ ✰❘✐

❚✰ ❫❚
✮❣✶�❆

✶� ❆
✮ (1.13)

In order to calculate end-of-period utility, the algorithm constructs a grid of possible

values that the utility function can take given the weight of the risky and risk free com-

ponent. We allow our weights to range between 0 and 100, such that we’ll have 100

possible combinations (in the case of only 2 assets, one risky and one risk less). Then

the algorithm calculates the terminal utility and finds the maximum one. The weight

that ensure the maximum utility are the optimal ones, since they give the investor the

maximum terminal utility for that period ❫❚ . Then the procedure is repeated for each

investment horizon, such that we find a vector of optimal weights for each possible

❚ ✰ ❫❚ . In the base case, we end up with a grid that has a dimension of 100* ❫❚ (such

that in our baseline scenario, with a maximum horizon of 120months, the size will be

100x120), but the complexity of the problem increases quickly when we perform our

sensitivity analysis or when we increase the number of assets between which the in-

vestor can choose. The number of simulation used to compute posterior distributions is

10000000, which should ensure reliability and stability of results.

1.5 Allocation results

In order to see the results, we plot the different optimal allocation choices for an investor

that does take into account parameter uncertainty, and we compare these findings with

the case in which he does not account for it. These results can be seen in figure 1.1 in

which,first of all, we focus our attention to the blue line. It shows the optimal fraction

of wealth that the investor would allocate to the risky component of the portfolio, for a
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1.5. Allocation results

Figure 1.1: Optimal asset allocation - No-Uncertainty vs Uncertainty
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The graphs displays on the y-axis the ✦✄ allocated to stocks, and on the

x-axis the time horizon ❫❚ . The blue line represents the optimal allocation

without uncertainty, while the red line displays the allocation in which the

investor incorporates for it. ❛❱ is the risk aversion coefficient
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1. ALLOCATION WITH PARAMETER UNCERTAINTY

time horizon ❫❚ , when the investor does not take into account uncertainty in parameters.

The line is constructed by connecting the allocations in each point in time, so it is a dis-

crete vector of allocation, in which each entry corresponds to a time horizon. As we can

see from the figure, the blue line is constant across the investment period, reflecting the

famous result of "horizon-irrelevance" shown by Samuelson (1969) and Merton (1969).

Their work showed how variations in the time horizon of the investment does not cause

changes to the optimal investment strategy, given that asset returns are i.i.d., the utility

function is CRRA and there are no transaction costs. The optimal resulting strategy

would be a constant allocation, regardless of the ❫❚ . Given this results, it is interesting

to compare it with the allocation for an investor that instead accounts for parameter un-

certainty.. First of all, we can have a look at the table 1.5 which show the results of the

Table 1.1: Descriptive statistics of the posterior distribution generated using the full sample of informa-

tions available

✖ ✛
0.0058 0.0012

(0.0013) (6.36E-05)

posterior generated according to the methodology explained in subsection 1.3.2. Here

we can see the mean and volatility of the posteriors’ distribution parameters, and the

respective standard deviations in parenthesis. As a first step we compare them with the

historical parameters, with are respectively 0.58% for ✖, and 0.0012 for the volatility.

What we can see from table 1.5 is that the posterior distribution is fairly in line with the

values we estimated from the historical observations. Nevertheless, since in this case

the parameters are generated from a posterior sampling, then they have are also charac-

terized by a standard deviation (value in brackets in table 1.5). The standard deviation is

particularly important, since we can interpret it as a measure of confidence and certainty

that the investor can give to the generated posterior. Higher is the standard deviation of

the parameters, lower will be the confidence that we put on them. As we could expect,

the main driver of allocations in the long run will be the standard deviation of the poste-

rior distribution ✖. Higher the standard deviation, higher we expect will be the impact of

incorporating uncertainty in the problem. Moving to analyze the resulting optimal allo-

cation, we can see from the red line in figure 1.1 that, even in a context of i.i.d. returns,

relaxing the assumption of no-uncertainty causes the optimal investment strategy to be
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1.5. Allocation results

no more independent with respect to time. The magnitude of taking into account this

uncertainty is substantial, in fact it causes allocation to decrease of a sizable amount,

regardless of the risk aversion of the investor. As shown in the recap table 1.2, the

Table 1.2: Allocation results for different risk aversion, at different investment horizon expressed in

number of months (e.g: ❫❚=120 imply 10years). ✁ is calculated as the difference between ❫❚=120 and
❫❚=1. Results identify the % of wealth invested in the risky component of the portfolio.

❫❚=1 ❫❚=36 ❫❚=84 ❫❚=120 ✁
aV=2 1.00 1.00 1.00 1.00 0%

aV=5 0.48 0.47 0.44 0.43 -10%

aV=10 0.24 0.23 0.23 0.21 -13%

aV=20 0.12 0.11 0.11 0.1 -17%

aV=50 0.05 0.05 0.04 0.04 -20%

aV=100 0.02 0.02 0.02 0.02 0%

decrease is essentially uniform in percentage regardless of the risk aversion coefficient

used.This is a conclusion that could sometimes be a little bit difficult to get from the

graphs, because when the aversion is higher, ✦ is much lower. In such cases, when we

incorporate uncertainty the allocation changes only of some small amount of percentage

wealth. Nevertheless, it is fundamental to acknowledge that, even though the decrease

is much lower in absolute term, in relative term the effect is sizable and even higher.

This conclusion can be taken from the most right column of table 1.2, that shows the

change in percentage terms between the shortest and the longest horizons. This findings

supports the argument that it is particularly important, especially for strongly risk averse

individual, to take into account estimation risk. Looking at figure 1.1, we can now fo-

cus on the red line, showing the optimal strategy when we incorporate uncertainty. At

very short investment horizon, we can confirm that the allocation is very similar with

and without uncertainty. We can see how in this case ✦ is strongly decreasing through

time, causing the allocation for a 120months investor to be radically different from the

strategy of a 1month investor. In some cases, differences are greater that 10% in abso-

lute terms. Again we stress the fact that differences in absolute term are only one side

of the results, and that we should focus more in relative term variation (shown in table

1.2). The difference of the results obtained in the two allocation problems (with and

without uncertainty), is due to the pace at which variance increases through time. In the

case in which we do not incorporate uncertainty, the variance is defined according to
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1. ALLOCATION WITH PARAMETER UNCERTAINTY

equation 1.7, where we can see that ❫❚ linearly scales the variance. On the other hand,

when the investor incorporates uncertainty, then its forecasts are driven by a higher de-

gree of uncertainty and, additionally, expected returns are autocorrelated. This because

when an investor expect one-period ahead returns to be high, then he will also forecast

the two period-ahead returns to be high as well. This autocorrelation component causes

cumulative variances to increase more than proportionally, and is the main driver of the

decrease in the optimal allocation toward stocks through time.

1.6 The importance of estimation sample

The sample that we use to estimate the parameters, plays a key role in our analysis. The

consequences of using different sample are also much more sizable in the case in which

we incorporate parameter uncertainty, with respect to when we do not. The drivers

through which the sample influences the results, are the following:

✎ First of all, it influences the historical ✖ and ✛ that we calculate from our sample.

If we consider only a period of historically high returns, then we are likely to be

biased upwards in our allocation.Since these two parameter are the base of our

return forecast, then they play a key role in the resulting optimal allocations.

✎ The sample matters also in term of size, because shorter is the sample size, greater

will be the parameter uncertainty faced by the investor.

In order to prove the importance of the initial sample, we repeat the analysis of the

previous section, using four different possible sample compositions:

✎ The first choice we call it "Full sample", and is when we use the whole dataset

from 1952 up until now, of continuously compounded monthly returns. This

dataset would be the input for an investor who believes that using the whole his-

tory provides a better estimate.

✎ "Half sample" is instead defined as the full sample broken in half, out of which

only the most recent half is considered in our estimation. An investor could prefer

this sample because he might find not representative the observations too far in

the past.
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1.6. The importance of estimation sample

✎ A sample that we call "Pre crisis sample" considers only the historical values

between 1952 and 2007. Therefore it does not include the great crisis and the

most recent observations. This sample can be used in order the assess the impact

of the financial crisis.

✎ Finally, we want to use a "Post crisis" sample. Which is a very-short estimation

sample, defined as the observation from 2008 up until today. Such a dataset could

be used by an investor who firmly believes that the underlying variable is strongly

time-varying, thus prefers to use only very recent informations.

Figure 1.2: Optimal allocation with different samples
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The blue line represents the case in which we ignore parameter uncer-

tainty, while the red line is the case in which we incorporate it. All the

four graphs assumes the same level of risk aversion ☛=5, and differ with

respect to the sample considered in the estimation.

In the following section, we hold the "full-sample" case as our baseline scenario, and we

use it as a benchmark. By comparing the allocation obtained varying the initial sample

with respect to the baseline scenario, we can see the impact that the sample itself has on

the investor’s choices. We start by repeating the exercise done in previous section, and

we first take a look at the descriptive statistics of the posterior distributions generated
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1. ALLOCATION WITH PARAMETER UNCERTAINTY

using different estimation samples. In table 1.3 we compare the results using the four

Table 1.3: Recap table of posterior distribution

FullSample HalfSample

✖ ✛ ✖ ✛
0.0058 0.0012 0.0067 0.0013

(0.0013) (0.0001) (0.0019) (0.0001)

PreCrisis PostCrisis

✖ ✛ ✖ ✛
0.0062 0.0012 0.0098 0.0011

(0.0013) (0.0001) (0.0035) (0.0002)

different specifications described above. As we can see, when we change the sample all

the parameter estimates change a lot as well. The most important parameter for us is the

standard deviation of the posterior ✖. As previously mentioned, this parameters signals

the degree of uncertainty that the investor does have on the posterior. Higher is the

standard deviation of ✖, higher will be the difference between the ✦ of an investor with

❫❚ small and of an investor with ❫❚ high. Additionally, another driver of the investor’s

optimal allocations in table 1.3 is the posterior’ s distribution mean. Higher the mean

of the posterior ✖, drives up or down the fraction ✦ of wealth that the investor finds

optimal to invest, at the beginning of its investment period. As a such, higher is this

value, higher will be the allocation to stock for an investor with short-horizon ❫❚ . The

reason why an investor could prefer to use a more recent subsample instead of a full

one arise from the fact that he might believe that the parameters are described better

using more recent data. In fact, he might flag 50-years old observations as unreliable

or, at least, less reliable than more recent ones. In figure 1.2 we plot the optimal

investment strategy for an investor who has the same risk aversion coefficient (held at

☛=5), but uses the four different samples. By doing so, we can isolate the effect of

the different sample, since we hold all the other assumptions equal in the 4 plots. If

we analyze the results, we can see that both the "horizon irrelevance" and the "horizon

effect" described in the previous sections, are held regardless of the initial estimation

sample. Nevertheless, the impact of these effects on the optimal investment strategy

is very different across the four different sample specifications. In order to have an

idea of the magnitude that this parameter uncertainty have on the ✦, we can compare
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1.6. The importance of estimation sample

Table 1.4: Allocation results for different risk aversion, at different investment horizon expressed in

number of months (e.g: ❫❚=360 imply 30years), using the four estimation samples. ✁ is calculated as the

difference between ❫❚=360 and ❫❚=1. Results identify the % of wealth invested in the risky component of

the portfolio.

❫❚=1 ❫❚=60 ❫❚=120 ❫❚=180 ❫❚=240 ❫❚=360 ✁
Full sample

aV=2 1.00 1.00 1.00 1.00 0.98 0.92 -8%

aV=5 0.48 0.46 0.43 0.41 0.39 0.35 -27%

aV=10 0.24 0.22 0.21 0.2 0.18 0.17 -29%

aV=20 0.12 0.11 0.1 0.1 0.09 0.08 -33%

aV=50 0.05 0.04 0.04 0.04 0.04 0.03 -40%

aV=100 0.02 0.02 0.02 0.02 0.02 0.02 0%

Half sample

aV=2 1.00 1.00 1.00 1.00 1.00 0.92 -8%

aV=5 0.6 0.53 0.48 0.44 0.4 0.34 -43%

aV=10 0.3 0.26 0.23 0.21 0.19 0.16 -47%

aV=20 0.15 0.13 0.11 0.1 0.09 0.08 -47%

aV=50 0.06 0.05 0.05 0.04 0.04 0.03 -50%

aV=100 0.03 0.03 0.02 0.02 0.02 0.02 -33%

Pre-crisis sample

aV=2 1.00 1.00 1.00 1.00 1.00 1.00 0%

aV=5 0.58 0.54 0.5 0.47 0.44 0.4 -31%

aV=10 0.29 0.26 0.24 0.23 0.21 0.19 -34%

aV=20 0.14 0.13 0.12 0.11 0.1 0.09 -36%

aV=50 0.06 0.05 0.05 0.04 0.04 0.04 -33%

aV=100 0.03 0.03 0.02 0.02 0.02 0.02 -33%

Post-crisis sample

aV=2 1.00 1.00 1.00 1.00 1.00 0.87 -13%

aV=5 1.00 0.77 0.59 0.47 0.4 0.3 -70%

aV=10 0.6 0.38 0.28 0.22 0.19 0.14 -77%

aV=20 0.3 0.19 0.14 0.11 0.09 0.07 -77%

aV=50 0.12 0.07 0.05 0.04 0.04 0.03 -75%

aV=100 0.06 0.04 0.03 0.02 0.02 0.01 -83%
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Figure 1.3

(a) Optimal allocation with different samples
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(b) Indexed optimal allocation with different samples. Values displayed are

indexed, such that at ❫❚=1 we have ②=100.
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In both figure a and b, the risk aversion coefficient is held at ☛=20, in

order to isolate the effect of a reduction in the estimation sample size on

parameter uncertainty
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the top-left and bottom right plot in figure 1.2, which show the "Full-sample" and the

"Post-crisis" samples respectively. Even though the starting point is different, we can

see how using the full sample specification, the horizon effect is around 10% with a

10year horizon. On the other hand, when the investor uses the most recent (and shorter

in term of size) subsample, then this effect is around 25%, almost three times higher

that the previous specification. The number just quoted can give us an idea about the

decrease in the allocation in absolute term of initial wealth. Nevertheless, if we look

at the variations in relative terms, then the difference that arise changing the panel is

even more striking. If we look at figure 1.4b, we can see the indexed evolution of the

variation in the allocation. In order to construct this graph, we divide each ✦ at each ❫❚ ,

for the ✦ at ❫❚=1. Using this methodology, we can see how different is the allocation

at the end of the horizon with respect to the allocation at the beginning of the horizon.

The difference between the four panels that we are using is even more clear here. If we

consider the baseline scenario (blue line on the graph), we can see that the difference, in

30 years time, is around 30%. Instead using the "post-crisis" sample, then the difference

is around 70%, meaning that, for an investor with risk aversion of 20, ✦ ❫❚❂✸✻✵ is 30% of

the ✦ ❫❚❂✶. The driver of this difference is again the standard deviation of the posterior

distribution’s ✖. Looking at table 1.3, we can see how the standard deviation using the

"Post-Crisis" sample is 0.0035, nearly three times greater than the standard deviation

obtained using the entire sample (0.0013). In order to further investigate the impact of

parameter uncertainty, we decided to extend the investment horizon, from 120months to

360months (representing 30years ahead). From table 1.4, we can see that not only the

decreasing path continues after 10 years, but that it continues in an uniform or, in some

case, more than uniform pace. The most-right column of table 1.4, displays the delta in

✦, that we calculated as difference between the allocation at ❫❚=30years and ❫❚=1month.

As we can see, the greater changes are shown in the bottom panel of table 1.4, that

displays the allocation when we use the "Post-Crisis" sample. In relative percentage

terms, the horizon effect changes the allocation of the huge amount of 65-75% when

we use the most recent sample. As explained in the previous section, the difference

in the two allocation problems (with and without uncertainty), is due to the speed at

which variance increases through time, and the fact that with uncertainty this pace is

more than linear. This higher uncertainty is driven by the size of the sample used in

the estimation, as it is shown in the recap table. Lower is the size of the sample, higher
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is the standard deviation surrounding the posterior distribution’s ✖. The way in which

sample size affect the posterior, can be seen in equation 1.11, where ❚ exactly identify

the size of the sample. The dimension of the sample induces the higher uncertainty

because the standard deviation of the posterior distribution of returns that the investor

generates is higher. Having this higher dispersion in its distribution, makes the investor

slightly more uncertain and since, as we said before, when we account for uncertainty

variance grows more than linearly with ❫❚ , then this difference gets bigger and bigger as

the investment horizon increases.

1.6.1 EWMA

In both figure 1.4a and 1.4b, in addition to our four samples we also plotted an alloca-

tion line called "EWMA". This line identifies the resulting optimal investment strategy

for an investor that uses the full sample as input, but instead of calculating ✖ and ✛ as

the arithmetic average, calculates them as an exponentially moving average with rolling

windows. More in detail, in order to obtain these results, we used a rolling window of

180months, and a time-decay factor ✕=0.96. The purpose of this additional methodol-

ogy is to solve the trade-off that the investor has, between the willingness to use more

recent samples, and the fact that by reducing the sample its uncertainty increase sharply.

In order to prove that the EWMA methodology can alleviate this problem, we repeat the

optimization procedure performed in the previous section, considering EWMA as a new

input sample. From table 1.5, we can look at the descriptive statistics of the posterior

distribution generated with this methodology. We can see how we obtain a posterior

Table 1.5: Descriptive statistics of the posterior distribution generated using the full sample of infor-

mations available, and estimating moments with a rolling EWMA methodology, with a window size of

180months, and ✕=0.96

✖ ✛
0.0078 0.00092

(0.0013) (5.40E-05)

returns mean of 0.0078, which is quiet close to the estimate that we had in the "post-

crisis" specification (see bottom-right panel of table 1.3). This suggests that the EWMA

is successful in giving more weight to the most recent data point. Additionally, we can

see that the standard deviation of the returns posterior distribution’s mean is much lower
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using the EWMA, being equal to the full-sample figure. This allows us to conclude that

EWMA, both do not induce higher uncertainty in the estimation, and fulfill the desire to

give more importance to recent observations. The results obtained using this method are

very interesting and can be see in figure 1.4a and 1.4b. The green line plot the optimal

strategy obtained, and we can see how the degree of uncertainty that we have is much

lower. If we focus on the bottom plot, we can see how the indexed allocation line shows

us that the ✦ is decreasing over time, but at a much lower pace with respect to the case

in which we use the most-recent sample. The optimal share of wealth invested in the

risky asset at the very end of the investment horizon is 70% of the optimal one at the

starting ❫❚ , signaling that the horizon effect in 30years time is roughly 30%. Recalling

that, when the investor was using the shortest estimation sample, this share was only

30% (so a decrease of 70%), it is quiet a big improvement. The Exponentially weighted

moving average, allow us to keep the horizon effect to a reasonable level while assign-

ing more weight to recent observation. Thus, it look like a good strategy to represent

investor’s preferences.

1.7 Low interest rate environment

Up until now, we have assumed that the investor was allowed to choose between two

different asset classes: a risky and a risk less one. While the risky asset performance was

measured according to its past performance, the risk free asset was assumed constant.

Throughout the previous section, our approach followed the one of Barberis (2000),

such that we held the risk free rate constant for the whole investment period (even for

the 30years!) at a rate of 0.36%. This rate was the real return on T-bills over December

1995, and might have been possible in the past, but currently is no more realistic, es-

pecially in light of the fact that an hypothetical risk free security does not exist per se.

As a such, the allocations obtained in the previous section, do not really reflect current

market conditions and we try to examine what happens when we push rates downward.

We perform a sensitivity analysis on the risk free rate, maintaining the assumption that

they are constant through the whole horizon, but now we use the following rates as in-

put: [0.34%,0.074%,0,-0.074%,-0.46%]. This sensitivity analysis is carried out simply

by repeating the optimization algorithm/problem that we had before, but trying different

inputs. Recall that the risk free interest rate enters into our problem in equation 1.3. As
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1. ALLOCATION WITH PARAMETER UNCERTAINTY

of now, we are not interested in analyzing the value of the new allocation per se, but

we are interested in the general trend and how changing the risk free rate impacts the

optimal resulting allocation overall. For this reason, we analyze the allocations obtained

using different risk less rates altogether, focusing on what we could call the "range" of

allocation, identified by the difference in ✦ between the highest and lowest value of the

risk free rate. In order to express this "range" concept in term of allocation, we can

define this difference as a ✁, calculated as follows:

✁ ❂

✔
✦✭r❢❂✵✿✸✺✪✮ � ✦✭r❢❂�✵✿✹✻✪✮

✦✭r❢❂�✵✿✹✻✪✮

✕
(1.14)

Thus, using this ✁ we can easily compare and see the effect that a move in the r❢ rate

cause. In order to see how the risk-less component impacts our results, we can look at

figure 1.5, where we display the spectrum of allocations using different rates.

Figure 1.5: Low rates- allocation with different samples - IID
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In each graph we plot the ✦ for an investor that does not account for pa-

rameter uncertainty and uses the full estimation sample. Each line corre-

sponds to a different value of the r❢ component, and each plot corresponds

to a different risk aversion coefficient. Please note that in some case there

might be displayed less than 5 lines, when two or more allocations are

overlapping (displaying the same values).
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In figure 1.5, we can see the allocation range for different input rates, for an investor

that uses the full sample and that does not take into account parameter uncertainty. In

each of the four graphs, every line correspond to a different risk-free rate, and each

graph itself corresponds to a different risk aversion coefficient. Here we can see that

the results of the sensitivity is a shift in implied optimal allocation. We can see how,

if we consider an investor who has a risk aversion coefficient of ☛=10, the optimal

allocation is 24% in the case with the highest risk-free rate, and 89% when instead we

use the lowest r❢ . Solely by changing the rate, we obtained completely different optimal

investment choices. This results is straightforward, since when we decrease the return

of one component of our portfolio, the attractiveness of the other assets(that are not

affected by the change) increases.This is clearly shown by the fact that the lines go up

as the risk free rate goes down, and the movement in ✦ is sizable. Provided that the first

round effect is the one above described, then we would like to see whether this finding

is uniform with respect to different allocations. In particular, we want to investigate

whether the risk aversion coefficient plays a role in the impact that the variation of the

deterministic rate have. In fact, looking at figure 1.5 and comparing the four plots, we

can see how, in absolute terms of ✦, it looks like high risk aversion partly neutralize the

impact of the sensitivity analysis. Comparing the two figures on the right, with aversion

equal to 10 and 50 respectively, we can see how the range between the lowest and the

highest allocation is 0.65 in the former case, and 0.13 in the latter. This could potentially

lead us to say that the "neutralizing" effect of risk aversion is present and sizable. This

finding could also be backed by an economic intuition that, as the investor is more and

more risk averse, the optimal share that he is willing to invest in the risky component

is less determined by the rate but it is almost solely determined by its riskiness. Albeit

this strong argument, the empirical evidence is not that simple. If instead of displaying

the allocations in absolute term of wealth, we compare their ✁ in relative terms, then

the picture changes. In table 1.6 we display the allocations values as well as the ✁ for

each value of risk aversion. Looking at the results in table 1.6 we can see that, contrary

to what expected, a really high averse individual is as sensitive as a low risk averse

to changes in the risk free rate. In order to come to this conclusion, we compare the

allocation for each different risk free rate, for the four risk aversion coefficients that

we are considering. As we can see, the ✦ of an investor with an ☛=10 is 3.5 times

higher when the risk free rate is at -0.46%, than when the rate is 0.36%. And this
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1. ALLOCATION WITH PARAMETER UNCERTAINTY

Table 1.6: Low interest rates vs Risk aversion - No Uncertainty

r❢ av=5 av=10 av=20 av=50

0.34% 0.49 0.24 0.12 0.05

0.08% 0.92 0.46 0.23 0.09

0.00% 1.00 0.52 0.26 0.10

-0.08% 1.00 0.58 0.29 0.12

-0.46% 1.00 0.89 0.45 0.18

✁ -52% -72% -72% -71%

is the same relative difference that we can see with the higher value of risk aversion.

Please note that we dropped ☛=5 from the comparison because the allocation (even

though it could potentially go higher) reaches one, which is the maximum possible

weight according to our initial constraint, therefore it is not comparable with the others

which are below the threshold. The next step is to see the effect of this low interest

rate environment in the case in which the investor does take into account predictability.

Figure 1.6 shows, for various risk aversion coefficient (each graph) and risk free rate

(each colored line correspond to a different rate), the optimal investment choice for an

investor that incorporates predictability. We split the that analysis in two, such that all

the figures on the right use the full sample as input, while plots on the left use only the

shorter and most recent subsample. In order to better compare the results, we indexed

the series, such that they all start from one. In particular, for each line the value of every

is point in time is expressed as:

❤
✦
r❢ ❀☛

❚✰ ❫❚
❂✦

r❢ ❀☛
❚✰✶

✐
(1.15)

Thus, the lines displayed do not display the allocation results ✦, but they show how

different is the optimal allocation in a given ❫❚ , with respect to the ❫❚=1. Again, we

stress that the message we want to deliver now is no more the optimal allocation itself,

but the trend in allocation with respect to: risk aversion, horizon, estimation sample

and risk-less rate. In these plots, we can see how the allocations are decresing with ❫❚ ,

because of the horizon effect caused by incorporating parameter uncertainty. The main

takeaway is that the horizon effect itself does not influence the impact that variations in

the risk free rate have. This is clear when we compare the ✁, shown in the bottom row

of table 1.6 for the case without uncertainty, and in the left-panel of table 1.7 for the
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case that incorporates uncertainty. Values as fairly in line, going against what one could

conclude just by looking at the graphs 1.6, in which allocation lines seems to converge.

While the convergence is present in absolute terms of ✦, in relative term of percentage

Table 1.7: Low interest rates vs Risk aversion - Uncertainty

❫❚=2

Full-sample Reduced-sample

r❢ av=5 av=10 av=20 av=50 av=5 av=10 av=20 av=50

0.34% 0.48 0.24 0.12 0.05 1.00 0.54 0.27 0.11

0.08% 0.9 0.45 0.22 0.09 1.00 0.74 0.37 0.15

0.00% 1.00 0.51 0.25 0.10 1.00 0.79 0.40 0.16

-0.08% 1.00 0.57 0.28 0.11 1.00 0.85 0.42 0.17

-0.46% 1.00 0.87 0.43 0.17 1.00 1.00 0.57 0.23

✁ -52% -72% -72% -71% 0% -46% -53% -52%
❫❚=120

Full-sample Reduced-sample

r❢ av=5 av=10 av=20 av=50 av=5 av=10 av=20 av=50

0.34% 0.49 0.24 0.12 0.05 0.56 0.27 0.13 0.05

0.08% 0.92 0.46 0.23 0.09 0.75 0.36 0.18 0.07

0.00% 1.00 0.52 0.26 0.10 0.79 0.39 0.19 0.07

-0.08% 1.00 0.58 0.29 0.12 0.84 0.41 0.20 0.08

-0.46% 1.00 0.89 0.45 0.18 1.00 0.53 0.26 0.10

✁ -51% -73% -73% -72% -44% -49% -50% -50%
❫❚=360

Full-sample Reduced-sample

r❢ av=5 av=10 av=20 av=50 av=5 av=10 av=20 av=50

0.34% 0.35 0.17 0.08 0.03 0.30 0.14 0.07 0.03

0.08% 0.66 0.31 0.15 0.06 0.40 0.18 0.09 0.03

0.00% 0.74 0.35 0.17 0.07 0.43 0.20 0.09 0.04

-0.08% 0.82 0.39 0.19 0.07 0.45 0.21 0.10 0.04

-0.46% 1.00 0.53 0.25 0.1 0.56 0.26 0.12 0.05

delta -65% -68% -68% -70% -46% -46% -42% -40%

variation the proportions are kept as in the no-uncertainty case. As a consequence, we

can confirm the sizable effect that the r❢ rate has, and that this results is held also when

the investor incorporates uncertainty. Moreover, since now that we include uncertainty,

the allocation is no more fixed along with the time horizon, we can also see how the
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horizon effect itself does not change the relative impact that the risk-less rate has. If we

focus again on the left part of table 1.7, we can see the ✁ for three different snapshot

dates. They aim at capture the size of the allocation spectrum at some time horizon. By

doing so, we can see whether the sensitivity to the risk-free rate increases or decreases

as the horizon effect grows. From the table, we can see that the ✁ is more or less equal

for the three snapshot dates that we pick when the investor uses the full sample for its

estimation. An investor with a risk aversion ☛=20, shows a range of 72% at the begin-

ning of the horizon, and a range of 73% when the horizon is 120month or 360months.

Interestingly enough, we do not find that this finding is kept, when we change the initial

estimation sample. As shown in the previous section, the sample used for the estima-

tion of the parameters plays a key role since using a shorter sample induces a greater

uncertainty in the returns’ posterior distribution and thus results in a stronger horizon

effect. If we repeat the sensitivity analysis to the r❢ with the "reduced-sample" (identi-

fied as the 10 most recent years of observations), then results are radically different and

are shown in the right part of table 1.7. Comparing the results with the "full-sample"

at the beginning of the investment horizon, we can immediately see that the range of

allocation, identified by the ✁, is about 30% lower. Nevertheless, the most interesting

result is that not only the allocation spectrum is smaller, but it is also decreasing along

with the horizon. If we compare at the three snapshot dates the values of ✁ for a given

allocation, we can see a sizable decrease, of around 10%, that was not present in the

case in which we were using the full estimation sample. The graphical proof of these

findings can be seen in figure 1.6, where we show the indexed allocation for the investor

using the two different samples (all the graphs on the left refer to the full sample, while

graphs on the right to the reduced-sample). These plots help us to again see how the

horizon effect is much higher using the smaller sample, and that the allocation are more

converging in this case, with respect to the case in which we use the full sample where

they are more disperse.
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Figure 1.6: Low interest rate environment - Uncertainty
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In each graph we plot the ✦ for an investor that does include parameter

uncertainty. All the four plots on the left side use the full sample, while

the four grpahs on the right use the "Post-Crisis" sample. Each line corre-

sponds to a different value of the r❢ component, and each plot corresponds

to a different risk aversion coefficient. Please note that in some case there

might be displayed less than 5 lines, when two or more allocations are

overlapping (displaying the same values).
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2

Extending the investment universe

Throughout the whole first chapter, we analyzed how the long term asset allocation of

an investor that chooses between two assets classes, varies when we account or not for

uncertainty in estimation of parameters. Given the interesting findings obtained, we try

now to extend this environment and get rid of some assumptions that were limiting its

potential application to real cases. In particular, we would like to modify the some of

the assumption that we used in chapter 1 on the asset classes, and that were adopted in

order to follow Barberis (2000).

So far, the investor was given the possibility to choose only between a risky asset

(stock-index), and a risk-less asset. The latter was held constant throughout the whole

investment period, ad its return was fixed a priori at the value of 0.034% monthly. This

value was the real return on a 3M t-bill in December 1995, and we used it in order to be

able to compare the results obtained with the literature we were using. Nevertheless, this

assumption seems no more realistic in actual market conditions, first of all due to the

high return used. The return on the risk-free rate was largely addressed in the last section

of Chapter 1, where we performed a sensitivity analysis on its value in order to adapt it

to the current low and negative interest rate environment. Additionally, the assumption

of a bond as a proxy of a risk free security, does not seems reasonable anymore. As a

such, we want to stop treating the fixed income component of the investment universe

as a risk-free, and start considering it as a part of the risky share. In order to do so, we

now assume that the bond is proxied by a bond index, but whose future expected returns

are no more constant but are realization of an i.i.d. process, and the risk-less component

of the portfolio is now assumed to be cash, which has a return equal to zero in any
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period and will be constant. As a result of these changes in the assumption, we end-up

having a lager investment horizon, that will be composed by three different securities:

cash, stock-index and a bond-index. The last two will form the risky component of the

allocation, while cash is composing the remaining risk-less part.

In this extended investment universe, the investor’s choice is now no more the op-

timal fraction of wealth to allocate to one risky asset, but now he can choose how to

allocate its wealth between two securities. We can rewrite the investor’s objective (pre-

viously defined in equation 1.3) in light of the new assumptions, as:

♠❛①t❊t

✥
❢✭✶� ✦✶ � ✦✷✮ ❡①♣✭r❢ ❫❚ ✮ ✰ ✦✶ ❡①♣✭✰❘

✐
❚✰ ❫❚

✮ ✰ ✦✷ ❡①♣✭❘
❥

❚✰ ❫❚
✮❣✶�❆

✶� ❆

✦
(2.1)

where ✦✶ and ✦✷ identify each of the two security, and the allocation toward stocks is

then defined by difference with respect to the previous two ✭✶� ✦✶ � ✦✷✮. Also in this

case, each weight ✦ ranges between zero and one, such that there is no short selling

and no borrowing. As we saw in the previous chapter, the optimization algorithm that

we used is based on a grid, that calculates the wealth and the expected utility for each

combination of the weights. Now that the number of securities is increased, the grid is

increasing in dimension, thus each additional security represent a computational burden

for the algorithm. Keeping the number of securities to three, allow us to preserve some

speed in the optimization algorithm, that is useful especially when we perform some

sensitivity analysis. Nevertheless, we keep in mind that it is relatively straightforward

to increase the number of securities.

2.1 The data

The risk less component is defined as cash, held constant at a rate of return of zero. The

risky component of the portfolio is represented by the S&P500 index and the Merrill

Lynch U.S. Treasuries Index (5-7 Yrs), the former being the "Stock index" and the latter

the "Bond index". In the last section, we further extend the investment universe, adding

two assets which are:MSCI EMU index, and Merrill Lynch EMU Direct Government

Index (7-10 Yrs). All these four assets are considered in the period between December

1990 and October2015, for which we calculate the continuously compounded monthly
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returns. The European indexes are converted in dollars.

2.2 Methodology

When we extend the investment universe the number of risky securities is no more

equal to one, thus the methodology used in previous chapter to estimate future expected

returns is no more viable. While in chapter 1 we were focusing only on one risky asset,

now we need to capture joint variations of all the assets that we are considering. As a

such, if before we could hypothesize the returns to be evolving as ❘t ✘ ◆✭✖❀ ✛✷✮, now

we need to assume

❘t ✘ ◆✭✖❀✝✮ (2.2)

with ✖ and ✝ which are respectively the mean vector and the variance covariance matrix.

The difference is given by the usage of a variance covariance matrix, that allows us to

capture co-movements of the various securities in our portfolio. The case in which

expected returns are generated according to 2.2 will form our baseline scenario, namely

when an investor with constant expected returns does not account for uncertainty.

Also when we assume that the investor acknowledges his uncertainty in the parame-

ter, we need to revise the methodology used in chapter 1. This because we were using an

inverse-gamma distributions in order to model the variance of the posterior distribution,

now that we have multiple securities we need to use its multivariate peer, which is the

inverse Wishart. The steps for the derivation of the posterior distribution with a mul-

tiplicity of assets are borrowed from Meucci (2009) and Meucci (2011), where robust

Bayesian portfolio allocations are derived. We use this methodology with some adapta-

tions, in order to be consistent with the environment set out in the previous chapter. The

starting point in order to build the predictive distribution, is to assume that the investor

summarizes its knowledge about the securities using the historical observations:

❫✖ ✑
✶

❚

❚❳
t❂✶

rt❀✜ ❀ ❫✝ ✑
✶

❚

❚❳
t❂✶

✭rt❀✜ � ❫✖✮✭rt❀✜ � ❫✖✮ (2.3)

These estimates constitute what we can define as the market knowledge of the investor.

It identify the informations that an investor has, based on the sample of data observed.

This set of informations, will be then combined with a prior-knowledge on the parame-
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ters, in order to construct a posterior distribution that combines these two sets of knowl-

edge. In order to generate the posterior distribution of returns, we need to first specificity

our prior distribution. The prior should contain additional information and insights that

we have about the market, and that should allow us to improve the precision of our

posterior by putting additional information to the simple observation that we can have

from historical realization of some assets. The prior that we use is defined, as a Normal

Inverse Wishart:

✝�✶ ✘ ❲✐s❤❛rt

✒
✈✵❀

✝�✶
✵

✈✵

✓

✖❥✝ ✘ ◆

✒
✖✵❀

✝

❚✵

✓ (2.4)

with ✭✖✵❀✝✵✮ that represent the investor’s experience on the parameters, and ✭✈✵❀ ❚✵✮

represent its confidence. In practical terms, the prior distribution is defined in the fol-

lowing manner: ✝✵ is a matrix that is composed by zero everywhere apart from the

main diagonal, where we have the sample covariance between the different securities;

the prior mean is instead set as:

✖✵ ✑ ✵✿✺✂ ✝✵
✶

◆

Albeit the prior is defined as described in equation 2.4, we would like it to be as close

as possible to the environment used in chapter 1, in order to make our results compa-

rable. There we were using a non-informative prior, which allowed us to avoid making

assumption on prior knowledge on parameters. In order to be as close as possible to

such a specification, we must act on how the informations coming from the prior and

from the market-observations are combined, in order to merge these two informations

set. The update of the market-knowledge with the prior, is done firstly calculating the

following parameters:

❚✶ ✑ ❚✵ ✰ ❚

✖s✉♠ ✑
✶

❚✶
❬❚✵✖✵ ✰ ❚ ❫✖❪

✈✶ ❂ ✈✵ ✰ ❚

✝✶ ✑
✶

✈✶

✧
✈✵✝✵ ✰ ❚ ❫✝ ✰

✭✖✵ � ❫✖✮✭✖✵ � ❫✖✮✵

✶
❚
✰ ✶

❚✵

★ (2.5)
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with ❚ being the observed sample size, and ✭✈✵❀ ❚✵✮ bein the confidence we put on the

prior. In order to be as close as possible to a non-informative prior, we can recall the

concept of a sample based posterior. In particular we know that, in an allocation model,

when we have ❚ that is large with respect to ❚✵ and ✈✵, we obtained what is defined as

a sample based efficient frontier. In the sense that the results are based almost solely on

the sample estimates, and the prior is not adding any relevant information. In order to

obtain a sample-based posterior, then we have to assign very low confidence to the prior

with respect to the confidence to the sample. In practical term, we set ❚✵ ✑ ✈✵ ✑
❚
✶✵✵

,

where T is the number of monthly returns that we have in our sample, which in the case

in which we consider data from 1990 up until today, is equal to 318. By doing this, the

confidence assigned to the prior is negligible with respect to the confidence assigned

to the market observations, such that the assumption made on the distribution of the

prior resemble the ones of an uninformative prior. Additionally, this specification has

the advantage that, in the case in which the investor will have additional informations

about the market, he could simply revise its confidence on the prior in order to obtain

prior based efficient frontiers.

The last step is to use the parameters defined according to 2.5, in order to draw from

our posterior distribution. As previously mentioned, we used "conjugate" assumptions

for the prior dynamics, such that we end up with a posterior which is of the same family

of distribution of the prior itself. As a such, the posterior used is the following:

✝�✶ ✘❲✐s❤❛rt

✒
✈✶❀

✝�✶♣
✈✶

✓
❀

✖❥✝ ✘◆

✒
✖s✉♠❀

✝

❚✶

✓ (2.6)

where the parameters used, are given by 2.5.

The final step is to draw from the predictive distribution based on the posterior that

we just outlined, such that expected returns are simulated as:

❘❚✰ ❫❚ ✘ ◆✭✖ ❫❚ ❀ ✛✷ ❫❚ ✮ (2.7)

from which we obtain a vector of simulated expected returns for the different assets.

Then in order to find the optimal solution to the optimization problem, the procedure is
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2. EXTENDING THE INVESTMENT UNIVERSE

the same described in section 1.4.

2.3 Portfolio allocation results

First of all, we want to check whether the results found in the previous chapter, namely

when the investor could choose only between a stock index and a r❢ , are still held. As a

such, we should expect our new allocations to be:

✎ Constant through time in the baseline scenario (no uncertainty)

✎ Decreasing as ❫❚ grows, if the investor acknowledges uncertainty

Figure 2.1 shows the optimal investment strategies for an investor that assumes i.i.d.

returns, and that does not account for parameter uncertainty. The two plots on the left,

correspond to the case in which the investment universe is composed by three asset,

whereas the rights plots use the same specifications of chapter 1 (one risky asset and

one risk-less). Please note that in all graphs r❢ is cash, such that it is assumed constant

and with a return of 0. These plots helps us to confirm that the well established horizon

irrelevance result is kept, also when multiple assets are available. As we can see the

optimal weights of the different securities are not sensitive to the investment horizon

since all the areas are constant.

Having established this, then we want to compare the two specification. Firstly, we

dedicate our attention to compare the "blue area" for different values of risk aversion

for the case in which a bond index is included (all the left plots), with respect to when

it is not (all the right plots). As we can see, a slight difference is found when the risk

aversion is at ❛❱ =2, having that in the left plot ✦ is 0.35, about 20% lower than 0.43 that

we can see in right plot. Despite this difference with the low values of risk aversion,

the allocation are fairly similar and in particular we can see that, as the risk aversion

increases, the two results in the two specifications become equal. Given that the optimal

allocation toward the stock index is fairly stable between the two different specifications,

we expect the allocation to the bond index to make the whole difference between these

two cases. Recall that the bond index is assumed to be an i.i.d. process, and as a such

should be considered as a part of the risky component of the portfolio, rather than part

of the risk-less. As it could have been foreseen, given its low volatility (0.0036) the
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bond index is perceived, when the risk aversion coefficient is low, as a substitute of cash

(and in general of the risk free investment). This can be seen looking at the top-left plot

in figure 2.1, where we can see that the investor does not allocate any percentage of its

wealth in the risk-less component. Of course, as the investor becomes more and more

risk averse, despite its low volatility also the bond is perceived as risky and the investor

increases its allocation toward cash. In relative terms, we can see how the ✦ of the bond

index is the double (or more) than the ✦ of the stock index, across all the different risk

aversion levels. If we sum both of them, in order to represent the allocation risk appetite

of the investor (defined as the overall share of wealth invested in risky assets), we can see

how this value is almost 2.5 times higher than the case in which he only has two assets

available. The motivation for this difference can be explained using Markowitz portfolio

theory and the concept of diversification effect. When the number of available assets

increase, such that we move from ◆ to ◆ ✰ ❳ assets, in the worst-case scenario the

possible efficient combination will be the same, but for sure will not be less. Generally

speaking, the addition of new assets can potentially move the efficient frontier to the

left on the risk-return plane, but surely will not make it move to the right. Since a

movement in the left of the efficient frontier represents an improvement for the investor,

we are generally better off when we add assets in our investment universe. In particular,

this improvement is driven by the correlation that the new asset has with the existing

one, in particular if it is less that linearly correlated with it. In our simple case, the

correlation between the stock and the bond index is only 0.0925, far below 1, and this

explains the improvement (defined in term of share invested in the risky component) that

we obtain in our portfolio. This improvement can be interpreted again from the efficient

frontiers, in particular from the fact that this expansion in the investment universe drags

our efficient frontier in the top left of the risk-return space. Such that, with respect to

the case in which the investor does not consider the bond index, we now have a portfolio

composition that is able to give us a greater return at the same level of risk, or the same

return at a lower level of risk. From table 2.1 we can see that risk aversion does not

play a role in this, improvement, such that the increase in allocation is stable across the

5 different risk coefficients that we show.

If instead we allow our investor to incorporate parameter uncertainty, then we can

see how the allocations are no more stable through time. In figure 2.3, we plot the

resulting strategy for the investor that acknowledge his uncertainty, in the two specifica-
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Figure 2.1: Increase in the investment universe - Stocks and bonds
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All the figures on the left use the "new" investment universe, assuming

cash as risk free and introducing a bond index in the investment universe.

The right figures instead use the same assumption of chapter 1. All the

figures use daily data since 1990.
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Table 2.1: Optimal investment strategy - Portfolio vs Baseline scenario

Baseline scenario

aV=2 aV=5 aV=10 aV=20 aV=50

Stock index 0.43 0.17 0.09 0.04 0.02

❘❢* 0.57 0.83 0.91 0.96 0.98

Portfolio

aV=2 aV=5 aV=10 aV=20 aV=50

Stock index 0.35 0.16 0.08 0.04 0.02

Bond index 0.65 0.34 0.17 0.08 0.03

❘❢ (Cash) 0.00 0.50 0.75 0.88 0.95

Figure 2.3: Increase in the investment universe - Uncertainty
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Optimal investment strategy for an investor who does incorporate uncer-

tainty, and has an extended investment universe. "Stock" is the S&P 500,

"Bond" is the Merrill Lynch U.S. Treasuries Index (7-10 Yrs)
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tions. In both plots the r❢ rate is held constant at a rate of zero, and the sample of data

used is since 1990. As we can see, regardless of the number of securities that form the

investment universe, the horizon effect (identified by the decrease of allocation as the

horizon increases) is present and sizable. Looking at the left plots, we can see how it is

present for all the asset classes that we considered, regardless of their riskiness. Interest-

ingly enough, incorporating or not parameter uncertainty can even change the number

of securities that the investor considers. If we look at the top-left figure where we show

the allocation with a risk aversion coefficient equal to 2, we can see how an investor is

investing only in the bond index and the stock index when the horizon is small while,

as ❚ increase (and uncertainty increases along with it), some weight is assigned also

to the the risk free security. Another interesting point is that the horizon effect seems

to be more sizable for some securities than for others. Looking at the two left plots in

figure 2.3, then we can see how the decrease in the bond index (light blue area) is more

pronounced than the one of the stock index (blue area) in absolute terms of optimal

allocation shares. Despite the fact that the former is decreasing more than the latter in

absolute terms, when we look at the relative changes, the situation is reverse. In table

2.3, we express the variation in percentage term, calculated taking ✦ at the longest and

at the shortest horizon. As we can see, the first column (stock index), shows a higher

variation with respect to the second one (bond index), and this finding is stable across

all the different risk aversion coefficients. In order to explain the higher horizon effect

that one security has, we need to recall what causes this effect to arise. As explained

in chapter 1, the main drivers of uncertainty through time is the standard deviation of

the ✖ of the posterior distribution. In table 2.2 we show these statistics, and we can see

how the uncertainty on this parameter is almost the double for the stock index than for

the bond index. This makes the investor more uncertain about future expected returns

of that securities, which in turns triggers a higher horizon effect. In particular, we recall

that when we account for parameter uncertainty, the variances of cumulative expected

returns grow more than linearly, such that as ❫❚ increases, a given security is perceived

more and more risky.
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2.3. Portfolio allocation results

Table 2.2: Recap table of posterior distributions

✖ ✝

Stock index Bond index Stock index Bond index

0.0053 0.0048 0.0151 0.0007

(0.0069) (0.0034) (0.0012) (0.0004)

Table 2.3: Optimal allocation for each risk aversion, evaluated every 10 years

av=2

❫❚ Stock index Bond index ❘❢

1 0.35 0.65 0.00

120 0.30 0.64 0.06

240 0.24 0.57 0.19

360 0.21 0.52 0.27

✁ -40% -20% 27%

av=5

❫❚ Stock index Bond index ❘❢

1 0.15 0.35 0.50

120 0.10 0.26 0.64

240 0.08 0.21 0.71

360 0.06 0.17 0.77

✁ -60% -51% 54%

av=10

❫❚ Stock index Bond index ❘❢

1 0.08 0.17 0.75

120 0.05 0.12 0.83

240 0.03 0.10 0.87

360 0.03 0.08 0.89

✁ -63% -53% 19%

av=20

❫❚ Stock index Bond index ❘❢

1 0.04 0.08 0.88

120 0.02 0.06 0.92

240 0.02 0.05 0.93

360 0.01 0.04 0.95

✁ -75% -50% 8%
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2.4 Increasing the number of available assets

Having established that uncertainty in parameter is a key factor also when we have more

than one asset in our portfolio, we try now to incorporate two additional asset to see how

the optimal allocation can change. Up until now we considered a stock index and a bond

index, both belonging to the US market. We increase the investment universe, adding

two other index, representing the European segment. These two new securities are the

MSCI EMU index, and Merrill Lynch EMU Direct Government Index (7-10 Yrs). As

a such, our portfolio is now composed by five securities, of which four are considered

risky. Two out of these five are representing the stock market (one US and the other

EU), and two others are bond index (one US and the other EU). The 5th security is cash,

which is considered risk free and has a constant return equal to zero. We stress the fact

that all of the five securities were evaluated pairwise (either in a 3-asset portfolio, or as

in previous section and chapter 1), and a sizable horizon effect was confirmed.

Figure 2.5 shows the resulting allocations for a portfolio of five securities, when the

investor acknowledges its uncertainty and has a risk aversion coefficient equal to two.

As we can see, the clear horizon effect that was driving down the allocation is no more

so evident, now that we have an increased amount of securities, this effect seems rather

mixed. As shown in figure 2.5, the allocations are still overall decreasing with respect to

the risk free, but for each of the security we do not have anymore the monotonically de-

creasing path that we found so far with uncertainty. Interestingly enough, in some cases

the ✦ seem to be increasing through time (i.e:SP500), such that the initial allocation in

an asset is lower than the one at the end of the investment horizon.

More in detail, we can look at the allocation tables in tab2.4. While for the first

two column the horizon effect is predominant, for the other two we can see how the

path of the allocation is not monotonically decreasing. This signals that, apart from the

underlying uncertainty, these allocations are driven by some other factors, that can even

make the horizon effect less predominant.

In order to explain this mixed effect on allocation, we need to investigate further

how the combination of many assets can influence the optimal strategies. Given that

uncertainty effect has been shown for all the securities that we include in our invest-

ment universe, we know that this underlying factor (uncertainty), is pushing down the

allocations as the horizon increase. For each asset evaluated singularly, the allocation
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Table 2.4: Portfolio allocation, evaluated every 5 yeas

T US bond EU stock US stock EU bond ❘❢

1 0.68 0.32 0.00 0.00 0.00

12 0.67 0.28 0.05 0.00 0.00

60 0.65 0.19 0.11 0.05 0.00

120 0.59 0.13 0.13 0.11 0.04

180 0.54 0.11 0.13 0.10 0.12

at the beginning of the investment horizon is higher than the one at the end of the hori-

zon. Conversely, we expect the diversification effect not to contribute in an unique way:

it might drag down some assets, while it might push upward some others. To better

understand how the investor can choose between these portfolio of assets, we can plot

on a risk return plane all our securities, as well as the resulting efficient frontier. As

Figure 2.4
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we can see from figure 2.4, some assets might seem more appealing than others from

a risk-return perspective, and generally speaking securities on the top-left of the plot

are the most desirable one. When one asset is not clearly better than the other (i.e: has
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Figure 2.5: Optimal allocation with sample data - Uncertainty
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higher return but also greater variance), then the risk aversion coefficient helps us in

our choice. Despite each security intrinsic characteristic, an important aspect is given

by how the different assets can combine one with the other. In particular, if two assets

are low or negatively correlated, an investor might find optimal to allocate some weight

to them, even if this is not justified from a pure risk-returns analysis. In order to un-

derstand how the different securities interact with each other, we can have a look at the

variance-covariance matrix estimated from the sample data (see table 2.5). From this,

Table 2.5: Variance-covariance matrix with 5 assets (data estimated from the sample 1990-2015)

US stock US bond EU stock EU bond ❘❢

US stock 0.0150 0.0007 0.0153 0.0035 0.0000

US bond 0.0007 0.0036 -0.0008 0.0030 0.0000

EU stock 0.0153 -0.0008 0.0212 0.0048 0.0000

EU bond 0.0035 0.0030 0.0048 0.0075 0.0000

❘❢ 0.0000 0.0000 0.0000 0.0000 0.0000

we can understand better what is driving the overall allocation. In particular, the main
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diagonal is showing us the variance of the single assets, while all the other elements

identify the respective covariances. Generally speaking two assets can provide an im-

provement in investment opportunities if they have negative or low correlation, because

their combination can help to hedge some risk.

Given the characteristics of the securities that compose our portfolio, we want to see

how are the optimal investment strategies. First of all, we analyze the result shown in

figure 2.5, where most of the wealth is allocated to "US bond" and "EU stock". While

the former is a very good security in risk returns terms (as can be see from 2.4), the latter

is the worse among all the assets we have in our pocket. Despite its low attractiveness,

we still allocate about 30% of our wealth to it, which makes it the second most important

asset in ur portfolio. This is motivated by the slightly negative covariance (-0.00082)

that this assets (EU stock) has with our main security (US bond).

In the converse way, we can explain the low allocation toward the "EU bond index".

From a risk-return perspective, this assets is a really good one, on the other hand we

can see how its covariances is positive and relatively high with respect to all the other

securities. This penalizes it, such that we assign only a weight of about 5-7% (with

❛❱ ❂ ✷) despite its high return and relatively low risk.

To better explain the diversification effect, we can artificially try to fix the correlation

between two assets. In order to do so, we assume that the covariance between two assets

is no more the one estimated from the real dataset, but that it is set arbitrarily. As a such,

we end up having a new variance covariance matrix, that reflects the assumption we

make on the correlation. Note that this will results also in different posterior distribution

of the variance itself, which is estimated according to the methodology described in

section 2.2. We impose this assumption on the correlation only on 2.3, while 2.4 is left

untouched.

More in detail, in order to verify the effect of co-movements between assets on

the allocation, we change the correlation coefficient between the "US bond" and "EU

stock". We try two different cases, by imposing it equal to -0.5 in the first case and to

0.5 in the second specification. The choice of the assets is given by the fact that these

are the two main assets in our portfolio (in terms of ✦), and the allocation to the "EU

stock" seems only correlation driver, rather than risk-return driven .The results for the

first specification, are shown in figure 2.7a, for a risk aversion coefficient of ❛❱ =2. As

we can see, a decrease in the correlation implies a even greater allocation toward the
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Figure 2.6: Portfolio allocation - changing the correlation

(a) Optimal allocation with correlation at -0.5 - Uncertainty
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(b) Optimal allocation with correlation at 0.5 - Uncertainty

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

US bond

EU stock

US stock

EU bond

Rf

In the upper figure, we impose the correlation coefficient between US

bond and EU stock to be equal to -0.5. On the bottom plot, we impose the

same coefficient to be equal to 0.5
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"EU bond", and a lower allocation toward the other peers. This specification results in

an optimal portfolio which is even more concentrated on two assets.

When we evaluate the second case, namely when the correlation coefficient is set

at 0.5, we can see that the optimal strategy radically changes. Now that the security

"EU stock" is no more uncorrelated with the others, it immediately loses appeal to the

investor. Since the correlation coefficient is changed for that asset, its evaluation is based

on the risk-return performance which is quiet bad compared with the other peers. As a

such, the artificial increase in correlation cause the investor to stop considering it as a

desirable asset. This result in a drop in allocation toward the "EU stock" to a negligible

amount (around 3%). If we compare it with the previous specification, the decrease is

in the order of 30% for short investment horizon, and around 15% for longer horizon.

Given that uncertainty effect makes stock appear riskier in the long run, driving

allocation down as the horizon increases, the diversification effect seems to be rather

mixed. It does not have a clear path with respect to time. In some cases it might cause

allocation to decrease while in other cases it might push them upward. Including more

assets in the analysis can provide some interesting results, but also makes uncertainty

effect to be more blurred.
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3

The predictability of asset returns

Predictability in stock returns has always been a trending topic in finance, and evidence

of it has been widely provided in literature (see Keim and Stambaugh (1986), Fama and

French (1998) Campbell and Shiller (1988)). The whole purpose of predictability is to

try to infer some informations about the realizations of a process, using another variable.

Of course the goal of predictability is not to forecast precisely the future returns, but to

try to see whether expected risk premium vary over time (such that they are not constant

in expected value), and if some of this variation can be somehow explained. Even the

ability to explain a small part of this variation, can be a great advantage for an investor

that has to decide how to build its portfolio. Much of the researches in the past used as

a predictor variable the dividend yield of a stock, in order to predict future realizations

of that stock itself. This concept and predictor variable are our starting point as well,

and we use it in order to incorporate the concept of predictability into the portfolio op-

timization problem that we have seen in previous chapters. In order to do this, we need

to re-consider some of the assumptions used up until now. While we will keep the char-

acteristics of the investor, optimization algorithm and constraints on parameters exactly

equal, in order to incorporate predictability we need to drop the constant expected re-

turns assumption. It comes straightforward that, in order to try to predict future returns,

we need to assume that they are time varying rather than constant. Additionally, some

of the results shown in chapter 1, especially the evidence of mean reversion in expected

returns as the horizon increases, provide us further motivation to relax the constant ex-

pected returns assumption. In this chapter, we firstly focus on understanding the issue

of predictability from an economic point of view, then we justify the economic intuition
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providing econometric evidence, finally we implement the predictability environment

in a strategic asset allocation model. We focus our analysis on the impact that including

predictability have on the investment choice in the long run, showing how this can lead

to strategies completely different with respect to the one we have seen in the previous

chapter. Then we show the importance of the value of the predictor variable used in

the estimation, and we perform a sensitivity analysis in order to show that, when the

investor accounts for uncertainty, this importance decreases.

3.1 The relationship between dividends and expected re-

turns

In order to understand the economic relationship between returns and dividend, we

strongly rely on the work of Campbell and Shiller (1988) and Campbell (1991) and some

of their conclusions are the starting point of our analysis. They showed how returns are

predictable, especially in the long-run framework, while the forecasting variable (divi-

dend yield) is not predictable itself. These statements are the basis of the whole topic of

predictability, and we now justify them in details. To show the argumentation of these

statements, we start by analyzing what is defined as the linearized present value iden-

tity, in the one-period securities case. We define dividend yield as the ratio between the

dividend❉t paid a time t and the stock price at Pt. This will give us a number expressed

in percentage, which is defined as the dividend yield or dividend price ratio. It is very

important to understand both the time relationship between dividend and stocks as well

as the causal relationship between dividend yield and stock prices. First of all, we need

to clarify that an owner of a stock at time t has the right on the next period’s dividends

payments, such that there is a ✭t✮ to ✭t ✰ ✶✮ relationship. This allows us to introduce

the concept of total return of a stock, that is defined as the return obtained by the com-

bination of capital gains and of dividend payments. This relationship can be stated as

3.1:

❘t✰✶ ✑
Pt✰✶ ✰❉t✰✶

Pt
� ✶ (3.1)

in which we can define❘t✰✶ as the returns for holding a given stock between two periods

t and t✰ ✶, ❉t✰✶ is the dividend per share paid in the next period, and the denominator

62



3.1. The relationship between dividends and expected returns

Pt signals the ex-dividend price which can also be represented at the price that must be

paid in order to obtain the capital gain of that stocks and the right ot obtain the dividend.

We stress again the fact that the dividend payment is forward looking t ✰ ✶, because

purchasing a stock at the end of the period t, gives right to next period’s payments ❉t✰✶

but not to current ones ❉t. Taking the ❧♦❣✭✮ to both sides, we can rearrange the equation

as follows

rt✰✶ ❂ ❧♦❣✭❘t✮ ❂ ❞t✰✶ � ♣t (3.2)

which can be further turned into a present value identity, by moving ♣ to the left hand

side, and subtracting ❞t to both sides, giving

♣t � ❞t ❂ ♣❞t ❂ ✁❞t✰✶ � rt✰✶ (3.3)

3.3 is defined as an ex-post equation, or identity relationship. This means that is ex-

post verified. It tells us that the price dividend ratio is determined as the difference

between tomorrow’s dividend growth and tomorrow’s returns growth. Expressing the

same equation in expected value term, we can see that:

♣❞t ❂ ❊t✭✁❞t✰✶✮� ❊t✭rt✰✶✮ (3.4)

which tells us that prices cannot vary, unless expected dividends or expected returns

vary as well. Thus confirming that we cannot be in an a world with returns independent

and identically distributed, because evidence from markets show that the left hand side

variable is varying over time. Conditional expectations are therefore varying over time.

From this linear one-period relationship, we can draw our conclusion in a more clear

way, before extending the equations to a multi-period setting. We can say that

✎ High current prices Pt, must be followed by lower future expected returns Pt ✰✶,

by higher dividends entitlement ❉t✰✶ or by some sort of combination of the two.

✎ High returns instead must be associated with high expected future dividends,

downward revision in expected future returns, or some sort of combination of

the two.

Moreover, being the above stated 3.4 an identity, we can conclude that expected returns

and expected dividend growth, not only are strongly interconnected but knowing one of
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3. THE PREDICTABILITY OF ASSET RETURNS

the two allows us to infer the other. If we try to represent these concepts using regression

identities, we can also see some interesting facts about the relationship between these

time varying variables. Starting from the

❞♣t ❂ rt✰✶ �✁❞t✰✶ (3.5)

we can define our regression identities as:

rt✰✶ ❂ ☞r❞♣t ✰ ✧rt✰✶ (3.6)

✁❞t✰✶ ❂ ☞❞❞♣t ✰ ✧❞t✰✶ (3.7)

Then we can express our initial identity 3.5 as a function of 3.1 and 3.7, such that

❞♣t ❂ rt✰✶ �✁❞t✰✶ ❂ ☞r❞♣t ✰ ✧rt✰✶ � ☞❞❞♣t ✰ ✧❞t✰✶ (3.8)

But given that these are identities, then the coefficient of the regression must, by defini-

tion, add up to one . Since expected returns and expected dividends are telling exactly

the same thing, we can express their coefficient in relation one to the other:

☞r❞♣t � ☞❞❞♣t ❂ ✶

✧rt✰✶ � ✧❞t✰✶ ❂ ✵
(3.9)

This results allow us to tie volatility and predictability:

☞r ❂
❝♦✈✭rt✰✶❀ ❞♣t✮

❱ ❛r✭❞♣t✮
(3.10)

❱ ❛r✭❞♣t✮ ❂ ❝♦✈✭rt✰✶❀ ❞♣t✮� ❝♦✈✭✁❞♣t✰✶❀ ❞♣t✮ (3.11)

Variance of dividend yield is covariance with return minus the covariance with future

dividend growth. As a such, 3.9 can be viewed as a decomposition of variance, it tells us

how much of the variance of prices is coming from its covariance with returns, and how

much of that variance is coming from time varying dividend growth. This ties up and

unites the observations about volatility with observations about predictability: volatility

tells us about predictability. These are consistent with an environment in which expected
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3.1. The relationship between dividends and expected returns

returns are varying over time.

If instead we move to a multi-period setting, our simple equations get more compli-

cated but underlying concepts and conclusion remain unchanged. Moving to a multi-

period securities is necessary because we want to exploit allocation choices in the long

horizon, and because in the long run we have evidence of return predictability. The first

step is borrowed from Campbell and Shiller (1988), and their linearized return identity.

Total return is defined as the ratio between price plus dividend over price, expressed in

terms of price dividend ratios and dividend growth rates:

❘t✰✶ ❂
Pt✰✶ ✰❉t✰✶

Pt
❂

✭✶ ✰ Pt✰✶
❉t✰✶

✮❉t✰✶

❉t

Pt
❉t

(3.12)

Taking logs we have:

rt✰✶ ❂ ❧♦❣✭✶ ✰ ❡①♣✭♣❞t✰✶✮✮ ✰ ✁❞♣t✰✶ � ♣❞t (3.13)

In which we have ♣❞t that is defined as the price-dividend ratio, while ❞♣t is the dividend-

price ratio. In order to further simplify the equation 3.13, since we have log(1+x), we

need to take a first-order Taylor expansion over P❉ ❂ ❡♣❞, from which we obtain that:

rt✰✶ ✙ ❧♦❣✭✶ ✰ ❡①♣✭♣❞t✰✶✮✮ ✰
❡①♣✭♣❞✮

✶ ✰ ❡①♣✭♣❞✮
✭♣❞t✰✶ � ♣❞t✮ ✰ ✁❞t✰✶ � ♣❞t

additionally, define

✚ ❂
P❉

P❉ ✰ ✶

such that

rt✰✶ ✙ ❧♦❣✭✶ ✰ P❉✮ ✰
P❉

✶ ✰ P❉
✭♣t✰✶ � ❞t✰✶ � ♣❞t✮

We borrow the last step from Cochrane (2016), assuming that ✚ ❂ ✶
✶✰❉

P

✙ ✵✿✾✻,

which allows us to finally state the Campbell-Shiller return identity:

rt✰✶ ✙ ✚✭♣t✰✶ � ❞t✰✶✮ ✰ ✁❞t✰✶ � ✭♣t � ❞t✮ (3.14)

3.14 which is a log-linearization of the definition of returns, and tells us that future

returns are explained by tomorrow log price dividend ratio, the next period’s dividend
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3. THE PREDICTABILITY OF ASSET RETURNS

growth, and today price dividend ratio. Thus, to get future high returns we need to have

high Pt✰✶, receive high ❞t✰✶ , or have a low price today. If we move the price to the left

hand side of the equation, we obtain 3.15

♣❞t ✙ ✚✂ ♣❞t✰✶ ✰✁❞t✰✶ � rt✰✶ (3.15)

♣❞t ✙
✶❳
❥❂✶

✚❥�✶✁❞t✰❥ �
✶❳
❥❂✶

✚❥�✶rt✰❥ (3.16)

Formula 3.16 states a linear present value formula, discounted with time-varying dis-

count rates and time varying expected returns, but all terms enter linearly in the equation.

This is just a definition of returns in the long-run (is an identity), and the message that

it delivers is the following:

✎ long run returns are implied by low price or high future dividends. High dividends

play a special role in the long run because they are not temporary or short lived

streams as in a short horizon investment

✎ High prices come from either high expectations of future dividend growth, or

from low expectations of future returns (low risk premium), that represents the

willingness to hold assets besides the low returns.

But now we can observe that, having the k-period ahead in time expectations discounted

to form current prices, then we can say that even expectations far in the future, can raise

prices today.

3.2 Econometric evidence of predictability

The economic and theoretical relationship between dividend price ratio and stock mar-

ket returns has been deeply analyzed in the previous section, so now we want to provide

some empirical evidence from the data. In particular, we follow the approach of Fama

and French (1998), in order to prove that the power of the predictor variable increases as

the forecasting horizon increases and we complement our analysis following Valkanov

(2003), in order to better clarify that the lower is the frequency of returns used in the

regression equation, higher is the explanatory and forecasting power of dividend price

66



3.2. Econometric evidence of predictability

ratio. The starting point is to write down our regression model:

rt✿t✰ ❫❚ ❂ ☛ ❫❚ ✰ ☞ ❫❚ ❧♦❣✭
❉t

Pt
✮ ✰ ✎t✰ ❫❚ ❀ ✎t✰ ❫❚ ✘ ◆✭✵❀ ✶✮ (3.17)

which, in compact form, can be re-wrote as:

rt✰ ❫❚ ❂ ❛t ✰ ☞t❞♣t ✰ ✎t✰ ❫❚ (3.18)

where rt is the continuously compounded return on a stock index (SP500 in our case),

and ❞♣t is the dividend yield, that we took from the Shiller dataset (see appendix). The

explanation for the increase in the predictive power of the dividend yield is given by the

nature of the two processes that we are using. The dividend yield is a noisy process in

the short run, such that its noise overcome the volatility of short period returns. How-

ever, as the returns horizon increases, the above mentioned noise tends to be weaker

in term of return variance, and the portion of long run returns that can be explained

through dividend price ratio increases sharply. Some summary statistics of the returns

are computed in table 3.1 where wee can see how the mean and standard deviation of

this process are more or less stable, even when changing the sample. An important thing

to notice is that, using the most recent subsample (post-crisis), we can see how it has a

higher volatility as well as a lower average return. This confirms the allocation shown

in the previous chapter. The most important statistics displayed in 3.1 are the autocorre-

lation coefficients. We can see a quiet high autocorrelation of the process at the first lag,

but this autocorrelation is not persistent, since it decays very fast, and the coefficients

show that autocorrelation becomes negligible soon. The decaying characteristic of the

return seems to confirm the intuition of strong mean reversion of the process, and this

finding is strongly in line with what we concluded previously in chapter 1. On the other

hand, the explanatory variable is a strongly persistent process (see table 3.2), suggest-

ing that a shock to dividend yield is very persistent. This finding is very important for

many reasons. First of all it allows us to "be safe" when using the VAR, even to forecast

longer returns, since the low variability of the forecasting variable is a very important

characteristic in order to iterate our model forward. In addition, as we have seen in the

previous section when calculating the present value formula in the long run, even long

run expectations on dividends can impact current prices, and this strong persistence is
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3. THE PREDICTABILITY OF ASSET RETURNS

one of the key determinants of that (see the formula 3.16 which shows the Campbell-

Shiller present value identity). The next step in assessing the predictability of returns

Table 3.1: Descriptive statistics of the stock return time series

Start End ✖ ✛ ✣✶ ✣✷ ✣✸ ✣✹ ✣✺ ✣✻
Jan-53 Aug-16 0.006 0.035 0.243 0.015 0.043 0.071 0.100 -0.073

Nov-84 Aug-16 0.007 0.036 0.266 -0.005 0.025 0.059 0.075 -0.070

Jan-53 Dec-06 0.006 0.034 0.234 0.024 0.022 0.022 0.101 -0.036

Feb-09 Aug-16 0.005 0.036 0.249 0.000 0.039 0.064 0.095 -0.076

Table 3.2: Descriptive statistics of the dividend yield time series

Start End ✖ ✛ ✣✶ ✣✷ ✣✸ ✣✹ ✣✺ ✣✻
Jan-53 Aug-16 0.031 0.012 0.991 0.980 0.968 0.956 0.942 0.927

Nov-84 Aug-16 0.023 0.008 0.983 0.962 0.940 0.919 0.899 0.879

Jan-53 Dec-06 0.033 0.012 0.990 0.978 0.965 0.952 0.937 0.921

Feb-09 Aug-16 0.030 0.011 0.994 0.984 0.974 0.964 0.953 0.941

from an econometric point of view, is to investigate the predictive power of the divi-

dend yield using equation 3.17. In table 3.3 we performed a long run forecast of returns

using lagged dividend price ratio, and from it we can see how the predictability of re-

turns increases as the horizon increases as well. Both the ☞ coefficient of the regression

as well as its adjusted ❘✷, increase sharply as we stretch the forecasting horizon for-

ward. We also displayed the coefficient t♣
❚

, which is an adjusted t-stat borrowed from

Valkanov (2003). Moreover, we performed this forecasting using different sample, in

order to show how different are the estimated coefficients with respect to the sampling

period used for the estimation. As we can see, the increase in both ☞ and ❘✷ estimates

along with the forecasting horizon remains also if we change the sampling period. On

the other hand, the coefficients look quiet different in the 4 cases displayed in table 3.3.

Performing this analysis using different samples is a key intuition in order to analyze the

time varying relationship between our explanatory variables and returns, and addition-

ally it tells us that, in order to assess the relationship between our forecasting variable

and the one to be explained, is not always better or proper to use the largest sample. It is

better for the investor to evaluate this relationship using one sample or the other, based

on how much he believes that this relationship is time varying. The intuition behind the

increase in forecasting power along with the investment horizon can be seen graphically
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3.2. Econometric evidence of predictability

Table 3.3: Long run regression

Full sample Half sample

Horizon k ☞ t♣
❚

❘✷ Horizon k ☞ t♣
❚

❘✷

1 0.838 0.103 0.009 1 1.172 0.131 0.014

4 3.897 0.206 0.039 4 5.589 0.265 0.063

8 8.267 0.293 0.078 8 12.204 0.398 0.135

16 16.983 0.436 0.159 16 23.215 0.547 0.229

24 24.632 0.550 0.232 24 32.707 0.655 0.299

60 52.117 0.892 0.443 60 72.878 1.240 0.606

Post sample Pre sample

Horizon k ☞ t♣
❚

❘✷ Horizon k ☞ t♣
❚

❘✷

1 2.213 0.103 -0.033 1 0.948 0.114 0.011

4 21.878 0.757 0.357 4 4.408 0.232 0.050

8 38.213 1.119 0.558 8 8.841 0.317 0.090

16 32.385 1.650 0.737 16 17.315 0.443 0.163

24 54.099 1.877 0.784 24 24.570 0.545 0.229

60 43.031 2.610 0.876 60 51.069 0.837 0.412

in figure 3.2a and 3.2b, in which we can see how, using a lower frequency of returns,

the predictive power of the dividend yield increases as well. Coming back to the results

in table 3.3, we want to try to motivate the reason behind the increase over time of both

the regression coefficient ☞ as well as of the ❘✷. We can see the point mathematically,

if we write the cumulative returns as:

rt✰✶ ✰ rt✰✷ ❂ ☞✭✶ ✰ ✣✮❞♣t ✰ ✎t✰✶

rt✰✶ ✰ rt✰✷ ✰ rt✰✸ ❂ ☞✭✶ ✰ ✣✰ ✣✷✮❞♣t ✰ ✎t✰✷
(3.19)

From equation 3.19,we can see how coefficients are rising along with the horizon. This

happens because in our case the explanatory variable (dividend price ratio), is very

persistent since, as we recall from table 3.2, its autocorrelation is nearly 1. This imply

not only that coefficients grow along with the investment horizon, but also tells us that

they increase almost linearly with ❚ . A similar methodology can be shown in order to

motivate the increase in ❘✷ coefficients. If we write out the one and two period ahead
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3. THE PREDICTABILITY OF ASSET RETURNS

Figure 3.1

(a) 1Month returns and dividend yield at t-1y
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(b) 10y returns and dividend yield at t-10y
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3.3. Predictability and asset allocation

❘✷ we can see that:

❘✷
t✰✶ ❂

☞✷✛✷✭❞♣t✮

✛✷✭rt✰✶

❘✷
t✰✷ ❂

☞✷✭✶ ✰ ✣✮✷✛✷✭❞♣t✮

✛✷✭rt✰✶ ✰ rt✰✷

✙
☞✷✭✶ ✰ ✣✮✷✛✷✭❞♣t✮

✷✛✷✭rt✰✶✮
❂

✭✶ ✰ ✣✮✷

✷
❘✷

t✰✶

(3.20)

Again, if we consider that ✣ ✙ ✵✿✾✾, then we can conclude that the two period ❘✷ is

almost the double of the single-period one. Thus, ❘✷ coefficient grows almost linearly

with ❚ . This mathematical finding is in line with what we can see in table 3.3, if we

multiply the one-period ❘✷ and the forecasting horizon, we can roughly replicate the

coefficients implied by the predictive regression.

3.3 Predictability and asset allocation

Having established in the previous section the tight link between the dividend yield and

the expected returns, we would like to see how an investor that takes into account this

phenomenon changes its long run asset allocation accordingly. In order to incorporate

the concept of predictability into our asset allocation framework, we will rely again on

Barberis (2000), also in order to give continuity to the results obtained in the previous

chapter. Nevertheless, in the forthcoming paragraphs we also analyze an extend the

environment that he proposes, performing various sensitivity analysis to motivate the

results in a clearer way. Again, the starting point of our problem is the one of a buy

and hold investors (who build a portfolio at a given moment t and does not change

it until a t ✰ ❫❚ ) who would like to maximize its expected wealth ❲t✰❚ at the end of a

pre-determined investment period. Its investment universe can consist in a constant risk-

free asset, and a stock component, thus its only relevant choice for now is the optimal

percentage ✦ of its actual wealth (assumed to be 1) to allocate to the risky portion of

its portfolio. Since we include a restriction on borrowing for the investor, as well as the

constraint of no short selling, its ✦ can range in an interval that goes from 0 to 1.The

returns that we obtain from ✦ are given by the sum of each period’s realized returns,

such that ❘t✰❚ ❂ ❘t✰✶ ✰ ❘t✰✷ ✰ ✿ ✿ ✿ ✰ ❘t✰❚ . The terminal wealth is the function that
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3. THE PREDICTABILITY OF ASSET RETURNS

the investor would like to maximize, and is described as:

❲t✰❚ ❂ ✭✶� ✦✮❡①♣✭r❢❚ ✮ ✰ ✦❡①♣✭❘t✰❚ ✮ (3.21)

Moreover, as well as in Chapter 1 and 2, the preference of the investor are described

by a power utility function, driven by a risk aversion coefficient ☛ that represent how

much risk an investor is willing to take. As we will discuss later, this parameter plays a

key role in shaping optimal asset allocation choices that we found. This kind of utility

function is a CRRA (Constant Relative Risk Aversion), will imply that the problem

faced by the investor can be stated as follows:

♠❛①✦❊t

✚
✭✶� ✦✮❡①♣✭r❢❚ ✮ ✰ ✦❡①♣✭❘t✰❚ ✮

✶�☛

✶� ☛

✛
(3.22)

As we highlighted in the previous chapter, the solution to 3.22 is not know in closed

form, and therefore the integral characterizing the future expected wealth maximization

problem, must be solved numerically. Nevertheless, the procedure to follow in order to

solve the problem in an iterative way, works exactly in the same way describe in section

1.4, thus we will not describe it again in full. The key difference that we have when we

incorporate predictability, is that now our expected returns distribution are generated

from our regression framework. In order to describe the new sampling procedure, we

recall first our regression:

③t ❂ ❛✰❇①t�✶ ✰ ✎t (3.23)

In which we have ❩t ❂ ✭rt❀ ①
✵
t✮ and ①t ❂ ✭①✶❀t❀ ①✷❀t❀ ✿ ✿ ✿ ❀ ①♥❀t✮ and ✎t ✐✿✐✿❞✿ ✴ ◆✭✵❀✝✮.

Equation 3.23 is an Ordinary Least Square regression,in which the dependent variable

is a matrix composed by the continuously compounded return of an asset (rt), and a

vector of predictor variables. In our case, the predictor variable in only one, such that ③t

will be only a matrix of continuously compounded returns of a security over its dividend

yield (where the dividend yield is defined as the ratio between dividend paid in the last

year over current price of the index). Unlike in previous chapter, now we will use the

regression environment to forecast expected returns. We will see how including this

predictor variable will change radically how the optimal portion of wealth to allocate to

stocks will change. In order to compute the posterior distribution of returns ♣✭❛❀❇❀✝❥r✮,
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we can rewrite the model as follows:

❩ ❂ ❳❈ ✰ ❊ (3.24)

Where ❩ is a matrix composed by ❚ � ✶ continuously compounded returns, combined

with the vectors of ❚ � ✶ predictor variables. Since in our case we are only using one

predictor variable in the regression, in our case ❩ is composed only by two columns in

total. Generally speaking, if we define ♥ as the amount of predictor variables that we

include in our analysis (for our specification, ♥=1), the ❩ ❂ ❬✭❚ � ✶✮✂ ✭♥✰✶✮❪ matrix.

❳ is instead defined as the ❚ � ✶ vector of dividend yields, combined with a vector of

ones ✶❚�✶. The difference between Z and X is that both contains the predictor variables

as a column, but one is the first lag of the other. ❊ is a ❬✭❚ � ✶✮ ✂ ✭♥ ✰ ✶✮❪ matrix of

identically and independently distributed realizations of the following a ◆✭✵❀✝✮. In the

specification in which we include predictability of returns in our problem, the procedure

is fairly in line with what we did when we were only incorporating uncertainty, what

changes is the way in which we forecast expected returns, and the shape of the distribu-

tions used (must be adapted because we are now in a multi-dimensional environment).

In order to do so, we start by specifying a prior, that will be the starting point of our

Bayesian vector autoregression:

♣ ✭❈❀✝✮ ✴ ❥✝❥�
♥✰✷
✷ (3.25)

Following the conversion tables of Zellner (1971), we can derive directly the posterior

distribution ♣ ✭❈❀✝�✶❥③✮, which is given by

✝�✶❥③ ✴ ❲✐s❤❛rt✭❚ � ♥� ✷❀ ❙�✶✮

✈❡❝✭❈✮❥✝❀ ③ ✴ ◆✭✈❡❝✭ ❫❈✮❀✝✡ ✭❳ ✵❳✮�✶✮
(3.26)

with ❙ ❂ ✭❩ � ❳ ❫❈✮✵✭❩ � ❳ ❫❈✮ and ❫❈ ❂ ✭❳ ✵❳✮�✶❳ ✵❩. The steps to generate the

posterior distribution then are the same described in section 1.4, such that we first draw

the variance-covariance matrix, and the we draw the mean. Once we have generated

our posterior distribution of the parameters from equation 3.26 , then we need to draw

from the predictive distribution, in order to obtain our expected returns. In order to do
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3. THE PREDICTABILITY OF ASSET RETURNS

so, equation 3.23 an be rewritten as:

❩t ❂ ❛✰❇✵❳t�✶ ✰ ✎t (3.27)

if we assume ❇✵ ❂ ❬✵♥✰✶❇❪, we can additionally rewrite the model as:

❇✵ ❂ ❬✭✵ ✿ ✿ ✿ ✵✮✵✮❇❪ (3.28)

❩t ❂ ❛✰❇✵❩t�✶ ✰ ✎t (3.29)

which is a fully autoregressive equation. As a such, we can iterate forward the calcula-

tion, deriving that ❩❚✰ ❫❚ ❂ ❩❚✰✶ ✰ ❩❚✰✷ ✰ ✁ ✁ ✁ ✰ ❩❚✰ ❫❚ is distributed as a multivariate

normal random variable, which first two moments are defined respectively as:

✖s✉♠ ❂ ❫❚❛✰

✭ ❫❚ � ✶✮❇✵❛✰ ✭ ❫❚ � ✷✮❇✷
✵❛✰ ✁ ✁ ✁✰❇

❫❚�✶
✵ ❛✰

✭❇✵ ✰❇✷
✵ ✰ ✁ ✁ ✁✰❇

❫❚
✵ ✮③❚

(3.30)

✝s✉♠ ❂✝

✰ ✭■ ✰❇✵✮✝✭■ ✰❇✵✮
✵✰

✭■ ✰❇✵ ✰❇✷
✵✮✝✭■ ✰❇✵ ✰❇✷

✵✮
✵ ✰ ✿ ✿ ✿

✭■ ✰❇✵ ✰❇✷
✵ ✰ ✁ ✁ ✁✰❇

❫❚�✶
✵ ✮✝✭■ ✰❇✵ ✰❇✷

✵ ✰ ✿ ✿ ✿ ❇
❫❚�✶
✵ ✮✵

(3.31)

Finally, the ❫❚ period ahead forecast of returns can be obtained by drawing from a normal

distribution, defined as

♣✭❘❚✰ ❫❚ ❥✒❀ ③✮ ✘ ◆✭✖s✉♠❀✝s✉♠✮ (3.32)

with mean and covariance matrix defined from 3.5 and 3.31 respectively. At the end

of this estimation process, we end up having a simulated matrix of 1000000 expected

return, which are incorporated in the utility function and averaged out, according to

formula 1.13 of chapter 1. All the steps above are for an investor who does include

uncertainty and predictability all together. Nevertheless, in this chapter as well we let

the investor choose whether to incorporate uncertainty in the estimation of parameters or
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not. In this case, he decides whether to be uncertain or not with respect to the regression

coefficients, and when he does not, then he will simply use the sample estimates of the

regression (without performing the steps in equation 3.26), and then draw from 3.32 in

order to obtain the expected returns.

3.4 Allocation results

From figure 3.3, we can see the resulting optimal allocation, for the case in which the

investor includes return predictability in its optimization procedure. As in the previ-

ous section, we differentiate between two possible choices that the investor can make:

whether he incorporates parameter uncertainty, or he assumes parameter are certain and

fixed. As shown in figure 3.3, when the investor assumes return predictability, then the

resulting investment strategies are completely different with respect from the case in

which he does not (see section 1.5 of chapter 1). Up until now we saw that the alloca-

tion was either constant when there was no uncertainty, or decreasing when there was

uncertainty. Now, the allocation with predictability are increasing, and in a strong way.

In figure 3.3 the two lines both account for predictability, but one includes uncertainty

(blue lune), while the other does not. At a first sight, the results that we obtain when

we introduce predictability, seems to be completely opposite to previous conclusions.

In fact, we can see from the two upper lines in figure 3.3, that when we account for pre-

dictability an investor with a longer horizon seems to allocate a sizeable larger portion

of wealth to the risky component of his portfolio, compared to a short-term investor.

This is clearly shown graphically because the both the lines are increasing (strongly in-

creasing). This behaviour of the allocation could be explained in a converse way with

respect to the previous chapter. In fact, as we shown in the previous chapter, when

the investor estimated expected returns as realization of an independent and identically

distributed process, the allocation should not change unless he accounts for parameter

uncertainty. This because when the investor takes into account parameter uncertainty,

expected returns have a strong positive autocorrelation, rational forecasts of one-year

returns one to five years ahead are highly correlated. As a consequence, the variance of

expected returns grows faster with the return horizon than the variance of unexpected

returns, the variation of expected returns become a larger fraction of the variation of

returns. When we consider predictability instead, we could said that, when the investor
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Figure 3.3: Optimal allocation - Predictability
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The blue line corresponds to the case in which the investor incorporates

for both predictability ad uncertainty. The red line instead displays the

allocation for the specification in which he accounts for predictability but

not for uncertainty. The predictor variable is held at its mean value over

the sample considered. Each graph plot the resulting optimal strategy for

a different value of risk aversion. The results refer to a "full sample" used

as input for the problem.

76



3.4. Allocation results

relaxes the assumption of constant expected returns and he accounts for predictability,

the variance of cumulative expected stock returns might grow less than linearly with

❫❚ . As a consequence, attractiveness of stocks increase as the horizon of the investor

increase since they are perceived as less risky. This leads an investor with a longer hori-

zon be better off with a greater proportion of wealth allocated to the risky component

of its portfolio. If we try to re-write and explain this concept mathematically, we come

back to our regression equations:

rt✰✶ ❂ ☛ ✰ ☞①✶❀t ✰ ✎✶❀t✰✶ (3.33)

①✶❀t✰✶ ❂ ✌ ✰ ✣①✶❀t ✰ ✎✷❀t✰✶ (3.34)

And if we calculate the one-step and two-step ahead conditional variances of cumulative

returns, we can see that:

✈❛rt✭rt✰✶✮ ❂ ✛✷✶

✈❛rt✭rt✰✶ ✰ rt✰✷✮ ❂ ✷✛✷✶ ✰ ☞✷✛✷✷ ✰ ✷☞✛✶✷
(3.35)

In order to compare ✈❛rt✭rt✰✶✮ and ✈❛rt✭rt✰✶ ✰ rt✰✷✮ and show that they are decreasing

over time, we recall an intuition that we gave in section 3.1, where we analyzed the

relationship between shocks in dividend yields and returns. In particular, we recall that

we have a negative correlation between shocks in dividend yield and subsequent shocks

in stock returns, which in formula 3.35, is exactly represented by ✛✶✷. This imply that a

positive shocks in dividend yields makes current stock returns to be lower while, on the

other hand, stock returns are expected to be higher in the future (since ☞ ❃ ✵). This phe-

nomena is the cause of mean reversion in returns, that makes stock more appealing to our

investor as its horizon increases and is the reason why, incorporating the dividend yield

in the analysis, induce this decreasing path of the variange of cumulative returns over

time that makes our investor more willing to shift its wealth toward the risky component

of the portfolio. Having said that, we can still notice how, in the two cases in which we

introduce a predictor variable, one line ends up being consistently higher than the other

one. Roughly speaking, this happens because in the lower line the investor is accounting

for parameter uncertainty while in the line above he is not. This conclusion looks like

an element of connection between what we shown in the previous chapter: accounting
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for parameter uncertainty reduce the optimal fraction of wealth to allocate to stocks,

because of its effect on cumulative variances of expected returns. And we can now

remark that the effect of parameter uncertainty is present regardless of the assumption

that we make on whether expected returns are constant or a time varying/predictable. As

we just mentioned, the decrease in the variance of cumulative expected returns causes

the allocation toward stocks to increase as the investment horizon increases, regardless

of how the investor estimates its expected returns and the assumption that he makes

on them. Nevertheless, this effect appear to be non-monotonic with respect to the in-

vestment horizon. If we analyze how the optimal allocation percentage is varying over

time, we could see how it is actually strictly increasing only up until a certain level of

the investment horizon (around 8 years), while it start to decrease slowly afterwards.

This becomes clearer when we further increase the investment horizon, moving from

a 10year to a 30year time. This phenomenon is defined as the “Battling effect” of the

two underlying concepts of predictability in returns and parameter uncertainty. In order

to better visualize this "battling effects", and try to understand when one does prevail

to the other, we can recall some of the conclusions that we draw in chapter 2, when

we were discussing uncertainty. We saw how the uncertainty become much higher as

we change the initial sample used to estimate the parameters. In particular, we showed

how, using the most recent sub-sample (defined as "Post-Crisis"), the uncertainty that

the investor had on the expected returns was three time higher than in the baseline case.

Thus, in order to better understand the dynamics of predictability and uncertainty, we

can try to repeat the same exercise and look at thee "battling effects". In figure 3.4, we

plot the optimal allocation lines for an investor that incorporate for both predictability

and uncertainty altogether. First of all, we can focus in the graphs on the left panel, in

which the investor is using the “Full sample”. As we can see in the first graph, when

the horizon goes until 10year, the investor always ends up with an end of horizon allo-

cation that is greater than the allocation at ❫❚=1. And this statement is true regardless

of the level of risk aversion. Nevertheless, what can be seen clearly is that, after a first

increasing phase, the allocation starts to decrease, and this appears only as the horizon

stretches more forward, since in the initial part of the investment horizon, there is no

sign of decrease whatsoever. The beginning of the decrease phase, is the signal that the

effect of uncertainty is prevailing over the effect of predictability. In fact, as we have

seen in the previous chapter, the uncertainty effect is increasing over time, causing allo-
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Figure 3.4: Predictability and uncertainty – Full vs reduced sample
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Each line displays the resulting optimal investment strategy for an investor

with a different risk aversion coefficient. In the two left plot, the investor is

using the full sample in order to estimate the parameters. The two graphs

on the right, display the allocation in which he uses only the reduced one.

The two graphs on the top go until a ❫❚ of 10years, while the two bottom

figures reach 30years. Predictor variable at 0.031% 79
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cation to decrease as the investment horizon increases, thus the "horizon effect" that it

causes also becomes more sizable as ❫❚ grows. This conclusion can be carried over also

in the predictability case, and in order to do this, the plot on the bottom left is particu-

larly helpful, since it show the case in which the horizon runs up until 30years. In this

case, the difference between the optimal allocation at the end of the horizon and at the

beginning is even more striking. As we stretch the horizon forward, the finding that the

end-of period allocation was higher than the initial one, is no more held with certainty.

This non-monotonicity of the increase in allocation is caused by the fact that, when we

consider particularly long horizon, the negative effect of uncertainty more than offset

the positive one of predictability. While the positive impact of predictability is greater,

then the allocation is increasing, but when uncertainty gets bigger and bigger, then the

path changes sign. In order to complement the analysis, we can look at the two sub-

figures of figure 3.4, in which we show the allocations for an investor that uses only the

most recent sub-sample. In this case, as we recall from the previous chapter, the shorter

sample induces greater uncertainty. As a result, the increasing path in which predictabil-

ity dominates uncertainty is even shorter, and the allocation lines start to decrease even

after a few years.

3.5 Playing with the value of the predictor variable

Thus far, we have held the predictor variable at its mean value over the sample used,

which in the baseline scenario of an investor using the full estimation sample, was at

0.031%. Using only this value, we were able to isolate the effect of predictability and

uncertainty themselves, and show the positive impact that predictability has on the al-

location toward stocks. On the other hand, we want now to investigate the effect that

the initial value of the predictor variable itself has on the optimal allocations. Recall

that the predictor variable enters equation , which is one of the step necessary to build

our predictive distribution, thus it is natural to hypothesize that this variable plays a big

role in determining the expected future returns. The results of the sensitivity analysis

conducted on the values of the predictor variable ❞❂♣, are shown in figure 3.6, in which

we display the resulting ✦ corresponding to each value of the predictor variable, such

that each line corresponds to a different risk aversion coefficient having on the x-axis

the predictor variable and on the y-axis ✦. Additionally, in order to see whether this
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Figure 3.6: Predictability - Effect of the predictor variable
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(b) ❫❚=1Month
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(c) ❫❚=10Years
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(d) ❫❚=10Years
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(e) ❫❚=30Years
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(f) ❫❚=30Years
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Each graph shows the optimal allocation for different values of the predic-

tor variable (x-axis). Each line corresponds to a different level of risk aver-

sion. All the plots on the left, use the "full-sample" in order to estimate the

parameters, all the graphs on the right instead use the "Post-Crisis" sam-

ple. We consider three different snapshot dates, namely 1Month, 10Years

and 30Years.
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Table 3.4: Optimal fraction of wealth invested in the risky asset, for some values of the predictor variable

and risk aversion. In each sub-table, we fix an investment horizon ❫❚ , at which we evaluate results.

T=1Month

d/p=0.002 d/p=0.019 d/p=0.031 d/p=0.043 d/p=0.061

aV=2 0.00 1.00 1.00 1.00 1.00

aV=5 0.00 0.50 0.97 1.00 1.00

aV=10 0.00 0.25 0.49 0.75 1.00

aV=20 0.00 0.13 0.24 0.37 0.55

aV=50 0.00 0.05 0.10 0.15 0.22

T=10y

d/p=0.002 d/p=0.019 d/p=0.031 d/p=0.043 d/p=0.061

aV=2 0.00 1.00 1.00 1.00 1.00

aV=5 0.00 1.00 1.00 1.00 1.00

aV=10 0.00 1.00 1.00 1.00 1.00

aV=20 0.00 0.50 1.00 1.00 1.00

aV=50 0.00 0.20 0.42 0.66 1.00

T=30y

d/p=0.002 d/p=0.019 d/p=0.031 d/p=0.043 d/p=0.061

aV=2 0.15 0.54 0.78 0.98 1.00

aV=5 0.06 0.21 0.31 0.42 0.56

aV=10 0.03 0.10 0.16 0.21 0.28

aV=20 0.01 0.05 0.08 0.10 0.14

aV=50 0.01 0.02 0.03 0.04 0.06
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relationship varies as the investment horizon changes, we consider 3 snaphsot dates:

1month (3.7a and 3.7b),10years (3.7c and 3.7d) and 30years(3.7d and 3.7e). In order

to study the effect of variation in the dividend yield, we can look at how each line is

increasing as the dividend yield itself increases (recall that dividend yield and predictor

variable in our case are synonymous, since we only have one predictor variable). Re-

gardless of the effect of risk aversion, we can see clearly how, the higher is the dividend

yield that we use as a starting point, higher is the resulting ✦. This finding is quiet

straightforward, and comes easily from the theory that we showed in the previous sec-

tion. Higher current dividend yield lead the investor to forecast higher future expected

return, on the other hand, lower expectations on returns are caused by below the aver-

age values of the predictor variable. As a such, when the predictor variable is above its

average value, the attractiveness of our risky component of the portfolio increase since

we expect them to have higher returns, thus we tend to allocate more toward stocks. As

we can see in figure 3.6, this finding is uniform with respect to the various risk aversion

coefficients that we tested. An interesting finding here comes from comparing what

we can define as the slopes of each allocation line for a given risk aversion at a given

snapshot date. We can define it as:

s❧♦♣❡ ❂
✦☛
♠❛①✭❞❂♣✮ � ✦☛

♠✐♥✭❞❂♣✮

♠❛①✭❞❂♣✮�♠✐♥✭❞❂♣✮
(3.36)

Looking at this slope, we can see how the optimal fraction ✦ varies sharply along with

❞t, such that changing the predictor variable can give us radically different optimal

investment strategies. A positive slope tells us exactly that a higher value of the predictor

variable imply a higher allocation toward stocks (for the reasons mentioned above). But

a higher slope tells us also that the allocation is much more sensible to the value of the

predictor variable. Such that, if the difference between the maximum ✦ that we can

obtain (which is of course obtained using the highest ❞t 0.061%) and the minimum one

(obtained with the lowest ❞t 0.002%), is high, then we are sensible to the initial value

of the predictor variable, otherwise if the difference (or slope) is not so high, then we

are more indifferent to it. Using this "slope" variable can help us in understanding how

allocations change with respect to our initial parameters and assumptions. We can see

how in 3.7a and 3.7b, which plot the allocation for the investor using the full sample and

the reduced sample respectively (at a very short horizon of 1month), the slope is very
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high for all of the risk aversion coefficients. This tells us that the allocation that we end

up having when we use different values of the predictor variable, will be much different

one with respect to the other. In both graphs we are considering a very short horizon,

such that we do not expect any uncertainty effect to be predominant here. Nevertheless,

the same conclusion can be drawn at a 10years horizon, and can be seen from figure 3.7c.

On the other hand, the message in graph 3.7d is a bit different, in particular looking at

it we can see that the slope is not so high for most of the risk aversion coefficients,

since only the least risk averse individual (aV=5) is changing a lot its ✦ as the predictor

variable increase/decrease. This difference becomes even clearer when comparing 3.7e

and 3.7f. While the former preserves relatively steep curves, in the latter the curves

are almost flat, signaling an indifference of the optimal allocation with respect to the

predictor variable. In order to explain this result, we must recall one of the main finding

that we showed in chapter 1, namely that a reduction of the sample increases uncertainty

and, in particular, increases the horizon effect (defined as the decrease of ✦) as the ❫❚

grew. As a such, we expect the three right plots in figure 3.6, to be subject to a much

higher degree of uncertainty, since they are based on a reduced sample. Additionally,

we showed above how this insensitivity of the allocation with respect to the value of the

predictor variable is present and strong when using the reduced sample, and when the

investment horizon is stretched forward. The explanation for this lack of sensitivity that

we obtain in the long run and when uncertainty is high, comes from the intuition that,

if the investor is uncertainty about the real forecasting power of the dividend yield, the

allocation in the long run are less sensitive to its value.

In light of this, if we plot altogether the allocation over different time horizon we

would expect that, regardless of the initial value of the predictor variable, they will tend

toward a common point. This is exactly what can be seen in figure 3.8. Again, when we

use the full sample to estimate the parameter therefore we have a somehow low degree

of uncertainty, the degree of convergence is not dramatic. Comparing the two different

panels with the extended investment horizon (see figure 3.9), we can see that when

with a reduction the sample size, the allocation lines fully overlap each other already

at a 20 year horizon. Using the full sample instead, since the uncertainty is lower,

this convergence is not complete even at 30 year horizon, and the difference between

✦ with the highest value of the predictor variable and the lowest, is still about 30%.

This amount is quiet high, since it is telling us that an investor who is using the highest
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estimate of the dividend yield, is allocating toward stock an amount of wealth that is 3

times higher that an investor who uses the most cautious estimate about the predictor

variable. Figure 3.9 helps us to conclude that the "converge effect" is full only when the

uncertainty is really high, in normal conditions the assumption the initial value of the

predictor variable still plays a major role, despite lowered by uncertainty.

Figure 3.8: Predictability - Convergence in allocations
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The plot on the left shows the resulting allocation for an investor that

does include parameter uncertainty, and uses the full sample to estimate

parameter. In the plot on the right, the investor uses only the most recent

subsample. Aversion coefficient=20
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Figure 3.9: Predictability Extended horizon - Convergence in allocations
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The plot on the left shows the resulting allocation for an investor that

does include parameter uncertainty, and uses the full sample to estimate

parameter. In the plot on the right, the investor uses only the most recent

subsample. Aversion coefficient=20
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4

Concluding remarks

In this thesis we have analyzed strategic asset allocation choices, and we have shown

how the results can vary in light of different assumption that can be done on the prob-

lem. Starting from a base case in which an investor estimates returns as i.i.d. realization

and does not account for parameter uncertainty, we have seen how changing these as-

sumption can lead to fairly different optimal strategies, which might signal over/under

investment with respect to the baseline scenario.

An investor that accounts for parameter uncertainty tend to allocate about 10% less

toward the risky component of the portfolio (in a 10year horizon), with respect to the

case in which he does not account for uncertainty. Overall this signals that, when the

investor does not acknowledge his uncertainty in the estimation of parameters, his allo-

cation is biased toward the risky assets and he is taking too much unremunerated risk,

which can potentially lead the great unexpected losses. High risk averse individual or

investor that has constraints on losses are particularly sensible to such topic, and they

should be therefore really careful on the assumption that they make on their returns.

Many factors can make the over-allocation problem even greater. Whilst in the base

case of a 10-year horizon, the difference between uncertainty and certainty was about

10%, just by stretching forward the investment term the decrease is three times higher

(around 30%) for a 30-year horizon. Uncertainty effect is therefore proportional with

respect to ❫❚ , and does not slow down its pace after some periods. Additionally, a low

risk averse individual seems to be less affect by the impact of uncertainty, since higher

is the risk aversion higher is the difference between the allocation of a short horizon

and a long horizon investor. Investor might find optimal to use a more recent (thus
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shorter) dataset in order to better capture the behavior of the assets that can be time

varying. Changing the sample from a larger to a shorter one, can have dramatic effect

on uncertainty. The horizon effect found with a 10 year sample is more than twice the

one obtained using the full dataset, which imply that non incorporating uncertainty can

lead to a 70% over-allocation toward the risky component in a 30-year horizon, and this

amount is found irrespectively of the risk aversion of the individual. A potential solution

that we propose is the use of Exponentially Weighted Moving Average techniques to

calculate the first two moments of the return distribution. This allows the investor to

assign greater weight to the most recent observations without reducing the estimation

sample. The resulting horizon effect we found with this method is in line with the "full-

sample" one, which tells us that the uncertainty with this model is about 40% lower than

the case in which we were using the most recent sample.

We dedicated a lot of attention to study the value and the definition of the risk-

free component of the portfolio. Many articles in literature that studied strategic asset

allocation, assumed that the investment universe of the investor was formed by a risky

asset and a risk-less one. With the latter being fixed income instrument, with some

positive returns that were deterministic and constant throughout the whole investment

period. Both the consideration of it having a positive return and being risk free are a

bit too optimistic nowadays. In particular, current markets are characterized by the low

interest rate environment for fixed income instruments. To explore this new low/negative

interest rate environment, we perform a sensitivity analysis with respect to the value of

the risk free, and we analyze how the share of wealth allocated to the risky asset varies.

As expected, lower is the risk free rate of return, higher is the corresponding allocation to

stocks. Intuitively, if we decrease the return of one component of the portfolio holding

everything else equal, the other component will become more attractive. This is true

both in the case in which the investor accounts or not for parameter uncertainty. The

uncertainty effect is present regardless of the value of the risk-less asset, in the sense that

also the assumptions on this rate are affected by uncertainty. This result is particularly

intriguing, since it is telling us that there is some sort of convergence of allocations

that use different ❘❢ rates. This can be justified by noting that when we acknowledge

our uncertainty on returns, this uncertainty is propagated also to the other assumptions

underlying the problem. In order to show this, we used the concept of spectrum of

allocation, that is defined ad the difference is allocation between the higher ❘❢ and
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the lowest. The convergence is not so evident when we are using the full observation

sample, but if we use the reduced one (which cause higher horizon effect), the spectrum

of allocations is 20% lower. As a such, when account for uncertainty we know that

potential differences in other assumptions will be reduced by uncertainty effect. This

can be defined as "convergence effect", and is a recurring results in our work.

Some of the most interesting findings of this work come from what we called multi-

asset environment. First of all, we showed how the result of horizon irrelevance ought to

Samuelson (1969), is present also when a multiplicity of assets are included in our port-

folio. On the other hand, when the investor acknowledges its uncertainty in parameters,

the allocation becomes decreasing with respect to ❫❚ . Thus uncertainty effect is present

regardless of the number of securities of which a portfolio is composed. Nevertheless

we showed also that, when more and more assets are included in the investment uni-

verse, some other effects come into play and the horizon effect is no more as "pure" as

with a small number of securities. With an increased number of assets in our portfolio,

the main other driver is the diversification effect that we can obtain with the combination

of different instruments. This effect is present and sizable, and in some cases more than

offsets the horizon effect. As a such, the share of each asset is no more monotonically

decreasing, but it is noisy (and in some cases even increasing). This should not be con-

fused with the lack of presence of uncertainty effect, but should be interpreted as two

effect competing one with the other, with none of the two clearly prevailing the other.

The evidence of predictability in asset returns can be used in our long run asset

allocation problem. Using the dividend yield as predictor variable for stock returns, we

can see how the investment strategy is increasing with respect to the investment horizon.

Predictability makes risky assets more attractive in the long run, because its slows down

the evolution of their variance making it grow less than linearly. This result is conflicting

with the horizon effect induced by parameter uncertainty, such that these two effect

battle each other, making the investment strategy hump-shaped with respect to time.

The resulting optimal investment strategies are increasing when the investment horizon

is small, while they start do decrease as ❫❚ grows. This signals that predictability effect

prevails at the beginning, namely when uncertainty is low, while horizon effect prevails

in the long run. We showed how this even clearer when we reduce the estimation sample

used in the problem. Since we knwe that a reduction in the sample size implied a greater

uncertainty, we showed how in this specification the period in which predictability effect
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is greater than the horizon effect is much shorter. An important role is played by the

value of the predictor variable:changing it can result in radically different allocation.

When we account for parameter uncertainty, this value is still important but we found

some convergence in allocation with respect to different values of the predictor variable.

In the sense that, when the investor is uncertain about its return he is also uncertain about

the initial value of the predictor variable. For example, we have seen how if the investor

"wrongly" assumes the initial value of the predictor variable to be below the historical

average instead of being above the average, thanks to uncertainty the allocation in the

two cases will be converging and the error will be minimized.

Overall, we have seen how accounting for parameter uncertainty is important both

when we keep the constant expected return assumption, or when we assume returns

predictability. Without taking into account uncertainty, an investor can be pushed to

over-allocate toward risky investment which might cause unexpected losses. Addition-

ally, incorporating parameter uncertainty allows us to be better aware of the evolution of

the variance of cumulative expected returns, that can be less than linearly of even more

that linearly growing with the horizon. This effect can be mixed with diversification ef-

fect, or predictability effect which can in turn make the horizon effect look less evident.

Moreover, uncertainty effect makes allocation more stable with respect to other assump-

tions (e.g: risk aversion, r❢ rates, predictor variable). Being uncertain on return makes

the investor uncertain also with respect to all his other assumptions, such that there is a

convergence path caused by uncertainty that can even make other specification become

less relevant. This propagation of uncertainty to the other assumption can partly offset

small estimation errors in the other parameters.
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Appendix

Dataset used

The dataset used for the analysis of Chapter 1 and 3 are provided by Robert Shiller’s

website, which contains the series used in the book "Irrational Exuberance". From this

dataset, we extracted only the historical close prices of the S&P 500, and the respective

dividend payments (D). The spreadsheet with the refreshed data, can be found here:

http://www.econ.yale.edu/~shiller/data.htm.

For the introduction chapter, we used yearly returns of three different assets (S&P500,3M

t-bill and 10year T-Bond) which can be found on the Damodaran website. The spread-

sheet with the raw data is available here:http://people.stern.nyu.edu/adamodar/

pc/datasets/histretSP.xls

Allocation tables for different inputs

The purpose of this sub-subsection is to show, more in details, the results of the sensi-

tivity analysis with respect to the r❢ . This is needed since, as previously mentioned, in

the chapter we only showed the indexed version of the allocation. For each value of the

risk free, we compare the full and the reduced sample, and we evaluate the allocation

every 12 months.
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Table 4.1: Allocation tables - r❢=0.34%

Rf=0.34%

FULL SAMPLE REDUCED SAMPLE

T av=5 av=10 av=20 av=50 av=5 av=10 av=20 av=50

1 0.48 0.24 0.12 0.05 1.00 0.60 0.30 0.12

12 0.48 0.24 0.12 0.05 1.00 0.54 0.27 0.11

24 0.47 0.23 0.12 0.05 0.97 0.49 0.24 0.10

36 0.47 0.23 0.11 0.05 0.90 0.45 0.22 0.09

48 0.46 0.23 0.11 0.05 0.83 0.41 0.20 0.08

60 0.46 0.22 0.11 0.04 0.77 0.38 0.19 0.07

72 0.45 0.22 0.11 0.04 0.73 0.36 0.18 0.07

84 0.44 0.22 0.11 0.04 0.69 0.34 0.16 0.07

96 0.44 0.22 0.11 0.04 0.65 0.32 0.15 0.06

108 0.43 0.21 0.10 0.04 0.62 0.30 0.15 0.06

120 0.43 0.21 0.10 0.04 0.59 0.28 0.14 0.05

132 0.42 0.21 0.10 0.04 0.56 0.27 0.13 0.05

144 0.42 0.20 0.10 0.04 0.54 0.26 0.12 0.05

156 0.41 0.20 0.10 0.04 0.51 0.25 0.12 0.05

168 0.41 0.20 0.10 0.04 0.49 0.23 0.11 0.04

180 0.41 0.20 0.10 0.04 0.47 0.22 0.11 0.04

192 0.40 0.19 0.09 0.04 0.46 0.22 0.10 0.04

204 0.40 0.19 0.09 0.04 0.44 0.21 0.10 0.04

216 0.39 0.19 0.09 0.04 0.43 0.20 0.10 0.04

228 0.39 0.19 0.09 0.04 0.41 0.19 0.09 0.04

240 0.39 0.18 0.09 0.04 0.40 0.19 0.09 0.04

252 0.38 0.18 0.09 0.04 0.39 0.18 0.09 0.03

264 0.38 0.18 0.09 0.03 0.38 0.17 0.08 0.03

276 0.37 0.18 0.09 0.03 0.36 0.17 0.08 0.03

288 0.37 0.18 0.09 0.03 0.35 0.16 0.08 0.03

300 0.37 0.17 0.08 0.03 0.34 0.16 0.08 0.03

312 0.36 0.17 0.08 0.03 0.34 0.16 0.07 0.03

324 0.36 0.17 0.08 0.03 0.33 0.15 0.07 0.03

336 0.36 0.17 0.08 0.03 0.32 0.15 0.07 0.03

348 0.35 0.17 0.08 0.03 0.31 0.14 0.07 0.03

360 0.35 0.17 0.08 0.03 0.30 0.14 0.07 0.03
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Table 4.2: Allocation tables - r❢=0.08%

Rf=0.08%

FULL SAMPLE REDUCED SAMPLE

T av=5 av=10 av=20 av=50 av=5 av=10 av=20 av=50

1 0.91 0.46 0.23 0.09 1.00 0.83 0.42 0.17

12 0.90 0.45 0.22 0.09 1.00 0.74 0.37 0.15

24 0.89 0.44 0.22 0.09 1.00 0.67 0.33 0.13

36 0.88 0.44 0.22 0.09 1.00 0.61 0.30 0.12

48 0.87 0.43 0.21 0.08 1.00 0.56 0.28 0.11

60 0.86 0.42 0.21 0.08 1.00 0.52 0.26 0.10

72 0.84 0.42 0.21 0.08 0.96 0.48 0.24 0.09

84 0.84 0.41 0.20 0.08 0.91 0.45 0.22 0.09

96 0.82 0.41 0.20 0.08 0.86 0.43 0.21 0.08

108 0.82 0.40 0.20 0.08 0.82 0.40 0.20 0.08

120 0.81 0.40 0.19 0.08 0.78 0.38 0.19 0.07

132 0.80 0.39 0.19 0.08 0.75 0.36 0.18 0.07

144 0.79 0.39 0.19 0.07 0.71 0.34 0.17 0.07

156 0.78 0.38 0.19 0.07 0.69 0.33 0.16 0.06

168 0.77 0.38 0.18 0.07 0.66 0.31 0.15 0.06

180 0.77 0.37 0.18 0.07 0.63 0.30 0.15 0.06

192 0.76 0.37 0.18 0.07 0.61 0.29 0.14 0.05

204 0.75 0.36 0.18 0.07 0.59 0.28 0.13 0.05

216 0.74 0.36 0.17 0.07 0.57 0.27 0.13 0.05

228 0.74 0.36 0.17 0.07 0.55 0.26 0.12 0.05

240 0.73 0.35 0.17 0.07 0.53 0.25 0.12 0.05

252 0.72 0.35 0.17 0.07 0.52 0.24 0.12 0.05

264 0.71 0.34 0.17 0.07 0.50 0.23 0.11 0.04

276 0.71 0.34 0.16 0.06 0.48 0.22 0.11 0.04

288 0.70 0.34 0.16 0.06 0.47 0.22 0.10 0.04

300 0.69 0.33 0.16 0.06 0.46 0.21 0.10 0.04

312 0.69 0.33 0.16 0.06 0.45 0.21 0.10 0.04

324 0.68 0.32 0.16 0.06 0.43 0.20 0.10 0.04

336 0.67 0.32 0.16 0.06 0.42 0.19 0.09 0.04

348 0.67 0.32 0.15 0.06 0.41 0.19 0.09 0.04

360 0.66 0.31 0.15 0.06 0.40 0.18 0.09 0.03
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Table 4.3: Allocation tables - r❢=0%

Rf=0%

FULL SAMPLE REDUCED SAMPLE

T av=5 av=10 av=20 av=50 av=5 av=10 av=20 av=50

1 1.00 0.46 0.26 0.10 1.00 0.90 0.45 0.18

12 1.00 0.45 0.25 0.10 1.00 0.79 0.40 0.16

24 1.00 0.44 0.25 0.10 1.00 0.72 0.36 0.14

36 0.99 0.44 0.25 0.10 1.00 0.65 0.32 0.13

48 0.98 0.43 0.24 0.10 1.00 0.60 0.30 0.12

60 0.96 0.42 0.24 0.09 1.00 0.56 0.27 0.11

72 0.95 0.42 0.23 0.09 1.00 0.52 0.25 0.10

84 0.94 0.41 0.23 0.09 0.97 0.49 0.24 0.09

96 0.93 0.41 0.23 0.09 0.91 0.46 0.22 0.09

108 0.92 0.40 0.22 0.09 0.87 0.43 0.21 0.08

120 0.91 0.40 0.22 0.09 0.83 0.41 0.20 0.08

132 0.90 0.39 0.22 0.09 0.79 0.39 0.19 0.07

144 0.89 0.39 0.21 0.08 0.76 0.37 0.18 0.07

156 0.88 0.38 0.21 0.08 0.73 0.35 0.17 0.07

168 0.87 0.38 0.21 0.08 0.70 0.33 0.16 0.06

180 0.86 0.37 0.21 0.08 0.67 0.32 0.15 0.06

192 0.85 0.37 0.20 0.08 0.65 0.31 0.15 0.06

204 0.85 0.36 0.20 0.08 0.63 0.30 0.14 0.06

216 0.84 0.36 0.20 0.08 0.61 0.29 0.14 0.05

228 0.83 0.36 0.20 0.08 0.58 0.27 0.13 0.05

240 0.82 0.35 0.19 0.08 0.57 0.27 0.13 0.05

252 0.81 0.35 0.19 0.07 0.55 0.26 0.12 0.05

264 0.80 0.34 0.19 0.07 0.53 0.25 0.12 0.05

276 0.80 0.34 0.19 0.07 0.52 0.24 0.11 0.04

288 0.79 0.34 0.18 0.07 0.50 0.23 0.11 0.04

300 0.78 0.33 0.18 0.07 0.49 0.23 0.11 0.04

312 0.77 0.33 0.18 0.07 0.47 0.22 0.10 0.04

324 0.77 0.32 0.18 0.07 0.46 0.21 0.10 0.04

336 0.76 0.32 0.18 0.07 0.45 0.21 0.10 0.04

348 0.75 0.32 0.17 0.07 0.44 0.20 0.10 0.04

360 0.74 0.31 0.17 0.07 0.43 0.20 0.09 0.04

102



APPENDIX

Table 4.4: Allocation tables - r❢=-0.08%

Rf=-0.08%

FULL SAMPLE REDUCED SAMPLE

T av=5 av=10 av=20 av=50 av=5 av=10 av=20 av=50

1 1.00 0.57 0.29 0.11 1.00 0.96 0.48 0.19

12 1.00 0.57 0.28 0.11 1.00 0.85 0.42 0.17

24 1.00 0.56 0.28 0.11 1.00 0.76 0.38 0.15

36 1.00 0.55 0.27 0.11 1.00 0.70 0.35 0.14

48 1.00 0.54 0.27 0.11 1.00 0.64 0.32 0.13

60 1.00 0.54 0.27 0.11 1.00 0.59 0.29 0.12

72 1.00 0.53 0.26 0.10 1.00 0.55 0.27 0.11

84 1.00 0.52 0.26 0.10 1.00 0.52 0.25 0.10

96 1.00 0.51 0.25 0.10 0.96 0.49 0.24 0.09

108 1.00 0.51 0.25 0.10 0.92 0.46 0.22 0.09

120 1.00 0.50 0.25 0.10 0.88 0.43 0.21 0.08

132 0.99 0.50 0.24 0.10 0.84 0.41 0.20 0.08

144 0.98 0.49 0.24 0.09 0.80 0.39 0.19 0.07

156 0.97 0.48 0.24 0.09 0.77 0.37 0.18 0.07

168 0.96 0.48 0.23 0.09 0.74 0.36 0.17 0.07

180 0.95 0.47 0.23 0.09 0.71 0.34 0.16 0.06

192 0.94 0.47 0.23 0.09 0.69 0.33 0.16 0.06

204 0.94 0.46 0.22 0.09 0.66 0.31 0.15 0.06

216 0.92 0.46 0.22 0.09 0.64 0.30 0.15 0.06

228 0.91 0.45 0.22 0.09 0.62 0.29 0.14 0.05

240 0.91 0.45 0.22 0.08 0.60 0.28 0.14 0.05

252 0.89 0.44 0.21 0.08 0.58 0.27 0.13 0.05

264 0.89 0.43 0.21 0.08 0.56 0.26 0.13 0.05

276 0.88 0.43 0.21 0.08 0.55 0.25 0.12 0.05

288 0.87 0.43 0.21 0.08 0.53 0.25 0.12 0.05

300 0.86 0.42 0.20 0.08 0.52 0.24 0.11 0.04

312 0.86 0.41 0.20 0.08 0.50 0.23 0.11 0.04

324 0.85 0.41 0.20 0.08 0.49 0.22 0.11 0.04

336 0.84 0.41 0.20 0.08 0.48 0.22 0.10 0.04

348 0.83 0.40 0.19 0.08 0.46 0.21 0.10 0.04

360 0.82 0.39 0.19 0.07 0.45 0.21 0.10 0.04
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Table 4.5: Allocation tables - r❢=-0.34%

Rf=-0.34%

FULL SAMPLE REDUCED SAMPLE

T av=5 av=10 av=20 av=50 av=5 av=10 av=20 av=50

1 1.00 0.89 0.44 0.18 1.00 1.00 0.65 0.26

12 1.00 0.87 0.43 0.17 1.00 1.00 0.57 0.23

24 1.00 0.86 0.43 0.17 1.00 1.00 0.50 0.20

36 1.00 0.85 0.42 0.17 1.00 0.92 0.46 0.18

48 1.00 0.83 0.42 0.16 1.00 0.83 0.42 0.16

60 1.00 0.82 0.41 0.16 1.00 0.77 0.38 0.15

72 1.00 0.81 0.40 0.16 1.00 0.71 0.35 0.14

84 1.00 0.80 0.40 0.16 1.00 0.68 0.33 0.13

96 1.00 0.79 0.39 0.15 1.00 0.62 0.31 0.12

108 1.00 0.79 0.39 0.15 1.00 0.59 0.29 0.11

120 1.00 0.78 0.38 0.15 1.00 0.56 0.27 0.11

132 1.00 0.76 0.37 0.15 1.00 0.53 0.26 0.10

144 1.00 0.74 0.36 0.14 1.00 0.50 0.24 0.10

156 1.00 0.74 0.36 0.14 0.95 0.48 0.23 0.09

168 1.00 0.75 0.36 0.14 0.93 0.45 0.22 0.09

180 1.00 0.72 0.35 0.14 0.89 0.43 0.21 0.08

192 1.00 0.73 0.36 0.14 0.88 0.42 0.20 0.08

204 1.00 0.73 0.35 0.14 0.83 0.40 0.19 0.08

216 1.00 0.70 0.35 0.14 0.79 0.38 0.18 0.07

228 1.00 0.68 0.33 0.13 0.77 0.37 0.18 0.07

240 1.00 0.71 0.34 0.13 0.75 0.35 0.17 0.07

252 1.00 0.65 0.31 0.12 0.72 0.34 0.16 0.06

264 1.00 0.69 0.33 0.13 0.70 0.33 0.16 0.06

276 1.00 0.72 0.34 0.13 0.69 0.32 0.16 0.06

288 1.00 0.68 0.33 0.13 0.66 0.31 0.15 0.06

300 1.00 0.67 0.32 0.12 0.65 0.30 0.14 0.06

312 1.00 0.63 0.30 0.12 0.63 0.29 0.14 0.05

324 1.00 0.67 0.32 0.12 0.60 0.28 0.13 0.05

336 1.00 0.66 0.31 0.12 0.60 0.27 0.13 0.05

348 1.00 0.65 0.31 0.12 0.58 0.27 0.13 0.05

360 1.00 0.53 0.25 0.10 0.56 0.26 0.12 0.05
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