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"One, remember to look up in the sky and not down on your
feet. Two, never give up work. Work gives you meaning and
purpose and life is empty without it. Three, if your are lucky
enough to find love, remember it is there and don’t throw it
away."
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Abstract

Binary stars play a very important role in the dynamics of stellar systems
such as star clusters. After a detailed analysis of binary classification, for-
mation mechanisms and both fundamental parameters and distributions,
the impact of binaries in the determination of the total cluster mass has
been investigated by means of N-body simulations founded on the code
NBODY7. Since the primordial binary fraction is a crucial ingredient in
star cluster dynamical evolution, three open-clusters-like models charac-
terised by a different initial binary percentage have been realised and
a careful examination of their outputs has been performed. In the end,
two HRD-based methods, i.e. the photometric and the isochrone fitting
methods, have been employed to point out the fact that either neglecting
the presence of binaries or not accounting for them properly leads to
definitely wrong mass estimates.
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Chapter I

Introduction

1.1 Brief historical overview about the discovery of bi-
nary stars

The discovery of the first binary stars dates back to the latter part of the 17th century.
In fact, binary stars were found merely by accident and were initially referred to as
"double stars" because the resolution of the telescopes used at that time was too low
to properly investigate such systems. As a consequence, astronomers believed that a
binary system consisted simply of two stars seen nearly at the same line of sight, but
not physically connected, and probably very distant from each other. In particular, this
was thought to be the case of binary systems where one star was considerably brighter
than the companion.

The first discovered binary system was Mizar (1650), which was followed by γ Arietis
(1664), α Crucis (1685) and α Centauri (1689).

The so called double stars were then carefully observed in order to obtain precise
measurements of the stellar parallax: this was their main use in astronomy before they
were recognised as stars interacting and affecting each other in their physical evolution.
It was only in 1787 that the astronomer John Mitchell advanced the hypothesis of these
stars to be physically connected: that was the starting point of the study of double
stars as binary stars.

In the late 18th century, Christian Mayer published the first catalog of binary stars
(Christian Mayer’s Catalogue Of Double Stars, 1781), and Sir William Hershel definitely
proved that double stars were effectively linked by physical processes when he found
that an exchange in their relative position could not be interpreted as a parallactic
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4 CHAPTER I. INTRODUCTION

displacement (Catalogue of Double Stars, 1784). Then Professor Sherburne Burnham,
who discovered as many as 1340 binary stars (Burnham Double Star Catalogue, 1906),
played the role of forerunner for Robert Grant Aitken, an astronomer of the Lick
Observatory who gave a huge contribution to the study of binary systems (The Binary
Stars, 1936).

In particular, now two stars are considered to be a binary system if they obey to the
relation:

log(R) < 2.8− 0.2m (1.1)

where R is the distance between the components and m the total apparent magnitude.

The interest in the characterisation and physical analysis of binary stars has grown
stronger in the last 30 years thanks to the recognition not only of their impact on
stellar evolution, but also of their influence in the dynamics of stellar systems, such as
globular and open clusters. For these reasons nowadays binary stars are thought to be
fundamental objects to take into account for a proper understanding of the dynamical
processes governing stellar physics.

1.2 Types of binary stars

Binary stars are usually divided in four different classes according to both the way in
which they are discovered and the techniques employed for their study:

• Visual binaries.
A binary system is visual if both its components can be observed by means of a
telescope; in such systems the primary is typically brighter than the secondary.

There are two different methods to investigate visual binaries, i.e. the classical
and the interferometric methods. In particular, the former consists in the de-
termination of the seven elements of the binary relative orbit either analytically
(Kowalsky method) or grafically (Zwier method); once the semi-major axis of the
orbit a is determined and if the distance of the examined binary system is known,
the masses of both the components can be derived by using Kepler’s third law.

• Spectroscopic binaries.
A binary system is spectroscopic if its components are not resolved and its
duplicity has to be inferred through the spectral analysis. In fact, the spectrum of
the observed star shows periodic radial velocity variations due to the Doppler
effect, which causes the spectral lines to move towards the red if the star is
approaching (positive radial velocity) or towards the blue if it is departing
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(negative radial velocity). Since the radial velocity can assume both positive and
negative values during the relative motion of the binary components, emission
and absorption lines are forced to oscillate.

Besides, spectroscopic binaries can be either single-lined (SBI), when only the
spectrum of the primary is observed, or double-lined (SBII), when this happens
for both stars instead.

• Photometric (or eclipsing) binaries.
A binary system is photometric if its components are not resolved and the
duplicity is deduced from the presence of periodic minima in the light curve,
each minimum corresponding to an eclipse. Since photometric binaries can be
regarded as spectroscopic binaries having an inclination angle i'90°, the line of
sight is contained in the orbital plane, so that at every revolution one component
is seen to partially or completely eclipse the other.

In particular, photometric binaries can be distinguished according to the ap-
pearance of their light curve, which displays the luminosity variation of one
component as a function of its position with respect to the companion:

– Type 1 photometric binaries.
As type 1 photometric binaries are spherical-shaped, so that they exhibit
always the same side to the observer, their light curve is characterised by
the constancy of the total apparent magnitude outside the eclipses.

– Type 2 photometric binaries.
In the light curve of type 2 photometric binaries the total apparent magnitude
outside the eclipses is variable for both the stars are not perfectly spherical
because of the presence of tidal interactions: as a consequence, their shape is
quite elongated, so that they don’t show the observer always the same side.

Moreover, type 1 photometric binaries have larger orbital separations, and thus
longer orbital periods, than type 2 photometric binaries.

In the end, it is worth emphasising the case of close binary systems, in which
the gravitational coupling between the components is so strong that the rotation
and the revolution periods coincide: therefore such systems move as a rigid body
around its barycentre. Stars belonging to them are characterised by frequent
interaction phenomena, such as mass transfer through the Roche Lobe Overflow
(RLOF) mechanism: if the radius of one component exceeds that of the Roche
Lobe, then the mass transfer from one star to the companion gets started. This
generally happens during those evolutionary phases in which one star expands,
thus increasing its radius (i.e. in the transition from the Main Sequence (MS) to
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the Red Giant Branch (RGB)), until it fills its Roche Lobe.
Also, stars experiencing mass transfer are typically sorrounded by a rapidly
rotating accretion disk; the material which the disk is made of is lost by the
donors together with angular momentum and is meant for the mass accretion of
the receiving stars once it settles down to their surface because of the acceleration
imprinted by the stellar gravitational field.

Lastly, close binary systems are divided in three groups depending on the
behaviour of their components towards the Roche Lobe:

– Detached systems.
Close binary systems are defined as detached when both their components
have R<RRL (i.e. none of them fills its Roche Lobe).

– Semi-detached systems.
Close binary systems are semi-detached when the primary has R1<RRL,
whereas the secondary has R2'RRL (i.e. only the secondary fills its Roche
Lobe); in this case mass transfer from the secondary to the primary is likely
to get underway.

– Contact systems.
Close binary systems belong to this category if both their components have
R'RRL (i.e. both of them fill their Roche Lobe), so that sooner or later mass
transfer will be initiated.

• Astrometric binaries.
A binary system is astrometric if its components are not resolved and the duplicity
is derived by studying the perturbed motion of a star induced by the presence of
a companion.

1.3 Formation mechanisms of binary systems

The origin of binary stars is directly linked to that of single stars. The birth of a single
star takes place in various stages:

• Formation of a molecular cloud inside a galaxy.
The cloud is gravitationally bound and supported as a whole against the collapse
by the presence of a magnetic field.

• Formation of the molecular cloud cores.
Since the magnetic field tends to slowly leak out of over-dense regions of the



1.3. FORMATION MECHANISMS OF BINARY SYSTEMS 7

cloud via ambipolar diffusion, these ones are allowed to become more and more
dense: in this way cores inside the molecular cloud are formed.

• Collapse of the molecular cloud cores.
The cloud cores keep up increasing their density until their mass reaches a
critical value called the Jeans mass MJ : as soon as M>MJ , they undergo the Jeans
instability, which is a gravitational instability, and start to collapse towards stellar
densities.

• Formation of a central protostar embedded within an envelope of infalling
gas and dust.
Each collapsing core originates a protostar, which is typically surrounded by a
disk since the parental molecular cloud is almost always rotating; the newborn
protostars accrete material from both the infalling cloud and the sorrounding
disk, so that they grow embedded in a gas and dust envelope.

• Development of protostars stellar winds.
As a protostar contracts towards the Zero Age Main Sequence (ZAMS), in order
to become a star it develops a stellar wind directed to the system rotational
poles; this is due to the fact that the infalling material deposits preferentially
onto the disk, namely not onto the protostar surface, because of its high angular
momentum.

• Revelation of the protostars.
Since the ram pressure of the incoming material prevents the wind from breaking
out, protostars remain unobservable for the large majority of their life; however,
when the infall of material decreases, so that the opening angle of the wind
widens, this one is able to escape, causing the expulsion of the protostellar disk:
in this way, protostars become finally observable.

• Formation of Pre-Main-Sequence (PMS) stars.
As soon as protostars become visible, they are considered PMS stars.

The PMS population is very rich in multiple systems: in fact, it has been estimated that
the fraction of binaries exceeds the 50%, which means that binary formation can be
assessed as the primary branch of the star formation process. In particular, since stars
tendentially form in pairs, it is likely for binary formation to occur before the PMS
stage.

As far as binary formation is concerned, three possible mechanisms have been proposed
in order to explain it: tidal capture, prompt-fragmentation and delayed breakup
(Tohline 2002).
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1.3.1 Tidal capture

Tidal capture is a formation mechanism based on the fact that the cloud cores can col-
lapse to form single stars which then become bound in pairs through tidal interactions
arising from dynamical encounters.

In fact, the formation of a binary system from two initially unbound stars requires the
dissipation of a fraction of their orbital energy: specifically, in favourable three-body
encounters this energy can be transferred in form of kinetic energy to the perturbing
star. Otherwise, binary systems can be the outcome of two-body encounters if the stars
involved are close enough to make their interaction not only gravitational, but also
tidal.

However, this scenario has been discarded for two main reasons: the former is related
to the rarity of favourable three-body encounters, as in large virialised clusters the
typical approach velocity of unpaired stars is hyperbolic, so that they tend to separate
instead of becoming bound together, whereas the latter is due to the low probability of
strong tides to be originated in two-body encounters unless the interacting stars are
not very close. Therefore, in the absence of strong tides, too many encounters would
be needed to dissipate a significant amount of energy and promote their approach.

1.3.2 Prompt-fragmentation

Prompt-fragmentation is a non-linear process characterised by the lack of simple
symmetries and dependent on the type of collapse a molecular cloud undergoes. In
fact there are two different mechanisms to be considered: the nearly homologous and
the non-homologous collapse.

A rotating molecular cloud is defined to collapse in a nearly homologous fashion both
if it has a spherical or spheroidal configuration and is uniform in density, and if its
mass is significantly larger than the local Jeans mass (namely if M�Mi

J), whose value
is the same almost everywhere inside the cloud. In this case the cloud evolves through
a sequence of flatter and flatter configurations in a free-fall timescale determined by the
mean local density ρ'ρi. As the degree of flatness becomes more and more extreme,
pressure gradients develop until they are able to slow down the collapse, so that the
same final configuration is reached by all the cloud cores at approximately the same
time.

On the other hand, a non-homologous collapse will occur if it starts from a centrally
condensed or marginally Jeans unstable initial configuration inside the molecular
cloud. In fact, the central regions of the cloud collapse ahead of the rest of it, so that
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a steep density gradient is produced. This is due to the fact that, at every position
inside the cloud, the collapse is governed by the local free-fall timescale, which differs
according to the value of the mean local density: therefore, denser regions have shorter
free-fall timescales and are likely to collapse first. At this stage either the cloud has a
large enough angular momentum to stop the collapse, or the collapse continues and
leads to the formation of an equilibrium core containing a small fraction of the cloud
mass, followed by a period of mass accretion.

N-body simulations have shown that the nearly homologous collapse is probably
the cause of prompt-fragmentation, whereas the non-homologous collapse seems
to discourage it: in fact, the former mechanism favours the development and the
amplification of non-axisymmetric density perturbations which can end up in the
fragmentation of the cloud, whereas the latter retards the growth of such perturbations
owing to the presence of strong pressure forces resulting from the steep density
gradient it originates.
Nevertheless, it is not yet clear how often prompt-fragmentation will produce binary
systems as the outcome of this process may be very sensitive to the spectrum of
the initial density fluctuations. Hence a lot of work is still to be done in order to
understand the relation between prompt-fragmentation and the formation of binary
stars.

1.3.3 Delayed breakup

As already mentioned, the non-homologous collapse of a molecular cloud leads to the
formation of a central equilibrium configuration, which can be referred to as a "core"
and is stable against fragmentation; in addition to this, the core generally contains
a small fraction of the cloud mass and may be enclosed in a rotationally supported
accretion disk. Consequently, the evolution of the core will be driven in the first
place by radiation losses and accretion, which cause both its mean density and its
temperature to steadily rise; the same happens to the angular momentum, for accretion
makes the core mass increase through the infalling of material either directly in from
the cloud or migrating in from the sorrounding disk. The outcome of the combined
processes is therefore a core which rotates faster and faster as contraction goes on.
From now on the evolution of the core can be described by means of two theories,
which are the classical view of fission and the Lebovitz’s revised version of the fission
theory.

According to the classical view of fission, the ellipsoid-shaped core will experience
two possible figure deformations, becoming either pear-shaped or dumbbell-shaped:
in the former case its progressive elongation due to rotation will make it end up in
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two detached parts circularly moving around each other, so that a binary system
will form. Since the fragmentation of the core takes place after it settles down to
an equilibrium configuration, this formation mechanism is called delayed breakup.
However, this scenario seems not to work because of both the instability of the pear-
shaped configuration and the fact that the viscous timescale of protostars is too long
for viscous dissipation to drive the evolution of the pear-shaped core. For this reason
Lebovitz went through the classical fission theory and amended it in such a way that it
could be independent from the action of viscosity.

Even so, none of these theories predicts that rapidly rotating axisymmetric cores can
directly break up when they undergo the dynamical bar-mode instability which leads
to their deformation: as a result, the delayed breakup mechanism has been rejected.

By way of conclusion, in spite of the fact that none of these scenarios is able to fully
explain how binary systems originate from a parental molecular cloud, at the current
time prompt-fragmentation is regarded as the most probable formation mechanism.



Chapter II

Fundamental parameters and
distributions

A correct and complete physical description of binary systems is based on both the
knowledge of eight fundamental parameters, which are the orbital elements and the
mass of the components, and the derivation of three statistical distributions, i.e. the
mass function,the mass-ratio distribution and the period distribution.

2.1 Orbital elements and mass of the components

In the study of binary systems two different problems have to be tackled: the former is
of geometric type and consists in the determination of the orbital parameters, which
allow a proper description of the relative orbit of both stars, and the latter has a purely
astrophysical nature, since it deals with the estimate of some physical parameters,
above which the mass of the components.
As far as the geometric problem is concerned, there are seven orbital elements which
must be taken into account:

• The longitude of the ascending node Ω.

• The inclination angle of the orbit plane i.

• The argument of the pericentre ω.

• The semi-major axis of the orbit a.

• The eccentricity of the orbit e.

11
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• The time of the passage at the periastron T.

• The revolution period P.

Besides, once the orbital elements are known the mass can be determined by combining
Kepler’s third law:

4π2 a3

P2 = 4π2 (a1 + a2)
3

P2 = G(M1 + M2) (2.1)

which can be written in a more compact form as:

a3

P3 = M1 + M2 (2.2)

with the relation:
M2

M1
=

a1

a2
(2.3)

2.2 Mass function

The mass function is used to constrain the mass of the unseen component of a binary
system once the mass of the companion has been measured; therefore, it is defined for
spectroscopic and photometric binaries.
The mass function is calculated from observable quantities only, such as the revolution
period P, the eccentricity of the orbit e, the inclination angle of the orbit plane i, the
semi-major axes a1 and a2 and the semi-amplitude K of the radial velocity curve, which
is obtained by plotting the observed radial velocities against the time.
However, the dependence of the mass function on these physical quantities varies from
single-lined to double-lined spectroscopic binaries, as in the latter case both the stellar
radial velocity curves are known, being one the opposite of the other.

For SBI the mass function can be written either as:

f (M2) =
M3

2 sin3 i
(M1 + M2)2 = 1, 035× 10−7K3

1P(1− e2)
3
2 (2.4)

if the spectrum of the primary is observed, or as:

f (M1) =
M3

1 sin3 i
(M1 + M2)2 = 1, 035× 10−7K3

2P(1− e2)
3
2 (2.5)
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if that of the secondary is instead.
So, after the mass ratio:

M2

M1
=

a1

a2
(2.6)

has been evaluated through the gauge of a1 and a2, it is possible to provide an estimate
of the mass.

On the other hand, by means of the reduced mass functions:

M1 sin3 i = 1, 035× 10−7(K1 + K2)
2P(1− e2)

3
2 (2.7)

M2 sin3 i = 1, 035× 10−7(K1 + K2)
2P(1− e2)

3
2 (2.8)

and if the inclination angle i has been determined, for SBII the mass of the unseen
component can be derived immediately from the mass ratio:

M2

M1
=

a1

a2
=

K1

K2
(2.9)

whose value descends directly from the analysis of the radial-velocity curves.

Since the mass function is strongly dependent on the mass of the primary M1, it is
occasionally helpful to work with this quantity instead:

Y =
f (M2)

M1
=

q3

(1 + q)2 sin3 i (2.10)

where:
q =

M2

M1
(2.11)

is the mass ratio.
Hence the Y-distribution is a function of Y defined as φ(Y).

Nonetheless, the Y-distribution may be affected by some selection effects because the
mass function shows a heavy dependence also on K, especially in the case of single-
lined spectroscopic binaries. In fact, small values of K, which come from either small
inclinations or small mass ratios, are hard to detect: thus there may be a deficiency of
small K values, ending up in a Y-distribution peaked towards low values of Y.
Another selection effect, which actually yields the same result, is connected to stellar
rotation. Since early-type stars rotate faster than late-type ones, their spectral lines
are fuzzy and therefore small radial velocity variations may be overshadowed: as a
consequence, if a large number of small radial velocity variations remains undetected,
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a lack of small values of K is expected. For this reason, the Y-distribution of early-type
stars is more peaked towards small values of Y than that of late-type ones.

2.3 Mass-ratio distribution

The mass ratio is defined as the ratio between the mass of the secondary and that of
the primary of a binary system:

q =
M2

M1
(2.12)

and represents one of the most relevant parameters for the characterisation of binary
stars.
Its importance is related to the mass-ratio distribution, also called q-distribution, which
not only displays the dependence of f(q) on q, but is also regarded as a fundamental
tool to investigate the dynamical processes binary systems went through during their
life. In this sense, the q-distribution helps to build a bridge between binary physics
and dynamics. Moreover, it provides an observational check for theoretical models of
both binary evolution and star formation.

Many different shapes of the q-distribution have been proposed so far according to the
sample of binaries examined and the initial conditions selected in N-body simulations,
which are typically used to compare the observed q-distribution with the expected
theoretical one.

As far as spectroscopic binaries are concerned, the q-distribution was found to be
bimodal both by Hogeveen (1992), who analysed binary systems from The Eight
Catalogue of The Orbital Elements of Spectroscopic Binary Stars, and by Trimble (1974),
who based her work on The Sixth Catalogue of Orbital Elements of Spectroscopic Binary
Systems instead.

According to Hogeveen, the q-distribution for the single-lined spectroscopic binaries in
the sample has the form:

f (q) ∝ q−α

{
α=0 for q<q0

α=2 for q >q0
(2.13)

where q0 =0.3 for systems with B-type primaries and q0 =0.55 for systems with K-type
primaries. Hence, if q<q0 the q-distribution is expected to be flat, whereas if q>q0 it is
a decreasing power-law.
On the other hand, the q-distribution for double-lined spectroscopic binaries has a
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pronounced peak at q'1.
Thus the combination of the two distributions would yield a bimodal distribution with
two maxima, the former placed at q'0.25 and the latter at q'1, if the selection effects
affecting both single-lined and double-lined spectroscopic binaries were not carefully
taken into account.
This is true in particular for SBII, as they are detectable only when the spectral lines
of the secondary star are visible, i.e. if the primary is not much brighter than the
secondary. What is more, the visibility of the secondary star spectral lines with respect
to that of the primary ones can be expressed as a function of q:

g(q) =
2

1 + q−β
(2.14)

where typically β'6. Since g(q) decreases rapidly with q, it follows that SBII with nearly
identical components are harder to observe than those with different components: as a
consequence, a selection effect does exist, for SBII with equally massive components
are favoured. To cope with such a bias a large number of observations may be needed:
therefore the determination the q-distribution could be a very difficult task.
For this reason, assuming for SBII the q-distribution assigned to SBI has been preferred
in this case.

Trimble adopted a similar approach for the q-distribution setting, as she kept single-
lined and double-lined spectroscopic binaries separated due to the presence of different
selection effects. In fact, she found by analogy that the q-distribution of SBII peaks at
q'1 because they are strongly concentrated towards high values of q. In particular,
only few systems are characterised by mass ratios q>1, which can be considered as an
evidence of mass transfer being at work.
However, according to Trimble even SBI are affected by a selection effect, for their
q-distribution peaks at q'0.3 but shows a sudden fall-off at very low values of q.
Since the SBII sample is biased in favour of high mass ratios, whereas the opposite
happens for that of SBI, the two q-distributions have been combined together, so that
an overall bimodal q-distribution has been obtained.

In the end, the q-distribution was found to be Gaussian-shaped by Kouwenhoven et al.
(2009).

Hogeveen (1990) tried to constrain the shape of the q-distribution of visual binaries
too by selecting a sample of binary systems from both The Fourth Catalogue Of Orbits
Of Visual Binary Stars and the revised version of The Index Catalogue Of Visual Double
Stars. He found that the most important selection effects at stake were:

• The maximum and minimum orbital separation between the components, as
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limits for the detection of the binaries.

• The maximum apparent magnitude of the primary, since too faint primaries must
be rejected in order to make a sound statistics.

• The maximum apparent magnitude difference between the components because,
if either the primary is too bright or the secondary too faint, the latter may be
undetected, so that the system will not be recognised as double.

By taking these selection effects into consideration and resorting to simulations,
Hogeveen concluded that the observed q-distribution was in agreement with the
real one for q>0.25 and could be reproduced by the power-law:

f (q) ∝ q−2.7 (2.15)

whereas for q<0.25 this did not occur owing to the selection effects predominance.
For this reason, the q-distribution was assumed to be flat in the range 0<q<0.25, thus
obtaining the following result:

f (q) ∝ q−α

{
α=0 for q<0.25
α=2.7 for q >0.25

(2.16)

From the knowledge of the q-distribution, also the companion mass-ratio distribution
(CMRD), which displays the trend of the mass ratio q as a function of the primary
mass M1, can be calculated.
In the work by Reggiani, M. and Meyer, M. R. (2013) it has been argued that, unlike
the q-distribution, the CMRD appears to be universal over a wide range of q values
and primary masses, as it can be described by the power-law:

f (q) ∝ q−β (2.17)

where the best-fit value of the exponent seems to be β=0.25±0.29, as derived from the
combination of the q-distribution for M-dwarfs and that for solar-type stars.

Furthermore, the shape of the CMRD is unaffected by dynamics, for binaries with high
q values are destroyed as well as those having low q values, without any preference. In
fact, the survivability of a binary system shows a weak dependence on the mass ratio
because the binding energy:

Ebind = −G(M1M2)

2a
(2.18)

is proportional to the mass of both the primary and the secondary component.
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Since binary stars are typically destroyed in dynamical interactions with perturbing
single stars, another important quantity to take into account is the kinetic energy of
these ones:

EK,p =
1
2

Mpv2
p (2.19)

Thus the fate of binary stars is determined by the value of their binding energy: if the
binding energy is lower than the kinetic energy of the perturbing stars, then binary
systems will be disrupted; the opposite happens when the binding energy is greater
than the kinetic energy of the perturbing stars. Hence, from a dynamical point of view
binaries can be either soft or hard.
In particular, by means of N-body simulations Parker and Reggiani (2013) demon-
strated that, for a binary system to be broken up during an interaction, the kinetic
energy of the perturbing star must exceed the binding energy of the system by a factor
from 10 to 100, i.e. EK,p' 10-100 Ebind, which means that the dependence of Ebind on q

is negligible. Consequently, the harder the binary, the higher the ratio
EK,p
Ebind

.

This result has raised considerable interest: if the CMRD is not affected by dynamical
evolution, then it may be employed as a strong diagnostic of the universality of the
star formation process. In fact, changes in the shape of the observed CMRD may be
attributed to the variability of the binary systems physical properties according to
the environment in which they have formed. Therefore, the CMRD of different star
forming regions can indicate the presence of separate modes of star formation.

2.4 Period distribution

The period distribution is another useful instrument to investigate the dynamical
processes affecting binary evolution. In fact, the period P is directly linked to the
orbital separation a between the components of a binary system: large values of a
imply long periods (wide binaries), whereas small values of a entail shorts periods
(tight binaries).

According to Korntreff, Kaczmarek, and Pfalzner (2012), the observed log-normal
period distribution for a field binary population made of both G-type stars and M-
dwarfs in the solar neighbourhood is different from the primordial one, which is
supposed to be log-uniform, because of binary dynamical evolution. In fact, there are
two main processes acting in changing the period distribution:

• Gas-induced orbital decay.
Since star formation takes place in gas clouds, the newborn stars go through



18 CHAPTER II. FUNDAMENTAL PARAMETERS AND DISTRIBUTIONS

an embedded phase before the gas is completely removed by the strong winds
originated by both very massive stars, i.e. OB stars, and supernova explosions. In
particular, binary systems experience the dynamical friction with the sorrounding
gas during this phase, so that they lose energy and momentum: as a result,
the orbital separation between the components decreases and their merging in
favoured. Thus, gas-induced orbital decay diminishes the fraction of short-period
binaries, for they are characterised by small orbital separations.

• Dynamical destruction in three- or four-body encounters.
Wide binaries are typically destroyed in encounters because their binding energy
is lower then the kinetic energy of the perturbing stars: therefore, when part of
this kinetic energy is transferred to the binary components, they tend to depart
from each other, causing the dissolution of the systems they belong to. For this
reason, three- or four-body encounters reduce the fraction of long-period binaries.

What is more, the two processes never act together as they affect different periods; in
fact, since the maximum period for gas-induced orbital decay is Porb,max'5.5×104 days
and that for three- or four-body encounters is Pdyn,max'1.1×105 days, it follows that
Porb<Pdyn.

In conclusion, these dynamical processes do change the distribution of binary stars
periods, so that their combined effect leads to the transformation of the primordial
log-uniform period distribution into the log-normal period distribution observed at
the present time.



Chapter III

Binary stars and stellar dynamics

3.1 Star clusters as collisional systems

Star clusters constitute great "laboratories" to investigate stellar dynamics; since gravity
(for which the Newtonian approximation holds) is generally the predominant force in
stellar systems, any star cluster can be regarded as a self-gravitating "gas" of stars and
therefore treated as a fluid. Consequently, fluid dynamical models are suitable for the
theoretical description of stellar systems.
In the fluid dynamical approach, a stellar system is fully represented by an evolving
phase-space and seven-variable-dependent density distribution f(~r,~v,t), which the
following boundary conditions are associated to:

f −→ 0 if r, v −→ ±∞ (3.1)

for the system is finite and f(~r,~v,t)≥0. The evolution of f(~r,~v,t) is determined through
the Fokker-Planck equation, as it accounts for dynamical processes related to two-body
relaxation which the Boltzmann equation, outlining collisionless systems, does not
include.
On the other hand, the velocity distribution f(~v,t) is assumed to be a Maxwellian.

Star clusters are defined as collisional systems because two-body encounters are the
main drivers of their dynamical evolution; in particular, encounters can be either strong
or weak.
Strong encounters produce large energy variations as they imply the fly-by of two
different stars; in fact, when a star passes very close to another one, there will be not
only a modification of the perturbed star orbit, but also a variation of its velocity of
the order ∆v∼v.

19
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Besides, the typical timescale for strong encounters is given by:

ts ≈ 4× 1012

(
v

10kms−1

)3(
M

M�

)−2(
n

1pc3

)
yr (3.2)

where v∼10 km s−1 and n≥1000 pc−3 for globular clusters. Thus, since ts is important
for small stellar velocities, it is clear that strong encounters are common in GCs (i.e.
one or even more strong encounters per star).

Instead, weak encounters are not responsible for a significant alteration of the stellar
energy balance for they do not consist in the real approach of different stars, but are
due to long-distance interactions: in fact, each weak encounter causes the other stars
path to be deflected only by a small angle, which means that on the whole the orbits
will remain unperturbed.
However, stars in clusters normally undergo many weak encounters during their life,
so that there is a cumulative effect: hence the total deflection angle will be large.
Furthermore, weak encounters act in a selective way on stellar velocities, as they affect
only the velocity component perpendicular to the line of sight.

3.2 Relaxation and its consequences

Relaxation is the response of a system to a perturbation: in fact, it consists in the return
of a perturbed system to an equilibrium state. The concept of relaxation is connected
to the so called relaxation time, which is a measure of the time it takes for an object
to be significantly perturbed by another one inside a system. Nevertheless, relaxation
time is most commonly defined as the time for a star either to lose all memory of its
initial orbit or to experience a velocity variation of order itself because of encounters:

trelax =
ts

2 ln
(

bmax
bmin

) (3.3)

where b is the impact parameter. In particular, trelax depends on the integration limits,
for bmax is the characteristic size of the whole stellar system and bmin is assumed to be
the strong encounter radius:

rs =
2GM

v2 (3.4)

Since trelax∼100 Myr for both globular and open clusters, it follows that relaxation
time is shorter than the lifetime of globular clusters, but is comparable to that of open
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clusters: therefore, the importance of this result lies in its pointing out the impact of
encounters in the evolution of stellar systems.

Regarding cluster dynamics, relaxation has some crucial consequences (Spitzer 1987):

• Evaporation.
Since two-body relaxation allows stars to exchange energy among themselves,
they will become unbound and therefore leave the cluster if their total energy
ends up to be greater then the cluster escape velocity; moreover, tidal shocks can
accelerate the escaping process by implanting additional kinetic energy to them.
In particular, tidal shocks are originated by the passage of stars close either to
the Galactic centre in the case of GCs, or to giant molecular clouds and spiral
density waves in that of OCs.
However, evaporation can be enhanced by stellar evolution too because high-mass
stars typically die before the low-mass ones: in this way each cluster loses part of
the high-mass stars it had at birth.
In the end, it is worth stressing the role of binaries with respect to evaporation.
As binaries have more kinetic energy than single stars, simply because they are
made of two components moving around each other instead of one, they tend to
make space and to occupy a bigger volume: consequently, stars in the outskirts
are pushed further out, which facilitates their being lost by the system.

• Mass segregation.
Mass segregation consists in the progressive sinking of high-mass stars towards
the centre of a cluster; it is due to the fact that two-body relaxation seeks to
equalise the kinetic energy of different mass stars, so that the more massive ones
are forced to move to the inner regions because of their smaller velocities.

• Core collapse.
Just as mass segregation, core collapse is triggered by the two-body relaxation
attempt of compensating the kinetic energy of different mass stars; in fact, stars
in the cluster cores are characterised by high velocities, so that they lose energy
when trying to equalise the kinetic energy of those in the outskirts: for this
reason they sink even further towards the centre. Hence core collapse can be
dramatically accelerated by mass segregation depending on the energy of the
individual stars.
In particular, binary stars play a big part in preventing core collapse from
happening through the injection of energy, for they tend to increase the velocity
of the system they belong to.

Thus evaporation, mass segregation and core collapse, together with stellar evolution,
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are the dynamical processes which determine the evolution of star clusters, as they are
responsible for the reshuffle of their native stellar configuration. On the other hand,
the post-collapse evolution of such systems is related to their initial conditions: if a
system is isolated, then it will experience the binary induced mass loss, whereas if it is
tidally limited, it will lose mass because stars crossing the tidal radius, beyond which
external forces become important, are fated to escape.
When a stellar system undergoes one or more of these processes, it is defined to be out
of virial equilibrium, i.e. it does not satisfy the virial equation:

2EK + EP = 0 (3.5)

where EK is the kinetic energy and EP the potential energy of the system.

3.3 The King model for globular clusters

Globular clusters represent an interesting class of stellar systems for their structure and
original stellar distribution are significantly altered because of the dynamical processes
previously discussed.
A proper description of globular clusters evolution is therefore given by the King
model, whose functional form is:

f = k

 1√
1 +

(
r
rc

)2
− 1√

1 +
(

rt
rc

)2


2

(3.6)

where rc is the core radius, i.e. the radius at which the superficial brightness becomes
half of its central value, whereas rt is the tidal radius, which marks the borders of these
systems.
The King profile is flat in the regions going from the centre to the core radius and
decreases outside it (Fig. 3.1, left panel).

In particular, the King model is characterised by the so called concentration parameter:

c = log
(

rt

rc

)
(3.7)

which indicates how much mass is concentrated towards the centre of a globular
cluster.
As a consequence, different values of c are connected to different dynamical stata: the
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Figure 3.1: Left panel: King profile. Right panel: Modified King profile.

higher the concentration parameter, the more evolved the stellar system. In this sense,
King models at varying c provide an overview about the dynamics of globular clusters.

However, King models, despite being quasi-stationary, become gravothermally unstable
above a certain concentration: this occurs in the case of globular clusters experiencing
core collapse. Such an instability manifests itself ciclically and is triggered by the
shrinking of the core, which makes not only the potential energy, but also the tem-
perature rise. Consequently, the kinetic energy increases too, producing two different
effects, i.e. the balance with the potential energy and the departure of faster stars,
which favours a further shrinking of the core.
The only way to stop the collapse is to provide a source of energy in the centre,
especially through the presence of binaries, in order to replace the escaped heat.

Therefore, since the gravothermal instability is responsible for the progressive increase
of the concentration parameter, the King model cannot be described by a flat profile
in the inner regions of globular clusters anymore: a power-law cusp appears to be
suitable instead (Fig. 3.1, right panel).

3.4 Binary population in star clusters and in the field

Even if most stars in the field are observed in multiple systems, binarity is far more
common in young star clusters, for at least 50% of stars probably form in such
environments. However, internal dynamical processes, depending on both the density
and the lifetime of the cluster, may not only significantly affect the properties of the
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hosted binary population, but also rapidly change the binary fraction. For this reason,
the binary field population is likely to be composed of binaries dynamically processed
in various ways as coming from different density environments.

In order to determine whether binaries in clusters form in the same way as in the field
or not, Parker et al. (2009) investigated the evolution of a field-like binary population
in star clusters by means of N-body simulations; as such, this analysis enabled the cal-
culation of the number of processed binaries in accordance with the orbital separation
a between their components.
Since the binary population in different density clusters is related to the position of
the so called hard-soft boundary:

ah−s ∝
r 1

2

Nb
(3.8)

where r 1
2

is the half-mass radius of the cluster and Nb the number of binary stars,

dense clusters, i.e. globular clusters, characterised by ρ∼ 104-105 M� pc−3, have been
examined separately from low-density clusters, i.e. open clusters, which typically have
ρ∼ 102 M� pc−3 instead.

Since the hard-soft boundary is placed at a few hundred AU in globular clusters, both
sometimes-hard binaries (a∼50-1000 AU) and soft-intermediate binaries (a∼ 103-104

AU) are mostly destroyed, whereas always-hard binaries (a≤50 AU) are not; on the
contrary, always-soft binaries (a≥ 104 AU) are completely disrupted during the first
∼0.1 Myrs of the cluster lifetime, which is nearly a crossing time.
As a consequence, this result suggests that after ∼0.1 Myr globular clusters are able to
reach an equilibrium which assures the binary fraction to remain roughly constant:
therefore, the binary population in dense environments should be processed and set in
its final configuration in a very short timescale.
On the other hand, in open clusters the hard-soft boundary is shifted towards lower val-
ues with respect to globular clusters, so that not only always-hard, but also sometimes-
hard binaries are not destroyed; nevertheless, such a shift is not big enough to prevent
the disruption of some soft-intermediate and of all always-soft binaries.

Thus there are three important conclusions to be drawn:

• The binary fraction at a<50 AU must be a direct outcome of the star formation
process, because always-soft binaries are never destroyed, independently of
the density of their parental environment: therefore, only for such separations
binaries in clusters form with a field-like distribution.

• Cluster dynamics does not allow always-soft binaries to survive or even to form
for they are too loosely bound, although very wide binary systems exist in the
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field.

• Since the binary fraction in dense clusters is very similar to that of the field,
whereas in sparse clusters it is higher, it follows that binaries are much more
affected by stellar dynamics in globular than in open clusters. In fact, binaries
in star clusters are altered by gravitational interactions, i.e. three- or four-body
encounters, and tend to become either softer if soft or harder if hard according to
the Heggie-Hills law.

As proposed by Kaczmarek, Olczak, and Pfalzner (2011), to better understand the
properties of the presently observed binary population, the primordial binary popula-
tion must be assessed, i.e. the binary population as it appears just after the end of the
star formation process: therefore, young dense star clusters are the ideal environments
for this purpose.
Still, since the binary fraction:

fb(t) =
Nb(t)
N(t)

=
Nb(t)

Ns(t) + Nb(t)
(3.9)

where Nb(t) is the number of binary systems and Ns(t) that of single stars is a function
of time, can be biased due to its dependence on Ns(t), a more reliable quantity to take
into account for investigating the evolution of the binary population is the normalised
binary fraction:

fb,norm(t) =
Nb(t)
Nb(0)

(3.10)

where Nb(0) is the initial number of binaries.
Despite both fb,norm(t) and fb(t) decrease in time because of the preferred destruction of
wide binaries in encounters, the former does not depend on the initial binary fraction
fb(0), whereas the latter does: this can be explained by considering that single star
evolution has a non-negligible impact on binary evolution, for Ns(t) increases over
time as a result of the dissolution of wide binaries. Hence, the higher the number of
primordial wide binaries, i.e. the primordial binary fraction fb(0), the higher also the
number of single stars Ns(t) originated from binary evolution, i.e. the lower the binary
fraction fb(t).
In particular, fb(0) can be expressed by means not only of fb(t), but also of an evolving
function α(t, fb(t),...)≈α(t) such that Nb(t)= αNb(0):

fb(0) =
fb(t)− α(t) + 1

α(t)
(3.11)

If the exact form of α(t) can be determined and fb(t) is known, then this equation
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immediately yields fb(0): for instance, in this way it has been estimated that fb(0)≈74%
in the Orion Nebula cluster (Kaczmarek, Olczak, and Pfalzner 2011).

Furthermore, the binary population in young dense star clusters is influenced also by
the value of the primary mass, as observations point out that massive stars, i.e. stars
with M>2 M�, are more commonly found in binary systems than low-mass ones.
In fact, the binary fraction of low-mass-primary systems fb,low(t) changes very rapidly
for two main reasons:

• Binaries with low-mass primaries are typically destroyed in three-body encoun-
ters because of the lower binding energy.

• The possible generation of a high-mass and a low-mass star in the dissolution of
binary systems with massive primaries accelerates the reduction of fb,low(t), but
decelerates that of fb,high(t). In fact, if binaries having different mass components
are disrupted, then the number of single low-mass stars tends to steadily increase,
so that fb,low(t) decreases, whereas that of single high-mass stars does not: by
implication, the binary fraction of high-mass primaries fb,high(t) barely rises.

So, on a final note, the difference between fb,low(t) and fb,high(t) appears to be linked
to cluster dynamical evolution, since the lower the primary mass, the more likely for a
binary system to be subjected to dissolution.

3.5 How do binaries affect the total star cluster mass?

The total mass of a stellar system, such as a star cluster, can be determined in two
different ways:

• By using the M
L ratio taken from a single-stellar-population model in order to

convert beyond the age, derived by the knowledge of the metallicity and the IMF,
both the observed luminosity and distance directly into mass. Thus this method
is based on star counts and yields the so called photometric mass Mphot.

• Through the virial theorem, which returns the dynamical mass:

Mdyn = η
r 1

2
σ2

los

G
(3.12)

where r 1
2

is the half-mass radius of the cluster, σlos the line-of-sight velocity
dispersion and η=9.75 a dimensionless proportionality constant.
In particular, this expression for Mdyn relies on the following assumptions:
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– The cluster dynamics can be described by means of the Plummer model.

– The cluster is in virial equilibrium.

– All the stars in the cluster are single and of equal mass.

– No selection effects are present.

An inconsistency between the two mass estimates for the same star cluster is attributed
either to a lack of virial equilibrium or to the presence of a considerable number of
unresolved binaries.
In fact, according to Gieles, Sana, and Portegies Zwart (2010), if on the one hand
Mphot≈Mdyn for clusters older than 100 Myr, on the other Mdyn>Mphot for young star
clusters (∼10 Myr) because σ is very high. Such systems may be in a super-virial
state due the violent expulsion of residual gas from the parental molecular cloud via
stellar winds or supernova explosions: as a consequence, the newborn stars should
experience a significant velocity increase with respect to their binding energy. However,
the gas-expulsion scenario is not completely compatible with the onset of a super-virial
state, as the estimated densities for young star clusters seem to be too high to make
any feature of gas expulsion detectable in the measured velocity dispersion. Therefore,
this theory has been discarded in favour of another one, which accounts for the effects
of unresolved binaries in star clusters.

Since an overestimation of Mdyn is typical of young stellar systems, whose light is
dominated by massive stars (M≥15 M� at birth), for which binarity is high, it follows
that an enhancement in the observed velocity dispersion is most probably related to
binaries. In fact, massive binaries have a major impact on σ than low-mass ones not
only because of their higher orbital velocities, but also for their shorter orbital periods.
As highlighted by Kouwenhoven and de Grijs (2009), binary systems tend to inflate σlos
for their components move both in the cluster gravitational potential (particle motion)
and in the binary itself (orbital motion); consequently, the binary line-of-sight velocity
dispersion σlos,b is given by the superposition of two different contributions:

σlos,b = σpart + σorb (3.13)

In particular, σorb is much more important at increasing binary fraction, so that in
binary-dominated clusters, such as open clusters, σlos,b≈σorb; typically σlos,b≤1 Km s−1

in this case.
Nevertheless, there are other parameters affecting the value of σorb besides the binary
fraction:

• Period distribution f(P).
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Since:
σorb ∝

√
P (3.14)

clusters containing a large number of wide binaries exhibit a lower value of σorb
owing to their longer orbital periods.

• Eccentricity distribution f(e).
Stars in eccentric orbits generally spend most of their time near the apastron
and have therefore small orbital velocities: by implication, clusters hosting many
binaries with eccentric orbits are expected to have a lower σorb.

• Mass ratio q.
When a binary system is composed by different mass stars, i.e. by a massive
primary and a low-mass secondary in most cases, then the value of σorb changes
according to which star is detected. Since the most massive component is
generally measured due to its major brightness, the result is that binaries with
small mass ratios will give a small contribution to σorb.

On the contrary, σorb doesn’t depend on the value of the half-mass radius r 1
2
, i.e. on

the size of the cluster, like σpart because:

σpart ∝
1√r 1

2

(3.15)

Hence the bigger the cluster, the smaller σpart. This can be explained by considering
that large clusters are also very dense, so that stars are forced to move more slowly in
the cluster potential.

So, the kinematic bias introduced by binaries appears to be relevant only where the
binary fraction is high, namely in open clusters.
In fact, even if unresolved binaries can alter the proper-motion dispersion profiles of
globular clusters (Bianchini et al. 2016), their effect is mitigated by the presence of a
limited number of binary stars in such systems.

On the other hand, when the cluster mass is evaluated through the luminosity function
(LF) obtained via star counts, i.e. as photometric mass Mphot, the mass estimate derived
by neglecting unresolved binaries will result smaller than the actual mass.
In fact, if a single star and a binary system share the same magnitude, then also their
luminosities are equal:

Ls = L1 + L2 (3.16)

where the suffix s marks the single star, while 1 and 2 the primary and the secondary
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respectively. So, given the relation:(
L

L�

)
∼
(

M
M�

)4

(3.17)

which is valid for MS stars, it follows that M4
s < (M1 + M2)

4 because:

M4
s = M4

1 + M4
2 (3.18)

whereas:
(M1 + M2)

4 = M4
s + 4M1M3

2 + 6M2
1 M2

2 + 4M3
2 (3.19)

Consequently, being all the terms positive, it can be concluded that:

M4
s < (M1 + M2)

4 =⇒ Ms < M1 + M2 (3.20)

In order for the photometric mass to become a reliable estimate of the total cluster
mass, a multiplicative correction factor is needed.
For instance, according to Khalaj and Baumgardt (2013), who took account of the
presence of unresolved binaries in Preasepe, such a correction factor attains the value
of 1.35. However, since little information was provided about the methods of its
estimation, further analyses have been made by Borodina et al. (2019), who investigated
the effects of unresolved binaries in the derivation of the mass of five open clusters, i.e.
IC 2714, NGC 1912, NGC 2099, NGC 6834 and NGC 7142, by star counts.
Owed to the dependence of the correction factor on both the binary fraction and
the mass-ratio distribution, a stellar-magnitude-independent binary fraction has been
adopted and different realistic q-distributions have been considered (i.e. a Gaussian
distribution with either µq=0.23 or µq=0.60 and a flat distribution), so that several
models have been realised.
In particular, it has been found that the increment value for the photometric mass
ranges between 1.10 and 1.15, although it may increase up to 1.32 if not only binaries,
but also multiple systems, are included: thus, in this case the value of 1.35 proposed
by Khalaj and Baumgardt seems to be reasonable.





Chapter IV

N-body simulations

4.1 The N-body problem

N-body simulations are born to study both the physics and the dynamical evolution of
self-gravitating systems by applying Newton’s law of gravity to the N bodies these
ones are composed of (Aarseth 2010). The basement of N-body simulations is the so
called N-body problem, defined by the set of second-order differential equations:

~̈ri = −G
N

∑
j=1,j 6=i

Mj(~ri −~rj)∣∣~ri −~rj
∣∣3 (4.1)

which indicate the force per unit mass ~Fi exerted by a particle of index j on another
one of index i in a system of N particles. If the initial conditions Mi,in,~ri,in, ~vi,in for
the mass, the position and the velocity of each particle at some instant t0 are added to
the system, then it will be formed by 3N second-order differential equations, whose
solutions ~ri exist in the time interval (−∞,+∞).
Otherwise, the complete solutions of such system can be found by replacing the 3N
second-order differential equations above with 6N first-order differential equations to
be solved in a self-consistent manner.
However, it is a matter of fact that the N-body problem thus introduced admits exact
solutions only in the case of two interacting particles.
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4.2 N-body tools

N-body simulations make use of several tools and algorithms both to obtain a proper
description of the processes affecting self-gravitating systems and to reduce and
speed up as much as possible computer calculations. The most important ones are
force polynomials, individual and block time-steps, Hermite integration, neighbour
treatments and regularisation procedures.

4.2.1 Force polynomials

Since the force ~F acting on a particle of a N-body system can be considered as smoothly-
varying on some timescale throughout the orbit, it is reasonably approximated by a
continuous function. Thus, given the values of ~F at four successive past times t3, t2,
t1, t0, where t0 is the most recent one, ~F can be written in the form of a fourth-order
fitting polynomial at a time t∈[t3, to+∆t] by using the divided difference formulation:

Ft = (([D4(t− t3) + D3](t− t2) + D2)(t− t1) + D1)(t− t0) + F0 (4.2)

where:

Dk[t0, tk] =
Dk−1[t0, tk−1]− Dk−1[t1, tk]

t0 − tk
(4.3)

for k=1,2,3 is exactly the divided difference.
Force polynomials are not only essential to deal with the force summation, but also
facilitate the prediction of coordinates.

4.2.2 Individual and block time-steps

In N-body simulations each particle is typically assigned its own individual time-step:

∆ti =

√√√√√ η
∣∣∣~F∣∣∣∣∣∣ ~F(2)
∣∣∣ (4.4)

where η is a dimensionless constant, as real stellar systems are characterised by a range
in density which gives rise to different timescales associated to non-negligible changes
of the orbital parameters; for this reason, time-steps are chosen according to the orbital
timescales.
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In particular, if two different mass particles are involved in a strong interaction, then
their time-steps will be very similar, which has some practical advantages in view of
minimising computer calculations.
It is also possible to quantise time-steps in blocks though, so that a group of particles
can be analised and therefore advanced at the same time in the integration.

4.2.3 Hermite integration

The divided difference formulation of the force polynomials has been recently replaced
by the Hermite integration, which grants not only a simpler handling of their computa-
tional evaluation, but also more accurate results. Moreover, since the Hermite scheme
employs a Taylor series to express both the force ~F and its first derivative ~F(1) and
adds the high-order derivatives ~F(2), ~F(3) as correctors, it has the effect of speeding up
calculations.

4.2.4 Neighbour treatments: the Ahmad-Cohen method

N-body simulations may frequently become very time-consuming due to the large star
clusters memberships: therefore neighbour treatments have been introduced in order
to reduce computational timings. In particular, the Ahmad-Cohen method has proved
very effective in this sense, for it aims to minimise the effort of evaluating the force
contribution from distant particles by combining two polynomials related to different
timescales.
This is done by splitting the total force acting on a given particle into a regular and an
irregular component:

~F = ~FR + ~FI (4.5)

thus obtaining two force polynomials, so that the summation over the full particles
number N can be replaced by a sum over the n nearest particles, which are labelled as
neighbours, together with a prediction of the distant contribution.
The Ahmad-Cohen method has been implemented by means of the Hermite integration
to provide appropriate corrections to both the force polynomials anytime a change of
neighbour occurs, i.e. in binary interactions: as a consequence, it appears to be suitable
especially for regularisation procedures.
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4.2.5 Two-body regularisation

The presence of binaries and multiple systems in star clusters must be treated by
using specific techniques to obtain satisfactory results in N-body simulations. During
the integration of a N-body system, close encounters generate configurations that are
difficult to handle with direct methods, i.e. binaries characterised by large eccentricity
values, thus requiring small time-steps in the pericentre region in order to be properly
studied. For this purpose regularisation procedures have been implemented.

Since primordial binaries are a fundamental ingredient of realistic star cluster simula-
tions, two-body regularisation has been carefully developed.
The perturbed two-body problem, which two-body regularisation is based on, is given
by the second-order differential equation:

~̈R = −
(Mi + Mj)

R3 + ~Fij

~R (4.6)

describing the relative motion of a binary with mass components Mi and Mj under
the action of the external perturbation ~Fij=~Fi-~Fj.
The essential idea of two-body regularisation is to transform both the time and the
coordinates associated to a binary system by means of the Kustaanheimo-Stiefel
(KS) method; therefore the differential time transformation, connecting physical and
regularised time, is given by:

dt = Rndτ (4.7)

where n is an arbitrary exponent, whereas the transformed coordinates are:

~R1 = u2
1 − u2

2 , ~R2 = 2~u1~u2 (4.8)

and satisfy the relations:

R = u2 = u2
1 + u2

2 + u2
3 + u2

4 , ~R = L(~u)~u (4.9)

where L(~u) is the Levi-Civita matrix:

L(~u) =


u1 −u2 −u3 u4
u2 u1 −u4 −u3
u3 u4 u1 u2
u4 −u3 u2 −u1

 (4.10)

Then, the centre of mass is introduced as a fictitious particle described by its appropriate
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force polynomial: as a consequence, a complete description of two-body motion is
obtained by integrating the centre of mass as a single particle together with the relative
motion for each KS pair.
Moreover, assuming that the two-body orbit is conserved over one or more periods, the
KS method allows to treat binaries as single stars, so that integration becomes easier.

To conclude, two-body regularisation has been recently improved by the adoption of
the Stumpff-Hermite formulation, which is based on the so called Stumpff functions;
such procedure includes correction terms for higher orders of integration whereby
small perturbations need to be taken into account, thus ensuring a significant upgrade
of KS solutions.

4.2.6 Multiple regularisation

From observations of both the solar neighbourhood and Galactic star clusters it appears
evident that triples, as well as high-order systems, are very common.
The main formation channel of triples is given by binary-binary collisions according to
the scheme:

B + B =⇒ [B, S] + S (4.11)

where B indicates a binary, whereas S a single star; multiple encounters are likely to be
responsible for the creation of high-order systems instead. Therefore, the presence of
binaries, especially hard ones, inevitably leads to close encounters which imply large
energy variations.
Since the KS method may be insufficient to deal with such strong interactions in N-body
simulations, multiple regularisation has been implemented: it is usually distinguished
into three-body regularisation, which is applied to triples, and chain regularisation,
which is suitable for quadruples and high-order systems instead.

Three-body regularisation consists in the introduction of two coupled KS regularisa-
tions based on the time transformation:

dt = ~R1~R2dτ (4.12)

and on the coordinate transformation:

Q2
k = Rk (4.13)

for k=1,2, from the binary components to the third body.
The new coordinates allow to write the equations of motion for the three-body problem
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in such a way that a practical regularisation can be achieved.

On the other hand, chain regularisation begins with the introduction of the dominant
two-body forces along a chain of interparticle vectors, where the KS method is applied
to the pair-wise attractions; then, contributions from secondary interactions are added
to the dominant ones.
Chain regularisation has been improved by means of the slow-down procedure, which
exploits the principle of adiabatic invariance both to scale small physical perturbations
by a factor greater than one, so that an orbit may represent several Kepler orbits, and
to study short-period binaries in a more accurate manner.
However, chain regularisation proves inefficient in the case of black-hole binaries,
which are characterised by high mass ratios, for their binding energy constitutes
the prevailing component of the total subsystem energy. Thus in this case chain
regularisation is replaced by the time-transformed leapfrog scheme.

4.3 Initial setup

In order to put constraints on the dynamical evolution of star clusters, the most relevant
initial conditions to be selected are the Initial Mass Function (IMF) and the initial
density distribution.
As far as the IMF is concerned, the simplest choice for open clusters is a Salpeter-type
IMF, which can be reproduced by the power-law:

f (M) ∝ M−α (4.14)

for a specified mass range [M1, MN]; the exponent typically attains the value α=2.3.
The corresponding distribution for each member i of the system is therefore provided
by the expression:

M−(α−1)
i = M−(α−1)

1 − (i− 1)gN (4.15)

where:

gN =

(
M−(α−1)

1 −M−(α−1)
N

N − 1

)
(4.16)

A power-law form for the IMF is suitable for two main reasons: the former is that
low-mass stars do not represent a large fraction of the total cluster mass, whereas the
latter is that massive stars play a major role in the dynamics of small star clusters for
they perform a significant mass loss rate on short timescales.
In place of the IMF, the mass generating function by Kroupa, Tout, and Gilmore (1993)
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can be assigned:

M(x) = 0, 08 +
γ1xγ2 + γ3xγ4

(1− x)0,58 (4.17)

where x∈[0,1] is a random number and γi are best-fit coefficients according to the
chosen environment.

On the other hand, the initial density distribution is usually assumed to be spherical
with some degree of central concentration, such as the Plummer sphere:

ρ(r) =
3M

4πr3
0

1

[1 + ( r
r0
)2]

5
2

(4.18)

where r0 is a scale factor related to the half-mass radius by the expression rh'1.3r0.
Alternatively, a more general King model with varying central density contrast can be
selected; however, since King models are characterised by isotropic velocities and are
typically truncated at the local escape velocity, a more appropriate choice is given by
the King-Richy models, which include velocity anisotropies.

4.3.1 Initial conditions for binary and multiple systems

Every N-body simulation is assigned a fraction of both primordial binaries and pri-
mordial triples at the beginning.
Given as an input parameter the total number of stars N=Ns+Nb, where Ns is the
number of single stars and Nb the number of primordial binaries, the 2Nb component
masses for these ones are generated independently: as a consequence, first the sum
of pair-wise masses is performed in decreasing order and then the individual values
are recorded separately. In the end, the component masses of each binary system are
introduced by splitting the relevant centre-of-mass body. In particular, primordial
binary components are labelled as Ni, Nj in order for them to be distinguished from
the exchanged ones.
Instead, the generation of primordial triples consists in splitting the primary masses of
primordial binaries in two parts with suitable two-body parameters, so that an inner
binary is formed.

After that, significant parameters for the initialisation of primordial binaries are chosen:

• A flat semi-major axis distribution in log(a), according with the results for
low-mass stars in the solar neighbourhood.

• Eccentricities taken from a thermal distribution.
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• Appropriately randomised perihelion, node and inclination angle.

Initial conditions for triples are selected depending on the values of the outer pericentre
and the eccentricity.

4.4 Decision-making

N-body simulations involve a large number of decisions, especially regarding complex
astrophysical processes: for this reason they are equipped with a flexible framework
for decision-making and hence develop suitable criteria to change the integration
scheme and identify which procedures should be carried out according to the different
scenarios.
Consequently decision-making consists in several operations:

• Selecting the next particle (or block of particles) to be advanced in time.

• Accounting for close encounters, in particular between single stars and either
binaries or subsystems containing binaries.

• Treating the escape process in order to determine the exact membership.

which are based on different physical and computational criteria. Hereafter a descrip-
tion of each decision-making operation will be provided.

4.4.1 Scheduling

Scheduling is a queuing problem, as it consists in the determination of the next
particle(s) to be considered for integration.
In fact, given a distribution of N individual time-steps ∆tj and the corresponding time
tj, the next particle to be advanced is chosen by means of the criterion:

i = minj{tj + ∆tj} (4.19)

so that the new time t = ti+∆ti is obtained. Thus in this way a list L of particles,
fulfilling the request tj+∆tj<tL and between which the next one is selected, can be
created. By implication, anytime this condition is violated, the list is redefined.
Clearly, in the case of block time-steps more particles have to satisfy the specified
criterion at once in order to be moved forward. Therefore, an array of particles having
{t̃j ≡ tj + ∆tj} is constructed so that the condition {t̃j}=tmin, where tmin is the smallest
value in the array, identifies which particles to select.
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4.4.2 Close two-body encounters

Knowing that the timescale for a typical close encounter is:

∆tce ' 0.4
√

ηI

0.02

√
R2

ce

M
(4.20)

where m is the mean mass and:
Rce =

4rh
N

(4.21)

is the close encounter radius depending on the half-mass radius rh, if a particles k
complies the request ∆tk<∆tce, then a search for the nearby particles can be performed
by using the neighbour list. Otherwise, all sorrounding particles need to be considered:
in this case every particle inside the distance 2Rce is assumed as a potential neighbour
and the closest one in labelled by the index l.
At this stage, the pair k,l is accepted for KS regularisation if both the distance R between
the two particles is such that R<Rce and the two-body force becomes dominant as
soon as another close particle denoted by the index j is present, so that:

Mk + Ml
R2 >

Ml + Mj∣∣~rl −~rj
∣∣2 (4.22)

Nevertheless, since in the event of massive binaries with low eccentricities the condition
∆tk<∆tce may proved too conservative for a close encounter search, the new request
Mk>2M is added: only if both the requirements are simultaneously satisfied, KS
regularisation is carried out.

Termination of KS regularisation is a more difficult issue for decision-making because
a distinction between soft and hard binaries has to be made. Hence the conditions
for termination in the former case are R>R0 and γ>γmax, where R0 is the initial
separation and γ is a perturbation parameter such that γmax'0.01; instead, in the latter
case strong perturbations without exchange of the binary components, which cause γ
to be particularly high (i.e. γ=0.2), may be present, so that termination is performed
by searching for the perturbing body.

4.4.3 Multiple encounters

Despite several techniques to deal with multiple encounters exist, the most interesting
one as far as decision-making is concerned is chain regularisation.
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Provided that ∆tcm<∆tce, where ∆tcm is referred to the centre of mass of each system,
the following conditions need to be satisfied in order for chain regularisation to start:

• Negative radial velocity for intruders.

• Compactness condition: ∣∣∣~Rcm − ~Rj

∣∣∣ < max{3Rgrav, Rce} (4.23)

where:

Rgrav =
Mk Ml + McmMj

|Eb + Eout|
(4.24)

is the characteristic gravitational radius and Eb, Eout are the binding energies of
the inner and the outer system respectively.

• Condition of small pericentre distance for strong interactions:

aout(1− eout) < |a| (1 + e) (4.25)

where aout and eout are the semi-major axis and the eccentricity of the outer
system.

Furthermore, chain regularisation may be initiated with four members instead of three
if two hard binaries approach each other closely: in this case the second binary is
treated as a single particle and its internal energy is added in the binary binding
energy Eb which enters the expression for Rgrav. Then, the semi-major axes of the two
interacting binaries are summed up due to the enlargement of the apocentre cross
section, so that the condition of small pericentre distance can be generalised.

To conclude, decision-making for chain regularisation termination requires a search
for escape candidates to be performed after each integration step if:

∑
k

Rk > 3Rgrav (4.26)

4.4.4 Hierarchical configurations

Hierarchical configurations appear frequently in star clusters where the primordial
binary fraction is particularly high and play an important role in their dynamical
evolution due to both their being long-lived and their large cross section. In fact, the
formation of new binary systems is quite rare compared to that of hierarchical ones:
although the few newborn binaries are hard and therefore unlikely to be destroyed
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in encounters with single stars, they are typically disrupted when interacting with
primordial binaries, which are characterised by higher binding energies. What is more,
the generation of high-order systems is allowed in the star cluster post-collapse phase
thanks to the decrease of the core density, and is probably driven by either dynamical
friction or large density fluctuations.

To cope with several technical problems arisen from the presence of such systems
in N-body simulations because of the very short periods involved, which prevent
the application of direct integration methods as well as of the KS regularisation
procedure, a semi-analytical criterion based on the outer pericentre distance Rout

p has
been implemented:

Rcrit
p = C

[
(1− qout)

(1 + eout)√
1− eout

] 2
5

ain (4.27)

where C'2.8 is an empirically determined constant, ain is the initial semi-major axis,
eout is the eccentricity of the outer system and:

qout =
M3

M1 + M2
(4.28)

is the outer mass ratio. This criterion ensures stability against the escape of the
outermost body of the configuration. Moreover, a condition for possible exchanges of
the inner components is given by:

(~J2E)crit = −
G2 f 2(ρ)g(ρ)

2(M1 + M2 + M3)
(4.29)

where f (ρ), g(ρ) are algebraic functions.
If ~J2E<(~J2E)crit no exchange can occur and therefore the inner binary retains its
identity. However, this condition is only sufficient, not necessary: this means that, in
spite of its violation, there may be some exchanges but only if followed by escape.
As for stability, a triple is defined to be stable if aout(1− eout)>Rcrit

p : hence the inner
binary does not experience secular effects and short-term fluctuations can be neglected.
On the other hand, quadruples and higher-order systems can be treated in a similar
fashion, provided that appropriate corrections to the stability criterion are introduced.

4.4.5 Escapers

Since star clusters evolve by losing members to the Galactic field, N-body simulations
make use of various criteria to account for escapers and thus determine the exact
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membership at any given time. In fact, star clusters orbiting the Galaxy are subjected
to an external tidal field which is responsible for the increase of the stars disruption
rate: hence the inclusion of the concept of tidal radius, i.e. the radius beyond which
stars are no more gravitationally bound to the system and therefore fated to escape in
a considerably short timescale.
However, the tidal radius rt is not always the best choice for the identification of the
cluster boundary, as N-body simulations have shown that a significant population
beyond this limit may be present; also, theoretical considerations suggest that some
orbits may reach large distances but then return to the cluster, so that stars moving
along them are not lost.
Consequently, another escape criterion has been proposed:

|~ri −~rd| > 2rt (4.30)

where ~rd defines the density centre. So, when this condition is fulfilled, stars are
removed and the new total number N of members is calculated.
Finally, it is worth pointing out that escape from stellar systems can be caused either
by close encounters (ejection) or by the cumulative effect of many small encounters
(evaporation); in particular, ejection is less important in rich clusters dominated by
single stars, for close encounters typically involve binaries.

4.5 Star cluster simulations

The evolution of self-gravitating systems is typically articulated by the crossing
timescale:

tcross =
2rv

σ
(4.31)

where:

rv =
GN2M2

σ2 |U| (4.32)

is the virial radius derived from the expression for the potential energy and σ is the
velocity dispersion. Nevertheless, the half-mass relaxation time is more useful as far as
star cluster simulations are concerned, since it is not sensitive to the density profile:

trelax,hm = 0.138

√
Nr3

hm
Gm

1
ln (γN)

(4.33)
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where rhm is the half-mass radius and γ is a parameter whose most usual value is
γ'0.4.
If, on the one hand, tcross is the timescale for a stellar system to adjust globally from
any significant deviation from the virial equilibrium, on the other trelax,hm is the time
for a velocity change to become comparable to the initial velocity dispersion σin: as
a consequence, trelax,hm can be addressed as a reference time for dynamical changes
affecting the whole cluster.

N-body simulations of evolving star clusters can be either idealised or realistic; in
particular, idealised simulations are employed for three main purposes:

• Making comparisons through approximate methods.

• Modelling astrophysical processes.

• Investigating dynamical processes (i.e. escape, binary and multiple systems
formation).

However, they can be turned into realistic by adding some elements, such as an IMF
and a fraction of primordial binaries.

4.5.1 Initial mass function

The IMF is a fundamental tool to conduct research about the dynamical evolution of
star clusters as it introduces a mass spectrum and therefore evaluates the contribution
from different masses.
The choice of an IMF for star cluster simulations is generally guided by observations
of young systems, i.e. open clusters; in consequence, the classical Salpeter-type IMF
may not be appropriate: in fact, it has been found that the distribution of low-mass
stars is significantly depleted with respect to that expected from a power-law IMF with
index α=2.3.
Besides, the maximum mass incorporated in the IMF is rather arbitrary, but it seems
that a conservative value of 15 M� is suitable for open clusters, even though bigger
values can be chosen as theoretically allowed.

4.5.2 Primordial binaries

Including primordial binaries in star clusters simulations immediately shows their
importance in regard to dynamics. In fact, just a small fraction of primordial binaries
has been demonstrated to be enough to affect the cluster evolution significantly once
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an IMF is chosen and stellar evolution is appropriately taken into account: this is due
to the fact that the most massive stars are depleted first via stellar evolution, so that
the central concentration of binaries steadily increases. By implication, they are left to
play a major role in dynamical processes, i.e. two-body relaxation.
This means that the presence of binaries tends to enhance the rate of stellar collisions
and close encounters, which can lead to the formation of both multiple and new binary
systems. Furthermore, binary encounters are responsible for a spread in the energy
distribution, with hard binaries experiencing a small energy change with respect to
soft ones. Therefore, it follows that the encounters with soft binaries provide a source
of fuel to halt the collapse of the cluster core, whereas those with hard ones are likely
to produce high-velocity escapers.

4.6 N-body simulations employed in this work

4.6.1 Structure and initial conditions

In the aim of studying the impact of binary stars on the estimate of the total mass
of stellar systems, three open-cluster-like models have been realised by means of
N-body simulations performed with the code NBODY7, which has been developed by
Nitadori and Aarseth (2012). In fact, NBODY7 not only permits a reliable integration
of the motion of stars through state-of-the-art methods such as regularisation, but also
implements careful treatments to deal with relevant astrophysical processes, i.e. close
encounters, stellar evolution, mass loss and escape. Therefore it proves particularly
suitable for the analysis of star clusters dynamics. Each model has been assigned
an initial number of stars Nin=1000 and an initial mass Min∼6-7×102 M�; then, a
Plummer density profile (Plummer 1911) and a Kroupa IMF (Kroupa 2001):

f (M) ∝ M−α (4.34)

with exponent α=0.3 for M<0.08 M�, α=1.3 for 0.8 M�<M<0.5 M�, α=2.3 for M>0.5
M� and masses in the range 0.01 M�≤M≤100 M� have been selected. The cluster
core radius is of the order of rc=1 pc, whereas the metallicity is assumed to be solar
(Z=0.0).
Moreover, the simulated clusters are considered both isolated and in virial equilibrium
and have been evolved up to ∼3 Gyr (Model A) and ∼2.5 Gyr (Model B, Model C).

All the models share the same characteristics apart from the initial binary fraction:
in particular, Model A contains 50 primordial binaries (5%), Model B 150 primordial
binaries (15%) and Model C 300 primordial binaries (30%).
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Each primordial binary population has been modelled by adopting equal distributions
though, i.e. a logarithmic period distribution, a thermal eccentricity distribution f(e)=2e
and a mass-ratio distribution:

f (q) ∝ q0.4 (4.35)

Thus the choice of varying the initial binary fraction only is intended to evaluate their
very influence on the parameters describing the environment which they belong to.

4.6.2 Results

A thorough analysis of the outputs of the N-body simulations for each model has been
performed.
To begin with, the dependence of the total cluster mass on time has been investigated
(Fig. 4.1).
It is evident that the total mass drops during the first few hundreds of Myrs, i.e. up
to ∼100 Myr for Model A, ∼500 Myr for Model B and ∼200 Myr for Model C, but
decreases less sharply from ∼1000 Myr onward in all the models.
This trend is due to mass loss from stellar evolution, which is of greatest importance
in the initial phases of cluster evolution: in fact, the rapid depletion of high-mass stars
typically results in a substantial reduction of the cluster mass and can actually cause
the dissolution of the cluster itself.
However, if a stellar system is able to survive this early stage, then stellar evolutionary
timescales tend to grow longer compared to those for dynamical evolution, so that
two-body relaxation and tidal effects become dominant. Therefore, further mass is
lost in form of escaping stars after close encounters, especially when an external tidal
field is present: by implication, clusters in virial equilibrium, such as the ones here
examined, are not significantly affected by this process for they are isolated.
On the other hand, mass loss can be promoted by primordial binary systems, since
they tend to enhance the number of stellar collisions: thus it follows that they may be
either destroyed in strong interactions or form new configurations by exchanging their
components with single stars or other binaries in close encounters. In particular, the
disruption rate of primordial binaries is generally less pronounced in open clusters, as
strong interactions in such environments are quite rare.
For this reason, it is likely that primordial binary systems play a major role in powering
cluster mass loss after stellar evolution in the models.

In order to evaluate binary dynamics throughout the models, the time evolution of the
binary fraction:

fb(t) =
Nb(t)
N(t)

=
Nb(t)

Ns(t) + Nb(t)
(4.36)
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has been displayed. Except for Model A, which shows a slight increase of the binary
fraction from the initial time up to ∼500 Myr and then a progressive decrease, the
other models are characterised by a continuous and steeper decline: thus the number
of primordial binary systems tends to diminish as soon as they are subjected to
dynamical interactions, i.e. close encounters and tidal captures, which lead either to
the destruction or to the modification of the original configurations.
Even so, there are some growth peaks in the graphs, representing the new binary
systems formed during such interactions, especially after exchanges (Fig. 4.2).

As a consequence, a statistics about the dynamical events primordial binary systems
experience in each model has been performed: the number of both destructions
(Ndestructions) and exchanges with either single stars or other binaries (Nexchanges) has
been computed, together with the number of newborn binary systems (Nb,new).
Moreover, the survival rate, i.e. the number of primordial binaries remained unaltered
from the beginning to end of the simulations, and the final normalised binary fraction,
i.e. the ratio between the number of binaries at the final time and that at the initial
time:

fb,norm(t f in) =
Nb(t f in)

Nb(0)
(4.37)

have been calculated. The results are listed in Tab. 4.1:

Ndestructions Nexchanges Nb,new Survival rate fb,norm(t f in)
Model A 16 1 4 76% 0,76
Model B 47 14 12 73% 0,75
Model C 64 5 10 82% 0,82

Table 4.1: Binary dynamics statistics.

suggesting that the higher the fraction of primordial binaries, the richer their dynamical
history. In fact, the number of destructions increases going from Model A to Model
C, whereas the number of exchanges seems to be related to that of newborn binary
systems. On the contrary, neither the survival rate nor the normalised binary fraction
show a particular dependence on the initial number of binaries.
Inter alia, a search for tidal capture events has been made by looking at the formation of
temporary triples: primordial binary systems occurring at a time and then disappearing
to show up again in the original configuration some Myrs later in the simulations have
been identified as temporary triples, since the presence of the third star comes as a
time-limited perturbation. However, these events have been found to be rare in all
models.
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In conclusion, the trend of the various parameters discussed above as a function of
time has been plotted to confirm the results (Fig. 4.3).
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Figure 4.1: Total cluster mass as a function of time.
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Figure 4.2: Binary fraction as a function of time.
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Figure 4.3: Binary dynamical events as a function of time.



Chapter V

Binary stars and total cluster mass
estimates

The presence of binary stars has a strong impact on the total mass of stellar systems,
as neglecting binaries leads to unequivocally wrong mass estimates.
With the goal of highlighting this fact, two different methods based on the Hertzsprung-
Russel diagram (HRD) have been selected for the computation of the total cluster mass:
both the procedures are intended to put in evidence the effects of not taking account
for binaries properly, thus they simulate typical mistakes which could be made on this
matter.

A HRD at the age of 2.4 Gyr has been realised for each model by considering all the
single stars and all the binary systems listed in the simulations outputs (Fig. 5.1): the
binary sequence is placed on the right of the cluster MS, clearly detached from it,
even though some binaries populate the MS itself; in particular, the binary sequence is
composed of equal-mass binaries (q=1), whereas the cluster MS contains those having
more massive primaries (q−→0). In the end, few binary systems can be detected also
in the bottom-left part of the diagrams, where dwarf stars are located.

As a reference for the results of the two methods, the theoretical mass Mth has been
calculated by summing up the masses of every single star and binary component
tabulated in the models (Tab. 5.1): hence Mth can be regarded as the real cluster mass,
i.e. the mass the cluster would have if all its members were resolved.
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Figure 5.1: Hertzsprung-Russell diagrams.
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Mth
Model A 316.1 M�
Model B 298.6 M�
Model C 318.2 M�

Table 5.1: Theoretical cluster mass.

5.1 Photometric method

The so called photometric method typically relies on the luminosity function (LF),
which can be actually regarded as a luminosity distribution for it returns the stellar
number density, i.e. the number of stars, per luminosity interval. Therefore, assuming
absolute stellar magnitudes in the V band for instance, the number of stars with
absolute magnitude V∈[V, V+∆V] is given by:

N =
∫ V+∆V

V
φ(V)dV (5.1)

where φ(V) is exactly the LF.
The LF can be determined by using either a standard histogram technique or a kernel
estimator method.
In the former case, first the observed stellar magnitudes are transformed in absolute
magnitudes by means of the cluster distance and the colour excess, and then the
resulting absolute magnitude distribution is binned in intervals, usually tuned in order
to get at least one star per interval. Finally, the number of both single and binary stars
in each bin:

Ns =
∫ V+∆V

V
φ(V)dV , Nb = fb(t)

∫ V+∆V

V
φ(V)dV (5.2)

where fb(t) is the binary fraction, is counted and stellar absolute magnitudes are
converted into luminosities starting from the selected isochrone for the cluster age.
In this way, a histogram composed of luminosity bins collecting stars can be con-
structed.
Instead, in the latter case a kernel estimator in the form of a continuous function in
one dimension (Seleznev 1998) is introduced:

f̂ (x) =
1

nh

n

∑
i=1

k

(
x− Xi

h

)
(5.3)
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where n is the size of the observed sample X1, ..., Xn of the random variable x, h is the

interval width and k
(

x−Xi
h

)
is the kernel function, which is mainly assumed to be a

symmetric probability distribution, i.e. a normal distribution, satisfying the relation:∫ +∞

−∞
k(x)dx (5.4)

Also, an adaptive kernel estimator can be adopted:

f̂ (x) =
1
n

n

∑
i=1

hλik

(
x− Xi

hλi

)
(5.5)

where the interval width hλi differs from point to point and:

λi =

(
f̃ (Xi)

g

)−α

(5.6)

with α∈[0,1], are the local width factors. In addition, f̃ (Xi) such that f̃ (Xi)>0 ∀i and
characterised by the logarithmic mean:

log(g) =
1
n

n

∑
i=1

log( f̃ (Xi)) (5.7)

is a preliminary estimate obtained by way of a fixed kernel estimator.
In particular, according to Prisinzano et al. (2001) the adaptive kernel estimator method
has the following advantages with respect to the standard histogram technique:

• The definition of a bin, whose size is mostly arbitrary and inconvenient for the
detection of all the statistically relevant features of the CMD, is not necessary.

• The histogram depends on both the bin and the initial bin location, whereas the
kernel estimator depends only on the interval width.

Since the cluster LF has to be corrected for incompleteness, a LF is generally calculated
for different fields, i.e. for different regions of the CMD: the LFs of the external fields
are therefore used to subtract the field-star contamination from the LF of the central
field.
As an illustration, Seleznev et al. (2017) made use of this procedure to determine the
mass of the Galactic open cluster NGC 4337, thus succeeding in constraining the cluster
LF (Fig. 5.2).
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Figure 5.2: Left panel: LF for cluster regions both corrected (solid line) and uncorrected
(dashed line) for incompleteness. Middle panel: LF for field regions both corrected
(solid line) and uncorrected (dashed lines) for incompleteness. Right panel: Cluster LF,
the result of subtraction of the field LF from the cluster region LF.

Here the photometric method has been employed under the hypothesis of all the
binaries being unresolved, so that they have been treated as single stars.

This scenario is typical of old and massive Galactic open clusters, in which both the
contamination by a significant number of field stars and the presence of binaries are
responsible for such a struggle in the mass computation that no other means but
looking at the appearance of the colour-magnitude diagram (CMD) are left to use.
As an example, in the case of the oldest Galactic open cluster Melotte 66 (Fig. 5.3), i.e.
3.4±0.2 Gyr old according to Carraro et al. (2014), it took several years from the first
realisation of its CMD (Hawarden 1976) to discover a binary sequence on the right side
of the cluster MS, intersecting it close to the turn-off (TO) and causing its broadening
(Zloczewski et al. 2007).
However, despite the improvement of the CMD appearence through the medium of
very deep CCD photometry, binary resolution resulted still difficult: for this reason
a cluster sharing the same characteristics as Melotte 66, but with the addition of a
fraction of 30% binary stars, has been simulated and thus a synthetic CMD created
(Carraro et al. 2014). Since the real CMD was well reproduced by the synthetic one,
the conclusion of binaries being fundamental in the cluster analysis has been drawn.

Given the objective of a purely theoretical demonstration, in this instance the photo-
metric method has been directly applied to the HRD, without passing through the LF
calculation.
If all the stars are considered as single, then their luminosity can be inferred from the
corresponding ordinate in the HRD; hence, in order to transform the luminosity into
mass, the mass-luminosity relation proposed by Borodina et al. (2019) for MS stars has
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Figure 5.3: Melotte 66 CMD for different colour combinations.

been adopted: (
L

L�

)
∼
(

M
M�

)4

(5.8)

In this way, every point in the HRDs has been assigned its own mass. All the masses
thus obtained have been summed to compute the total cluster mass for each model, i.e.
the photometric mass Mphot, which has been subsequently compared to the theoretical
mass Mth: to this purpose, both the absolute error:

Eabs,phot =
∣∣Mphot −Mth

∣∣ (5.9)

and the relative error:

Erel,phot =

∣∣∣∣Eabs,phot

100Mth

∣∣∣∣ (5.10)

have been calculated.
As expected from the relation:

M4
s < (M1 + M2)

4 =⇒ Ms < M1 + M2 (5.11)

where Ms indicates the mass of single stars, whereas M1 and M2 the mass of the
primary and the secondary component of binary systems, Mphot should result systema-
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tically smaller than Mth: therefore ignoring the presence of binaries would lead to an
underestimation of the total cluster mass.
However, in Model A this does not occur, since Mphot>Mth due to the very low
primordial binary fraction: if the number of binaries is not large enough compared to
that of single stars, their effect in the cluster mass underestimation can be minimal.
In fact, by isolating the contribution from real single stars to both Mphot (Mphot,s) and
Mth (Mth,s), it becomes apparent that in each model Mphot,s>Mth,s: hence single stars
are likely to enhance the total cluster mass in the photometric method because of the
adopted mass-luminosity relation, which goes like M4. As soon as the contribution of
binaries is added to both Mth,s and Mphot,s to get Mth and Mphot respectively, this one
ends up to be smaller than Mth in Model B and Model C consistently to the increasing
primordial binary fraction (Tab. 5.2): the higher the initial binary fraction, the greater
the difference between Mphot and Mth.

Mth,s Mphot,s Mth Mphot Eabs,phot Erel,phot
Model A 287.2 M� 310.7 M� 316.1 M� 331.2 M� 15.1 4.7%
Model B 216.1 M� 233.6 M� 298.6 M� 293.9 M� 4.7 1.6%
Model C 127.8 M� 135.4 M� 318.2 M� 266.7 M� 51.5 16.2%

Table 5.2: Comparison between the photometric and the theoretical mass obtained
from real single stars ( i.e. Mphot,s and Mth,s) and from both single and binary stars (i.e.
the total cluster photometric mass Mphot and theoretical mass Mth), together with the
errors for Mphot.

Notably, Erel,phot attains a lower value in Model B with respect to both Model A and
Model C. This result can be easily explained by admitting that Model B reproduces
the physical features of the environment where the mass-luminosity relation has been
calibrated at best, including the primordial binary fraction: in fact, Erel,phot grows
proportionally to the deviation from the initial binary percentage of 15%.

5.2 Isochrone fitting method

The isochrone fitting method exploits isochrones, which are curves on the HRD
representing stars of the same age, i.e. single stellar populations, to derive the total
cluster mass: in fact, isochrones matching the cluster age are able to fit not only the
TO but also the MS, thus allowing both to distinguish the vast majority of single stars
from binary stars lying in the parallel sequence and to compute the mass of the two
species properly.
For this reason an isochrone for the age of 2.4 Gyr and the solar metallicity Z=0.0 has
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first been selected from the database MIST (Dotter 2016, Choi et al. 2016, Paxton et al.
2011, Paxton et al. 2013, Paxton et al. 2015, Paxton et al. 2018) and then applied to the
cluster HRD for each model in order to fit single stars (Fig. 5.4).

In order to account for the progressive broadening of the HRD from the TO to the low
MS, a softly increasing exponential error:

Eiso = AenTe f f (5.12)

with A=0.154, n= −1.732× 10−3 and Te f f∈[2500 K, 6500 K] has been associated to
the isochrone fit; in this way, Eiso=0.05 at Te f f'6500 K, where the TO is located, and
Eiso=0.1 at Te f f'2500 K, which marks approximately the end of the MS.
Therefore, stars lying inside the exponential error bars have been treated as single, so
that their mass have been calculated by means of the mass-luminosity relation:(

L
L�

)
∼
(

M
M�

)4

(5.13)

valid for MS stars (Borodina et al. 2019). In the end, all the masses have been summed
up to get the total single-stellar mass Ms.
On the other hand, stars not belonging to the isochrone have been regarded as binaries,
hence their mass have been estimated in a different fashion.
Two magnitude intervals, the former shifted by ∆V=0.375 and the latter by ∆V=0.75
respectively from the error bars delimiting the single-star locus in the HRD, have been
created and assigned a value of the mass ratio q: as a result, q=0 at the exponential
error bars, q=0.5 at ∆V=0.375 and q=1 at ∆V=0.75. Subsequently, a mean value of q
has been calculated for each interval, so that, on both sides of the isochrone, binaries
falling inside the first interval have q=0.25 (low-q binaries) and those inside the second
one have q=0.75 (high-q binaries).
So, in the aim of computing the total mass of each binary system Mtot,b the following
system of mathematical equations has been introduced and solved for the various
values of q:
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q = M2
M1

=⇒ M2 = qM1

L1 = M4
1 =⇒ M1 = L

1
4
1

L2 = M4
2 =⇒ M2 = L

1
4
2(

L2
L1

) 1
4
=
(

M2
M1

)
= q =⇒ L2

L1
= q4 =⇒ L2 = q4L1

Ltot,b = L1 + L2 = L1 + q4L1 =
(

1 + q4
)

L1 =⇒ L1 =
(

1 + q4
) 1

4
Ltot,b

Mtot,b = M1 + M2 = M1 + qM1 = (1 + q)M1 = (1 + q)L
1
4
1 = (1+q)(

1+q4
) 1

4
Ltot,b

In particular, every binary component in the intervals has been assumed to behave as
a single MS star once detached from the original system: thus the mass-luminosity
relation for MS stars have been applied to compute the mass of both the primary (M1)
and the secondary component (M2), being their luminosity inferred from the HRD.
The masses of all the binaries inside the first interval and of those inside the second
interval on both sides of the isochrone have been summed, hence obtaining Mb,1 and
Mb,2 respectively.
The total cluster mass by the isochrone fitting method Miso has been calculated as
the sum of Ms, Mb,1 and Mb,2 for each model and compared to the theoretical cluster
mass Mth. To conclude, since in this case the total cluster mass has been accomplished
via star counts of both single and binary stars in the different magnitude intervals
constructed, a Poisson error:

Epoiss =
√

Miso (5.14)

has been associated to each value of Miso (Tab. 5.3).

Ms Mb,1 Mb,2 Miso Epoiss Mth
Model A 231.6 M� 107.9 M� 11.8 M� 351.4 M� 18.74 316.1 M�
Model B 185.3 M� 130.1 M� 28.4 M� 343.7 M� 18.5 298.6 M�
Model C 113.9 M� 125.2 M� 64.1 M� 303.2 M� 17.4 318.2 M�

Table 5.3: Comparison between the total cluster mass obtained through the isochrone
fitting method Miso, with the paired Poisson error, and the theoretical cluster mass
Mth.

In order to interpret the results of the isochrone fitting method correctly, a confusion
matrix has been produced: the rows represent the predicted values, whereas the
columns the actual values, of the number of stars in each interval (Fig. 5.5). In
particular, the instance "Other" groups stars which do not belong to any interval and
remain cut out because the algorithm is not able to classify them: this is the case
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of white dwarfs (WDs), both single and part of binary systems, being them placed
in different regions of the HRD. According to the confusion matrix, both in Model
A and in Model B several single stars have been labelled as low-q binaries, namely
binaries located in the first magnitude interval on both sides of the isochrone, but
only few binary systems have not been ranked correctly: thus it appears that the
exponential error bars set up in the method are not large enough to contain all single
MS stars. This clearly ends up in an overestimation of the total cluster mass due to
the mass-luminosity relation employed to derive single-stellar masses, since properly
classified single stars outnumber mislabelled single stars and low-q binaries as well.
On the other hand, Model C is characterised by a less precise prediction of the number
of both low-q and high-q binaries, which is likely to be linked to the higher initial binary
fraction: the greater the number of binary systems, the more difficult disentangling
them not only from single stars, but also from each other on the basis of their mass
ratio. As a consequence, the fact that many binary stars have been classified as single
may outshine the overestimating effect of real single stars over the total cluster mass to
such an extent to produce an underestimation of it. This scenario comes about exactly
in Model C, for the number of real single stars recognised by the algorithm is lower
compared to that of the other models: in fact, if single stars are less numerous, then
the role of binaries as regards the cluster mass estimate tends to become dominant.

In the end, it is noteworthy that on the basis of the isochrone fitting method Model
C yields the most reliable estimate of the total cluster mass, since the Poisson error
associated to Miso attains a smaller value with respect to both Model A and Model B,
even though the confusion matrix points out that the overall stellar classification is less
accurate: this happens only because the Poisson error depends on Miso in such a way
that the higher Miso, the higher also Epoiss.
In fact, by computing the accuracy of the isochrone fitting method for each model
as the ratio of the sum of the diagonal values and the sum of all the values in the
confusion matrix, it turns out that Model C is the less accountable one in favour
of Model B, which seems to be the most representative one in accordance with the
photometric method (Tab. 5.4).

Accuracy
Model A 80%
Model B 83%
Model C 78%

Table 5.4: Accuracy of the isochrone fitting method.
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Figure 5.4: Isochrone fit: the solid lines trace isochrones, whereas the dashed lines
indicate the exponential error bars. Outside, the threshold of the magnitude intervals
for both low-q and high-q binaries is represented.
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Figure 5.5: Confusion matrix for Model A, Model B and Model C.



Chapter VI

Conclusions

The impact of binary stars in the determination of the total mass of stellar systems has
been investigated by means of N-body simulations in this work.
Since both observations and numerical simulations have pointed out that the presence
of binaries in stellar systems such as star clusters cannot be explained by dynamical
formation processes, i.e. multiple encounters and tidal captures (Aarseth and Lecar
1975, Binney and Tremaine 2008), it appears that the vast majority must be primordial
(Hut et al. 1992), namely formed together with single stars at the cluster birth: thus the
initial binary fraction is crucial as far as cluster dynamics is concerned.
Moreover, binaries are far more common in open clusters with respect to globular
clusters for they tend to survive longer in loosely bound environments, where strong
interactions are rare: in fact, the initial binary fraction in GCs is significantly reduced
because of close encounters taking place in their cores during their dynamical evolution
(Ji and Bregman 2013).
For this reason three open-cluster-like N-body simulations with a different primordial
binary percentage have been realised (Model A: fb(0)=5%, Model B: fb(0)=15%, Model
C: fb(0)=30%), returning the following results:

• The total cluster mass decreases as a function of time in all models, with a sharp
drop during the first few hundreds of Myrs due to stellar evolution, which predict
a rapid depletion of high-mass stars in the initial phases of cluster evolution.
Further mass is lost both in form of escaping stars after close encounters and as a
consequence of the presence of binaries, which enhance the stellar collision rate.

• The binary fraction fb(t) declines in time as soon as binaries are subjected to
dynamical interactions, i.e. close encounters and tidal captures, which lead either
to the destruction or to the modification of the original systems.
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• A statistics about binary dynamical events, i.e. destructions, exchanges and
formation of new binary systems after close encounters, has shown that the
higher the fraction of primordial binaries, the richer the cluster dynamical history.
In fact, the number of destructions grows consistently with the initial binary
fraction, whereas the number of exchanges seems to be related to that of newborn
binary systems. On the other hand, no specific dependence of the survival rate
on the primordial binary fraction has been found.

• Very few temporary triples have been identified.

Then two different methods, i.e. the photometric and the isochrone fitting methods, to
compute the total cluster mass have been applied to the HRD at the age of 2.4 Gyr for
each model in order to simulate typical mistakes which could be made if binaries were
either neglected or not properly taken into account.

Since the photometric method consists in considering all binary stars as single by
assuming their lack of resolution, the resulting mass Mphot should be underestimated
with respect to the theoretical mass Mth. However, this scenario occurs only in Model
B and Model C, where the initial binary fraction is high, for in Model A Mphot>Mth:
this happens because the influence of single stars, which tend to enhance the total
cluster mass due to the adopted mass-luminosity relation, prevails on the binary one.
Instead, the isochrone fitting method, relying on isochrones to derive the mass of
single stars and employing magnitude intervals to calculate that of different-mass-ratio
binaries, yields a mass estimate Miso which is overestimated in Model A and Model B,
but underestimated in Model C if compared to Mth. According to the confusion matrix,
the former case is due to both the high number of appropriately classified single stars,
for which holds the same mass-luminosity relation selected in the photometric method,
and the lack of mislabelled binary systems, whereas the opposite occurs in the latter
case.

Although both methods have pointed out the Model B is the most accurate and ac-
countable one in regard to the total cluster mass estimate, it is evident that a more
careful treatment of binary stars is required in order for better results to be achieved:
in fact, even a small fraction of either undetected or mislabelled binaries may lead to
definitely wrong values of the total cluster mass.

In addition to this, a more realistic scenario can be accomplished by embedding the
simulated open clusters in a tidal field, so that the condition of virial equilibrium is
not satisfied anymore: thus the dissolution timescale will be shorter, for a significant
number of escaped stars, i.e. stars which have crossed the cluster tidal radius, is
expected to be present and contribute to mass loss together with stellar evolution and
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strong interactions.
Also, investigating the effects of binary stars in the determination of star cluster
dynamical masses via the virial theorem may be intriguing, in response of the fact that
binaries tend to inflate the line-of-sight velocity dispersion of the hosting clusters.

Such are the perspectives for future developments of this work.
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