
University of Padova

Department ofMathematics

Master Thesis in Data Science

Assessment of Missense Intolerant Region

in Intrinsically Disordered Proteins

(IDPs)

Supervisor Master Candidate
Professor Emanuela Leonardi Sina Rasouli
University of Padova

Co-supervisor

Academic Year
2023-2024



ii



Dedication.
This thesis is dedicated to my family and partner for their unwavering sup-
port.
To my mother, whose dedication to my education inspired me.
To my father, whose financial and logical support strengthened me.
To my brother, whose support means the world to me.
To my partner, whose patience and understanding made this journey pos-

sible.
I am eternally grateful for their love, encouragement, and belief in me.



iv



Abstract

Genes that are crucial for the function of an organism are depleted of disrupting variants in nat-
ural populations, whereas non-essential genes tolerate their accumulation. Next-generation se-
quencing (NGS) of the general population has enabled comprehensive coverage of the human
genome, identifying single nucleotide variants (SNVs) at an impressive density of two SNVs
per three base pairs. This has demonstrated that regions intolerant to variations are important
for gene function and usuallymap to structural domains. However, the presence and role of re-
gions intolerant to variations in non-globular domains, such as intrinsically disordered regions
(IDRs), remain to be investigated. The aim of this study is to determine the distribution of
theMissense Intolerance Ratio (MIR), a measure of regional intolerance tomissense variation,
in intrinsically disordered proteins (IDPs) and to explore how these regions relate to protein
functions.

We analyzed the content of missense intolerant regions (MIRs) in a set of human proteins
retrieved from DisProt, the major manually curated repository of IDPs. The matched MIRs
were then correlated with the presence of IDP features retrieved from MobiDB, a resource
that integrates predictions and functional annotations of protein disorder andmobility. Addi-
tionally, the matched MIRs were analyzed for the presence of disease variants reported in the
ClinVar database, which collects variants associated with human diseases.

Our results indicate that while MIRs are enriched in protein domains, a substantial pro-
portion is also present within IDRs. Although no significant correlation was found between
MIRs andotherprotein features,MIRswere frequently associatedwithdisease-related variants.
These findings highlight the functional importance of MIRs in both ordered and disordered
protein regions. However, limitations in dataset coverage and methodological assumptions
necessitate further investigation to fully elucidate the role of MIRs in IDPs.
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1
Introduction

1.1 Motivation

As technological advancements have given rise to new methodologies for medicine prescrip-
tions, exome sequencing is frequently used to guidemore personalized diagnosis and treatment
for many genetic diseases including cancer[1, 2, 3]. While this has led to more information
aboutpathogenic variants[4, 5, 6],many variants still remainwithuncertain significance. Many
in silico predictors are used to prioritize likely candidates for each category , but it remains a
major challenge to distinguish pathogenic variants from benign ones[7].

Large exome[8] and genome[9] sequencing projects have presented references of variation
across the human genome providing the means to measure patterns of variability within genes
[10, 11]. It has been demonstrated previously that measuring depletion of standing variation
within genes can be used to identify novel disease-associated genes [10, 11]. With the current
sample sizes of sequenced individuals, measurements in depletion of variation at a regional level
within these genes has begun and many measures have been presented [12].

The Missense Tolerance Ratio (MTR) is a measure of regional intolerance to missense vari-
ation, and can capture this regional level of information [13]. ”The MTR is a direct measure
of purifying selection of missense variation within a gene calculated as a ratio between the ob-
served proportion of missense variants compared to an expected proportion, estimated under
the assumption of no selection occurring in that sequence context. A sliding window summa-

1



tion is used to provide accurate regional measurements.”[12] According to this study [13] the
regions measured as intolerant to missense variation are significantly enriched for pathogenic
missense variants in epilepsy genes.

According to previous studies, mechanisms associated with the pathogenesis of missense
variants often correlate with the three-dimensional structure of proteins [14, 15, 16] and, for
some disease-associated genes, mutations appear to cluster within specific regions [17, 18, 19,
20, 21, 22, 23, 24, 25]. More systematic analyses have identified coding DNA sub-regions in-
tolerant to missense variants [26, 14] and domains in protein families enriched in variants asso-
ciated with disease [27, 28].
Furthermore, within many genes, pathogenic missense variants tend to cluster within spe-

cific domains or regions of the encoded proteins, whereas most loss-of-function variants do
not [23, 27]with the exception of the penultimate and last exonswhere premature termination
codons can escape nonsense-mediated decay (NMD) [29]. Here in this research it is intended
to find out the MIRs inside all the human proteins in Disprot Database [30], the major man-
ually curated repository of IDPs, finding the characteristics of these MIRs and see if there is a
correlation betweenMIRs with IDRs.

1.2 Genetic Variations

Deoxyribonucleic acid (DNA) is the molecule that carries the genetic instructions for the de-
velopment, functioning, growth, and reproduction of all known organisms and many viruses
[31]. It’s essentially the hereditary material passed down from parents to offspring.
DNA is a complex molecule with a unique structure often referred to as a double helix. It

resembles a twisted ladder with two long strands of sugar and phosphate molecules forming
the sides, and pairs of nitrogenous bases forming the rungs that connect the sides [31]. These
bases, adenine (A), thymine (T), guanine (G), and cytosine (C), are the essential components
of the genetic code. The specific order of these bases determines the instructions for building
and maintaining an organism (see figure 1.1).
The blueprint of life, DNA, is not a static instructionmanual. It harbors a captivating diver-

sity within individuals and across populations, known as genetic variations. These variations
arise from a fascinating interplay of evolutionary forces and random events, shaping the biolog-
ical tapestry of life [33]. Understanding the types, impact, and distribution of these variations
is crucial in deciphering humanhealth anddisease. Genetic variations can arise through various
mechanisms:
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Figure 1.1: Deoxyribonucleic Acid Structure(DNA) is depicted as a double helix, resembling a twisted ladder. The ”rungs”
of the ladder are formed by pairs of nitrogen‐containing molecules called nucleobases(adenine (A), guanine (G), cytosine (C),
and thymine (T))[32].

• Mutations: Spontaneous errors during DNA replication or damage from environmen-
tal factors like ultraviolet radiation can introduce changes in the DNA sequence. These
mutations can be point mutations, involving a single nucleotide substitution, or larger
insertions or deletions (INDELs) of nucleotides [34].

• Recombination: During sexual reproduction, chromosomes exchange geneticmaterial,
creating new combinations of alleles in offspring. This process shuffles existing varia-
tions and fuels genetic diversity within populations [33].

• Horizontal gene transfer: In some organisms, genetic material can be transferred di-
rectly between unrelated individuals, introducing novel variations not present in the an-
cestral lineage [35].

These mechanisms constantly introduce new variations into the gene pool, providing the
raw material for evolution by natural selection. Beneficial variations that enhance an organ-
ism’s ability to survive and reproduce in a specific environment become more frequent over
generations, leading to adaptation and the emergence of new species [36].

3



1.3 A Spectrum of Variation

Genetic variations can be broadly classified based on their locationwithin a gene and the result-
ing changes they introduce:

• Exonic vs. Intronic: Variations can occur within the coding region of a gene (exon)
or in the non-coding regions (introns) separating exons. Exonic variations often have
a more significant impact on protein function compared to intronic variations, as they
directly alter the instructions for protein synthesis [37].

• Nucleotide Substitutions, Insertions, and Deletions (INDELs): Themost basic vari-
ations involve single nucleotide changes (point mutations), insertions of additional nu-
cleotides, or deletions of existing sequences. These alterations can have varying effects
depending on their location and type [33] (see Figure 1.2).

• Missense vs. Synonymous vs. Frameshift: Pointmutations can further be categorized
by their effect on the protein sequence. Missense mutations change a single amino acid,
while synonymous mutations alter the DNA code without affecting the amino acid se-
quence. Frameshift mutations introduce or remove nucleotides, disrupting the reading
frame and often leading to nonfunctional proteins [34] see Figure 1.3.

1.4 Databases of Variants

Two valuable resources play a central role in characterizing genetic variations which we are go-
ing to introduce them here.

1.4.1 ClinVar

This public database aggregates information on the relationship betweenhuman variations and
human health. It provides classifications for variations based on their clinical significance,
aiding researchers and clinicians in interpreting the potential impact of variants [39].

1.4.2 GnomAD

GenomeAggregationDatabase offers a global viewof humangenetic variationby capturing the
frequency of variants across diverse populations. This information helps distinguish between

4



Figure 1.2: INDELs shows the 4 different scenarios which are: Normal (Shows the standard process), Substitution (Depicts a
single nucleotide change), Insertion (Demonstrates the addition of an extra nucleotide) and Deletion (Shows the removal of
a nucleotide)[38].

rare, potentially pathogenic variants and common polymorphisms with minimal or no effect
on health.
GnomADinformationhas been gathered inVariantCall Format (VCF)fileswhichnormally

has the following structure:

• CHROM:Chromosome name

• POS: Position on the chromosome

• ID:Variant identifier

• REF:Reference allele

• ALT:Alternate allele

5



Figure 1.3: Missense vs. Synonymous vs. Frameshift illustrates the impact of different point mutations. No mutation (Shows
the original DNA), Silent mutation (A change in the DNA with no change in the AA), Nonsense mutation (A change in the
DNA cause premature stop codon) andMissense mutation (A change in the DNAwith change in the AAwhich can be further
classified as conservative or non‐conservative).

• QUAL: Phred quality score for the variant call

• FILTER: Filter flags (PASS indicates the variant passed quality checks)

• INFO:Additional information about the variant

• FORMAT:Genotype format for samples

Much more information like Allele count, Allele frequency, Highest observed Allele Fre-
quency across all populations in the dataset ect is inside INFO column [8].

It is worth mentioning that the GnomAd database has 4 different releases which have the
following information:

• ExAC:TheExACdata set contains data from60,706 exomes, allmapped to theGRCh37
/ hg19 reference sequence.

• gnomADv2.1.1: The gnomADv2.1.1 data set contains data from125,748 exomes and
15,708 whole genomes, all mapped to the GRCh37/hg19 reference sequence.

• gnomAD v3.1.2: The gnomAD v3.1.2 data set contains 76,156 whole genomes (and
no exomes), all mapped to the GRCh38 reference sequence.

• gnomAD v4.1.0 (released November 2023): The gnomAD v4.1.0 data set contains
data from 730,947 exomes and 76,215 whole genomes, all mapped to the GRCh38 ref-
erence sequence.
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Before the latest release of GnomAD dataset (gnomAD v4.1.0) it was preferred to use the
gnomAD v2.1.1 as it has more information especially for exonic variants. Gnomad v2.1.1 has
also a Liftover version itself. All of these datasets are freely accessible in Gnomad Website al-
though they are very heavy and it is strongly suggested to use the GnomAD public bucket on
Google cloud.

1.5 Reference Genomes

Reference genomes are complete, or nearly complete, representations of an organism’s DNA
sequence. They serve as a foundational resource in genomics research, providing a standard for
aligning, analyzing, and interpreting individual genomes [40].

The human genome has two major reference assemblies widely used: GrCh37 (also known
as hg19) andGrCh38 (hg38). These assemblies are created through amulti-step process involv-
ing:

• DNA Sequencing:

– Scientists first isolate DNA from a cell sample.
– This DNA is then broken down into smaller fragments.
– High-throughput sequencing technologies like Illumina or PacBio sequence these

fragments, generating millions of short DNA reads [40].

• Genome Assembly:

– Short DNA reads need assembly into a contiguous sequence representing the en-
tire genome.

– This complex process involves computational algorithms that overlap and align the
reads to reconstruct the original DNA sequence [40].

– Different assembly techniques exist, with advantages and limitations. Short-read
assemblers are common but struggle with repetitive regions and gaps. Long-read
sequencing technologies are emerging and offer more contiguous assemblies [40].

• Gap Closure and Annotation:

– The assembled sequence may contain gaps where sequencing couldn’t resolve the
complete DNA sequence.
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– Scientists use various methods like additional sequencing or computational pre-
diction to close these gaps.

– Finally, the assembled sequence is annotated to identify genes, regulatory elements,
and other functional regions.

HG37 (released in 2009) was an earlier reference genome assembly with gaps and inaccura-
cies but HG38 (released in 2013) is a significant improvement. It incorporates advancements
in sequencing and assembly algorithms, resulting in a more complete and accurate represen-
tation of the human genome. HG38 has closed many gaps present in HG37, improved the
assembly of complex regions, and provides a more reliable reference for gene annotation [41].

1.6 Genetic Intolerance

Understanding the potential consequences of genetic variations is essential for assessing their
role in disease development. Various computational tools and databases have been developed
to predict the impact of variations on protein function and potential pathogenicity. However,
these predictions require careful interpretation as they are not always definitive [42].

As technological advancements have given rise to newmethodologies for medicine prescrip-
tions, Exome sequencing is frequently used to guidemorepersonalizeddiagnosis and treatment
for many genetic diseases including cancer[1, 2, 3]. While this has led to more information
about pathogenic variants[4, 5, 6], many variants still remain with uncertain significance.

Many in silico predictors are used to prioritize likely candidates for each category, but it re-
mains a major challenge to distinguish pathogenic variants from benign ones[7].

Large exome[8] and genome[9] sequencing projects have presented references of variation
across the human genome providing the means to measure patterns of variability within genes
[10, 11]. It has been demonstrated previously that measuring depletion of standing variation
within genes can be used to identify novel disease-associated genes [10, 11]. With the current
sample sizes of sequenced individuals, measurements in depletion of variation at a regional
level within these genes has begun and many measures have been presented like Z-score[43],
MPC[44], MTR[12] and ect.
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1.7 MTR

The Missense Tolerance Ratio (MTR) is a measure of regional intolerance to missense varia-
tion, and can capture this regional level information [13]. ”The MTR is a direct measure of
purifying selection of missense variation within a gene calculated as a ratio between the ob-
served proportion of missense variants compared to an expected proportion, estimated under
the assumption of no selection occurring in that sequence context. A sliding window summa-
tion is used to provide accurate regional measurements.” [12]

TheMTRpopulationvariationwas sourced fromGnomADv2 [8], theDiscovEHRdataset[45]
and the UK Biobank[46] with 220,000 exome and genome sequences which were filtered for
only single point variation with a quality control ‘PASS’ flag. Ensembl databases (v95)[47]
were used for acquiring gene and protein sequences. In this study, transcripts were only used
where they contained at least one single-point variant in gnomAD and had non-ambiguous se-
quences. Furthermore, Ensembl transcript ID’s were queried for their matching HGNC gene
symbols[48].

In order to calculateMTR score for each position, they have compared the observed propor-
tion of missense variation to an expected proportion of missense variation and its calculation
was performed under the absence of positive/negative selection[12].

For balancing the resolution and jitter, this study suggested using 31 codons as the sliding
window and they have calculatedMTR score for each residue based on the following formula:

MTRi =

missense obsi
missense obsi+synonymous obsi

missense expi
missense expi+synonymous expi

(1.1)

According to this study [13] the regions measured as intolerant to missense variation are
significantly enriched for pathogenic missense variants in epilepsy genes.

According to previous studies, mechanisms associated with the pathogenesis of missense
variants often correlate with the three-dimensional structure of proteins [14, 15, 16] and that,
for some disease-associated genes, mutations appear to cluster within specific regions [17, 18,
19, 20, 21, 22, 23, 24, 25]. More systematic analyses have identified DNA sub-regions intoler-
ant tomissense variants [26, 14] and domains in protein families enriched in variants associated
with disease [27, 28].
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1.8 Intrinsically Disordered Proteins (IDPs)

For decades, the classical view of proteins positioned them as rigid structures with well-defined
three-dimensional (3D) conformations essential for function. However, the discovery of func-
tionally active proteins lacking a stable 3D structure challenged this paradigm. These proteins,
known as intrinsically disordered proteins (IDPs), or intrinsically disordered regions (IDRs)
within structured proteins, have emerged as a significant and functionally diverse class [49].

1.8.1 IDP Features

Unlike their structured counterparts, IDPs/IDRs lack a fixed 3D conformation, existing as
an ensemble of rapidly interconverting conformations [50]. This inherent flexibility is pri-
marily attributed to the amino acid composition of these regions, often enriched in disorder-
promoting residues like glycine, proline, and they tend to be deficient in hydrophobic amino
acids and enriched in polar and charged residues [49].

1.8.2 IDP Functions

The very feature that challenges the classical view of proteins – their lack of a fixed structure –
plays a crucial role in IDP/IDR function. This inherent flexibility allows IDPs/IDRs to inter-
actwithmultiple partnerswith high specificity and low affinity, a key aspect in cellular signaling
and regulation [51]. Additionally, IDPs/IDRs are prime targets for post-translational modifi-
cations (PTMs) like phosphorylation and ubiquitination, further modulating their function
and interactions [52]. Specific linear sequence motifs within IDRs, termed Short Linear Mo-
tifs (SLiMs), act as recognition elements for binding partners, highlighting the intricate code
embedded within these seemingly disordered regions [53].

1.8.3 IDP Databases

Dissecting the universe of IDPs/IDRs necessitates robust informatics tools. Databases like
DisProt provide comprehensive information on experimentally validated IDPs and predicted
IDRs within protein sequences [30]. These resources empower researchers to identify and
characterize IDPs/IDRs, paving the way for further functional studies.

“DisProt is the major manually curated dataset of Intrinsically Disordered Proteins, both
for structural and functional aspects.”[30] DisProt is based on three different ontologies to
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annotate intrinsically disordered regions:

• The Intrinsically Disordered Proteins Ontology (IDPO) which is used to describe
structural aspects of an IDP/IDR, self-functions and functions directly associated with
their disordered state and it is maintained by the DisProt consortium.

• The Gene Ontology (GO)which is used to describe functional aspects of an IDP/IDR

• The Evidence andConclusionOntology (ECO)which is used describes the technique
or evidence associated with an annotation [30].

“MobiDB is a valuable resource for researchers and scientists studying intrinsically disor-
dered proteins (IDPs). This database provides comprehensive information, analysis, and tools
related to IDPs, aiding in the understanding of their structure, function, and dynamics.” This
database contains many information like:

• IDP Entries and Annotations MobiDB hosts a vast collection of entries on intrinsi-
cally disordered proteins. Each entry includes detailed annotations and information
about the protein, such as its sequence, disorder predictions, functional regions, post-
translational modifications, binding partners, and biological functions. These annota-
tions are integrated from various reliable sources and can serve as a valuable reference for
researchers.

• Disorder Prediction Algorithms The database incorporates state-of-the-art disorder
prediction algorithms that assess the likelihood of disorder in protein sequences. These
algorithms utilize different computational techniques andmachine learning approaches
to predict regions of intrinsic disorder within a protein sequence. MobiDB provides
access to these prediction tools, allowing users to analyze their own protein sequences
and obtain disorder predictions.

• Structural Information and VisualizationMobiDB offers structural insights into in-
trinsically disordered proteins. It provides information on experimentally determined
structures, such as NMR ensembles and X-ray crystallography data, as well as predicted
structures based on computational modeling. Users can visualize and explore the struc-
tural information through interactive tools and viewers, enabling a deeper understand-
ing of the conformational behavior and dynamics of IDPs.

• Functional Annotations and Pathways Understanding the functional aspects of in-
trinsically disordered proteins is crucial for unraveling their biological roles. MobiDB in-
tegrates functional annotations, includingprotein-protein interactiondata, post-translational
modifications, and binding sites.
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• Comparative Analysis andCross-ReferencesMobiDB facilitates comparative analysis
by enabling users to compare multiple aspects within and between organisms. This fea-
ture allows for the identification of conserved regions, common binding partners, and
shared functional annotations among different IDPs. The database also provides cross-
references to other relevant protein databases and resources, enabling seamless integra-
tion with existing knowledge and facilitating interdisciplinary research [54].

1.9 Objectives

Here in this research it is intended to find out the MIRs inside all the introduced proteins for
humans in Disprot Dataset[30] which are known to be IDPs and see if there is a correlation
between MIRs with IDRs since there are no studies that clearly accept or reject the existence
of any correlation between the two regions as far as this team knows.
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2
Methods

In this Chapter it is intended to explain the steps that have been carried out to achieve the goals
mentioned in the previous chapter. This chapter is divided in two sections: Section 2.1 and
Section 2.2.

2.1 FindingMIRs

Atfirst step, knowing theMIRs is required so to find these regions, finding a propitiatemethod
is essential. Considering the previous studies, Selecting a method which serves the require-
ments of this study was pretty hard as there are many different methods presented for this
purpose like Z-score[43], MPC[44], MTR[12] and ect.
Finally it is decided to use MTR [12] as a means to findMIRs considering that population

variationwas richer in comparison to other studies with 220 000 exome and genome sequences.
All of this information is stored in a flat file and freely accessible at the MTR-Viewer web

server [55] for further analysiswhich this project aims to but just like any other prepared dataset
it needs some adjustment to be used for our aims to.

2.1.1 Lifting over theMTR positions

TheMTRflatfile though reach and accessible, it usesGrCh37/hg19build genomic coordinates[55]
which is draw back for our purpose as the adjustment happened on 2013 every new informa-
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tion published is based on the latest genomic coordinate GrCh38/hg38 build so, to overcome
this problem, Picard tool is used to lift the data fromprevious to the latest build version (hg38).

Picard tool is a java code generated by Genome Analysis ToolKit (GATK) to lift a VCF file
from one build version to another having the new reference sequence.”This tool locates and
tags duplicate reads in a BAM or SAM file, where duplicate reads are defined as originating
from a single fragment of DNA.” It is worth mentioning that using this tool may cause losing
a part of the original dataset as it can not lift all the entries due the filter status[56] of them but
in our case, in the lifting process less than 1 percent of the entries were lost.

Figure 2.1: The lifting process consists of steps to create the VCF file from the dataset and then pass this file to the picard
tool for the lifting process. At the end the lifted position will be emerged in a new VCF file and the rejected positions will be
emerged in a different VCF file which is discarded.

2.1.2 Finding the IDPs

Nowthatwehave theMTRdatasetwhich contains at least 85000 transcriptswehave tonarrow
down our research to the aimed protein population which is IDPs. The list of IDPs that has
been used for this research is driven fromDisprot[30].

AsMTR dataset use the Ensembl Transcript id for each protein according to Ensemble v95
[12] andDisprot uses onlyUniprot accession for each proteinwe need to do a cross reference to
finds thematches between twodataset using the gene name forwhichwehave used theUniprot
Id mapping tool[57].
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Figure 2.2: Uniprot accessions were used to find the gene name and the Ensemble transcript sequentially and any not‐found
ID was discarded.

2.1.3 Updating theMTR dataset

After Lifting the positions to the latest genome build version (GrCh38), it is necessary to up-
date these coordinates in theMTRdataset for the target proteins(IDPs). In-order to do thatwe
have extracted the nucleotide sequence from both build versions (hg19 and hg38), translated
them and performed an alignment using NCBI pBlast [58] to validate the lifting process2.3.
In this process, all the identical entries were kept and the rest were discarded.

Figure 2.3: The positions in the MTR dataset were updated only for the matched IDs that preserve their sequence after
lifting, using the 2 VCf files and the rest discarded.
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2.1.4 MTR toMIR

After updating the position in theMTR dataset it is necessary to extract the intolerant regions
inside each transcript. In-order to obtain this region, considering that each transcript repre-
sents a protein and each protein contains at least 100 amino acids and each amino acid consists
of 3 nucleotides, we have at least 300 entries for each protein.

The Central Limit Theorem (CLT) tells us that as the sample size increases, the distribu-
tion of the average of independent and identically distributed random variables approaches a
normal distribution regardless of the original distribution’s shape.

For simplicity, if we consider theMTR score as a random variable for each residue from the
same distribution and also considering the scores independent from each other, then according
to the CLTwe can use the representedMTR score for each residue to calculate the average and
the standard deviation, we can make the following assumption:

H0 : x > µ− 2σ

H1 : x <= µ− 2σ

Where mue is the average MTR score for the whole transcript and sigma is the standard
deviation. In this case with these assumptions that we have made, we announce that if the
MTR score is equal or less than themeanminus 2 standard deviation, thenwe have considered
it as a hotspot and if it getsmore than 3 residuewe have considered them as an intolerant region.

2.2 MIRs vs IDRs

Now that we define and find out the MIRs it is time to find the important regions of IDPs in
order to do that the following steps need to be followed sequentially 2.4.

2.2.1 IDPs Identified regions

Using the MobiDB database we can extract:

• ’Homology-domain-pfam’: Pfamdatabase is a large collectionof protein families, each
represented by multiple sequence alignments and hidden Markov models.Proteins are
generally composed of one ormore functional regions, commonly termeddomains. Dif-
ferent combinations of domains give rise to the diverse range of proteins found in nature.

16



The identification of domains that occur within proteins can therefore provide insights
into their function. These information is directly used inMobiDB.

• ’Prediction-disorder-mobidb-lite’: Disorderpredictions areprovidedvia theMobiDB-
lite software. MobiDB-lite is a consensus method which is optimized to find long IDRs
and to be extremely precise. MobiDB-lite reports also sub-regions which are particu-
larly biased in terms of amino acid composition, some of the subregions follow Pappu’s
classification.

• ’Curated-disorder-priority’: MobiDB includes annotations from third-party manu-
ally curated databases which report disorder evidence from the literature. Integrated
databases are: UniProtKB/SwissProtKB, DisProt and IDEAL.

• ’Derived-binding-mode-disorder-to-disorder-priority’: MobiDB calculates binding
modes from PDB structures by analyzing the disorder content in monomeric form and
in complex. Three different binding modes are derived: disorder-to-disorder, disorder-
to-order, context-dependent.

• ’Prediction-lip-priority’: Those regions are called with different names, e.g. MoRFs,
SLIMs, etc. InMobiDB amore general term is usedwhich is Linear Interacting Peptides
(LIPs) which embrace different subtypes. Interacting surfaces of IDPs exhibit a unique
set of chemo-physical properties, e.g., a higher percentage of hydrophobic residues com-
pared to the rest of the IDR, and a larger exposed interaction area per residue - even in
their folded state induced by binding - that they use to contact their physiological part-
ners. This information was predicted using the MobiDB software [59].

Although there are many more regions with different assigned names in this database, this
team intends to use only these 5 regions which seems to be most relevant and accurate for the
project purpose.

2.2.2 MIRs and Identified regions

After extracting the identified regions that was selected fromMobiDB database it is time con-
catenate these information with the MIR information to create a unified data frame which
carries all the necessary information to achieve the ultimate goal of this project which is visual-
izing and statistically trying to find the existence of any correlation betweenMIRs with any of
these 5 named regions.

In the next chapter 3 all the achieved results will be discussed deeply.
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Figure 2.4: Analysis and visualization was performed based on the extracted information from The MTr dataset and the
MobiDB selected features.
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3
Results

In this chapter it is intended to analyze the achieved information from following the steps that
has been discussed in the previous chapter. This chapter is divided in Five sections: Section 3.1,
Section 3.2, Section 3.3, Section 3.4 and Section 3.5 .

3.1 MIRs Finding Results

As discussed beforeThe lifting processwas crucial to be able to carry onwith the study purpose
but before that it is intended to indicate how suitable theMTRdataset is for the target proteins.
As indicated in the following figure 3.1, before lifting the dataset to the latest build version
(hg38), 180 IDPs do not have information about their MTR score in the MTR database be-
cause theMTR datasets was build only for 85000 Ensembl Transcript ID which did not cover
these 180 IDP IDs so, they had to be discarded from the study.

After performing the first two substeps of the Finding MIRs step (see figure 2.2 and 2.3),
due the fact that 1 percent of the whole Positions fromMTR datasets was lost and get rejected
because the picard tool could not find the corresponding position in the HG38 build version,
30 more IDPs were also discarded. These limitations have decreased our IDPs from 1071 IDP
to 861 IDP. At the end of this step, a new dataset that contains the MIR score for these 861
IDPs was built.
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Figure 3.1: Percentage of proteins with curated disordered regions that have (in blue) or not have (in Orange) MTR score
information on the left.Percentage of proteins which were identical (in blue) or not (in orange) on the right.

3.2 Dataset general information

According to the process that can be found in figure 2.4, the MIRs and the 5 selected features
were extracted from the said datasets and the unified dataset was built. This dataset contains
all the necessary data that this study tends to analyze.

According to the figure 3.2 from 861 IDPs that the scope of this study could cover due its
limitations, 854 IDPs had at least one hotspot that was identified by this study and there were 7
IDPwhich they did not have even a single intolerant position according to this studywhichwill
be discussed deeply in the section 3.5. 762 IDPs had at least 1MIRwhich were located in their
PfamDomains, this number for ’prediction-disorder-mobidb-lite’, ’curated-disorder-priority’,
’derived-binding-mode-disorder-to-disorder-priority’ and ’prediction-lip-priority’ are 244, 327,
154 and 475 respectively. These numbers suggest thatmanyMIRs tend to happenmorewithin
the domain of the proteins and then in the LIPs rather than IDRs.

Observing the distribution of theMIRs from the position perspective it is indicated that the
first 100AAof theDisprot proteins tends to haveMIRmore than the other location (see figure
3.3 on the left). This could be due the fact that many of the proteins might have length around
100 AA but as the the figure 3.3 on the right indicates many of the genes has the length around
500 AA or more so it can be suggested the first 100AA of the Disprot IDPs tend to have more

20



Figure 3.2: The number of genes that had (in blue) or had not (in orange) at least one MIR in them intersecting with other
features. The last pie chart on the down right suggests that there were only 854 genes with at least 1 identified MIR.

importance in comparison to other positions.

Figure 3.3: The MIR distribution inside the IDPs and the IDP length distribution.
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3.3 Correlation of MIR with disorder related fea-
tures

Considering the above information, assuming that the hotspots(single intolerant point to mu-
tation) orMIRs have strong correlation with the Domains and LIPs might be true but consid-
ering the figure 3.4 it is obvious that there is no correlation between theMIRswith any selected
features due the fact that MIRs are less populated than any other regions so their overlap can
not be dependent to one another.

Figure 3.4: Regions Correlation Heatmap indicates the correlation between each pair of features that this study considered.

Although there are some correlation between some features like ’curated-disorder-priority’
and ’derived-binding-mode-disorder-to-disorder-priority’ but this matrix can not be very infor-
mative when it comes to the objective of this project so more analysis can enlighten the situa-
tion.
Observing the coincident of MIRs within each of the 5 feature, the bar chart (see figure

3.5) illustrate that almost 60% of hot-spots or MIRs tend to fall into the domains, almost 8
percent in the ’prediction-disorder-mobidb-lite’ and almost 11 percent in the ’curated-disorder-
priority’.
Furthermore almost 5percentof theMIRs tend tohappen in ’derived-binding-mode-disorder-

to-disorder-priority’ andmore than15percent in ’prediction-lip-priority’. Looking at thenum-
bers, something around 2 percent ismissingwhich suggest the idea thatMIRs can happen even
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if that location is not considered to be an important region in the IDP, this percentagemight be
higher than 2 percent since some MIRs might be located in a region that is labeled with more
than 1 of the selected feature.

For example a hot spot might be located in a portion which can be inside the domain and
disorder part of the protein so it is necessary to consider all the possible combinations of this
event.

Figure 3.5: MIRs in MobiDB features indicate the probability of MIRs happening in any identified region.
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3.4 MIR in IDRs

By far whatever has been achieved still supports the fact that the MIRs in the domains tend to
happen more often as the domains known to be the functional part of the proteins but this
study aims to find the importance of IDRs when it comes to MIRs and therefore the bar plot
in figure 3.6 show that from that 8 and 11 percentwhichwere the possibility of havingMIRs in
the ’prediction-disorder-mobidb-lite’ and ’curated-disorder-priority’ respectively, it is necessary
to subtract 2 and 5 percent respectively which is the possibility of havingMIRs in the location
that is both the domain and also IDR.

Finally these results suggest that only 6 percent of the MIRs happen in the non-domain re-
gions that are known tobe either ’prediction-disorder-mobidb-lite’ or ’curated-disorder-priority’
regions. These results indicate that the possibility of having MIRs in the domain is almost 10
times more than the IDRs.

Figure 3.6: The probability of having MIR, IDR and Domain at the same time is indicated above.
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3.5 Interesting Genes

In this section it is intended to discuss some interesting exampleswhich this study achieved. Ac-
cording to what has been discussed the section 3.1 there were 7 genes that this study algorithm
could not find even a single MIR for them and digging deep to these genes it was understood
that the algorithm tends to fail finding the MIRs when the the selected threshold falls below
theminimumMTRscore (MTR score range[0, 1.418]) orwhen theMTR score has high value
for all of the AA position. Below 3 selected genes out of that 7 genes are discussed.

• U2AF2This gene is considered as one of the genes that the algorithmwith the threshold
of 1.5 STD could not find even a single position as a missense intolerant position and
the reason behind that is that the threshold falls below zero (see figure 3.7).
Checking this gene variant fromClinvar dataset it was observed that at the position 149
and 249, 2 pathogenic variants have been identified which is indicated with red dots
in figure 3.7. As this figure indicates the MTR score has high deviation and therefore
the algorithm could not find any MIRs furthermore the identified variants have higher
tolerance compared to other positions and that can explain the lack of performance for
this specific gene.

Figure 3.7: The scatter chart illustrates the deviation of MTR score through the protein length.

According to the figure 3.8 it is indicated that the variant at position 149 has not any
overlap with any of the identified regions but the variant at position 249 is just located
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in the curated disorder part. This result can emphasize the importance of the IDRs due
the fact that one of the known variants is located in a disordered region. It is worth
mentioning that there is a region that can be considered as MIr due the fact that their
MTRscore is zero and this region is between 260 and 300which overlapwith the second
domain of this protein.

Figure 3.8: The plot illustrates the MobiDb features and the MIRs for the U2AF2.

• EIF1AX This gene like the one before was ignored by the algorithm due the high divi-
sion and due the fact that the threshold falls way below the zero but again at position 99
there is a known pathogenic variant by Clinvar that brings the attention to that region
of the gene.

According to what can be seen in the figure 3.9 there are 3 regions, one between 20 and
30, the other between 70 and 80 and the last one between 80 and 110 which has a really
low MTR score. These can be considered as MIRs and as it is indicated the known
mutation is located in the third potential region.

According to the figure 3.10 these potential regions have high overlap with the domain
of this protein which lowers the importance of IDRs but the identified variant falls out
of all the identified regions.

• H3-3A The last gene that it is intended to discuss is H3-3A which does not have any
clinically proven pathogenic variant according to Clinvar, but the interesting par that
according to figure 3.11 and 3.12 the region between 0 and 40 haveMTR score equal to
zerowhich pron them to be aMIR and the interesting part is that this region has overlap
with the protein domain, curated and predicted disorder section.

The fact that the protein seems to be all domain reduces the importance of the domain
and as you can see the potentially identified MIR has almost 100 percent overlap with
the disorder part that indicates the importance of the IDR in this protein.
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Figure 3.9: The scatter chart illustrates the deviation of MTR score through the protein length.

Figure 3.10: The plot illustrates the MobiDb features and the MIRs for the EIF1AX.

Furthermore There are 3 more gene that this study tends to discuss which know to have
Variant in the IDRs:

• MECP2 This gene is known to be an IDP in which pathogenic mutation causes Rett
syndrome and intellectual disability. According to the figure indicates the 3.13 the divi-
sionofMTRscore is high in this gene andoverally,most of the positions have highMTR
scorewhichmeans thatmost of its positionsmust be tolerant to theMissensemutations
but the red dots in this picture indicates the known pathogenic missense variants.
These results suggest that despite having ahighMTRscore still chances of havingpathogenic
missense mutation exist.
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Figure 3.11: The scatter chart illustrates the deviation of MTR score through the protein length.

Figure 3.12: The plot illustrates the MobiDb features and the MIRs for the H3‐3A.

As it is indicated with big red dots in figure 3.13 even at very highMTR score 1.08 there
is an Identified PathogenicMissense Variant (IPMV). The interesting part of this plot is
the positions 321 to 324 which the algorithm identifies as MIR which according to the
figures 3.13 and 3.14 happen to be inside the second curated IDR of this protein which
has no intersection with the domain of this protein.

• MYCNThis gene also plays a role inmany diseases likeMalignant neoplasm of the body
of the uterus, Medulloblastoma, Glioblastoma, Pancreatic adenocarcinoma and Neu-
roblastoma which make this gene an important case for study.
According to the figures 3.15 and3.16 almost all of the IPMVof this gene happenwithin
the MIRs that were identified by this study which provides good validation for the ro-
bustness of the used algorithm.
According to thefigures 3.15 and3.16 the interesting identifiedMIR that had1 IPMVat
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Figure 3.13: The scatter chart illustrates the deviation of MTR score through the protein length.

Figure 3.14: The plot illustrates the MobiDb features and the MIRs for the MECP2.

position 44 and has overlap with the domain of the protein, curated IDR, drive binding
mode disorder to disorder and lip which specify the importance of the identified MIR
within this gene.

• PAK1 This gene happens to play a part in Intellectual developmental disorder with
macrocephaly, seizures, and speech delay.
According to the figure 3.17 and 3.18 there are many MIRs that are identified by the
algorithm and some of them contain IPMV like the positions 110, 470, 474 and 476.
These positions validate more the quality of identifiedMIRs but it is worthmentioning
that there are also some identified IPMV that do not fall into theMIRs due the fact that
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Figure 3.15: The scatter chart illustrates the deviation of MTR score through the protein length.

Figure 3.16: The plot illustrates the MobiDb features and the MIRs for the MYCN.

these positions have highMTR score.
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Figure 3.17: The scatter chart illustrates the deviation of MTR score through the protein length.

Figure 3.18: The plot illustrates the MobiDb features and the MIRs for the PAK1.
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4
Discussion and Conclusion

All things considered theMTRdataset besides the algorithm that this studydevelopedprovides
a goodMIRdataset for almost 80% (854 IDP) of theDisprotHuman IDPswhichwere theTar-
get Proteins that this study tends to observe. As illustrated in the previous chapter, there is no
evidence of correlation betweenMIRs with IDRs or any other selected features fromMobidb
Dataset. However, the probability of havingMIRswithin theDomains of the protein is much
higher than the same probability for other selected features which was not unexpected due the
fact that other studies in the literature also achieved the same result about the domains. Fur-
thermore, the probability of havingMIRs only within theCurated IDRs or the Predicted ones
using theMobiDB-lite software with no intersection with other selected features is almost 6%.
The MIRs contain many IPMV according to the Clinvar dataset but there is no evidence that
indicates the IPMV happens only within the identified MIRs for this study due the fact that
the original idea behind the MTR dataset. So if the position is identified with high tolerance
to mutation, the algorithm can not classify the position withinMIRs.

Most of the IPMV was located inside the MIRs that had intersection with the domain of
that IDP but this study indicates that some IPMV also happen within the MIRs that had in-
tersection with only the IDRs which magnify the importance of the IDRs within IDPs.

All of these results have been based on some assumptions and limitations it is intended to be
discuss here:

• The dataset has been used to extract the necessary score for finding the MIRs although
was more reach from other available datasets from the normal population point of view,

33



thatwas engaged forMTRcalculation, itwas based onbuild versionhg19 and thatmade
us using the lift-over tool which leads us to loss in a part of the original dataset.

• TheMTR dataset was built for only 85000 transcripts from ensemble version 95 which
leads to discarding 180 proteins from the Disprot Human IDPs.

• The Disprot dataset, though gold standard and reliable, contains only 1071 genes that
were not ambiguous or obsolete so this study can suggest the use of a more populated
set of IDPs to reach more valid results.

• Using The Lift-over tool caused rejection in some positions inside the genes so 30 genes
were discarded because they did not preserve their sequence after the lifting over pro-
cess. So from the 1071 IDPs that were considered for the study, only 861 IDPs met the
requirement criteria.

• Considering the MTR score for each position an iid random variable might not be cor-
rect but in order to perform the analysis and simplify the problem was taken into con-
sideration so this study suggests the use of a more sophisticated method for this matter
if applicable.

• Considering 1.5 standard deviation was driven from trying the 2 and 3 standard devia-
tion which lead to fewer MIRs which can suggest a more appropriate approach of find-
ing this hyperparameter.

At the end it is suggested to recalculate the MTR score using The gnomAD v4.1.0 dataset
which contains data from 730,947 exomes and 76,215 whole genomes so that the scores be
more precise and also consider more populated IDP dataset to have more reliable results. This
suggestion was not performed by this group as the latest version of gnomaADwas introduced
publicly at the final day of this team. Developing a more realistic hypothesis for finding the
MIRs is highly recommended.
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