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Introduction

Prior to the XX century, mathematicians were mostly concerned with studying sets, functions and meth-
ods related to classical calculus and its results. Mathematics, and in particular Analysis and Geometry,
was largely focused on the concepts of smoothness and regularity at the time.
Anything which did not fall under these categories was not considered worthy of study, or seen as
pathological. A curious example of this enmity towards these irregularities is the debate which shook
the mathematical world after Karl Weierstrass’s discovery in 1895 of a continuous functions which is
nowhere differentiable, nowadays known as the Weierstrass function.
Renowned French mathematician Charles Hermite, after learning about the Weierstrass function, wrote
to his doctoral student Thomas Stieltjes: “I turn with terror and horror from this lamentable scourge of
continuous functions with no derivatives.”

During the first half of the last century, interest in these pathologies started to rise, although without
a formal nor general theory behind it. In 1904 the Swedish mathematician Helge von Koch constructed
a curve which, at any point, is impossible to draw a tangent line to. Unlike Weierstrass’ analytical proof,
hard to visualize, von Koch’s construction was purely geometrical and thus its peculiar property could
be more intuitively understood at the time.
Later on in 1951, English researcher Lewis Fry Richardson noticed that the coastline of Great Britain
had no “definitive” length: in trying to measure it as one would measure a rectifiable curve, through
smaller and smaller subdivisions into line segments, he found that this process would yield an infinitely
long coastline, due to its “roughness” at every point or scale of observation.

In 1975 the mathematician Benoit B. Mandelbrot, while studying invariant sets under transformations
of the complex plane, previously studied by Gaston Julia and Pierre Fatou, found yet another example
of these “rough” and irregular sets, now known as the Mandelbrot set. What piqued his interest was the
local structures of these sets, which he was studying with the aid of one of the first computer programs
in the field to plot his images.
Studying all examples cited above, he thought to group all objects that had some “roughness” under
one name: fractals (derived from the Latin fractus, meaning ”broken” or ”fractured”). Mandelbrot also
expanded on this, observing that many objects in nature are described much more appropriately with
these concepts in mind.

Although the definition of fractal is not particularly pedantic or agreed upon, it usually translates
to “objects that have non-integer dimension”, where the dimension in question is often the Hausdorff
dimension. This concept was first introduced in 1918 by German mathematician Felix Hausdorff, and
in this work our first goal is to present its definition and properties, through the study of the Hausdorff
measure.
Briefly, fractal dimension describes how efficiently a subset of Rn fills space: as mentioned earlier, it
serves as an excellent quantifier of “roughness”, that is the prominence of the irregularities of a set
when viewing it at very small scales. Related to this, we will also cover the definition of the so called
Box-counting dimension, an alternative definition similar to its counterpart.

Lastly, our survey will cover a class of objects known as Iterated Function Systems, i.e. families of
contracting transformations, which are the main focus of this thesis. They were first introduced and
studied by Hutchinson in 1981 (see [5]), which lay the foundations for mathematicians from the 1980s
onwards.
In particular, we are interested in the study of their attractor, the invariant set under these contrac-
tions (which we will prove to exist and be unique), and the calculation of its dimensions. A particular
sub-family of attractors is that of self-similar sets, objects that are geometrically similar to smaller com-
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vi CHAPTER 0. INTRODUCTION

ponents of their own structure, i.e. attractors of contractions which are also similarities. In conclusion,
the last section covers a number of examples of classic fractal constructions.
Note that we will follow more or less in detail Falconer’s book on these topics, see [3], in particular
Chapters 1, 2, 3, 4 and 9.



Chapter 1

Hausdorff measure and dimension

1.1 Measure Theory background

Definition 1.1. Let µ : M → [0,+∞] be a function defined on a σ-algebra M of X ̸= ∅, and consider
the following properties:

(a) µ(∅) = 0

(b) µ(A) ≤ µ(B) for all A ⊆ B in M

(c) µ(
∞S
i=1

Ai) ≤
∞P
i=1

µ(Ai)

(c’) µ(
∞S
i=1

Ai) =
∞P
i=1

µ(Ai) if the Ai are disjoint sets in M .

We call µ an outer measure on X if it satisfies (a), (b) and (c) and if M = P(X), or measure if it satisfies
all four properties (actually, (a) and (c’) suffice).

For the purposes of this thesis, we will be working with Borel measures on X = Rn, that is measures
defined on the σ-algebra generated by the open subsets of Rn, also called Borel sets. In particular, the
Hausdorff measure:

Definition 1.2. Let F be a subset of Rn and s ≥ 0. For any δ > 0, we call {Ui}i≥1 a δ-cover of F if

for all Ui we have |Ui| = sup
n
|x− y| : x, y ∈ Ui

o
≤ δ and F ⊆

∞S
i=1

Ui. Then let us define

Hs
δ(F ) = inf

n ∞X
i=1

|Ui|s : {Ui}i is a δ-cover of F
o
. (1.1)

Note that as δ decreases, the class of admissible δ-covers gets smaller, so Hs
δ increases. Thus we may

define

Hs(F ) = sup
δ>0

Hs
δ(F ) = lim

δ→0
Hs

δ(F ). (1.2)

We call Hs(F ) the s-dimensional Hausdorff measure of F .

We have that Hs is indeed an outer measure:

• Hs(∅) = 0 obviously.

• Hs(A) ≤ Hs(B) if A ⊆ B, since Hs
δ(A) ≤ Hs

δ(B) for all δ > 0 (every δ-cover of B is also a δ-cover
of A)

1



2 CHAPTER 1. HAUSDORFF MEASURE AND DIMENSION

• Hs
∞S
i=1

Ai ≤
∞P
i=1

Hs(Ai), since Hs
δ

∞S
i=1

Ai ≤
∞P
i=1

Hs
δ(Ai) for all δ > 0:

if for some Ai it occurs that Hs
δ(Ai) = ∞, the inequality is trivial. Otherwise, let ε > 0: every Ai

has a δ-cover {U i
k}k≥1 such that

∞X
k=1

|U i
k|s < Hs

δ(Ai) +
ε

2i
.

Thus, since {U i
k}k,i≥1 is a δ-cover of

∞S
i=1

Ai,

Hs
δ

∞[
i=1

Ai ≤
∞X
i=1

∞X
k=1

|U i
k|s <

∞X
i=1

Hs
δ(Ai) +

ε

2i
=

∞X
i=1

Hs
δ(Ai) + ε

which yields the desired result as ε approaches zero.

Furthermore, Hs is a Borel measure: this is a direct consequence of the (non-trivial) fact that Borel sets
are Hs-measurable:

Definition 1.3. An outer measure µ on a metric space (X, d) is called a metric outer measure if µ is
additive on any pair of positively separated sets E and F , which means that if d(E,F ) = inf{d(x, y) :
x ∈ E, y ∈ F} > 0, then µ(E ∪ F ) = µ(E) + µ(F ).

Theorem 1.4. Let µ be a metric outer measure on a metric space X. Then all Borel subsets of X are
µ-measurable

Cf. [2, pages 5-6] for more details.

This result, along with Caratheodory’s extension theorem (Cf. [4, Theorem 1.11]), proves that Hs

is a Borel measure, provided Hs is a metric outer measure, which can be easily verified: let E,F ⊆ Rn

and F be a δ-cover of E ∪ F with 0 < δ < d(E,F ), and

FE = {U ∈ F : U ∩ F = ∅} FF = {U ∈ F : U ∩ E = ∅}.

Then no set in F intersects both E and F , and thus FE and FF are disjoint and form δ-covers of E and
F respectively. Then,

Hs
δ(E) ≤

X
U∈FE

|U |s and Hs
δ(F ) ≤

X
U∈FF

|U |s,

and we get

Hs
δ(E) +Hs

δ(F ) ≤
X

U∈FE

|U |s +
X

U∈FF

|U |s ≤
X
U∈F

|U |s.

Taking infimum over such covers as F , we get Hs
δ(E ∪ F ) ≤ Hs

δ(E) +Hs
δ(F ) ≤ Hs

δ(E ∪ F ), where the
first inequality is property (c) in Definition (1.1).

Another fundamental fact to consider is that the n-dimensional Hausdorff measure is, up to a constant
multiple, the n-dimensional Lebesgue measure Ln. More precisely, if F is a Borel subset of Rn, Hn(F ) =
c−1
n Ln(F ) where

cn =
π

n
2

2nΓ(n2 + 1)

is the volume of an n-dimensional ball of diameter 1 (Cf. [1, section 2.2]).
Not only that, Hm measures the m-dimensional area of “nice” subsets of Rn, such as m-dimensional
smooth submanifolds: H0 counts the number of points, H1 measures the length of smooth curves, H2

the area of smooth surfaces, etc...
This is a direct consequence of the famous (but hard to prove) Area Formula (Cf. [1, section 3.3]):
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Theorem 1.5 (Area Formula). Consider an injective Lipschitz map f : Rm → Rn, where m ≤ n. By
Rademacher’s theorem f is differentiable almost everywhere, and at any point of differentiability y ∈ Rm

we may define Jf(y) =
q
det Df |ty ·Df |y . Then the following identity holds:

c−1
m

Z
A

Jf(y) dLm(y) =

Z
f(A)

dHm(x) = Hm(f(A)). (1.3)

In particular, this applies locally for diffeomorphisms that define our smooth m-submanifolds of Rn.

We now see a couple of basic results that determine how Hs behaves under certain mappings.

Proposition 1.6 (Scaling property). Let S : Rn → Rm be a similarity transformation of scale λ > 0.
Then for all F ⊆ Rn,

Hs(S(F )) = λsHs(F ).

Proof. Suppose {Ui}i≥1 is a δ-cover of F . Then {S(Ui)}i≥1 is a λδ-cover of S(F ) andX
i≥1

|S(Ui)|s = λs
X
i≥1

|Ui|s,

so Hs
λδ(S(F )) ≤ λsHs

δ(F ) which gives Hs(S(F )) ≤ λsHs(F ) letting δ → 0. By replacing S with S−1,
similarity of scale 1/λ, and F with S(F ), we have the opposite inequality, since Hs(F ) ≤ λ−sHs(S(F )).

Proposition 1.7. Let f : F ⊆ Rn → Rm be a Hölder transformation of exponent α > 0, that is

|f(x)− f(y)| ≤ c|x− y|α ∀x, y ∈ F

for some constant c > 0. Then for each s ≥ 0,

Hs/α(f(F )) ≤ cs/αHs(F ).

Proof. Suppose {Ui}i≥1 is a δ-cover of F . Since

|f(F ∩ Ui)| ≤ c|F ∩ Ui|α ≤ c|Ui|α,

{f(F ∩ Ui)}i≥1 is a cδα-cover of f(F ). ThenX
i≥1

|f(F ∩ Ui)|s/α ≤ cs/α
X
i≥1

|Ui|s

gives that Hs/α
cδα (f(F )) ≤ cs/αHs

δ(F ), which, letting δ → 0, yields the desired inequality.

As a remark, Hs is invariant under isometries because of Proposition 1.6 (with λ = 1) and in particular
rotation and translation invariant, as could be expected.
Furthermore, Proposition 1.7 tell us that a Lipschitz mapping f (Hölder mapping of exponent α = 1)
satisfies

Hs(f(F )) ≤ csHs(F ).

1.2 Hausdorff dimension

We are now interested in the behaviour of Hs as s changes. Consider a δ-cover {Ui}i≥1 of F ⊆ Rn and
0 ≤ s < t. We have X

i≥1

|Ui|t ≤
X
i≥1

|Ui|t−s|Ui|s ≤ δt−s
X
i≥1

|Ui|s

and taking infima yields Ht
δ(F ) ≤ δt−sHs

δ(F ). As δ → 0, δt−s → 0 and δs−t → ∞, so it is clear that

Hs(F ) < ∞ ⇒ Ht(F ) = 0

Hs(F ) = ∞ ⇐ Ht(F ) > 0

This tell us that Hs(F ) jumps from ∞ to 0 as s increases, which leads us to the following definition:
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Definition 1.8. There is a critical value of s called Hausdorff dimension of F at which the jump occurs:
we denote it as dimHF . More precisely

dimHF = inf{s ≥ 0 : Hs(F ) = 0} = sup{s ≥ 0 : Hs(F ) = ∞} (1.4)

Where we agree that the supremum of the empty set is 0.
Note that dimHF is also the only value of s for which 0 < Hs(F ) < ∞ could occur: if this happens for
some Borel set F , F is called an s-set.

Figure 1.1: Hs(F ) plotted against s for some F ⊆ Rn which is also a dimHF -set

What follows are some basic properties of the Hausdorff dimension:

• Monotonicity : if E ⊆ F ⊆ Rn then dimHE ≤ dimHF .
This is immediate from the monotonicity of Hs for all s ≥ 0, since

∀s > dimHF Hs(E) ≤ Hs(F ) = 0

gives that dimHE ≤ dimHF by (1.4).

• Countable Stability : supposing {Fi}i≥1 are countably many subsets of Rn, then

dimH

∞[
i=1

Fi = sup
i≥1

{dimHFi}.

Clearly dimH

∞S
i=1

Fi ≥ dimHFi for all Fi by monotonicity. On the other hand, if s > dimHFi

for all Fi, we have Hs(Fi) = 0 and so Hs
∞S
i=1

Fi = 0, thus s > dimH

∞S
i=1

Fi. By choosing

s = sup
i≥1

{dimHFi}+ ε, with ε > 0, and letting ε → 0, it is clear that sup
i≥1

{dimHFi} ≥ dimH

∞S
i=1

Fi.

• dimH on countable sets: if F ⊆ Rn is countable, dimHF = 0.

This is immediate from the countable stability property, since F =
∞S
i=1

{fi} and clearly, fi being a

point in F , H0({fi}) = 1, which means dimH{fi} = 0 and so dimH

∞S
i=1

{fi} = 0.

• dimH on open sets: if F ⊆ Rn is open, dimHF = n.
Recall that, given any ball B ⊆ Rn, Hn(B) = c−1

n Ln(B) and thus B is clearly an n-set. Now, since
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F is open, it contains an n-ball of some radius, thus dimHF ≥ n. Then, F is contained in a countable
union of n-balls (since Rn is contained in the union of the countably many balls {Bi}i centered in
Zn each of radius 1), and so by countable stability dimHF ≤ dimH

S
i

Bi = sup
i

dimHBi = n.

• dimH on smooth sets: if F is a smooth m-dimensional submanifold of Rn, dimHF = m.
This follows from Corollary 1.10 which we will prove in a moment:
Let M ⊆ Rn be the m-dimensional smooth submanifold. By countable stability, it is enough to
show that locally, that is for Nr = B(x, r) ∩ M for some r > 0 and x ∈ M , we have dimension
m. Without loss of generality there is an orthogonal projection π : Nr → Rm on some m-plane of
Rn (e.g. its tangent m-plane) such that π(Nr) ⊆ Rm is open and thus dimHπ(Nr) = m, and since
|π(x)− π(y)| ≤ |x− y| for all x, y ∈ Nr, m = dimHπ(Nr) ≤ dimHNr.
On the other hand, M is locally diffeomorphic to some open subset U ⊆ Rm, which means that
without loss of generality there exists a diffeomorphism ϕ ∈ C1(U,Nr). By Lagrange’s mean value

theorem, |ϕ(x)− ϕ(y)| ≤ sup
z∈K

Jϕ(z) · |x− y| for all x, y ∈ K and some compact subset K ⊆ U ,

so that sup
z∈K

Jϕ(z) < +∞ by continuity: thus ϕ|K is Lipschitz, and dimHϕ(K) ≤ dimHK ≤ m.

By choosing some r′ < r sufficiently small, Nr′ ⊆ ϕ(K) which gives dimHNr′ ≤ dimHϕ(K) ≤ m.

Other important transformation properties of dimH follow from the corresponding ones for Hs given
in Propositions 1.6 and 1.7:

Proposition 1.9. Let f : F ⊆ Rn → Rm be a Hölder transformation of exponent α > 0 and constant
c > 0. Then

dimHf(F ) ≤ 1

α
dimHF.

Proof. Let s > dimHF . Then by Proposition 1.7

Hs/α(f(F )) ≤ cs/αHs(F ) = 0,

thus dimHf(F ) ≤ s/α for all s > dimHF , which means dimHf(F ) ≤ (dimHF )/α.

Corollary 1.10. Let f : F → Rn be a function. Then:

(a) If f is a Lipschitz transformation then dimHf(F ) ≤ dimHF .

(b) If f is a bi-Lipschitz transformation then dimHf(F ) = dimHF , that is if

c1|x− y| ≤ |f(x)− f(y)| ≤ c2|x− y| ∀x, y ∈ F

where 0 < c1 ≤ c2 < ∞.

Proof.

(a) Directly from the last result by choosing α = 1.

(b) Obviously by (a) we have dimHf(F ) ≤ dimHF .
Moreover, since c1|x− y| ≤ |f(x)− f(y)|, f is injective:

x ̸= y ⇔ |x− y| > 0 ⇒ |f(x)− f(y)| ≥ c1|x− y| > 0 ⇔ f(x) ̸= f(y).

Thus f : F → f(F ) is invertible and so f−1 : f(F ) → F is also Lipschitz of constant 1/c1, since
c1|f−1(x)− f−1(y)| ≤ |x− y|. Thus by (a) we have dimHF ≤ dimHf(F ).

The last result is particularly important. Hausdorff dimension is invariant under bi-Lipschitz trans-
formations: since bi-Lipschitz transformations are necessarily homeomorphisms, this corollary tell us
that the Hausdorff dimension is a “finer” invariant than topological invariants, that is, we can further
subdivide a class of homeomorphic topological spaces in classes of those who have the same Hausdorff di-
mension. However, dimension alone tells us little about the topological properties of a set, but something
can be said for dimension less than 1:
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Proposition 1.11. A set F ⊆ Rn with dimHF < 1 is totally disconnected, that is, its connected
components are exactly its points.

Proof. Let x, y ∈ F be distinct points and define f : Rn → [0,∞) as f(z) = |z − x|.
Since

|f(z)− f(w)| = |z − x| − |w − x| ≤ |(z − x)− (w − x)| = |z − w|,
from part (a) of the last result we have dimHf(F ) ≤ dimHF < 1, thus f(F ) is a subset of R ofH1-measure
zero, or equivalently Lebesgue measure zero.

By the following Lemma 1.12, R\f(F ) is dense in R: then there must exist an r both in the open
set {s ∈ R : 0 < s < f(y)} (which is not empty since f(y) ̸= 0) and in R\f(F ), so that F = A ∪ B can
be divided in the two connected components

A = {z ∈ F : |z − x| < r} and B = {z ∈ F : |z − x| > r}.

Since r < f(y), y lies in B, and clearly x ∈ A. Thus every point lies in a different connected component
than all other points.

Lemma 1.12. Let E ⊆ R be such that L(E) = 0. Then R\E is a dense subset of R.

Proof. Suppose R ̸= R\E = R\int(E), where int(E) denotes the interior of E. It follows that int(E) ̸=
∅, so there is a ball centered on x ∈ E of radius r > 0 such that BR(x, r) ⊆ int(E) ⊆ E, and so

0 < L BR(x, r) ≤ L(E), which is a contradiction.

1.3 Direct derivation for some examples

Example 1.13 (Cantor dust). Let E0 be the unit square in R2 and subdivide it in 16 sub-squares with
a quarter of the side length. Now discard all of them except four so that the remaining squares are in
different columns of the original square, and call E1 this set. Now construct E2 subdividing each square
of E1 as we just did with E0 (with the same square pattern), and so forth for all k ∈ N construct Ek, as
shown in Figure 1.2.

Now consider F =
∞T
k=0

Ek, which is called a Cantor dust : we show that

1 ≤ H1(F ) ≤
√
2

which means that dimHF = 1.

Observe that Ek consists of 4k squares of side length 4−k, thus of diameter 4−k
√
2. Taking the squares

of Ek as a δ-cover, where δ = 4−k
√
2, we see that H1

δ(F ) ≤ 4k · 4−k
√
2. Letting k → ∞, we get δ → 0

and so
H1(F ) ≤

√
2.

For the lower bound, consider the orthogonal projection π on the x-axis, that is

π : R2 → R, (x1, x2) 7−→ π(x1, x2) = x1.

Clearly |π(x) − π(y)| ≤ |x − y| for all x, y ∈ R2, thus π is a Lipschitz transformation, and observe that
the way we constructed F tells us that π(F ) = [0, 1] ⊆ R: by Proposition 1.7,

1 = H1 π(F ) ≤ H1(F ).

Another, less formal, way of calculating the dimension of this Cantor dust is as follows: since F is
made up of 4 smaller copies of itself scaled by a factor of 1

4 , by the scaling property we have that

Hs(F ) = 4 · 1

4

sHs(F ).

If we assume that F is a s-set for s = dimHF , that is 0 < Hs(F ) < ∞, then it must be that 1 = 4 1
4

s
,

or s = 1.
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Figure 1.2: Two examples of Cantor dust and their orthogonal projections

Example 1.14 (Middle third Cantor set). Let F be the middle third Cantor set, that is the “1-
dimensional Cantor dust” obtained with repeated subdivisions of the intervals in thirds and taking
out the middle one, starting from [0, 1].
We now show that if s = log 2/ log 3,

1

2
≤ Hs(F ) ≤ 1

so that dimHF = s.

Let us call level-k intervals all intervals of length 3−k involved in the construction of F , which are 2k

(shown in Figure 1.3). Then all level-k intervals form a 3−k-cover of F , and so

Hs
3−k(F ) ≤ 2k3−ks = 1

if s = log 2/ log 3. As k → ∞, we get
Hs(F ) ≤ 1.

Conversely, to prove that 1
2 ≤ Hs(F ), since 3s = 2, we show that

∞X
i=1

|Ui|s ≥
1

2
= 3−s (1.5)

for any given cover {Ui}i≥1 of F . In reality, it suffices to show this for finitely many closed subintervals
of [0, 1]: without loss of generality all Ui may be intervals, and by expanding them slightly and using the
compactness of [0, 1], if we show (1.5) for the obtained finite subcover of {Ui}, we are done.
Then consider a cover {Ui}Ni=1, of closed subintervals of [0, 1], of F . For any given Ui, let k be the integer
such that

3−(k+1) ≤ |Ui| ≤ 3−k. (1.6)

Then Ui can intersect at most one level-k interval, let us call it Ek,i, since all level-k intervals have at
least a pairwise distance of 3−k. Thus if j ≥ k, by construction Ui intersects at most all 2j−k level-j



8 CHAPTER 1. HAUSDORFF MEASURE AND DIMENSION

Figure 1.3: The construction of the middle third Cantor set. Here Ek is the union of all level-k intervals

subintervals of Ek,i. Now, since

2j−k = 2j3−sk = 2j3−s(k+1)3s ≤ 2j3s|Ui|s

by (1.6), if we choose j large enough so that 3−(j+1) ≤ |Ui| for all i = 1, 2, . . . , N , the last inequality
applies for all Ui and so they all cumulatively intersect at most

NX
i=1

2j−k ≤ 2j3s
NX
i=1

|Ui|s

level-j intervals. If we recall that {Ui}Ni=1 covers completely F , then it is clear that all 2j level-j intervals
intersect at least one Ui: counting intervals gives that

2j ≤ 2j3s
NX
i=1

|Ui|s,

thus 3−s ≤
NP
i=1

|Ui|s which is (1.5) and proves the lower bound.

Just as in the last example, we can obtain the same result in a more heuristic manner: since F is
made up of two copies of itself (one contained in [0, 1

3 ], the other in [ 23 , 1]) scaled by a factor 1
3 , we have

that

Hs(F ) = 2
1

3

sHs(F ),

and if we assume F to be an s-set for s = dimHF , we can simplify Hs(F ) and get 3s = 2.

These examples and their “heuristic” solutions hint at a formula for calculating the dimension of
self-similar sets, which we will prove later on and formalizes the same intuition.



Chapter 2

Other definitions of dimension

2.1 Box-counting dimensions

Box dimension is one of the most used dimensions, largely due to its applicability and easy empiri-
cal calculation. In this chapter we introduce its basic properties and relationships with the Hausdorff
dimension.

Definition 2.1. Let F ⊆ Rn a non-empty bounded set, and Nδ(F ) the smallest number of sets of
diameter at most δ which can cover F , that is the smallest number of elements a δ cover of F can have.
We define the lower and upper box-counting dimensions of F respectively as

dimBF = lim inf
δ→0

logNδ(F )

− log δ
(2.1)

dimBF = lim sup
δ→0

logNδ(F )

− log δ
(2.2)

If these have equal value, we refer to it as box-counting dimension or simply box dimension of F , and
denote it as

dimBF = lim
δ→0

logNδ(F )

− log δ
(2.3)

Here, and further on, we are assuming 0 < δ < 1 to ensure that − log δ is strictly positive.

This definition entails a dimension under this intuition: a dimension s of F may be determined
assuming that Nδ(F ) ∼ cδ−s as δ approaches zero, for some constant c > 0 which can be thought of as
the s-dimensional volume of F . The idea is that in an s-dimensional volume c there ought to be at least
approximately cδ−s elements in every δ-cover, and we are searching for an s that makes this work for
smaller and smaller scales of measurement δ (so that Nδ(F ) satisfies a sort of scaling property). Taking
logarithms, we have

s = lim
δ→0

logNδ(F )− log c

− log δ
= lim

δ→0

logNδ(F )

− log δ
.

The following proposition reveals why it is called box dimension, and gives other equivalent definitions:

Proposition 2.2. The lower and upper box-counting dimensions of F ⊆ Rn are given by

dimBF = lim inf
δ→0

logNδ(F )

− log δ

dimBF = lim sup
δ→0

logNδ(F )

− log δ

and the box-counting dimension of F by

dimBF = lim
δ→0

logNδ(F )

− log δ

if the limit exists, where Nδ(F ) is any of the following:

9
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1. the smallest number of sets of diameter at most δ that cover F

2. the number of δ-mesh cubes that intersect F

3. the smallest number of cubes of side δ that cover F

4. the smallest number of closed balls of radius δ that cover F

5. the largest number of disjoint balls of radius δ with centers in F

Proof.

• (1 ⇔ 2) Let us recall that for a δ-mesh cube we mean [m1δ, (m1+1)δ]× . . .× [mnδ, (mn+1)δ] ⊆ Rn

for some integers m1, . . . ,mn. Now let N ′
δ(F ) be the number of δ-mesh cubes that intersect F :

they provide a collection of sets of diameter δ
√
n that cover F , so Nδ

√
n(F ) ≤ N ′

δ(F ). If δ is small
enough so that δ

√
n < 1, we get

logNδ
√
n(F )

− log δ
√
n

≤ logN ′
δ(F )

− log δ
√
n
,

so letting δ approach zero yields

dimBF ≤ lim inf
δ→0

logN ′
δ(F )

− log δ − log
√
n
= lim inf

δ→0

logN ′
δ(F )

− log δ
,

dimBF ≤ lim sup
δ→0

logN ′
δ(F )

− log δ − log
√
n
= lim sup

δ→0

logN ′
δ(F )

− log δ
.

On the other hand, any set of diameter at most δ is surely contained in 3n δ-mesh cubes, which
are any δ-mesh cube containing some point of the set and all its neighbouring cubes. So N ′

δ(F ) ≤
3nNδ(F ), which means that, taking logarithms and limits like earlier,

lim inf
δ→0

logN ′
δ(F )

− log δ
= lim inf

δ→0

logN ′
δ(F )− n log 3

− log δ
≤ dimBF,

lim sup
δ→0

logN ′
δ(F )

− log δ
= lim sup

δ→0

logN ′
δ(F )− n log 3

− log δ
≤ dimBF.
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• (1 ⇔ 3) The equivalence follows as in the mesh cube case, since any cube of side δ has diameter
δ
√
n and any set of diameter of at most δ is contained in a cube of side δ.

• (1 ⇔ 4) Precisely as the last equivalence, since any closed ball of radius δ has diameter 2δ and any
set of diameter of at most δ is obviously contained in a closed ball of radius δ.

• (1 ⇔ 5) Let N ′
δ(F ) be the largest number of disjoint balls of radius δ centered in F , and

B1, B2, . . . , BN ′
δ(F ) be disjoint balls centered in F and of radius δ. Let x be a point in F : x

must be within distance δ of one of the Bi, otherwise the ball B(x, δ) could be added to form a
larger collection of disjoint balls, which is a contradiction. Thus the balls 2B1, 2B2, . . . , 2BN ′

δ(F )

(concentric with the Bi but with double radius, thus of diameter 4δ) cover F , so N4δ(F ) ≤ N ′
δ(F ).

Conversely, let us again consider any balls B1, B2, . . . , BN ′
δ(F ) of radii δ centered in F and disjoint,

and U1, U2, . . . , Uk any finite δ-cover of F : the Uj surely cover the centers of each Bi, so each Bi

contains at least one of the Uj . Since the balls are disjoint, different Bi contain different Uj , thus
N ′

δ(F ) ≤ k, or better N ′
δ(F ) ≤ Nδ(F ).

As for the last equivalences, taking logarithms and limits of these two inequalities yields the equiv-
alence.

There is another intuition behind this definition which is worth mentioning:
Let Fδ = x ∈ Rn : |x − y| ≤ δ for some y ∈ F be the δ-neighbourhood of F ⊆ Rn. We consider the
rate at which the n-dimensional volume (that is, its n-dimensional Lebesgue measure) of Fδ decreases as
δ → 0, for example in R3, as shown in Figure 2.1:

• If F is a point, vol(Fδ) =
4π
3 δ3

• If F is a segment of length l, vol(Fδ) ∼ πlδ2

• If F is a flat surface of area a, vol(Fδ) ∼ 2aδ

Figure 2.1:

In general, this pattern more or less extends to fractional dimensions, that is to say, we expect there to
be some s > 0 such that voln(Fδ) ∼ cδn−s for some c > 0 called Minkowski content or s-dimensional
content of F . In this sense, as δ approaches zero,

n− log voln(Fδ)

log δ
∼ n− log δn−s

log δ
= s.

This definition of dimension, sometimes called Minkowski or Minkowski-Bouligand dimension, as it turns
out, coincides with the box-counting dimension, even if the limit does not exist.

Proposition 2.3. If F is a subset of Rn, then

dimBF = n− lim inf
δ→0

log voln(Fδ)

log δ
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dimBF = n− lim sup
δ→0

log voln(Fδ)

log δ
,

where Fδ is the δ-neighbourhood of F .

Proof. If F can be covered by Nδ(F ) balls of radius δ < 1, Fδ can be covered by the corresponding
concentric balls of radius 2δ, hence

voln(Fδ) ≤ Nδ(F )cn(2δ)
n

where cn = voln BRn(0, 1) . Taking logarithms and dividing by − log δ yields

log voln(Fδ)

− log δ
≤ log 2ncn + n log δ + logNδ(F )

− log δ
,

so

lim inf
δ→0

log voln(Fδ)

− log δ
≤ −n+ dimBF, or better n− lim inf

δ→0

log voln(Fδ)

log δ
≤ dimBF

with a similar inequality taking the upper limit.

On the other hand (using Proposition 2.2, point 5), if there are Nδ(F ) disjoint balls of radius δ
centered in F , summing up the volumes gives

Nδ(F )cnδ
n ≤ voln(Fδ).

Taking logarithms just as before, by letting δ approach zero we get

n− lim inf
δ→0

log voln(Fδ)

log δ
≥ dimBF

and similarly for the upper limit.

2.2 A comparison with Hausdorff dimension and some examples

Example 2.4. Let F be the middle third Cantor set. Then dimBF = dimBF = log 2/ log 3.
(See Example 1.14 for terminology and notation)

The 2k level-k intervals of length 3−k form a δ-cover of F , if 3−k < δ ≤ 3−k+1, so Nδ(F ) ≤ 2k and

dimB = lim sup
δ→0

logNδ(F )

− log δ
≤ lim sup

k→+∞

log 2k

log 3k−1
=

log 2

log 3
.

On the other hand, any interval (a box in R) of length δ and part of a box covering of F , with
3−k−1 ≤ δ < 3−k, intersects exactly one level-k interval: there are 2k such intervals, so at least 2k

intervals of length δ are required to cover F , thus Nδ(F ) ≥ 2k which leads to dimBF ≥ log 2/ log 3.

Thus for the middle third Cantor set F , dimBF = log 2/ log 3 = dimHF . This is in general false, but
something can be said nonetheless:
Let F ⊆ Rn be covered by Nδ(F ) sets of diameter δ. Then by definition of Hausdorff measure Hs

δ(F ) ≤
Nδ(F )δs.
If Hs(F ) = lim

δ→0
Hs

δ(F ) > 1, then Nδ(F )δs ≥ Hs
δ(F ) > 1 if δ is sufficiently small, and taking logarithms

gives

logNδ(F ) + s log δ > 0 or better s ≤ lim inf
δ→0

logNδ(F )

− log δ
= dimBF.

So if F has non-zero s-dimensional Hausdorff measure (since, by the scaling property, if Hs(F ) > 0 we
can scale F by some factor so that Hs(F ) > 1) then s ≤ dimBF ≤ dimBF , and by definition (1.4) we
get

dimHF ≤ dimBF ≤ dimBF (2.4)

We do not always get the equality here, as we shall see with this next example.
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Example 2.5. Let F =
n
0, 1, 1

2 ,
1
3 , . . .

o
. Then dimHF = 0 ̸= 1

2 = dimBF .

As seen in Chapter 1, dimHF = 0 since F is countable.
On the other hand, let 0 < δ < 1

2 and k be the integer satisfying 1
k(k+1) ≤ δ < 1

(k−1)k . Suppose now

U is a subset of R with |U | ≤ δ: U can cover at most one of the points in
n
1, 1

2 ,
1
3 , . . . ,

1
k

o
⊆ F , since

1
k−1 − 1

k = 1
(k−1)k > δ.

Thus at least k sets of diameter at most δ are required to cover F , so Nδ(F ) ≥ k, which gives

logNδ(F )

− log δ
≥ log k

− log δ
≥ log k

log k(k + 1)
.

Letting δ → 0 means letting k → +∞, and we get dimBF ≥ 1
2 .

Conversely, take δ and k as before: (k + 1) intervals of length δ cover [0, 1
k ], and other k − 1 intervals

cover
n
1, 1

2 ,
1
3 , . . . ,

1
k−1

o
, one for each point. By definition Nδ(F ) ≤ 2k, which yields

logNδ(F )

− log δ
≤ log 2k

− log δ
≤ log 2k

log(k − 1)k
.

Taking the upper limit as δ → 0, we get dimBF ≤ 1
2 .

If we recall the definitions of Hausdorff and box dimension, we can see that

Nδ(F )δs = inf
nX

i

δs : {Ui} is a (finite) δ-cover of F
o

and
Hs

δ(F ) = inf
nX

i

|Ui|s : {Ui} is a δ-cover of F
o
.

are very similar quantities, from which we extrapolate a dimension s by studying how they behave as δ
approaches zero.

This should shine a light on the qualitative differences between these two dimensions: in calculating
Hausdorff dimension we assign a weight |Ui|s to the covering sets Ui, whereas for the box dimensions we
use the same weight δs for each covering set. Roughly speaking, box dimensions indicate the efficiency
with which a set may be covered by small sets of equal size, whereas Hausdorff dimension involves
covering sets of small but varying size.

2.3 Techniques for computing dimensions

Here we introduce some basic techniques aimed at finding bounds for Hausdorff measures and dimensions:
generally speaking, we get upper bounds by finding effective small sets coverings, and lower bounds by
putting “sensible” measures on the set. For most fractals, natural coverings of the set arise in its
construction, which give “obvious” upper bounds.

Proposition 2.6. Let F ⊆ Rn.

1. Suppose F can be covered by nk sets of diameter at most δk for each k ∈ N, and such that δk → 0
as k → ∞. Then

dimHF ≤ dimBF ≤ lim inf
k→∞

log nk

− log δk
(2.5)

Moreover, if nkδ
s
k remains bounded as k → ∞, then Hs(F ) < ∞.

2. In all limits in definitions (2.1)-(2.3) it is sufficient to consider δ approaching zero through any
decreasing sequence δk such that δk+1 ≥ cδk for some 0 < c < 1, in particular if δk = ck.
In other words, we have the following:

dimBF = lim inf
k→∞

logNδk(F )

− log δk
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dimBF = lim sup
k→∞

logNδk(F )

− log δk

dimBF = lim
k→∞

logNδk(F )

− log δk

for any decreasing infinitesimal sequence δk such that δk+1 ≥ cδk for some 0 < c < 1. In addition,
we have

dimHF ≤ dimBF ≤ lim sup
k→∞

log nk

− log δk
. (2.6)

Proof.

1. By definition (2.1) and the observation resulting in (2.4), we get (2.5):

dimHF ≤ dimBF ≤ lim inf
k→∞

logNδk(F )

− log δk
≤ lim inf

k→∞

log nk

− log δk
.

Furthermore, if nkδ
s
k is bounded by some constant 0 < M < ∞, since Hs

δk
(F ) ≤ nkδ

s
k ≤ M because

the nk sets form a δk-cover of F , letting k → ∞ yields Hs(F ) ≤ M < ∞.

2. Suppose δk is decreasing and δk+1 ≥ cδk for some 0 < c < 1, let Nδ(F ) be the smallest number
of sets in a δ-cover of F and choose δk+1 ≤ δ < δk. Then, since Nδ(F ) ≤ Nδk+1

(F ) because all
δk+1-covers of F are also δ-covers of F ,

logNδ(F )

− log δ
≤

logNδk+1
(F )

− log δk
=

logNδk+1
(F )

− log δk+1 + log(δk+1/δk)
≤

logNδk+1
(F )

− log δk+1 + log c
.

Thus letting δ → 0 also means k → ∞, and

dimBF = lim sup
δ→0

logNδ(F )

− log δ
≤ lim sup

k→∞

logNδk(F )

− log δk
.

Similarly, since Nδk(F ) ≤ Nδ(F ) because δ < δk, we have

logNδ(F )

− log δ
≥ logNδk(F )

− log δk+1
=

logNδk(F )

− log δk + log(δk/δk+1)
≥ logNδk(F )

− log δk − log c

which leads to the opposite inequality taking upper limits. The same statement for dimB is obtained
taking lower limits instead of upper limits.
Thus with the same assumptions we have (2.6):

dimHF ≤ dimBF = lim sup
k→∞

logNδk(F )

− log δk
≤ lim sup

k→∞

log nk

− log δk
.

Before stating the next definition, let us recall that the support spt(µ) of a measure µ on Rn is the
smallest closed set X such that µ(Rn\X) = 0.

Definition 2.7. We will call mass distribution on a bounded set A ⊆ Rn any measure µ on Rn such
that spt(µ) ⊆ A and 0 < µ(Rn) < ∞.

We may think of mass distributions as taking some finite mass and subdividing it on some bounded
set, hence the name.

Proposition 2.8 (Mass distribution principle). Let µ be a mass distribution on F and suppose that for
some s ≥ 0 there exist c > 0 and ε > 0 such that µ(U) ≤ c|U |s for all sets U with |U | ≤ ε. Then

Hs(F ) ≥ µ(F )

c
and s ≤ dimHF ≤ dimBF ≤ dimBF.
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Proof. If {Ui}i is any δ-cover of F with δ ≤ ε, then

0 < µ(F ) ≤ µ
[
i

Ui ≤
X
i

µ(Ui) ≤ c
X
i

|Ui|s

by measure properties and the hypothesis on µ. Taking infima on both sides yields Hs
δ(F ) ≥ µ(F )

c , so

Hs(F ) ≥ µ(F )
c > 0 letting δ → 0. Since Hs(F ) > 0, by definition (1.4) dimHF ≥ s.

Example 2.9. Let F be the middle third Cantor set. Let us apply the last two bounds on F as a
demonstration:

Exactly as seen in Example 2.4, we can use Proposition 2.6 (which we now observe to be a generalization
of that same idea) with the 2k level-k intervals of length 3−k to get dimHF ≤ dimBF ≤ dimBF ≤
log 2/ log 3.
On the other hand, the lower bound is different this time. Let µ be the mass distribution on F defined
as follows: if Ek,j is the j-th level-k interval in the construction on F (ordered “from left to right”),
µ(Ek,j) = 2−k, and for every other set E ⊆ R let µ(E) = µ(F ∩ E). Thus

µ

2k[
j=1

Ek,j = 1 and so µ(F ) = µ
\
k∈N

2k[
j=1

Ek,j = 1.

Now let U be a set with |U | < 1 and let k be the integer such that 3−(k+1) ≤ |U | < 3−k. U can intersect
at most one among the level-k intervals, let that interval be Ek,j : we have that

µ(U) = µ(U ∩ Ek,j) + µ(U\Ek,j) ≤ µ(Ek,j) = 2−k = (3log 2/ log 3)−k = (3−k)log 2/ log 3 ≤ (3|U |)log 2/ log 3.

By Proposition 2.8 we get

Hlog 2/ log 3(F ) ≥ µ(F )/3log 2/ log 3 = 3− log 2/ log 3 =
1

2

and dimHF ≥ log 2/ log 3.
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Chapter 3

Iterated Function Systems

3.1 Attractors and Hausdorff distance

Many fractals are made up of parts that are in some way similar to the whole object, as we have seen
with the middle third Cantor set. These similarities are not only properties of these objects, but can be
used to define them and find their dimension in a simple way: Iterated Function Systems are what we
need to delve into these subjects appropriately.

Definition 3.1. Let D be a closed subset of Rn and consider a contraction S : D → D, which means
that there is a constant 0 < c < 1 such that |S(x)− S(y)| ≤ c|x− y| for all x, y ∈ D (in particular, any
contraction is continuous). If the equality holds, we will call S a contracting similarity.
A finite family of contractions {S1, S2, . . . , Sm}, usually with m ≥ 2, is called an iterated function system,
briefly IFS. An attractor or invariant set for the IFS is a non-empty compact subset F of D such that

F =

m[
i=1

Si(F ).

For a quick and familiar example, let F be the middle third Cantor set and S1, S2 : R → R be the
contracting similarities

S1(x) =
1

3
x S2(x) =

1

3
x+

2

3
.

As seen in previous chapters, F is an attractor for the IFS given by {S1, S2}, which are the basic
self-similarities of the Cantor set.

The fundamental property of any IFS is that it determines a unique attractor: to prove this we
introduce a metric on the set K of non-empty compact subsets of D. Recall that by Aδ we denote the
δ-neighbourhood of A, which is Aδ = {x ∈ D : |x−a| ≤ δ for some a ∈ A}. Then let us define the metric
d known as the Hausdorff metric on K

d(A,B) = inf{δ > 0 : A ⊆ Bδ and B ⊆ Aδ},

which satisfies all the requirements:

1. d(A,B) ≥ 0 and d(A,B) = 0 if and only if A = B:
we only need to check that two sets A,B ∈ K at Hausdorff distance zero coincide. We know that
A ⊆ Bδ and B ⊆ Aδ for all δ > 0, which means that for every n ∈ N, a ∈ A, b ∈ B there are an ∈ A
and bn ∈ B such that |a − bn| ≤ 1/n and |b − an| ≤ 1/n (using δ = 1/n). Thus {an}n and {bn}n
are two sequences who respectively are in A and B and converge to b and a, but since A and B
are closed sets, b ∈ A and a ∈ B, which means A ⊆ B and B ⊆ A.

2. d(A,B) = d(B,A)

3. d(A,B) ≤ d(A,C) + d(C,B):
we need only verify that given δA, δB > 0 such that A ⊆ CδA , C ⊆ AδA and B ⊆ CδB , C ⊆ BδB ,
then A ⊆ BδA+δB and B ⊆ AδA+δB . This is true since (AδA)δB ⊆ AδA+δB , thus B ⊆ CδB ⊆
(AδA)δB ⊆ AδA+δB , and similarly A ⊆ BδA+δB .

17
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We will give two proofs of the fundamental result for IFSs, see Theorem 3.3 below. The first proof
presented makes use of the Banach-Caccioppoli fixed-point theorem:

Theorem 3.2 (Banach-Caccioppoli). Let (X, d) be a non-empty complete metric space and a contraction
map T : X → X. Then T admits a unique fixed point x ∈ X, i.e. T (x) = x.
Furthermore, given any x0 ∈ X and the sequence xn = T (xn−1) for n ≥ 1, then x = lim

n→∞
xn.

Theorem 3.3. Consider an iterated function system consisting of contractions {S1, . . . , Sm} on D ⊆ Rn

of constants c1, . . . , cm respectively. Then there is a unique attractor F ⊆ D for it, i.e. such that

F =

m[
i=1

Si(F ).

Moreover, if we define S : K → K, where K is the family of non-empty compact subsets of D, by

S(E) =

m[
i=1

Si(E)

for E ∈ K and denote the k-th iterate of S by Sk (so that S0 is the identity on K and Sk = S ◦Sk−1 for
k ≥ 1), then

F =

∞\
k=0

Sk(E)

for every E ∈ K such that Si(E) ⊆ E for all 1 ≤ i ≤ m.

First proof. Note that S, by the continuity of all Si, does indeed map sets in K to sets in K. If A,B ∈ K
then

d(S(A), S(B)) = d
m[
i=1

Si(A),

m[
i=1

Si(B) ≤ max
1≤i≤m

d(Si(A), Si(B)) (3.1)

since taking some δ > max
1≤i≤m

d(Si(A), Si(B)) means that Si(B) ⊆ (Si(A))δ for all 1 ≤ i ≤ m, thus we

get
mS
i=1

Si(B) ⊆
mS
i=1

Si(A)
δ
, and vice versa inverting the roles of Si(A) and Si(B).

Moreover, since Si are contractions, d(Si(A), Si(B)) ≤ ci · d(A,B): letting δ > d(A,B) so that A ⊆ Bδ

and B ⊆ Aδ, we have that for every a ∈ A we can pick some b ∈ B such that |a − b| ≤ δ, thus
|Si(a) − Si(b)| ≤ ciδ, and so Si(A) ⊆ (Si(B))ciδ, and similarly for the other inclusion. These last two
inequalities together yield

d(S(A), S(B)) ≤ ( max
1≤i≤m

ci) · d(A,B). (3.2)

This proves that S is a contraction on K, since 0 < max
1≤i≤m

ci < 1. By Theorem 3.2, which we can

apply since (K, d) is complete (see Lemma 3.4), we can conclude that there is a unique F ∈ K such that
S(F ) = F , or in other words F is the only attractor for {S1, . . . , Sm}. Moreover, Sk(E) → F in (K, d)
for any set E ∈ K as k → ∞, and in particular if Si(E) ⊆ E for all 1 ≤ i ≤ m, then S(E) ⊆ E so that
Sk(E) is a decreasing sequence of non-empty compact sets whose limit, as will be seen during the proof

of Lemma 3.4, is
∞T
k=0

Sk(E) and must be equal to F .

Second proof. Let E ∈ K be any set such that Si(E) ⊆ E for all 1 ≤ i ≤ m, for example E = D∩B(0, r)
will suffice provided r is large enough. Then Sk(E) is a decreasing sequence of non-empty compact sets,
thus

F =

∞\
k=0

Sk(E)

is also non-empty and compact, and furthermore

S(F ) =

∞\
k=1

Sk(E) =

∞\
k=0

Sk(E) = F.
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Thus F is an attractor, and to see its uniqueness we make use of (3.2), deriving it exactly as in the
first proof. Suppose G is some other attractor for our IFS. Then

d(F,G) = d(S(F ), S(G)) ≤ ( max
1≤i≤m

ci) · d(F,G),

and since 0 < max
1≤i≤m

ci < 1, d(F,G) must equal zero and consequently F = G.

Lemma 3.4. K is a complete metric space when endowed with the Hausdorff distance.

Proof. Let {En}n be any Cauchy sequence of sets in K. Then, for every δ > 0 one can find some nδ ∈ N
such that d(En, Em) < δ for all n,m ≥ nδ, and in particular En ⊆ (Enδ

)δ and Enδ
⊆ (En)δ. Now let

E =

∞\
n=0

∞[
m=n

Em,

which is a set in K since, choosing δ = 1,

E ⊆
∞[

m=n1

Em ⊆ (En1
)1

and is thus closed and bounded, and non-empty since

An =
∞[

m=n

Em

is a decreasing sequence of non-empty closed sets. We now claim that En → E in (K, d): to prove this,
we show that d(En, An) → 0 and d(An, E) → 0, so that d(En, E) ≤ d(En, An) + d(An, E) → 0, as
n → ∞.

Firstly, reasoning as in the derivation of (3.1), we have that

d(En, An) = d(En,
∞[

m=n

Em) ≤ sup
m≥n

d(En, Em) −→ 0

as n → ∞, since En is Cauchy.

Then An is Cauchy too, since d(An, Am) ≤ d(An, En) + d(En, Em) + d(Em, Am) → 0 as m,n → ∞
for what we have shown so far, and this implies that An → E: recall that

E =

∞\
n=0

An

and let ε > 0 and {nk}k be a subsequence of the naturals such that d(An, Am) < ε/2k for all n,m ≥ nk.
Then for all n ≥ n1, E ⊆ (An)ε by construction, and An ⊆ Eε: take any x1 ∈ An, and consider x2 ∈ An2

such that |x1 − x2| < ε/2, and x3 ∈ An3
such that |x2 − x3| < ε/22, and so on for xk ∈ Ank

. This
sequence is converging to some x ∈ E, and

|x1 − x| ≤
∞X
k=1

|xk − xk+1| <
∞X
k=1

ε

2k
= ε,

which proves that d(An, E) → 0.

Let us now consider a way to “list” every point in F which will prove useful in the next section. For
each k ≥ 1 and E ∈ K

Sk(E) =

m[
i=1

Si

m[
i=1

Si · · ·
m[
i=1

Si(E) · · · =
[

(i1,...,ik)∈Ik

Si1 ◦ Si2 ◦ . . . ◦ Sik(E)
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where Ik is the set of all k-term sequences (i1, . . . , ik) with 1 ≤ ij ≤ m. Then if Si(E) ⊆ E for all
1 ≤ i ≤ m it must be that any point x ∈ F has a (not necessarily unique) corresponding sequence
(i1, i2, . . .) such that x ∈ Si1 ◦ . . . ◦ Sik(E) for all k ≥ 1, since F is the intersection of all Sk(E) by
Theorem 3.3, in the sense that

{x} = {xi1,i2,...} =

∞\
k=1

Si1 ◦ . . . ◦ Sik(E), (3.3)

where the intersection above consists of a single point since all Si are contractions. Thus

F =
[

1≤ij≤m

{xi1,i2,...}. (3.4)

Also note that the Sk(E) are sometimes called pre-fractals, and the Si1 ◦ . . . ◦ Sik(E) are the level -k
sets (compare with the construction of the middle third Cantor set).

3.2 Open set condition: dimensions of self-similar attractors

Another significant advantage of working with iterated function systems is that their attractors have
an easily deducible dimension, under some conditions. In this section we explore the calculation of the
Hausdorff and Box dimensions of attractors of IFSs consisting of contracting similarities, also called
self-similar sets, being the union of smaller similar copies of themselves.

In particular, let Si : Rn → Rn and |Si(x) − Si(y)| = ci|x − y| for all x, y ∈ Rn and 0 < ci < 1.

Similarly to the “heuristic calculation” introduced in the examples of Section 1.3, if F =
mS
i=1

Si(F ) is a

“nearly disjoint” union, that is if we have that

Hs(F ) =

mX
i=1

Hs(Si(F )) =

mX
i=1

csiHs(F )

then, under the assumption that 0 < Hs(F ) < ∞, it follows that s = dimHF and

mX
i=1

csi = 1.

We would like to put a similar condition on the IFS so that the Si(F ) do not “overlap too much”, in
order to reach the same results.

Definition 3.5 (Open set condition). We say that the similarities Si satisfy the open set condition if
there exists a non-empty bounded open set V ⊆ Rn such that

m[
i=1

Si(V ) ⊆ V

and the union is disjoint, that is Si(V ) are pairwise-disjoint.

In our argument we will make use of the following geometrical lemma:

Lemma 3.6. Suppose a, b, r > 0 are fixed and let {Vi}i be a collection of pairwise-disjoint open subsets
of Rn such that each Vi contains a ball of radius ar and is contained in a ball of radius br. Then any
ball B of radius r intersects at most (1 + 2b)na−n sets among the closures Vi.

Proof. If Vi intersects B, Vi is contained within the ball concentric with B of radius (1 + 2b)r, since
|Vi| ≤ 2br and thus the center of B is at most distance r + 2br from every point in Vi.
Suppose q of the Vi intersect B: then, summing the (non-overlapping) volumes of the corresponding balls
of radii ar contained in each of the q sets yields q(ar)n ≤ (1 + 2b)nrn, i.e. q ≤ (1 + 2b)na−n.
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Theorem 3.7. Suppose that the open set condition holds for the contracting similarities Si on R
n with

ratios 0 < ci < 1 for 1 ≤ i ≤ m. If F is the attractor for the IFS {S1, . . . , Sm}, then s = dimHF = dimBF
where s ≥ 0 is given by

mX
i=1

csi = 1. (3.5)

In addition, F is an s-set, i.e. 0 < Hs(F ) < ∞.

Proof. Let s satisfy (3.5) and Ik be the set of all k-term sequences (i1, . . . , ik) with 1 ≤ ij ≤ m. For any
set A ⊆ Rn we will denote Ai1,...,ik = Si1 ◦ . . . ◦ Sik(A). Since

F =

m[
i=1

Si(F ),

iterating this k times yields

F =
[
Ik

Fi1,...,ik .

These are covers of F which provide an upper estimate for the Hausdorff measure: the composition of
maps Si1 ◦ . . . ◦ Sik is a similarity of ratio ci1 · · · cik , soX

Ik

|Fi1,...,ik |s =
X
Ik

(ci1 · · · cik)s|F |s =
mX

i1=1

csi1 · · ·
mX

ik=1

csik |F |s = |F |s

by (3.5). Taking any δ > 0, we may choose k ≥ 1 such that

|Fi1,...,ik | ≤ ( max
1≤i≤m

ci)
k|F | ≤ δ since 0 < ( max

1≤i≤m
ci) < 1,

so that {Fi1,...,ik}Ik
is a δ-cover of F , thus giving Hs

δ(F ) ≤ |F |s and hence Hs(F ) ≤ |F |s.
For a lower bound on the Hausdorff measure we need a lot more work:

Let I = {(i1, i2, . . .) : 1 ≤ ij ≤ m for all j ≥ 1} and let Ii1,...,ik = {(i1, i2, . . . , ik, qk+1, . . .) : 1 ≤ qj ≤
m for all j > k} ⊆ I be the set off all sequences in I with given k initial terms.
Let also µ be a measure on I defined by setting µ(Ii1,...,ik) = (ci1 · · · cik)s. By (3.5) we have that

µ(Ii1,...,ik) = (ci1 · · · cik)s =
mX
i=1

(ci1 · · · cikci)s =
mX
i=1

µ(Ii1,...,ik,i),

and also in particular

µ(I) =
mX
i=1

µ(Ii) = 1.

Then for any subset E of I, from Caratheodory’s extension theorem (Cf. [4, Theorem 1.11]) we can
extend µ to a unique measure

µ(E) = inf
n ∞X

i=1

µ(Ui) : E ⊆
∞[
i=1

Ui and Ui = Ii1,...,ik for some k-term sequence (i1, . . . , ik)
o
.

From µ we may induce a mass distribution ν on F in a natural manner, defining

ν(A) = µ({(i1, i2, . . .) ∈ I : xi1,i2,... ∈ A ∩ F})

for all subsets A of Rn, where

{xi1,i2,...} =

∞\
k=1

Fi1,...,ik as introduced in (3.3).

Also by (3.4) we infer that I = {(i1, i2, . . .) ∈ I : xi1,i2,... ∈ F} and in turn Ii1,...,ik = {(i1, i2, . . .) ∈ I :
xi1,i2,... ∈ Fi1,...,ik}, thus we get ν(F ) = 1 and ν(Fi1,...,ik) = (ci1 · · · cik)s.
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We now show that this new mass distribution ν satisfies the conditions of the Mass distribution
principle, Proposition 2.8.
Since the IFS satisfies the open set condition, let V be the non-empty bounded open set such that Si(V )
are pairwise-disjoint and

m[
i=1

Si(V ) ⊆ V.

Defining

S(A) =

m[
i=1

Si(A)

for any subset A of Rn, we get S(V ) ⊆ V , so Sk(V ) converges to F by Theorem 3.3 in the sense that

F =

∞\
k=0

Sk(V ).

In particular V ⊇ F and in turn V i1,...,ik ⊇ Fi1,...,ik .
Let B be any ball of radius 0 < r < 1 and Q as follows: for each sequence (i1, i2, . . .) ∈ I we shorten it
to (i1, . . . , ik) so that ik is the first term for which

min
1≤i≤m

ci r ≤ ci1 · · · cik ≤ r. (3.6)

Then Q is the set of all finite sequences obtained in this way. Clearly for any (i1, i2, . . .) ∈ I there
is exactly one value of k with (i1, . . . , ik) ∈ Q. Now, since V1, . . . , Vm are disjoint subsets of V ,
then Vi1,...,ik,1, . . . , Vi1,...,ik,m are disjoint too for any choice of (i1, . . . , ik), and in particular {Vi1,...,ik :
(i1, . . . , ik) ∈ Q} is a collection of disjoint sets. Also note that by (3.4) we have

F =
[
I
{xi1,i2,...} ⊆

[
Q

Fi1,...,ik ⊆
[
Q

V i1,...,ik . (3.7)

Now choose a and b such that V contains a ball of radius a and is contained in a ball of radius b (this
is possible since V is open and bounded). Then for any (i1, . . . , ik) ∈ Q we get that Vi1,...,ik contains a
ball of radius ci1 · · · cika and therefore one of radius

min
1≤i≤m

ci ar,

and is contained in a ball of radius ci1 · · · cikb and therefore in one of radius br, because of the way we
constructed Q by (3.6).
Let QB be the set of all sequences (i1, . . . , ik) ∈ Q such that V i1,...,ik intersects B: by Lemma 3.6 there
are at most

q = (1 + 2b)n min
1≤i≤m

ci
−n

a−n

sequences in QB . We can conclude that

ν(B) = µ({(i1, i2, . . .) ∈ I : xi1,i2,... ∈ F ∩B}) ≤ µ
[
QB

Ii1,...,ik

since, if

xi1,i2,... ∈ F ∩B ⊆
[
QB

V i1,...,ik by (3.7),

then there must be some k such that (i1, . . . , ik) ∈ QB and so (i1, i2, . . .) ∈
S
QB

Ii1,...,ik . Thus

ν(B) ≤
X
QB

µ(Ii1,...,ik) =
X
QB

(ci1 · · · cik)s ≤
X
QB

rs ≤ qrs.

because of (3.6). Since any set U is contained in a ball of radius |U |, it follows that ν(U) ≤ q|U |s for any
set U such that |U | < 1 (recall that B is a ball of radius r < 1).
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Thus by the Mass distribution principle we get Hs(F ) ≥ ν(F )
q = q−1 > 0, and thus we have shown

that 0 < q−1 ≤ Hs(F ) ≤ |F |s < ∞ and consequently s = dimHF .

Now to complete the proof we just need to show that dimBF ≤ s, since s = dimHF ≤ dimBF ≤
dimBF by (2.4) (we have already shown that F has non-zero s-dimensional Hausdorff measure), which
gives s = dimHF = dimBF .
Note that if R is any set of finite sequences (i1, . . . , ik) such that for every (i1, i2, . . .) ∈ I there is exactly
one integer k such that (i1, . . . , ik) ∈ R (Q satisfies this requirement), from (3.5) we getX

R
(ci1 · · · cik)s = 1

inductively. Choosing R = Q and observing thatX
Q

min
1≤i≤m

ci
s

rs ≤
X
Q

(ci1 · · · cik)s = 1

by (3.6), it follows that Q has at most

p = min
1≤i≤m

ci
−s

r−s

elements. For each sequence (i1, . . . , ik) ∈ Q we have |V i1,...,ik | = ci1 · · · cik |V | ≤ r|V |, so F may be
covered by at most p sets of diameter at most r|V | for each r < 1.
From Definition 2.1 of Box dimension, we have that dimBF ≤ s since

logNr|V |(F )

− log(r|V |)
≤ log p

− log(r|V |)
=

−s log min
1≤i≤m

ci

− log r − log |V |
+

−s log r

− log r − log |V |

and taking upper limits on both sides as r → 0.

Note that, if the open set condition is not assumed, one can only assure that dimHF ≤ s. Even in
this situation, it may be shown that dimHF = dimBF .
Furthermore, there is a similar result if we do not require similarities but merely contractions:

Corollary 3.8. Let F be the attractor of an IFS consisting of contractions {S1, . . . , Sm} on a closed
subset D of Rn and of ratios 0 < c1, . . . , cm < 1 respectively. Then dimHF ≤ s and dimBF ≤ s, where

mX
i=1

csi = 1.

Proof. These estimates can be obtained re-working through the proof of Theorem 3.7 (the first and last
paragraphs, ignoring everything which strictly requires the open set condition), by observing that we
have |Ai1,...,ik | ≤ ci1 · · · cik |A| instead of an equality for each set A.

3.3 Applications to image encoding

Another fascinating property of IFSs is their ability to approximate, albeit a bit coarsely, any non-empty
compact set of Rn. This is widely used in image encoding and procedural generation of digital landscapes
or plant-like structures (see Figures 3.4 and 3.6), since IFSs do not require a large amount of information
to entail very complex and detailed attractors, often very similar to many structures found in nature.

Proposition 3.9. Let {S1, . . . , Sm} be an IFS and let

c = max
1≤i≤m

ci

so that |Si(x) − Si(y)| ≤ c|x − y| for all x, y ∈ Rn and 1 ≤ i ≤ m. Take any non-empty compact set
E ⊂ Rn and let F be the attractor for the IFS and d the Hausdorff metric. Then

d(E,F ) ≤ 1

1− c
d E,

m[
i=1

Si(E) .
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Proof. As seen in Theorem 3.3, by (3.2) we have

d

m[
i=1

Si(E), F = d

m[
i=1

Si(E),

m[
i=1

Si(F ) ≤ c · d(E,F ),

thus

d(E,F ) ≤ d E,

m[
i=1

Si(E) + d

m[
i=1

Si(E), F ≤ d E,

m[
i=1

Si(E) + c · d(E,F )

hence

(1− c) · d(E,F ) ≤ d E,

m[
i=1

Si(E) .

As a consequence, we get the result mentioned earlier:

Corollary 3.10. Let E be a non-empty compact subset of Rn. Given δ > 0 there exist a self-similar set
F , attractor for some IFS consisting of the contracting similarities {S1, . . . , Sm}, such that d(E,F ) < δ.

Proof. Let B1, B2, . . . , Bm be a collection of balls that cover E whose centers are also in E and whose
radii are at most δ/4. This collection exists because of the compactness of E, since it is a finite sub-cover
of any cover consisting of balls centered in E of radii at most δ/4. Then

E ⊆
m[
i=1

Bi ⊆ Eδ/4,

where Eδ/4 is the δ/4-neighbourhood of E. For each i let Si be any contracting similarity of ratio ci < 1/2

that maps E into Bi, so that c = max
1≤i≤m

ci < 1/2. Then Si(E) ⊆ Bi ⊆ Si(E)
δ/2

because |B| ≤ δ/2, so

m[
i=1

Si(E) ⊆ Eδ/4 and E ⊆
m[
i=1

Si(E)
δ/2

.

By definition of Hausdorff metric, d E,
mS
i=1

Si(E) ≤ δ/2, and by Proposition 3.9 we get

d(E,F ) ≤ 1

1− c
d E,

m[
i=1

Si(E) ≤ δ

2(1− c)
< δ

since 1
1−c < 2.

3.4 Classic examples of IFSs

Example 3.11 (Sierpiński triangle). The Sierpiński triangle or gasket F is constructed from an equi-
lateral triangle E0 by repeatedly dividing it into four equal equilateral triangles with half of its side and
removing inverted equilateral triangles (i.e. those that point down), forming E1. Similarly from Ek we
get Ek+1, see Figure 3.1. Its Hausdorff and Box dimension are both equal to log 3/ log 2.

The set F is the attractor of the three similarities of ratios 1/2 which map the starting triangle E0 onto
the three triangles of E1. The open set condition for this IFS holds, taking V as the interior of E0, and
thus by Theorem 3.7, dimHF = dimBF = log 3/ log 2, the solution of 3/2s = (1/2)s+(1/2)s+(1/2)s = 1
in terms of s.

Example 3.12 (Modified von Koch curve). Fix 0 < a ≤ 1
2 and construct a curve F by repeatedly

replacing the middle portion a of each segment by the other two sides of an equilateral triangle. F
is called a modified von Koch curve, as the original von Koch curve is obtained with a = 1

3 . Then
dimHF = dimBF is the solution of

2as + 2
1− a

2

s

= 1 (3.8)

in terms of s.
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Figure 3.1: The construction of the Sierpiński triangle

Figure 3.2: The von Koch curve (for a = 1
3 ) and two examples of modified von Koch curves. For a = 1

3 ,

a = 1
4 and a = 1

2 , (3.8) yields respectively s = log 4
log 3 ≈ 1.262, s ≈ 1.196 and s = log(1+

√
3)

log 2 ≈ 1.45
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If 0 < a ≤ 1
3 , let V be the interior of the isosceles triangle of base 1 and height a

√
3
2 shown in Figure

3.2, and otherwise for 1
3 < a ≤ 1

2 let V be the interior of the isosceles trapezoid of identical larger base,
identical height and lateral sides at 60 degrees angles with the larger base, also shown.
The curve F is the attractor of the IFS which maps the open set V into V1, V2, V3, V4 as displayed above,
i.e. four similarities of which two have ratios a and the other ratios 1−a

2 . Note that V is also the set
which satisfies the open set condition, hence (3.8) follows.

Self-similar curves such as the von Koch curve can be categorized in a convenient way through their
generator, which is a number of straight line segments and two “special” points (in other words, E1).
We associate every line segment with a similarity that maps the special points to the endpoints of the
segment: this defines the similarities up to reflections and 180 degrees rotations, but these are specified
by the first step in the construction of the curve (i.e. E2). Another way is to start from a line segment
with a half-arrowhead at one end, and then display the generator by labeling each segment with a half-
arrowhead like the segment we started with, so that there is no ambiguity in defining the similarities.

Figure 3.3: Some self-similar curves stemming from a generator. Their dimensions are, from top to

bottom, log 8
log 4 = 3

2 ,
log 5
log 3 ≈ 1.465 and log(1+

√
17)

log 2 − 1 ≈ 1.357

In conclusion, we present an interesting class of sets, called self-affine sets, which are attractors of
families of affine contractions, that is contracting transformations of the form

S(x) = T (x) + b,

where T is a linear transformation on Rn and b is a vector in Rn. Unlike similarities, affine transforma-
tions can contract with differing ratios in different directions. Note that self-affine sets include self-similar
sets as a particular case: it is then natural to look for analogies between self-affine and self-similar sets,
such as a generalized dimension formula, or nice properties akin to those of self-similar sets. Unfortu-
nately this is not the case, the situation is much more complicated and generally the information about
the matrices and vectors that define an IFS of affine contractions is not enough to infer anything about
its attractor. What follows is an example of how peculiar some of these sets can be:

Example 3.13. Let E0 be the unit square and divide it into a p× q array of rectangles of sides 1/p and
1/q, where p < q and they are positive integers. Taking a subcollection of these rectangles to form E1,
let Nj be the number of rectangles in the j-th column, for 1 ≤ j ≤ p. Iterating this construction yields
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Figure 3.4: The Barnsley fern, a famous fractal introduced by Michael Barnsley

a self-affine set F , the limiting set obtained as the intersection of all Ek. Then

dimHF = log

pX
j=1

N
log p/ log q
j

1

log p
and dimBF =

log p1
log p

+ log
1

p1

pX
j=1

Nj
1

log q

where p1 is the number of columns containing at least one rectangle of E1.

Figure 3.5: Construction of a self-affine set of the type considered in Example 3.13

Cf. [6] for the calculation. Note that the Hausdorff and Box dimensions are not always equal, and that
their value depends not only on the number of rectangles, but also on their relative positions.
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Figure 3.6: A fractal tree and its generator
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