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Abstract

The Ąeld of Simultaneous Localization and Mapping (SLAM) algorithms is gain-

ing a lot of importance nowadays due to his importance in mobile robotics ap-

plication. In fact even if the problem has been explored since the 80Šs only in

recent times the increasing hardware power at our disposal and the growth of

interest in the Ąeld allow the creation of really effective algorithms to track the

position of robots and map the environment at the same time. Simultaneous

Localization and Mapping algorithms can be built on a wide range of sensors,

or a combination of them. The most used are for example Lidar, radar, camera,

accelerometer, depth cameras and many others. Cameras in particular are really

interesting since they are ubiquitous and really cheap. The problem with camera

based SLAM algorithm is that they usually produce a sparse map of the environ-

ment. A dense map is really better for navigation purposes so in this thesis the

principal aim is to enhance a visual slam based algorithm to build a navigable

dense map of the environment. In particular the algorithm that will be used and

analyze is ORB-SLAM3 in the conĄguration in which the true scale of the map

is recovered using the integration of accelerometer data. The dense map will be

produced using a relative depth estimation neural network and the visual slam

algorithm will be used to rescale the neural network estimation and for tracking

purposes.
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Introduzione

Motivation

Find motivations for a project like the one that will be described in this thesis is

not so difficult. Robots are in fact ubiquitous nowadays and in particular mobile

robots are more and more often present both in industrial and in home environ-

ment. Robots can be used to transport various type of material autonomously

around a factory, but they can also clean the Ćoor of our houses and cut the grass

of our garden. To complete all these type of task more efficiently they need to

answer two fundamental question

• Where am I?

• What is around me?

These question are tricky also for a human being. For us is natural to move

inside any environment without thinking about all the process that our brain is

completing to allow us to move around without any difficulties. Simultaneus Lo-

calization and Mapping Algorithm try to give the ability to answer these question

to a robot, and in a really general way the answer is found as follow

• First of all the robot need to collect data from the environment at each

time step. To complete this task a lot of different sensor can be used like

Lidars, radars, cameras, depth sensors, accelerometers etc. It will be clear

in all this thesis that choosing the right sensor conĄguration and setting up

them in the right way will be fundamental to obtain good results.

• As a second step the algorithm try to Ąnd a change in the pose of the robot

that justify the change in the observations in different moment in time. To

do that we usually need to solve an optimization problem

• The third element is to build a coherent map of the environment based on

all (or at least a great amount) of previous and current information

vii
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Figure 1: CAD image of the sensor setup built by previous year student.
Image taken from their GitHub repository

Obviously complete SLAM algorithm are far more complex than that and they

implement a lot of different routine to solve problem like loop closure, increase

robustness or manage the built map in the most efficient way. All these things will

be describe in greater details in the thesis but the above points can be considered

as a really general description of the principal task that a SLAM algorithm need

to accomplish.

Project goals

This project is part of a multi-years effort of the Universitè Chatolieque de Lou-

vain which goal is to build a drone able to explore autonomously an indoor en-

vironment. It will be clear that the distinction between indoor and outdoor

environment is still really important, in particular during the choice of the sensor

setup. All the previous works [1] [2] made use of the A.R Drone 2.0 platform and

in particular they focused on the visual information coming from the camera to

build the slam algorithm. Last year a decision to change the approach was taken

and a new platform (shown in Ągure [1]) was build. The sensor chosed were a 2D

Lidar, an accelerometer, and a rgb camera. The entire setup will be described in

more details later but the general idea of last year project was to use a neural
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network to estimate a depth map from the rgb image provided by the camera,

and then try to correct this estimate using the data coming from the 2D lidar.

Once they have produce a point cloud in this way they want to feed that point

cloud to an already build RGBD SLAM algorithm to estimate both the position

and the map structure. The possible difficulties that one can encounter using this

approach are in particular two

• Neural Network that estimate absolute depth are not so precise for the

moment. In particular the Neural Network used last year was AdaBins [3].

• The single line of points provided by the 2D Lidar do not add a lot of

information that allow us to correct the depth map produced by the Neural

Network.

However the principal aim of last year project was to build a dense navigable map

for the robot. In fact the vast majority of SLAM algorithm that use cameras as

the main sensor (which are called visual SLAM algorithm) produce a sparse [4] [5]

or a semi-dense map [6] [7], which are not suitable for indoor navigation. Last year

result were promising but the authors underline that their implementation was

not ready for real time SLAM application in particular because of the precision

of the neural network and the time needed to run it online.

Strategy choosed for this thesis work

To improve last year result and to be able to build a 3D navigable map we try to

take a different approach. First of all we try to use a different Neural Network

to achieve better precision in the depth estimation. Our choice was at the end

MiDaS [8] [9], which is a Network that estimate the relative depth between point

in the image and not the absolute depth. It is able to achieve quite good precision,

but the depth estimate need to be rescaled to be able to obtain a metric depth

map. To do that we decide to use information coming from an already existing

visual-inertial SLAM algorithm, called ORB SLAM 3 which is able to estimate

the metric depth of a few hundred points in the image. Once we have the depth

of these few hundred points we can do a simple linear regression to rescale the

Neural Network depth estimation and produce a point cloud. It is possible to do

this procedure only at each keyframe to avoid the computational comlpexity of

estimate the depth with the NN at each frame coming from the camera. Moreover

the tracking thread of ORB SLAM 3 will give us also the global position of each
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Figure 2: General high level graphical description of the choosen approach

keyframe. In this way we will be able to produce point clouds with their global

position and give them to OctoMap, which is an algorithm able to combine them

to produce a global voxel probabilistic map. This type of approach solve last year

problems regarding the time needed by the neural network to produce a single

estimate, and concerning the precision of the neural network. The principal

difficulties that we have encounter implementing this type of approach are

• setting up ORB-SLAM3. Starting from the installation to all the practical

measures that one need to take in consideration to make the algorithm work

with a particular experimental set up

• reading and modifying the code of ORB-SLAM3 to be able to obtain the

pose and the depth information avaiable in the ROS network

• syncronize the depth sparse data from the ORB-SLAM3 with the RGB

image coming from the camera

once these problems are solved a 3D navigable voxel map of the environment can

be produced. Obviously the main problem of this approach is the use of a neural

network for the depth estimation since NN can be really powerful but sometimes

really unpredictable. An concise graphical description of the method can be seen

in Ągure 1.4.
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Thesis structure

The Thesis will be structured in the following way

• Chapter 1 : General description of SLAM algorithms, their history and

description of the most important existing techniques based on the sensor

setup that can be choosen. Moreover the mathematical tools needed to

understand SLAM algorithm will be explained.

• Chapter 2 : Introduction to visual SLAM algorithms, description of basic

computer vision concepts, and of other important techniques used to solve

the problem.

• Chapter 3 : Deep description of ORB-SLAM3. Analisys of the modiĄcation

introduced to the ROS Wrapper to extract the pose and depth information.

• Chapter 4 : Description of the MiDaS NN and of the procedure used to

rescale its depth estimate. Description of OctoMap and explanation of the

result that we have been able to obtain.

• Conclusion: Strenght and witness of our approach will be described and

the possible future developement will be explained. Moreover the lesson

learned during the implementation of this project will be reported.
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Chapter 1

Simultaneus Localization and

Mappping

The aim of this Ąrst chapter of the thesis is to give a general overview of the con-

cepts needed to understand Simultaneous Localization and Mapping algorithms

and the sensors usually used to implement them. Moreover the history and main

mathematical concepts needed to understand SLAM will be described. In partic-

ular the chapter will be divided in the following three section

• The Ąrst section will be dedicated to a general discussion of SLAM algo-

rithms with the focus on the main piece of software needed by a modern

and complete algorithm of this type. Some of the most famous algorithm

based on the choice of the sensors will be explained.

• The second section will be dedicated to the description of the main math-

ematical tools needed to understand SLAM. In particular the most impor-

tant mathematical instruments are linear algebra for pose representation

and non linear optimization tools.

• The third and last part will be used to described the history of SLAM

following a particularly useful historical division given by [10] and with the

help of other two important surveys [11] [12].

The main objective of this chapter will be to give general concepts that apply

to all SLAM algorithms regardless of the sensor chosen. The reader must taking

into account that this thesis will focus on visual-inertial SLAM algorithms, so

algorithms where the sensors used are a camera and an accelerometer.

1



2 Chapter 1. Simultaneus Localization and Mappping

1.1 SLAM algorithms structure

The Ąrst section of this chapter will be based on the subdivision given in the

Ąrst part of [13]. This book can be considered as a really good introduction in

particular to visual SLAM, starting from the mathematical concepts to the code

implementation of the single modules needed by a SALM algorithm. A Simul-

taneous Localization and Mapping Algorithm is usually divided in the following

modules

• data collecting and frontend odometry

• backend optimization

• loop closing

• mapping or reconstruction

each of these components will be describe in the following. Before starting with

this description I want also to underline the multidisciplinarity of SLAM as a

research study Ąeld. A lot of different topics must be understood to be able to

understand SLAM. Some of the most important subjects that are involved in

SLAM are

• computer vision: which is really fundamental in visual SLAM when you

need for example to extract feature used as landmark by the SLAM algo-

rithm

• optimization: important both for position tracking and for backend map

and trajectory optimization

• electronic: sensor setup and communication but more in general all the

hardware needed for achieving real time SLAM. Take in consideration that

for implementing a SLAM system you will need to know how to synchronize

and conĄgure all the physical element of the system

• computer science: for the efficient code implementation of the algorithm it

is really useful for example to correctly manage the memory of the system

but also to build the program in such a way that it can run in a really fast

way also in low power embedded systems
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Figure 1.1: Example of ORB features extracted by ORB-SLAM3 from a
black and white image taken in the lab

1.1.1 Data collecting and frontend odometry

To locate itself and map the environment a robot need to collect data or ob-

servation of the landscape. To do that we need sensors and the choice of the

sensors is really fundamental to understand which SLAM algorithm we will use.

Collecting data in real time from different sensors and synchronize them could

seem a simple task but it is really fundamental to extract good performance from

the SALM algorithm. Once the data are collected (data can be distances given

by a 2D lidar, images coming from a camera, acceleration coming from an mpu)

the frontend part of the algorithm will do two principal things.

Feature extraction. Once we have the raw data usually we can extract

only the ones that are particularly interesting to track the position of the robot.

Take as an example data coming from a 2D Lidar. In this case we have the

distance of points all around the robot at a certain height. In this case we can

be interested only in simple reobservable points in the environment such as the

corners of the room. The same things can be said for images, in fact really often

we are interested only in relevant points in the image and to Ąnd them we will

need a feature extractor.

Data association With the given relevant points this part of the algorithm

will try to estimate the pose of the robot given two subsequent observations of

the environment. The concept is quite simple: taking again the example of the

2D Lidar and suppose that we are in a perfectly squared room. Given that the
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four extracted corner of the room were at particular distance and that now these

corner are detected in a different position, the question is: which is the most

probable position of the robot now? Answering this type of question often means

solving optimization problems.

It is important to notice that extracting feature from raw data is not manda-

tory and in fact there exist algorithms that solve the optimization problem on

all the 2D Lidar readings (this is called scan matching), and direct visual SLAM

algorithms which solve an optimization problem on all the pixel intensity of two

subsequent images. There are pro and cons with both the approaches in fact

even if extracting features from the raw data could be really time consuming, the

following optimization problem that we need to solve to estimate the robot posi-

tion will be lighter if we need to solve it considering only the extracted features.

Moreover choosing to solve the optimization problem only with feature points

rather than with all the data coming from the sensors could be less reliable or

more efficient depending on how good the data Ąltering algorithm is.

1.1.2 Backend optimization

Once we have the estimated pose and the observations collected from the frontend

part of the algorithm the backend part comes into play to build and optimize

trajectory and map. This part of the algorithm is really fundamental because it

take in consideration that measurements from any sensor are noisy. For example

Lidar measurement can be affected by usual electronic noise or background light.

With cameras the problem is even more relevant if we take in consideration that

cameras are continuously adjusting their white balance for example. This could

seem a really simple problem to solve, because for human, even if two images are

the same except for the white balance with which they are acquired, it is really

simple to recognize them as the same image. A microprocessor see these images

only as matrices of numbers so these two images will be for him totally different

images. The backend part of the SLAM algorithm is usually considered as the one

which is really more interesting for pure SLAM researchers. This part is usually

seen as a state optimization problem and the base formulation of the problem

will be a probabilistic one. This probabilistic approach will allow us to Ąlter the

previous mentioned noises. Since this part of the algorithm is solving in practice

a state estimation problem there are multiple way to implement it. We can use

for example Extended Kalman Filters, Particle Filters which are called Ąltering

approach and are considered the most classic ones, or we can use maximum a
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Figure 1.2: Example of a map before the loop closing algorithm correct the
drift caused by normal imperfection in the SLAM system. Image
from [14]

posteriori estimation. See section II of [10] for a wider explanation.

1.1.3 Loop Closing

The loop closing problem is one of the most famous problem discussed in the

SLAM community. It is always caused by the fact that sensors and algorithms

has not inĄnite precision. The problem is that the algorithm will always be

affected by some error which accumulated during time. This error will cause a

wrong estimation of the position and when the robot come back to an already

visited position it will be probably be affected by a drift which can be small or

big depending on how good the SLAM algorithm is. We can take an extreme

example in which we use only data coming from an accelerometer to estimate the

position of the robot. Suppose the accelerometer gives us 100 samples per second

and that we have a mean error of 1mm/s2, this can cause a drift in the estimate

of the position of few meters in some seconds. This is totally a non negligible

error. This example is obviously extreme since we are using data that need a

double integration for estimating the position of the robot, but it makes clear

how important is to solve the loop closing problem. It is obvious that we need

a part of the algorithm which try to check if the robot is observing an already

visited position and once he found such a correspondence it is able to optimize

again the entire map and trajectory obtaining a coherent representation of the

environment. This part of the software is called loop closing algorithm and it is

always present in a complete SLAM library.
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1.1.4 Mapping or Reconstruction

We can talk in a dedicated section about the mapping part of the algorithms in

particular because the type of maps that a SLAM algorithm can produce are very

different and the type of map that we can choose depend on the objective of our

algorithm. One Ąrst distinction between possible maps is the following

• Sparse: a sparse map is a map in which the position of only few point of

the environment is estimated. This type of map are really light and easy

to manage and they are suitable for localization purposes and an initial

general description of relevant point of the environment. The problem with

this type of map is that sparse map are not navigable because of the sparsity

of the map representation. In fact usually points that are represented in

a sparse map are recognizable points (features). A white wall for example

will probably not present in a sparse representation because it is devoid of

relevant features.

• Dense: a dense representation of the map is a representation of the environ-

ment in which a really high number of points are used to build a complete

map of the environment which can be represented as a dense point cloud, a

voxel occupancy grid, a set of 3D meshes etc. This type of maps are usable

for navigation but since they contains a higher level of information, they

are more difficult to manage in particular from the point of view of memory

occupancy.

• Semi-dense: This type of maps are a compromise between the Ąrst two type

of maps

Another really general and really important distinction consider the logical struc-

ture of the map. In fact in general we can have:

• Metric Maps: These are memory expensive maps, but they are suitable

for navigation. This type of representation try to build a metric scale

model of the environment and they can be 2D or 3D. The choice of a three-

dimensional of bi-dimensional map strongly depend on the application for

which we are going to use it. For example a mobile robot on wheels can

simply used a 2D map of the environment. Instead, if we want to build a

map for a Ćying drone we will probably prefer a 3D map of the environment.

• Topological Maps: These other types of maps are really light since they

tried to collect only the most relevant information of the environment. This
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(a) Example of dense map that can be pro-
duced by a ORB-SLAM2. Image taken
from [15]

(b) Example of sparse map produced
by ORB-SLAM

representation are graph with nodes connected by edges which symbolize

the relation between two points of the map. These map are usable for

localization purposes but not for navigation.

Now that we have deĄned these distinctions between maps types it is clear which

type of map we will need for our project. In particular we will use a map which

is dense and in metric scale which is the right choice for navigation purposes.

Actually our algorithm will use two maps at the same time. The Ąrst map,

produced by ORB-SLAM3, will be used for localization and rescaling purposes,

the second one produced by OctoMap using the rescaled version of the point

clouds produced by the neural network will be used for navigation purposes.

1.2 Important sensors and SLAM algorithms

The goal of this section is to describe to the reader the most important sen-

sors that can be used to build a SLAM algorithm and the corresponding most

known algorithms that are really famous inside the SLAM community. I want to

underline that only the most relevant sensors that I have encounter during the

work on this project will be discussed. In fact we can build SLAM algorithms

also using data coming from a small sonar for example, however sonars are not

used so often to build this type of algorithms. I want also to remember that the

performance of a SLAM algorithm depend on the application and a particular

algorithm could performance better than another one depending on the situation.

Finally I want to underline the fact that this thesis is focused on visual SLAM so

the vast majority of algorithm that I have encounter are based on different type

of cameras.
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1.2.1 Monocular cameras (-accelerometer)

Monocular cameras are ubiquitous nowadays. In a modern smartphone you can

Ąnd even four of them. Cameras are cheap and they collect a lot of information

about the environment. Cameras will be explored in more details in the chapter

dedicated to visual SLAM but we can state the most important speciĄcations

that are relevant for our objective

• framerate: the framerate is fundamental because monocular SLAM algo-

rithms assume straight baseline between frames

• lens: usually a Ąsh-eye lens is well regarded since it can increase the Ąeld

of view of the camera

• RGB/BW: SLAM algorithms usually work with black and white images

but in our case the neural network will need an RGB image as an input, so

we will need an RGB camera.

• rolling/global shutter: a global shutter camera will be usually preferred,

but rolling shutter cameras are really cheaper and could guarantee decent

performance

In general pure visual SLAM algorithm based on monocular cameras could be

really effective but they can found difficulties in featureless environment and

with pure rotation movements. Moreover they can reconstruct the environment

only in a non metric random scale which will usually depend on the algorithm

initialization. All these problems will be better explained later but it is sufficient

to know that there exists multiple way to recover the true scale of the environment

usually integrating some other sensor in the system. One of the best way to do

that is to introduce an accelerometer. This type of algorithms are called visual-

inertial SLAM algorithm and one of them will be the central part of this thesis.

There are multiple visual SLAM library which are really often open source. The

two most important ones that have been encountered during this project are

ORB-SLAM. This algorithm was a pure feature based visual SLAM algo-

rithm in its Ąrst iteration [4], then it add support to depth and stereo cameras

with its second version [15]. With the third update called ORB-SLAM VI [5] also

the support to acceleremeter which introduce the capability to build metric scale

map of the environment even when only a monocular camera is used. The last

version of the algorithm ORB-SLAM3 will be the center of the third chapter of

this thesis being one of the fundamental element of this work.
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LSD-SLAM. This second algorithm [6] differs from ORB SLAM because it

is a direct visual SLAM program and because it is able to build semi-dense map.

That is, it produce map of the environment with a really higher number of points

with respect to the Ąrst algorithm mentioned in this section. This algorithm is

also really light and there are successive version [7] [16] which can integrate the

accelerometer to recover the true scale of the world.

1.2.2 Stereo cameras

In general monocular SLAM algorithm try to estimate 3D position of relevant

points in the image doing a triangulation between two successive frame in which

a particular point is present. Stereo cameras are simply doing the same thing but

instead of doing triangulation between two frames taken by the same camera in

different moment in time, we have two (or more) synchronize monocular cameras.

The principal advantage in this case is that the relative pose of cameras is Ąxed

and known. So in this case the scale ambiguity problem does not exists. Moreover

pure rotation will be not a problem for stereo camera based algorithms. The

principal drawback is that the sensor will be more expensive and usually bulkier.

In fact the precision of the depth estimation will depend (in addition to the

deĄnition of the cameras) also to the distance between them. To achieve good

precision in an outdoor environment we will need really high distance between

cameras, which is possible on a car but not in a drone for example. Both LSD-

SLAM and ORB-SLAM have version of themselves that can work with stereo

cameras but there are other algorithm such as

S-PTAM. This algorithm principal characteristic is to highly exploit the

parallelizble nature of the SLAM problem [17] [18]. It is important to notice that

all the mentioned algorithm try to exploit this fact also dividing the tracking,

mapping and optimization problems in different thread. We need to remember

that high optimization of the code is fundamental since we are talking about

really complex algorithm that need to work in real time.

1.2.3 RGB-D cameras

RGB-D cameras work in a really different way with respect to the previous men-

tioned sensors. In fact they can recover the depth of points in the image using a

totally different principles. There are in general two type of RGB-D cameras.

• the Ąrst type of depth cameras are the one based on the structured light
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Figure 1.4: The Microsoft Kinect V1. We can see the presence of an RGB
camera, an infrared light projector and an infrared light receiver

principle. These type of camera like the KinectV 1, project a known infrared

pattern in the environment and they can recover the distance of the points

based on the distortion of the known pattern.

• the second type of depth cameras are based on the Time of Flight principle

(in fact they are called TOF sensors), and they estimate the distance of

points based on the time needed by infrared light to come back to the

receiver.

RGB-D cameras are really effective in indoor environment since they relieve the

SLAM algorithm from all the needed computation to estimate the depth of points.

The output of this type of sensor could be an already prepared point cloud that

can be given to any type of SLAM algorithm that can accept them. These

cameras can be also really cheap. The kinect V1 for example cost only around 15

euros. The problem with them is that they cannot be used in outdoor since they

have usually limited range and they can suffer the presence of other infrared light

source like daylight. There exist variations of both ORB-SLAM and LSD-SLAM

able to use RGB-D cameras but we can also mention

RTAB-Map. This algorithm is really famous it can work also with stereo

cameras and it is even available for iOS and Android [19]. Obviously you will

need a device with an incorporated depth/stereo cameras or 3D lidar.

1.2.4 2D and 3D Lidar

With 2D/3D Lidar the distance of the objects measure the time interval between

the emission of the laser pulse and its reception. The difference with TOF RGB-D

cameras is that they use infrared light instead of laser pulse. 2D Lidar are usually

rotating laser pulse emitter and receiver (as the one at our disposal). They can be

really suitable for indoor 2D mapping since they have a really bigger range and

higher precision than RGB-D cameras. They can have problems with reĆecting
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surface, they are really expensive and since they have a moving part they can

be prone to mechanical failure. Moreover the vibration caused by the rotations

could be not negligible especially if the Lidar is mounted on a Drone. There are

multiple SLAM algorithms able to exploit the information coming from 2D Lidar

but two in particular are rally famous especially in the open source community

Hector SLAM. This is so famous that there exist a direct installation for

ROS [20]. It is really simple to setup and it can achieve really good performance.

It require really low computational resources and it produce a 2D occupancy grid

of the environment at different resolution. It can also be augmented to achieve

3D capability using data coming from IMU, GPS, or other similar sensors.

Google Cartographer. This algorithm work both with 2D and 3D Lidar

and it can achieve really high performance and its main characteristic is to be able

to perform loop closing from Lidar data with really low computational resources

[21].

At the end of this section there are in particular two concepts to bring home

• a lot of SLAM algorithm are compatible with different sensors. This means

that once you have build a particular type of backend for the algorithm

you can adapt the frontend to achieve compatibility with different type of

hardware

• The main discriminant when you are making the Ąrst decisions on how to

build your SLAM system is to decide if you want to use your system in an

indoor or an outdoor environment. In fact as we have seen some sensor can

be really efficient in an indoor environment but non performing in outdoor

situation, or vice-versa

name light sens. output preferred env.
monocular medium RGB image indoor/outdoor

stereo medium multiple RGB images indoor/outdoor
RGB-D high point cloud indoor

2D Lidar low planar distances indoor
3D Lidar low point cloud outdoor

Table 1.1: Table that sum up the main possible sensors used by SLAM algo-
rithm
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1.3 Mathematical tools

This third section of the Ąrst chapter is dedicated to the two principal mathemat-

ical tools needed for SLAM algorithm. In particular we will take a look on how

the 3D pose of the robot can be represented in a mathematical way and, after

that, we will take a look at the basics of non linear optimization. Before explain

these two topics we will take a look at the most basic mathematical formulation

of the SLAM problem.

1.3.1 Mathematical formulation of SLAM problem

In this Ąrst section we will see how the SLAM problem can be formulated as a

simple state estimation problem. Before doing that we need to deĄne some of the

variable that we will use for the formulation of the problem.

• xk represent the pose of the robot at time k

• yj represent the state of the j′th landmark (relevant point of the environ-

ment)

• uk represent the input to the system at time k. This variable is usually

used to take in consideration odometry data coming for example from ac-

celeromeeter or rotary encoders

• zk,j represent the observation of the j′th landmark given that the actual

state of the robot is xk

• wk is the noise affecting the relation between the state at k − 1, the input

at time k and the state xk

• vk,j is the noise affecting the observation of landmark j given that the robot

is in the state xk

• O is the set of (k, j) that represent at which pose a particular landmark

has been observed

• K is the last time step that we are considering

Once we have deĄned these variables we can describe the two fundamental equa-

tion that we need.






xk = f (xk−1, uk, wk) , k = 1, · · · , K

zk,j = h (yj, xk, vk,j) , (k, j) ∈ O
(1.1)
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In this system of equation the Ąrst line represent the so called motion equation.

The function f in fact connect the actual state of the robot with the previous

one depending on the input and the noise that affect our system. The func-

tion f is really often a non linear function. The second equation represent the

observation equation which connect through the (usually also non linear) func-

tion h, the measurement of landmark yj obtained from the sensors, given that the

robot is in state xk and that the measurement system is affected by the noise vk,j.

Now that we have built this equations that govern the time evolution of our robot

pose taking in consideration the position of the landmarks (which are assumed to

be static in the vast majority of SLAM algorithm) and the input to the system

we can clearly see how the SLAM problem is simply a state estimation problem.

The quantities that we want to estimate are the pose and trajectory (collection

of poses through time) of the robot and the position of the landmarks. To solve

these problems we can use a more classical approach which imply the use of Ąlters

like the Extended Kalman Filter (EKF), otherwise we can try to solve it using

more modern non linear optimization technique. These optimization technique

will be better explained at the end of this section.

1.3.2 Pose representation

The Ąrst thing that we need to do is to better deĄne what is the state of the

robot xk. In the SLAM framework the state of the robot correspond to the

actual pose of the robot inside the map. To represent the pose we can use the

rototraslation between the Ąxed world frame and the robot frame. To see how

these rototraslation can be represented we can talk about the translation and the

rotation independently.

Traslation. Representing a 3D translation is really simple and we can do

that simply using a three-dimensional vector t ∈ R
3. This is simply the vector

connecting the origin of the world frame and the origin of the robot reference

frame.

Rotation. Rotation are usually represented using rotation matrix. For 3D

rotation we simply have 3x3 rotation matrix which have two particular charac-

teristic. They are orthogonal and their determinant is equal to one since they

represent a pure rotation and they cannot stretch our vector. So we can deĄne

the special orthogonal group which contains all the possible rotation matrices of
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an n dimensional space as follow

SO(n) =
{

R ∈ R
n×n ♣ RRT = I, det(R) = 1

}

(1.2)

Note that since rotation matrices are orthogonal RT represent the inverse rotation

with respect to R. Multiplying a rotation matrix by a particular vector gives us

the rotated version of that vector in the same reference frame or the coordinates

of the same vector in a rotated reference frame.

To obtain the coordinate of a particular vector a in any rototrasleted ref-

erence frame we simply need to multiply it by the speciĄc rotation matrix and

then add the translation vector. We need to be particularly careful with the

translation vector since we need to have really clear in mind in which reference

frame the translation vector is represented. Now that we have a description of a

complete rototraslation we can try to represent it using a single matrix. We can

do that simply using homogeneous coordinates. To do that we simply add a 1

at the bottom o f our 3D vector and at this point we can represent a complete

rototralsation with a single Transform matrix T as follow




a′

1



 =




R t

0T 1








a

1



 = T




a

1



 (1.3)

the advantage of using transform matrix is that now we have a linear relation

between the coordinates of a vector and the coordinates in the rototraslated frame.

This is really important since now we can compose multiple rototraslation in a

really streightforward way. As before we can deĄne the special euclidean group

as follow

SE(3) =






T =




R t

0T 1



 ∈ R
4×4 ♣ R ∈ SO(3), t ∈ R

3






(1.4)

this group contains all possible transform matrices that could be applied to the

homogeneous version of three-dimensional vectors. Representing rototraslation

using transform matrix is inefficient because rotation matrix has some constrain

and they have nine degree of freedom even if a 3d rotation has only 3 DoF. So

we can use other way to represent 3D rotation.

Rotation Vectors. One simple way to fully express a rotation is to use a

vector which direction is parallel to the axis of rotation and the length is equal to

the angle of rotation. The relation between rotation vectors and rotation matrices
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is expressed by the Roudrigues′formule wich is reported here only for the reader

knowledge

R = cos θI + (1 − cos θ)nnT + sin θn∧ (1.5)

where ∧ represent the conversion of a vector in skew-symmetric matrix obtained

as follow

a∧ =








a1

a2

a3








∧

=








0 −a3 a2

a3 0 −a1

−a2 a1 0








(1.6)

Euler angles. Euler angles are really intuitive since they decompose a 3D

rotation in three different rotation around three axis. The most important thing

to consider is that the axis of rotation and the order in which these rotation must

be applied need to be clearly deĄned. Fortunately depending on the Ąeld these

notion are usually a standard. The most important problem of Euler angles is

the famous Gimbal Lock problem, which cause the loss of one degree of freedom

for the rotation because of alignment between two rotation axis caused by the

Ąrst rotation.

Quaternions. We have seen that rotation matrix are redundant and that

Euler angles (or any other three dimensional representation of a three dimensional

rotation) suffer of singularity. However there exist another possible representation

of rotation using an extension of imaginary numbers called quaternions. Quater-

nions are formally elements of a non commutative division algebra but we can

give a more practical description of them if we consider them as an extension of

complex numbers. A quaternion is an entity such as

q = q0 + q1i + q2j + q3k (1.7)

where q0, q1, q2, q3 are real numbers and i, j, k are imaginary units that satisfy the

following equations 





i2 = j2 = k2 = −1

ij = k, ji = −k

jk = i, kj = −i

ki = j, ik = −j

(1.8)

we can use quaternions to represent any 3D rotation and in fact there exist a

map from quaternion to rotation matrix. Moreover to apply the rotation to a

3D vector we simply need to extend a 3D point as an imaginary quaternion and

then left multiply it by the quaternion and right multiply it by the inverse of the
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quaternion.

1.3.3 Lie Group, Lie Algebra, derivatives

Since we have just shown how to represent the pose and we know that the vast

majority of time we will need to solve optimization problem where the unknown

are poses (of the camera or of the landmark in the 3D space) we can surely

note that there is a particular problem. Take for example the group of rotation

matrices equipped with the classical matrix multiplication. Since it is a group

it is close under the matrix multiplication operation, but for example the sum

of two rotation matrix do not return a rotation matrix. This is a problem when

we deal with optimization problem where the unknown is for example a rotation

matrix. In fact to solve this type of problem a notion of derivative is needed and

the notion of derivative need some kind of addition and subtraction operation to

represent small variations, and so deĄne the derivative operation. To do that the

following elements will be introduced in this section

• Lie group

• Lie algebra

• exponential/logarithmic map

• addition/subtraction operation and right derivative

it is worth noticing that these concepts are used so often in the SLAM community,

and in general in real robotics implementation, that there exists a C + + library

called Sophus which is built for the creation and manipulation of these type of

objects. The name of the library correspond to the name of the mathematician

that develop the theory behind all these mathematical tools which was Sophus

Lie.

Lie group. We Ąrst need to deĄne what a group is. A group by deĄnition

is a couple (G, ∗) where G is a set and ∗ is a binary operation between elements in

the set. The set and the operation are such that for every element X , Y , Z ∈ G

closure: X ∗ Y ∈ G

identity element: E ∗ X = X ∗ E = X

inverse: X −1 ∗ X = X ∗ X −1 = E
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associativity: (X ∗ Y) ∗ Z = X ∗ (Y ∗ Z)

a Lie group is not only a group but it also has the proprieties of a differentiable

manifolds. The idea that one need to understand here is that locally the group

could resemble a Euclidean space. An important propriety of Lie group is that

they have the same local structure everywhere, due to the group properties. This

characteristic is simple to visualize if we think about the group compose by the

set of imaginary numbers of norm one paired with the multiplication between

imaginary numbers. The set can be represented in the imaginary plane as a circle

which has the same local structure everywhere. For this reason also the tangent

plane to the Lie group has the same proprieties everywhere. A really important

practical characteristic about Lie group is that we can deĄne the group action on

element of a set V as follow

· : M × V −→ V : (X , v) −→ X · v (1.9)

which need to satisfy the following proprieties

E · v = v

(X ∗ Y) · v = X · (X · v)

to explain what this group action is we can simply take as an example the group

of 3D rotation matrix SO(3). This group is able to act on elements of the set R3

through the usual matrix vector multiplication.

Lie algebra. The fact that the Lie group has the proprieties of a differen-

tiable manifold allow us to have a well deĄne tangent space in each point of the

Lie group. We can represent the tangent space to the Lie group M at point X
as TX M. Now we can deĄne the Lie algebra as the tangent space at the identity

element of the group E . That is, the Lie algebra associated to the Lie group M,

denoted by m is by deĄnition

m := TEM (1.10)

the Lie algebra is a vector space so we can choose a base and build two isomor-

phisms (one the inverse of the other) usually called hat and vee which create a

one-to-one correspondence between the tangent space and the calssical Cartesian

vector space R
m. These two operation are usually simbolyzed respectively by the

symbols ∧ and ∨. So when we write τ∨ we means the element of the tangent

space that correspond to the vector τ in the corresponding vector space.
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Exponential and logaritmic map. A correspondence between element in

the Lie algebra and element in the Lie group could be created considering the

time-derivative of the of the group constrain. Take as an example the rotation

matrix group. The constrain for this group is

R(t)R(t)T = I

and when we time-differentiate it we obtain

Ṙ(t)R(t)T + R(t)Ṙ(t)
T

= 0

so we can notice that Ṙ(t)R(t)T is a skew-symmetric matrix and if we consider

R(t) = I we obtain that

Ṙ(t) = τ∨

τ∨ is a three dimesnional vector in the tangent space at the identity element of

the group, so in the Lie algebra. Considering the solution of the last differential

equation we can Ąnd the expression of the exponential map and of its inverse, the

logaritmic map, which have the following expression

exp : m → M ; τ∧ 7→ X = exp (τ ∧)

log : M → m ; X 7→ τ∧ = log(X )
(1.11)

To visualize how these maps work we can look at Ągure 1.5, where the geometric

representation of the set of unit quaternion as a sphere is given. In that Ągure we

can see how the Lie algebra is the tangent space at the identity element. Moreover

we can see how the exponential map is acting as a wrapping function which take

an element in the tangent space and "wrap" it around the sphere. Vice-versa the

logarithmic map unwrap elements of the Lie group mapping them directly in the

tangent space.

Addition, subtraction operation and right derivative. Now that we

have deĄne the Lie algebra corresponding to a particular Lie group we can deĄne

operations between elements of the Lie group and Lie algebra as follow

right − ⊕ : Y = X ⊕ X τ := X ∗ Exp
(

X τ
)

∈ M
right − ⊖ : X τ = Y ⊖ X := log (X −1 ∗ Y) ∈ TX M

(1.12)

the Ąrst thing that we need to notice is that we have deĄned the right-addition
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Figure 1.5: Visualization of the Lie group of unit quaternion the correspond-
ing Lie algebra and the exponential and logarithmic map. Image
from [22]

(and subtraction). This is important since if we have the Ąrst element of the

addition operation, equal to an element of the Lie algebra, differently from the

above expression, the deĄnition of the addition operation will change. Another

thing to explain is the symbol X τ that represent the element of the Lie algebra

but collocated in the tangent space corresponding to the X element of the Lie

group. Now that we have deĄne the right addition and subtraction operation

we can deĄne the right Jacobians as an extension of the the usual derivative

operation as follow

X Df(X )

DX := lim
τ→0

f(X ⊕ τ ) ⊖ f(X )

τ
(1.13)

more deep discussion about Lie algebras and Lie groups applied to robotics can be

found in [22]. For reader who are interested in a formal mathematical description

of these concept [23] and [24] could be really good resources.

1.3.4 Non linear Optimization

The last mathematical tools that need to be introduced is the Gauss-Newton and

the Levernberg-Marqatdt method for non-linear optimization problems. In fact

this is one of the most used approach to solve strongly non linear least square

problem usually present in SLAM algorithms such as Bundle Adjustment. The

Gauss-Newton approach is basically based on the Ąrst order approximation of the

error function, and not of the squared norm of the error. Suppose that we want

to Ąnd the solution of the following problem

min
x

F (x) = min
x

1

2
♣♣f(x)♣♣22 (1.14)
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as every numerical method, since f(x) is usually non linear, we want start from

an initial guess and then compute the change ∆x which allow us to get closer to

the solution. In the Gauss-Newton approach we consider the Ąrst order approxi-

mation of f(x) and then we compute the change as follow

∆x = arg min
∆x

1

2
♣♣f(x) + J(x)T ∆x♣♣2

where J(x) is the Jacobian of f(x). We can solve this minimization problem

simply computing the derivative and then imposing it equal to zero. As a result

we obtain the following normal equation

J(x)JT

︸ ︷︷ ︸

H(x)

(x)∆x = −J(x)f(x)
︸ ︷︷ ︸

g(x)

(1.15)

at this point the only thing that we need to do is to solve this equation at

each step of the algorithm. The problem is that solving this equation means

that H needs to be invertible. Since we cannot guarantee this, the methods

will not surely converge. The levenberg-Marqardt method is only a modiĄed

version of the Gauss-Newton method in which we solve the same optimization

problem to Ąnd ∆x but with the difference that the problem is constraint inside a

trust region which dimension depend on how good the Ąrst order approximation

of the function is.

1.4 Brief History of SLAM

The aim of this last section is to summarize the history of SLAM and the in-

formation are principally taken from three really important papers [10] [11] [12].

The main division of slam history given in [10] is the following

• classical age

• algorithmic age

• the future

these three ages will be brieĆy discussed in this section. Before doing that I

can report the answer of the last cited paper to the question "is SLAM a solved

problem?". This is a really interesting question since when you Ąrst dig into the

Ąeld, the SLAM problem seems a really open one but the more you study it the
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more you have the impression that the problem could be considered already well

explored. The answer of the authors of the papers (with which I agree) is the

following: even if in really strict condition and in quite controlled environment

the SLAM problem could be considered solved, a lot of work need to be done to

Ąnd general and in particular robust solution. The robustness is one of the main

subject of today research and will be part of the last portion of this section.

1.4.1 Classical Age 1986-2004

The Ąrst event in which probabilistic SLAM appears was the 1986 IEEE Robotics

and Automation Conference held in San Francisco. As always, the Ąrst step that

one need to take in consideration when dealing with a new problem is to formulate

the problem in the correct way. For SLAM the probabilistic representation was

really the key aspect since it is a problem in which noises and uncertainties have

such a great impact. As underline in [10] the most important conceptual break-

through in this Ąrst period of the SLAM history was the understanding that

the estimation problem of the position of the robot and of the landmark, has a

convergent solution, if they are considered simultaneously. This structure of the

SLAM problem was described only in 1995 [25]. It was in this classical period

where the principal approaches to solve the problem were proposed like

Extended Kalman Filters. In this case the motion and observation equation

are linearized to allow the use of the classical Kalman Filter.

Particle Filters. These Ąlters try to deal with non linearity without the need

of linearization of the system. To give a simple practical explanation on how

a particle Ąlter work we can summarize the step followed by them in a simple

localization task

• Ąrst they sample the actual probability distribution representing their be-

liefs on the position of the robot

• they assign different credibility to each of the sample based on the real

measurement coming from the sensor

• they update the probability distribution representing their beliefs

• they repeat the above steps until they converge to the real position of the

robot

Maximum Likelihood estimator. Which try to maximize the posterior dis-

tribution
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In these Ąrst twenty years the SLAM research community delineated the general

SLAM problem and the principal challenges related to the real implementation

of an algorithm that try to solve it

1.4.2 Algorithmic Age 2004-2015

The second period of SLAM history was dedicated to the development of more ro-

bust theoretical foundation concerning topic such as convergence and consistency

of the problem solutions. Moreover the typical structure of SLAM algorithm

described above started to become mainstream. In particular the part of the al-

gorithm that we now consider part of the backend were developed. In [10] there is

a table reporting the most important papers published about SLAM during this

particular period. An important aspect of this period is that papers published

during these years start to concentrate on a particular aspect of the SLAM algo-

rithm. In fact, as mentioned above, SLAM is a really multidisciplinary Ąeld and

after twenty years from the beginning of the the studies on it, making improve-

ment on a particular aspect is possible only being a real expert of that particular

problem. It is important to notice that the vast majority of library used in SLAM

start to be built in this period.

1.4.3 The future of SLAM research

In the last part of [10] the possible future development of SLAM research Ąeld

are deeply described. In general the desired improvement are the following:

Robustness. As mentioned before SLAM algorithms need to work with data

coming from noisy sensors. Moreover they usually work better in controlled

environment. Take as an example a feature based visual SLAM algorithm which

need visual features in the Ąeld of view of the camera to be able to locate itself.

One of the open problem in SLAM is how to decrease the rate of failure of

these algorithms making them more robust to noisy data and different type of

environment. Another thing to notice is that usually we make the assumption

of static environment which is usually not true in the real world. So another

improvement concerning the robustness of the algorithms is to make them reliable

also in environment that could change a little bit during time.

Scalability. SLAM algorithm can be really demanding from the point of view

of computational power, in particular when the size of the optimization problem

that we need to solve became really high. Moreover they can be demanding
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also from the point of view of memory since the space occupied by the map

can increase unboundly over time. So the second aspect that can be the focus

of future SLAM research can be the production of more efficient way to solve

minimization problem and to represent the map.

Map Representation. The map not only need to be light but also it can in-

clude semantic information about the environment. This is not usual in available

SLAM algorithm. Moreover another possible improvement of maps produced by

SLAM algorithms is the representation of it as a set of distinct object rather than

a collection of 3D point or a single mesh.

Improvement in theoretical tools. An improvement on any theoretical

or mathematical tools that is used to solved the SLAM problem can have a

big impact on the community. The main theoretical contribution can involve

the improvements of solvers for minimization problems and in particular way to

detect wrong local minima problem solutions.

Active SLAM. The Ąnal possible future development mentioned in the pa-

per is the possibility of create Active SLAM algorithm which not only act in a

passive way, only estimating the map and the position, but also actively, guiding

the robot in the environment exploration.
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Chapter 2

VisualSLAM

This second chapter is dedicated to the general description of the most basic way

to build a Visual SLAM algorithm. It will be structured in the following way:

• At the beginning the very basic information about how images are repre-

sented in computers, and about the basic pinhole model of the camera will

be described

• In second place the way in which the camera need to be calibrated will

be explained and the particular camera that we are using in this work

(Raspicam V2) will be described

• the accelerometer structure and in particular the MPU used in this work

(MPU 6050) will be described. Moreover the way in which the motion

processing unit need to be calibrated will be discussed

• basic concept of computer vision will be described

• other important concept needed to understand the function of a visual

SLAM algorithm will be explained (Pose estimation, Bundle Adjustment,

Bag of Words)

This chapter is intended to build basic intuition about how visual SLAM algo-

rithm work since in chapter 3 ORB-SLAM3 will be analyze in more depth.

2.1 Image representation and camera model

In this Ąrst part we need to describe how the principal information that we need

to elaborate is represented. Moreover we need also to describe the main sensor

that we will use and how it is mathematically described.
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2.1.1 Images

Images are usually represented in computers as matrices in which each entries

contains information about the corresponding pixel of the image. This informa-

tion depends on the type of image that we are considering. In particular we have

encountered three type of images during this work.

Colored images. In this images each entry of the matrix contains the inten-

sities of the three color component of a particular pixel, so the blue, green and

red components. It is important to take into account that the correct order of

the color must be selected. There are in fact function that have as default option

the BGR representation such as the imshow function of OpenCV, while other

software components, such as the neural network that we will use for the depth

estimation, will assume that the input image is in RGB format. Typically each

color intensity is represented using eight bits.

Grey scale images. Grey scale images are formatted as colored images but each

entry of the matrix contain eight bit of information only about the grey intensity

captured by the camera in that particular pixel. Grey scale images are often

really less heavy than the corresponding colored one and they contain enough

information to be used by visual SLAM algorithm to compute descriptors and

recover the movement of the camera. Neural network for depth estimation will

need the colored image because since this images contains much more informa-

tion about the environment it is simpler for the network to learn how to estimate

depth.

Depth Images. This images are equal to greyscale images but each entries

usually contains 16 bit of information which are enough to represent depth in

millimeter up to 65 meters. Usually if we want to show them we will need to

rescale them in such a way that they contains values from 0 to 255.

2.1.2 Pinhole camera model

The second thing that we need to describe is the most simple model that we can

consider for a camera. A model of a camera describe the geometric shape of the

camera in such a way that we can obtain a mathematical projection of a 3D point

to the camera image plane. Here we will consider the pinhole camera model in

which the camera is considered to be compose of a small hole in which light pass

to be then captured by a CCD or CMOS sensor positioned behind the hole in

what we will call the camera image plane. The small hole is usually called the
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Figure 2.1: Graphic representation on how pixel information is stored for
different type of images

Figure 2.2: Schematic representation of the pinhole camera model

camera optical center (which is the point in lens axis of the camera in which all

light ray pass before hitting the image plane). If we consider the camera reference

frame (O, x, y, z) and image plane reference frame (O′, x′, y′) due to the triangle

similarity we can see that a 3D point P = [X, Y, Z] once projected in the camera

reference frame it is represented by the point [X ′, Y ′] which can be computed

using the following formulas

X ′ = f
X

Z
, Y ′ = f

Y

Z
(2.1)

where f represent the focal length. Note that we want to obtain the pixel coor-

dinate [u, v] of the 3D point. To obtain the pixel coordinate we need to shift an

scale X ′ and Y ′. We can do that as follow
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u = fx
X
Z

+ cx

v = fy
Z
Z

+ cy

(2.2)

where cx and cy represent the translation between the origin of the camera image

plane and the pixel coordinate frame, and fx fy are the focal lenght f multiplied

by the scaling factor of the two axis. At the end we can rewrite that formula as

follow 
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the matrix K is called intrinsic camera matrix. The extrinsic camera matrix is

instead the rototraslation matrix that describe the position of the camera with

respect to the world Ąxed frame. Moreover there is always a lens mounted on the

camera and in SLAM application this is often the case since a Ąsheye camera is

usually welcomed since it increase the Ąeld of view of the camera. In this case we

need a more complex model to take in consideration also the distortion introduced

by the lens. In general the intrinsic camera matrix and the distortion matrix are

obtained through the camera calibration, and once the extrinsic matrix of the

camera is known we can project any 3D point represented in world coordinate

in the camera image plane in pixel coordinate. Note that our objective will be

often exactly the opposite, so knowing the pixel coordinate of the point in multiple

image we would like to reconstruct the 3D position of the point. Another problem

which we want to solve is to compute the position of the camera based on the

3D position of a point and its pixel coordinate in the camera image plane. To be

fair we will also be interested in solve both these problem simultaneously.

Camera calibration

Since to use images coming from the camera we need intrinsic and distortion

parameters we need to use a procedure to determine them. This procedure is

called camera calibration and it works following these steps

• The Ąrst step is to provide a Ąxed recognizable pattern in the environment

in which distances between point in the pattern is known. The most used

pattern are the following one

Chessboard. A chessboard is usually used because angle of the squares

has really high gradient in the image so they can really simply been identi-



2.1 Image representation and camera model 29

Ąed.

April grid. Alternatively more and more frequently pattern of April tags

are used [26]. The most simple pattern is the one in Ągure 2.3. April tags

follow the same concept of QR Code but they are made to be able to encode

less information, which could be seen as a disadvantage but it is a desired

feature in robotics since in this way they can be identiĄed more rapidly.

April grids has some advantages with respect to chessboard in fact for ex-

ample a frame in which even only a partial part of the grid is present can

be used anyway to extract points for calibration, in fact while in a chess-

board all the white or black squares are equal in an April grid each square

is identiĄed by the April tags. This allow to obtain better calibration since

it is simpler to obtain calibration points even in external part of the image

which is the place in which the distortion is worse. Another advantage of

April grid, due to the same reason, is that the pose of the April grid is fully

resolved. This is not true for chessboard since if we rotate a chessboard of

180 degrees we obtain exact the same pattern that we had before rotation.

• The second step is to collect a lot of image in which the pattern is present

in a lot of different positions, scales and orientations.

• The third step is arbitrarily deĄned the world Ąxed reference frame for

example in the higher left corner of the pattern with the z axis coming

out from the plane of the pattern and x and y axis parallel to it. Then

we need to compute the position of each recognizable point in the pattern

(in the case of April grid the angle of the squares) for each image in the

word reference frame. This is something that we can do since the real world

distance between them is known

• As the fourth and last step since we know the 3D position in the world frame

of each feature point we can estimate the distortion and intrinsic parameter

and the intrinsic matrix choosing the ones that allow us to project the 3D

points in the correct position in the image plane

To calibrate our camera we use the ROS camera calibration package using

a chessboard at the beginning. At the end we Ąnally use the Kalibr package

using an April grid. The advantage of using the Kalibr package, particularly

when you are dealing with camera-imu setup, will be more clear later. A more in
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Figure 2.3: Example of an April grid used for calibration

depth description of the theoretical aspect related to the rolling shutter camera

calibration used by Kalibr are presented in [27].

2.1.3 Raspicam V2

We will now describe the camera that we have used in our experiment, the Raspi-

cam V2. We will describe only the main aspect of the camera and in table 2.1

more speciĄcation will be included. To obtain a complete description of the mod-

ule you can refer to [28]. The camera is really cheap (∼ 30£) and the underlying

sensor is a Sony IMX219 which has 3280x2464 pixels. The camera is able to shoot

videos at different framerates and at different resolutions. Obviously increasing

the resolution will decrease the possibility of the robot to record data at an higher

framerate. The most important characteristic of this module is that this camera

is a rolling shutter camera. This means that the sensor is scanned horizon-

tally or vertically so the pixel are read sequentially and not all at the same time

(as it happens in global shutter camera). The difference in these two type of

cameras, and the reason for which the second type cost more than the Ąrst one

is in the sensor circuit conĄguration which is more complicated for global shutter

camera. Rolling shutter camera are usually a problem for SLAM algorithm since

this way of capturing images can cause distortion when there is a rapid object

in the Ąeld of view of the camera or the camera is moving fast through the en-

vironment. Because of these distortion the algorithm is not able to recognize a

particular scene because the way in which it will be reproduced in the image will

depend on the velocity and direction in which the camera is moving. The last

important feature that I want to underline is that the Raspicam has a quite wide

Ąeld of view as can be seen in Tab 2.1. This is the reason why we use it instead
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Figure 2.4: Differences between images acquired with a global and with a
rolling shutter camera. Frame from a video of the official Sony
youtube channel.

Price ∼ 30£
Weight 3g

Sensor Resolution 3280 × 2464 pixels (8 Megapixels)
Video modes 1080p30, 720p60 and 640 × 480p60/90

Sensor Sony IMX219
Sensor image area 3.68 x 2.76 mm (4.6 mm diagonal)

Pixel size 1.12 µm x 1.12 µm
Horizontal Ąeld of view 62.2 degrees

Vertical Ąeld of view 48.8 degrees

Table 2.1: Principal speciĄcaition of the Raspicam V2

of another global shutter camera at our disposal (PointGrey camera). In fact this

second camera has a zoom lens (which is really bad for SLAM purposes) mounted

on it and lenses have a really high cost for that type of camera.

2.2 The accelerometer

The accelerometer is the other key component of our setup and it is the rea-

son for which we will talk about visual-inertial SLAM. A really good reference

for accelerometers industry and technology history is [29]. The real big shift

in accelerometer technology in recent years was caused by the introduction of

MEMS (Micro-Electro-Mechanical-System). This silicon based technology allow

the production of really cheap and small electro-mechanical devices. Accelerom-

eters nowadays can be so small that they can Ąt inside a modern earbuds. This

section will brieĆy explain the functioning principles of accelerometers, the pro-

cedure needed to calibrate them alone and together with the camera and the

speciĄcation of the particular MPU (Motion Processing Unit) used in our real

world implementation. Note that in this section the word accelerometer is often

used even if we are considering the whole MPU which include also the gyroscope.
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Figure 2.5: Schematic representation of the accelerometer

2.2.1 Physical functioning of the acclerometer

Accelerometer usually provide acceleration but they can also integrate a gyroscope

to provide angular velocity data. To refer to the all system (so accelerometer and

gyroscope together) it is better to talk about motion processing unit (MPU).

Here the functioning of the accelerometer will be Ąrst introduced and after that

a brief description of the gyroscope will be given.

Accelerometer. The comoponents of a MEMS accelerometer are

• A suspended mass

• Some Ąxed plates

• Polysilicon springs to which the suspended mass is attached

since MEMS devices can be produced with similar techniques with which chips

are produced, everything is obtained from a silicon wafer. The structure of the

device can be seen in Ągure 2.5 and we can imagine that three of this devices are

present in the MPU one for each axis. When you accelerate the device along a

particular axis the suspended mass will be subjected to a displacement changing

the capacitance between the Ąxed plates. In this way the acceleration can be

detected measuring the voltage variation between the Ąxed plates.

Gyroscope. The structure of the gyroscope is a little more involved since it

is composed of four plates connect with springs to a central anchor. These plates

are kept in perpetual oscillating motion along their symmetry axis, in such a way
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(a) A microscope image of the L3GD20HTR
MEMS gyroscope from ST Microelectron-
ics. Credit Adam McCombs.

(b) Schematic representation of the gyroscope

Figure 2.6: Microscope and schematic representation of a gyroscope

that they almost always posses a velocity different from zero. It is known that if a

rotation is applied to the system, depending on the axis in which it is applied, the

plates will start moving also along others direction due to the Coriolis force, which

act in a direction perpendicular both to the velocity of the plate and the axis of

rotation. This displacement can be measure again as a change in voltage and

converted in angular velocity values. In image 2.6 both the schematic structure

and a real microscope image of a MEMS gyroscope inside an MPU can be seen.

2.2.2 Calibration

As the camera also the accelerometer need to be calibrated for the right function-

ing of the system. In particular we want to obtain some calibration data that are

needed by ORB-SLAM3 to work. The data that we need are the following

• the frequency of the accelerometer (which is Ąxed by us)

• the noise density of the accelerometer

• the noise density of the gyroscope

• the random walk of the accelerometer

• the random walk of the gyroscope

these data are needed because of the model used to represent the acceleroemter

noises both in the package used to calibrate the imu-camera system (Kalibr)

and in ORB-SLAM3. In fact in these packages the measurement of the imu are
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modeled in the same way for each axis of the accelerometer and the gyroscope as

follow

ω̄(t) = ω(t) + b(t) + n(t). (2.4)

where ω̄(t) is the output of the accelerometer or of the gyroscope, ω(t) is the true

value of the acceleration or angular velocity along one of the axis. The other two

terms represent the noises that we will obtain from the calibration procedure.

• n(t) is a white Gaussian noise represented by a white Gaussian noise process

with variance σg, so by deĄnition it has the following characteristics

E[n(t)] ≡ 0

E [n (t1) n (t2)] = σ2
gδ (t1 − t2)

(2.5)

σg correspond to the noise density of one of the two sensor (accelerometer

or gyroscope).

• b(t) which is the one that was previously called the random walk of one of

the two sensor. This represent slow variation in the sensor bias which are

modeled as Brownian motion. b(t) is obtained integrating a white Gaussian

noise with σbg variance, so it satisfy the following equation

˙bg(t) = σbgω(t) (2.6)

To compute these two parameters a package which implement the Allan deviation

analysis has been used [30]. To compute the Allan deviation it is sufficient to

compute the square root of the Allan variance which can be computed as follow

(in its simplest non-overlapping form)

σ2(T ) =
1

2(K − 1)

K−1∑

k=1

(

Ω̄k+1(T ) − Ω̄k(T )
)2

(2.7)

where T is the dimension of the clusters in which we want tot divide our data,

K is the total number of cluster that we have, Ω̄k(T ) is the average values of our

data in the k′th cluster of dimension T . We can compute this Allan variance for

a lot of value of T and then plot it w.r.t this values. We can derive information

about different noises that affects our system looking at this plot since it represent

the variation of the mean value of our data for different dimension of the time

window in which we are tacking the average. The Allan variance analysis was

in fact used at the beginning as a tool to study the stability of oscillators but a
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complete overview of the history and theory behind it can be found in [31]. As

a real general description different zones of the graphs gives information about

different noises that affect our system.

2.2.3 The MPU 6050

The motion processing unit that has been used in this project is the MPU 6050

mounted on the GY-521 module. The module is compose by the MPU, an LD3985

3.3V regulator (which allow us to power the module with voltage slightly different

from 3.3V), a LED to show that the module is on and multiple resistor. This mod-

ule allow really low power consumption and the MPU contains an accelerometer

a gyroscope and a digital motion processor (DMP). The Digital Motion processor

allow the MPU to elaborate data before putting them in the registers to be read

by the microcontroller. This could be a useful feature to offload some of the com-

putation from the central CPU. Moreover the MPU provide a digital low pass

Ąlter, with a low pass frequency that can be set. Another important feature of

this MPU is that it is highly conĄgurable and the conĄguration take place setting

the desired values in the conĄguration registers. Some of the quantities that can

be conĄgured are

• the accelerometer range

• the gyroscope range

• the sample rate divider

• the digital low pass Ąlter frequency

a lot more information about the module and about the register map can be found

in [32] [33]. In Ągure 2.8 a collection of 1000 samples from the accelerometer place

in a Ćat surface can be seen. In this image we can see the offset of the measurement

in the three axis (which can also be caused by a not perfect orientation of the Ćat

surface on which the accelerometr is placed), and the different dispersion on the

values in the three different axis of measurement. The Allan variance plot of both

the gyroscope and of the accelerometer can be seen in Ągure 2.7 and in table 2.2

the estimated noises parameters of the MPU 6050 can be observed. The MPU

is able to communicate with the microcontroller (or the Raspberry in our case)

through I2C protocol which is a synchronize (the clock is shared) serial (data are

transmitted one after the other) protocol in which one Master is able to select
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(a) Acceleration Allan curve (b) Gyro Allan curve

Figure 2.7: Allan analysis curves used to extract noises parameters of both
the accelerometer and the gyroscope
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Figure 2.8: One thousand samples collected from the accelerometer in a static
position. What can be noticed are biases and different dispersion
in each axis

the slave from which he want to read data, and it is the one who decide when

to start and end the communication. The I2C protocol is really simple and since

it does not implement particular measure against noises it is usually used for

board-to-board communication or at least for communication between two really

near module.

2.2.4 IMU-Camera calibration

Once both the MPU and camera intrinsic parameter has been calculated fol-

lowing the procedure explained above, another important matrix is required by

ORB-SLAM3. In particular this matrix is the transformation matrix between
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accelerometer noise 0.011772986113862747 m/s3/2

accelerometer random walk 0.0001321283869975406 m/s5/2

gyro noise 0.0010812959383010065 rad/
√

s

gyro random walk 2.306075388456348 ∗ 10−6 rad/s3/2

mpu frequency 150 hz

Table 2.2: Motion processing unit 6050 calibration parameter

the camera reference frame and the IMU reference frame. This matrix can be

computed using the Kalibr package and the one obtained for this project is the

following one (with entries rounded at the Ąfth decimal number)











0.00655 −0.99978 0.01943 0.00448

−0.99988 −0.00682 −0.01381 −0.00412

0.01394 −0.01934 −0.9997 −0.02083

0.0 0.0 0.0 1.0











once we have obtained all these data we can write the conĄguration Ąle needed

by ORB-SLAM3.

2.3 Feature extraction and Matching

This section will explore one of the more important basic algorithmic element

that is needed to implement a feature based visual SLAM algorithm. In fact

visual SLAM algorithm are divide in two big group

• feature based methods: these are the methods that will be explored more

in this thesis work since ORB-SLAM3 belongs to this group. Feature based

methods extract feature and compute descriptors for a particular frame then

they try to Ąnd the same points in the next images and based on the change

of positions of these points they try to compute the camera trajectory

• direct methods: these methods directly work on the entire image without

the need of feature extraction. These methods try to Ąnd the transforma-

tion matrix that minimize the photometric error, which differs from feature

based methods which try to minimize the reprojection error.

so one of the foundational element of any feature based SLAM algorithm is the

feature that will be used in the program. A feature is only a particular point in
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the image that can be represented in a really simple way. A feature point must

have the following characteristics

• Repeatability: which means that the same point can be simply re-observed

in multiple different images taken with different prospective

• Distinctive: the point must be distinguishable from all other points in the

image and in particular from all other feature in the same image

• Efficiency: The features must be only a small subset of the pixels of the

images and they must be identify by an efficient algorithm (this is true in

particular for SLAM application)

• Locality: to Ąnd a features we need to use only a small subset of the pixels

of the image

There exist multiple type of feature that we can extract from an image and in

particular when we talk about a feature we need to talk about the corresponding

key points (which is the position of the point in the image), the way in which

we found them, and the corresponding descriptors (which is usually a vector de-

scribing the keypoint). Here SIFT features will be introduced before the ORB

features because ORB is born, more that a decade after SIFT, to be a more effi-

cient alternative to SIFT.

SIFT. To talk about SIFT we need Ąrst to talk about how the features point are

detected. To do that we need to compute the scale space of the image which is

deĄne as as follow

S(x, y, σ) = G(x, y, σ) ∗ I(x, y) (2.8)

where

G(x, y, σ) =
1

2πσ2
e−(x2+y2)/2σ2

(2.9)

then we can compute σ2∇2S(x, y, σ) and if we found a maximum in this function

for some point (x, y, σ) we can claim that we have found a candidate feature

point. In general we will discard some of the points in order to maintain only

the most promising one. It is important to notice that as well as Ąnd a possible

feature point we have also found its characteristic scale σ which allow SIFT to

be scale independent. As a second step we need also to Ąnd the principal orien-

tation of the feature point. To do that we simply compute the gradient of each

pixels near enough to our candidate point (the notion of near here depends on the
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Figure 2.9: Image with SIFT features. In this representation the scale infor-
mation is encoded in the dimension of the cirlces and the principal
direction in descripted by the segment inside the circles. Image
from the official OpenCV SIFT page [35].

characteristic scale that we have already computed) and we build an histogram

of the orientation to Ąnd the most frequent one. This one will be selected as the

principal orientation of the feature point. With this second step also orientation

invariance has been obtained. The last thing that we need to do is to build a

descriptor or a "signature" of a particular feature point. The SIFT descriptor

is built based on normalized histograms of the gradients in the section of the

image corresponding to the feature point which must be Ąrst rescaled w.r.t. the

scale factor and rotated according to the principal direction. The descriptor is a

vector, and if two descriptor are similar enough we can claim that we have found

a match. In image 2.9 we can see examples of SIFT features and they can be

applied in a lot of Ąeld in addition to SLAM, for example collage of image to build

panoramic photos. SIFT is a really effective feature extractor and descriptor but

the problem is that it impose a really high computational cost. In the years after

SIFT introduction a lot of energy has been spent to produce a more efficient

alternative to SIFT. The Ąrst results has been obtain with SURF but here ORB

will be discussed since it has been introduced later, it has better performance and

it is the one used by ORB-SLAM3. All the details regarding SIFT can be found

in the original paper [34].

ORB. As before we need to describe how the ORB feature is extracted and

then how the descriptor is computed. ORB is based on FAST for key points

detection. FAST is a kind of corner point extractor which is really efficient. It

extract point as follow
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• select a pixel and check its brightness

• take the nearest 16 pixels around the ones that has been previously selected

• if there are N consecutive points which has brightness greater than the

brightness of the selected pixel plus a threshold or smaller than the bright-

ness of the selected pixel minus the threshold then we select that point as

a feature point.

Since FAST collect no information about the scale and the rotation in ORB

these detector is modiĄed to obtain scale and rotation invariance. To obtain the

Ąrst a pyramid of subsampled image is build and feature are detected in all the

subsampled image. Moreover matches can be done also between points belonging

to different level of the piramyd of different image. To obtain rotation invariance

the intensity centroid method is used. The centroid is computed as

C =
(

m10

m00

,
m01

m00

)

(2.10)

where

mpq =
∑

x,y∈B

xpyqI(x, y), p, q = ¶0, 1♢ (2.11)

then we can connect the geometric center of the feature with the centroid to

obtain the rotation direction of the feature. As before we have obtain scale and

rotation invariance with a modiĄcation of the FAST corner detection, now we

need to compute a descriptor for the feature point. ORB use BRIEF descriptor.

The BRIEF descriptor is a 128-bit array in which the value of each element of

the array (so a 1 or a 0) is decided selecting two random points in the feature and

checking if the Ąrst one has a bigger or lower intensity than the second one. Ac-

tually BRIEF is modiĄed in ORB a little bit to obtain better rotation invariance.

Now it should be clear why ORB is called oriented FAST and Rotated BRIEF.

Also in this case the complete description of ORB can be found in the original

paper [36].

Once features has been extracted the feature matching is another big problem

to solve. In fact even if we can take the most naive approach simply claiming a

match every time that we found the couple of features in two images that mini-

mize some sort of distance (euclidean for SIFT descriptors and Hamming distance

for ORB) if we use this approach we can encounter multiple problems. To men-

tion one of them take for example an image with the same texture repeated on
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all the Ągure. In this case a lot of feature point with a really similar descriptor

will be present. One of the possible solution to this problem is presented in [37].

2.4 Pose estimation techniques

The core element of any SLAM algorithm is the estimation of the camera roto-

traslation and the world position of the map points. In this section some types

of methods to estimate in particular camera position will be explained. These

methods differs because they use different information to recover the camera po-

sition. The Ąrst two method that will be explain will used the pixel coordinate

of multiple corresponding point in two subsequent image to recover the camera

rototraslation up to a scale factor. The third method try to recover the camera

position based on the 3D world position of points and 2D pixel coordinate of the

same points in the camera image plane.

2.4.1 Essential and Fundamental Matrix

The Ąrst method rely on the epipolar constrain which follow from a really simple

consideration. Consider two image in which the projection of the same 3D point

is present. We can immediately say that origin of the camera in the two positions

and the position of 3D point must be on the same plane, or in other words must

be coplanar. Now, given a point P = [X, Y, Z] we deĄne

• pi as the pixel coordinates of point P in the i′th image plane

• xi as the coordinates of point P in the i′th normalized image plane

moreover we consider K the camera intrinsic matrix, R the rotation matrix

between the two frames and t the transaltion vector between the two frames.

From the pinhole camera model we know that

s1p1 = KP , s2p2 = K(RP + t)

where s1 and s2 are the depth value of the 3D point in the two camera reference

frame that we are considering. We can remove these two scalar value from the

equation substituting the equality with an almost equal symbol which in this

scale means "up to a scale". Then we know that it is sufficient to left multiply p1

and p2 by K−1 to obtain x1 and x2. After these consideration we can conclude
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that

x2 ≃ Rx1 + t (2.12)

then we can left multiply both sides by t∧ and xT
2 to obtain the epipolar constrain

which has the following expression

pT
2 K−T t∧RK−1p1 = 0

the matrix E = t∧R is known as essential matrix and the matrix F = K−T EK−1

is called fundamental matrix. Now we can take 8 couple of points between the two

frames, consider the epipolar constraint for each couples and set up a linear system

of equation where the unknowns are the coefficients of the essential matrix. With

that system we can Ąnd these coefficient up to a scale factor in fact we know that

one degree of freedom is inevitable due to the fact that we are using monocular

cameras. This problem is not present when using stereo cameras since in that

case we have the additional information of the rototraslation between the two

camera which is exactly what we are trying to reconstruct here. Once we know

the essential matrix (or the fundamental matrix since the only difference between

them is the intrinsic camera matrix which is assumed to be known in SLAM) we

can recover the rototraslation between the two frame, again up to a scale.

2.4.2 Homography

A very similar method to the one explained above is the one that consider the

homography matrix usually symbolized by H . Also in this case a relation between

the projection of the same 3D point in two different camera plane is found. This

relation bring us to the deĄnition of homography matrix. Using four different

3D point we can compute this particular matrix up to a scale factor, solving the

system of equation that we build considering these four points. Then we simply

need to recover the rototraslation based on the homography matrix that we have

just computed. This method differs from the previous one because it assume that

all the 3D points that we consider to compute H are on the same plane. Usually

this plane is assumed to be parralel to the image plane of the camera.

2.4.3 PnP

The Perspective-n-Point (PnP) problem is a problem in which we try to recon-

struct the camera pose given the 3D world coordinate of n points and their pro-
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jection in the camera plane. Usually we will need to solve these type of problems

when the visual SLAM algorithm loose track of its position and need to retrieve

it based on the points that it is seeing and the one already part of the map that it

is building. There are multiple way to solve these problem but here the Efficient

PnP will be explained since it is one of the most simple and efficient techniques

even if ORB-SLAM3 use a different method called ML-PnP. E-PnP is presented

in [38] but the main priciples behind it are the following. We can consider each

of the n reference points as a linear combination of four control points such that

the sum of the coefficient of the combination is equal to one (
∑4

j=1 αij). In this

way we know that
pw

i =
∑4

j=1 αijc
w
j

pc
i =

∑4
j=1 αijc

c
j

where the apex specify if the point is represented in the camera reference frame

or in the world reference frame. Then we can consider the usual pinhole camera

model

sip
i
i = K

4∑

j=1

αijc
c
j (2.13)

where pi
i are the pixel coordinate in the camera image plane of the point pi. From

this equation for each point pc
j = [xc

j, yc
j , zc

j ] we can obtain other two equation

which has the following form

∑4
j=1 αijfxxc

j + αij (u0 − ui) zc
j = 0

∑4
j=1 αijfyyc

j + αij (v0 − vi) zc
j = 0

(2.14)

if we consider n points we can build a system of equations in which the unknowns

are the position of the control points in the camera reference frame. The solution

to the system is found considering it as a linear combination of the right singular

vector of the coefficient matrix of the system, as better explained in the paper.

Once the system is solved the solution can be reĄned using Gauss-Newton method

and then the poisition of the camera can be computed as the one that minimize

the reprojection error of the control points.

2.4.4 RANSAC

The random sample consensus method (RANSAC) [39] is an iterative method

which can be applied to all model estimation problem to Ąnd the best model

even in the presence of outliers, so it can be applied to all the pose estimation
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Figure 2.10: The result of a linear regression using RANSAC or using the
classical method. Image taken from the official scikit learn
RANSAC page [39].

techniques explained above. The algorithm work as follow

• randomly select the less number of data that you need to Ąt the model. (for

example for a linear regression model the minimum number of data points

is two)

• Ąt the model and test all the data on the Ątted model (also the ones that

have not been selected in the Ąrst step)

• repeat these two step for a certain number of iteration

• select the model that has the best performance

In image 2.10 can be seen the result of a linear regression applied to all point in

the dataset and the result obtained using RANSAC. It is important to notice that

even if RANSAC is able to obtain great result it is not a deterministic algorithm

so its capability to estimate good models depend on the number of iteration that

we will Ąx. In general RANSAC is heavily utilized in all the model estimation

problem which are present in SLAM.
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2.5 Bundle Adjustment

The bundle adjustment problem is really fundamental since its solution will be

heavily utilized by ORB-SLAM3. In general solving a bundle adjustment prob-

lem means to Ąnd the positions of the landmarks, the position of the camera

(exstrinsic parameters) and the intrinsic parameter of the camera, that minimize

the reprojection error, given multiple view of a particular scene. Bundle adjust-

ment is heavily utilized in SLAM but also in other Ąeld such as 3D reconstruction.

As any minimization problem that we need to solve with a numerical method,

initializing it in the correct way is really fundamental to not remain stuck in a

local minimum.

2.5.1 Problem formulation and solution

Since the simplest camera model (pinhole) has already been introduced the for-

mulation of the problem is quite simple. In fact we can suppose to have multiple

images of a particular scene and that we have extract some features from each

image. Obviously a lot of features match between these images is necessary to

have a possibility to solve the problem. This means that the same 3D point must

be present in the Ąeld of view of the camera when it is set in many different

position. Now we know that we can in the order

• transform the 3D coordinate of a point in the camera frame coordinate

• apply the distortion model to undistort the image

• compute the pixel coordinate using the intrinsic parameter

so if we consider the function h(x, y) that map 3D point into the camera image

plane, where x is the pose of the camera and y is the position of the 3D point,

we can see that it is a strongly non linear function. Now we can simply consider

the following cost function

1

2

m∑

i=1

n∑

j=1

∥eij∥2 =
1

2

m∑

i=1

n∑

j=1

∥zij − h (Ti, pj)∥2 (2.15)

where

• zij is the actual pixel coordinate position of the j′th point when the camera

is in the i′th pose
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• T i is the i′th pose of the camera represented by the trasform matrix between

the global reference frame and the camera frame

• pj is the position of the point j in global coordinates

this non linear minimization problem can be solved for example using Levenberg-

Marquardt method (explained in the math section of this thesis) which reduce to

Ąnd the solution of the normal equation. The problem with this equation is that

its dimension can be really large. In fact usually the features points in each of

the multiple images that we are considering could be hundreds. So if we try to

solve it directly inverting the hessian matrix it could lead to an explosion in the

computational power that we need. This is a really big problem since our aim is to

implement these type of algorithm on a drone which has low power hardware, and

the program need to run this software in real time. There is a characteristic of the

hessian matrix for this type of problem which is really important to achieve real

time performance when we are solving this system of equation which is sparsity.

2.5.2 Sparsity

The sparsity of the hessian matrix directly derive from the sparsity of the jacobian

matrix. In fact we need to consider the fact that the term eij of the loss function

is only inĆuenced by T i and pj. This is due to the fact that the 3D position of

another point in the image or the pose of the camera which is different from the

i position does not inĆuence the reprojection error of the point j in the camera

plane when the camera is in the pose i. This means that all the other derivatives

are zeros. It can be shown that the hessian matrix H in the bundle adjustment

problem, if we order the vector of the unknowns in such a way that it contains

all the unknown poses in the Ąrst part and all the 3D positions of the points in

the second, has the following structure

H =




B E

ET C



 (2.16)

where B is a block diagonal matrix with dimension that is proportional to the

number of camera poses (so it is very smaller than eij since the number of points

in every image is really higher than the number of image itself), C is also a

block diagonal matrix with dimension proportional to the number of features in

all the images. Given this structure of the hessian matrix we can left multiply
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both sides of the linear equation, of the Levenberg-Marquardt method, by the

following matrix



I −EC−1

0 I



 (2.17)

we obtain 


B − EC−1ET 0

ET C








∆xc

∆xp



 =




v − EC−1w

w



 (2.18)

where ∆xc and ∆xp are the increment that we want to obtain at each step of

the numerical method and w v are the partition of g as it is deĄned in the math

section according to the partition of H that we have shown in this section. The

Ąrst line is solvable independently and has a really smaller dimension than the

original one. Moreover once we have the solution of the Ąrst equation the solution

to the second line is simply

∆xp = C−1(w − ET ∆xc) (2.19)

which is simpler to solve than the original one because C is a block diagonal

matrix so is really simpler to compute its inverse.

2.6 Bag of Words

The last thing that need an introduction in this chapter is the Bag of Words

approach used by visual SLAM algorithm to build a database of already visited

position in such a way that the loop closing problem could be solved, recognizing

an already visited scene and then correcting the entire trajectory in a coherent

way. The bag of word representation was Ąrst used in natural language process-

ing and following this particular scheme you can simply represent a text as an

histogram of the frequency of the words that it contains. In this section the way

in which the BoW representation of an image is computed will be discussed and

the structure of images database that can be built for loop closing detection will

be explained. In particular the database and the basics needed for understand

the loop closing technique used by ORB-SLAM will be shown [40].

2.6.1 BoW image representation and database structure

The Ąrst thing to explain is how the BoW representation of an image is computed.

First of all we need to build a tree with the following procedure
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• select a database of random images

• compute the features in each of the image belonging to the database

• cluster the features in the features space using k-medians clustering to build

the Ąrst nodes of the tree

• build the child node of each node built in the previous step using again

k-medians clustering

• repeat the previous step until you reach W leaf node

now we will consider the leaf node of the tree that we have just built as words.

To compute the BoW representation of an image we need to take each feature

in the image and compute the corresponding word following the tree from the

top to the leaf node selecting at each step the node that minimize the Hamming

distance with the features that we are considering. We repeat the procedure for

each feature in the image and then we can compute the BoW representation of

the image considering the frequency of the words which are present in the image

itself. The database of the images is not only compose by the sequence of BoW

representation of seen images but also by other two Ąeld

• inverse index: in which for each word in the vocabulary a list of the images

in which the word is present and the weight of the word in that correspond-

ing image is maintained.

• direct index: in which for each image and for each tree depth (the root node

is at level N the leaf node are at level 0) the node touched by some feature

in the image and the features that activate these nodes are stored

both of these set of data are updated every time a new image is inserted in the

database. Even if could seem quite a complex structure each of the index will be

useful in the next section to Ąnd the loop closure candidates.

2.6.2 Loop detection

Once a new image is acquired we need to check for possible correspondence with

images already present in our database to Ąnd loop closure candidate. To do that

the inverse index allow us to reduce the dimension of the set in which we need

to search since we can restrict our research only on the set of images that share

some words with the one that we have just acquired. Then we simply need to
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Ąnd images that obtain an high normalized similarity score with our new images,

which is computed as follow

η(vt, vtj
) =

s(vt, vtj
)

s(vt, vt−∆t)

where

s(v1, v2) = 1 − 1

2
♣ v1

♣v1♣
− v2

♣v2♣
♣

and vi respresent the BoW representation of the image i. In particular vt−∆t is

the BoW representation of the prevoius image in cronological order with respect

to the new image for which we are searching a match. A particular clustering

between images taken near in time is described in the same paper that describe

this entire procedure [40]. This clustering is needed to avoid that images that

are similar because they have been acquired in a similar moment in time, could

compete to be the one selected for the loop closure. At the end to check if one of

the selected candidates could be considered for a real loop closure we can check the

correspondence of features, and of their distribution in the two images. To do that

the direct index is helpful since it allow us to speed up the feature correspondence

(in this case the parameter considering the depth of the tree in which we want to

Ąnd the correspondence is useful as a trade-off between complexity and number

of feature correspondence).
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Chapter 3

ORB-SLAM 3

As explained in the introduction of this thesis, the aim of this work is to build

a 3D map of the environment in such a way that the map is navigable. This

means that the map need to be dense. In this chapter the basic SLAM algorithm

that will be used to track the camera movement and to estimate the true depth

of some sparse points will be presented. In Chapter 4 these Ąrst information

produced by this algorithm will be completed by the ones given by a relative

depth estimation neural network to produce the necessary dense map. ORB-

SLAM3 is a visual/visual-inertial/RGB-D feature-based SLAM system developed

by an equip of the University of Zaragoza. It has been developed through several

years of research and the principal step of its development history can be reported

here

• ORB-SLAM: a Versatile and Accurate Monocular SLAM System (2015) [4]:

with this paper the Ąrst full implementation of ORB-SLAM as a complete

SLAM system was presented. Obviously multiple papers was previously

published to solve speciĄc problem such as feature detection and extraction

or relocalization, but with this particular work the Ąrst full implemented

version of this SLAM library was presented and can already achieve good

performances

• ORB-SLAM2: an Open-Source SLAM System for Monocular, Stereo and

RGB-D Cameras (2017) [15]: this second version of the algorithm was

totally based on the Ąrst one but with the crucial modiĄcations which allow

it to support both stereo and RGB-D cameras. The principal difference

between monocular and stereo/RGB-D SLAM is that the real world scale

depth information of the pixels is already available and we do not need any

51
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triangulation between pixels in successive frames to recover it.

• Visual-Inertial Monocular SLAM with Map Reuse (2017) [41]: with this

third paper the modiĄcations needed to integrate information coming from

an accelerometer were introduced. With those information the algorithm is

able to achieve better performances even when poor visual information are

available and it is also able to recover the true world scale of the environment

even in the monocular case

• ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual-Inertial

and Multi-Map SLAM (2021) [5]: with this last implementation of ORB-

SLAM the algorithm is now able to manage and merge multiple map. More-

over various improvement in the code, a better IMU initialization procedure

and an improved place recognition algorithm allow to achieve state of the

art performances.

ORB-SLAM3 is now one of the most precise visual SLAM algorithm and in the

Ąrst section of this chapter all the module needed for its functioning will be pre-

sented. Then in the second section the troubleshooting for its installation on

Ubuntu 20.04 and ROS Noetic will be presented. This second section could seem

useless but since ORB-SLAM3 is built for Ubuntu 18.04 and ROS Melodic the

time spent to debug all the installation problem justify the presence of this small

section, which I wish could be helpful for other people which are trying to install

ORB-SLAM3 with the same set-up. In the last section the modiĄcation intro-

duced in the ROS Wrapper of ORB-SLAM3 to make depth and pose information

available to the ROS network will be presented.

3.1 Algorithm description

In this Ąrst section the elements that compose ORB-SLAM3 will be described.

Moreover the principal modules of this algorithm will be analyzed. This third

version of the algorithm is based on the Ąrst monocular implementation so par-

ticular emphasis will be given to the addition needed to include data from the

accelerometer to build a real scale map of the environment

3.1.1 Important element desciption

In this Ąrst part a list of the principal elements that compose the algorithm will

be given
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• Map Points. Map points are extracted using ORB features extractor and

descriptor. Their depth is estimated using triangulation and then reĄned

with bundle adjustment. They contain information about their 3D world

position, the viewing direction towards the optical center of each keyframe

in which they are visible, the ORB descriptor, and the maximum and min-

imum distance at which it can be observed according to the limits imposed

by the ORB features

• Keyframe. Keyframe are created when enough different keypoint with

respect to the previous keyframe are found in a frame. It store all the ORB

features and the camera pose in the world coordinate frame. Keyframe are

generated very frequently but then a really rigid culling policy is used to

eliminate keyframes that contain redundant information. In this way the

map do not grow really fast during the exploration.

• Active Map. The active map is in practice the collection of keyframe

that the system is using in the local mapping and tracking of the camera

position. In case that the tracking is lost and the system cannot relocalize

a new active map is generated and the system continuously try to merge it

with the previous active map in the most coherent way

• Atlas. The Atlas is a set of disconnected map which contain the active

map and all the other non-active map.

• Keyframe Database. The Keyframe database is built as described in

the previous chapter using Bag of Words representation of keyframe. It

also store direct and inverse index as explained before. This database is

fundamental for relocalization purposes.

These are the most important objects used in the code to store information about

the map and the camera position. There are also three really important graph

that are built when the algorithm is running which represent the relationship

between different keyframe. These graph are really important since, for example,

they allow the algorithm to select which keyframe it need to use in the local map

bundle adjustment problem. These graph are

• Covisibility graph. The covisibility graph has one node for every keyframe

produced by the algorihtm and the connection between nodes is stronger or

weaker depending on the number of map points visible from both keyframes.



54 Chapter 3. ORB-SLAM 3

(a) Representation of keyframe and map
points

(b) The covisibility graph representation

(c) The spanning tree representation (d) The essential graph representation

Figure 3.1: Principal graph and object used by ORB-SLAM3. Images from
the original ORB-SLAM3 paper.

• Spanning tree. The spanning tree contain each keayframe that has not

been eliminated by the culling poilicy and each time a new keyframe is

inserted it is connected only to the keyframe with which it has more covisible

map points

• Essential graph. The Essential graph contains the spanning tree, all the

connection which are strong enough (over a certain treshold) and the loop

closure edges. This graph is really helpful when for example we need to solve

the usual pose adjustment problem after a relocalization. In fact it gives us

the information about which keyframes we can use to set the minimization

problem that we need to solve to adjust the pose of our camera.

The last thing to mention is that, to maintain real time performance, the

software is compose of three different threads: the Ąrst thread is the tracking

thread and it is in charge of estimate the camera displacement frame by frame,

the second thread is the local mapping thread and it is in charge of decide when
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to insert a new keyframe and to solve the local Bundle Adjustment problem to

optimize the local map, the third thread is the Loop and Map merging thread

which try to continuously Ąnd loop closure and try to merge different maps, when

a loop closure is identiĄed with a keyframe coming from another map a global

bundle adjastement is launched to merge the two map. All these threads will be

described in this section of the thesis and in addition the way in which the IMU

is initialized will be brieĆy explained.

3.1.2 IMU initialization

The Ąrst important part of the algorithm is the IMU and the map initialization.

In the calibration Ąle that you need to give to the algorithm the biases of the

accelerometer are not requested. Moreover the gravity vector direction is not

known and the scale factor needed to rescale the map that we can obtain from

the monocular camera is not known either. So the Ąrsts steps taken by the

algorithm are the following one.

• it try to estimate a map using only the camera information. In this way

it can obtain a good map and trajectory estimate but in a totally wrong

scale. In the same time data from the accelerometer are stored in memory

• as a second step, knowing the out of scale trajectory estimated in the Ąrst

step, and the accelerometer data, it tries to Ąnd the best IMU biases, gravity

vector and scale factor that maximize the probability of observing them

given the inertial measurement that has been collected. Once the problem

is solved the map can be rotated according to the gravity vector and scaled

according to the scale factor.

• as a last initialization step a joint visual and inertial map estimation is

brought on given the initial estimate given by the Ąrst two step

it is important to notice that, even if the gravity vector and the bias of the

accelerometer are assumed to be well estimated after this Ąrst initialization, the

scale factor is reĄned considering more keyframe and more accelerometer data

until the map reach one hundred keyframe or 75 seconds have passed until the

map initialization. More details about the IMU initialization can be found in

the ORB-SLAM3 original paper, this type of initialization is in fact a novelty of

this last version of the algorithm and differs from the initialization proposed with

ORB-SLAM VI.
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3.1.3 Tracking

The tracking part of the algorithm is instead totally inspired by the one used

in ORB-SLAM VI. The tracking procedure is different if a map update has just

happen or not. If a map update has just happened the pose of the camera is

estimated Ąnding the camera rototraslation that minimize the reprojection error

(this is connected to the visual part of the system and is explained in chapter 2),

and the sum of inertial residuals as they are deĄned in [42]. So in case that a

map update has just happened the optimization problem is the following one

θ =
{

R
j
WB, W p
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where Eproj(k, j) is the usual reprojection error, bj
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is the following one
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(3.2)

where we are considering the last keyframe i and the current frame j. Moreover

W p
j
B or W v

j
B indicates the position or the velocity of the IMU in the world frame,

∆Rij, ∆vij, ∆pij are the variation of orientation velocity and position between

the keyframe and the current frame which can be computed through IMU data

pre-integration, ∆tij is the time interval between the last keyframe and the cur-

rent frame, Ri
BW and R

j
WB are respectively the rotation matrix between the body

reference frame and the world reference frame considering the last keyframe and

the rotation matrix between the world reference frame and the body reference

frame considering the current frame and ρ is the Huber cost function. ΣI and ΣR

are the information matrices of the preintegration and of the bias random walk.
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The Jacobian terms J
(.)
(.) are used to take into account the effect of changing the

biases. They can be efficiently computed online using IMU data as they are arriv-

ing, as explained in [42]. gW is the gravity vector. If the tracking is not considered

after a map update the same optimization problem is solved but in addition the

prior computed in the previous step are considered and an additional error term

is added to minimize the difference between the new estimated velocity position

and translation, and the one estimated for the previous frame. It is important

to notice that at the beginning the algorithm proceed with a pure monocular

SLAM as described in [4] so alternatively estimating the camera movement using

the Essential or the Homography matrix methods and then choosing the most

suitable one between them. Only after this Ąrst trajectory estimation and the

IMU initialization the tracking procedure summarized in this section and better

described in the paper is used. The tracking thread is also responsible for the

insertion of new keyframe. They are inserted if

• the last global localization has happened at least 20 frames ago

• at least 20 frame has passed since the last keyframe insertion

• the current frame has at least 50 keypoints

• the current keyframe has at most 90% of keypoints tracked by the previous

keyframe

it can be seen that keyframe are generated in a very generous way but then, as

it has been said before, a strict policy (principally connected to the additional

information contained in a particular keyframe) is used to cut useless keyframe.

3.1.4 Mapping

Also the local mapping part of the algorithm is the same that has been built for

ORB-SLAM VI. The mapping thread simply consider the last N keyframe and

perform local bundle adjustment to optimize the local map. The cost function

that will be optimized in this part of the algorithm is slightly different from the

one described in the second chapter of this thesis since it contains also a term

related to the data coming from the accelerometer. Only the last N keyframe are

selected since the computational complexity of the bundle adjustement problem

rapidly increase when we consider too much keyframe, and real time performance

are a really key component for a SLAM algorithm. The local mapping thread
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is also responsible of the local keyframe culling. This is really fundamental to

achieve long time performance since in this way the quantity of keyframe (which

are used in particular for BA) can remain bounded over time. The discard policy

eliminate all the keyframe in which at least 90% of all the points are contained

in at least other three keyframe at an equal or Ąner scale. In this case since we

are using also data coming from the accelerometer and these data are less reliable

when two keyframe are far away in time a keyframe can be discarded only if its

elimination do not create a time gap higher than 0.5s between two keyframe in

the local map.

3.1.5 Loop Closing and Map Merging

The place recognition technique used by ORB-SLAM3 is based on the bag of

words keyframe representation as explain in the previous chapter and consist in

the following six principal step

• Ąrst of all the BoW database produce three candidates keyframes based on

the closeness of the BoW representation of the keyframes

• for each candidate a local window with its best covisible keyframe is build

and keypoints matches between these keyframe and the reference keyframe

is found with the help of the database direct index

• the best possible rototraslation considering all the keypoints contained in

each local window and the reference keyframe is computed

• more matches between the reference keyframe and all the keypoints in each

local windows are found using the rototraslation estimated in the previous

step

• the process continue only of place recognition is Ąred in three consecutive

keyframe

• the gravity vector is veriĄed to see if the place recognition hypothesis can

be Ąnally accepted

the best place recognition hypothesis is then selected. In this case two possible

situation could happened. In the Ąrst case the place recognition connect the

current position to a place collocated in the current active map. In this case the

classical loop closing algorithm is started and a global bundle adjustment (which
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Figure 3.2: Schematic summary of ORB-SLAM3 functioning. Image from
the original ORB-SLAM3 paper.

is performed only on a subset of keyframe if the number of them is too high to

avoid the explosion on the computational cost) is launched to readjust the entire

trajectory and map according to the new loop closing information. In the second

case the place recognition Ąnd a correspondence with a position present in a non

active map. In that case a particular merging map algorithm is triggered, as it

is explained in the paper.

3.2 ORB-SLAM3 installation

This small section of the thesis is dedicated to the explanation of the installation

of ORB-SLAM3. The principal problem, as mentioned before, is that ORB-

SLAM3 has been built and tested on Ubuntu 18.04 and ROS Melodic but in this

thesis setup the version of Ubuntu utilized is the 20.04 "Focal Fossa" and the

version of ROS is Noetic. So, as explained in the GitHub page of ORB-SLAM3

the installation in a different set up could lead to some problems that need to

be solved. Since these problem could be not so easy to solve, in particular if the

installation is brought on by someone with low experience, I wish that this section

could be helpful for others who are trying to make ORB-SLAM3 work in a similar

set-up. In particular in the Ąrst part of the section the principal dependencies

used by ORB-SLAM3 will be listed and the second part will be dedicated to a

small description of the principal problem encountered during the installation.
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3.2.1 Principal Dependencies

The principal dependencies needed by ORB-SLAM3 to work are strictly related

to the algorithms described in the chapter 2 of this thesis. This will be really

clear when the single dependencies will be explained in this subsection

Pangolin. Pangolin is the only dependency that is not important for the func-

tioning of the algorithm but it is only needed for the visualization and the

user interface of ORB-SLAM3. In fact it is used in particular in Ąle such as

MapDrawer.cc which is used for visualization purposes

OpenCV. OpenCV is one of the most important dependencies since it include

already built function not only to extract ORB features but also to match them.

Moreover OpenCV support all type of image manipulation function so it can be

used to rectify the image but also to change its color encoding. It is important

to notice that, even if they canŠt be used to obtain ORB-SLAM calibration Ąles,

OpenCV contains already built function to obtain camera calibration data.

Eigen3. Eigen3 is a really fundamental C++ library for creation and manip-

ulation of linear algebra objects (vectors, matrices etc.). Eigen3 is particularly

important for its efficiency and it is critical for the functioning of ORB-SLAM3

because it is needed by the next dependency that will be described here which is

g2o.

g2o. g2o is an open source general graph optimization C++ library used to

solve non linear optimization problem. In particular it is heavily utilized (as in

this case) to solve Bundle Adjustment problem which are one of the most impor-

tant problem to solve in SLAM algorithm.

DBoW2. DBoW2 is another really important C++ open source library which is

able to implement BoW representation of images and so is heavily used to build

the keyframe database and to implement loop closing algorithm. The library

support by default the ORB descriptor so it is very suitable to be utilized in

ORB-SLAM. The library need a pre-computed ORB vocabulary which is in fact

required when ORB-SLAM is started from the command line.

Sophus. Sophus is also a C++ library based on Eigen which implement ev-
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erything that is related with Lie Group and Lie algebra, so to represent 2D and

3D rigid body transformation.

It is important to notice that all the dependencies need to be installed in their

right version to avoid particular problem during the build operation. We will see

that this will be one of the problem encountered during the installation.

3.2.2 Installation Troubleshooting

In this section the most important problem encountered during the installation

of ORB-SLAM3 and its dependencies will be listed

1. The Ąrst thing to notice is that, during the installation of Pangolin, the last

build that consider also the python component of the library could lead

to errors that do not allow to complete the installation with "the python

stuff". The thing is that the installation of pangolin could be considered

ended once the Ąrst basic build using the command cmake --build build

end succesfully

2. To avoid any type of library conĆict due to other version of OpenCV in-

stalled in the computer it is useful to install it by source following for

example the guide at [43] (if you select this guide it is important to disable

the OpenCV support to CUDA since we will not need it). After this second

step no other problem with dependencies installation should happened.

3. at this point if the use of C14 is forced adding the following line

set(CMAKE_CXX_STANDARD 14)

set(CMAKE_CXX_STANDARD_REQUIRED ON)

set(CMAKE_CXX_EXTENSIONS OFF)

to the CMake Ąle in the root directory of ORB-SLAM3 the building pro-

cess without ROS support using the ./build.sh Ąle should go on without

problems. If these lines are not added errors regarding standard libraries

will pop up.

4. The next thing to solve is a directory conĆict due to the name of the root

folder of the project and the name of the ORB-SLAM3 folder inside the ROS
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directory of the project. To do that the only way that I have found is to

redo all the installation procedure changing the name of the root folder (in

my case I have named it ORB-SLAM3_folder). At this point the directory

present in the bash.rc and in the build_ros.sh Ąles need to be changed

consequently. In particular the name Examples in the build_ros.sh Ąle

need to be changed in Example_old since the ROS directory is present

only in the older version of the folder

5. Now the following two lines need to be added to the CMake Ąle that can

be found in the ORB_SLAM3 folder inside the /ROS/ORB_SLAM3 di-

rectory

set( OpenCV_DIR "/home/lorenzo/Downloads/

opencv-4.5.2/build" )

${PROJECT_SOURCE_DIR}/../../../Thirdparty/Sophus

the Ąrst one can be added at the beginning of the Ąle behind the line needed

to Ąnd the OpenCV package, the second one need to be added inside the

include_directories. These two line allow the compiler to Ąnd these two

dependencies which cannot be found otherwise.

6. the last things to do is to force also in the CMake Ąle mentioned in the

previous point the use of C14 using the same line reported above and com-

menting the following line in the same Ąle

# Node for monocular camera (Augmented Reality Demo)

#rosbuild_add_executable(MonoAR

#src/AR/ros_mono_ar.cc

#src/AR/ViewerAR.h

#src/AR/ViewerAR.cc

#)

#target_link_libraries(MonoAR

#${LIBS}

#)
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in this way we can disable the build of the augmented reality demo which

is not needed and which can lead to the appearance of other errors

at this point also the installation of ORB-SLAM with ROS support should ended

without further errors and the needed code modiĄcation can be implemented to

extract the necessary information from the algorithm.

3.3 ROS Wrapper modification

The last part of this section is dedicated to the explanation of the modiĄcation

implemented to the ROS Wrapper of ORB-SLAM3 to be able to extract data

from the algorithm and publish them as ROS messages to be able to build another

node for the densiĄcation of the map. The data that need to be publish are in

particular

1. the camera pose

2. the visible map point corresponding to the camera pose. In particular we

want to obtain a depth map that contains the depth of pixels in the keyframe

that correspond to the 3D map point.

to try to reduce the computational cost, since the node that use the neural net-

work for the densiĄcation is quite demanding in terms of resources, these data

are published only when a keyframe is generated and not for every frame. In

the following subsection the principal modiĄcation to the code will be shown and

commented.

3.3.1 Comment on code

The Ąrst thing that need to be done is the creation of the messages to transport

information about the position of points visible in a keyframe (which will be called

depth map) and the pose of the camera corresponding to the same keyframe. To

publish the camera position is sufficient to use a simple transform broadcaster

and to publish the depth map a LaserScan message can be used. In this case the

message need to be reshaped by the NN node to recover the right dimension of

the depth map.

The second really important thing is to check if at least the Ąrst keyframe

has been created before the ROS cycle started. This is due to the fact that if the

Ąrst keyframe has not been generated yet the program will crush because inside
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the cycle you will refer to a place in the memory that has not been allocated yet.

To do that we need simply to do the following check

if(((*SLAM.mpTracker).mCurrentFrame.mpLastKeyFrame) != nullptr)

in this Ąrst case we can also analyze how the pointer to the Ąrst keyframe is

found. The SLAM object contains all the SLAM system and the mpTracker is the

object containing everything that is needed for tracking purposes. In particular it

contains the object corresponding to the current frame which contains the pointer

to its reference keyframe. Moreover the keyframe object contains a method to

obtain the inverse pose of the camera in the world reference frame so using the

following line we can recover it

Sophus::SE3f actual_pose = lastKeyFrame->GetPoseInverse();

note that the pose of the camera is represented as expected, in ORB-SLAM, as a

SE3 Sophus object. Then, using the following lines we can build the translation

vector and the quaternion corresponding to the SE3 rototraslation

geometry_msgs::Pose pose;

Eigen::Vector3f translation = actual_pose.translation();

pose.position = eigenToPointMsg(translation);

Eigen::Quaternionf quaternion = actual_pose.unit_quaternion();

pose.orientation = eigenToQuaternionMsg(quaternion);

at the end we can simply create a Transform broadcaster which can publish a

tf::Transform object which need to be created and set up with the current

rotation and translation just extracted. The following line of code do exactly

that

static tf::TransformBroadcaster br;

tf::Transform transform;

transform.setOrigin(tf::Vector3(translation(0),translation(1),

translation(2)));

tf::Quaternion q(pose.orientation.x, pose.orientation.y,

pose.orientation.z, pose.orientation.w);

transform.setRotation(q);

at this point we can publish the camera pose with the following line
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br.sendTransform(tf::StampedTransform(transform,

ros::Time((*SLAM.mpTracker).mCurrentFrame.mpLastKeyFrame->

mTimeStamp), "world", "camera_frame"));

it is important to notice that the last keyframe object contains the timestamp

corresponding to the the moment in which the keyframe has been acquired. This

is really important since using this information we can synchronize the pose of the

camera, the depth map and the RGB image coming directly from the Raspicam

node. Now that the pose of the camera is published, also the depth map need

to be constructed and published. The Ąrst thing that we need is to Ąnd all

the map points which are visible in that particular keyframe and then translate

them in the camera reference frame and project them in the camera image plane.

Fortunately a method which is present in the mapPoint object allow us to get its

world position and a method inside the mpCamera object allow us to project the

map point into camera image plane. We can do everything using the following

line of code

for (auto elem : mapPointSet) {

pcl::PointXYZ point;

Eigen::Vector3f pointWorldPosition = elem->GetWorldPos();

Eigen::Matrix3f R = quaternion.toRotationMatrix();

Eigen::Vector3f pointCameraPosition = R.inverse() *

(pointWorldPosition - translation);

Eigen::Vector2f positionInImagePlane =

(*SLAM.mpTracker).mCurrentFrame.mpLastKeyFrame->mpCamera->

project(pointCameraPosition);

}

at this point it is sufficient to associate for each element of LaserScan message

vector the depth of the corresponding pixels in the image if it is available. Also

in this case it is fundamental to set the timestamp in the header of the Laser-

Scan object equal to the timestamp saved in the lastKeyFrame object to achieve

synchronization as explained above.

These are the fundamental modiĄcation to the ROS Wrapper needed to make

ORB-SLAM3 publish the needed data in the ROS network. In the next and last

chapter of the thesis the implementation of the last node that used MiDaS to

densify the map produced by ORB-SLAM, and the Octomap package used to
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combined all the point cloud produced by this new densiĄcation node, will be

explained.



Chapter 4

Map Densification

In this fourth and last chapter of the thesis the use of the neural network for

the map densiĄcation will be discussed. In particular the chapter will follow the

following scheme

• In the Ąrst part a review of the physical setup and of the ROS network will

be reported

• In second place the node built to use the neural network for the depth

estimation, to rescale its estimate and to produce and publish the point

cloud will be presented

• As a last step the Octomap package will be brieĆy described and the result

obtained using the experimental setup will be showed

After this Ąnal chapter the conclusion regarding this project will be summarized

considering the problems that characterized this solution and the possible future

development.

4.1 Set-up Review

The Raspicam and the accelerometer has been already deeply describe at the

beginning of the thesis in this section the various elements that compose the set-

up will be brieĆy listed and particular attention will be given to the way in which

they are physically connected one to the other. As a second step the description

of the Ąnal ROS network will be given with all the nodes, the names and types

of messages used.

67
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4.1.1 Physical Set-up

The hardware elements that has been used to implement the experimental system

are

• A Raspberry Pi 4 (4GB) which is the only elements that has not been

already described. It is equipped with Ubuntu 20.04 (Server version) and

ROS noetic. The Raspberry is used as an hub for all the sensors that are

needed for the project and it is connected to the local area network to sent

all the sensors data to the workstation for the elaboration

• The workstation is an MSI Laptop equipped with an 8th gen i7 processor,

16 GB of RAM, 512 GB of SSD and a GTX 1050 graphic card. It is used

to run ORB-SLAM3, the node for the map densiĄcation and the OctoMap

package to produce the global voxel map.

• the Raspicam which has been already described and which is directly con-

nected to the Raspberry through a 15 pins camera serial interface (CSI)

connector.

• the accelerometer which communicate with the raspberry through the I2C

protocol. The most important problem of the accelerometer is that it is

the Ąrst sensors to slow down if the Raspberry is engaged with other heavy

tasks such as the recording of data coming from the sensors. This slow

down is really serious since ORB-SLAM3 need that data coming from the

accelerometer are published at an high and stable rate

the important thing to notice is that the set up is really cheap. In particular

the sensors used are not expensive and the costly part of the set up is related

to the computational power needed by all the nodes. Image 4.1 summarized the

physical set up.

4.1.2 Review of the ROS Network

The second important thing to describe is the architecture of the ROS network

which underpins the entire system. Here the nodes used and the messages pub-

lished by them will be described

• The Raspicam node is the driver of the Raspicam and it published a lot

of messages starting from the camera info (which contains for example the
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Figure 4.1: Schematic representation of the hardware setup

calibration data of the camera) to arrive to the uncalibrated and calibrated

version of the images. The only message that is needed in this project

is the /raspicam_node/image which is then remmapped in our network

as /camera/image_raw. This message (which is an Image type message)

contains the raw colored image produced by the camera with dimension

640x480 and with a frequency of 30hz.

• The accelerometer node publish data coming from the accelerometer with a

frequency of 150hz. The type of the published message is the Imu type, so

it contains data coming from the accelerometer and also from the gyroscope

• the densiĄcation node which is used to implement the Neural Network depth

estimation and rescaling. This node is subscribed to the information pro-

duced by the modiĄed ORB-SLAM3 Wrapper and the RGB image published

by the Raspicam node to elaborate them and publish the point cloud of the

visible environment.

• the ORB-SLAM3 Wrapper node which manage the interface between ORB-

SLAM3 and the ROS network and that has been already deeply describe
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Figure 4.2: Schematic representation of the ROS network

at the end of Chapter 3.

• The OctoMap server node that is subscribed to the point clouds coming

from the desniĄcation node and which publish the 3D voxel probabilistic

map.

A graphical representaion of the ROS network is presented in 4.2.

4.2 Densification node

The second section of this Chapter is dedicated to the description of the node

added for the map densiĄcation. The messages to which the node is subscribed

and the one which is published by it has been already described. Here the Ąrst

validation of the sinchronization of messages to which the node is subscribed, the

Neural Network used to produce the dense depth map and the OctoMap package

will be rapidly discussed.

4.2.1 Synchronization and ORB-SLAM3 depth estimation

validation

As already explained the node is subscribed to data coming from ORB-SLAM3

ROS Wrapper (the sparse depth map) and data coming directly from the Raspi-

cam (the RGB image). The Ąrst thing to check is to understand if the node is able

to subscribe to these two piece of information with the correct synchronization

and to understand how accurate ORB-SLAM3 could be in the estimation of the

depth of certain points in the image with the actual experimental set-up. This
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sparse depth information in fact will be used to rescale the depth map which is

the output of the Neural Network. Moreover even if the accuracy of ORB-SLAM

can be seen in the paper the experimental set-up used in this thesis has worse

speciĄcation than the one used in the paper. The two most important deĄcit are

• the Raspicam is a rolling shutter camera rather than a global shutter one

• the accelerometer can be push to 150hz at most rather than 200hz. This

limit is due to the bottleneck given by the Raspberry computational power

and not to the IMU model. A lot of effort has been pushed to try to increase

that frequency to 200hz, for example the node has been rewritten in C++

rather than Python and the frequency of the I2C bus has been increased

but nothing can make the IMU run at a faster rate than 150hz.

To check if the synchronization is good once all the data are collected by the node

the RGB image can be plotted and on the image some of the detected features can

be drawn. Then one can check if the features remains stable even if the camera

is moved. If, in addition to plotting the features, we also draw the estimated

distances by ORB-SLAM3, we can also check how good is the depth estimation

with our set-up. In image 4.3 an example of the plotted images can be seen,

and in image 4.4 an Histogram of the absolute errors in the depth estimation is

showed.

4.2.2 MiDaS

Now a brief discussion over the used neural network for depth estimation is

needed. In particular Midas is Neural network for relative inverse depth esti-

mation. The real novelty of this network is the dataset on which it has been

trained. In fact the greatest problem when dealing with training depth estima-

tion neural network (and neural network in general) is data availability. In this

case the authors of the paper where able to train the network on multiple data set

even if they used different type of annotations or incompatible data structures.

Another key contribution of the paper is the use of 3D movies as source of in-

formation for the training since with them the relative depth information can be

extracted through stereo matching. This source of training data really increment

a lot the availability of information for the training procedure. In image 4.5 a

depth map obtained with an image coming from the Rapsicam and using MiDaS

can be observed. The depth map produced by the neural network is obviously
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Figure 4.3: Example of an image with some of the detected orb features with
the corresponding estimated distances. This images have been
used to estimate the precision of ORB-SLAM3 with the actual
experimental setup. The stability of the features between suc-
cesive images allow lso to check the synchronization of the RGB
image with the depth map.

Figure 4.4: Histogram of depth estimation errors of ORB-SLAM3. The mean
error is 18 cm and its variance is 0.049.
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(a) RGB image given as an input to the net-
work

(b) Inverse depth output of the network which
need to be rescaled

Figure 4.5: Input and output image of the MiDaS neural network

dense but it is represented in inverse depth and it is totally out of scale. So, once

the non inverse depth has been recovered, simply calculating the inverse of the

output of the network, the only remaining task is to rescale it.

4.2.3 Rescaling the NN output

The rescaling procedure is quite simple and it is based on the reasonable as-

sumption that there is a linear relation between distances estimate by the neural

network and distances coming from ORB-SLAM3. If we assume that, we can try

to understand which is this linear relation and rescale all the NN output. To do

that we simply assume that the true depth of each pixel is simply the output of

the really simple linear model

y = ax + b

where y is the true depth corresponding to a particular pixel (given by ORB-

SLAM3) and x is the relative depth estimate by the neural network. So if we

collect all the points which are present in the sparse depth map produced by

ORB-SLAM3 and the corresponding points in the relative depth neural network

map we can set up a linear regression problem which, once is solved, allow us

to obtain the a and b parameters. Once we know these parameters we can use

them to rescale the entire relative depth map and obtain a real world scale depth

images. Now using the the camera calibration data and the depth information

that we have just obtained we can project points in the 3D space and produce

a PointCloud2 message that can be used by OctoMap in combination with the

current pose of the camera to produce the global map. In image 4.6 an example

of the linear regression problem solved at each keyframe generation is showed. In
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Figure 4.6: Example of a linear regression problem that is solved at each
keyframe. The presence of outliers can be noticed.

that image we can see how the hypothesis of linear dependence can be considered

quite reasonable.

4.3 OctoMap and final results

In this Ąnal section of the thesis a rapid high-level overview of the Octomap pack-

age is given and some example of the Ąnal voxel map that can be obtained using

this method will be given. The important point here is that once the Octomap

is available, path planning algorithm can be built using information coming from

this map, allowing for autonomous exploration of unknown environment.

Octomap is a C++ library also available as a ROS package which allow to pro-

duce voxel map of the environment starting from a point cloud. In particular it is

able to combine multiple point cloud of the environment if the position in which

these point clouds are taken is known. The principal characteristics of OctoMap,

as explained in the paper are the following one

• it use a probabilistic representation of the environment. This is really crucial

since if a moving obstacle (for example a person) will pass in front of the

robot we want that the robot sees it, but we do not want that the robot

update the map with a Ąxed obstacle in each position in which this moving

obstacle has been seen. So using this probabilistic approach allow to achieve
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dynamic map updating

• it represent also free space inside the environment in addition to occupied

ones. This information is fundamental for path planning algorithm and so

to achieve autonomous exploration

• it is really efficient from the point of view of memory management. This

is another key point since when the map start to grow in size the memory

requirement could increase a lot and so manage memory in the right way

is crucial.

The two principal observation about the functioning of OctoMap are the following

one

• The map representation: The map is represented as an octree [44] which

is build subdividing a particular volume of space recursively into eight sub

volume. The principal characteristic is that if all the child node of a par-

ticular node representing a volume are in the same state (occupied or not),

they can bu pruned.

• The free space. The free space in the map is computed assigning the "free

space" label to each volume of space between a detected occupied voxel and

the current position of the camera (in our case), using simply raycasting to

determine which of the voxels are in this particular position.

In this work there is no deep description of the underline functioning of Octomap

but additional information for the interested reader can be found in [45].

In the Ąnal images presented in this thesis 4.7 an example of multiple points

clouds and the 3D voxel map produced thanks to the combination of them can

be seen. To validate these map, since confronting them with a ground truth

needed the use of instrument for the measurement of 3D environment such as 3D

Lidar, relative distances between points inside the map has been used. Here an

important disclaimer on how these images have been obtained need to be done.

In fact even if real time performance of the system could be achieved the problem

is that, due to the cheap hardware that compose the set up, the performance of

ORB-SLAM3 are not stable enough to allow our system to build a voxel map

of the environment. So to obtain the map the procedure adopted has been the

following one
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(a) Example of multiple point cloud obtained
through the NN output rescaling

(b) The resulting voxel map produced by Oc-
toMap

Figure 4.7: Combination of multiple pointcloud produced by OctoMap

• data from the sensors has been recorded in a bag Ąle

• these data were elaborated only by ORB-SLAM3 and the output of the

algorithm (so the camera pose and the depth map) were recorded in a

second bag Ąle. In this way section of the sequence in which ORB-SLAM3

produced good result could be saved

• the recorded output of ORB-SLAM3 was given to the densiĄcation node

and to the octomap package to produce the 3D voxel map

the procedure is quite complex and to achieve real time performance a more

powerful workstation, a global shutter high-speed camera and a way to make the

accelerometer run at stable 200 hz are needed. All these problem are mentioned

again in the conclusion. The mean relative absolute distance error in the 3D

voxel map is of about 10 cm with variance almost equal to 0, 0053 cm. Obviously

other disclaimers need to be done. The mean relative error is computed on a not

so large sample because produce each scene is quite complex as explain above.

Moreover the relative measure are taken in the center of the scene where the neural

network has better performance because putting obstacle in the high corner the

room is difficult. It is true that because the robot can move it can try to change

it position to achieve better understanding of part of the map for which it has

not built a clear map. However these observation are necessary to explain one

more time that this project has the goal to demonstrate the feasibility of this

particular approach.



Conclusions

In this thesis work a way to densify the map produced by an inertial-visual SLAM

algorithm has been deĄned. Moreover a real implementation of that procedure

has been constructed. There are some problems with this Ąrst iteration of the

project which are in particular

• the computational power needed is quite high since ORB-SLAM3, MiDaS

and OctoMap need to run at the same time.

• the hardware at disposal is not powerful enough to extract the best possible

performance from ORB-SLAM3, which sometimes can randomly change

scale in an unreasonable way or loose track of the position (this problem

lead to the use of a particular offline procedure to obtain the 3D voxel map

as explained at the end of the last chapter of the thesis).

• the neural network used is able to achieve good performance in depth es-

timation but as always neural network are not a deterministic way to de-

termine the depth of a particular scene and so they can sometimes lead to

unexpected results.

These are obviously problem that need to be solved but the project succeed as a

proof of concept, and demonstrate that with additional adjustment work it could

lead to monocular dense SLAM with relatively cheap hardware. The Ąrst adjust-

ment needed is more powerful hardware, in particular a global shutter camera

could lead to really better performance and the second one is the better general

organization of the project to obtain better efficiency regarding the use of com-

putational resources. The most promising future development in my opinion is

the use of depth completion network, which take both the RGB image and the

sparse depth information coming from an inertial-monocular SLAM algorithm

like ORB-SLAM3, to produce a depth map. This could lead to higher quality

depth map since the network has additional information to estimate depth in
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addition to the RGB image. The challenge in this case is on how to build the

dataset and on how to structure the training procedure. There exist already

trained network for this particular task [46] [47] but they are really harder to

integrate in a particular project differently from MiDaS.

At the end of this thesis I want also to list the most important things learned

during this particular project

• the Ąrst thing is the mastering of the ROS environment and an increase

experience with the use of programming languages like C++ and Python

• increasing understanding of the Linux operating system

• better understanding of the use of real sensors (camera and IMU calibration,

communication protocol etc)

• improved ability to orient myself at the beginning of a really open project

and totally unknown problem

• general knowledge of the focal point of the SLAM problem and history with

particular attention to visual SLAM algorithm

SLAM algorithm are improving at an always faster rate and achieving a really

general and robust solution to SLAM could lead to a real revolution in mobile

robotics. I wish that this master thesis could be a good starting point for everyone

who want to try to learn visual SLAM basic concepts to be able to explore then

some of the key problems still unresolved in this Ąeld of study.
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