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Introduction

Let π : X → P1 be a non-costant elliptic surface defined over Q with a section. A generic
fibre E is an elliptic curve over the function field Q(t) hence we can consider the group
of Q(t)-rational points of E. Each section σ : C → S is in bijective correspondence with
a Q(t)-rational point of a generic fibre of π. Since Q(t) is finitely generated over Q, the
Mordell–Weil Theorem is still valid in this context (Lang-Néron), hence the set of Q(t)-
rational points of E is a finitely generated abelian group and is called the Mordell-Weil
group MW(X, π).
Since all but finitely many fibers of π are elliptic curves, it is interesting to study the
relationship between the Mordell-Weil rank of the surface and the rank of the fibres.
Silverman’s specialization theorem [10] states that for almost all specializations at
b ∈ P1(Q), the rank of the associated elliptic curve defined over Q is at least rkMW(X,π).
In other words, for all but finitely many b ∈ P1(Q) the fibre Xb is an elliptic curve with
rkXb(Q) ≥ rk MW(X,π). Consider now the follwing two sets

I(X, π) = {b ∈ P1(Q) : Xb elliptic curve rkXb(Q) > rkMW(X, π)},

N (X, π) = {b ∈ P1(Q) : Xb elliptic curve rkXb(Q) = rkMW (X, π)},

of points b ∈ P1(Q) where the rank jumps and where it does not jump respectively. The
question is whether these sets are infinite.

The infinitude of I(X, π) has been the focus of extensive research. Salgado, in [12],
provides an example involving k-unirational elliptic surfaces over number fields. In [14]
Cassels and Schinzel construct an elliptic surface over a global field K using quadratic
twists, where rkMW(X, π) < rk(Et) for all but finitely many t ∈ P1(K). However, this is
an example of an isotrivial surface, while our interest lies in non-isotrivial surfaces. For
non-isotrivial surfaces, Silverman formulated the so-called density conjecture in [15],
which states: Let π : X → P1(Q) a non-isotrivial elliptic surface then

rkXb ∈ {rkMW(X, π), rkMW(X, π)+1}

for all b ∈ P1(Q) outside a set of density 0 in P1(Q). Let us consider the case where
rkMW(X) = 0. Assuming the density conjecture, one can reasonably expect the follow-
ing:

Conjecture 1. Let π : X → P1(Q) a non-isotrivial elliptic surface with rkMW(X) = 0.
Then there are infinitely many b ∈ P1(Q) with rkXb(Q) = 0.

At present, there is no known example of a non-isotrivial elliptic surface with an
infinite N (X, π). In [5], Caro and Pasten construct an example under the assumption

5



of the Lenstra–Pomerance–Wagstaff conjecture on the infinitude of Mersenne primes.
In particular, they analyze the non-isotrivial Legendre elliptic surface defined by the
Weierstrass equation

y2 = x(x+ 1)(x+ t),

which is known to have rkMW(X, π) = 0. Using t = 2q where q ∈ N, q ≥ 5 and 2q − 1
is a Mersenne prime, they show that the rank of the associated fiber is always 0. This
provides an example, albeit strongly dependent on specific conditions. It is thus natural
to explore alternative methods for identifying surfaces with this property. In this thesis
we show that the non-isotrivial elliptic surface π : Y → P1 defined over Q by the affine
Weierstrass equation

y2 = x(x− (t− 2))(x− t)

has the desired property, conditional on the existence of infinitely many twin primes.
Remarkably, both cases reveal a deep connection between the properties of specific prime
families and the behavior of ranks in the associated elliptic surfaces. Thus, proving the
infinitude of Mersenne primes or twin primes would have profound implications across
various fields of mathematics.
The thesis is organized as follows: the first chapter reviews the theory of elliptic curves,
following [1]. The focus is on studying the rank of elliptic curves using the descent method
and the parity conjecture. The second chapter covers elliptic surfaces, the Mordell-Weil
rank, and Tate’s algorithm. The main results are presented in the third chapter while the
appendix provides additional details on key tools used in the proofs. In chapter 3, we show
that under the assumption of Conjecture 2, both I(Y, π) N (Y, π) are infinite. The final
section collects observations and conjectures on the distribution of twin prime pairs in
N, illustrating how elliptic surface theory enhances our understanding of natural number
structures. This interplay between different mathematical fields often leads to unexpected
and profound insights, offering a glimpse into a deeper dimension of knowledge.
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Chapter 1

Elliptic curves

In this chapter we we discuss the basic theory of elliptic curves.

1.1 Weierstrass equation

Let K be a field and K̄ be an algebraic closure of K.

Definition 1.1.1. An elliptic curve over K written E/K is a smooth, projective, alge-
braic curve of genus 1 together with a point O ∈ E(K).

The Riemann-Roch theorem gives us the possibility to define an elliptic curve over a
field in another way:

Definition 1.1.2. An elliptic curve over a field K is a nonsingular projective plane curve
of the form

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3.

It is called Weierstrass equation where a1, a2, a3, a4, a6 ∈ K. Moreover O = [0, 1, 0] is
the base point.

In general we deal with the Weierstrass equation with inhomogeneous coordinates
x = X/Z and y = Y/Z,

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6. (1.1)

Theorem 1.1.3. When char K̄ ̸= 2, 3, every elliptic curve E/K is isomorphic to a curve
of non-homogeneous form

E : y2 = x3 + ax+ b, a, b ∈ K. (1.2)

Proof. Completing the square we can simplify the equation 1.1. Thus by substitution

y 7−→
1

2
(y − a1x− a3),

we obtain an equation of the form

E : y2 = 4x3 + b2x
2 + 2b4x+ b6,
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where
b2 = a1 + 4a2, b4 = 2a4 + a1a4, b6 = a23 + 4a6.

Now we apply the following change of variables

(x, y) 7−→
(x− 3b2

36
,
y

108

)

to eliminate the x2 term, yelding the simpler equation

y2 = x3 − 27c4x− 54c6. (1.3)

We also define the following quantities:

• b8 = a21a6 + 4a2a6 − a1a3a4 + a2a
2
3 − a

2
4,

• c4 = b22 − 24b4,

• c6 = −b
3
2 + 36b2b4 − 216b6,

• ∆ = −b22b8 − 8b34 − 27b26 + 9b2b4b6,

• j = c34/∆.

Definition 1.1.4. The quantity ∆ = −b22b8− 8b34− 27b26 +9b2b4b6 is the discriminant of
the Weierstrass equation, the quantity j is the j − invariant of the elliptic curve.

The discriminant of an elliptic curve is really important in order to determine singular
elliptic curves.

Remark 1.1.5. Let E/K an elliptic curve over a field K and P = (x, y) which satisfies
a Weierstrass equation

E : f(x, y) = y2 + a1xy + a3y − x
3 + a2x

2 + a4x+ a6 = 0.

P is a singular point if and only if

∂f

∂x
(P ) = 0 and

∂f

∂y
(P ) = 0.

If a curve has a singular point then it is called a singular curve.

It follows that there are α, β ∈ K̄ such that the Taylor series expansion of f(x, y) at
P has the form

f(x, y)− f(x0, y0) = ((y − y0)− α(x− x0))((y − y0)− β(x− x0))− (x− x0)
3.

Definition 1.1.6. With notation as above, the singular point P is a node if α ̸= β. In
this case, the lines

(y − y0)− α(x− x0) and (y − y0)− β(x− x0)

are the tangent lines at P . Conversely if α = β, we say that P is a cusp, in which case
the tangent line at P is given by

y − y0 = α(x− x0).

8



Proposition 1.1.7. The curve given by a Weierstrass equation satisfies:

(a) It is nonsingualar if and only if ∆ ̸= 0.

(b) It has a node if and only if ∆ = 0 and c4 ̸= 0.

(c) It has a cusp if and only if ∆ = c4 = 0.

In cases (b) and (c) there is only one singular point.

Proof. See [1, Proposition III.1.4].

1.2 The Group Law

Let E be an elliptic curve given by a Weierstrass equation together with O = [0, 1, 0] at
infinity. We define an operation to endow the curve with the group structure.

Definition 1.2.1. Let P,Q ∈ E, L the line through P and Q and let R be the third
point of intersection of L with E. Let l the line through R and O. Then l intersects E
at R, O and a third point. We denote that third point by P ⊕Q.

Remark 1.2.2. Note that this definition rely on Bezout’s theorem which guarantee that
R exists and is unique.

Proposition 1.2.3. The composition law has the following properties:

(a) If a line L intersect E at the (non necessarily distinct) points P ,Q,R then

(P ⊕Q)⊕R = O.

(b) P ⊕O = P for all P ∈ E.

(c) P ⊕Q = Q⊕ P for all P,Q ∈ E.

(d) Let P ∈ E. There is a point of E, denoted by (−P ), satisfying

P ⊕ (−P ) = O.

(e) Let P ,Q,R ∈ E. Then

(P ⊕Q)⊕R = P ⊕ (Q⊕R).

E endowed with the composition law has the structure of abelian group and O is the
identity element.

Proof. All the points are easy except for the associativity (e). For a detailed proof see
[1, Proposition III.2.2].

Definition 1.2.4. Let E be a (possibly singular) curve given by a Weierstrass equation.
The nonsingular part of E, denoted by Ens, is the set of nonsingular points of E. Similarly,
if E is defined over K, then Ens(K) is the set of nonsingular points of E(K).
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Proposition 1.2.5. Let E be a curve given by a Weierstrass equation with ∆ = 0, so E
has a singular point S. Then the composition law makes Ens into an abelian group.

(a) Suppose that E has node, so c4 ̸= 0, and let

y = α1x+ β1 and y = α2x+ β2

be the distinct tangent lines to E at S. Then the map

Ens −→ K̄∗, (x, y) 7−→
y − α1x− β1
y − α2x− β2

is an isomorphism of abelian groups.

(b) Suppose that E has node, so c4 = 0, and let

y = αx+ β

be the tangent line to E at S. Then the map

Ens −→ K̄+, (x, y) 7−→
x− x(S)

y − αx− β

is an isomorphism of abelian groups.

Proof. [1, Proposition III.2.5].

Notation 1. From now on indicate the group operation with the usual +. For m ∈ Z
and P ∈ E, we let

[m]P = P + ...+ P, |m| times and m > 0,

[m]P = −P − P − P |m| times and m < 0,

[0]P = O.

Definition 1.2.6. Let E an elliptic curve and let m ∈ Z with m ≥ 1. The
m− torsion subgroup of E, denoted by E[m], is the set of points of E of order m,

E[m] =
{
P ∈ E : [m]P = O

}
.

The torsion subgroup of E, denoted by Etors, is the set of points of finite order,

Etors =
∞⋃

m=1

E[m].

If E is defined over K, then Etors(K) denotes the points of finite order in E(K).
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1.3 Isogenies

Definition 1.3.1. Let E1 and E2 be elliptic curves. An isogeny form E1 to E2 is a
morphism

ϕ : E1 → E2 satysfing ϕ(O) = O.

Two elliptic curves are isogenous if there is an isogeny from E1 to E2 with
ϕ(E1) ̸= {O}.

Example 1.3.2. For each m ∈ Z we define the multiplication− by −m isogeny

[m] : E → E

in the natural way (See Notation 1).

Theorem 1.3.3. Let
ϕ : E1 −→ E2

be an isogeny. Then

ϕ(P +Q) = ϕ(P ) + ϕ(Q) for all P,Q ∈ E1.

Proof. See [1, Theorem III.4.8].

Corollary 1.3.4. Let ϕ : E1 → E2 be a nonzero isogeny. Then

kerϕ = ϕ−1(O)

is a finite group.

Proof. From 1.3.3 we deduce that it is a subgroup of E1 and it is of finite order
[1, Proposition III.2.6a].

Now we define the degree of an isogeny and then isogenies called the dual isogenies.
If ϕ : E1 −→ E2 is non constant then we can define an injective map as follows:

ϕ∗ : K(E2) −→ K(E1), ϕ∗f := f ◦ φ.

Because of [1, Theorem II.2.4], K(E1) is a finite extension of ϕ∗(K(E2)) therefore we
can give the following definition:

Definition 1.3.5. Let ϕ : E1 −→ E2 be an isogeny. If ϕ is constant, we define the degree
of ϕ to be 0, otherwise

deg(ϕ) = [K(E1) : ϕ
∗(K(E2))].

Theorem 1.3.6. Let ϕ : E1 −→ E2 be a noncostant isogeny of degree m. Then there
exist a unique isogeny

ϕ̂ : E2 −→ E1 satisfying ϕ̂ ◦ ϕ = [m].

Proof. See [1, Theorem III.6.1].
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Definition 1.3.7. Let ϕ : E1 → E2 be an isogeny. The dual isogeny to ϕ is the isogeny

ϕ̂ : E2 → E1.

given in Theorem 1.3.6.

Theorem 1.3.8. Let

ϕ : E1 → E2

be an isogeny.

(a) Let m = degϕ. Then

ϕ̂ ◦ ϕ = [m] on E1 and ϕ ◦ ϕ̂ = [m] on E2.

(b) λ : E2 → E3 be another isogeny. Then

λ̂ ◦ ϕ = ϕ̂ ◦ λ̂.

(c) Let ψ : E1 → E2 be another isogeny. Then

ϕ̂+ ψ = ϕ̂+ ψ̂.

(d) For all m ∈ Z,

[̂m] = [m] deg[m] = m2.

(e) deg ϕ̂ = degϕ.

(f) ˆ̂ϕ = ϕ.

Proof. If ϕ is constant then the entire theorem is trivial, and similarly (b) and (c) are
trivial if λ or ψ is constant. We may assume that all isogenies are nonconstant.

(a) The first statement is the defining property of ϕ̂. For the second consider

(ϕ ◦ ϕ̂) ◦ ϕ = ϕ ◦ [m] = [m] ◦ ϕ.

hence ϕ ◦ ϕ̂ = [m] since ϕ is not constant.

(b) Let n = deg λ, we have

(ϕ̂ ◦ λ̂) ◦ (λ ◦ ϕ) = ϕ̂ ◦ [n] ◦ ϕ = [n] ◦ ϕ̂ ◦ ϕ = [nm].

The uniqness statement in Theorem 1.3.6 implies that

ϕ̂ ◦ λ̂ = λ̂ ◦ ϕ.

(c) See [1, Theorem III.6.2c].
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(d) This is true for m = 0 by definition, and easily true for m = 1. Using (c) with
ϕ = [m] and ψ = 1 yields

̂[m+ 1] = [̂m] + [̂1],

and ascending and descending induction shows that [̂m] = [m] holds for all m.
Now let d = deg[m] and consider the multiplication-by-d map. Thus using the

definition of dual isogeny and [m] = [̂m], we obtain

[d] = [̂m] ◦ [m] = [m2].

The endomorphism ring of an elliptic curve is a torsion free Z-module ([1], Propo-
sition 4.2) hence it follows that d = m2.

(e) Let m = degϕ. Using (d) and (a), we find that

m2 = deg[m] = deg(ϕ ◦ ϕ̂) = (degϕ)(deg ϕ̂) = m(deg ϕ̂).

Hence m = deg ϕ̂.

(f) Again m = degϕ. We easily obtain the statement by (a), (b), and (d).

Corollary 1.3.9. Let E an elliptic curve and let m ∈ Z with m ̸= 0.

(a) deg[m] = m2.

(b) If m ̸= 0 in K, i.e. if either char(K) = 0 or p = char(K) > 0 and p ∤ m then

E[m] =
Z
mZ
×

Z
mZ

.

(c) If char(K) = p > 0 then one of the following is true:

• E[pe] = {O} for all e ∈ N.

• E[pe] = Z
peZ for all e ∈ N.

Proof. See [1, Corollary III.6.4].

1.4 The Weil Pairing

Definition 1.4.1. The divisor group of a curve C, denoted by Div(C), is the free abelian
group generated by the points of C. Thus a divisor D ∈ Div(C) is a formal sum

D =
∑

P∈C

nP (P ).

Where nP ∈ Z and nP = 0 for all but finitely many P ∈ C. The degree of D is defined
by

degD =
∑

P∈C

nP .
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The Divisors of degree 0 form a subgroup of Div(C), which we denote by

Div0(C) =
{
D ∈ Div(C) : degD = 0

}
.

If C is defined over K, we let GK̄/K act on Div(C) by

Dσ =
∑

P∈C

nP (P
σ).

Then D is defined over K if Dσ = D for all σ ∈ GK̄/K . We denote the group of divisors

defined over K by DivK(C), and similarly Div0K(C). Assume now that the curve C is
smooth, and let f ∈ K(C)∗. Then we can associate to f the divisor div(f) given by

div(f) =
∑

P∈C

ordP (f)(P ).

This is a divisor. If σ ∈ GK̄/K , then it is easy to see that

div(fσ) = (div(f))σ.

Definition 1.4.2. A divisor D ∈ Div(C) is principal if it has the form D = div(f) for
some f ∈ K̄(C)∗. Two divisors are linearly equivalent written D1 ∼ D2 if D1 − D2

is principal. Moreover we define the Picard Group Pic(C) as the quotient of Div(C)
with the subgroup of principal divisors. Finally, we write the quotient of Div0(C) by the
subgroup of principal divisors as Pic0(C).

Proposition 1.4.3. Let C be a smooth curve and let f ∈ K̄(C)∗.

1. div(f) = 0 if and only if f ∈ K̄∗.

2. deg(div(f)) = 0.

Proof. See [1, Proposition II.3.1].

Now we give a corollary useful in the definition of Weil-Pairing.

Corollary 1.4.4. Let C/K a curve over the field K and let D =
∑

P∈E nP (P ) be a
divisor of degree 0. Then D is a principal divisor if and only if

∑

P∈E

[nP ]P = O.

Proof. See [1, Proposition II.3.4], and [1, Corollary II.3.5].

We are finally ready to describe the Weil-Pairing. Let E/K be an elliptic curve and
m ≥ 2 an integer which we assume to be prime to p = char(K) if p > 0. From the
previous section we know that the group of m-torsion points E[m] has the form

E[m] ∼= Z/mZ× Z/mZ.

The aim of this section is to define a bilinear pairing which is Galois invariant.
Let T ∈ E[m]. Then there is a function f ∈ K̄(E) satisfying

div(f) = m(T )−m(O).
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Now take T
′

∈ E to be a point with [m]T
′

= T . Then there is a similar function g ∈ K̄(E)
satisfying

div(g) = [m]∗(T )− [m]∗(O) =
∑

R∈E[m]

(T
′

+R)− (R).

It is easy to verify that the functions f ◦ [m] and gm have the same divisor, so multiplying
f by an appropriate constant from K̄∗, we may assume that

f ◦ [m] = gm.

Now let S ∈ E[m] be another m-torsion point, where we allow S = T . Then for any
point X ∈ E we have

g(X + S)m = f([m]X + [m]S) = f([m]X) = g(X)m.

Thus considered as a function of X, the function g(X + S)/g(X) takes on only finitely
many values, i.e., for every X, it is an m-th root of unity. In particular, the morphism

S → g(X + S)/g(X)

is constant (for further details see [1].III.8). We can define the Weil − Pairing as

em : E[m]× E[m] −→ µm

by setting

em(S, T ) =
g(X + S)

g(X)
,

where X ∈ E is any point such that g(X + S) and g(X) are both defined and nonzero.
We use µm to indicate the group of mth roots of unity.

Proposition 1.4.5. The Weil em − pairing has the following properties:

1. It is bilinear:
em(S1 + S2, T ) = em(S1, T ) + em(S2, T )

em(S, T1 + T2) = em(S, T1) + em(S, T2).

2. It is nondegenerate:

If em(S, T ) = 1 for all S ∈ E[m], then T = O.

3. It is Galois invariant:

em(S, T )
σ = em(S

σ, T σ) for all σ in GK̄/K .

Proof. See [1, Proposition III.8.1].

Corollary 1.4.6. There exist points S, T ∈ E[m] such that em(S, T ) is a primitive mth

root of unity. In particular, if E[m] ⊂ E(K), then µm ⊂ K∗.

Proof. If S, T ∈ E[m] then em(S, T ) ⊂ µm, for example equal to µl. It follows that

1 = em(S, T )
l = em([l]S, T ) ∀ S, T ∈ E[m].

The nondegeneracy of Weil Pairing implies that [l]S = O for every S ∈ E[m]. Thus
E[m] ⊂ E[n], from Corollary 1.3.9 we get that l = n. Suppose now that E[m] ⊂ E(K),
the Galois invariance of the em-pairing implies that em(S, T ) ∈ K

∗ for all S, T ∈ E[m]
hence we get the desired result.
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1.5 Reduction of an elliptic curve

In this section we indicate K a local field complete respect to a discrete valuation ν. R
will be the ring of integer of K, M the maximal ideal of R, π a uniformizer for R and
k = R/M the residue field of R. Furthermore we assume that ν(π) = 1 and both K and
k are perfect fields. Let E/K be an elliptic curve with a Weierstrass equation.

E/K : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

After the substitution (x, y)→ (u−2x, u−3y) we get

E/K : y2 + ua1xy + u3a3y = x3 + u2a2x
2 + u4a4x+ u6a6.

By choosing u properly we obtain a Weierstrass equation with all coefficients in R. Con-
sequently, the discriminant ∆ of the Weierstrass equation satisfies ν(∆) ≥ 0. Now we are
ready to define the minimal Weierstrass equation.

Definition 1.5.1. Let E/K be an elliptic curve. A Weierstrass equation for E is called
minimal Weiestrass equation for E at ν if ν(∆) is minimized subject to the condition
that a1, a2, a3, a4, a6 ∈ R. This minimal value of ν(∆) is called the valuation of minimal
disciminant of E at ν.

Proposition 1.5.2. Every elliptic curve E/K has minimal Weierstrass equation.

Proof. It is enough to find some Weierstrass equations with all ai ∈ R and search for one
that minimize ν(∆). The existence is due to the fact that ν has only discrete values.

We now introduce the operation of ”reduction modulo π” which we denote by a tilde.

Definition 1.5.3. Let E/K an elliptic curve with his minimal Weiestrass equation.
Reducing his coefficients modulo π we obtain a equation over k:

Ẽ : y2 + ã1xy + ã3y = x3 + ã2x
2 + ã4x+ ã6.

The curve Ẽ/k is called the reduction of E modulo π.

Definition 1.5.4. Let E/K be an elliptic curve, and let Ẽ/k be the reduction modulo
π of a minimal Weiestrass equation for E/K.

(a) E/K has good reduction if Ẽ/k is smooth.

(b) E/K has multiplicative reduction if Ẽ/k has a node.

(c) E/K has additive reduction if Ẽ/k has a cusp.

In both cases (b) and (c) we say E/K has bad reduction. If E has multiplicative reduction,
then the reduction is said to be split if the slopes of the tangent lines at the node are in
k, and otherwise it is said to be nonsplit.

The following proposition plays a crucial role in order to understand the structure of
the Mordell-Weil group of an elliptic curve.
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Proposition 1.5.5. Let E/K be an elliptic curve be an elliptic curve and let m ≥ 1 be
an integer that is relatively prime to char(k) and assume further that the reduced curve
is non-singular. Then the reduction map

E(K)[m]→ Ẽ(k)

is injective, where E(K)[m] denotes the set of points of order m in E(K).

Proof. From [1, Proposition VII.3.1a], we deduce that

E1(K) = {P ∈ E(K) : P̃ = Õ}

has no nontrivial points of order m. If we assume that Ẽ is nonsingular, then

E0 = {P ∈ E(K) : P̃ ∈ Ẽns(k)}

results to be equal to E(K) and Ẽns(k) = Ẽ(k), so m-torsion of E(K) injects into
Ẽ(k).

Proposition 1.5.6. Let E/K be an elliptic curve given by a minimal Weierstrass equa-
tion

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

Let ∆ be the discriminant of this equation, and let c4 be the usual expression involving
a1, ....., a6.

(a) E has good reduction if and only if ν(∆) = 0. In this case Ẽ/k is an elliptic curve.

(b) E has multiplicative reduction if and only if ν(∆) > 0 and ν(c4) = 0, i.e. ∆ ∈ M
and c4 ∈ R

∗. In this case

Ẽns(k) ∼= k̄∗.

(c) E has additive reduction if and only if ν(∆) > 0 and ν(c4) > 0, i.e. ∆, c4 ∈M. In
this case

Ẽns(k) ∼= k̄+.

Proof. Applying Proposition 1.1.7 and Proposition 1.2.5 to the reduced curve Ẽ/k we
prove all the three statements.

1.6 Elliptic curves over Global Field

In this section we briefly treat some of the main results concerning the theory of Mordell-
Weil group of an elliptic curve.
Let K be a number field and let E/K be an elliptic curve.

Theorem 1.6.1. (Mordell-Weil). The group E(K) is finitely generated.
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The proof of this theorem consists of two quite distinct parts, the so-called “weak
Mordell–Weil theorem,” and the “infinite descent” using height functions. The Mordell–Weil
theorem tells us that the Mordell–Weil group E(K) has the form

E(K) ∼= E(K)tors × Zr

where the torsion subgroup E(K)tors is finite and the rank r of E(K) is a nonnega-
tive integer. Chapter VIII of [1] gives a detailed description of the theory behind this
fundamental theorem.

Theorem 1.6.2. (Weak Mordell-Weil Theorem). Let K be a number field, let E/K be
an elliptic curve, and let m ≥ 2 be an integer. Then

E(K)/mE(K)

is a finite group.

Proof. See [1, VIII.I].

Definition 1.6.3. The Kummer Pairing

k : E(K)×GK̄/K −→ E[m]

is defined as follows. Let P ∈ E(K) and choose any point Q ∈ E(K̄) satysfing [m]Q = P .
Then

k(P, σ) = Qσ −Q,

The next result describes basic properties of the Kummer pairing.

Proposition 1.6.4. (a) The Kummer pairing is well-defined.

(b) The Kummer pairing is bilinear.

(c) The kernel of the Kummer pairing on the left is mE(K).

(d) The kernel of the Kummer pairing on the right is GK̄/L where,

L = K([m]−1E(K))

is the compositum of all fields K(Q) as Q ranges over the points in E(K̄) satisfying
[m]Q ∈ E(K).

Hence the Kummer pairing induces a perfect bilinear pairing

E(K)/mE(K)×GL/K −→ E[m].

Proof. See [1, Proposition VIII.1.2].

At the end of this section, we present some results from VIII.8 of [1] that will be
useful in the section concerning the Tate’s algorithm.

Definition 1.6.5. A global minimal Weierstrass equation for E/K is a Weierstrass
equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

for E/K such that a1, a2, a3, a4, a6 ∈ R and the discriminant ∆ of the equation satisfies
DE/K = (∆) where DE/K is the minimal discriminant of E/K.

Corollary 1.6.6. If K has class number one, then every elliptic curve E/K has a global
minimal Weierstrass equation. In particular, this is true for K = Q.

Proof. It is a direct conseguence of [1, Proposition VIII.8.2].
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1.7 Descent Procedure

For this section we let E/K be an elliptic curve and m ≥ 2 an integer, and we assume

E[m] ⊂ E(K).

Under this assumption there is a pairing

k : E(K)×GK̄/K −→ E[m]

defined by
k(P, σ) = Qσ −Q,

where Q ∈ E(K̄) is chosen to satisfy [m]Q = P . Proposition 1.6.4 states that the kernel
on the left is mE(K) so we may view k as an homomorphism

δE : E(K)/mE(K) −→ Hom(GK̄/K,E[m]),

δE(P )(σ) = k(P, σ).

We also observe that our assumption E[m] ⊂ E(K) implies that µm ⊂ K∗. This follows
from the basic properties of the Weil pairing,

em : E[m]× E[m] −→ µm.

Finally since µm ⊂ K∗, Hilbert’s Theorem 90 [1, Theorem B.2.5c] says that every homo-
morphism GK̄/K → µm has the form

σ −→
βσ

β
for some β ∈ K̄∗ satisfying βm ∈ K∗.

Theorem 1.7.1. With notations as above, there is a bilinear pairing

b : E(K)/mE(K)× E[m]→ K∗/(K∗)m

satisfying
em

(
δE(P ), T

)
= δK

(
b(P, T )

)
.

1. The pairing b is non degenerate on the left.

2. Let S ⊂ MK be the union of the set of infinite places, the set of finite primes at
which E has bad reduction, and the set of finite primes dividing m. Then the image
of the pairing lies in the following subgroup of K∗/(K∗)m:

K(S,m) =
{
b ∈ K∗/(K∗)m : ordν(b) ≡ 0 (mod m) for all ν ̸∈ S

}
.

3. The pairing b may be computed as folllows. For each T ∈ E[m], choose functions
fT , gT ∈ K(E) satisfying the conditions

div(fT ) = m(T )−m(O) and fT ◦ [m] = gmT

. Then for any point P ̸= T ,

b(P, T ) ≡ fT (P ) (mod (K∗)m).
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Proof. Hilbert’s Theorem 90 [1, Theorem B.2.5c] shows that the pairing is well-defined.
Bilinearity follows from bilinearity of the Kummer pairing and bilinearity of the Weil-
pairing.

1. In order to prove nondegeneracy on the left, we suppose that b(P, T ) = 1 for all
T ∈ E[m]. This means that for all T ∈ E[m] and all σ ∈ GK̄/K ,

em(k(P, σ), T ) = 1.

The nondegeneracy of the Weil pairing implies that k(P, σ) = 0 for all σ, and then
the properties of Krummer Pairing tell us that P ∈ mE(K).

2. In this part of the proof some theory about ramification and algebraic fields is
needed. We give as reference [1, Theorem X.1.1] and [1, VIII.I].

3. Choose Q ∈ E(K̄) and β ∈ K̄∗ satisfying

P = [m]Q and b(P, T ) = βm.

Then for all σ ∈ GK̄/K we have by definition

em(δ(P )(σ), T ) = δK(b(P, T ))(σ),

em(Q
σ −Q, T ) =

βσ

β
,

gT (X +Qσ −Q)/gT (X) = βσ/β,

gT (Q)
σ/gT (Q) = βσ/β putting X = Q.

Since δK is an isomorphism, it follows that gT (Q)
m ≡ βm (mod (K∗)m). Therefore

fT (P ) = fT ◦ [m](Q) = gT (Q)
m ≡ βm = b(P, T ) (mod (K∗)m).

Now we focus on the special case m = 2. Under the assumption that E[m] ⊂ E(K),
we may take a Weiestrass equation for E of the form

y2 = (x− e1)(x− e2)(x− e3) with e1, e2, e3 ∈ K.

The three nontrivial 2-torsion points are

T1 = (e1, 0), T2 = (e2, 0), T3 = (e3, 0).

Letting T one of these points, we claim that the associated function is fT = x− e. It is
clear that this function has the correct divisor,

div(x− e) = 2(T )− 2(O)

It is then a calculation to check that

x ◦ [2] =
(x2 − 2ex− 2e2 + 2(e1 + e2 + e3)e− (e1e2 + e1e3 + e2e3)

2y

)2
,
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so x− e1 has both of the properties needed to be fT .
Now suppose that we have chosen a pair (b1, b2) ∈ K(S, 2) ×K(S, 2) and that we want
to determine whether there is a point P ∈ E(K)/2E(K) satysfing

b(P, T1) = b1, b(P, T2) = b2.

Such a point exist if and only if there is a solution

(x, y, z1, z2) ∈ K ×K ×K
∗ ×K∗

to the system of equations

y2 = (x− e1)(x− e2)(x− e3), b1z
2
1 = x− e1, b2z

2
2 = x− e2.

We substitute the latter two equations into the former and define a new variable z3 by
y = b1b2z1z2z3, which is permissible since b1, b2, z1 and z2 take only nonzero values. This
yields the three equations

b1b2z
2
3 = x− e3, b1z

2
1 = x− e1, b2z

2
2 = x− e2.

Finally eliminating x gives the pair of equations

b1z
2
1 − b2z

2
2 = e2 − e1, b1z

2
1 − b1b2z

2
3 = e3 − e1.

Notice that if we do find a solution (z1, z2, z3), then we immediately recover the corre-
sponding point in E(K)/2E(K) using the formulas

x = b1z
2
1 + e1, y = b1b2z1z2z3.

Finally we must deal with the fact that the definition b(P, T ) = fT (P ) cannot be used
if it happens that P = T . In other words, there are two pairs (b1, b2) that do not arise
from the above procedure, namely the pairs (b(T1, T1), b(T1, T2)) and (b(T2, T1), b(T2, T2)).
These values may be computed using linearity as

b(T1, T1) = b(T1, T1 + T2)b(T1, T2)
−1

= b(T1, T3)b(T1, T2)
−1 =

e1 − e3
e1 − e2

,

and simililarly

b(T2, T2) =
e2 − e3
e2 − e1

.

We summarize everything in the following fundamental proposition.

Proposition 1.7.2. (Complete 2-Descent). Let E/K be an elliptic curve given by a
Weierstrass equation

y2 = (x− e1)(x− e2)(x− e3) with e1, e2, e3 ∈ K.

Let S ⊂ MK be a finite set of places of K including all archimedean places, all places
dividing 2, and all places at which E has bad reduction. Further let

K(S, 2) =
{
b ∈ K∗/(K∗)2 : ordν(b) ≡ 0 (mod 2) for all ν ̸∈ S

}
.

21



Then there is an injective morphism

E(K)/2E(K) −→ K(S, 2)×K(S, 2)

defined by

P = (x, y) 7−→





(x− e1, x− e2) if x ̸= e1, e2,(
e1−e3
e1−e2

, e1 − e2
)

if x = e1,(
e2 − e1,

e2−e3
e2−e1

)
if x = e2,

(1, 1) if x =∞, i.e., if P = O.

(1.4)

Let (b1, b2) ∈ K(S, 2)×K(S, 2) be a pair that is not in the image of one of the three points
O, (e1, 0), (e2, 0). Then (b1, b2) is the image of a point

P = (x, y) ∈ E(K)/2E(K)

if and only if the equations
b1z

2
1 − b2z

2
2 = e2 − e1,

b1z
2
1 − b1b2z

2
3 = e3 − e1,

have a solution (z1, z2, z3) ∈ K
∗ ×K∗ ×K. If such a solution exists, then we can take

P = (x, y) = (b1z
2
1 + e1, b1b2z1z2z3).
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Chapter 2

Elliptic Surfaces

In this chapter we will mainly follow the exposition of [3] and [4]. The section about
Algebraic surfaces and intersection theory comes from [2].

2.1 Elliptic surfaces

We shall define elliptic surfaces in a geometric way. Therefore we let k = k̄ denote an
algebraically closed field, and C a smooth projective curve over k.

Definition 2.1.1. An elliptic surface S over C is a smooth projective surface S with
an elliptic fibration over C, i.e. a surjective morphism

π : S → C,

such that:

1. almost all fibres are smooth curves of genus 1,

2. is relatively minimal i.e.no fibrer contains an exceptional curve of the first kind.

Remark 2.1.2. The second condition stems from the classification of algebraic surfaces.
An exceptional curve of the first kind is a smooth rational curve of self-intersection (-1).

Example 2.1.3. We investigate one of the standard examples of elliptic surfaces: the
cubic pencil. Let F and G ∈ k[X, Y, Z] be homogeneous cubic polynomials without
common factor. Consider the cubic pencil

S : sF + tG = 0, [s, t] ∈ P1.

Indeed, S is a rational surface, since the ratio s/t is expressed by F and G, so the
function field of S in the (often to be taken affine) coordinates x = X/Z, y = Y/Z is
simply k(S) = k(x, y). If the pencil contains at least one smooth cubic curve, then the
cubic pencil defines a genus one fibration over the P1-line with homogeneous coordinates
[s, t] (possibly after resolving singularities of S as a projective surface in P2 × P1). Since
k is algebraically closed, S gives in fact an elliptic surface with sections given by the
base points of the cubic pencil. Here we have to pay special attention when there are
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infinitely near (i.e. multiple) base points: then there are singularities involved, and each
multiple base points represents the components of the exceptional divisor of the resolution
((−2)-curves contained in some fibre) plus a section meeting one of these components (a
(−1)-curve not contained in any fibre).

Definition 2.1.4. A section of an elliptic surface π : S → C is a morphism

σ : C → S such that π ◦ σ = idC .

The existence of a section is very convenient since then we can work with a Weierstrass
equation where we regard the genric fibre E as an elliptic curve over the function field
k(C). In particular, we will see that the sections form an abelian group: E(k(C)). Here
we choose one section as the origin of the group law. We call it zero section and denote
it by O. In order to preserve some properties, we assume that

1. Every elliptic surface has a section.

2. Every elliptic surface S has a singular fiber. In particular, S is not isomorphic to a
product E × C.

Definition 2.1.5. Let π : S → C be an elliptic fibration and v ∈ C a generic point of
C. We call E = f−1(v) the generic fiber of S. The second convention guarantees that
the generic fibre E is an elliptic curve over the function field k(C).

Remark 2.1.6. As the generic fiber is an elliptic curve over k(C), the elliptic surface S
may be locally represented in the Weierstrass form, namely

y2 + a1(t)xy + a3(t)y = x3 + a2(t)x
2 + a4(t)x+ a6(t). ai(t) ∈ k(C), for every i.

The assumption of a section is fairly strong. In fact, it rules out a number of surfaces
as for example Enriques surfaces. Now we investigate the relationship between an elliptic
surface and its generic fibre.

Proposition 2.1.7. The sections of π : S → C are in natural bijective correspondence
with the k(C)-rational points of the generic fibre E.

Proof. Any section σ : C → S defines a curve D = σ(C) ∼= C inside S which meets
every fibre transversally in a single point. The curve D can be extended naturally by the
Zariski closure thus it meets the generic fibre in a single k(C)-rational point.
Conversely, let P be a k(C)-rational point on the generic fibre E. A priori, P is only
defined on the smooth fibres, but we can consider the closure Γ of P in S (so that
Γ ∩ E = P ). Restricting the fibration to Γ, we obtain a birational morphism of Γ onto
the non-singular curve C.

f|Γ : Γ→ C.

By Zariski’s main theorem, f|Γ is an isomorphism hence Γ is the unique section associated
to the k(C)-rational point P .

Remark 2.1.8. Summarizing an elliptic surface S over C (with section) gives rise to an
elliptic curve E over the function field k(C) by way of the generic fibre.
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2.2 Kodaira-Néron Model

Given an elliptic curve E over the function field k(C) of a curve C, the Koidara-Néron
model describes how to associate an elliptic surface π : S → C over k to E, whose generic
fibre returns exactly E.

Definition 2.2.1. Let E be an elliptic curve over the function field k(C) of a curve C.
Suppose that there exists an elliptic surface S over C whose generic fibre is isomorphic to
E/k(C). In this case, we say that π : S → C (or simply S) is the Kodaira Néron model
of E/k(C). We also call S the elliptic surface associated with E/k(C).

Proposition 2.2.2. Given an elliptic curve over a function field E/k(C), the Kodaira-
Néron model exists and is unique up to isomorphisms.

Proof. We will sketch the main lines about existence, for uniqeness see [4, Theorem 5.19].
At first, we can omit the singular fibres. Here we remove all those points from C where
the discriminant vanishes. We indicate the resulting punctured curve by C◦. Above
every point of C◦ we read off the fibre, a smooth elliptic curve, from E. This gives a
quasi-projective surface S◦ with a smooth elliptic fibration

π◦ : S◦ → C◦.

. Here one can simply think of the Weierstrass equation restricted to C◦ (after adding
the point at ∞ to every smooth fibre). It remains to fill in suitable singular fibres at the
points omitted from C. For instance, if the Weierstrass form of E defines a smooth sur-
face everywhere, then all fibres turn out to be irreducible. The singular fibres are either
nodal or cuspidal rational curves. If the surface is not smooth somewhere, then we re-
solve singularities minimally. We will give an explicit description of the desingularisation
process in the next sections.

Remark 2.2.3. The previous results can be summarize by the following correspondence:

{relatively minimal elliptic surfaces S over C} ←→ {elliptic curves E over k(C)}.

2.3 Algebraic Surfaces

In order to gain detailed knowledge about algebraic surfaces, it is essential to understand
the curves on a given surface S. Here S will always be assumed to be an irreducible smooth
projective surface over an algebraically closed field k̄. Many notions and constructions
considered in this section carry over more or less directly from the case of curves.

Definition 2.3.1. The divisor group of an algebraic surface S, denoted by Div(S), is
the group generated by the irreducible subvarieties of codimension 1 of S. Thus a divisor
D ∈ Div(S) is a formal sum

D =
n∑

i=1

ai(Ci),

where ai ∈ Z and Ci ⊂ S are irreducible curves lying on the surface S. The C ′
is are called

components of the divisor D.
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Recall that for any irreducible curve C ⊂ S, the local ring of S at C is

OS,C =
⋃

P∈C

OS,P .

The non-singularity of the curves implies that OS,C is a discrete valuation ring. We denote
its valuation by ordC and ordC(f) is the degree of vanishing of f along C. We extend
this to

ordC : k(S)∗ −→ Z

and use this to define a homomorphism

div : k(S)∗ −→ Div(S),

f 7−→
∑

ordC(f)C.

A divisor is principal if it is the divisor of a function div(f). Two divisors
D1, D2 ∈ Div(S) are linearly equivalent if their difference is principal and we write
D1 ∼ D2. Moreover we define the Picard group as

Pic(S) := Div(S)/ ∼ .

Let C1 and C2 be irreducible curves on S, and let P ∈ C1 ∩ C2. Fix local equa-
tions f1, f2 ∈ k(S)∗ for C1, C2 around P , that is fi ∈ OS,P so that ordCi

(fi) = 1 and
ordC(fi) = 0 for every other irreducible curve C containing P .

Definition 2.3.2. We say that C1 and C2 intersect trasversally at P if f1 and f2
generate the maximal ideal of the local ring OS,P .

If C1 and C2 are irreducible curves that meet everywhere trasversally, then (C1.C2) is
the number of intersection points. We can extend this definition to all the divisors.

Theorem 2.3.3. There is a unique symmetric bilinear pairing

Div(X)×Div(X) −→ Z, (D1, D2) 7−→ D1.D2,

with the following two properties:

1. If C1 and C2 are irreducible curves that meet everywhere trasversally, then (C1.C2) =
|(C1 ∩ C2)|.

2. If D,D1, D2 ∈ Div(S) are divisors with D1 ∼ D2 then D.D1 = D.D2.

Proof. See [2, Theorem III.7.2].

Example 2.3.4. Let C1,C2 ⊂ P2 be curves of degree n1, n2 respectively, and let H1, H2

be distinct lines. Then

deg(Ci) = ni = deg(niHi)⇒ Ci ∼ niHi.

Further, (H1.H2) = 1 so we can compute

(C1.C2) = (n1H1).(n2H2) = n1n2(H1H2) = n1n2 = deg(C1) deg(C2).

The equality (C1.C2) = deg(C1) deg(C2) over P2 is called Bezout′s Theorem.
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Theorem 2.3.3 does not give a practical method for computing the intersection of
two divisors hence a smarter way is to assign multiplicities to the intersection points as
follows:

Definition 2.3.5. Let D ∈ Div(S) be a divisor and let P ∈ S. A local equation for D
at P is a function f ∈ k(S)∗ with the property that

P ̸∈ D − div(f).

Now let D1, D2 ∈ Div(S) be divisors, and let P ∈ S be a point which does not lie on
a common component of D1 and D2. Choose local equations f1, f2 ∈ k(S)

∗ for D1, D2

respectively.

Definition 2.3.6. The (local) intersection index of D1 and D2 at P is defined to be
the quantity

(D1.D2)P = dimkOS,P/(f1, f2).

Remark 2.3.7. Notice that (D1.D2)P = 0 if P ∈ D1 ∩D2, since if P ̸∈ Di then fi = 1
will be a local equation for Di at P .

The next result explains how the local intersection indices can be used to calculate
the global intersection number D1.D2.

Proposition 2.3.8. Let D1,D2 ∈ Div(S) be a divisors with no common components.
Then the local intersection index (D1.D2) is finite for all P ∈ S and

(D1.D2) =
∑

P∈D1∩D2

(D1.D2)P .

Proof. See [2, Proposition III.7.4].

Example 2.3.9. An important example relating the intersection theory is the self
intersection D2 = (D.D) of a divisor D. One approach is to find a D

′

∼ D with
no common components and then compute (D.D

′

).
For example, let C a curve over P2 of degree n, then by the previous example C2 = n2.
This approach works in this particular case since for any line H , C ∼ nH. In general, it
could be much more difficult to find an appropriate D

′

.

Now we give the definition of fibered surface. This is really useful to understand
the geometry of the curves over an elliptic surface.

Definition 2.3.10. A fibered surface is a non-singular projective surface S, a non-
singular curve Γ, and a surjective morphism π : S → Γ. For any t ∈ C, the fiber of S
lying over t is the curve St = π−1(t). Note that St will be a non-singular curve for all
but finitely many t ∈ S. Let C ⊂ S be an irreducible curve lying on a fibered surface,
then π : C → Γ is either costant or surjective ([1],II,2.3). If it is constant then C lies in
the fiber St and we call C fibral otherwise horizontal.

Remark 2.3.11. Every elliptic surface is in particular a fibered surface.

Definition 2.3.12. A divisor D ∈ Div(S) on a fibered surface S is called fibral if all its
components are fibral and is called horizontal if all its components are horizontal. Every
divisor can be uniquely written as the sum of horizontal divisor and fibral divisor.
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2.4 Singular Fibres

In this section we will discuss the possible singular fibres of elliptic surfaces as classified
by Kodaira Suppose that Fv = f−1(v) is a singular fibre (v ∈ C(k)). We write it as a
divisor on S with multiplicities:

Fv =
mv−1∑

i=0

µv ,iΘv ,i

where

• mv is the number of the (distinct) irreducible components in Fv ,

• Θv ,i (0 ≤ i ≤ mv−1) are the irreducible components,

• µv ,i the multiplicity of Θv ,i in Fv (a positive integer).

Theorem 2.4.1. 1. There exists a unique component of Fv which intersects the zero
section (O); it is called the identity component and denoted by Θv ,0 . The coefficient
µv ,0 = 1.

2. If Fv is an irreducible singular fibre (i.e. mv = 1 and Fv = Θv ,0 ) , then Θv ,0 is
either a rational curve with a node (type I1) or a rational curve with a cusp (type
II).

3. If Fv is a reducible singular fibre (mv > 1) then every component Θv ,i is a smooth
rational curve which has self-intersection number (−2).

Proof. The first two statements of the theorem are clear; the third often files under the
title of Zariski’s lemma [4, Theorem 5.11].

Now we are ready for the complete classification of the singular fibres.

Theorem 2.4.2. All possible types of reducible singular fibres are classified into the fol-
lowing types with m > 1 and b ≥ 0 :

Im, I
∗
b , III, IV, II

∗, III∗, IV ∗.

(for semplicity, we write m and Θi dropping the subscript v).

• Im : Fv = Θ0+ ....+Θm−1, where for m ≥ 3, (Θi.Θi+1) = 1 for all i = 0, 1, ....,m−1
ciclically, i.e. (Θm−1.Θ0) = 1. For m = 2, (Θm−1.Θ0) = 2.

• I∗b : Fv = Θ0 + .... + Θ3 + 2Θ4 + ... + 2Θb+4, m = b + 5, b ≥ 0. Here (Θ0.Θ4) =
(Θ1.Θ4) = 1, (Θ2.Θb+4) = (Θ3.Θb+4) = 1 and (Θ4.Θ5) = ... = (Θb+3.Θb+4) = 1.

• III : Fv = Θ0 + Θ1, m = 2, where the two components intersect at a single point
with (Θ0.Θ1) = 2.

• IV : Fv = Θ0 +Θ1 +Θ2, m = 3, where all three components meet at a single point
and (Θ0.Θ1) = (Θ0.Θ2) = (Θ1.Θ2) = 1.
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• II∗ : Fv = Θ0 + 2Θ7 + 3Θ6 + 4Θ5 + 5Θ4 + 6Θ3 + 4Θ2 + 2Θ1 + 3Θ8, m = 9,
where (Θ0.Θ7) = (Θ7.Θ6) = (Θ6.Θ5) = (Θ5.Θ4) = (Θ4.Θ3) = (Θ3.Θ2) = (Θ2.Θ1) =
(Θ3.Θ8) = 1.

• III∗ : Fv = Θ0 + 2Θ1 + 3Θ2 + 4Θ3 + 3Θ4 + 2Θ5 + Θ6 + 2Θ7, m = 8, where
(Θ0.Θ1) = (Θ1.Θ2) = (Θ2.Θ3) = (Θ3.Θ4) = (Θ4.Θ5) = (Θ5.Θ6) = (Θ3.Θ7) = 1.

• IV ∗ Fv = Θ0 + Θ1 + 2Θ2 + 3Θ3 + 2Θ4 + Θ5 + 2Θ6, m = 7, where (Θ1.Θ2) =
(Θ2.Θ3) = (Θ3.Θ4) = (Θ4.Θ5) = (Θ3.Θ6) = (Θ6.Θ0) = 1.

Proof. The proof that our list is complete generally amounts to Tate’s algorithm over
perfect fields.

2.5 Tate’s algorithm

In this section we shall discuss Tate’s algorithm to some extent. The missing details could
be found in the original exposition of Tate or in chapter IV of [2].
Essentially Tate’s algorithm takes as input a Weierstrass equation of an elliptic curve and
computes, among other things, the reduction type and the (local) minimal Weierstrass
form.

For the sake of simplicity, we shall limit ourselves to perfect fields of characteristic
different from two. This restriction enables us to work with an extended Weierstrass
equation :

y2 = x3 + a2x
2 + a4x+ a6.

The discriminant is given by

∆ = −27a26 + 18a2a4a6 + a22a
2
4 − 4a32a6 − 4a34.

In order for a fibre to be singular, the discriminant ∆ has to vanish. Very much to
our advantage, we can work locally, so we fix a local parameter t on C with normalized
valuation ν. Assume that there is (or rather there could be) a singular fibre at t = 0,
that is, the vanishing order of ∆ at t = 0 satisfies ν(∆) > 0. By a translation in x, we
can move the singularity to (0, 0). Then the extended Weierstrass form transforms to

y2 = x3 + a′2x
2 + ta′4x+ ta′6.

If t ∤ a′2 then the above equation at t = 0 describes a nodal rational curve. We call the
reduction multiplicative. If t|a′2, then the equation defines a cuspidal rational curve at
t = 0. We call it additive reduction. In either case, the special point (0, 0) is a surface
singularity if and only if t|a

′

6.
Let t ∤ a2. From the summand a′2

3ta′6 of ∆, it is immediate that (0, 0) is a surface
singularity if and only if

ν(∆) > 1.

Otherwise (0, 0) is only a singularity of the fibre, but not of the surface. Hence the
singular fibre at t = 0 is the irreducible nodal rational curve with associated Kodaira
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symbol I1. Assume now that ν(∆) > 1. We have to resolve the singularity at (0, 0). Let
m the greatest integer not exceding n/2. Then translate x such that tm+1|a4:

y2 = x3 + a′′2x
2 + tm+1a′′4x+ a′′6.

Then ν(∆) = n is equivalent to ν(a
′′

6). Now we blow up the surface m times successively
at the point (0, 0). The first (m − 1) blow-ups introduce two P1’s each. In the chart
x′ = tjx, y′ = tjy for the jth blow-up, the exceptional divisors are locally given by

y
′2 = a2(0)x

′2.

In particular, the exceptional divisors come in pairs of rational curves which are conjugate
over k(

√
a2(0))/k. Depending on whether

√
a2(0) ∈ k or not, one distinguishes split and

non-split multiplicative reduction.
After each blow-up (j = 1, ...,m − 2), we continue with another blow-up at (0, 0), the
intersection point of the two latest exceptional divisors. After the final blow-up, the local
equation of the special fibre is

y2 = a2(0)x
2 + (a′′6/t

2m)(0).

One easily checks that this encodes a single rational component, if n = 2m is even,
or again two components if n = 2m + 1 is odd. In either case, the surface blown up
(m − 1)-times is smooth locally around t = 0,so we have reached the resolution of the
surface singularity in the special fibre. In summary, the process of desingularization has
added (n−1) rational curves of self-intersection −2. Hence the singular fibre consists of a
cycle of n rational curves, meeting transversally. In this case Koidara symbol associated
is In.
Consider the case t|a′2. We have to determine whether (0, 0) is a surface singularity, i.e.
whether t|a′6. If the characteristic is different from 2 and 3, then this is equivalent to

ν(∆) > 2.

If (0, 0) is a smooth surface point, then the singular fibre is a cuspidal rational curve. We
denote it by the Kodaira type II.
If (0, 0) is a surface singularity, there are three possibilities for the exceptional divisor of
the first blow-up:

1. a rational curve of degree two, meeting the strict transform of the cuspidal curve
tangentially in one point;

2. Two lines, possibly conjugate in a quadratic extension of k, meeting the strict
transform of the cuspidal curve in one point;

3. a double line.

In the first two cases, we have reached the desingularization and refer to type III resp.
IV. The third case requires further blow-ups, each introducing lines of multiplicity up
to six and self-intersection (−2). The resolution process branches into three cases here
depending on the singularities on the double line:
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1. three rational double points, type I∗0 ;

2. two singularities, type I∗n, n > 0.

3. one singularity, types II∗, III∗, IV ∗ or non-minimal.

If the characteristic differs form 2 and 3, then we can determine the type of singular fibre
directly from the discriminant and the vanishing orders of a4 and a6. This is due to the
simplified Weierstrass form (1.3) of the equation of the fibre. In ([3], pg. 66) it is possible
to find a table which encodes information about these cases.

In the non-minimal case ν(ai) ≥ i for each i. This means that the singularity of the
Weierstrass model is not a rational double point and we can simplify the Weierstrass form
locally as follows: Pick a local coordinate t of the base curve such that the special fibre
sits at t = 0. Then rescale by the admissible transformation

(x, y)→ (t2x, t3y),

we obtain an isomorphic equation that is integral at t. Such a transformation lets ν(∆)
drop by 12, hence it can only happen a finite number of times. We call this process
minimalising and the resulting equation the minimal Weierstrass form (locally at t =
0).

Remark 2.5.1. The notion of minimality involves a little subtlety. Namely, we work in
the coordinate ring k(C) of a chosen affine open of the base curve C. For instance, if the
base curve C is isomorphic to P1, then k(C) = k(t) and every ideal in k(C) is principal.
In consequence of Corollary 1.6.6, an elliptic surface over P1 admits a global minimal
Weierstrass equation(1.6.5). In general there might not be a global minimal Weierstrass
form.

2.6 Mordell-Weil Group and Neron-Severi lattice

We have seen how a rational point on the generic fibre gives rise to a section on the
corresponding elliptic surface and viceversa (Remark 2.2.3). In this section we go deeper
in the theory. From now on we use K = k(C).

Definition 2.6.1. TheK-rational points E(K) form a group which is traditionally called
Mordell-Weil group. We will usually denote the points on E by P,Q.

Each point P determines a section P̄ : C → S which we interprete as a divisor on S.
To avoid confusion, we shall denote this curve by P̄ . Moreover we define another object

Definition 2.6.2. The Neron-severi group of an elliptic surface is defined as

NS(S) = Div(S)/ ≈,

where ≈ denotes the algebraic equivalence. The rank of NS(S) is called the Picard
number:

ρ(S) = rank(NS(S)).
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Roughly speaking, two divisors are called algebraically equivalent (D ≈ D′) if they
belong to the same family of divisors on X.

Remark 2.6.3. In the case of an elliptic fibration π : S → C any two fibres are alge-
braically equivalent.

We now state the three fundamental results that relate the Mordell-Weil group and
the Neron-Severi group of an elliptic surface with section. All theorems require our
assumption that the elliptic surface has a singular fibre.

Theorem 2.6.4. E(K) is finitely generated group.

This result is a special case of the Mordell-Weil theorem, in generality for abelian
varieties over suitable global fields. Here we will sketch the geometric argument. The
first step is to prove the corresponding result for the Neron-Severi group.

Theorem 2.6.5. NS(S) is finitely generated and torsion-free.

Proof. The finiteness part is again valid in more generality for projective varieties as a
special case of the theorem over abelian varieties. On an elliptic surface, one can use
intersection theory to prove both claims. The connection between these two theorems is
provided by a third theorem.

Theorem 2.6.6. Let T denote the subgroup of NS(S) generated by the zero section and
fibre components. Then the map P → P̄ mod T gives an isomorphism

E(K) ≡ NS(S)/T.

In other words, the above theorem states that NS(S) is generated by fibre components
and sections. In the sequel, we sketch the main lines of proof of the previous theorem.

Definition 2.6.7. Let D,D′ ∈ Div(S). We say they are numerically equivalent:

D ≡ D′ if (D.C) = (D′.C) ∀C ⊂ S.

We have the following implication

Lemma 2.6.8. On any projective surface, algebraic equivalence implies numerical equiv-
alence.

Proof. See [4, Lemma 4.15].

The intersection of divisors defines a symmetric bilinear pairing on NS(S). It endows
NS(S) up to torsion with the structure of an integral lattice, the Neron-Severi lattice.

Lemma 2.6.9. Modulo numerical equivalence, the Neron-Severi group is finitely gener-
ated.

Proof. See [3, Lemma 6.4].

This result is very convenient for practical reasons, since we can now solve problems
concerning divisor classes in NS(S) simply by calculating intersection numbers.
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Definition 2.6.10. The trivial lattice Triv(S) is the sublattice of NS(S) generated by
the zero section and fibre components.

Since any two fibres are algebraically equivalent, the only fibre components we have
to consider for the trivial lattice are a general fibre F and fibre components not met by
the zero section. Using the same notation of the section about singular fibres, we can
decompose the trivial lattice Triv(S) ⊂ NS(S) as orthogonal sum

Triv(S) =
〈
(O), F

〉
⊕

⊕

v∈R

Tv ,

where R denotes the finite subset of points on the base curve where the singular fibres
are located. The following proposition clarify why Triv(S) is so important.

Proposition 2.6.11. The divisor classes of {Ō, F,Θv ,i; v ∈ R, 1 ≤ i ≤ mv − 1} form a
Z-basis of T. In particular

rank(T ) = 2 +
∑

v∈R

mv − 1.

Proof. See [3, Proposition 6.6].

Now we prove Theorem 2.6.6 and Theorem 2.6.4 descends as corollary.

Proof. The idea is to exhibit a map inverse to the function given in the statement. For
this purpose, it will be convenient to view the generic curve E as a curve on S. We start
by defining a homomorphism

Div(S)→ Div(E),

as follows: As stated in 2.3.12, any divisor D on S decomposes into a horizontal part,
consisting of sections and a vertical divisor consisting of fibre components:

D = D′ +D′′, D′ horizontal, D′′ vertical.

Then the horizontal part D′ and E intersect properly, giving a divisor on E of degree
(D′.E). This (K-rational) divisor is called the restriction of D to E:

D|E := D′ ∩ E ∈ Div(E).

In terms of linear equivalence ∼ (on E and S), it easy to see that

D|E ∼E 0 ⇐⇒ D ∼S D
′′, D′′ vertical.

By Abel’s Theorem [4, Lemma 3.5], for E over K, the divisor D determines a unique
point P ∈ E(K) by the following linear equivalence of degree zero divisors:

D|E − (D′.E)O ∼E P −O.

Therefore we can define a homomorphism

ψ : Div(S)→ E(K).

ψ(D) = P.

The kernel of ψ can be seen to be

ker(ψ) =
〈
D ∈ Div(S);D ≈ 0

〉
+ ZŌ +

〈
D ∈ Div(S);D vertical

〉
.

Hence ψ induces the claimed isomorphism.
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Corollary 2.6.12. Let S be an elliptic surface with section. Denote the generic fibre by
E. Then

ρ(S) = rankT + rankE(K) = 2 +
∑

v∈R

(mv − 1) + rankE(K).

2.7 Rational Surfaces

In this thesis we will study a particular type of elliptic surface called rational. It is known
that these surfaces have some important properties but first we recall some results by
Tate’s algorithm section.

Lemma 2.7.1. Any elliptic surface over P1 admits a globally minimal Weierstrass equa-
tion with polynomial coefficients ai(t) ∈ k(t):

y2 + a1(t)xy + a3(t)y = x3 + a2(t)x
2 + a4(t)x+ a6(t).

Proof. It is Remark 2.5.1.

In terms of the Weierstrass form with polynomial coefficients, minimality requires

ν(a4) < 4 or ν(a6) < 6 each place of P1.

After minimalising at all finite places, we fix the smallest integer n such that deg(ai) ≤ ni.
Throughout a change of variables, we derive a local equation at ∞ with coefficients

a′i = sniai(1/s).

Alternatively, we can homogenize the coefficients ai(t) as polynomials in two variables
s,t of degree ni. Then the discriminant is a homogeneous polynomial of degree 12n. The
integer n has an important property: It determines how an elliptic surface over P1 with
section fits into the classification of projective surfaces. We let k denote the Kodaira
dimension. For a rational elliptic surface we have n = 1 and k = −∞.

Definition 2.7.2. A rational elliptic surface S is a (smooth projective) rational surface
over k(= k̄), which is given with a relatively minimal elliptic fibration π : S → C.

Remark 2.7.3. Recall that S is called a rational surface over k if its function field
k(S) is a purely transcendental extension of dimension 2 over k, or equivalently, if S is
birationally equivalent to the projective plane P2.

In the case of a rational elliptic surface, the base curve C is the projective line: P1 and
K = k(t) is a rational function field. This follows, for instance , directly from Lüroth’s
theorem stating that the only function field k(C) contained in a purely transcendental
extension of k is a rational function field.

Proposition 2.7.4. Let E an elliptic curve over the function field k(t) with global min-
imal Weierstrass form

E : y2 + a1(t)xy + a3(t)y = x3 + a2(t)x
2 + a4(t)x+ a6(t)

where ai ∈ k(t) for each i. Then the associated elliptic surface π : S → P1 is a rational
elliptic surface if and only if

deg ai(t) ≤ i ∀i.
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Proof. The necessity is clear by above argument. Conversely, such a generalised Weier-
strass form defines a rational elliptic surface if and only if it has a singular fibre. That is,
no admissible transformation makes each ai into an ith power. In particular, this holds
if the discriminant ∆ is not a twelfth power. The last characterization is an equivalence
if char(k) ̸= 2, 3. The exceptions in those characteristics are due to the existence of wild
ramification. Further details can be found in [4], Sect.5.9.

Proposition 2.7.5. The Néron-Severi lattice NS(S) is unimodular and of rank ρ = 10.

Proof. See [4, Proposition 7.1].
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Chapter 3

Main Results

In this chapter we want to analyze the family of elliptic curves y2 = x(x− p)(x− q)
where {p, q} is a pair of twin primes and we show that the rank of these curves oscillates
between 0 and 1 while as elliptic surface the rkMW (Y, π) = 0. Moreover assuming that
there are infinite pairs of twin primes, we will find that both N (Y, π) and I(Y, π) are
infinite.

3.1 The rational elliptic surface

Let t be the affine coordinate on P1. Consider the elliptic surface π : Y → P1 defined
over Q by the affine Weierstrass equation

y2 = x(x− (t− 2))(x− t).

Lemma 3.1.1. The elliptic surface is non-isotrivial and rational. It has 3 singular fibres:
at t = 0 of Kodaira type I2, at t = 2 of Kodaira type I2 and at t = ∞ of Kodaira type I∗2 .

Proof. The discriminant of the elliptic surface is 4t2(t − 2)2. Using Tate algorithm we
obtain the classification of the singular fibres.

Lemma 3.1.2. We have rk MW(Y, π) = 0. In fact, the group of sections over C is
formed by the 2-torsion sections.

Proof. Let us base change to C. Since π : Y → P1 is a rational elliptic surface with
singular fibres I2, I2, I

∗
2 , its group of sections is given in the entry 71 of the Main Theorem

of [6].

3.2 Parity of the rank of elliptic curves

In order to show that both I(Y, π) and N (Y, π) have infinite cardinality, we now study
the rank of elliptic curves yp,q = x(x− p)(x− q) where (p, q) is a pair of twin primes.
In appendix A, we briefly discuss the main properties of twin primes. In particular, every
pair of twin primes greater than (3, 5) is of the form (6n − 1, 6n + 1) for some natural
number n. Our goal requires us to focus solely on the latter case.
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Notation 2. From now on every twin prime pair is meant to be of the form
(p, q) = (6n− 1, 6n+ 1) for some n ∈ N so that p > 3 and q > 5.

Lemma 3.2.1. Let (p, q) be a twin prime pair and Ep,q associated elliptic curve
yp,q = x(x− p)(x− q). Then Ep,q has multiplicative reduction at p and q (split reduction
at one of the primes and non-split reduction at the other prime), an additive reduction
at 2 and good reduction at all other primes.

Proof. The discriminant of Ep,q is ∆ = 26p2q2 hence the bad primes are 2, p, q. Reducing
the equation modulo p and q we obtain

y2 = x3 − 2x2 (mod p), y2 = x3 + 2x2 (mod q).

Both these curves are cubic curves with a node. Now the tangent lines at (0,0) are given
by the equations

y2 = −2x2 (mod p), y2 = 2x2 (mod q).

Therefore Ep,q has split multiplicative reduction at p if (−2) is a square over Fp and
has split multiplicative reduction at q if 2 is a square over Fq. Using Legendre symbol
properties (see appendix B) we deduce that if p is congruent to 1 or 3 modulo 8 then
(−2) is a square over Fp otherwise 2 is a square over Fq. It remains to analyze the
reduction at 2. The associated equation is

y2 = x(x+ 1)2

and changing the variables x→ x and y → x+ y we obtain the standard cusp form

y2 − x3 = 0.

Now we analyze the parity of the rank of the elliptic curves Ep,q. In particular, we
need to study w(E/Q2). We refer to [7] for a complete review of the theory of Root
numbers and parity phenomena. We are mainly interested in the table of Appendix A in
[7]. Since (C∆, C6, C4) = (6 ,≥ 7, 4) and c

′

4 ≡ 3 (mod 4) for every Ep,q, there are only 2
cases to study:
if c

′

4 − 4c6,7 ≡ 7 or 11 (mod 16) than w(E/Q2) = +1 otherwise w(E/Q2) = −1.

Lemma 3.2.2. Let n ∈ N such that (6n-1 , 6n+1) is pair of twin primes.
If 4n2 − 12n+ 3 ≡ 11 or 7 (mod 16) than w(E/Q) = 1 otherwise w(E/Q) = −1.

Proof. w(E/Q) = −
∏

l=2,p,q

w(E/Ql) and w(E/Qp)w(E/Qq) = −1 hence

w(E/Q) = w(E/Q2). Further c
′

4 − 4c6,7 = 4n2 − 12n+ 3 therefore
if 4n2 − 12n+ 3 ≡ 11 or 7 (mod 16) than w(E/Q) = 1 otherwise w(E/Q) = −1.

Remark 3.2.3. Every n ∈ N congruent to {1, 2} mod 4 satisfies the upper congruence
while every n congruent to {0, 3} mod 4 does not.
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3.3 The Descent Method

In this section, through the 2-Descent-Method, we bound the rank of the family of elliptic
curves Ep,q.

Lemma 3.3.1. For every twin prime pair the associated elliptic curve Ep,q has rank
at most 3.

Proof. It is a direct conseguence of 3.2.1 and of Proposition 5.6 of [8]: the rank r of an
elliptic curve E over Q satisfies

r ≤ t1 + 2t2 − 1.

Here t1 indicates the number of primes where E/Q has a multiplicative reduction and t2
the number of primes of addittive reduction.

Even if this is a powerful lemma, it is not enough to exclude the possibilities
of rank = 2 or 3 so we need to apply the 2-Descent method.
Let (p, q) pair of twin primes and Ep,q the associated elliptic curve

y2 = x(x− p)(x− q). (3.1)

Reducing the equation modulo 3, we check that the cardinality of Ep,q(F3) = 4.
Since E[2] ⊂ Etors(Q) and Etors(Q) injects into Ep,q(F3) we see that

Etors(Q) = E[2]

A complete set of representative is given by

Q(S, 2) = {±1,±2,±p,±q,±pq,±2p,±2q,±2pq}.

Now we consider the map given in Proposition 1.7.2:

E(Q)/2E(Q) −→ Q(S, 2)×Q(S, 2),

say with
e1 = 0, e2 = p, e3 = q.

There are 256 pairs (b1, b2) ∈ Q(S, 2) × Q(S, 2) and for each pair, we must check to see
whether it comes from an element of E(Q)/2E(Q). Firstly we compute the image of E[2]
in Q(S, 2)×Q(S, 2)

O → (1, 1), (0, 0)→ (pq,−p), (p, 0)→ (p,−2p), (q, 0)→ (q, 2).

It remains to determine for every other pair (b1, b2) whether the system

{
b1z

2
1 − b2z

2
2 = p

b1z
2
1 − b1b2z

2
3 = q

(3.2)

Has a solution z1, z2, z3 ∈ Q. Proceding systematically we now reduce the number of
cases that must be considered.
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1. if b1 < 0 and b2 > 0 then b1z
2
1 − b2z

2
2 = p has no solution over R.

2. if b1 < 0 and b2 < 0 then b1z
2
1 − b1b2z

2
3 = q has no solution over R.

3. the four 2-torsion points {O, (0, 0), (p, 0), (q, 0)} map respectively to the four point
(1, 1), (pq,−p), (p,−2p), (q, 2).

4. if (b1, b2) is in the image of Mordell-Weil group, the same is true for
(b1, b2)(pq,−p) = (pqb1,−pb2) and similarly (pb1,−2pb2), (qb1, 2b2) hence we can
assume that b1 ∈ {1,−1, 2,−2}. Moreover by the first point we can conclude that
b1 ∈ {1, 2}.

5. If p divides b2 but not b1 then there are no solutions. Indeed consider the p-adic
valuation νp : Q → Z and the p-adic field Qp. If the system (3.2) has a solution
in Q then it has solution in the p-adic field. Observe that νp(b1z

2
1 − b2z

2
2) = 1 and

νp(b1z
2
1 − b2z

2
2) ≥ min{2νp(z1), 1 + 2νp(z2)}. The equality holds if

2νp(z1) ̸= 1+2νp(z2) which is true because the former is even and the latter is odd.
We conclude that 1 + 2νp(z2) = 1 ⇐⇒ νp(z2) = 0 and νp(z1) ≥ 1. Consider now
νp(b1z

2
1 − b1b2z

2
3) = min{2νp(z1), 1 + 2ν(z3)} = 0. We know that νp(z1) > 0 hence

1 + 2νp(z3) = 0 which is impossible.

6. if q divides b2 but not b1 there are no solutions. Similar proof of point (5).

7. If 2|b1 and 2 ∤ b2 there are no solutions. Indeed suppose by contradiction that
the system (3.2) has solution in Q then it has solution in Q2. Consider the 2-adic
valuation ν2 : Q→ Z and observe that ν2(b1z

2
1 − b2z

2
2) = 0.

Moreover ν2(b1z
2
1−b2z

2
2) = min{1+2ν2(z1), 2ν(z2)} then ν2(z1) ≥ 0 and ν2(z2) = 0.

On the other hand, ν2(b1z
2
1 − b1b2z

2
3) = 0 implies ν2(z1) < 0 and ν2(z3) < 0.

8. If 2|b1 and 2|b2 there are no solutions. Indeed suppose by contradiction that
the system (3.2) has solution in Q then it has solution in Q2. Consider the 2-adic
valuation ν2 : Q→ Z and observe that ν2(b1z

2
1 − b2z

2
2) = 0.

Moreover ν2(b1z
2
1−b2z

2
2) = min{1+2ν2(z1), 1+2ν(z2)} then ν2(z1) < 0 and ν2(z2) <

0. On the other hand b1b2 = b
′

1b
′

2 where (2, b
′

1, b
′

2) = 1 hence
ν2(b1z

2
1 − b

′

1b
′

2z
2
3) = min{1 + 2ν2(z1), 2ν2(z3)} = 0 ⇒ ν2(z3) = 0 and ν2(z1) = 0.

Remark 3.3.2. These observations substantially reduces the number of cases that must
be considered to the pairs (b1, b2) = (1, 2), (1,−1), (1,−2).

Lemma 3.3.3. Suppose that (b1, b2) ∈ Q(S, 2)×Q(S, 2) where b1 = 1 and b2 ∈ {−1,±2}
mod (Q∗)2 is the image of a point P ∈ Ep,q(Q)/2Ep,q(Q). Then (b1, b2) = (1, 2) ⇐⇒
p ≡ 7 mod 8 or (b1, b2) = (1,−2) ⇐⇒ p ≡ 1 mod 8.

Proof. As we have seen before, it is enough to considerate just three cases.
Let (b1, b2) = (1, 2). Observe that νp(z

2
1−2z

2
2) = 1 and νp(z

2
1−2z

2
2) ≥ min{2νp(z1), 2νp(z2)}.

If νp(z1) ̸= νp(z2) then min{2νp(z1), 2νp(z2)} = 1 which is impossible therefore
νp(z2) = νp(z1). Since Q ⊂ Qp, we can write z1 = pt(a1 + pu1) and z2 = pt(a2 + pu2)
where a1, a2 ∈ {0, 1, ...., p− 1}, u1 and u2 are units of p-adic field and t ∈ Z. Substituting
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z1 and z2 in the first equation of (3.2), multiplying on the right and on the left side by
p−2t and reducing modulo p we obtain

a21 − 2a22 ≡ 0 mod p. (3.3)

Equation (3.3) admits solution ⇐⇒
(

2
p

)
= 1. As shown in appendix B.1, this means

that p ≡ 1, 7 mod 8.

The same reasoning for the q-adic field and q-adic valuation gives us

a21 − 2a22 ≡ 0 mod q. (3.4)

Equation (3.4) admits solution ⇐⇒
(

2
q

)
= 1 i.e. q ≡ 1, 7 mod 8. Summarizing the

system (3.2) admits solution ⇐⇒ p ≡ 7 mod 8 and q ≡ 1 mod 8.

Let (b1, b2) = (1,−2). Similar proof as before. In this case the conditions are

(−2
p

)
= 1,

(−2
q

)
= 1.

If p ≡ 1 modulo 8 then q ≡ 3 modulo 8 and this is admissible condition.
If p ≡ 3 modulo 8 ⇒ q ≡ 5 modulo 8 and this not satisfy the system.

Let (b1, b2) = (1,−1). This is not an admissible case.
Observe that νp(z

2
1 + z22) = 1 and νp(z

2
1 + z22) ≥ min{2νp(z1), 2νp(z2)}. If νp(z1) ̸= νp(z2)

then min{2νp(z1), 2νp(z2)} = 1 which is impossible therefore νp(z2) = νp(z1). Repeating
the same procedure of the upper point we obtain the conditions

(−1
p

)
= 1,

(−1
q

)
= 1.

This is impossible because
(

−1
p

)
= 1 ⇐⇒ p ≡ 1 modulo 4, see appendix B.1, but then

q ≡ 3 modulo 4 and
(

−1
q

)
= −1.

3.4 Final Results

The final step is to show that for every n congruent to {0, 3} modulo 4 such that
(6n − 1, 6n + 1) is a pair of twin prime, the associated elliptic curve Ep.q has rank ≤ 1
while the elliptic curves associated to n congruent to {1, 2} modulo 4 have rank 0.

Proposition 3.4.1. Let n ∈ N such that (p, q) = (6n−1, 6n+1) is a pair of twin primes
and let Ep.q the associated elliptic curve of equation y2 = x(x− p)(x− q).
If n ∈ {1, 2} mod 4 then rkEp.q = 0 otherwise n ∈ {0, 3} mod 4 then rkEp.q ≤ 1 and if
the Parity Conjecture is true, then the equality holds.

Proof. As seen in the previous section, there are 2 possible cases that correspond to the
image of a point of infinite rank on the elliptic curve.
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1. If n ≡ 0 mod 4 ⇒ p ≡ −1 mod 8 ⇒ (b1, b2) = (1, 2).

2. If n ≡ 3 mod 4 ⇒ p ≡ 1 mod 8 ⇒ (b1, b2) = (1,−2).

3. If n ≡ 1, 2⇒ p is congruent respectively to 5, 4 mod 8 hence there are no points of
infinite order.

It remains to prove that if n ≡ 0 or 3 modulo 4, the system (3.2) admits a solution
(z1, z2, z3) ∈ Q. We can achieve this result by assuming the Parity Conjecture and easily
conclude that rkEp.q = 1.

3.5 Computational aspects

The computation of the Mordell-Weil group of an elliptic curve remains one of the most
challenging problems in modern mathematics. To date, no universal algorithm exists that
works for all elliptic curves. In this section, we utilize the free computer package Pari
[11] to calculate rational points in specific cases.

Additionally, it is intriguing to examine the cardinalities of N (Y, π) and I(Y, π) as-
suming the validity of the parity conjecture. To investigate how many elliptic curves of
rank 0 and 1 exist within a given range of natural numbers, the following code proves to
be particularly useful.

from matplotlib import pyplot as plt

import numpy as np

from math import sqrt

def prime(number):

if number <= 1:

print(False)

for i in range(2, int(number**0.5) + 1):

if number % i == 0:

return False

return(True)

#check if n natural number is prime

def twins(n):

if prime(6*n-1)==True and prime(6*n+1)==True:

return True

else:

return False

#check if n produces a pair of twin primes

def atwins(n):

for m in range(1,n+1):

if twins(m)== True:
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print(m,[6*m-1,6*m+1])

# print all m natural numbers less then n that produce a pair of twin primes

def rank(n):

a = 4

b = -12

c = 3

d = 11

e = 7

modulo = 16

if (a*n**2 + b*n + c - d)%modulo == 0:

return([n,0])

elif (a*n**2 + b*n + c - e)%modulo == 0:

return([n,0])

else:

return([n,1])

# This function checks if the elliptic curve E_{p,q} associated to n has rk = 0.

def allclass(n):

RK0 = [] # Stores data for rank 0 cases

RK1 = [] # Stores data for rank 1 cases

# Populate RK0 and RK1

for m in range(1, n+1): # Loop through all numbers from 1 to n

if twins(m) == True: # Check if m satisfies the `twins` condition

if rank(m) == [m, 0]: # If `rank(m)` returns `[m, 0]`

RK0.append([m, 0, 6*m-1, 6*m+1]) # Add to RK0 list

else:

RK1.append([m, 1, 6*m-1, 6*m+1]) # Otherwise, add to RK1 list

# Determine the maximum number of rows

max_rows = max(len(RK0), len(RK1))

# Print entries in two columns

print(f"{'RK0':<30} | {'RK1':<30}") # Header

print("-" * 63) # Divider

for i in range(max_rows):

# Get entries from RK0 and RK1 if they exist

col1 = (

f"N: {RK0[i][0]} rk: {RK0[i][1]} p: {RK0[i][2]} q: {RK0[i][3]}"

if i < len(RK0)

else "" )

col2 = (
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f"N: {RK1[i][0]} rk: {RK1[i][1]} p: {RK1[i][2]} q: {RK1[i][3]}"

if i < len(RK1)

else "")

print(f"{col1:<30} | {col2:<30}")

# This function prints two lists: the first one with elliptic curves

# of rank 0, the second one with supposed rank 1.

def tallclass(n):

RK0 = []

RK1 = []

for m in range(1, n + 1):

if twins(m):

if rank(m) == [m, 0]:

RK0.append([m, 0])

else:

RK1.append([m, 1])

if len(RK0) == 0: # Avoid division by zero

return 0

return len(RK1) / len(RK0)

# ratio between the number of elliptic curves of rank 1 and rank 0 in

# a given range of numbers.

def plot(n):

x = np.arange(1, n, 100)

y = [tallclass(l) for l in x]

plt.plot(x,y)

# Plot the graph of tallclass.

The figures on pages 45–46 show the results of the plot function with inputs
n = 8000, 80000, 800000. It is really interesting to observe that, at least in the considered
range of numbers, the graph of the function seems to tend toward 1. In other words,
there seems to be approximately the same number of elliptic curves with rank 1 and
rank 0. Moreover we can also say something about the distribution of twin primes.
In Proposition 3.4.1, we have seen how the rank of an elliptic curve Ep,q with (p, q) =
(6n − 1, 6n + 1), n ∈ N pair of twin prime depends on n mod 4. Specifically, there
appears to be approximately the same number of twin prime pairs (6n− 1, 6n+ 1) with
n ≡ 1, 2 mod 4 and n ≡ 0, 3 mod 4.
We want to emphasize that the preceding observations are primarily based on the parity
conjecture and, secondly, on calculations; therefore, they do not claim to have universal
validity.

At the end of this section we compute the generator of the free part of Mordell-Weil
group for the cases n = 3, 7, 12. It easy to check using the previous algorithm that they
generate pair of twin primes and by proposition 3.4.1 that the conjectured rank of the
associated elliptic curve is 1.
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Figure 3.1: Plot(8000)

Figure 3.2: Plot(80000)
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Figure 3.3: Plot(800000)

Let n = 3 by the 2-descent method we have to find a solution to

{
z1

2 + 2z22 = 17

z1
2 + 2z23 = 19

(3.5)

Manipulating a little bit the system and with the help of PARI we find the following
solution (z1, z2, z3) = (11

3
, 4
3
, 5
3
) hence

P =

(
121

9
,
440

27

)
.

Let n = 7 then (z1, z2, z3) = (11
9
, 40

9
, 41

9
) and

P =

(
121

81
,
36080

729

)
.

Lastly for n = 12, PARI gives as result

P =

(
3853369

47089
,
904079280

10218313

)
.

Observe that the computational complexity rapidly increases hence it is really difficult
to calculate P even for n = 23. However, we have demonstrated for these three cases
that the prediction of rank equal to 1 has indeed been confirmed.
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Appendix A

Twin prime

Twin primes are primes of the form (p, p + 2) where p is prime number. There are
many proofs for the infinitude of prime numbers, but it is very difficult to prove whether
there are an infinite number of pairs of twin primes. Most mathematicians agree that
the evidence points toward this conclusion, but numerous attempts at a proof have been
falsified by subsequent review.

Theorem A.0.1. Every prime number except for 2 and 3 is of the form 6n−1 or 6n+1
for some n ∈ N .

Proof. Let m ∈ N, m > 3. By euclidean division

m = 6q + r

with r ∈ {0, 1, 2, 3, 4, 5}.

(a) if r = 0, 2, 4 then m is not prime because is divisible by 2.

(b) if r = 3 then m is divisible by 3 and is not prime.

Therefore m = 6q + 1 or m = 6q + 5 = 6(q + 1)− 1.

Corollary A.0.2. Every pair of twin primes except (3, 5) is of the form (6n− 1, 6n+ 1)
for some n ∈ N.

Conjecture 2. There are infinitely many pairs of twin primes.
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Appendix B

Legendre symbol

Let p be an odd prime number. An integer a is a quadratic residue modulo p if it is
congruent to a perfect square modulo p and is a quadratic nonresidue modulo p otherwise.

Definition B.0.1. The Legendre Symbol is a function of a and p defined as:

(a
p

)
=





1 if a is quadratic residue mod p and ̸≡ 0 (mod p)

−1 if a is quadratic nonresidue (mod p)

0 if a ≡ 0 (mod p)

(B.1)

B.1 Properties of the Legendre symbol

In this section we list some useful properties of Legendre symbol

1. The Legendre symbol is a completely multiplicative function of its top argument:

(a
p

)( b
p

)
=

(ab
p

)
(a, b) ∈ Z.

2. Quadratic Reciprocity Law: For two distinct odd prime numbers l and p, the fol-
lowing identity holds: ( l

p

)(p
l

)
= (−1)(

l−1

2
)( p−1

2
).

3. As supplement to the Quadratic Reciprocity Law :

(−1
p

)
=

{
1 if p ≡ 1 (mod 4)

−1 if p ≡ 3 (mod 4)
(B.2)

4. (2
p

)
=

{
1 if p ≡ 1 or 7 (mod 8)

−1 if p ≡ 3 or 5 (mod 8)
(B.3)

Remark B.1.1. From point 3 and 4 we deduce that
(−2
p

)
= 1 ⇐⇒ p ≡ 1 or 3 (mod 8).
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