
P a g e 	 |1	
	 	
	

Abstract

In the future everyday objects will be smart and Internet will be used to send data all

over the world.

To achieve this goal the Internet of Things (IoT) has become an emerging research

area, gaining a great attention by the scientific community.

Wireless Sensor Networks (WSNs) are a well-known research area related to the IoT.

They consist of spatially distributed sensor nodes, which are used to study physical or

environmental conditions and to send their data everywhere through the routing

protocol IPv6. This standard, applied to WSNs, realizes the IPv6 Low Power Personal

Area Network (6LoWPAN), which connects the wireless domain to Internet through

the IP Stack.

In order to check the data communication exchanged between the nodes, I will

develop a metrics collection tool for the COOJA simulator; in other words, this

metrics collection tool will be used to analyse the physical, data-link, network and

transport layers with the aim to detect, for example, the possible losses of packets or

the congestion of a node.

My research will be organized in the following five chapters: chapter 1 introduces the

6LoWPAN networks and explains the objective work; chapter 2 contains an

explanation on basic concepts of my dissertation, illustrating the related works of the

scientific community about COOJA and the missing points to optimize the analysis of

6LoWPAN networks; chapter 3 represents the development of the plugin used to

collect metrics; chapter 4 studies some particular COOJA simulations in order to

show the results of my tool; chapter 5, finally, reports the conclusions and the future

possible developments.

	
	
	
	
	
	
	
	
	

P a g e 	 |2	
	 	
	

Sommario

Nel futuro qualsiasi oggetto sarà intelligente e utilizzerà Internet per inviare

informazioni in ogni parte del mondo.

Al fine di raggiungere tale obiettivo, l’Internet of Things (IoT) è diventata un’area di

ricerca emergente, guadagnando una grande attenzione dalla comunità scientifica.

Wireless Sensor Networks (WSNs) sono un’importante componente dell’IoT.

Queste reti sono costituite da nodi sensore spazialmente distribuiti, utilizzati per

studiare condizioni fisiche o ambientali e per inviare le informazioni rilevate ovunque

attraverso il protocollo di routing IPv6. Tale standard, applicato alle reti WSN,

realizza l’IPv6 Low Power Personal Area Network (6LoWPAN), la quale connette il

dominio wireless a Internet attraverso lo stack IP.

Con lo scopo di controllare la comunicazione dei dati scambiata tra i nodi, sarà

sviluppato uno strumento di collezione metriche per il simulatore COOJA. Nello

specifico il nuovo plugin sarà utilizzato per analizzare il livello fisico, il livello

collegamento, il livello rete e il livello trasporto al fine di rilevare, per esempio, le

possibili perdite di pacchetti oppure la congestione di un nodo.

Il lavoro svolto sarà distribuito nei seguenti 5 capitoli: il primo capitolo introduce le

reti 6LoWPAN e illustra gli obiettivi della tesi; il secondo capitolo mostra i concetti

base di riferimento, evidenziando i lavori svolti dalla comunità scientifica relativi al

simulatore COOJA e i punti mancanti per ottimizzare l’analisi di reti 6LoWPAN; il

terzo capitolo illustra la progettazione del plugin; il quarto capitolo esamina alcune

particolari simulazioni COOJA al fine di mostrare i risultati ottenuti dallo strumento

di collezione metriche; il quinto capitolo riporta le conclusioni e i possibili lavori

futuri.

	
	
	
	
	
	
	
	
	

P a g e 	 |3	
	 	
	
	

Contents
1.	 Introduction	 ..	 5	

1.1 IP Networking For Smart Objects	 ..	 5	
1.2 Objective Work	 ...	 6	

2.	 Related works	 ..	 7	
2.1 Basic Notations	 ...	 7	

2.1.1 IEEE 802.15.4 Protocol	 ...	 7	
2.1.2 IPV6 in Low-Power Wireless Personal Area Network (6LoWPAN)	 	 8	
2.1.3 RPL: IPV6 Routing Protocol for Low-Power and Lossy Networks (LLN)	 .	 9	
2.1.4 TINYOS, short description and implementation of 6LoWPAN networks	 .	 11	
2.1.5 COOJA	 ..	 13	

2.2 Scientific Community Works	 ...	 16	
2.3 Original Contribution	 ..	 18	

3. Plugin Development	 ...	 19	
3.1 Application Field	 ..	 19	
3.2 Cooja Architecture	 ...	 22	
3.3 Plugin General Functioning	 ..	 23	
3.4 Plugin Basic Architecture	 ..	 26	
3.5 L1 Components	 ...	 30	

3.5.1 Generation Radio Connections	 ...	 32	
3.5.2 Capture Phase - Node Metrics	 ...	 33	
3.5.3 Capture Phase - Couple Metrics	 ...	 35	

3.6 Implementation Data-Link Layer and Networking Layer in COOJA	 	 37	
3.7 L2 Components	 ...	 41	

3.7.1 Generation Frames	 ..	 43	
3.7.2 Capture Phase - Node Metrics	 ...	 47	
3.7.3 Capture Phase - Couple Metrics	 ...	 49	

3.8 L3 Components	 ...	 49	
3.8.1 Generation Datagrams	 ..	 52	
3.8.2 Capture Metric - Delay End-To-End	 ...	 58	

4. Plugin Testing	 ...	 59	
4.1 Realization COOJA Simulation	 ..	 59	
4.2 Analysis Metrics – Physical Layer	 ...	 62	

P a g e 	 |4	
	 	
	

4.3 Analysis Metrics – Data-Link Layer	 ...	 65	
4.4 Analysis Metrics – Networking Layer	 ..	 73	
4.5 Statistics	 ..	 75	
4.6 Testing Multiple Simulations	 ...	 77	

5. Conclusion	 ...	 82	
Appendix	 ...	 84	

Section A – Components of TestRPLC	 ...	 84	
Section B – Details Generation XML	 ...	 85	
Section C – Details Radio Power Level in UDGM	 ..	 85	
Section D - Installation Metrics Collection Tool In Cooja	 ..	 86	
Section E – Statistics Values	 ...	 89	

References	 ...	 91	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

P a g e 	 |5	
	 	
	
	
	
	

1. Introduction

1.1 IP Networking For Smart Objects

Internet of Things is the new Internet frontier. It refers to the interconnection of IP

smart objects, such as sensors and actuators. Such devices are used in various fields of

industry, i.e. Smart Grid, Smart Cities, building and industrial automation to detect

physical parameters like power quality, temperature, level of pollution, pressure and

sound.

Wireless Sensor Networks have been recognized as a very important block of IoT;

they consist of a large number of nodes deployed in the environment, which are

sensed and controlled through wireless communications.

The main features of a WSN can be defined as follows: power consumption

constraints for each node depending on the use of batteries or of energy harvesting;

ability to cope with node failures; mobility of nodes; dynamic network topology;

communication failures; heterogeneity of nodes; scalability of large scale of

deployment.

The network traffic in the WSNs is divided in two main types namely defined as

application and routing traffic. The application traffic consists of data captured in the

environment of interest (for example home automation, pollution monitoring,

temperature monitoring etc.) by sensors and then sent to the sink node that gathers the

detected information with the aim to forward it all over the world via Internet. The

routing traffic allows to route the application traffic through a hierarchy graph divided

into levels, using routing protocols suitable for low-power and lossy networks (LLN

[1], typical WSN), like RPL (Routing protocol for LLNs).

Considerable work has been done from IETF that first introduced the IPV6 protocol

to address the data detected by the sensors on IEEE 802.15.4 links (standard protocol

for the physical and data-link layer in WSNs) and to perform necessary configuration

functions to form and maintain a routing graph. The arrival of IPV6 protocol routing

in LLN links leads to the configuration of 6LoWPAN (acronym of IPV6 over Low

power Wireless Personal Area Network) networks.

P a g e 	 |6	
	 	
	
In order to check the data traffic exchanged in 6LoWPAN networks, various

telecommunication research centres use specific simulators, for example COOJA,

Worldsens, MiXiM, Castalia and NS-2.

These tools allow the user to build network topologies of sensor nodes, spatially

distributed in a limited environment, with the aim to respect the binding

characteristics of WSNs. Once the network is carried out, the software simulates the

network applications (developed using specific libraries of the embedded operating

systems, running on devices, for example tinyOS and Contiki) in order to analyse the

communications of packets through the main layers of the ISO-OSI Stack, which are

the physical, the data-link, the networking and the transport layers. Considering

exclusively the 6LoWPAN networks, the components of the IP-stack are implemented

by the 802.15.4, IPV6 with RPL and UDP protocols.

1.2 Objective Work

The objective of my dissertation consists in presenting a new plugin for the simulator

COOJA.

The metrics collection tool has the function to collect detailed metrics about the

packets sent on the radio medium for each layer of the IP Stack.

The study of the messages exchanged between nodes changes according to the layers.

On the physical channel it is very interesting to analyse each radio connection

established independently from the type of the sent packet. The aim is to detect the

number of radio packets correctly sent and the number of losses due to collisions or

random errors on the channel, giving considerable attention to the evolution of the

radio power for each instant.

At data-link layer, the plugin COOJA controls the frames building in order to check

possible losses caused by transmission or reception errors on DATA or ACK

messages.

Finally, for the higher levels, the metrics collection tool focuses on the observation of

the trend of the datagrams queue and the delay end-to-end, which is necessary to send

an IPv6 packet from a source node (environment sensor) to the root, also called sink

node.

P a g e 	 |7	
	 	
	
Once metrics have been obtained, the plugin will process important statistics, such as

packet loss rate, average delay end-to-end and throughput, useful to evaluate

reliability, speed and capacity of the links.

2. Related works
	

This chapter shows the basic notations behind the development of my metrics

collection tool, i.e. IEEE 802.15.4 protocol, 6LoWPAN mechanism, RPL, TinyOS

and COOJA simulator. It also illustrates the works done by the scientific community

about COOJA and the missing points to optimize the analysis of 6LoWPAN

networks.

2.1 Basic Notations

	

2.1.1 IEEE 802.15.4 Protocol

IEEE 802.15.4 [2] [3] is a protocol, which establishes the physical layer and the MAC

layer (media access control) for low-rate wireless personal area networks that focus

on low-cost and low-speed communication.

The basic framework defines a communication range of 10 metres, a data rate of 256

Kbits and a milliwatt of transmission power.

The main feature of 802.15.4 WPANs is the importance of offering extremely low

manufacturing and operation costs, technological simplicity, without sacrificing the

flexibility and the multiplicity of use.

Another important feature is the reservation of guaranteed time slots, the collision

avoidance through CSMA/CA and the integrated support for secure communication.

The architecture of the protocol is based on the ISO OSI model; although the IEEE

802.15.4 Protocol contains only two layers, it can interact with higher layers.

The physical layer provides the data transmission service, managing the transceivers,

performing channel selection and energy and signal management functions; on the

contrary the MAC layer manages the transmission of frames on physical channel,

controls frame validation, guarantees time slots and handles the linking of nodes.

P a g e 	 |8	
	 	
	
Moreover, the second layer provides a small packet whose size is of 127 bytes, which

requires an adaption layer with fragmentation and reassembly to allow the

transmission of packets bigger than 127 bytes.

Additionally, it does not provide a full-broadcast domain where all nodes are able of

receiving messages from all the other nodes using a single physical transmission; on

the contrary, 802.15.4 links are composed of overlapping broadcast domains, where a

set of neighbour radios is defined through those sensors reachable with a single

transmission.

2.1.2 IPV6 in Low-Power Wireless Personal Area Network (6LoWPAN)

The IETF chartered in 2005 the 6LoWPAN working group (WG) [2] so to standardize

the use of IPV6 over IEEE 802.15.4 radios [1]. These radios in fact have highly

different characteristics and problems (listed in the previous paragraph) unlike older

link technologies, such as Ethernet or WiFi. To optimize the costume of network

protocol the WG has focused on two important items:

-‐ How to carry IPV6 datagrams in 802.15.4 frames

-‐ How to perform IPV6 neighbour discover functions

To obtain the first goal, the Working Group has introduced a fragmentation and

reassembly link layer mechanism, since IPV6 specifies that the link must support a

MTU (Maximum transmission unit) of no less than 1280 bytes.

The fragmentation mechanism does not include an end-to-end recovery of loss

datagrams. Indeed it uses the link layer acknowledgment service to provide a

sufficient success rate.

The fragmentation header (4-5 bytes) contains three fields: datagram size (bulk of the

datagram being fragmented), datagram tag (index associated to each fragment of a

datagram) and datagram offset (fragment position within the datagram).

At the reception side the destination node allocates a reassembly buffer that

recomposes the packet through the “datagram size” included in all fragments.

Another important mechanism is the Header Compression; traditional IP Networks

use flow-based compression techniques, observing which portions of the header

change more rarely across packets within a flow and eliding those portions when

possible. For the Wireless Sensors Networks the WG has developed a new

P a g e 	 |9	
	 	
	
compression format that does not require per-flow state, because the path of a flow

may frequently change due to time-varying dynamics of low-power wireless

communications.

This new format defines the header in two ways: firstly, by removing redundant

information across ISO-OSI layers; secondly, by assuming common values for header

fields and defining compact forms for those values.

The header compression also allows stateful compression for IPV6 address prefixes.

Each node keeps a context table, where each entry contains an IPV6 prefix.

To reach the second target, the 6LoWPAN Working Group has optimized the existent

IPV6 Neighbour Discovery procedure (ND), defined in [4].

The ND protocol uses multicast communications and assumes that the link provides a

single domain broadcast.

Since the MAC layer of 6LoWPAN networks does not support multicast, broadcast

communications are used to deliver multicast packets. This solution can cause some

problems due to the lack of the acknowledgment service for the broadcast messages

and moreover this type of transmission is usually more expensive.

The challenges, applied by WG, remove the critical points and minimize the ND’s

reliance on multicast, obtaining as result the 6LoWPAN ND.

This protocol uses Router Advertisement (RA) and Router Solicitation (RS) messages

to give the nodes the possibility to find neighbouring routers. The RS notifications are

unique messages, sent on multicast mode. Two are the main reasons: first, link-local

IPV6 addresses are obtained from MAC addresses, so nodes do not have to perform

address resolution; second, IPV6 addresses, different from link layer addresses, are

assumed not to be on-link and therefore communications with these nodes proceed by

routers.

2.1.3 RPL: IPV6 Routing Protocol for Low-Power and Lossy Networks (LLN)

In these years many routing protocols have been created for IP networks (for example

RIP, OSPF, BGP), but routing in networks made of IP smart objects has the following

characteristics: devices constrained in terms of resources, low-speed lossy links where

the packets drop ratio may be quite high and the presence of hundreds of thousands of

nodes in the networks. Therefore IETF has designed a new Routing Protocol, called

P a g e 	 |10	
	 	
	
RPL (Routing Protocol for LLNs) [1] [5].

RPL is based on the following concepts: “routing state propagation”, “spatial

diversity” and “expressive link and node metrics”.

Routing state propagation is implemented in RPL by the Trickle algorithm, which

quickly reacts to changes in routing state and tapers off as the rate of state changes

decreases.

Spatial diversity is a technique to achieve reliability in environments where nodes are

likely to fail due to environmental causes and interference can quickly change good

links into useless links. In practice, the routers can maintain multiple potential parents

towards a destination instead of a single one.

The third concept refers to the link costs; unlike the existing routing protocols the

LLN links present time-varying dynamics with no static link costs.

In order to fulfil this feature, RPL contains a flexible framework for incorporating

dynamic link metrics such as ETX [6] (Estimated number of Transmissions).

The routing protocol supports three traffic patterns: multipoint-to-point traffic, point-

to-multipoint traffic, and point-to-point traffic.

For the LLN applications the dominant traffic is the multipoint-to-point type.

Usually there are some routers with the aim to connect the 6LoWPAN network to the

Internet. Thus RPL works out a destination oriented directed acyclic graph (DODAG)

and uses this chart to route data traffic. As mentioned above, the protocol makes use

of the Trickle Algorithm to exchange the routing information on the DODAG. These

data are called Objective functions (OFs) and are used to compute the rank value for

each node that is a scalar representation of the device location within the DODAG.

Nodes use these data to determine the set of parent nodes closer to the graph root.

OFs are included in particular packets, named DIO (DODAG information objects).

The emission of DIO packets is regulated through the DIS messages (DODAG

information solicitations). Their function is the same of the Router Solicitations, used

in IPv6.

There is another type of RPL packets, the DAO messages (Destination Advertisement

Object) with the aim to support routing to various destinations within the graph. We

can consider two kinds of DAO messages: not-storing mode and storing mode.

In the not-storing mode, nodes have not got enough memory to store routes to all

P a g e 	 |11	
	 	
	
possible destinations. In this case the DAO messages, which contain information

about the parent set of a destination node, are propagated up the DODAG until they

reach the root. The root receives the RPL messages, stores the routes and redirects the

traffic to its destinations using the source routing.

In the storing mode, nodes maintain a routing table. In this way the traffic between

two nodes travels along the DODAG in an upward direction to a common parent; at

this point datagrams are redirected to their destination.

Security is an important concept for LLNs since they cover an important part in the

critical infrastructure. An often used protection mechanism is the acknowledgements

service. Unfortunately it cannot guarantee the integrity of routing datagrams. For this

reason RPL introduces the advanced encryption standard (AES) and RSA signatures

for checking the integrity and authentication of routing messages.

2.1.4 TINYOS, short description and implementation of 6LoWPAN networks

TinyOS [7] is an open source operating system designed for low-power wireless

devices, such as those used in sensor networks, ubiquitous computing, personal area

networks, smart buildings, and smart meters.

Tinyos supports many hardware nodes, including Texas Instruments Chipcon

CC2420, CC1100, CC2500 and the Atmel RF212 and RF230 [8].

Particularly interesting are the CC2420 radios, since this technology is leader among

radio chips for IEEE 802.15.4 standard.

The software radio stack, that drives the CC2420 chip, consists of many layers that sit

between the application and the hardware. The highest levels of the radio stack

modify data and headers of each packet, while the lowest levels determine the actual

behaviour in sending and receiving radio packets.

Moreover, it includes a digital direct sequence spread spectrum baseband modem

providing a spreading gain of 9 dB and an effective data rate of 250 Kbps.

The operating system can be installed on different microcontrollers, i.e. Texas

Instruments MSP430 family, Atmel At-mega128, Atmega128L, Atmega1281, and the

Intel px27ax processor [8].

Given the low power consumption, the “Texas Instruments MSP430 family” is the

perfect microcontroller for TinyOS. Other features of MSP430 are the following:

P a g e 	 |12	
	 	
	
analogue-to-digital converter, real time clock, timers, asynchronous/synchronous

serial interface and a DMA controller.

The MSP430 microcontroller and the CC2420 radio together create the mote called

TELOSB. The TELOSB mote operates at 4.15 MHz, it has 10 Kbytes of RAM and 48

Kbytes of ROM. Moreover it is one of the first platforms to provide an open

implementation of the 6LoWPAN and RPL protocol.

To reach this goal TinyOS provides a particular library called blip 1, which gives the

possibility to form multi-hop IP networks consisting of different motes

communicating over shared protocols. Motes are divided in two categories, hosts and

routers: a host does not forward packets and does not participate in routing protocols,

while a router does it.

The smallest unit of network management in blip is the subnet; it consists of a number

of devices (router nodes) and one or more particular motes (edge router nodes), which

perform many routing functions for the network and for other networks.

Since 6LoWPAN protocol uses a fragmentation mechanism, blip implements this

fragmentation mechanism through the layer 2.5 fragmentation tool. Layer 2.5

provides larger payloads to upper-layer protocols and manages the addresses

assignment. The addresses assignment may take place statically during the instant in

which the program compile is performed, or dynamically using the DHCPV6 process

[9]; both the static and the dynamic ways configure three addresses: two link-local

addresses and one global address.

The first link-local address is configured from the Extended Unique Identifier 64

(EUI-64) [10]. The second link-local address is chosen according to the panid

(identifier of personal area networks) and nodeid (identifier of motes) as specified in

[11]; the default panid is 0x22, so the corresponding address for the mote with nodeid

1 is fe80::22:ff:fe00:1.

Finally, the global address is obtained using a particular prefix defined at the moment

in which the program compile is carried out; the default value is fec0::/6,4 so if the

mote ID is 3, the IPV6 address is fec0::3.

If the prefix is not set at the compile time, BLIP starts the DHCP procedure.

In this case we can see a self-configuration of nodes only for the first link-local

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
1	 TinyOS	 library	 -‐	 http://docs.tinyos.net/tinywiki/index.php/BLIP_2.0	

P a g e 	 |13	
	 	
	
address. On the contrary, for the global address, nodes send DHCPv6 solicitations to

find neighbouring server. Each router also runs a DHCPv6 relay agent, which

forwards address solicitations along the routing tree up to the edge where the

DHCPv6 server is presumed to be located.

Once the DHCPV6 server has assigned the global address to the mote, it starts to run

the RPL routing protocol.

2.1.5 COOJA

Cooja is a java-based simulator developed for simulations of sensor nodes running the

operating system Contiki.

Contiki [12] is another open source operating system for embedded systems and

wireless sensor networks written in C language. It provides both an IP layer and a

low-power radio communication mechanism.

Contiki can be run on several different hardware platforms. As for TinyOS, the telosb

mote (microcontroller MSP430 with radio chip CC2420) is the most used device.

With regard to the used protocols, it employs a 6LoWPAN mechanism to compress

and exchange frame packets over 802.15.4 radio links.

The conceivers of COOJA claim that it can work on different levels – therefore

COOJA is also called “cross level simulator” [13]. Other simulators, i.e. ns2 [14],

TOSSIM [15] and Avrora [16], can use only some layers: the first implements the

“networking” level without touching the hardware properties; the second develops the

“operating system” level, simulating exclusively the behaviour of TinyOS; the third

implements the “machine code instruction set” level, supporting only AVR

microcontrollers.

A short description of levels is reported below.

The “networking” level is mainly used by the developers of routing protocols, where

the hardware statements are left out. The level mainly manages the radio propagation

and the specific sensor nodes in order to replace them with abstract Java

implementations so that there is no connection with the operating system.

The “operating system” level has the task to simulate the executing native operating

system code. So the aim is to test and evaluate the changes introduced to the Contiki

P a g e 	 |14	
	 	
	
libraries or to those of other OSs.

Finally, the “machine code instruction set” level allows nodes having different

underlying structures to simulate them using java-based microcontrollers, instead of a

compiled Contiki system.

Cooja supports all the described levels and for this reason it can simulate the

operating system TinyOS, required to implement 6LoWPAN and RPL, and exchange

radio packets between emulated nodes and java-based nodes.

The messages can be sent on different radio mediums; actually the simulator proposes

four wireless channels that are No Radio Traffic, Unit Disk Graph Medium (UDGM)

– Constant Loss, Unit Disk Graph Medium (UDGM) – Distance Loss and Directed

Graph Radio Medium (DGRM).

No Radio Traffic does not permit the radio communication on the channel and

therefore cannot be employed to simulate WSNs.

UDGM – Constant Loss is a wireless channel model where the transmission range is

modelled as an ideal disk and all nodes behind it do not receive packets, while the

sensors within the transmission distance receive all the messages.

The predefined maximal transmission range is multiplied by the ratio of the current

output power to the maximal output power of the simulated device and the resulting

transmission power is compared to the distance in the simulation. For example, if the

transmission range of the mote is 200 m and the current output power is half of the

maximum, the disk has a radius of 100 m.

UDGM – Distance Loss is a radio medium similar to the previous one but that extends

it in two ways. First, the interferences are considered and, in case of interfered

packets, they are lost due to the interference distance that is higher than the

transmission distance. So, all communications running at the same time are deleted

leading to an unreal behaviour. Second, the success ratio of the transmission and

reception can be set: a packet is transmitted or received on the basis of two

probabilities, SUCCESS_RATIO_TX (if unsuccessful, no device receives the packet)

and SUCCESS_RATIO_RX (if unsuccessful, only the destination of the packet does

not receive it).

DGRM is a model that creates the topology of nodes through edges. It is mainly used

P a g e 	 |15	
	 	
	
to set the transmission success ratio and the propagation delay on the asymmetric

links.

The configuration of COOJA is flexible so that many parts of the simulator can be

easily replaced or extended with additional functionality. Example parts are the radio

mediums just described, interfaces and plugins.

The interfaces represent some properties of the node, for example the position, the

radio, the buttery or the serial port.

Instead the plugins are used to interact with a simulation. They often provide the user

with a graphical interface to observe something interesting in the simulation, but the

tools may be used without GUI, running COOJA by the terminal. The principal

plugins are the following: Simulation Visualizer, Timeline, Log Listener and Contiki

Text Editor.

Simulation Visualizer simply permits to configure the topology of the network. The

user can drop & drag the nodes, change the settings of the radio medium

(transmission and interference range for example) and show some useful information

of the nodes i.e. ID, IP Address, Log output, Radio Traffic, Mote type, Mote

attributes, Radio environment and LED states.

Timeline displays, instant for instant, the state of the radio for each simulated node

through different colours: on (grey), off (no colour), packet transmission (blue),

packet reception (green) and interfered (red). To obtain more details just right click on

timeline of interest.

Log Listener analyses every radio connection established between nodes of the

simulation, reporting on the GUI the time, the source node, the destination nodes and

the payload of the packet sent during the connection.

Lastly, Contiki Text Editor controls and automates the execution of the simulations by

scripts, written in Java Script. They permit to start and stop the simulation, set the

simulation timeout, add and remove nodes dynamically, capture the output of the

sensor nodes and interact with COOJA plugins.

Once simulation stops, the user can save it (including used plugins) in files with

format csc. The configuration file presents a XML structure, making easy the change

of some parts of the simulation.

P a g e 	 |16	
	 	
	

2.2 Scientific Community Works

The SICS, Swedish Institute of Computer Science, has developed several projects

concerning the use of COOJA simulator in order to analyse the data communication

between nodes in a Wireless Sensor Network.

Considerable work has been done in [13], where the authors of the publication present

the structure of COOJA based on cross level platform. This architecture permits a

novel type of wireless sensor network simulation that enables simultaneous

simulation at different levels: the network level, the operating system level and the

machine code instruction set level. The feasibility of the cross-level simulation is

demonstrated by the obtained advantages in terms of effectiveness and memory usage

and by the possibility for the user to combine simulated nodes from different

abstraction levels.

This result is obtained with the study on simulators that operate for a single layer i.e.

NS-2 as network simulator, TOSSIM as operating system simulator and MSPSim [17]

as machine code instruction set simulator.

The latter is an extensible simulator for MSP430 microcontrollers-equipped sensors in

order to simulate the chip instructions, trying to reduce development and debugging

time. Therefore, MSPSim enables testing without access to the target hardware. The

simulator has been designed to be incorporated in COOJA.

Various researches have been carried out by SICS together with other research centres

about COOJA-MSPSIM.

An interesting work has been elaborated with the University of Bonn and Frankfurt

for testing the interoperability of the cross level simulator [18].

In practice, COOJA-MSPSIM has been modified to permit WSN simulations with

sensor nodes that emulate different embedded operating systems. Their experiment

runs Contiki and TinyOS nodes together in a single simulation and demonstrates the

complete interaction between them to exchange networking packets.

Also the University of Lübeck (Germany) collaborated with the Swedish Institute to

improve COOJA simulator [19]. In this case the research centres have incorporated in

COOJA a system to monitor, capture and record the radio interference at runtime

since it affects the reliability and robustness of wireless communications. The

P a g e 	 |17	
	 	
	
captured data are used to simulate and study the impact of realistic radio interface on

sensornet communications and routing trees.

COOJA has been subjected to other important extensions to permit it to simulate each

aspect of a WSN; for example, most simulators have not provided support for

visualizing the power consumption of a sensor network and have not allowed a

complete integration between the development environment for embedded operating

systems (i.e. CONTIKI and TinyOS) and the simulator. To reach the first goal, [20]

and [21] present a plugin developed from SICS, TimeLine that makes easy to

visualize power consumption and also inspect network traffic and synchronization

between sensors. These results have been obtained through the demo illustrated in the

paper, where the plugin has been used to test mechanisms and protocols used by

Contiki nodes. Instead, to solve the second inefficiency, [22] illustrates a solution to

bridge the gap between development and simulation. In other words, the paper

demonstrates the advantages of a link between YETI, a development environment for

TinyOS, and COOJA. The necessary steps are mainly four: simulation setup that

creates the scenario in COOJA, configuring network topology and installing the

operating system in the nodes; debug session that has the function to launch a new

session in YETI, starting a TCP connection for each connected node in the

simulation; breakpoints that allows to create a link between the breakpoints in the

YETI source code and COOJA through debug session; Read/modify node state that

registers and modifies the node state in YETI debugging point every time a

breakpoint is reached by a node.

Cooja is not the unique simulator for WSNs; actually, a lot of tools are used to

analyze the exchange of packets on wireless channels. Therefore, [8] proposes an

interesting research to analyze channel models, energy consumption models, physical,

MAC and network layer protocols supported by the simulators. To do this, some

applications for sensor nodes have been developed to compare the WSN tools to the

reality. After analyzing the results obtained from experiments, the work has arrived at

the conclusion that the simulators are not reliable enough. Thus the thesis

demonstrates how the performance is influenced by a correct configuration of the

radio medium.

P a g e 	 |18	
	 	
	
2.3 Original Contribution

The works, illustrated in the previous section, show the state-of-the-art concerning the

analysis of low-power sensor networks through COOJA. The simulator contains

interesting plugins that allow the user to know important characteristics about a radio

connection, i.e. radio status and type of the packet for example, but it does not dispose

of tools that show metrics about each link, such as the number of frames losses in

reception by the root, the evolution of the queue for a relay node or the number of

frames correctly transmitted from a sensor node to the parent.

Without this information, it is difficult to check reliability of the wireless links and

therefore, in case of faults on the network, there are not the needed instruments to act.

In the next chapter the development of a COOJA plugin is presented. This plugin

allows you to solve the actual inefficiencies of the simulator with the aim to measure

application traffic when IP is in use.

P a g e 	 |19	
	 	
	

3. Plugin Development

The chapter presents the needed steps to develop the COOJA Metrics Collection Tool.

Firstly, the application field of the project work is discussed, analyzing the network

application that the metrics collection tool will test.

Secondly, the COOJA architecture is shown, illustrating the java classes that will be

used to create the plugin.

Thirdly, the general functioning of the plugin will be analyzed. In details, this section

will describe the following features: the realization of the metrics, the way whereby

the plugin captures the metrics data and the design of the component Frame-IP to

capture the metrics of the second and the third IP Stack layer.

Fourthly, the plugin basic architecture is illustrated through the principal java classes,

which capture and elaborate the metrics.

Once the overview is finished, the chapter analyses the processes that allow the

metrics collection for each layer of the IP Stack. For the physical layer the dissertation

will present the way to generate the radio packets (paragraph 3.5) and the methods

that permit the plugin to capture the node and the couple metrics. For the data-link

and the networking layer, an extension to the COOJA simulator will be presented to

make possible the metrics collection in that case (paragraph 3.6). After, for the data-

link layer, the chapter shows the mode to generate frame packets and the methods that

consent the plugin to capture the node and the couple metrics (paragraph 3.7). Instead,

for the networking layer, the chapter presents the way to generate datagram packets

and the policy to capture the metrics (paragraph 3.8).

3.1 Application Field

RPL is the routing protocol for 6LoWPAN networks with the aim to route the

application traffic toward the sink node. The project work has the goal to analyse

applications that use this routing protocol in order to detect general metrics for the

P a g e 	 |20	
	 	
	
Wireless Sensor Networks; in details, the metrics collection plugin will test a

particular TinyOS application, TestRPL, which can be downloadable from TinyOS

SVN repository 2.

A TinyOS application, like all the TinyOS code, is written with the programming

language nesC [7], which is C with some additional language features for components

and concurrency.

The components are assembled, or wired, to form an application executable; they are

divided in two types i.e. configurations and modules.

Configurations are used to assemble other components together, connecting interfaces

used by components to interfaces provided by others, while modules have the goal to

implement one or more interfaces.

The provided interfaces represent the functionality that the component supplied to its

user in its specification; instead the used interfaces represent the operations that the

component needs to perform its job.

In our case TestRPLAppC represent the configuration component, while TestRPLC

represent the module component.

The first file contains the links between the used interfaces by the module and the

components that realize them; instead, the second document shows the

implementation of the interfaces in order to obtain a network application that uses

RPL to route the application traffic.

Below the essential structure of the module is reported. More information is presented

in the section A of the appendix.

Ø Definition of the routing tree root

Ø Definition UDP port for the data transport

Ø Start of the routing protocol RPL and of the application traffic

Ø Realization procedure that manages the packets reception

Ø Definition of the length of the experiment

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
2 http://code.google.com/p/tinyos-main/source/browse/ - svn%2Ftrunk%2Fapps%2Ftests%2FTestRPL%2Fudp

P a g e 	 |21	
	 	
	

Ø Realization procedure that handles the sending of application packets to the
root

Ø Creation procedure that stops the simulations and prints the results

TestRPL, like every TinyOS program, requires a makefile to connect the application

to the build system. This file includes essential directives for the nesC compiler in

order to compile the program without errors.

In the specific instance, the TestRPL Makefile contains the name of the top-level

component of the application (COMPONENT=TestRPLAppC) and other important

options to manage the application and routing traffic:

-‐ CFLAGS+=-DCC2420_DEF_CHANNEL=X defines the channel used by
CC2420 radios;

-‐ CFLAGS+=-DRPL_ROUTING-DRPL_STORING_MODE-
I$(LOWPAN_ROOT)/tos/lib/net/rpl enables the RPL protocol in storing mode;

-‐ CFLAGS+=-DBLIP_L2_RETRIES=X -DBLIP_L2_DELAY=T sets blip

parameters in order to reduce media overload;

-‐ CFLAGS+=-DPACKET_INTERVAL=XUL sets the packet generation interval
where 1UL stands for 1/1024 second. Therefore the rate of transmission of the
motes is equal to 1024/PACKET_INTERVAL (if PACKET_INTERVAL is
set to 1024UL, then the rate transmission is 1 packet/s);

-‐ CFLAGS+=-DPACKET_NUMBER=X establishes the number of packets that

the clients send to the root.

Once MakeFile and TinyOS application is defined, the next step is to compile the

program using the terminal command make telosb blip.

Telosb and blip are the targets of the command make and they specify to NesC

compiler that TestRPL will be installed on telosb motes and the library blip will be

required to realize a 6LoWPAN network (refer to section 2.1.4).

If the process concludes without errors, NesC compiler generates the program binary

image (with extension .exe), which will be used to simulate wireless sensor networks

through COOJA simulator.

P a g e 	 |22	
	 	
	
3.2 Cooja Architecture

In this section the structure of the COOJA simulator is analysed.

The software is written in JAVA language and it is included in the Contiki project; 3

to access to COOJA source code you have to follow this path:

contiki/tools/cooja/java/se/sics/cooja.

Once cooja directory is reached, you can change any part of the simulator; below it is

reported below a short description of the JAVA classes that will interact with the

plugin.

-‐ interfaces/Radio: Radio allows to simulate the behaviour of a transceiver,

defining methods that manage the status, the position and the power of the

radio and the sending and receiving of the messages.

-‐ Mote: The file abstracts the features of a mote. Its methods return the ID of the

node, the mote type i.e. telosb, telosa and micaz [7] and the mote memory.

-‐ Positioner: The class is used to determine the initial positions of motes.

-‐ RadioConnection: It represents a radio connection between a single source

radio and any destination and interfered radios. This file is used by the radio

medium classes to create the application traffic.

-‐ ConvertedRadioPacket: It is the most used radio packet in COOJA. In order to

support cross-level communication, all the radios must support the

transmitting and receiving of this packet.

-‐ Simulation: The file manages the execution of each simulation. It is an

observable class and therefore if the simulation undergoes updates (for

example the insertion, the deletion of motes and the change of simulation

state), every COOJA plugin can observe them.

-‐ RadioMedium: This class is abstract and so every COOJA radio medium has

to implement it. The registered radios in this medium can both send and

receive radio packets.

-‐ radiomediums/AbstractRadioMedium: It provides basic functionality for

implementing radio mediums, it handles the radio registrations, radio loggers,

active connection between nodes and it observes all registered radio interfaces.

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
3 git command to download Contiki - git://contiki.git.sourceforge.net/gitroot/contiki/contiki

P a g e 	 |23	
	 	
	

The registered radios signal power is updated whenever the radio medium

changes; there are three fixed levels, i.e. no traffic, noise and data heard.

-‐ radiomediums/UDGM: Unit Disk Graph Radio Medium abstracts radio

transmission range as circles. It uses two different range parameters, one for

the transmissions and one for the interfering with other radios and

transmissions; both radio ranges grow with the radio output power indicator.

Moreover, the class uses two different success ratios to simulate transmission

and reception random errors on the channel.

-‐ radiomedium/DirectedGraphMedium: The radio medium is implemented

through a edges structure, where each link supports propagation delays and

transmission success ratios.

-‐ plugins/analyzers/PacketAnalyzer: The file analyses each packet sent via radio

medium, getting information about payload, size and much more. All the

analysers will extend this class.

-‐ plugins/analyzers/IEEE802154Analyzer: The analyser studies the packets

through the 802.15.4 layer, distinguishing between the data message and the

ACK message, which form together a “frame”: for each frame the class

identifies the source address and the destination address.

-‐ plugins/analyzers/IPHCPacketAnalyzer: The class scans each datagram (IPV6

packet), sent from the clients to the root node. In this case the analysis is

performed using the 6LoWPAN protocol, determining the following data for

each message: IPv6 source address, IPv6 destination address, UDP source port

and UDP destination port.

-‐ plugins/analyzers/ICMPv6Analyzer: The file has the function to analyse the

routing traffic. Since the application traffic is routed by RPL protocol, the

class divides the messages in the following categories: DIS packet, DIO

packet, DAO packet and DAO ACK packet.

The metrics collection plugin will be included in the directory plugins.

3.3 Plugin General Functioning

This section presents the basic features of the metrics collection tool. After, in next

paragraphs, the implementation of the java components will be shown.

P a g e 	 |24	
	 	
	
The plugin has the aim to capture the metrics data of the 6LoWPAN networks.

The metrics are divided in two main typologies: node metric and couple metric.

Node metric is applied to a mote of the simulation, while couple metric studies the

behaviour of a motes couple during the experiment.

Then, each single metric has its own scope, that is the IP stack layer; the metrics

collection tool analyses the physical, the data-link and the networking layer.

All the metrics are reported below.

Node Metric
Physical Layer Number of connections successfully sent
Physical Layer Number of connections not successfully

sent
Physical Layer Number of connections successfully

received
Physical Layer Number of connections not successfully

received (collision)
Physical Layer Number of connections not successfully

received (error on the channel)
Physical Layer Power level
Data-Link Layer Number of frames successfully sent
Data-Link Layer Number of frames not successfully sent
Data-Link Layer Number of frames successfully received
Data-Link Layer Number of frames not successfully

received
Networking Layer Datagrams queue

Couple Metric
Physical Layer Number of connections successfully

received
Physical Layer Number of connections not successfully

received (collision)
Physical Layer Number of connections not successfully

received (error on the channel)
Physical Layer Transmission Window

Data-Link Layer Number of frames successfully received
Data-Link Layer Number of frames not successfully

received
Networking Layer Delay end-to-end

The metrics of the first layer analyse the number of radio packets sent on the radio

medium. Each radio packet is also called radio connection. These metrics have the

function to detect radio collisions and eventual random errors on the radio channel.

P a g e 	 |25	
	 	
	
The metrics of the second layer determine the number of frame packets exchanged

correctly between the nodes, highlighting eventual losses.

Finally, the metrics of the third layer study the trend of the queues for the relay nodes,

which act as routers to forward the application traffic. Moreover, these metrics

analyse the delay end-to-end between a client and the application server.

More information, about the metrics, is illustrated in the next paragraphs that analyse

the implementation of the plugin components.

All the metrics must be captured by the plugin. To reach this goal, the plugin includes

a dynamic capture component that collects the data required by the metrics.

For the first IP Stack layer, this component listens each new radio packet, generated

by the radio medium (UDGM or DGRM). For each connection the capture component

checks if the packet includes information required by the metrics. If the control is

positive, the metric data is stored in a container that maintains it, so that the plugin

can create XML files and graphics, representing the metrics, when the experiment

ends.

For the second and the third IP Stack layer, the capture phase contains a new module.

This component has the function to generate frames and datagrams from the radio

packets exchanged on the radio medium, since COOJA does not consider this type of

messages.

Generally, each frame consists of two radio packets: the DATA message containing

the application data and the ACK message to verify if the DATA message is correctly

received by the destination.

Instead, each datagram is made up of just described frames.

Once a frame or a datagram is generated, the dynamic capture module matches it with

the metrics selected by the users. If the message contains the required information, the

metric data is stored in a container for the same reasons seen for the physical layer.

The general functioning is represented with the following chart, realized with

ARGOUML tool 4.

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
4	 http://argouml.tigris.org/	

P a g e 	 |26	
	 	
	

Figure 1: Diagram of classes – Main components

3.4 Plugin Basic Architecture

This section presents the basic structure of the metrics collection tool. In other words

this part analyses the development of the principal java classes that support the entire

plugin, omitting the specific components for the metrics collection.

The basic architecture is showed below with the relations between the objects through

the diagram of classes.

P a g e 	 |27	
	 	
	

Figure 2: Diagram of classes – Plugin Basic Architecture

	

The chart does not display the main class, Plugin_Metrics; the cause comes from its

function to manage all files reported in the diagram. So the next lines will illustrate

P a g e 	 |28	
	 	
	
the development of the plugin, paying attention to the interaction between

Plugin_Metrics and the other classes.

Plugin_Metrics is the component representing the graphical interface of my tool. The

GUI allows the user to choose the desired metrics, classified according to the IP Stack

layers, through three buttons, one for each layer, placed in the lower part of the

window (see Figure 3). Clicking on a button a new frame appears, the class

SelectMetric, allowing you to choose a precise metric by the drop-down menu,

implemented by the java class Choice 5. In details, the frame consents you to decide if

you want study the metric of a node or the metric of a couple of nodes (type): in the

first case you select the interest node (id_node) and the metric (metric); in the second

case you select the interest source node (id_node_src) and the interest destination

node (id_node_dst) that form the couple and finally the metric (metric).

Figure 3: Graphical interface of the Metrics Collection Tool

The metric field value changes depending on the selected button.

Once metric has been selected, SelectMetric notifies to Plugin_Metrics the insertion

of a new metric. The notification between different objects is possible through two

classes of the packet java.util 6 that are Observable and Observer. The class

Observable is characterized by a particular method, which contains the following

commands: setChanged that marks the Observable object since it has been changed;

notifyObserver that notifies its change to all observers of the Observable object.

In this case SelectMetric is the Observable object, while Plugin_Metrics is the

Observer object that receives the metrics data from SelectMetric.

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
5	 Java class – Documentation in http://docs.oracle.com/javase/6/docs/api/java/awt/Choice.html	
6 Java packet – Documentation in http://docs.oracle.com/javase/6/docs/api/java/util/package-summary.html

P a g e 	 |29	
	 	
	
Then the metric data is saved as an Info_Metrics_Node object or as an

Info_Metrics_Couple object, depending on the type of metric. Also the selected

metrics are reported in a table, above the three buttons.

Concluded the metrics selection phase, the capture mechanism is presented with the

function to analyse the radio packets sent on the radio medium in order to find the

metrics values during a COOJA simulation.

To detect each message exchanged between the nodes, the JAVA classes Observable

and Observer are used. In this work only two radio mediums are considered, i.e.

UDGM and Directed Graph Medium, because the others classes are not fully

implemented. Therefore an Observable object is installed in UDGM.java and in

DirectedGraphMedium.java; it notifies to main class, the Observer object, the making

of a new connection between a source node and a set of destination motes. In this way

Plugin_Metrics receives the last radio connection through a RadioConnection object

and so it can start the capture phase to calculate the metrics by the Capture object.

Whenever the value of a metric undergoes an update due to a new connection, this

change is registered in the class Storing. Each Storing instance is identified by a code

(code_metric), a time instant (time_metric) and a value (value_metric).

The code_metric is realized through a specific class, FormatCode, which has the aim

to create a unique identifier for each Storing record. The code development follows a

precise logic: if the modified metric type is Node Metric, the code is obtained through

a concatenation of the following attributes: type (type_metric), metric (id_metric) and

node ID (id_node_src); otherwise, if the modified metric type is Couple Metric, the

code is obtained by the same previous concatenation, adding the node ID for the

destination mote (id_node_dst).

Instead time_metric represents the time instant of metric updating and finally

value_metric indicates the new value of the metric. The capture phase will be

discussed in details in the later sections.

Once COOJA ends its simulation, the plugin offers users the possibility to convert the

obtained metrics in XML or images files through buttons, located in the table; in this

way the collected metrics are not lost when the user runs a new COOJA simulation.

To implement this conversion, three java classes are developed: XML_Save, Chart

and SaveChart.

XML_save is formed by six methods, two per each IP-Stack layer.

P a g e 	 |30	
	 	
	
The methods SaveFileNodeL1 and SaveFileCoupleL1 convert respectively the L1 7

metrics applied to a node and the L1 metrics applied to a couple of motes in XML

files.

The same logic is followed by the methods SaveFileNodeL2, SaveFileCoupleL2,

SaveFileNodeL3 and SaveFileCoupleL3.

All the methods accept as input arguments the information that identifies a specific

metric and the vector containing all the Storing instances. More information is

illustrated in the section B of the appendix.

Instead, Chart and SaveChart have the function to create first a dataset, given the

information saved in the class Storing, and then to create the chart through the dataset

using the library JFreeChart 8.

	

3.5 L1 Components

This section illustrates the development of the java components, which have the

function to collect L1 metrics.

The L1 metrics analyse radio packets through the physical medium. In this work an

802.15.4 radio link between low-power devices (motes) is considered.

COOJA, UDGM and DirectedGraphMedium (DGRM) are the java classes that

implement the first IP-Stack layer.

UDGM uses ideal circles as radio transmission range; instead DGRM realizes the

radio medium through edges, implemented with the class Edge. Every Edge instance

consists of two elements: a source radio defined by the Radio object; a destination

radio made by the DestinationRadio object, which establishes for each edge the delay,

the success rate and the Received Signal Strength Indication (RSSI).

As mentioned in the previous section, UDGM and DGRM use the Observable object

since they have the function to notify the creation of a new packet to Plugin_Metrics

(Observer object). To create a new packet, the classes implement the method

CreateConnections. Once the radio connection has been realized, the plugin

(Plugin_Metrics) starts the phase capture in order to collect the L1 metrics,

distinguishing the node metrics from the couple metrics.

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
7 L1 – Physical layer
8 Java library - http://www.jfree.org/jfreechart/	

P a g e 	 |31	
	 	
	
To obtain more information about implementation layer, you refer to the section D of

the appendix.

The diagram of classes for the L1 components is reported below.

 Figure 4: Diagram of classes – L1 components

P a g e 	 |32	
	 	
	
3.5.1 Generation Radio Connections

CreateConnections generates a RadioConnection object, given a source node.

To reach this result, the method attempts to create a connection between the source

node and all the reachable destinations through the source radio transmission range.

To do this, the java code contains some controls in order to determine possible

collisions or random errors on the channel for each possible destination, using the

methods of the class Radio.

Ø Check Channel: the control fails if the source and destination radio use

different channels.

Ø Check Radio State: the control fails if the destination radio is switched-

off (Radio method -> isReceiverOn).

Ø Check Random Error: the control fails if a random error occurs on the

channel. In this case the destination node is added to RadioConnection

object, like interfered node.

Ø Check Radio Receiving: the control fails if the destination radio is

actively receiving. Also in this case the destination node becomes an

interfered node (Radio method -> isReceiving).

Ø Check Radio Interference: the control fails if the destination radio is

interfered in another connection. The node becomes interfered (Radio

method -> isInterfered).

Ø Check Radio Transmitting: the control fails if the destination radio is

actively transmitting. The node becomes interfered (Radio method ->

isTransmitting).

If the controls do not fail, the destination node is included in RadioConnection as

destination; otherwise as interfered node.

Once controls have been carried out for each possible destination radio, the new

packet (RadioConnection object) and the detected failures in the control phase are

notified to the Observer object, Plugin_Metrics, that starts the capture phase.

The capture phase is implemented by the class Capture that processes the L1 metrics.

P a g e 	 |33	
	 	
	
3.5.2 Capture Phase - Node Metrics

The Node Metrics for the first layer of IP-stack are obtained through the method

CaptureConnectionMetricNode that is applied to node selected by the user during the

metrics selection phase.

CaptureConnectionMetricNode requires the radio connection, the detected failures,

and the metrics selected by users, in Info_Metric_Node format as parameters. The

method is launched each time the Observable object notifies a radio medium change.

The general functioning of CaptureConnectionMetricNode is based on the

comparison between the last radio connection and the metrics, selected by users: if

RadioConnection object contains the information required by a specific metric, the

metric value undergoes an update; otherwise, the metric value does not undergo any

change.

Each capture can lead to add a new record for the class Storing; this case occurs when

the metric node is included in the last radio connection as a source node, as a

destination node or an interfered node.

In details, the method manages each single metric through a structure “if -else”,

outlined below.

1 for each metric

2 if (id_metric = 1)

3 process Number of connections successfully sent

4 else if (id_metric =2)

5 process Number of connections not successfully sent

6 else if (id_metric = 3)

7 process Number of connections successfully received

8 else if (id_metric = 4)

9 process Number of connections not successfully received (collisions)

10 else if (id_metric =5)

11 process Number of connections not successfully received (errors on the channel)

12 else if (id_metric = 6)

13 process Power level

	

P a g e 	 |34	
	 	
	
The first metric (lines 2-3) represents the number of radio connections without

transmission errors. In this case the metric value increases when the following events

occur: first, the radio connection has to include at least a destination (therefore the

connection reaches the destination); second, the metric node ID must be equal to the

source node of the current connection.

The second metric (lines 4-5) defines the number of radio connections not correctly

sent due to transmission errors. In order to detect this fail, the method runs the next

control: if the metric node ID is equal to the source node of the current connection

and if the radio connection includes any destinations (so the packet is lost during the

transmission) then the metric increases of 1.

The third metric (lines 6-7) counts the number of radio connections successfully

received without reception errors.

If the metric node is a destination sensor for the last radio connection, then the metric

increases of 1. Therefore the node correctly receives the radio packet.

The fourth metric (lines 8-9) counts the number of radio connections not successfully

received due to collisions. To process this metric, the failures detected during the

creation of the radio connection are used. In order to update the metric value, the

metric node is required to be interfered due to the failure of at least one of the

following checks: Check Radio State, Check Radio Receiving, Check Radio

Transmitting or Check Radio Interference (see 3.5.1).

The fifth metric (lines 10-11) calculates the number of radio connections not

successfully received due to random errors on the channel. As for the previous metric,

the control phase during the creation of a new radio connection is used. If the Check

Random Error fails (see 3.5.1), the metric value increases of 1.

Finally, the sixth metric (lines 12-13) determines the radio power level of the metric

node, for each time instant of the simulation. In this case the method

CaptureConnectionMetricNode calls a specific method to process the desired metric

depending on the selected radio medium. With UDGM the class Capture runs

P a g e 	 |35	
	 	
	
UpdateSignalUDGM, while Capture executes UpdateSignalDGRM when COOJA

uses DGRM.

Both methods require the last radio connection as parameter, but the calculation of

radio power level is different.

For the method UpdateSignalUDGM, the radio signal strength depends on the

distance between the source radio and the destination radio and on the transmission

maximum distance of the source radio. Detailed information is presented in the

section C of the appendix.

For the method updateSignalDGRM, unlike the previous method, the power level is

set to -10 dB for each node of the RadioConnection instance.

3.5.3 Capture Phase - Couple Metrics

In order to capture the couple metrics, the method CaptureConnectionMetricCouple is

developed.

The method requires the same parameters of CaptureConnectionMetricNode.

The only difference relates the metrics chosen by the user; in this case the

Info_Metrics_Couple object is used. The basic functioning does not present

significant differences; the changes relate the way to process the metric.

The method is structured through a simple architecture that matches each metric with

the last radio connection.

1 for each metric

2 if (id_metric = 1)

3 process Number of connections successfully received

4 else if (id_metric = 2)

5 process Number of connections not successfully received (collisions)

6 else if (id_metric =3)

7 process Number of connections not successfully received (errors on the channel)

8 else if (id_metric = 4)

9 process Transmission window

	

P a g e 	 |36	
	 	
	
The Number of connections successfully received (lines 2-3) determines the amount

of radio packets correctly sent from the metric source node and received without

errors by the metric destination node. Therefore for each new RadioConnection the

method checks:

-‐ if the connection source coincides with the metric source node;

-‐ if the metric destination node is included in the radio connection as a

destination node (not interfered).

If both controls do not fail, the metric value increases of 1.

The second metric (lines 4-5) counts the number of connections correctly sent from

the metric source node and not received from metric destination node due to radio

collisions. In this case the needed controls are the following:

-‐ Checks if the connection source coincides with the metric source node;

-‐ Checks if the metric destination node belongs to the interfered nodes set of the

last radio connection through Radio checks, that are Check Radio State, Check

Radio Receiving, Check Radio Transmitting or Check Radio Interference (see

3.5.1);

If at least one of these methods fails, the metric value is updated.

The third metric (lines 6-7) processes the number of radio packets sent with success

from the metric source node to the metric destination node. At reception level these

connections fail due to random errors on the channel.

To increment the metric value, the necessary condition is to have the metric source

node as packet transmitter and to have the metric destination node as interfered node

of the radio connection by Check Random Error (see 3.5.1).

If the condition is respected, the metric value increases of 1.

The last metric (lines 8-9), Transmission Window, determines for each new

RadioConnection the communication state for a couple of nodes.

To reach this result two methods are developed: the checkBusyChannelUDGM and

the checkBusyChannelDGRM that require the Radio interfaces of two motes as

parameters.

P a g e 	 |37	
	 	
	
The methods process the communication state through the same checks carried out

during the creation of the radio connection: if two radios are able to communicate,

then checkBusyChannel sets the value 1 in Storing in the field value_metric;

otherwise, it sets the value 0.

3.6 Implementation Data-Link Layer and Networking Layer in COOJA

Actually COOJA does not dispose of classes that implement the data-link layer and

the networking layer of the IP Stack; in fact the simulator contains only java classes to

implement the physical medium, such as UDGM or DGRM.

Since the plugin has the aim to detect metrics for each IP Stack layer, this paragraph

presents the development of java classes that allow the implementation of frames and

datagrams.

These classes are positioned in the directories cooja/sixlowpan and

cooja/plugins/analyzers. More information is reported in the section D of the

appendix.

In the first directory the files are divided in two subdirectories: Datagrams and

Nodes.

Datagrams contains the source code that realizes IPv6 packets.

The main class is Datagram. A Datagram object is uniquely identified through two

attributes, ID_Source and ID_Thread; ID_Source establishes the datagram sender,

while ID_Thread specifies the amount of IPV6 packets, sent by datagram sender.

Furthermore, a Datagram object is represented through the packet payload size, the

headers, the hops and the frames.

1. The packet payload size is an integer value that represents the packet weight in

bytes.

2. The headers contain control information for the correct network functioning.

A header for each IP Stack layer is developed: 802.15.4, IPv6, CTP, UDP,

TCP and COAP. Of these headers, 802.15.4, IPv6 and UDP have been

implemented in COOJA.

FrameHeader (802.15.4 header) identifies the source and the destination of

the datagram by the MAC addresses. For simplicity a MAC address is defined

P a g e 	 |38	
	 	
	

exclusively by the ID of the node, in integer format, without the personal area

network ID (0x22).

IPV6Header (IPv6 header) has the function to set important network features

to the datagram: IPv6 address for the source and destination node, the time

instant in which the packet is sent, the time instant in which the packet is

received and the datagram type. The source and destination IPv6 addresses are

represented as strings, while the time instants, just mentioned, are Long 9

numbers that represent the time in microseconds. Finally IPv6 header permits

to define the packet type. Two are the categories, RPL packets or traffic

packets: RPL packets are divided into DIO, DAO and DIS; traffic packets use

the UDP protocol for the application data transport.

UDPHeader (UDP header) specifies the source UDP port and the destination

UDP port, used by the datagram, for the data communication. The class has

two attributes, PortSource and PortDestination, which can be updated with

the appropriate methods.

3. A datagram reaches the root of the 6LoWPAN network through some hops.

The hops coincide with particular nodes called relay nodes, which have the

function to forward the datagram from a data-link to another; therefore the

class Hop is designed. A Hop object is identified by the relay node ID and by

the transmission delay, which indicates the time taken by the datagram to

cross the relay mote. Each Hop instance is linked to the datagram by the

attributes ID_Source and ID_Thread, which identify uniquely an IPv6 packet.

4. Each datagram is made of one or plus frames: if an IPv6 packet passes through

three data-links, it consists of three frames.

A Frame object is specified by the frame source and by the frame destination

with the attributes ID_Src and ID_Destination. Moreover, each instance

defines the time instant in which the frame is sent and the time instant in

which the frame is received. Each Frame is associated with the parent

datagram by the attributes ID_Source and ID_Destination.

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
9 Java class – Documentation in http://docs.oracle.com/javase/6/docs/api/java/lang/Long.html

P a g e 	 |39	
	 	
	
The class Datagram manages the headers, the hops and the frames through the

attributes headers, hops and frames:

-‐ headers is the Vector of Header objects. Datagram permits to add a new

header to the datagram through the method addHeader. Moreover, the class

consents to return a single header through the following methods:

getFrameHeader, getIPV6Header and getUDPHeader;

-‐ hops is the Vector of Hop instances. The main class permits to insert a new

hop to the datagram and to get all Hop objects, already added. These actions

are implemented through the methods addHop and getHop;

-‐ frames is the Vector of Frame objects, which are managed with the methods

addFrame and getFrame.

Nodes contains the source code that implements the networking features of each

sensor node i.e. the MAC address, the IPV6 address, the port used for the data

transport, the queue etc.

The main class of Nodes is Node. A Node instance represents a mote. ID is the

fundamental attribute to identify uniquely a node during the simulation. The class has

the function to manage the datagrams queue and the endpoints.

The queue of datagrams is implemented through the class Queue.

A Queue instance represents a datagram that changes the queue value; each object is

defined by the following attributes:

Ø ID_Source and ID_Thread identify the datagram;

Ø state indicates the causes that lead to update the queue value;

Ø value indicates the current value of the queue;

Ø timestamp represents the time instant in which a datagram changes the

queue value.

Each node has endpoints. They are the addresses assumed from the node, depending

on the IP Stack layer.

Three endpoints for each node of the simulation are developed: Frame154EndPoints,

IPV6EndPoints and UDPEndPoints.

P a g e 	 |40	
	 	
	

Ø Frame154EndPoints performs the MAC address of the node.

Frame154EndPoints object is characterized by the attribute mac_address,

which is an integer value, identifying the node in the 802.15.4 links.

Ø IPV6EndPoints establishes the IPV6 address of the node. The class has two

attributes, ipv6 and ipv6_string: the first expresses the node address in integer

format, converting the last four bytes of the IPV6 address; the second

represents the IPv6 address in string format.

Ø UDPEndPoints defines the socket (IPv6 address + UDP port) used by the node

to transport the data. The class has a unique attribute, port, that establishes the

UDP port for the data communication. Instead the IPv6 address is not

represented by an attribute, since the class UDPEndPoints extends

IPV6Endpoints.

The class Node is responsible for the management of the queue and the endpoints, as

mentioned above.

In fact, important methods are developed for the class: inQueue, outQueue,

checkQueue, getQueue, addEndPoints and getEndPoints.

Ø inQueue creates a new Queue object to represent the entry of the datagram

into the queue. If the entry of the datagram does not lead the queue value to

reach the maximum threshold, the new instance has state 0, else it has state 4.

Ø outQueue creates a new Queue object whose state is 2 and whose value is

decreased of 1; this Queue object represents an outgoing datagram from the

queue. If this method is invoked, the object reporting the entry of that

datagram in queue undergoes an update of the state, passing from 0 to 2.

Ø checkQueue has the function to check all the instances of the class Queue in

order to delete the datagrams that remain in queue for a time upper to a

predetermined timeout. If these datagrams have state 0, then the Queue object,

representing the datagram, undergoes an update of the state, passing from 0 to

3. Instead, if these datagrams have state 4, the state passes from 4 to 5.

Ø getQueue returns all the Queue objects.

Ø addEndPoints allows to add a new address to the node for a determinate IP

Stack layer.

P a g e 	 |41	
	 	
	

Ø getEndPoints returns an EndPoints instance, representative of a node for a

determinate IP Stack layer.

The second directory, cooja/plugins/analyzers, contains two new files:

Analyzer_802154 and Analyzer_6LoWPAN.

Analyzer_802154 is the class obtained changing and simplifying the file

IEEE802154Analyzer (see 3.2). Analyzer_802154 has the aim to return important

components of a frame: the sequence number, the source MAC address and the

destination MAC address.

The sequence number is obtained extracting the sequence number from a particular

byte of the radio packet.

The source MAC address and the destination MAC address are calculated by the

method getMAC, analysing the bytes of the radio packet in order to get the addresses

as array of bytes.

Analyzer_6LoWPAN extracts from a radio packet the networking components

required for a datagram. Through the method getAddress, the class analyses each byte

of the packet in order to get the source IPv6 address, the destination IPv6 address, the

source UDP port and the destination UDP port.

The directory analyzers contains the file ICMPv6Analyzer (see 3.2). A new method,

analyzeRPL, has been introduced in this class to distinguish the routing traffic. In

other words, the method gets the RPL packet type through an integer number.

Ø if packet type = DIS, analyzeRPL returns 0;

Ø if packet type = DIO, analyzeRPL returns 1;

Ø if packet type = DAO, analyzeRPL returns 2;

Ø if packet type = DAO ACK, analyzeRPL returns 3.

3.7 L2 Components

This paragraph illustrates the metrics collection way for the second IP Stack layer.

The second layer is the MAC layer, which has the aim to control the sending of

frames on the physical medium.

P a g e 	 |42	
	 	
	
A frame is formed by a radio connection or by two radio connections.

The first case regards the multicast packets, where the message is sent to all

destinations, reachable by the transmission range.

The second case regards the unicast packets, where the frame is composed by a

DATA message and by an ACKNOWLEDGEMENT (ACK) message.

DATA message is a radio packet that contains the information captured by the sensors

for the root node: the source and the destination have to belong to the same circle or

to the same link, depending on the radio medium used (UDGM or DGRM).

When the destination of the frame receives the DATA message, the node replies to

the source through an ACK message to notify the correct reception.

If the source does not receive the ACK message, it relays the DATA message after a

timeout defined in the Makefile of the application. Considering TestRPL, timeout is

equal to 103 ms and the number of retries to send a frame is set to 10 (see 3.1).

Duplicate frames are not accepted to process L2 10 metrics. Using the sequence

number of the frame, these messages for the calculation of L2 metrics will be not

considered.

In the next sections, the realization of the frame packets and the way to capture L2

metrics will be discussed. During the reading, java classes and java methods will be

appointed again. Refer to the section 3.6 and to the section D of the appendix.

Furthermore, in order to make easier the relation among classes, the diagram of

classes for the L2 components is reported below.

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
10	 L2	 –	 Data-‐link	 layer	

P a g e 	 |43	
	 	
	

Figure 5: Diagram of classes – L2 components

3.7.1 Generation Frames

As mentioned above, the radio medium generates radio connections during the life of

the simulation. In this case the Observer object of the radio medium classes is a new

class, generate_frame_datagram. The file extends the actual COOJA source code,

introducing new features in order to generate frames and datagrams within the

simulator.

P a g e 	 |44	
	 	
	
In particular, the class generate_frame_datagram collects information to determine

L2 metrics through the analysis of each RadioConnection, notified from the radio

medium.

For each frame this class gathers the frame state, which consists of a transmission

without error, a failed transmission, a reception without errors or a failed reception;

the frame source node; the frame destination node; the time instant in which the event

occurs.

Once frame information is obtained, generate_frame_datagram acts from Observable

object notifying it to the Plugin_Metrics (Observer object). Then the main class can

start the capture phase.

The basic structure of generate_frame_datagram is summarized below.

	
1 For each radio connection
2 {
3 conn = radiomedium.getLastConnection()
4 packet = analysis_packet(conn)
5 if (packet reaches the destination and it is not ACK)
6 {
7 set MAC_address_source_node(packet)
8 set MAC_address_destination_node(packet)
9 // collect info frame: transmission frame without errors
10 data_frame.add(“TX OK”);
11 data_frame.add(time);
12 data_frame.add(MAC_address_source_node)
13 notify(data_frame) to Plugin_Metrics
14 if (packet is MULTICAST)
15 {
16 for each destination
17 {
18 //collect info frame: reception frame without errors
19 data_frame.add(“RX OK”)
20 data_frame.add(time)
21 data_frame.add(MAC_address_source_node)
22 data_frame.add(MAC_address_destination_node)
23 notify(data_frame) to Plugin_Metrics
24 }
25 }
	

	

P a g e 	 |45	
	 	
	

26 else if (packet is UNICAST)
27 {
28 if (previous packet was UNICAST)
29 {
30 //collect info frame: reception frame fails – Data message without ACK
31 data_frame.add(“RX FAIL”)
32 data_frame.add(time)
33 data_frame.add(MAC_address_source_node_previous_packet)
34 data_frame.add(MAC_address_destination_node_previous_packet)
35 notify(data_frame) to Plugin_Metrics
36 }
37 }
38 }
39 else if (packet reaches the destination and it is ACK)
40 {
41 if (frame sequence number is new)
42 {
43 //collect info frame: reception frame without errors -> ACK after DATA
44 data_frame.add(“RX OK”)
45 data_frame.add(time)
46 data_frame.add(MAC_address_source_node)
47 data_frame.add(MAC_address_destination)
48 notify(data_frame) to Plugin_Metrics
49 }
50 }
51 else if (packet does not reach destination)
52 {
53 if (packet is not ACK)
54 {
55 //collect info frame: transmission frame fails -> transmission error for DATA
56 data_frame.add(“TX FAILS”)
57 data_frame.add(time)
58 data_frame.add(MAC_address_source_node)
59 notify(data_frame) to Plugin_Metrics
60 if (previous packet was UNICAST)
61 {
62 //collect info frame: reception frame fails – Data message without ACK
63 data_frame.add(“RX FAIL”)
64 data_frame.add(time)
65 data_frame.add(MAC_address_source_node_previous_packet)
66 data_frame.add(MAC_address_destination_node_previous_packet)
67 notify(data_frame) to Plugin_Metrics
68 }
69 }
70 }
71 }
	

	

P a g e 	 |46	
	 	
	
The pseudo-code shows how generate_frame_datagram determines L2 metrics by

RadioConnection packets.

All the code is contained in a for cycle (line 1) that has the same amount of iterations

as the number of radio packets exchanged on the radio medium.

Each packet is analysed through an 802.15.4 analyser, implemented by the class

Analyzer_802154 (line 4).

The class determines the MAC address for the source and the destination of the radio

packet by the method getMAC.

After, generate_frame_datagram checks the packet transmission.

1) If the packet is sent correctly and if it is a DATA message, the class runs the

following operations:

Ø It sets the MAC address for the source of the packet through the

method setMACAddresses (line 7). This method defines a

Frame154EndPoints object, containing the MAC address returned by

Analyzer_802154. After that, the object is saved in the class Node for

the source mote.

Ø It sets the MAC address for the destination of the packet through the

method setMACAddresses (line 8), which has the same functionalities

of the previous point.

Ø It notifies to the Plugin_Metrics the transmission of a frame without

errors. The notification includes the frame state (TX OK), the current

time instant and the source MAC address (lines 9-13).

Ø It checks the packet type:

-‐ If packet is MULTICAST, the class notifies to the main class

the correct reception of a frame for each packet destination.

Every notification contains the frame state (RX OK), the

current time instant, the source MAC address and the

destination MAC address (lines 14-25).

-‐ If packet is UNICAST, the frame will have to contain two radio

packets, the DATA followed from the ACK. To reach this goal

the class checks if the previous packet was a DATA.

P a g e 	 |47	
	 	
	

If the control is positive, generate_frame_datagram sees a

DATA followed from another DATA. Therefore, the class

notifies the reception error to Plugin_Metrics, sending the

frame state (RX FAILS), the time instant and the MAC

addresses (lines 26-37).

2) Instead, if the sent packet is an ACK message, the class discards the duplicate

packets through the sequence number, and it notifies the correct reception of the

frame (DATA followed from ACK) with the following arguments: frame state (RX

OK), time instant and MAC addresses of the source and the destination (lines 39-50).

3) Finally, if the DATA packet is not sent correctly, the class notifies the failed

transmission to the Plugin_Metrics. The notification contains the state (TX FAILS),

the time instant and the source MAC address (lines 55-59). Moreover,

generate_frame_datagram carries out the same control done in the lines 26-37,

notifying eventual reception errors (lines 60-68).

3.7.2 Capture Phase - Node Metrics

This section illustrates the development of the method CaptureFrameMetricNode of

the class Capture, used to find the metrics applied to individual nodes.

CaptureFrameMetricNode requires the following input arguments: the metrics

selected by the user in Info_Metric_Node format and the information included in the

notifications, sent by the generate_frame_datagram.

When the Plugin_Metrics receives a notification by the generate_frame_datagram,

CaptureFrameMetricNode checks each selected metric with the second parameter.

The aim is to find the data required from the metrics within the information obtained

by generate_frame_datagram. If this condition is verified, the metric value is

updated, creating a new object of the class Storing.

P a g e 	 |48	
	 	
	
The basic structure of the method is reported below.

The first metric (lines 2-3) counts the number of frames sent by the metric node

without transmission errors. The metric updating occurs when the frame state reports

a transmission without failures (TX OK) and when the metric node is the frame

source.

The second metric (lines 4-5) represents the number of frames not sent to destination

due to transmission errors. To increment the metric value, the necessary condition is

to have the metric node as frame sender and to have the frame state that indicates a

failed transmission (TX FAILS).

The third metric (lines 6-7) indicates the number of frames successfully received by

the metric node. In this case, the metric value increases of 1 if the metric node is a

destination of the frame and if the frame state represents a reception without errors

(RX OK).

Finally, the fourth metric (lines 8-9) counts the number of frames not received by the

metric node due to reception errors. In this case, the metric value is updated if the

metric node receives the frame and if the frame state reports a failed reception (RX

FAILS).

1 for each metric

2 if (id_metric = 1)

3 process Number of frames successfully sent

4 else if (id_metric =2)

5 process Number of frames not successfully sent

6 else if (id_metric = 3)

7 process Number of frames successfully received

8 else if (id_metric = 4)

9 process Number of frames not successfully received

	

P a g e 	 |49	
	 	
	
3.7.3 Capture Phase - Couple Metrics

This section presents the method CaptureFrameMetricCouple of the class Capture.

The method has the function to collect L2 metrics for couples of nodes.

CaptureFrameMetricCouple has the same parameters of the previous method. The

only difference regards the selected metrics, which present the Info_Metric_Couple

format.

The method basic architecture is the following:

Number of frames successfully received (lines 2-3) counts the amount of frames sent

correctly by the source node and received without errors by the destination.

The metric value changes if the source and the destination of the frame, with state

“RX OK”, coincide with the source and the destination of the metric couple.

The second metric (lines 4-5) shows the number of frames sent correctly by the

source node and not received by the destination due to reception errors.

The metric undergoes an update when the notified frame presents as state “RX

FAILS” and it has the source and the destination of the couple metric such as the

source and the destination of the frame.

3.8 L3 Components

The paragraph shows the metrics collection mode for the networking layer of the IP

Stack.

This layer has the function to route the application traffic toward the root through the

routing protocol RPL.

1 for each metric

2 if (id_metric = 1)

3 process Number of frames successfully received

4 else if (id_metric =2)

5 process Number of frames not successfully received

P a g e 	 |50	
	 	
	
As mentioned in the previous paragraphs, COOJA does not support the

implementation of the IPv6 packets and therefore the messages have been developed

analysing the radio packets exchanged on the radio medium.

To create a datagram, the frame packets generated in the previous section have to be

composed. They are made up of the RadioConnection objects.

The datagrams are divided in four categories, i.e. DIO, DIS, DAO and UDP.

DIO, DIS and DAO represent the routing traffic. DIO and DIS are multicast packets

consisting of a single radio connection; they do not require the ACK packet as control

mechanism.

DAO messages are unicast packets formed by two radio connections: a DATA

message to send routing information to the parent; an ACK message as control system

for the packet transmission. This RPL packet type does not make hops, since the

TestRPL application uses the routing protocol in storing mode (see 3.1).

UDP messages are the packets sent by application clients toward the application

server. These datagrams do various hops to reach the destination and therefore they

are composed of different frames, one for each data-link.

For this IP Stack layer, only two metrics are captured: datagrams queue and delay

end-to-end. The datagrams queue will be obtained during the datagrams generation

phase, while the delay end-to-end will be calculated using the same logic of the L1

metrics and L2 metrics.

During the reading of the following paragraph, java classes and java methods will be

appointed again. Refer to section 3.6 and to the section D of the appendix.

Moreover, given the complexity of the relation between classes, the diagram of

classes for the L3 11 components is shown below.

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
11	 L3	 –	 Networking	 Layer	

P a g e 	 |51	
	 	
	

	 	 	 	

	
Figure	 6:	 Diagram	 of	 classes	 –	 L3	 components	 	

	

P a g e 	 |52	
	 	
	
3.8.1 Generation Datagrams

As for the data-link layer, the class generate_frame_datagram will be used to create

the IPv6 packets. The development of the datagrams is based on the analysis of each

radio packet created by the radio medium, using the analysers Analyzer_802154,

Analyzer_6LoWPAN and ICMPv6Analyzer.

During the building phase, moreover generate_frame_datagram manages the

evolution of the queue for each new analysed radio packet.

Each time a datagram is realized, the class generate_frame_datagram acts as

Observable object to notify it to Plugin_Metrics (Observer object).

The basic structure of the Observable object is shown below.

	
	
	
	

P a g e 	 |53	
	 	
	
	

1 For each radio connection
2 {
3 conn = radiomedium.getLastConnection()
4 frame = analyser_802154(conn)
5 if (frame is transmitted correctly and it is not ACK)
6 {
7 set MAC_address_source_node(data_frame)
8 set MAC_address_destination_node(data_frame)
9 data_datagram = Analyzer_6LoWPAN(conn)
10 set IP_address_source_node(data_datagram)
11 set IP_address_destination_node(data_datagram)
12 set UDP_port_source_node(data_datagram)
13 set UDP_port_destination_node(data_datagram)
14 if (ICMPv6Analyzer.analyzeRPL(conn)==0 or ICMPv6Analyzer.analyzeRPL(conn)==1)
//RPL DIS or RPL DIO
15 {
16 for each destination
17 {
18 //create FrameHeader
19 FrameHeader.setSource(MAC_address_source_node)
20 FrameHeader.setDestination(MAC_address_destination_node)
21 // create IPv6Header
22 IPv6Header.setIPSource(IP_address_source_node)
23 IPv6Header.setIPDestination(null)
24 IPv6Header.setTimeStart()
25 IPv6Header.setTimeEnd()
26 IPv6Header.setType(“DIS”)
27 //create Datagram
28 datagram.add(FrameHeader)
29 datagram.add(IPv6Header)
30 notify(datagram)
31 }
32 }
33 else if(ICMPv6Analyzer.analyzeRPL(conn)==2)
34 {
35 //DAO datagram -> attends the ACK
36 }
37 else
38 {
39 //UDP datagram -> attends the ACK
40 }
41 }
42 else if (packet is transmitted correctly and it is ACK)
43 {
44 if (ICMPv6Analyzer.analyzeRPL(conn)==3 and previous packet was a DAO) // DAO ACK
45 {
46 //create FrameHeader
47 FrameHeader.setSource(MAC_address_source_node)
48 FrameHeader.setDestination(MAC_address_destination_node)
	
	

P a g e 	 |54	
	 	
	
	

49 // create IPv6Header
50 IPv6Header.setIPSource(IP_address_source_node)
51 IPv6Header.setIPDestination(IP_address_destination_node)
52 IPv6Header.setTimeStart()
53 IPv6Header.setTimeEnd()
54 IPv6Header.setType(“DAO”)
55 //create Datagram
56 datagram.add(FrameHeader)
57 datagram.add(IPv6Header)
58 notify(datagram)
59 }
60 else if (ACK is of type UDP and previous packet was UDP datagram)
61 {
62 if (data_frame sequence number is new)
63 {
64 // create hop
64 hop.setRelayNode(MAC_address_destination_node)
65 hop.setDelay();
66 UDP_Datagram.add(hop);
67 // create frame
68 frame.setSource(MAC_address_source_node)
69 frame.setDestination(MAC_address_destination_node)
70 frame.setTimeStart()
71 frame.setTimeEnd()
72 UDP_Datagram.add(frame)
73 update_queue
74 check_queue
75 if (UDP_Datagram has reached the root)
76 {
77 // create FrameHeader
78 FrameHeader.setSource(MAC_address_source_node)
79 FrameHeader.setDestination(MAC_address_destination_node)
80 // create IPv6Header
81 IPv6Header.setIPSource(IP_address_source_node)
82 IPv6Header.setIPDestination(IP_address_destination_node)
83 IPv6Header.setTimeStart()
84 IPv6Header.setTimeEnd()
85 IPv6Header.setType(“UDP”)
86 //create UDPHeader
87 UDPHeader.setPortSource(Port_source)
88 UDPHeader.setPortDestination(Port_destination)
89 //create Datagram
90 UDP_Datagram.add(FrameHeader)
91 UDP_Datagram.add(IPv6Header)
92 UDP_Datagram.add(UDPHeader)
93 notify(datagram)
94 }
95 }
96 }
97 }
98 }

	

P a g e 	 |55	
	 	
	
The pseudo-code shows how generate_frame_datagram collects the information by

RadioConnection packets to determine L3 metrics.

All the code is contained in a for cycle (line 1) that has an amount of iterations equal

to the number of radio packets exchanged on radio medium.

Each packet is analysed through an 802.15.4 analyser, implemented by the class

Analyzer_802154 (line 4).

The class gets the MAC address for the source and the destination of the radio packet

in a Vector instance through the method getMAC.

After that, generate_frame_datagram checks the packet transmission.

1) If the datagram is sent correctly and if it is a DATA message the class runs the

following operations:

Ø It sets the MAC address for the source and the destination of the packet

through the method setMACAddresses (lines 7-8). In other words, the

method instantiates two Frame154EndPoints objects, one for the

source and one for the destination through the MAC address. Then the

objects are saved in the class Node.

Ø It runs the class Analyzer_6LoWPAN that analyses the radio packets

through the method getAddress, which returns the IP address and the

UDP port for the source and the destination of the packet in a Vector

object (line 9).

Ø It sets the IP addresses and UDP ports for the source and the

destination of the packet through the method setIPAddresses. The

method builds two IPV6EndPoints objects and two UDPEndPoints

objects. The first IPV6EndPoints object associates the IP address to the

source node, while the second IPV6EndPoints object associates the IP

address to the destination node. Instead, the UDPEndPoints objects are

set through the UDP ports.

Once the endpoints are instantiated, they are saved in the class Node

(lines 10 - 13).

Ø It checks the packet type:

-‐ If packet is a DIO datagram or a DIS datagram, a Datagram

object for each destination will be built.

P a g e 	 |56	
	 	
	

The datagram is composed of two headers: an 802.15.4 header

and an IPv6 header.

The 802.15.4 header is implemented by the class

FrameHeader, which defines within the datagram the MAC

address for the source and the destination of the RPL packet

through the data contained in the Frame154EndPoints objects.

The IPv6 header is implemented by the class IPV6Header,

which establishes within the datagram the IP addresses for the

source and the destination of the RPL message through the

information included in the IPV6EndPoints objects.

Once the datagram is built, it is notified to the Observer (lines

14 -32).

-‐ If packet is a DAO datagram or a UDP datagram,

generate_frame_datagram does not carry out any operation; in

fact it waits for the ACK message to confirm the correct

datagram transmission (lines 33-41).

2) Instead, if the sent packet is an ACK message, the class checks the type of the

message:

Ø If the packet is an ACK message and the previous packet was a DAO

message, a Datagram object is generated. It includes the FrameHeader

and the IPV6Header as seen previously for the datagrams DIO and

DIS (lines 44-59).

Ø If the packet is an ACK message and the previous packet was a UDP

datagram, generate_frame_datagrams uses the sequence number to

discard the duplicate packets. If the packet is not deleted, two objects,

Hop and Frame, will be created.

Hop represents the relay node that forwards the UDP datagram toward

a new data-link. The relay node is identified by the destination node

MAC address of the UDP datagram and this value is saved in Hop.

Also Hop considers the transmission delay, necessary to the datagram

in order to cross the relay node. The transmission delay is added in

Hop.

P a g e 	 |57	
	 	
	

Frame represents the UDP datagram in a precise 802.15.4 link. If a

UDP datagram crosses N hops to reach the destination, then the

datagram is divided in N+1 frames.

In this case generate_frame_datagrams saves in Frame the source

node MAC address of the previous packet; the destination node MAC

address of the previous packet; the time instant in which the previous

packet is sent; the time instant in which the previous packet is

received.

Once Hop and Frame are instantiated, they are inserted in the

Datagram object through the methods addHop and addFrame (lines

60-72).

At this point, the class updates the queue value for the relay nodes (line

73). If the previous packet has come in the queue of a relay node, the

relay node, with the class Node, will start the method inQueue that

increments the queue value. inQueue needs the following input

arguments: the incoming UDP datagram in the queue and the related

time instant. On the contrary, if the previous packet goes out from the

queue of a relay node, the relay node, with the class Node, will set up

the method outQueue that decrements the queue value. outQueue

requires the outgoing UDP datagram from the queue and the related

time instant.

If the previous packet has the destination node MAC address equal to

1, then the UDP datagram reaches the final destination. In this case the

Datagram object with tree headers will be generated: FrameHeader,

IPV6Header and UDPHeader.

FrameHeader and IPV6Header are set with the same way seen for the

DIO datagrams. Instead, UDPHeader defines the UDP ports used by

the source and by the destination for the data transport.

When the headers are complete, they are added to the Datagram

instance through the method addHeader.

Finally, the datagram is notified to Plugin_Metrics (lines 75-99).

P a g e 	 |58	
	 	
	

Each iteration of the for cycle runs a control to the queue for the relay nodes through

the method checkQueue of the class Node (line 74).

The method has the function to remove the datagrams located in the queue from a

time amount upper a predefined timeout.

3.8.2 Capture Metric - Delay End-To-End

The class generate_frame_datagram notifies every datagram to the Plugin_Metrics.

When the main class receives a Datagram object, it starts the capture phase to obtain

the metric delay end-to-end.

The delay end-to-end is the time taken for a datagram to be transmitted across the

network from the source to the destination.

The metric is calculated through the method CaptureDatagramMetricCouple of the

class Capture. The method needs the following parameters: the couple metric selected

by the user and the Datagram object.

If the Datagram instance has like source and destination the source and the destination

chosen by the user, the method sets up the metric computation, which changes

according to the datagram typology.

If the datagram is a RPL packet, the delay end-to-end is obtained calculating the

difference between the time instant in which the datagram is received and the time

instant in which the datagram is sent. The time instants have been returned through

the class IPV6Header.

On the contrary, if the datagram is a UDP packet, the metric is calculated as sum

between the transmission delay and the queuing delay.

The transmission delay is obtained summing the delays of each hop, done by the

datagram (Each hop delay is get by the class Hop).

The queuing delay is achieved calculating the duration of time in which the datagram

remains in queue.

Once the metric value is calculated, it is saved in Storing.

	
	
	
	
	

P a g e 	 |59	
	 	
	

4. Plugin Testing

This chapter presents the testing phase of the metrics collection tool, developed for

COOJA.

The testing phase has the aim to verify the correct functioning of the plugin through

the analysis of the metrics charts.

Practically, the chapter shows how to realize a simulation for COOJA, creating the

network of nodes to study with the plugin; it analyses the metrics for the physical,

data-link and networking layers through the graphics obtained by the metrics

collection tool; it illustrates the way whereby the metrics collection tool calculates the

average delay end-to-end, the packet loss rate and the throughput, demonstrating,

through their charts, the utility of the plugin.

4.1 Realization COOJA Simulation

In order to test a network application, the user has to start COOJA by the terminal

with the ant 12 command ant run_bigmem within the directory cooja 13.

When the boot phase finishes, the user can create the sensor network, selecting the

desired radio medium. This project work uses DGRM as radio medium, since DGRM

permits to realize different network topologies with many links between the motes.

Before the network is created, the user has to select the binary image of the

application in order to install it in the motes. In the simulations carried out for this

project, the nodes run Test_RPL as program (see 3.1).

In order to adapt the application to the COOJA simulation, the Test_RPL Makefile is

set, modifying the following directives:

Ø CFLAGS+=-DCC2420_DEF_CHANNEL = 25 -> the CC2420 radios use the

radio channel 25;

Ø CFLAGS +=-DBLIP_L2_RETRIES = 10 -DBLIP_L2_DELAY = 103 -> a

client carries out 10 retries to send a single packet. Between a message and

the other, the client waits 103 ms;

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
12 Java library - http://ant.apache.org/
13

 The cooja directory is localized in the path contiki/tools/cooja	

P a g e 	 |60	
	 	
	

Ø CFLAGS+=-DPACKET_INTERVAL = 128UL -> the packets transmission

rate is set to 8 packets/s;

Ø CFLAGS+=-DPACKET_NUMBER =100 -> each client generates 100

packets, addressed to the root.

Once the TinyOS is installed in the sensors, the user deploys them along the physical

channel through the plugin Simulation Visualizer (see 2.1.5) obtaining the following

chart:

	
Figure 7: Network Topology

	 	
The network presents 8 sensor nodes (clients) that sent packets toward the root.

In fact, all the application traffic is destined to the node 1, since this mote acts as a

router to forward the data to Internet.

Each couple of clients has a common parent that delivers the packets to the bottleneck

mote; then, this node consigns the data to the sink node.

This network topology has been chosen to analyse the reception losses for the relay

node 14.

At this point the user can choose the desired metrics to test the Test_RPL application

through the metrics collection tool.

P a g e 	 |61	
	 	
	
To start the plugin, the user has to click on the item 6LoWPAN metrics in the drop-

down menu of Plugins and consequently the tool appears in the COOJA window.

Figure 8: Graphical Interface of the Metrics Collection Tool	
	
The plugin consists of three buttons and a table, containing the metrics selected by the

user. In order to insert a new metric, the user chooses one of the three buttons,

according to the IP-Stack layer. Once the user clicks on a button, the following frame

appears in the window.

	
Figure 9: Graphical interface to select a new Metric

P a g e 	 |62	
	 	
	
Concluded the metrics selection phase, the user can start the simulation, in order to

analyse the metrics.

4.2 Analysis Metrics – Physical Layer

This section presents the metrics graphics for the first IP stack layer, obtained

analysing each radio packet exchanged on the DGRM radio medium, as shown in the

previous paragraph.

The charts have been calculated for the following metrics:

Ø Number of connections successfully sent – Node 1

Ø Number of connections successfully sent – Node 10

Ø Number of connections successfully sent – Node 11

Ø Number of connections successfully sent – Node 12

Ø Number of connections successfully sent – Node 13

Ø Number of connections successfully received – Node 14

Ø Number of connections not successfully received (collision) – Node 14

To analyse these metrics, the testing phase considers only the data-links between the

parent nodes (plus root) and the node with ID 14, with the aim to show the radio

collisions for the transceiver incorporated in the bottleneck node.

Firstly, the testing phase studies the first five metrics. The obtained charts are the

following:

	

	

	

	
	 	
	
	
	
	
	
	
	
	

Figure 10: Number of radio connections successfully sent by the node 1

P a g e 	 |63	
	 	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Figure 11: Number of radio connections successfully sent by the node 10

	
	
	
	
	
	
	
	
	
	
	
	
	
	

Figure 12: Number of radio connections successfully sent by the node 11

	
	

	
	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Figure 13: Number of connections successfully sent by the node 12

P a g e 	 |64	
	 	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

 Figure 14: Number of radio connections successfully sent by the node 13
	

These charts define the number of radio connections sent by the nodes 1, 10, 11, 12

and 13. A radio connection has, like destination, all the motes reachable through the

edges connected to the source node. Moreover, all the radio packets are equal, without

distinction between DATA and ACK messages.

In details, the simulation presents the following transmissions:

Ø the node 1 transmits 478 radio connections to the mote 14;

Ø the node 10 transmits 511packets to the nodes 2, 3 and 14;

Ø the node 11 sends 490 packets to the motes 4,5 and 14;

Ø the node 12 sends 490 packets to the nodes 6, 7 and 14;

Ø the node 13 delivers 508 radio connections to the motes 8, 9 and 14.

Summing the radio connections sent by each node, in total 2477 radio packets are sent

on the radio channel.

Each transmission has at least the mote 14 as destination node of the radio

connection; therefore, this node is also called bottleneck, since it hears each radio

packet sent on the radio medium, becoming thus interfered.

In order to study the interference level of the bottleneck node, the charts of the fifth

and the sixth metric are reported below.

P a g e 	 |65	
	 	
	

Figure 15: Number of radio connections successfully received by the node 14.	
	

Figure 16: Number of radio connections not successfully received by the node 14 due
to radio collisions.

	
	
The bottleneck receives correctly 2264 radio connections by the nodes, linked to its

same edges. Actually, the node 14 would receive 2477 packets (2477 coincides with

the amount of connections sent), but 213 of those fail during the reception phase due

to collision errors, which are originated mainly by radio interferences.

	 	
4.3 Analysis Metrics – Data-Link Layer

This section analyses the frame packets exchanged among the same nodes of the

previous paragraph, with the aim to detect eventual losses in the 802.15.4 links (each

link coincides to a edge of the topology network).

P a g e 	 |66	
	 	
	
To reach this objective ten metrics are test:

Ø Number of frames successfully sent by the node 1 and received without errors

by the node 14;

Ø Number of frames successfully sent by the node 1 and not received due to

collisions by the node 14;

Ø Number of frames successfully sent by the node 10 and received without

errors by the node 14;

Ø Number of frames successfully sent by the node 10 and not received due to

collisions by the node 14;

Ø Number of frames successfully sent by the node 11 and received without

errors by the node 14;

Ø Number of frames successfully sent by the node 11 and not received due to

collisions by the node 14;

Ø Number of frames successfully sent by the node 12 and received without

errors by the node 14;

Ø Number of frames successfully sent by the node 12 and not received due to

collisions by the node 14;

Ø Number of frames successfully sent by the node 13 and received without

errors by the node 14;

Ø Number of frames successfully sent by the node 13 and not received due to

collisions by the node 14.

Firstly, the link between the node 1 and the node 14 is analysed, considering the

number of frames sent and received. The related graphs are reported below.

P a g e 	 |67	
	 	
	

Figure 17: Number of frames sent by the node 1 to the bottleneck without errors

 Figure 18: Number of frames sent by the node 1 to the bottleneck with reception errors

The root sends only 6 frames, during the length of the experiment. All the messages

arrive at their destination without reception errors. Comparing the number of frames

sent (see Figure 17) to the number of radio packets transmitted (see Figure 10), a

considerable gap emerges, given the high number of connections sent on the radio

medium by the sink node. In fact the root has to transmit to the relay node 14 a radio

packet (ACK message) for each message sent by the application clients.

P a g e 	 |68	
	 	
	
Secondly, the edge between the node 10 and the bottleneck is analysed with the

following graphics.

	

	
Figure 19: Number of frames sent by the node 10 to the bottleneck without errors

	
Figure 20: Number of frames sent by the node 10 to the bottleneck node with collision errors.

	

In this case the relay node 10 forwards 294 frames to the bottleneck (180 received

correctly and 114 lost for collisions), sent by the client nodes 2 and 3.

The figure 11 has showed 511 radio connections transmitted by the node 10; this

discrepancy (511 - 294) is due to the ACK messages, sent by the relay node to its

children nodes.

Given the two L2 metrics, the link 10 – 14 presents a frame loss rate of the 39%.

P a g e 	 |69	
	 	
	

Thirdly, the link 11-14 is studied through the charts, reported below.

Figure 21: Number of frames sent by the node 11 to the bottleneck without errors

	
Figure 22: Number of frames sent by the node 11 to the bottleneck with collisions

	

The node 11 sends 244 frames to the node 14, but 77 of those (see figure 22) fail due

to the radio collisions. Therefore, the 32% of the frames is discarded.

The difference between the number of frames sent and the number of packets

transmitted on the radio medium (see figure 12) is due to the same causes, discussed

for the node 10 and this observation will be omitted for the next L2 analyses.

P a g e 	 |70	
	 	
	

Fourthly, the subsequent graphs provide more information for the data-link that

connects the relay node 12 with the node 14.
	

	
Figure 23: Number of frames sent by the node 12 to the bottleneck without errors

	
Figure 24: Number of frames sent by the node 12 to the bottleneck with collisions.

	
The relay node with ID 12 forwards 283 frames to the router node. 180 arrive

correctly at the destination, while the remaining frames are lost in the link due to

radio collisions. Thus, in this case, the frame loss rate reaches the 45%.

P a g e 	 |71	
	 	
	
Finally, the testing phase focuses on the edge with the node 13 and the node 14 as

endpoints.

	
Figure 25: Number of frames sent by the node 13 to the bottleneck without errors

	
Figure 26: Number of frames sent by the node 13 to the bottleneck with collision errors

	
The relay node sends 302 frames to the bottleneck node, which are destined for the

root. 120 frames fail during the reception phase of the node 14; instead, most L2

packets reach the destination without errors. So the percentage of lost frames is equal

to the 40%.

In order to verify the correctness of the frame lost rates calculated in this section by

the metrics collection tool, the testing phase illustrates other two metric graphics:

P a g e 	 |72	
	 	
	

Ø Number of frames successfully received – Node 14;

Ø Number of frames not successfully received – Node 14.

	

	
Figure 27: Number of frames received by the bottleneck without errors

	
Figure 28: Number of frames not received by the bottleneck

	
The figure 27 shows that the frames, received correctly by the node 14, are 691, while

438 are the L2 packets, lost during the reception phase.

If you sum the number of the frames sent by the relay nodes and received without

errors, that is 6 (1 -> 14) + 180 (10 -> 14) + 167 (11 -> 14) + 156 (12 -> 14) + 182

(13 -> 14), the obtained result is exactly 691.

Instead, if you sum the number of the frames sent by the relay nodes and not received

correctly by the node 14, that is 0 (1 -> 14) + 114 (10 -> 14) + 77 (11 -> 14) + 127

(12 -> 14) + 120 (13 -> 14), the obtained result is exactly 438.

P a g e 	 |73	
	 	
	
Therefore, the frames loss average rate is equal to 39%, highlighting the high loss

probability due to the node 14, that is the last router for each packet sent by the

application clients.

4.4 Analysis Metrics – Networking Layer

As discussed in the paragraph 3.8, the metrics for the third IP Stack layer are two:

datagrams queue and delay end-to-end.

The datagrams queue is a Node Metric and it applied to the relay nodes in order to

analyse eventual congestion states.

The charts below, which represent the queue for the nodes 13 and 14, verify if the

graphic trend respects the maximum threshold of datagrams supported in the queue of

the node. This value is set in the TinyOS application, running on the node. For the

simulations analysed in this paragraph, the maximum number of packets that the

queue of a node can contain is set to 12.

Figure 29: Queue Evolution for the relay node 13

P a g e 	 |74	
	 	
	

	
Figure 30: Queue Evolution for the relay node 14

	

The node 13 has the function to route the application traffic, generated by the nodes 8

and 9, toward the bottleneck node 14. Its queue, represented in the figure 29, reaches

the threshold of the 12 datagrams for 6 times, while the queue average value is about

of 6,84 packets.

Instead, the figure 30 illustrates the queue trend for the node 14. In this case, the

queue attains the maximum value of 39 times with an average value of 7,5 packets.

These results are justified by the role of the node within the routing tree; in fact the

node 14 has the function to route all the traffic created by the application clients to the

root. Therefore, the maximum threshold of the queue is reached many times, since the

node 14 will process more datagrams than the node 13.

The delay end-to-end represents the necessary time to send a datagram from a client

node to the application server.

In order to calculate this metric, the testing phase regards the datagrams sent by the

nodes 4 toward the sink node. The chart is the following:

	

P a g e 	 |75	
	 	
	

	
Figure 31: Delay end-to-end – Source 4 – Destination 1

	
The delay end-to-end considers the sum between the transmission delay and the

queuing delay. By increasing the time, the application traffic grows and therefore also

the time taken for a packet to be transmitted across a network grows too. In the figure

31, the metric value is expressed in ms.

	
4.5 Statistics

The metrics, analysed in the previous paragraphs, allow you to study the data

communication from the viewpoint of the nodes.

The purpose of this section is to analyse overall the 6LoWPAN network, with the aim

to measure the speed, the reliability and the capacity of the 802.15.4 links.

To reach this goal, the following statistics are calculated: average delay end-to-end,

packet loss rate and throughput in transmission and in reception.

1. The average delay end-to-end is obtained by the single delays end-to-end,

calculated for each datagram sent by a client.

Therefore, the metrics collection tool processes the individual delays end-to-end,

calculating their average.

2. The packet loss rate (PLR) indicates the percentage of data packets, sent by

the client nodes that do not reach the root of the 6LoWPAN network.

The packet loss can be caused by the following factors:

Ø the queue of the relay nodes is congested;

P a g e 	 |76	
	 	
	

Ø radio collisions caused mainly by the radio interference;

Ø random errors on the radio channel.

The statistic is calculated by the metric collection tool through the formula reported

below:

PLR = 1 – !"#$%&' !"#"$%"&
!"#$%&' !"#$

Where

-‐ packets received is the number of datagrams received correctly by the sink

node;

-‐ packets sent is the amount of datagrams sent by the clients.

3. The throughput in reception is the average rate of successful message delivery

over a communication channel; it is measured in bits per second.

In order to determine this statistic, the metrics collection tool calculates the

throughput of each application client.

The throughput of a client is obtained calculating the ratio between the data amount

sent by the node and the total time interval.

The total time interval is determined summing, for each datagram which will reach

the destination, the time that intervenes between the instant in which the current

datagram has been sent and the instant in which the previous datagram has been

transmitted.

Once the throughput of each sensor node has been defined, the system throughput in

reception is obtained summing each single throughput.

4. The throughput in transmission, called also the maximum throughput, is

calculated with the same procedure of the previous point. The only difference regards

those datagrams that the metrics collection tool has to consider. In this case the plugin

considers all the datagrams sent by the clients, also those that do not reach the

destination.

Consequently, the throughput in reception considers the packets loss in the 802.15.4

links, while the throughput in transmission calculates the network capacity in the

optimal situation. Therefore, the relation between the throughputs is

P a g e 	 |77	
	 	
	
Throughput_TX ≅ Throughput_RX * (1+PLR).

4.6 Testing Multiple Simulations

In the previous paragraphs, the testing phase has considered single simulations,

carried out on the Test_RPL application. In order to determine the statistics illustrated

in the paragraph 4.5 that measure overall the reliability, the speed and the capacity of

the 6LoWPAN links, this section presents the way to execute repeatedly the COOJA

metrics collection tool according to the changing of the data traffic and of the seed of

the simulation 14.

To reach this goal, the testing phase uses the metrics collection tool through the shell,

without making use of the GUI. In this case, to launch the COOJA simulations, the

ant command to type is ant run_nogui –Dargs=/path/fils.csc.

Unlike the GUI simulations, the simulation configuration file (.csc) is required as

parameter of the ant command.

This file is written in XML and it contains the structure of the simulation that the

metrics collection tool will test. In other words, the csc document defines:

Ø the radio medium used and the related links between the motes;

Ø the program binary image running on the nodes;

Ø the nodes position in the network;

Ø the COOJA metrics collection tool executing during the simulation;

Ø the javascript program to manage the duration of the simulation and to run the

methods of the plugin in order to calculate metrics and statistics.

Practically, the ant command mentioned above, will be launched a number of times

equal to the data traffic transmission rates to test. This procedure will be repeated

three times on the basis of the changing of the simulation seed, in order to mediate the

statistics values, deleting false values.

The data transmission rates vary from 1 packets/s to 11 packets/s, incrementing each

time of 0,5 packets/s.

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
14 seed determines a fixed starting point for the sequence of random values that are used in a simulation

P a g e 	 |78	
	 	
	
In order to change the data rate, the metrics collection tool will modify the constant

PACKET_INTERVAL (see 3.1), defined in the Makefile of the Test_RPL

application.

Instead, to manage the amount of traffic generated by the application clients, the

testing phase requires each sensor node to send 500 datagrams to the root. To set this

value, the metrics collection tool will modify the constant PACKET_NUMBER (see

3.1), placed in the same file of PACKET_INTERVAL.

The paragraph below shows the statistics charts, calculated through the procedure just

described. The related values are reported in the section E of the appendix.

	
Figure 32: Average delay end-to-end – realized with MATLAB	

	
	
	
	
	
	
	
	
	
	

P a g e 	 |79	
	 	
	

	
Figure 33: Packet loss rate – realized with MATLAB

	

	
Figure 34: Throughput in reception – realized with MATLAB

	

P a g e 	 |80	
	 	
	

	
Figure 35: Throughput in transmission – realized with MATLAB

	
	
The figure 32 represents the distribution of the average delay end-to-end according to

the change of the data rate. Increasing the number of packets generated in a second

by the client nodes, the relay nodes have to process more datagrams and therefore the

packets remain in queue for a longer time, increasing the queuing delay. If the

queuing delay rises, also the delay end-to-end does.

The second graphic (figure 33) illustrates the upward trend of the packet loss rate.

Incrementing the data rate, the frequency of packets exchanged on the network will

grow considerably, and proportionally also the amount of datagrams lost due to the

queues congestion of the relay nodes and to the radio collisions.

The figure 34 shows the evolution of the throughput in reception. With the data rate

between 1 and 5 the function grows proportionally and then it decreases, stabilizing

itself to a value of 6100 bits/s. This trend is due to the growth of the data traffic in the

network, that leads to an increase of the packet loss rate. Therefore, the application

clients decrease the packets transmission rate, lowering the throughput.

P a g e 	 |81	
	 	
	
The figure 35 represents the throughput in transmission. The curve maintains an

upward trend, unlike the previous graphic, since this statistic does not consider the

queues congestion and the packet loss rate caused by the increment of the data rate. In

fact this statistic represents the networks capacity in optimal conditions.

In order to verify the correctness of the graphics, the paragraph considers some

particular data, taken from the section A of the appendix:

Ø rate 1 – packet loss rate = 0,0156 – throughput in reception = 2719 –
throughput in transmission = 2772

Ø rate 3 – packet loss rate = 0,0485 – throughput in reception = 7310 –
throughput in transmission = 7667

Ø rate 5 – packet loss rate = 0,1971– throughput in reception = 9888 –
throughput in transmission = 11862

The aim is to prove the validity of the relation Throughput_TX ≅ Throughput_RX *

(1+PLR).

Rate 1 -> 2719 * 1,0156 = 2762 ≅ 2772

Rate 3 -> 7310 * 1,0485 = 7665 ≅ 7667

Rate 5 -> 9888 * 1,1971 = 11837 ≅ 11862

The correctness of the graphics is proved by the following results.

This means that the metrics collection tool correctly captures the radio packets

exchanged on the radio medium, determining metrics and statistics that allow the

COOJA users to know the features of the low-power and lossy networks.	 	 	

	

	 	 	

	 	 	 	 	 	
	
	

	
	

P a g e 	 |82	
	 	
	

5. Conclusion
	

The dissertation presents the development and the testing of a metrics collection tool

for 6LoWPAN networks.

The 6LoWPAN networks are made up of the sensor nodes that have the feature to

send data to Internet through the networking protocol IPv6.

The IPv6 packets travel over IEEE 802.15.4 based networks, where IEEE 802.15.4 is

a standard, which specifies the physical layer and the media access control for low-

power and lossy networks.

To test the data communication between sensors of a 6LoWPAN network, COOJA is

a java simulator widely used, which operates on three different levels: the networking

level, the operating system level and the machine code instruction set level. COOJA

allows you to build in a simple way the network topology to test, choosing the desired

radio medium. Once the network is set, the simulator is able to calculate the radio

power level for each mote of the simulation and to detect each radio connection sent

on the radio medium.

However, COOJA does not dispose of tools capable to process metrics or capable to

detect statistics for the 6LoWPAN links. Therefore, this work develops a new plugin

for the COOJA simulator that permits to cover the current deficiencies. The metrics

collection tool is composed of java components, which capture the radio connections

sent on the radio medium, in order to detect the necessary data, required by the

metrics chosen by the users.

Then, the metrics charts allow you to highlight criticalities in the network links, such

as:

Ø the high number of radio collisions originated from the bottleneck node that

forwards all the clients’ packets to the sink node,

Ø the queue congestion for the relay nodes,

Ø the delay end-to-end between a source and the root.

The metrics calculation allows the metrics collection tool to detect important

statistics. The average delay end-to-end, the packet loss rate and the throughput

P a g e 	 |83	
	 	
	
measure overall the functioning of a 6LoWPAN network, allowing to check the

speed, the reliability and the capacity of the links between the motes.

Increasing the data rate of the clients, the packet loss rate raises considerably, since

the queue of the relay nodes reaches the maximum threshold, causing the deletion of

the datagrams in excess. Therefore, the throughput in reception, after an initial climb

phase, decreases and stabilizes itself, due to the high amount of packets lost. Instead,

the throughput in transmission does not consider the packet loss rate and thus the

graphic curve grows constantly.

If the throughput in reception is proportional to the product between the throughput in

transmission and the packet loss rate, then the metrics collection tool has correctly

captured and elaborated the radio packets of the radio medium. In the simulations of

this work project, the relation between the statistics attests this and therefore the new

plugin can be used to identify networking metrics for 6LoWPAN networks that use

the RPL protocol to route the data traffic.

Future work on the metrics collection tool will concern:

Ø the realization of statistics according to the change of the hop count 15;

Ø the interaction with the routing protocol CTP [23];

Ø the implementation of the plugin in other simulators, such as NS 2 and

TOSSIM;

Ø a comparison between the metrics collection tool and other similar
tools of different simulators.

	
	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
15 Hop count refers to the number of routers through which data must pass between source and destination.

P a g e 	 |84	
	 	
	

Appendix

	

Section A – Components of TestRPLC

The section illustrates the main components of the module TestRPLC.

define
RPL_ROOT_ADDR 1

The node 1 is the routing tree root

define UDP_PORT 5678 The application traffic uses the UDP port 5678 for the
data transport

event void Boot.booted() -‐ The event sets the multicast address used by RPL
messages

-‐ it sets the routing tree root through
RPL_ROOT_ADDR (RootControl.setRoot());

-‐ it starts the routing process
(RoutingControl.start(),SplitControl.start());

-‐ it connects the application traffic to UDP_PORT
(RPLUDP.bind(UDP_PORT))

event void
RPLUDP.recvfrom()

The event manages the reception of an application
packet.

event void Timer.fired() It defines the length of the experiment. If the TinyOS
code is running by the root, the duration is equal to the
EXPERIMENT_DURATION
(MilliTimer.startOneShot(EXPERIMENT_DURATION)).
Instead if the program is running on other motes, the
event establishes the duration to send a single packet
(MilliTimer.startOneShot(PACKET_INTERVAL)).

task void sendTask() The task has the function to manage the sending of UDP
packets from the sensor nodes toward the sink node
(RPLUDP.sendto()), using RPL
(RPLRoute.getDodagId()). The destination port is
UDP_PORT (dest.sin6_port = htons(UDP_PORT))

event void
MilliTimer.fired()

This event is linked to previous Timer.fired(). If the
simulation life is finished, also the experiment is finished
too; otherwise if the nodes have not finished the sending
of their packets, the time simulation is extended in order
to deliver the remaining messages
(MilliTimer.startOneShot(PACKET_INTERVAL + (call
Random.rand16() % 100)), post sendTask)

event void
SplitControl.stopDone()

When the simulation is finished, the root shows the
results of the experiment.

P a g e 	 |85	
	 	
	
Section B – Details Generation XML

The section presents the structure of the methods that have the function to create the

XML files, from the metrics data. The metrics data are placed in the vector defined in

line 3.

The change from the metrics data to XML is made possible by the classes of the

packet org.jdom.output 16.

	

Section C – Details Radio Power Level in UDGM
	
The	 section	 illustrates	 how	 the	 radio	 power	 level	 is	 calculated	 for	 the	 motes	 of	
the	 radio	 connection,	 generated	 by	 the	 UDGM.	
	
For a destination node the signal strength is obtained considering the following code

line.

signalStrength = AbstractRadioMedium.SS_STRONG + distFactor *

*(AbstractRadioMedium.SS_WEAK - AbstractRadioMedium.SS_STRONG)

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
16 Java packet – Documentation in http://www.jdom.org/docs/apidocs/org/jdom/output/package-summary.html

1 If (id_metric = 1)

2 <Root>

3 for i=1 to vector(Storing).size

4 if (vector[i] contains id_metric)

5 if (NodeMetric)

6 <ITEM Mote=X Time=Y Value=Z>

7 </ITEM>

8 else if (CoupleMetric)

9 <ITEM Source = X Destination = Y Time = Z Value = A>

10 </ITEM>

11 </Root>

 else if id_metric = 2

 ……...

 else if id_metric = 3

	
	

P a g e 	 |86	
	 	
	
where:

-‐ AbstractRadioMedium.SS_STRONG is an AbstractRadioMedium constant, that

indicates the maximum power level with value -10 dB;

-‐ distFactor is equal to (distance between this node and source node of the

connection)/(distance of the maximum transmission)

-‐ AbstractRadioMedium.SS_WEAK is an AbstractRadioMedium constant, that

represents a weak power level with value -95 dB;

-‐ AbstractRadioMedium.SS_STRONG is an AbstractRadioMedium constant, that

represents a switched-off power level with value -100 dB.

On the contrary, the signal strength for an interfered node is obtained through this

code.

If (distFactor < 1)

 signalStrength is the same value of the previous power level

else

 signalStrength = AbstractRadioMedium.SS_WEAK

	 	 	
	
	
Section D - Installation Metrics Collection Tool In Cooja

Plugin Components

As mentioned in the section 3.2, the plugin components are located in the directory

plugins.

In plugins the directory sixlowpan_metrics will be created containing the following
files:

-‐ Capture.java
-‐ Chart.java
-‐ Create_Table.java
-‐ FormatCode.java
-‐ GUI_L1/SelectMetricL1.java
-‐ GUI_L2/SelectMetricL2.java
-‐ GUI_L3/SelectMetricL3.java
-‐ Info_Metrics_Couple.java
-‐ Info_Metrics_Node.java
-‐ Info_Statistics.java

P a g e 	 |87	
	 	
	

-‐ JTableButtonMouseListener
-‐ JTableButtonRenderer
-‐ Metric_Table.java
-‐ Plugin_Metrics_No_Gui.java
-‐ Plugin_Metrics.java
-‐ SaveChart.java
-‐ Statistics.java
-‐ Storing.java
-‐ Throughput_Tx.java
-‐ XML_Save.java

The extension to COOJA leads to the design of new classes in the directory

plugins/analyzers and in the directory cooja.

In analyzers the following classes will be added:

-‐ Analyzer_802154.java

-‐ Analyzer_6LoWPAN.java

Instead, in cooja the directory sixlowpan is created, containing the java files reported

below:

-‐ generate_frame_datagram.java
-‐ Datagrams/Datagram.java
-‐ Datagrams/Frame.java
-‐ Datagrams/Hop.java
-‐ Datagrams/Headers/COAPHeader.java
-‐ Datagrams/Headers/CTPHeader.java
-‐ Datagrams/Headers/FrameHeader.java
-‐ Datagrams/Headers/Header.java
-‐ Datagrams/Headers/IPV6Header.java
-‐ Datagrams/Headers/TCPHeader.java
-‐ Datagrams/Headers/UDPHeader.java
-‐ Nodes/Node.java
-‐ Nodes/Queue.java
-‐ Nodes/EndPoint/COAPEndPoints.java
-‐ Nodes/EndPoint/CTPEndPoints.java
-‐ Nodes/EndPoint/EndPoints.java
-‐ Nodes/EndPoint/Frame154EndPoints.java
-‐ Nodes/EndPoint/IPV6EndPoints.java

P a g e 	 |88	
	 	
	

-‐ Nodes/EndPoint/TCPEndPoints.java
-‐ Nodes/EndPoint/UDPEndPoints.java

The work project, listed above, is maintained in a server of the Department of

Information Engineering of the University of Padua.

The link to access is https://telecom.dei.unipd.it/tlcrepos/castellani/iot/metricCooja/.	 	 	

	
Include the plugin in COOJA

Accede to the directory config, placed in the path contiki/tools/cooja and modify the

files cooja_applet.config and cooja_default.config.

In the files you have to add the rows

se.sics.cooja.plugins.sixlowpan.metrics.Plugin_Metrics and

se.sics.cooja.plugins.sixlowpan.metrics.Plugin_Metrics_No_Gui in the section

se.sics.cooja.GUI.PLUGINS.

In this way, the plugin will be active in COOJA with or without GUI.

	
	

P a g e 	 |89	
	 	
	
Section E – Statistics Values

This section contains the values of the statistics calculated by the metrics collection

tool.

	

	

	 	 	 	 Average delay end-to-end Packet loss rate	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Data Rate
(packets/s)

Value (ms)

1 91
1,5 83,71
2 183,50
2,5 169,512
3 328,10
3,5 821,74
4 907,12
4,5 1474,05
5 1632,74
5,5 1585,80
6 1284,53
6,5 1552,42
7 1701,46
7,5 1396,12
8 1499,63
8,5 1466,76
9 1524,02
9,5 1802,82
10 1325,44
10,5 1591,77
11 1728,13

Data Rate
(packets/s)

Value

1 0,0156
1,5 0,0240
2 0,0293
2,5 0,0402
3 0,0485
3,5 0,0699
4 0,0831
4,5 0,1056
5 0,1971
5,5 0,2408
6 0,3191
6,5 0,5080
7 0,5905
7,5 0,6207
8 0,6039
8,5 0,6519
9 0,6601
9,5 0,6655
10 0,7072
10,5 0,6964
11 0,6872

P a g e 	 |90	
	 	
	
 Throughput in reception Throughput in transmission	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	 	 	 	

	

	

	

	

	

	
	
	
	

Data Rate
(packets/s)

Value (bits/s)

1 2719
1,5 3971
2 5140
2,5 6252
3 7310
3,5 8341
4 9078
4,5 9681
5 9888
5,5 9545
6 8656
6,5 8141
7 5691
7,5 6517
8 6260
8,5 6463
9 6566
9,5 6041
10 6163
10,5 6376
11 6077

Data Rate
(packets/s)

Value (bits/s)

1 2772
1,5 4062
2 5286
2,5 6508
3 7667
3,5 8772
4 9843
4,5 10935
5 11862
5,5 12923
6 13708
6,5 14566
7 15600
7,5 16253
8 17010
8,5 17715
9 18543
9,5 19169
10 19987
10,5 20558
11 21211

P a g e 	 |91	
	 	
	

References

[1] JeongGil Ko and Andreas Terzis, Johns Hopkins University, Stephen Dawson,

Haggerty and David E. Culler, University of California at Berkeley, Jonathan W. Hui,

Cisco Systems, Inc. Philip Levis, Stanford University, “Connecting Low-Power and

Lossy Networks to the Internet”, IEEE Communications Magazine, April 2011.

[2] Carsten Bormann, JP Vasseur and Zack Shelby, “The Internet of Things”, IETF

Journal, vol. 6, no. 2, November 2010.

[3] IEEE standard 802.15.4, June 2006.

[4] T. Narten, IBM, E. Nordmark, Sun Microsystems, W. Simpson, Daydreamer, H.

Soliman, Elevate Tehnologies, “Neighbor discovery for IP version 6 (IPv6)”, IETF

RFC 4861, September 2007.

[5] T. Winter, Ed., P. Thubert, Ed., Cisco Systems, A. Brandt, Sigma Designs, T.

Clausen, LIX, Ecole Polytechnique, J. Hui, Arch Rock Corporation, R. Kelsey, Ember

Corporation, P. Levis, Stanford University, K. Pister, Dust Networks, R. Struik, JP.

Vasseur, Cisco Systems, “RPL: IPv6 Routing Protocol for Low power and Lossy

Networks”, draft-ietf-roll-rpl-19, March 2011.

[6] D. S. J. De Couto et al., “A High-Throughput Path Metric for Multi-Hop Wireless

Routing”, Proc. 9th ACM lnt’l. Conf. Mobile Computing and Networking, San Diego,

California, USA, September 2003.

[7] TinyOS site, http://www.tinyos.net/.

[8] Martin Stehlìk, Master Thesis, Masaryk University, “Comparison of Simulators

for Wireless Sensor Networks”, Spring 2011.

P a g e 	 |92	
	 	
	
[9] R. Droms, Ed., Cisco, J. Bound, Hewlett Packard, B.Volz, Ericsson, T. Lemon,

Nominum, C.Perkins, Nokia Research Center, M. Carney, Sun Microsystems,

“Dynamic Host Configuration Protocol for IPv6 (DHCPv6)”, IETF RFC 3315, July

2003.

[10] R. Hinden, Nokia, S. Deering, Cisco Systems, “IP Version 6 Addressing

Architecture”, IETF RFC 3513, February 2006.

[11] G. Montenegro, Microsoft Corporation, N. Kushalnagar, Intel Corp, J. Hui, D.

Culler, Arch Rock Corp, “Transmission of IPv6 packets over IEEE 802.15.4

Networks”, IETF RFC 4944, September 2007.

[12] Contiki site, http://www.contiki-os.org/.

[13] Fredrik Österlind, Adam Dunkels, Joakim Eriksson, Niclas Finne, Thiemo Voigt,

Swedish Institute of Computer Science, “Cross-Level Sensor Network Simulation

with COOJA”, In proceeding of the First IEEE International Workshop on Practical

Issues in Building Sensor Network Applications, Tampa, Florida, USA, November

2006.

[14] G. Wittenburg and J. Schiller, “Running realworld software on simulated

wireless sensor nodes”, In Proc. of the ACM Workshop on Real-World Wireless

Sensor Networks (ACM REALWSN’06), Uppsala, Sweden, June 2006.

[15] P. Levis, N. Lee, M. Welsh, and D. Culler, “Tossim: accurate and scalable

simulation of entire tinyos applications”, In Proceedings of the first international

conference on Embedded networked sensor systems, pages 126–137, New York, NY,

USA, 2003.

[16] B. Titzer, D. K. Lee, and J. Palsberg, “Avrora: scalable sensor network

simulation with precise timing”, In International Conference on Information

Processing in Sensor Networks (IPSN), IEEE Press Piscataway, NJ, USA, 2005.

P a g e 	 |93	
	 	
	
[17] Joakim Eriksson, Adam Dunkels, Niclas Finne, Fredrik Österlind, Thiemo Voigt,

Nicola Tsiftes, Swedish Institute of Computer Science, “Demo Abstract: MSPsim –

an Extensible Simulator for MSP430-equipped Sensor Boards”, In Proceedings of the

5th European Conference on Wireless Sensor Networks (EWSN 2008), Bologna,

Italy, January 2008.

[18] Joakim Eriksson, Fredrik Österlind, Niclas Finne, Nicolas Tsiftes, Adam

Dunkels, Thiemo Voigt, Swedish Institute of Computer Science, Robert Sauter, Pedro

José Marrón, University of Bonn and Fraunhofer IAIS, “Demo Abstract: Towards

Interoperability Testing for Wireless Sensor Networks with COOJA/MSPSim”, In:

6th European Conference on Wireless Sensor Networks (EWSN), Cork, Ireland, 11-

13 Feb 2009.

[19] Carlo Alberto Boano and Kay Römer, Universität zu Lübeck, Lübeck, Germany -

Fredrik Österlind and Thiemo Voigt, Swedish Institute of Computer Science Kista,

Stockholm, Sweden, “Demo Abstract: Realistic Simulation of Radio Interference in

COOJA”, In European Conference on Wireless Sensor Networks (EWSN 2011),

Bonn, Germany, February 2011.

[20] Fredrik Österlind, Joakim Eriksson, Adam Dunkels, Swedish Institute of

Computer Science, “Demo Abstract: Cooja TimeLine: A Power Visualizer for Sensor

Network Simulation”, In Proceeding of the 8th ACM Conference on Embedded

Networked Sensor Systems, New York, NY, USA, 2010

[21] Eriksson, Joakim and Österlind, Fredrik and Voigt, Thiemo and Finne, Niclas

and Raza, Shahid and Tsiftes, Nicolas and Dunkels, Adam, “Demo abstract: accurate

power profiling of sensornets with the COOJA/MSPSim simulator”, In: Sixth IEEE

International Conference on Mobile Ad-hoc and Sensor Systems (IEEE MASS 2009),

12-15 Oct 2009, Macau SAR, P.R.C..

[22] Richard Huber, Philipp Sommer, and Roger Wattenhofer, Computer Engineering

and Networks Laboratory ETH Zurich, Switzerland, “Demo Abstract: Debugging

Wireless Sensor Network Simulations with YETI and COOJA”, In: 10th ACM/IEEE

P a g e 	 |94	
	 	
	
International Conference on Information Processing in Sensor Networks (IPSN),

Chicago, IL, USA, April 2011.

[23] Rodrigo Fonseca, Omprakash Gnawali, Kyle Jamieson, Sukun Kim, Philip Levis,

and Alec Woo, “tiny OS page for CTP”, http://www.tinyos.net/tinyos-

2.x/doc/html/tep123.html, 2006–2007.

	
	
	
	
	
	

