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Abstract

Cycling infrastructure is crucial for urban mobility, yet many cities struggle to keep up with
the increasing demand for well-connected bike paths. This research, focused on Padova, Italy,
proposes a data-driven method to identify and prioritize new bike routes. By integrating data
from the Bike Sharing System, RideMovi, and modifying traditional centrality measures, a
novel weighted benefit metric is introduced. Grounded in stress centrality, this metric con-
siders both cyclist demand and the strategic importance of network components to prioritize
infrastructure improvements effectively.

The results indicate that central areas of Padova, especially around the train station and city
center, need substantial upgrades. Key routes connecting the university and hospital are also
prioritized, while peripheral areas are considered lower priority. This study provides action-
able recommendations for enhancing bike network connectivity in high-demand zones. The
analysis reveals that while the Component approach identifies broad infrastructure gaps, the
Routing approach offers amore efficient solution by adding fewer kilometers of newpaths, bet-
ter aligning with actual cyclist demand. By combining centrality measures with real-world trip
data, the research supports a targeted and effective strategy for urban bike network planning.

v



vi



Contents

Abstract v

List of figures ix

List of tables xi

Listing of acronyms xiii

1 Introduction 1
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Thesis overview and Structure . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Specific Perspective of This Work . . . . . . . . . . . . . . . . . . . . . . . 6

2 Preliminaries 7
2.1 RelatedWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Network Topology Approaches . . . . . . . . . . . . . . . . . . . 8
2.1.2 Data-Driven Approaches . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Centrality Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.1 Betweenness Centrality . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Modified Betweenness Centrality . . . . . . . . . . . . . . . . . . . 12
2.2.3 Stress Centrality . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.4 O-D Centrality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Route Estimation Techniques . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Data Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.1 RideMovi Data Description . . . . . . . . . . . . . . . . . . . . . 15
2.4.2 Data cleaning and preprocessing . . . . . . . . . . . . . . . . . . . 15

3 Methodology 19
3.1 Component Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Methodological Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.1 Network Creation . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.2 Flow Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.3 Route Assigment . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.4 Network Simplification . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.5 Components Identification . . . . . . . . . . . . . . . . . . . . . . 31

vii



3.2.6 Components Prioritization . . . . . . . . . . . . . . . . . . . . . . 34
3.2.7 Routing Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 Metrics for Network Quality Assessment . . . . . . . . . . . . . . . . . . . 40

4 Results 43
4.1 Flow Acquisition and Route Assigment . . . . . . . . . . . . . . . . . . . . 43
4.2 Component Identification and Prioritization . . . . . . . . . . . . . . . . . 46

4.2.1 Identification of Disconnected Components . . . . . . . . . . . . . 46
4.2.2 Component Prioritization Results . . . . . . . . . . . . . . . . . . 48
4.2.3 Routing Components . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3 Quality Metrics Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3.1 Comparison between Approaches . . . . . . . . . . . . . . . . . . 54
4.3.2 Comparison of Metrics: Component-Based Approach . . . . . . . . 57

4.4 Summary of Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5 Conclusion 61

References 63

Acknowledgments 67

viii



Listing of figures

1.1 Evolution of bicycle traffic Q1 2024 vs. Q1 2023 . . . . . . . . . . . . . . . 3
1.2 Cycling as primary form of transport for short journeys in Europe 2022 . . . 4
1.3 European shared mobility ridership growth 2022 to 2023 . . . . . . . . . . . 4
1.4 Number of users of bike-sharing in Italy from 2019 to 2028 (in millions) . . . 5

3.1 Transportation Network in Padova . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Transportation Network in Padova considering the Largest Connected Com-

ponent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Nearest Node Calculation Step . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4 Route Assignment Step . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5 Component Identification Step and Classification of nodes . . . . . . . . . . 32
3.6 Subdivision of Large Network Components . . . . . . . . . . . . . . . . . 33

4.1 Distribution of Bike-Sharing Trip Origins and Destinations . . . . . . . . . 44
4.2 Cyclist Flow Representation in Padova . . . . . . . . . . . . . . . . . . . . 45
4.3 Route Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.4 Components Identification . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.5 Components Identification Example . . . . . . . . . . . . . . . . . . . . . 48
4.6 Comparison of Weighted Benefit and Benefit for Components . . . . . . . . 49
4.7 Comparison of Components 12 and 16. . . . . . . . . . . . . . . . . . . . 49
4.8 Comparison of Components byWeighted Benefit and Benefit . . . . . . . . 50
4.9 Top 10 Components in Padova’s Bike Network Based on Benefit Metrics . . . 51
4.10 Top 10 Components Based onWeighted Benefit Metric . . . . . . . . . . . 51
4.11 Comparison of the Top 20 Components Based on Weighted Benefit Metric

and Their Labeled Visualization. . . . . . . . . . . . . . . . . . . . . . . . 52
4.12 Selected Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.13 Highlighted component number 13 for the Routing Approach Result . . . . 54
4.14 Bike Path Length and Gap Length for the Component and Routing Approach 55
4.15 BikePathLength andGapLength for theComponent andRoutingApproach

for the First 30 Components . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.16 Path Coverage for the Component and Routing Approach . . . . . . . . . . 55
4.17 Routes and Trips Coverage for the Component and Routing Approach . . . 56
4.18 Weighted Benefit for the Component and Routing Approach . . . . . . . . 56
4.19 Comparison of Evolution of Bike Path Ratios for Different Approaches with

Weighted Benefit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

ix



4.20 BikePathLength andGapLengthComparison: Benefit andWeightedBenefit
for the Component Approach . . . . . . . . . . . . . . . . . . . . . . . . 57

4.21 BikePathLength andGapLengthComparison: Benefit andWeightedBenefit
for the Component Approach for the First 30 Components. . . . . . . . . . 58

4.22 Path Coverage Comparison: Benefit and Weighted Benefit for the Compo-
nent Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.23 Routes andTripsCoverage: Benefit andWeightedBenefit for theComponent
Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

x



Listing of tables

2.1 RideMovi Data set Information . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 Columns withMissing and Zero Values . . . . . . . . . . . . . . . . . . . . 17

4.1 Summary of trips and routes with their lengths . . . . . . . . . . . . . . . . 44
4.2 Comparison of Component Metrics . . . . . . . . . . . . . . . . . . . . . 50

xi



xii



Listing of acronyms

BSS . . . . . . . . . . . . Bike-Sharing Sytem

LCC . . . . . . . . . . . Largest Connected Component

OSM . . . . . . . . . . Open Street Map

xiii



xiv



1
Introduction

The primary objective of this thesis is to tackle the challenges of urban biking infrastructure
by developing a data-driven approach to predict and prioritize new bike lanes in Padova, Italy.
The research focuses on identifying areas within the city where cycling infrastructure is lacking,
despite high demand from cyclists and other users reliant on biking.

To achieve this goal, data from the RideMovi Bike Sharing system is analyzed to identify
gaps in the current bike lane network. By examining cycling flow and demand, the study iden-
tifies areas where existing infrastructure does not meet user needs. A key contribution of this
work is the introduction of a weighted benefit measure, which modifies traditional centrality
metrics to incorporate flowdemand, helping prioritize which gaps to close to improve network
connectivity and efficiency.

In addition to identifying key areas in need of improvement, the study refines the prioriti-
zation process by focusing on specific street segments crucial for linking the most important
sections of the city. This approach ensures that infrastructure investments are targeted where
they will have the greatest impact, enhancing connectivity throughout Padova.

The results show that central areas, particularly around the train station and city center, are
in the greatest need of infrastructure upgrades. These are followed by areas near the city center,
while zones in the periphery are identified as lower priorities for development.

This introductory section is structured as follows: the initial sections present the context and
motivation for this research, emphasizing the importance of a connected bike infrastructure in
fostering healthy urban living and addressing environmental concerns. The evolution of public
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policies supporting cycling infrastructure and the role of sharedmobility systems for short trips
are also discussed, followed by an overview of the methodology and structure of the research.

1.1 Context

The transportation sector is one of themost challenging areas to address in terms of emission re-
ductions [1]. However, there is substantial potential tomitigate these challenges by “greening”
the transportation sector, primarily through a shift towards more sustainable mobility modes
such as cycling and walking [2]. In this context, cycling significantly contributes to promoting
sustainable and healthy urban living [3].

Additionally, cycling offers multiple benefits for public health, including the promotion of
physical activity and the reduction of air pollution [4]. Statistical analyses have shown that
cities with higher rates of cycling have lower rates of cardiovascular diseases and respiratory
illnesses [5]. Authorities andorganizationworldwide recognize the importance of cycling,with
two main focuses to highlight in the promotion of micromobility: planning transportation
networks to includemicromobility [6, 7], and promoting the use of shared e-scooters and bikes
[8].

In the context of actions taken by authorities and organizations, they seek to enhance cy-
cling infrastructure through improved planning and design of transportation networks. This
includes better definitions of bike paths/bike tracks, ensuring safety conditions, and planning
future improvements in cities’ bike infrastructure [9, 10]. To achieve this, various guidelines
and strategies have been proposed to integrate cycling more effectively into urban landscapes.
Authorities and organizations provide a range of quantification guidelines andmetrics formea-
suring and guiding bike network developments. Key sources include the Federal Highway Ad-
ministration (FHWA), the EuropeanCyclists’ Federation (ECF), and theNationalAssociation
of City Transportation Officials (NACTO). These guidelines cover aspects such as network
coverage, connectivity, usage, demand, safety, accessibility, quality, and maintenance. Com-
mon metrics include total length of bike lanes, bike lane density, connectivity index, cycling
mode share, cyclist counts, crash data, surface quality, and maintenance records. Data collec-
tion methods involve automated counters, surveys, GPS tracking, and manual counts. Analyt-
ical frameworks such as GIS and network analysis are utilized to assess the spatial distribution
and structural properties of bicycle networks, while cost-benefit analysis helps to assess the eco-
nomic impacts of investments in bike infrastructure [11, 12, 13, 14, 15, 16].

The effect of public policies is already reflected in an increase in cycling has been already
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reflected in the data. In a survey conducted by [17], an increase in cycling was observed in 7
out of 13 countries when comparing the first quarter of 2023 with the first quarter of 2024
(Figure 1.1). The countries with the largest increase in bicycle trafficwere Poland, Belgium and
Austria.

Figure 1.1: Evolution of bicycle traffic Q1 2024 vs. Q1 2023. Source: Eco Counter.

Additionally, there is an increasing preference for using bikes for short trips. In 2022, the
Netherlands led Europe with 45% of people using bikes for short trips, followed by Germany
(21%) and Belgium (20%). Italy had a 13% share, highlighting its potential for growth. These
variations underscore the need to enhance cycling infrastructure across Europe (Figure 1.2).

In the realm of shared micromobility systems, such as e-scooters and bike-sharing systems
(BSS), have gained traction as effective solutions for urban transportation challenges. Origi-
nating in Amsterdam in 1965 [18], BSS have experienced widespread adoption, offering an
alternative mode of transportation for short trips. These systems present several advantages
over individual bicycle ownership, including increased accessibility, flexibility, and integration
with public transportation networks [18, 9].

The growth of BSS underscores the importance of comprehensive urban planning and pol-
icy interventions to support their integration into transportation networks. This includes de-
signing infrastructure that accommodates micromobility vehicles, implementing regulations
to ensure safety and accessibility, and promoting multi-modal transportation solutions that
encourage cycling and shared micromobility adoption.

In Figure 1.3, we observe that between the third quarter of 2022 and the third quarter of
2023, the ridership of shared bikes in Europe increased, with dockless schemes experiencing
the strongest growth at 24%.
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Figure 1.2: Cycling as primary form of transport for short journeys in Europe 2022. Note: Share of population who ride a
bicycle as their primary mode of transport for short journeys in Europe in 2022, by selected countries. Europe; March 25 to
April 8, 2022; 16 years and older; 20,507 respondents.

Figure 1.3: European shared mobility ridership growth 2022 to 2023. Note: Shared mobility ridership growth in Europe in
Q3 2023 as compared to Q3 2022, by mode. Norway, Switzerland, United Kingdom, EU; Q3 2023; excludes ride‐hailing
services, car‐pooling, and long‐term and multi‐day hires. Source: Statista.

In the particular case of Italy (Figure 1.4), the number of users in the “Bike-sharing” segment
of the shared mobility market has been increasing in recent years and is forecasted to continue
rising by a total of 0.4 million users between 2024 and 2028.

However, despite these efforts, there is still a gap inmany cities. The development of efficient
and interconnected bicycle networks remains a challenge, with many cities struggling to over-
come fragmentednetworks [19]. This underscores the need for comprehensive urbanplanning
and policy interventions to support the integration of cycling into transportation networks.
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Figure 1.4: Number of users of bike‐sharing in Italy from 2019 to 2028 (in millions). Source: Statista.

1.2 Thesis overview and Structure

This thesis focuses on identifying the missing links within the bicycle network of Padova, with
the goal of contributing to the development of a more cohesive and user-friendly cycling in-
frastructure. By addressing the fragmentation in the network, this research aims to predict and
fill in these gaps using a data-driven approach. Leveraging data from existing micromobility
systems, the study seeks to create a more connected and efficient bike network in the city.

The thesis is structured into four main chapters:

• Chapter 2: This section discusses the related work and centrality measures that sup-
port this research, offering a foundation for analyzing urban cycling infrastructure. It
also introduces the primary data source, the RideMovi dataset, which contains detailed
information on bike trips in Padova from July 2020 to September 2023. The dataset
includes origin and destination data, making it crucial for constructing the city’s flow
dynamics.

• Chapter 3: This section outlines the methodology used to tackle the problem of en-
hancing Padova’s bike network. It describes the steps involved in constructing the net-
work, transforming trip data into flow information, and modifying centrality measures
to incorporate this flow data. The methodology prioritizes zones in need of connectiv-
ity improvements through a weighted benefitmetric that integrates traffic flow data and
centrality measures.

The approach is divided into key components: identifying disconnected segments in
the network, prioritizing these segments using the weighted benefit metric, and con-
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ducting refined route analysis within each segment. Two complementary strategies—
the Component Approach and the Routing Approach—are applied. The Component
Approach identifies critical gaps at a macro level, while the Routing Approach refines
the analysis by determining the most efficient routes within each segment. This dual
framework ensures comprehensive network planning, combining high-level gap identi-
fication with focused, route-specific optimization.

• Chapter 4: This chapter presents the study’s results, comparing the two methodolo-
gies discussed and evaluating the metrics with and without modifications. The findings
confirm that the bike network in the city is fragmented, highlighting a significant need
for improvements not only in the city center and near the train station but also in other
critical areas such as near the university and the hospital. The analysis demonstrates that
prioritizing network components based on weighted benefit metrics results in a distinct
convergence pattern, underscoring the strategic importance of specific areas for enhanc-
ing overall network connectivity and efficiency.

• Chapter 5: Concludes the thesis by summarizing themain findings, offering additional
remarks, and suggesting directions for future research.

1.3 Specific Perspective of ThisWork

This research seeks to address the fragmentation of Padova’s bike network by predicting and
strategically filling in missing links through a data-driven approach. By utilizing data from
micromobility sharing systems, the goal is to create a more cohesive, efficient, and user-centric
bike network. The specific objectives of the study are to:

• Assess the current state of Padova’s bike network, identifying key areas of disconnection
and fragmentation.

• Leverage micromobility system data to analyze travel patterns and determine areas of
high demand.

• Develop a data-drivenmethodology to identify themost criticalmissing links in the bike
network.

• Modify and implement ametric that incorporates flow dynamics to better prioritize net-
work improvements.

• Provide actionable recommendations for prioritizing the most critical areas for infras-
tructure development, focusing on zones with the highest usage and demand.
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2
Preliminaries

This chapter establishes the foundational elements necessary for understanding the methodol-
ogy applied in this research. It begins by reviewing relevant literature, providing insights into
both network topology approaches and data-driven strategies. Network topology approaches
focus on using centralitymeasures to evaluate and identify critical network elements, highlight-
ing their role in understanding network structure and identifying key edges. Although these
methods are effective in comparing existing networks to theoreticalmodels, they often overlook
user behavior and demand patterns.

In contrast, data-driven strategies integrate empirical flow data to address these gaps, em-
phasizing the importance of incorporating actual usage patterns into network analysis. This
approach provides a more detailed understanding of bike lane demand and network perfor-
mance. The chapter further delves into the technical aspects of centrality measures, such as be-
tweenness and stress centrality, which are pivotal for analyzing network connectivity and edge
importance. Additionally, it offers a detailed description of the RideMovi dataset, including
data cleaning, preprocessing, and key variables, which form the foundation of the subsequent
analysis and methodology.

2.1 RelatedWork

Addressing the gaps in bike lane networks is essential to fully harness the potential of cycling to
promote sustainable urban living. Academic literature has also contributed to improving bike
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network planning, focusing on constructing efficient and connected bicycle networks from a
more quantitative point of view.

Different approaches to constructingoptimal networks havebeen explored, ranging fromde-
veloping frameworks focusing solely on network topology to incorporating data-driven strate-
gies. These strategies also consider different metrics and information sources, while aligning
with guidelines and manuals mentioned previously [11, 12, 13, 14, 15, 16].

2.1.1 Network Topology Approaches

When considering the development of methodologies that focus solely on network topology,
the primary goal is to create generalizable approaches using centrality measures of graph net-
works to identify critical edges and network quality measures to evaluate the evolving network.
Thesemethodologies often rely on different centralitymeasures, such as betweenness and close-
ness, to guide the construction and improvement of the network.

In this context, [20] present amethodology for strategic network growth from scratch across
62 cities. They explore various growth strategies for greedy triangulation, such as betweenness,
closeness, and random approaches, and measure the quality of the resulting network using
metrics like length, largest connected component, coverage, and directness. Their objective is
to construct the shortest and locally dense planar networks.

Similarly, [21] and [19] focus on identifying critical missing links by considering the existing
bike path network as the starting point for network construction.

[19] propose a greedy algorithm applied to 14 world cities, prioritizing bike path construc-
tionbased on topology. Their approach involvesmaking strategic connections between compo-
nents by implementing two greedy algorithms that identify the largest connected component
in the bicycle infrastructure network and connect it to the second largest or closest component,
assessing quality through metrics like connectedness and directness.

On the other hand, [21] developed the IPDCprocedure (Identify, Prioritize, Decluster, and
Classify) to locate the most crucial missing links in urban bicycle networks. This procedure
was applied to Copenhagen but it starts from a generalize framework. It begins by identifying
all possible gaps in the bicycle network through a multiplex network approach, calculating the
shortest paths between nodes, and discarding parallel paths using a minimum detour factor.
These gaps are then prioritized based on flow-based metrics, such as betweenness centrality,
which evaluates the centrality of a missing link and the benefits of closing it.

Overall, these methodologies aim to improve network topology by strategically enhancing
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connectivity and directness. They provide a framework for systematically identifying and ad-
dressing gaps in the network, ensuring more efficient and effective bicycle infrastructure devel-
opment.

The primary advantage of topology-focused methodologies is their ability to compare ex-
isting bike networks with optimal ones, offering insights into fundamental topological limita-
tions. Valuable metrics are provided by comparing synthetic networks with real-world exam-
ples [20]. The authors offer a comprehensive perspective on the evolution of various indicators,
such as connectivity anddirectness, whenprioritizing bike path construction inurbanmobility
planning.

Additionally, topological methodologies allow for the incorporation of safety measures in
bike lane design. Both [21] and [20] acknowledge the importance of ensuring cyclists’ well-
being by considering existing bike paths in their network construction. This integration helps
address safety concerns while developing a comprehensive network.

Despite their advantages, these methodologies have significant limitations. Connectivity
alone is insufficient to support demand, as routes along streets equippedwith bike pathsmight
be indirect and require large detours. Shortest path trees optimally support demand only from
and to a single location, which does not address broader mobility needs [22].

Moreover, these methodologies often overlook critical factors such as user behavior and de-
mand patterns, which are crucial in constructing bike networks [22, 23]. They also frequently
disregard existing bicycle infrastructure within specific cities, necessitating adaptation to each
unique urban context [21]. Most real-world bicycle infrastructures already have varying de-
grees of connectivity and accessibility [20]. Themain challenge is connecting these fragmented
networks, as a general approach that effectively considers this wide range of connectivity and
cycling demand is difficult to develop. Ignoring existing infrastructure can lead to suboptimal
expansion plans or redundant investments in areas with adequate infrastructure.

2.1.2 Data-Driven Approaches

Although incorporating flow dynamics is crucial, the literature review by [18] highlighted the
limited previous research on identifying and analyzing flows. Several pioneering studies have
made significant progress by incorporating flow dynamics into their research. For instance,
[22] integrated information flow data from bike-sharing systems to understand demand and
usage patterns within bike lane networks. They iteratively removed bike paths from an initially
complete bike pathnetwork, continually updating cyclists’ route choices to create a sequence of
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networks adapted to the cycling demand. They started with a fully connected network, identi-
fied current bike paths, and then applied a pruning approach considering demand distribution
and a penalty factor if the path was not protected, continuing until all the bike paths had been
removed.

Similarly, [24] extended the network growthmodel by [20] for the city of Turin, Italy, incor-
porating the existing bicycle network and empirical micromobility datasets of e-scooter trips
and bicycle crashes. They used a weighted distance to account for crashes and trips, and calcu-
lated a betweenness centrality to prioritize links. The network process was evaluated with two
metrics: crash coverage and trip coverage, with a maximum total distance of paths to add.

These studies highlight the benefits of incorporating demand and flow dynamics in bike
network planning. For example, [22] obtained insights about differences in bike path coverage
density, dictated by demand distribution, allowing for quantitative comparison. They demon-
strated that different cities require different optimal investment strategies, with better bike net-
work adaptationwhen considering flowmeasures. Additionally, [25] showed that compared to
traditional approaches, incorporating traffic flow into a modified weighted betweenness mea-
sure produces better results in traffic flow prediction.

However, there are also notable disadvantages. The quality and type of input data, such as
street network data and bike-sharing demand, are critical for the resulting networks. Poor data
quality can lead tounreliable results, considering challenges in analyzing human-generated data
due to its noisy characteristics [26]. Additionally, modeling cyclist behaviors and preferences
is complex, and demand is place-specific, making generalization difficult.

Twomain challenges arisewhen incorporatingflow/demand innetwork transportation: mod-
ifying centrality measures to appropriately incorporate flow, and obtaining accurate flow data.
Flow analysis can be addressed with surveys, GPS tracking, and other data sources. Recent ad-
vancements integrate various data sources, including bike-sharing system data, GPS tracking,
and user surveys, to inform decision-making processes and develop more effective and user-
centric network designs [27, 18, 24].

In this context, [22]utilizedflow information fromstation-basedBike-SharingSystems (BSS)
as a proxy for demand. However, such BSS require users to pick up and drop off bikes at desig-
nated stations, potentially limiting the accuracy of demand estimation [27]. Conversely, free
systems provide trajectories reflecting actual urban travel flowmore accurately.

As the use of BSS has becomewidespread, data collected from these trips provide valuable in-
sights into bike lane usage and flowdynamics. Various studies have focused on abstracting flow
dynamics from Bike Share Systems [27, 18, 22, 24]. This dynamic flow serves as an approach
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to bike-lane demand, providing significant value in planning and expanding cycling networks,
and allowing the identification of routes that would offer the greatest benefits to citizens [19].
In this regard, [22] pioneered the integration of information flow data from bike-sharing sys-
tems as a proxy for understanding demand and usage patterns within bike lane networks. In
thiswork, data fromRidemovi, a non-station-basedBSS,will be utilized, offering realistic travel
demands [27].

2.2 CentralityMeasures

In transportation networks, various centrality measures are employed to qualitatively under-
stand the network structure and to assign importance to nodes and edges. This research focuses
on two specific measures: betweenness centrality and stress centrality.

Betweenness centrality measures the extent to which an edge lies on the shortest paths be-
tween other nodes, thereby indicating its role in facilitating movement across the network.
Similarly, stress centrality assesses the frequency with which a node or edge is traversed in all
possible shortest paths, providing insight into potential load or congestionwithin the network.

While thesemeasures are typically applied at thenode level, this sectionpresents betweenness
centrality for nodes and adapts stress centrality for edge-level analysis. This section introduces
the adapted edge-based centrality measure and highlights relevant studies where it has been
applied in traffic flow analysis.

2.2.1 Betweenness Centrality

Betweenness centrality is a widely used metric in traffic flow analysis that quantifies the pro-
portion of shortest paths that pass through a particular node [20, 28]. Introduced by Freeman
[29], the formal definition for a given graph G(V,E), where V is the set of vertices and E is
the set of edges, is expressed as follows. The betweenness centralityC(v) of a node v is defined
by:

C(v) =
∑
s,t ̸=v

σst(v)
σst

(2.1)

where:

• C(v) is the betweenness centrality of node v.

• σst is the total number of shortest paths from node s ∈ V to node t ∈ V .
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• σst(v) is the number of those shortest paths that pass through v.

2.2.2 Modified Betweenness Centrality

Incorporatingflowdynamics into centralitymeasures is a key consideration innetwork analysis.
This research utilizes a modified betweenness centrality measure, as proposed by [25], which
accounts for traffic flow:

C(v) =
∑
s,t ̸=v

ϕst
σst(v)
σst

(2.2)

where:

• C(v) is the modified betweenness centrality of node v.

• σst is the total number of shortest paths from node s ∈ V to node t ∈ V .

• σst(v) is the number of those shortest paths that pass through v.

• ϕst is the standardized number of trips from node s ∈ V to node t ∈ V .

The standardized number of trips, denoted ϕst, ϕts is calculated as:

ϕst = ϕts =
Mst +Mts

maxs,t∈P (Mst +Mts)
for i ̸= j ∈ V (2.3)

where:

• M is the O-D demand distribution matrix.

• Mst is the number of trips from node s ∈ V to node t ∈ V .

• Mts is the number of trips from node t ∈ V to node s ∈ V .

• i and j are indexes of two vertices (of which the set is V) of topology network.

These formulations serve as the foundation for the metric used in this study, incorporating
flow dynamics as outlined in the Methodology chapter.
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2.2.3 Stress Centrality

Stress centrality is another measure used to evaluate the importance of edges within a trans-
portation network. For an edge l, the stress centrality is defined as:

c(l) =
∑
i,j∈P

ni,j(l) (2.4)

where:

• c(l) is the stress centrality of edge l.

• P is the set of all node pairs.

• ni,j(l) is thenumber of shortest paths fromnode i ∈ P tonode j ∈ P that pass through
edge l.

To prioritize edges when predicting missing links, stress centrality has been referred to as
Link Closure Benefit by [21], used for one unit of flow.

This formulationwill be the foundation for themodifiedmeasure proposed in this research,
which accounts for multiple units of flow.

2.2.4 O-D Centrality

Origin-Destination (O-D) centrality evaluates the importance of nodes or edges in connecting
specific O-D pairs, ensuring efficient travel between key locations. Amodified version of stress
centrality for an edge l that considers O-D pairs, as outlined by [28], is given by:

O-D centralityl =
∑

i∈I,j∈J
dij≤δ

σ∗
ij(l)MiMj (2.5)

In this equation:

• I represents the subset of origins in the network.

• J represents the subset of destinations in the network.

• σ∗
ij is the preferred bicycle path from node i to node j.

• Mi andMj are multipliers for origin i and destination j, respectively.

• dij is the distance between origin i and destination j.
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• δ is the reachable distance threshold for bicycles.

In summary, the centrality measures discussed provide the basis for the methodology devel-
oped in this research. Stress Centrality, as defined in Equation 2.4, will be used to assess the
qualitative structure of the network. Following the approach outlined by [21], this measure
will be termed LinkClosure Benefit. These metrics will be adapted to account for flow dynam-
ics, with flow quantified as the standardized number of trips according to Equation 2.3. To
facilitate the analysis, the methodology will also incorporate a simplified Origin-Destination
(O-D) centrality approach, as described in Equation 2.5.

2.3 Route Estimation Techniques

Onemain drawback ofworkingwith transportation data is the frequent absence of certain vari-
ables of interest. Specifically, detailed information about the routes followed by bicycle users is
oftenmissing or difficult to access due to privacy concerns,memory constraints, data collection
infraestructure restrictions. To address this issue, various routing algorithms are employed to
estimate the likely paths taken by cyclists. The most common approach is the shortest path al-
gorithm, which minimizes metrics such as distance, travel time, or other weighted constraints.
This method is widely used due to its simplicity and efficiency in predicting user behavior. For
instance, [30] discuss different shortest path algorithms and their applications in real-world
scenarios, emphasizing their effectiveness in transportation networks. .

In addition to the shortest path approach, more sophisticatedmethods have been developed
to better capture the complexity of route choices. Thesemethods include stochastic routing al-
gorithms that incorporate variability in user preferences and behavior, as well as machine learn-
ingmodels that predict routes based onhistorical data and contextual factors. [31] illustrate the
use of a multi-criteria routing approach that takes into account factors like safety, directness,
and cyclist preferences, providing a more nuanced estimation of cyclist routes.

In our study, we employ the shortest path algorithm to estimate the routes followed by cy-
clists, minimizing the distance metric. This approach allows us to leverage existing network
data efficiently while providing a reasonable approximation of actual routes. However, it is
important to acknowledge the limitations of this method, as it may not capture all factors in-
fluencing route choice, such as road safety, traffic conditions, or personal preferences. Future
research could explore integrating more complex routing models to enhance the accuracy of
route estimations.
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2.4 Data Description

The primary data source for this study is the RideMovi Bike Sharing System data, which in-
cludes all cycling trips made with bikes and e-bikes in Padova. This dataset is chosen due to
its ability to reflect actual urban travel flow, as it comes from a non-station-based Bike Shar-
ing System (BSS). Unlike station-based BSS, where bikes must be picked up and dropped off
at specific locations, RideMovi provides trajectory data that offers a more realistic representa-
tion of travel demand. This dynamic flow data is crucial for modifying centrality measures to
incorporate flow dynamics and for understanding the true demand for bike lanes.

The following subsectionwill detail the RideMovi dataset, including the data preprocessing
and cleaning steps, as well as the key variables retained for the methodology proposed in this
research.

2.4.1 RideMovi Data Description

Ridemovi provides a free-flow bike sharing system featuring “Lite” bicycles and eBikes, avail-
able for use 24/7. The bicycles are equipped with advanced technology, including GPS, a SIM
card, and a smart lock controlled via the Ridemovi app. Users can access the service by down-
loading the free Ridemovi app from the App Store or Google Play. To ensure proper usage,
there are designated “no parking zones” where bicycles cannot be parked. These zones are visi-
ble and marked within the app. Parking in these zones may result in a fine [32].

TheRideMovi dataset comprises 1,348,415 rowswith 57,573 unique trip IDs, spanning the
period from July 2022 toNovember 2023. It includes details for each trip, such as start and end
locations, trip duration, bike types, and other relevant attributes. This dataset encompasses all
trips made with bikes and e-bikes in Padova, providing valuable insights into cycling patterns
in the city. All dataset information is summarized in Table 2.1. For the methodology, we focus
on the variables start_latitude, start_longitude, end_latitude, end_longitude. These variables
contain the coordinates where the bikes are picked up (start variables) and dropped off (end
variables)

2.4.2 Data cleaning and preprocessing

The data cleaning and preprocessing phase is crucial to ensure the integrity and reliability of the
RideMovi dataset for analysis. This section outlines the handling of missing values, geospatial
filtering to focus on trips within Padova, and the selection of relevant columns for the study.
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Column Type Range/Classes

order_id object [’165881997861752715IE12H09333’ ’165882007560264115IE12H04192’] (and 1,345,742 more)
country object [’Italy’]
City object [’Padova’]
bike_no object [’IE12H09333’ ’IE12H04192’] (and 2,855 more)
vehicle_type object [’ebike’ ’bike’]
user_id int64 (15, 1,955,598)
start_time object [’26/7/2022 9:19:46’ ’26/7/2022 9:21:24’] (and 1,313,554 more)
end_time object [’26/7/2022 9:20:13’ ’26/7/2022 13:01:31’] (and 1,313,364 more)
original_total_amount int64 (0, 3,075)
original_currency object [’EUR’]
pay_total_amount int64 (0, 47,597)
pay_amount int64 (-100, 47,597)
pay_currency object [nan ’EUR’] (and 10 more)
owe_amount int64 (0, 3,075)
promotion_deduction float64 (-548.0, 47,597.0)
refund_amount int64 (0, 3,000)
start_latitude float64 (38.185941, 47.07438)
start_longitude float64 (9.204108, 15.430411)
end_latitude float64 (43.710991, 45.908418)
end_longitude float64 (7.644125, 12.368157)
ride_time int64 (0, 14,400)
ride_distance int64 (0, 4,051,100)
soc_end float64 (1.0, 100.0)
soc_start float64 (1.0, 100.0)
penalty_order_id object [’P165881997861752715IE12H09333’ ’P165882007560264115IE12H04192’] (and 1,039,801 more)
penalty_type object [’PARKING_PHOTO_NOT_TAKEN’ nan] (and 3 more)
promotion_channel float64 (0.0, 10.0)
Pass Group object [’PAYG’ ’Times Pass’] (and 4 more)
start_date datetime64[ns] (Timestamp(’2022-06-30 19:10:39’), Timestamp(’2023-11-22 23:56:45’))
end_date datetime64[ns] (Timestamp(’2022-07-01 00:00:22’), Timestamp(’2023-11-22 23:59:17’))

Table 2.1: RideMovi Data set Information.

Each step in this process refines the dataset, eliminating irrelevant or erroneous data and prepar-
ing it for subsequent analysis.

Missing Values

The columns containingmissing values and zero values were analyzed, as displayed inTable 2.2.
The columns with missing or zero values are not of primary interest to this study, so they will
be addressed later in themethodology. Additionally, time gaps in the dataset were checked, and
it was confirmed that no gaps are present.

Geospatial Filtering

To ensure the trips are within Padova’s municipality, the city boundary from OpenStreetMap
was used, defined as a polygon with the following bounding box coordinates:

• North: 45.457373

• South: 45.339567
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Column Missing Values Zero Counts

pay_currency 55,352 0
promotion_deduction 55,354 480,670
ride_time 0 22,284
ride_distance 0 26,378
soc_end 663,685 0
soc_start 658,437 0
penalty_order_id 305,942 0
penalty_type 305,942 0
promotion_channel 525,064 234,557

Table 2.2: Columns with Missing and Zero Values.

• East: 11.976435

• West: 11.805412

Trips with start or end points outside these boundaries were dropped.

Subsetting Columns

For analysis, only the columnsof interest for theflowanalysiswere kept: order_id,start_latitude,
start_longitude, end_latitude, and end_longitude.

Data Cleaning and Filtering

The data cleaning and filtering process involved the following steps:

• Removing duplicate entries: 2,671 rows removed.

• Excluding trips with incorrect coordinates (outside Padova): 3,587 rows removed.

The resulting dataset provides a reliable basis for subsequent analyses, focusing on trips en-
tirely within Padova’s administrative boundaries.

The RideMovi dataset, featuring comprehensive data on bike trips in Padova, forms the
foundation of this study. This dataset’s unique attributes, including its coverage of all trips
within the city and detailed trip information, provide a valuable basis for analyzing urban cy-
cling patterns. The subsequent data cleaning and preprocessing phases ensure the dataset’s in-
tegrity by addressingmissing values, geospatial filtering, and column subsetting, therebyprepar-
ing it for accurate flow analysis and network evaluation.
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3
Methodology

This study aims to enhance the urban biking infrastructure in Padova through a data-driven
approach focused on identifying and prioritizing newbike lanes. Themethodology is designed
to systematically identify and address gaps in the existing bike network by analyzing cycling
activity data and applying weighted centrality measures.

To address this challenge, the research introduces a two-tiered approach: Component Ap-
proach andRoutingApproach. The distinction between the two approaches lies in their scope
and detail. The Component Approach focuses on identifying large areas of the city where
bike network connectivity is lacking, while the Routing Approach serves as a refinement step
that drills down to the micro-level, pinpointing specific streets within each component that re-
quire attention. This distinction allows for a comparison between results with andwithout the
application of the Routing Approach, providing insights into the effectiveness of the refined
methodology.

Central to this methodology is the Component Approach, which identifies disconnected
sub-networks, or components, within the broader bike infrastructure. These components rep-
resent areas of the city where bike paths are absent or poorly connected. By analyzing these
components, the methodology provides a macro-level overview of the network’s connectivity,
which is essential for city planners and policymakers. This approach allows for the visualization
of the network’s structure across different city sectors, highlighting zones with significant con-
nectivity gaps that need attention. The approach is structured into key steps: network creation,
flow acquisition, route assignment, gap identification, and gap prioritization.
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Once components are identified, the next step involves prioritizing them according to a
weighted benefit metric. This metric takes into account factors such as route volume, bike
trip frequency, and component length. This prioritization process reveals that smaller, high-
traffic components may bemore critical to address than larger, less-used ones, emphasizing the
value of a data-driven approach.

While the Routing Approach is not strictly necessary, it offers a refinement by focusing on
themicro-level connectionswithin each component. After prioritizing components, theRout-
ing Approach is employed to connect “flow nodes” or “contact nodes”—points where transi-
tions occur between bike paths and non-bike paths. A routing algorithm is proposed to op-
timize these connections, effectively bridging identified gaps within the network. This micro-
level routing solution complements the macro-level component analysis by ensuring that the
most frequently traveled and critical routes within each component are prioritized.

Finally, the enhanced network’s quality is assessed using various metrics to evaluate the ef-
fectiveness of the proposed methodology. The primary objective of this research is to identify
areas within Padova’s bike network that lack adequate infrastructure and to prioritize inter-
ventions that will generate the greatest impact for cyclists. By combining the Component and
Routing Approaches, the methodology provides a comprehensive framework for improving
the city’s bike infrastructure in a targeted and efficient manner.

3.1 Component Approach

As previously mentioned, this procedure forms the core of the thesis, serving to identify key
components within Padova’s bike network that lack adequate infrastructure but are critical for
improving overall connectivity in terms of demand. The approach is organized into several
key steps: network creation, flow acquisition, route assignment, gap identification, and gap
prioritization.

The network creation process starts with obtaining the transportation network, focusing on
identifying existing bike paths and potential routes suitable for cyclists. In the flow acquisition
and route assignment steps, the process involves identifying key origin and destination points
within the city and analyzing flow data to determine which streets and paths are currently used
or have the potential to be used by cyclists. This results in a refined subnetwork that focuses
exclusively on bike paths and routes most relevant to cycling activity.

Next, the methodology identifies the disconnected components within this subnetwork—
specific areas that consist of potential bike paths but are not yet connected to the larger network.
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These disconnected components represent zoneswhere infrastructure improvements could sig-
nificantly enhance network connectivity.

Finally, the prioritization of these components is conducted using amodified centralitymea-
sure that incorporates demand-side considerations. Specifically, a flow-weighted stress central-
ity measure is used to assess the benefit of closing each component, helping to prioritize areas
thatwill offer the greatest impact in terms of improving bike network connectivity andmeeting
cyclist demand.

3.2 Methodological Framework

The methodology for identifying and prioritizing gaps in Padova’s bike network is structured
around a series of key steps, each integral to the overall process. This framework leverages both
the Component and Routing Approaches to systematically enhance the city’s cycling infras-
tructure by addressing both macro and micro-level connectivity issues.

• Network Creation: The first step involves acquiring transportation network data us-
ing tools like OSMnx to map out existing and potential bike paths. This phase focuses
on constructing a subnetwork that captures the relevant routes for cyclists, forming the
basis for subsequent analysis.

• Flow Acquisition: This stage involves collecting and analyzing cycling activity data to
identify key origin and destination points. Understanding the flow of cyclists is crucial
for identifying themost frequently usedparts of the network, thereby informingpriority
areas for infrastructure development.

• Route Assignment: This step involves assigning routes within the identified subnet-
work based on flow data. The goal is to determine which paths are most frequently used
or are likely to be used by cyclists, helping to identify areaswhere infrastructure improve-
ments are needed.

• Network Simplification: After route assignment, the network is simplified to focus on
the core paths that are most significant for cyclists. This involves retaining only the ex-
isting and potential paths that play a crucial role in the network, ensuring that resources
are concentrated where they will have the most impact.

• Component Identification: Themethodology then identifies disconnected sub-networks,
or “components,” within the simplified network. These components represent areas
with potential bike paths that are not yet integrated into the broader cycling infrastruc-
ture, highlighting critical gaps in the network.
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• Component Prioritization: The identified components are then prioritized using a
modified centrality measure that incorporates flow data. By calculating a flow-weighted
stress centrality metric, the methodology assesses the benefit of closing each gap. This
step focuses on prioritizing components that, when connected, will significantly en-
hance network efficiency and meet cyclist demand.

In theRoutingApproach, an additional step focuses on prioritizing streets within each com-
ponent:

• Route Prioritization: This step involves optimizing the selection of routes to connect
“flow nodes” or “contact nodes”—critical transition points between bike paths and non-
bike paths within each component. By prioritizing these routes, the methodology en-
sures that the most heavily used and strategically important paths within each compo-
nent are effectively connected, further improving the overall network’s connectivity and
efficiency.

The steps outlined above form the core of the methodological framework for enhancing
Padova’s bike network. Each stepwill be explained in detail in the following sections, providing
a comprehensive guide to the approach and its implementation.

3.2.1 Network Creation

In this step, the transport infrastructure network is acquired, identifying both current bike
paths and potential bike paths.

The transport network creation process involves three key activities: data acquisition, net-
work definition, and integration. These steps are essential for establishing a comprehensive
network that will serve as the foundation for analyzing cycling routes in Padova.

Padova’s Biking Infraestructure

Padova’s biking infrastructure has witnessed significant development in recent years, reflecting
the city’s dedication topromoting sustainable transportationoptions. Between2018 and2022,
Padova expanded its bike lane network from 169 kilometers to 178 kilometers, with the goal of
a further 20-kilometer extension by 2024, demonstrating a tangible commitment to improving
cycling infrastructure. The city’s proactive approach to expandingbike lanes alignswith its goal
of fostering sustainable mobility and reducing reliance on traditional modes of transportation.
Furthermore, Padova’s recognition as the 9th most bikeable city in Italy in the 2015 Rapporto
Statistica highlights its commitment to cycling infrastructure.
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Despite these advancements, challenges and limitations persistwithin Padova’s biking infras-
tructure. The current network may still exhibit gaps that hinder optimal connectivity. Iden-
tifying these missing links and addressing them effectively is crucial for maximizing the utility
of the biking infrastructure and ensuring a safe and convenient cycling experience for residents
and visitors alike. Therefore, this study aims to contribute to Padova’s objective of enhancing
its biking infrastructure by predicting missing links within the existing network and incorpo-
rating information on flow.

NetworkDefinition

The initial step involves acquiringmap andnetwork data using thePython libraryOSMnx [33],
sourced fromOpenStreetMap.

The geographical area of interest is defined as the administrative boundary of the Comune
di Padova, Italy. The OSMnx library allows downloading nodes and edges with additional
tags specified to enhance the detail of the network data. These tags include attributes related
to cycling infrastructure, such as cycleways, bicycle permissions, and road surface types. The
settings of the OSMnx library are updated to include these extra tags:

['cycleway', 'bicycle', 'cycleway:left', 'foot',
'cycleway:right:segregated', 'tracktype', 'cycleway:lane',
'cycleway:left:lane', 'cycleway:width', 'oneway:bicycle',
'parking:lane:right', 'parking:lane:left', 'cycleway:right:lane',
'cycleway:right', 'cycleway:surface', 'surface', 'parking',
'bus', 'hgv', 'smoothness', 'cycleway:both', 'level',
'cycleway:left:segregated', 'cycleway:both:lane']

Then, two separate networks are created:

1. Drive Network: This network represents roads accessible to motor vehicles and is ob-
tained by specifying the drive network type. This network includes all roads and street
segments used by vehicles.

2. BikeNetwork: This network focuses on paths and roads accessible to bicycles, ensuring
that cycling infrastructure is included. The bike network is obtained by specifying the
bike network type.

Both networks are obtained by specifying the city location, the type of network, with no
simplification, and keeping all the nodes and edges.

Next, a composite network is created by combining the drive and bike networks using the
nx.compose function from the NetworkX library. This composite network integrates both
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types of infrastructure, providing a unified graph for route analysis. The order of combining
networks is important to maintain the attributes of the nodes and edges. However, the bike
network does not accurately identify the current bike paths in Padova, including many paths
that are not actual bike paths but can be used as such. For the analysis, it is necessary to correctly
identify the current bike paths.

Current Bike Paths

To accurately identify current bike paths, a set of filters is applied to the network data. These
filters use additional tags to isolate paths that are specifically designated for cycling. As men-
tioned earlier, the bike network includes many paths that are bikeable but not currently desig-
nated as biketracks or bikepaths. This process identified several extra bike paths that were not
considered in the initial bike network but are identifiable in the drive network.

It is important to note that many of the filters may appear similar, but their specificity is
necessary due to the potential for missing values or inconsistencies in attribute columns. Iden-
tifying these paths often requires cross-referencing multiple tag columns.

• Filter 1: Cycleway Track
This filter identifies segments with cycleways designated by various attributes such as
“yes,” “track,” “share_busway,” “opposite_lane,” “opposite_share_busway,” “advisory_lane,”
and “opposite.” These attributes help in specifying paths that are specifically intended
for cycling along roadways.

• Filter 2: Highway Cycleway
This filter targets segments tagged as “cycleway” within the highway attribute. It focuses
ondetectingdedicated cycling infrastructure alonghighways, ensuring the identification
of safe and efficient routes for cyclists.

• Filter 3: Designated Bicycle Paths
This filter searches for paths where the “bicycle” attribute is designated, focusing on
paths specifically marked for bicycle use within the highway infrastructure. It helps in
identifying exclusive cycling paths.

• Filter 4: Cycleway Right Track
This filter examines the presence of cycleways on the right side of highways. It identifies
segmentswhere the “cycleway:right” attribute includes values like “track,” “share_busway,”
“opposite_lane,” “opposite_share_busway,” “advisory_lane,” and “opposite” .

• Filter 5: Cycleway Left Track
Similar to the previous filter, this one focuses on the left side of highways, identifying seg-

24



mentswhere the “cycleway:left” attribute includes values such as “track,” “share_busway,”
“opposite_lane,” “opposite_share_busway,” “advisory_lane,” and “opposite.”

• Filter 6: Cycle Street
This filter identifies segments tagged as “cyclestreet,”which are streets designedprimarily
for cycling traffic. It highlights areas where cycling is prioritized, contributing to the
overall network analysis.

• Filter 7: Bicycle Road
This filter searches for roads where bicycles are designated or where there are optional or
permissible side paths. It focuses on identifying roads specificallymarked for bicycle use,
enhancing the understanding of the bicycle road network.

• Filter 8: Living Street
This filter targets segments tagged as “living_street” within the highway attribute. It
identifies areas where cycling is integrated with living streets, providing insights into
cyclist-friendly urban areas.

• Filter 9: Both Sides Cycleway
This filter examines the presence of advisory lanes on both sides of the roadway. By an-
alyzing the “cycleway:both:lane” attribute, it provides insights into the availability of
dual-side cycling infrastructure.

• Filter 10: Tertiary Highway and Pedestrian Paths
This filter identifies segments within tertiary highways and pedestrian paths, focusing
on areas where cycling is integrated with pedestrian infrastructure. It targets segments
tagged as “tertiary,” “path,” and “pedestrian.”

• Filter 11: Tertiary Highways
This filter focuses on tertiary highways, identifying segments where the “highway” at-
tribute is tagged as “tertiary.” It provides insights into cycling infrastructurewithin these
types of roads.

• Filter 12: Pathways
This filter targets pathways within the network, identifying segments where the “high-
way” attribute is tagged as “path.”

The network edges were examined using these filters, and those that met the criteria were
collected to create a new network of biketracks.
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Potential Bike Paths

To identify potential bike paths within the composite network, a series of filters based on vari-
ous attributes such as highway types, bicycle permissions, and specific cycleway configurations
are applied. This selection process ensures that the identified bike paths are suitable for future
bike lanes while excluding high-speed highways and streets primarily for buses and trucks. The
main process involves only keeping the edges that are not in the current bike paths network and
excluding high-speed highways and streets primarily for buses and trucks. The filtered paths
were then marked within the network to facilitate further analysis and visualization.

These identifiedbike paths are consolidated into the edges dataset, and anewattribute, type,
is set to indicate the presence of cycling infrastructure. This attribute is added to the composite
network’s edges using the set_edge_attributes function from networkx. Similarly, nodes
are also identified, adding a new attribute to the nodes dataset to indicate those in the potential,
bike, and both networks.

Finally, the updated network, now enriched with bike path information, is converted back
into GeoDataFrames andMultidigraph for further analysis and visualization.

Figure 3.1 displays the transportation network of Padova and the existing cycling infrastruc-
ture (in green), as ofMay 2024 based onOSMdata. While this network offers a comprehensive
representation of the cycling infrastructure in Padova, it may not exactly match the current
bike network due to potential errors or missing information in the OSM data. Nevertheless,
this representation serves as a valuable approach for identifying missing links and proposing
a methodology that can be refined in future iterations. The subsequent sections will leverage
this network for route analysis and gap identification, providing a foundation for enhancing
the city’s biking infrastructure.

Graph Representation of the Network

A network can be formally represented as a graphG = (V,E), where V is the set of vertices
(nodes) and E is the set of edges (links). In the particular case of the transportation Network
we have:

• Nodes (Intersections): Represented as points with geographic coordinates.

• Edges (Street Segments): Represented as sequences of points.

For the network presented in the previous section, a simplification process was needed. For
this, the OSMnx library provides a simplify function. This function reduces the complexity of
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Figure 3.1: Transportation Network in Padova.

the network by consolidating consecutive nodes and edges that are not actual intersections or
endpoints into single edges, thus streamlining the graph.

The network is formed by disconnected components, which are subgraphs where any two
nodes are connected to each other bypaths and are not connected to any additional nodes in the
supergraph. The number of disconnected components in the previous network is 179, with
the largest component containing 58,412 nodes (of the total of 59,723 in themain graph). For
the analysis, only the subgraph formedby the LargestConnectedComponent (LCC)was kept,
while all other disconnected components were dismissed as negligible for the sake of simplicity.
Figure 3.2 represents the network of the Largest Connected Component. In the real street
network of the city, disconnected components, i.e., street segments that are not accessible from
any other street segment, are quite rare [21].

The network representation in this study combines current bike paths and potential bike
paths, ensuring that the final graphG incorporates nodes and edgeswith appropriate attributes
to identify their types and other relevant properties. The final network includes 58,412 nodes
and 63,037 edges, fully connected and undirected. The network is characterized by the follow-
ing attributes for nodes and edges:
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• Node Attributes:

– ID: Unique identifier for the node.

– Coordinates: Geographic coordinates (xv : Longitude, yv : Latitude).
– Type: Type of node (e.g., bike, potential, both).

• Edge Attributes:

– ID: Unique identifier for the edge.

– Start Node: The node where the edge begins.

– End Node: The node where the edge ends.

– Length: Length of the street segment.

– Type: Type of edge (e.g., current bike path, potential bike path).

Figure 3.2: Transportation Network in Padova considering the Largest Connected Component.
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In parallel, a Pandana network is constructedwith a focus on the essential attribute required
for calculating the nearest node—the length of street segments. The nearest node calculation is
crucial in both flow acquisition and route assignment steps. By prioritizing segment length, the
Pandana graph is optimized to facilitate efficient nearest node calculations, thereby enhancing
the overall effectiveness of the network analysis.

To ensure consistency between Pandana and NetworkX, the previously loaded OSM graph
from OSMnx is utilized as the base for creating the Pandana graph. This ensures that both
graphs share the same underlying network structure and attributes.

Geodataframes that contain nodes and lengths serve as the basis for constructing the Pan-
dana graph, providing the necessary spatial and attribute data for accurate node assignment
and distance calculations.

3.2.2 FlowAcquisition

Demand-side influences, represented by the number of trips between origin-destination (O-
D) pairs, are critical for understanding traffic flows on the bike network. Analyzing these flows
provides insights into potential future bike paths and informs the enhancement of cycling in-
frastructure in Padova. By examining trip data, high-demand routes that could benefit from
dedicated bike paths can be identified.

To incorporate demand, the number of trips betweenO-D pairs is analyzed using data from
RideMovi, as introduced in a previous section. The essential variables include the start and
end points, defined by their respective latitude and longitude coordinates. The initial step in-
volves mapping these coordinates to the nearest nodes in the network (Figure 3.3). This can
be achieved using either the NetworkX or Pandana libraries, both of which offer functions to
locate the nearest neighboring node on the graph. Pandana [34] is preferred for its efficiency
in calculating the nearest node, providing faster performance. A sample check ensures that the
node assignment is consistent between both methods.

After identifying the nearest nodes, trips with the same start and end nodes are aggregated
to form an Origin-Destination (O-D) Matrix. The number of trips sharing the same origin
and destination is recorded, representing the flow between these locations. To simplify the O-
D matrix and reduce computational complexity, trips in reverse directions are collapsed into
a single undirectional entry. This approach standardizes the route representation for trips be-
tween two locations, irrespective of the direction of travel, thus reducing computational time
and memory requirements. Additionally, only trips with a minimum frequency over the year
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are retained in the analysis. This threshold ensures that the matrix focuses on frequently trav-
eled routes, which are more relevant for infrastructure planning and development.

Figure 3.3: Nearest Node Calculation Step. The figure illustrates the process of mapping trip coordinates to the nearest
nodes in the network.

3.2.3 Route Assigment

In this section, the process involves calculating the most probable routes for cyclists between
each origin-destination pair, aiming to emulate their actual travel paths. This approach aligns
with existing literature on route predictionmethodologies [30], which commonly assume that
cyclists aim to minimize distance or time during their journeys.

To achieve this objective, the shortest path algorithm is employed, considering the entire
bikeable network rather than solely the bike track network. TheNetworkX library, which pro-
vides a function for calculating shortest paths usingDijkstra’s algorithm, facilitates this process
efficiently [35]. Dijkstra’s algorithm operates by iteratively selecting the node with the lowest
cumulative cost from a set of candidate nodes, progressively building the shortest path from
the origin to the destination [36].

The function returns a list of nodes that make up the shortest path between the given origin
and destination points. Subsequently, the associated edges related to these nodes are retrieved.
This process iterates for each origin-destination pair, enabling the assignment of routes to each
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O-D pair based on the NetworkX shortest path algorithm, as illutrated in Figure3.4 This com-
prehensive approach ensures that the predicted routes closely reflect the actual travel paths of
cyclists, capturing the nuances of the bikeable network.

Figure 3.4: Route Assignment Step. The figure illustrates the process of mapping the shortest path.

3.2.4 Network Simplification

The network is simplified by creating the Route Network, which is formed by extracting all
edges that belong to designated routes from the Largest Connected Component (LCC) of the
original network. This subnetwork includes only the bike paths and potential bike paths that
are part of the routes, excluding other, less relevant network edges. The Route Network is
crucial for identifying disconnected components within the bike network and streamlines the
analysis by focusing on the most pertinent edges. Each edge in the Route Network is assigned
attributes such as the number of trips that pass through it andwhether it is classified as a current
bike path or a potential bike path.

3.2.5 Components Identification

Identifying gaps in the bike transportation network is essential for enhancing connectivity and
overall network efficiency. Not all gaps have the same impact, so it’s crucial to systematically
identify the components—disconnected sub-networks—that contribute to significant connec-
tivity issues. By breaking down the bike network into these components, we can focus on areas
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that have the potential to substantially improve cyclist experience when connected. This sec-
tion details the process of identifying these critical components, which will later be evaluated
and prioritized for intervention. This methodology helps in reducing computational memory
and processing time by focusing on subgraphs of components rather than the entire network.

Identification of Disconnected Components

To identify disconnected components within the bike network, the Route Network created in
the previous step is utilized. This network comprises both existing bike paths and potential
paths that form part of the designated routes.Initially, components within Padova are identi-
fied as groups of edges within routes that lack bike paths. These zones, referred to as “Compo-
nents,” consist solely of potential bike paths and are detected using the connected component
in-built function of NetworkX, which identifies connected subgraphs within the network.
These areas can be visually identified in Figure 3.5: Step 1, which highlights areas formed ex-
clusively by light gray lines. This process yields a set of nodes representing each component,
facilitating the visualization and enumeration of the total number of identified components.
This method aligns with approaches used in previous studies, such as [21] and [20], focusing
on detecting subgraphs within larger networks. Further refinements are made to eliminate
dead-end components.

Figure 3.5: Component Identification Step and Classification of nodes. Step 1: Component Identification. Step 2: Classifica‐
tion of nodes. Edges legend: Green lines represent bike paths. Light gray lines represent potential bike paths. Nodes legend:
Red dots indicate contact nodes. Blue dots indicate nodes that are part of bike path edges only. Light gray dots indicate
nodes that are part of potential edges only.
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To improve the granularity of the analysis, especially in large sections of the city that form
substantial components, a subdivision approach is employed. This involves dividing these large
components into smaller, more manageable sections using a distance-limited exploration tech-
nique. The method starts from a node and explores all reachable nodes within a specified max-
imum distance, known as the cutoff distance. The NetworkX function single source shortest
path length facilitates this by generating a set of nodes considered a subgraph. This process
is iteratively repeated until all nodes and edges are covered. Key parameters in this approach
include the size threshold, which determines the definition of a large component to be subdi-
vided, and the cutoff distance, which limits the exploration range. These hyperparameters sig-
nificantly impact the network’s structure; a higher size threshold results in larger,more complex
components, while a greater cutoff distance reduces the number of resulting subcomponents.
This proccess is presented in Figure 3.6.

The identificationof components enables targeted improvementswithin specific zones. Com-
ponents are prioritized based on a strategy that will be detailed later, considering the demand
and potential benefits of closing gaps.

For a comprehensive understanding of each component, nodes are categorized into “contact
nodes,” “bike nodes,” and “potential nodes.” Contact nodes connect a component with the
main bike path network, bike nodes connect multiple bike paths, and potential nodes connect
multiple potential paths (Figure 3.5, Step 2). This classification allows for strategic planning
and prioritization of network improvements.

(a) Component with a size above the
threshold. (b) Sub‐divisions in the component. (c) Sub‐divisions with contact nodes.

Figure 3.6: Subdivision of Large Network Components using a distance‐limited exploration technique.
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3.2.6 Components Prioritization

Once the key components of the bike transportation network have been identified, the next
step is to prioritize them based on their potential impact. Not all gaps are equally important;
some, when addressed, can significantly enhance network efficiency and better meet cyclist
needs. To quantify the significance of each component, we employ a weighted benefit met-
ric that combines centrality measures with demand flow data, reflecting actual cyclist behavior.
This section outlines the prioritization process, focusing on the components that, when closed,
will provide the greatest benefit to the cycling network in Padova.

Modified Centrality for Traffic Demand

As discussed in the subsection on Related Work, stress centrality quantifies the importance of
an edge based on the number of shortest paths passing through it, highlighting edges that play
a crucial role in connecting different parts of the network [37]. In comparison, betweenness
centrality also considers shortest paths but weights them by the inverse of their redundancy,
offering a more detailed perspective on edge importance [20, 28].

In this study, we adapt the gap benefit measure from [21], following a similar approach
to the modified betweenness centrality proposed by [25], which incorporates flow data. To
streamline the computation, we also draw on the simplified calculation method used in the
origin-destination (O-D) centrality framework by [28]. This section outlines the development
of the newmetric.

This section presents two keymetrics: Weighted LinkClosure andWeighted Benefit. These
metrics are weighted adaptations of those proposed by [21] for single-unit flow scenarios. The
Weighted Link Closure metric assesses the importance of a single edge within the network,
while the Weighted Benefit evaluates the benefit of closing a group of edges, or a component,
in terms of the expected meters cycled in mixed traffic per unit of investment, accounting for
bike traffic demands.

In thePreliminaries chapter, essential centralitymeasureswere introduced, forming the basis
of the metrics used in this study. The steps are as follows:

1. Stress Centrality as Link Closure Benefit: The foundational metric is stress centrality,
represented as link closure benefit in Equation 2.4.

2. Incorporation of Flow Dynamics: Flow dynamics are integrated by weighting the
number of shortest paths based on the standardized number of trips, using a framework
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similar to [25] in Equation 2.2. The standardized trip count is derived similarly to Equa-
tion 2.3, but with adjustments to consolidate reverse trips into a single direction.

3. Weighted Benefit: This metric accounts for the modified link closure benefit, normal-
ized by the total length of the gap to reflect the importance of closing the gap relative to
its size.

4. SimplifiedO-DCentrality Approach: A simplifiedOrigin-Destination (O-D) central-
ity approach, akin to Equation 2.5, is adopted to streamline the calculations.

Standardized Trip FlowCalculation

The standardized number of trips in Equation 2.3 is adjusted to consolidate reverse trips into a
single direction. This adjustment stems from the simplification of the O-Dmatrix, where trip
direction is disregarded. As a result, ϕst = ϕts, and for each pair i, j, the standardized number
of trips between node i and node j is now denoted ϕi,j and is calculated as:

ϕi,j =
ti,j

maxi,j∈P (ti,j)
for i ̸= j (3.1)

where:

• ti,j is the number of trips from node i to node j.

• maxi,j∈P (ti,j) is the maximum number of trips between any two nodes in the set P .

Modification to Stress Centrality

The stress centrality measure is adapted to account for traffic demand, similar to the modifica-
tions made by [25] and [28]. The modified stress centrality, incorporating traffic demand, is
expressed as:

tc(l) =
∑
i,j∈P

ϕi,j · ni,j(l) (3.2)

where:

• tc(l) represents the weighted stress centrality of edge l.
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• ϕi,j is the standardized number of trips from node i ∈ P to node j ∈ P .

• ni,j(l) is thenumber of shortest paths fromnode i ∈ P tonode j ∈ P that pass through
edge l.

Weighted Benefit

TheWeighted Benefit metric quantifies the value of closing a gap, referred to as a Component
in this research, in the bike network by considering both traffic demand and the physical length
of the edges within that component. Thismetric is adapted from an edge-level benefitmeasure
introduced by [21], which calculates the avoided distance cycled inmixed traffic per unit length
of an edge.

The weighted benefit for a component is calculated by summing the weighted stress central-
ity of every edge l in the component c, and normalizing by the total length of the component,
using the following equation:

WB∗(c) =
∑

l∈c tc(l) · L(l)∑
l∈c L(l)

(3.3)

where:

• WB∗(c) represents the weighted benefit of closing component c.

• tc(l) is the weighted stress centrality of edge l within the component.

• L(l) is the length of edge l.

For components consisting of multiple edges, this weighted benefit is determined by sum-
ming the contributions of each edge within the component and then normalizing by the total
length of the component. This method effectively provides a “benefit per unit of investment,”
which reflects how beneficial closing the gap would be relative to the component’s size.

This metric ensures that the prioritization process accounts for both the demand (through
traffic centrality) and the utilization of edges, aiding in the strategic planning and targeted im-
provement of the bike network.

Additionally, a baseline benefit metric without considering traffic flow is also utilized for
comparison. This simpler benefit metric is given by:
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B∗(c) =
∑

l∈c c(l) · L(l)∑
l∈c L(l)

(3.4)

where:

• B∗(c) represents the benefit of closing a component c.

• c(l) is the stress centrality of edge l.

• L(l) is the length of edge l.

By comparing the results of these twometrics—one considering traffic demand and one that
does not—planners can gain insights into the added value of incorporating cyclist behavior into
network improvement strategies.

Mathematical Intuition andNumerical Example

To provide mathematical intuition, consider a network with nodesA,B,C , andD, and edges
e1 (between A and B), e2 (betweenB and C), and e3 (between C andD). Assume there are
100 trips betweenA andD, distributed equally among all paths. The standardized number of
trips ϕA,D fromA toD is 1 if it is the maximum, otherwise scaled accordingly.

If the number of shortest paths passing through edge e2 is 50, with ϕA,D = 0.5, then:

tc(e2) = ϕA,D · n(A,D)(e2) = 0.5 · 50 = 25

If edge e2 has a lengthL(e2) = 10meters, and the total length of the gap g consisting of e1,
e2, and e3 is 30 meters, then:

WB∗(g) = tc(e2) · L(e2)
Total Length of Component

= 25 · 10
30

= 250
30

≈ 8.33meter-benefit units

This calculation is repeated for each edge within the gap, and the total benefit is normalized
by the total length of the gap, ensuring that themeasure accurately reflects theweighted benefit
of closing the gap relative to its total length.

Edge Prioritization Simplification

To streamline the edge prioritization process, several simplifications are introduced:
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• Node Pairs for Centrality Calculation: The setP of all node pairs is restricted to only
those pairs present in the Origin-Destination (OD) matrix. This focuses the centrality
calculation on the routes that are of actual interest to cyclists, rather than considering
every possible node pair in the network. The set of all pairs includes all the edges that
belong to a route; thus, one route can span several edges. This subnetwork, known as
the Routes Network, includes only those edges that are part of any route, filtering out
edges not associated with the routes.

• Preferred Bicycle Routes: The shortest path between each node pair (i, j) is defined
as the preferred bicycle route. This definition aligns the routing with realistic cyclist
preferences, ensuring that the routes prioritized for improvement reflect actual travel
behavior.

• Subset of Edges: The weighted centrality is calculated only for edges that are part of
these preferred bicycle routes and are classified as potential bike paths. This restricts the
analysis to the most relevant edges, excluding those not involved in the preferred routes.

This approach ensures that the centrality measures and component benefits are concen-
trated on the most pertinent areas of the network, aligning with actual cyclist demand and
behavior.

Numeric Example of Simplification

To illustrate the effectiveness of this simplification, consider a small network with four nodes
A,B,C, andD, and the following edges with their lengths:

• Edge e1 betweenA andB with a length of 5 meters.

• Edge e2 betweenB andC with a length of 10 meters.

• Edge e3 betweenC andD with a length of 15 meters.

• Edge e4 betweenA andD with a length of 20 meters.

Assume the ODmatrix indicates that cyclists frequently travel between nodesA andD (50
trips), and betweenA andC (30 trips).
Without simplification:
All edges e1, e2, e3, and e4would be considered for centrality calculations, regardless of their

relevance to the actual travel routes.
With simplification:
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• Node Pairs for Centrality Calculation: Focus on pairs (A,D) and (A,C) from the
ODmatrix. The Routes Network consists of the edges involved in these routes: e1, e2,
and e3, while e4 is excluded as it does not belong to any of the preferred routes.

• Preferred Bicycle Routes:

– Shortest path fromA toD is e1 → e2 → e3with a total lengthof5+10+15 = 30
meters.

– Shortest path fromA toC is e1 → e2 with a total length of 5 + 10 = 15meters.

• Subset of Edges: The edges considered for weighted centrality calculations are e1, e2,
and e3, excluding e4 as it is not part of the preferred routes.

By focusing on the subset of edges involved in the preferred routes, the centrality measures
and gap benefits are concentrated on the most relevant parts of the network. For example, if
we calculate the weighted centrality for these edges, we focus on how critical e1, e2, and e3 are
for the preferred routes (A,D) and (A,C), rather than considering all edges in the network.
This targeted approach ensures that the improvements made will have the highest impact on
the most utilized routes, thereby effectively addressing cyclist demand.

3.2.7 Routing Approach

TheRoutingApproach focuses on efficiently constructing optimal routeswithin a component
to enhance connectivity. Instead of evaluating every possible route, which would be computa-
tionally expensive, this method prioritizes routes connecting “contact nodes”—key transition
points between bike paths and non-bike paths. The approach emphasizes significant routes to
maximize the benefit of the network enhancements.

The process involves the following key steps:

• Identify ContactNodes: Begin by identifying all contact nodeswithin the component.
Contact nodes are pointswhere transitions occur between existing bike paths and poten-
tial bike paths.

• Calculate Potential Routes: Determine all possible routes between each pair of contact
nodes within the component. This involves calculating paths that traverse the compo-
nent’s edges, taking into account the connectivity between these nodes.
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• Compute Route Benefits: For each potential route, compute the benefit of incorpo-
rating that route into the network. This benefit is evaluated based on the impact of the
route on overall network connectivity and the volume of bike traffic it supports.

• Select Optimal Route: Choose the route with the highest benefit score. This route is
prioritized for inclusion in the network as it offers the greatest improvement in connec-
tivity.

• Update Route Set: Remove the selected route from the set of potential routes. Recal-
culate the benefit values for the remaining routes, considering the impact of the newly
added bike path.

• Iterate: Repeat the process of selecting the highest benefit route, updating the route set,
and recalculatingbenefits until all contact nodeswithin the component are connectedby
optimal routes. This iterative process ensures that the network is progressively improved
with each added route.

This iterativemethod ensures that themost significant and beneficial routes are constructed
first, leading to an efficient enhancement of the bike network. By focusing on routes between
contact nodes and updating the network incrementally, the approachmaximizes the impact of
each added route while managing computational complexity.

3.3 Metrics for NetworkQuality Assessment

To assess the quality of the network throughout the growing process, different metrics were
calculated and reported at each iteration level.

Network Metrics assess the overall Bike Network growing process, providing an aggregate
view of network coverage and performance.

• Bike Path Coverage: Measures the extent to which the required cycled network is cov-
ered with bike paths.

BPC =
∑

Lbp∑
Ltotal

(3.5)

• Bike Trips Coverage: Assesses howmuch of the total demand for trips is covered with
bike paths.

BTC =
∑

Tbp∑
Ttotal

(3.6)
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• Routes Coverage: Calculates the proportion of all cyclist routes covered with bike
paths.

RC =
∑

Rbp∑
Rtotal

(3.7)

• Gap Length: The total length of bike paths that need to be constructed to cover the
chosen routes.

GL =
∑

Lgp (3.8)

Where:
- Lbp: Length of edges that are bike paths.
- Ltotal: Total length of all edges that are bike paths or potential bike paths and belong to a

route.
- Tbp: Number of trips covered by bike paths.
- Ttotal: Total number of trips.
-Rbp: Number of routes covered by bike paths.
-Rtotal: Total number of routes.
- Lgp: Length of edges in chosen routes that are potential bike paths.
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4
Results

In this section, the results of the study are presented, building on the previously discussedNet-
work Creation step, which focused on maintaining the Largest Connected Component.

The analysis continues with Flow Acquisition, providing a detailed examination of key ori-
gin and destination points, potential routes, and zones with high demand for cycling infras-
tructure.

Next, the primary missing components within the network are identified and prioritized
using two metrics for comparison: Weighted Benefit and Benefit.

Finally, the results from the algorithm for detecting missing links are highlighted, emphasiz-
ing the most critical missing components and the primary routes that should be constructed
to enhance Padova’s bike network.

4.1 FlowAcquisition and Route Assigment

Following the steps outlined in themethodology section, theOrigin-Destination (O-D)Matrix
was obtained. Table 4.1 presents a subset of the final O-DMatrix, detailing the shortest paths
between origin nodes (from_node_id) and destination nodes (to_node_id) along with their
respective lengths. As described in the methodology, only routes with more than fifteen trips
were retained. The final O-D matrix includes 7,565 routes, accounting for a total of 261,682
trips.
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from_node_id to_node_id n_trips route_nx route_nx_length
3899062047 5752101515 1426 [3899062047, 6449412215,

3899062054, 330049257...]
1484.905

5752101515 3899062047 1211 [5752101515, 1904462791,
5809457838, 334237404...]

1484.905

246791092 250092661 511 [246791092, 540999696, 540999675,
540999673, 5...]

1683.026

330049257 5752101515 448 [330049257, 2193230671,
1101896768, 2193230680...]

1374.593

5752101515 2193230680 388 [5752101515, 1904462791,
5809457838, 334237404...]

1194.976

Table 4.1: Summary of trips and routes with their lengths. Note: This table provides a snapshot of the Origin‐Destination
matrix, highlighting key routes and their lengths.

To analyze bike trip origins and destinations within the bike-sharing system, map visualiza-
tions are used due to the large dataset. Hexbin plots are particularly suitable for visualizing
this information. Figures 4.1a and 4.1b illustrate the distribution of bike-sharing trip origins
and destinations in Padova, both before and after the routes were filtered. Before filtering, a
significant number of low-frequency trips can be observed in the city’s periphery. After filter-
ing, most of these trips are removed, revealing a concentration of trip origins and destinations
around the main city zones and connection points. High-density areas, depicted in brighter
colors, include the train and bus stations, city center, and hospital. In contrast, areas farther
from the city center show lower trip densities, possibly due to fewer bike parking spots, less
connectivity, or reduced transportation demand.

(a) Before the Filtering Process. (b) After the Filtering Process.

Figure 4.1: Distribution of Bike‐Sharing Trip Origins and Destinations. Note: Hexbin maps show the spatial distribution
of bike‐sharing trips in Padova. The left figure represents the distribution before the filtering process, and the right figure
represents the distribution after the filtering process. The color intensity represents the logarithmically scaled number of
trips.
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To gain deeper insights into the connections between origin-destination points, flow data
is visualized using Kepler.gl [38], as illustrated in Figure 4.2. In this visualization, node sizes
correspond to the number of trips starting or ending at each point, while colors distinguish
nodes as origins (purple) or destinations (green). The lines between nodes represent the trips
between these points. This visualization, similar to a hexbinmap, clearly shows that most trips
are concentrated around key areas such as the train station, city center, and university, with
substantial flow patterns connecting these central locations.

After applying route assignment to eachO-D pair, the network is simplified, resulting in the
creation of the RouteNetwork, which forms the foundation for the subsequent analysis. This
subnetwork includes only the bike paths and potential bike paths that are part of the calculated
routes. The Route Network was further segmented into potential and existing bike edges. Of
the approximately 6,500 edges involved in these routes, around 4,119 edges were classified as
”potential,” indicating they are not currently part of Padova’s existingbike network. TheRoute
Network is shown in Figure 4.3.

Figure 4.2: Cyclist Flow Representation in Padova. Note: Node size represents the number of trips starting or ending at that
point. Colors indicate the role of the node: origin (purple) or destination (green). Lines represent the connections between
these points.
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Figure 4.3: Route Network. Note: Green lines are bike paths, light gray lines are potential bike paths.

4.2 Component Identification and Prioritization

In this section, the results of the Component Identification and Component Prioritization
steps are presented. Both numerical results and visualizations will be provided to offer a com-
prehensive understanding of the analysis. The combination of quantitative data and visual
representations is crucial for effectively conveying the distribution, significance, and spatial
context of the identified components. This dual approach ensures that the findings are not
only analytically robust but also easily interpretable, facilitating informed decision-making for
network improvements.

4.2.1 Identification of Disconnected Components

The identification of disconnected components focused on assessing gaps and zones of discon-
nection within the network. The Route Network served as the foundation for this analysis.
Initially, the process involved removing existing bike paths and using a built-in function of
NetworkX to identify connected components composed solely of potential bike paths.

This analysis began with the identification of 209 components, with 19 components requir-
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ing further subdivision. By applying a distance-limited exploration technique, the total num-
ber of disconnected components identified across the city increased to 619. Many of thesewere
single-node components or dead-ends, which led to further refinement. Only those compo-
nents throughwhich routes passedwere retained, resulting in a final count of 355 components.
The analysis revealed significant variation in the size of these gaps, with the largest connected
component (LCC) consisting of 29 edges and the smallest comprising only 2 edges. The me-
dian number of edges per component was two, indicating that many sections of the bike net-
work require only minor adjustments.

To present this information in an interactive manner, maps were generated to provide both
detailed views of individual components and an overview of all disconnected components. Fig-
ure 4.4 shows the identified components within the Padova Network, with many situated in
the city center, near the train station, and in other critical areas. The complexity of the city
center, characterized by restricted streets for cars and bikes and main streets shared with trams
and buses, explains the lack of continuous routes. However, this analysis highlights that these
areas are crucial for cyclists to navigate efficiently.

Figure 4.4: Components Identification. Legend: Light gray lines represent routes with bike paths. Blue lines represent
component edges.
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Figure 4.5 illustrates the concept of components and contact nodes, with red nodes high-
lighting the points where components connect to existing bike paths.

Figure 4.5: Components Identification. Legend: Edges are color‐coded as follows: violet edges represent those that are part
of a component, while light gray edges depict bike paths or potential bike paths not included in the component analysis. The
nodes are also color‐coded: contact nodes are shown as red dots, nodes part of only bike path edges are shown in blue, and
nodes part of only potential edges are shown in light gray.

4.2.2 Component Prioritization Results

This section presents the results of the prioritization process, using both benefit metrics dis-
cussed in the Methodology. These metrics take into account the length of the components,
the number of routes passing through them, and, in the case of the weighted benefit, the num-
ber of trips through each edge relative to the maximum number of trips expected within the
network. The analysis provides a clear ranking of components based on their potential impact
on improving the bike network, helping to identify the most critical gaps to address.

The first step in prioritizing the components involves calculating the metrics for each one
as outlined in Equations 3.3 and 3.4. Figure 4.6a displays the values for both benefit metrics,
with components ordered according to their weighted benefit. It is observed that the weighted
benefit metric generally decreases when flow weight is considered, likely due to its ratio-based
nature. This observation suggests that the relative importance of components changes based
on whether or not flow is factored into the analysis.
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To highlight this shift, Figure 4.6b allows for a direct comparison of the component rank-
ings according to the different benefit metrics. For instance, while the weighted benefit metric
ranks componentnumber 12higher, thebenefitmetric places componentnumber 16 in amore
prominent position. This variation in ranking is further illustrated by visualizing components
12 and 16 in Figures 4.7a and 4.7b, respectively. Component 12 is distinguished by a higher
flow of trips, while component 16 stands out due to its greater length, as detailed in Table 4.2.

(a) Weighted Benefit and Benefit for the First 100 Compo‐
nents.

(b) Weighted Benefit and Benefit for the First 15 Compo‐
nents.

Figure 4.6: Comparison of Weighted Benefit and Benefit for Components.

(a) Number 12. (b) Number 16.

Figure 4.7: Comparison of Components 12 and 16.

To better illustrate the metrics used for prioritizing components, Figures 4.8a and 4.8b dis-
play the component identification based on the Weighted Benefit and Benefit metrics, respec-
tively. In these figures, red zones indicate areaswith the highest priority, while yellowhighlights
those with lower significance according to each metric. The distribution of these high-value
areas appears similar across both metrics, with only minor variations. The similarity in the dis-
tribution of high-value areas across both metrics can be attributed to the centrality measures,
which heavily influence zones where more routes converge, such as areas near the train station
and city center. These central hubs naturally see higher traffic and route convergence.
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Size Contact Weighted Benefit Benefit RankWB Rank B

0 6 897.74 961.74 1.0 1.0
1 6 216.30 548.70 2.0 2.0
2 12 127.67 304.01 3.0 3.0
3 16 105.17 202.73 4.0 7.0
4 5 90.55 169.75 5.0 9.0
5 8 81.43 183.11 6.0 8.0
6 6 49.22 280.03 7.0 4.0
7 3 37.83 222.38 8.0 6.0
8 2 29.25 247.00 9.0 5.0
9 12 28.28 160.61 10.0 10.0

Table 4.2: Comparison of Component Metrics.

The figures highlight that the critical areas for bike network improvements are those con-
necting major city hubs, including the city center and train station. Both maps show that the
importance of these connections is key to optimizing the bike network.

(a) Components Importance by Weighted Benefit. (b) Components Importance by Benefit.

Figure 4.8: Comparison of Components by Weighted Benefit and Benefit. Legend: Edges are color‐coded from red to yel‐
low, with red representing the most important components according to the benefit metric, and yellow indicating the least
important ones.

Todelve deeper into thedata, Figure 4.9 focuses on the top10 components identifiedby each
metric. The zoomed-in map of the city center, particularly around the train station, shows
that while the top 10 components are consistent, their ranking changes based on the metric
used. This shift reflects the influence of demand considerations in theWeighted Benefitmetric,
highlighting areas with higher bike traffic.

Figures 4.10 and 4.11a provide a more detailed view of the components using street-level
maps created with Folium.
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(a)Ordered byWeighted BenefitMet‐
ric. (b)Ordered by Benefit Metric.

Figure 4.9: Top 10 Components in Padova’s Bike Network Based on Benefit Metrics. Legend: Numbers indicate the compo‐
nent order.

Figure 4.10: Top 10 Components Based on Weighted Benefit Metric.

Figure 4.10 showcases the top 10 components, highlighting their concentration aroundma-
jor locations such as the train station and city center. Figures 4.11a and 4.11b provide an ex-
tended view of the next 10 components, demonstrating that while many components remain
centered around key areas, there are also significant needs for improvements in other parts of
Padova. For instance, component numbers 13 (Figure 4.13) and 17 facilitate connections be-
tween the university and the city center, while component number 12 links the hospital with
the city center. This broader view underscores the necessity for enhancing bike infrastructure
across the entire city.

Figure 4.12 presents a series of plots highlighting the precise locations of various compo-
nents identified using the weighted benefit metric. Components 1 and 3 are located near the
train station, addressing key connectivity gaps in this high-traffic area. Components 2 and 10
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(a) Top 20 Components
(b) Top 20 Components Labeled According to Pri‐
oritization

Figure 4.11: Comparison of the Top 20 Components Based on Weighted Benefit Metric and Their Labeled Visualization.

represent important streets within the city center, while Component 17 connects key areas of
the university.

A limitation of this methodology is its heavy reliance on data accuracy, particularly from
OpenStreetMap (OSM). Some areas identified as lacking bike infrastructure, such as Compo-
nent 1, already have bike paths, but these are painted on the sidewalk andnot properly captured
in OSM data. This issue also affects other components, underscoring the need for improved
data quality in urban infrastructure planning.

4.2.3 Routing Components

The process begins by identifying the best component based on the benefit metric. After pin-
pointing the component, a routing process between contact nodes is carried out. This process
utilizes edge-level information to determine the optimal edges and routes for fully connecting
the component. Unlike previous approaches that identified gaps and performed routing with-
out specific criteria for route construction, this method provides a detailed analysis.

However, due to the reduced size of most components, the routing approach does not sig-
nificantly enhance the results for smaller components. The decision to reduce component size
was influencedby time and computational constraintswhen initially implementing the routing
approach. This reduction in size leads to smaller components where the routing process offers
limited additional insights. For futurework, itwill be necessary to find abalance between reduc-
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Component 1
Component 2

Component 3

Component 10 Component 17

Figure 4.12: Comparison of Selected Components. Each image represents a different component with its respective visual
details.

ing component size and providing effective routing within larger components. The purpose
of having components instead of smaller sections is to maintain a macro-level perspective on
where efforts should be concentrated. The routing process then provides a high-level solution,
minimizing the number of routes needed to better connect zones where bike path availability
does not meet demand and to reduce the cost of fully connecting a large component.

Despite the limitations with smaller components, the routing approach is still applied to
refine each component according to the prioritization based on the weighted benefit metric.
Whilemany components are small, the routing approach proves valuable in larger components,
improving the quality metrics by reducing the number of meters needed to close gaps in the
city’s bike network.

Figure 4.13 illustrates an example of how the routing approach functions within Compo-
nentNumber 13. This component has a size of 26 edges and includes 10 contact nodes. When
applying the routing approach, many edges are eliminated, leaving only the central ones to con-
nect all contact nodes. In this case, instead of adding 1,255.087 meters of new paths, only
1,055.064 meters are required, demonstrating the efficiency of the routing approach.
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Figure 4.13: Highlighted component number 13 for the Routing Approach Result.

4.3 QualityMetrics Analysis

This sectionpresentsmetrics evaluating the quality of the network under both theComponent
Approach and its refinement via the Routing Approach. The analysis includes prioritization
based on both weighted benefit and standard benefit metrics for the Component Approach.
The discussion begins by examining the results from the weighted benefit prioritization.

4.3.1 Comparison between Approaches

The comparison in Figure 4.14 reveals that theComponentApproach adds a total of 175 km to
the network to close all gap components, whereas the Routing Approach requires nearly 125
km for the same task. In both cases, the total bike path length nearly doubles to close all gaps in
the network. The Routing Approach demonstrates greater efficiency in reducing gap length,
as it results in fewer kilometers being added to the network. This efficiency suggests a more
selective and optimized process in connecting nodes with minimal additional infrastructure.

Figure 4.15provides a focused analysis on thefirst 30 components. Initially, both approaches
exhibit similar trends in gap length and bike path length index. However, as more components
are added, differences emerge, with the Routing Approach becoming more efficient in mini-
mizing gap length while selectively adding bike paths. This efficiency is reflected in the more
significant divergence from theComponentApproach, whichmay not prioritize optimization
as strictly.

Figure 4.16 compares path coverage between the Component and Routing Approaches.
TheComponentApproach generally achieves a higher path coverage ratio, indicating a broader
integration of network paths as bike paths. The Routing Approach, however, optimizes the
addition of routes within components, leading to a more selective increase in path coverage.
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(a) Gap Length over Iterations (b) Bike Path Length Index over Iterations

Figure 4.14: Bike Path Length and Gap Length for the Component and Routing Approach. Note: Comparison matches the
routes of the Routing Approach to the corresponding components in the Component Approach.

(a) Gap Length for the First 30 Iterations (b) Bike Path Length Index for the First 30 Iterations

Figure 4.15: Bike Path Length and Gap Length for the Component and Routing Approach for the First 30 Components. Note:
See Figure 4.14.

This comparison highlights a trade-off between comprehensive coverage and optimized path
selection.

Figure 4.16: Path Coverage for the Component and Routing Approach. Note: See Figure 4.14

Despite theRoutingApproach covering fewer routes, the difference in trip coveragebetween
the approaches is minimal, as shown in Figure 4.17. The Component Approach adds more
bike paths overall, not specifically targeting optimization but covering entire components. The
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Routing Approach prioritizes routes with higher demand, resulting in efficient path selection
and achieving comparable levels of trip and route coverage.

(a) Route Coverage over Iterations (b) Trip Coverage over Iterations

Figure 4.17: Routes and Trips Coverage for the Component and Routing Approach. Note: See Figure 4.14

Figure 4.18 compares theweightedbenefitbetween theComponent andRoutingApproaches.
The Component Approach shows a straightforward progression, selecting components with
the highest benefit sequentially. In contrast, the Routing Approach recalculates the benefit
after each route selection, causing fluctuations in the benefit metric. This reflects the dynamic
optimization process inherent to the Routing Approach.

(a)Weighted Benefit over Iterations (b)Weighted Benefit for the First 30 Iterations

Figure 4.18: Weighted Benefit for the Component and Routing Approach. Note: See Figure 4.14

To analyze how the addition of bike paths affects route coverage, Figures 4.19a and 4.19b il-
lustrate the distribution of bike path coverage across routes over successive iterations. Initially,
many routes have low bike path coverage, but as iterations progress, a higher proportion of
routes become fully covered, as indicated by the rightward shift in the distribution. This pro-
gression demonstrates the Component Approach’s effectiveness in gradually increasing bike
path coverage. A similar trend is observedwith theRoutingApproach, whichprioritizes routes
with higher demand, further enhancing network efficiency.
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(a) Component Approach (b) Routing Approach

Figure 4.19: Comparison of Evolution of Bike Path Ratios for Different Approaches. Note: Both plots display the evolution
of the Bike Path Ratio during the iterative addition of bike paths, adjusted using a normalized distribution.

4.3.2 Comparison ofMetrics: Component-Based Approach

This section compares the twomethods used for component prioritization: “WeightedBenefit”
and “Benefit.” Figure 4.20 shows that gap length decreases as more components are added, in-
dicating improved network connectivity. Both metrics display similar trends in covering gaps,
although the specific order of component additionmay vary. This suggests that bothmethods
are effective, with the choice between them depending on priorities such as emphasizing flow
coverage (Weighted Benefit) or to emphasize network load (Benefit).

A closer look at the first 30 components, as shown in Figure 4.21, reveals slight variations in
the early stages. Bothmetrics effectively reduce gap length initially, with differences arising due
to the criteria used for component selection.

(a) Gap Length over Iterations (b) Bike Path Length Index over Iteration

Figure 4.20: Bike Path Length and Gap Length Comparison: Benefit and Weighted Benefit for the Component Approach.
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(a) Gap Length for the First 30 Iterations (b) Bike Path Length Index for the First 30 Iterations

Figure 4.21: Bike Path Length and Gap Length Comparison: Benefit andWeighted Benefit for the Component Approach for
the First 30 Components.

Figures 4.22 and 4.23 illustrate the evolution of path coverage over iterations for both met-
rics. While path, trip, and route coverage exhibit similar trends, theWeighted Benefit approach
achieves network coverage marginally faster. This increased efficiency underscores the advan-
tage of prioritizing components based on the weighted benefit.

These results imply that theWeighted Benefit metric offers a more efficient approach to cov-
ering routes and trips. This method enables a more strategic network expansion, focusing on
components with the greatest impact.

Figure 4.22: Path Coverage Comparison: Benefit and Weighted Benefit for the Component Approach.

4.4 Summary of Findings

In summary, the Component approach added 175 km of infrastructure, while the Routing
approach required only 125 km, demonstrating greater efficiency by optimizing route selection
and minimizing new infrastructure. Prioritizing components based on the Weighted Benefit
metric achieved faster and more comprehensive network coverage. The analysis identified 355
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(a) Route Coverage over Iterations (b) Trip Coverage over Iterations

Figure 4.23: Routes and Trips Coverage: Benefit and Weighted Benefit for the Component Approach.

gaps, notably in critical areas like the city center and train station, underscoring the need for
targeted improvements. Overall, the Routing Approach and Weighted Benefit metric proved
more effective in enhancing bike network connectivity and efficiency.
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5
Conclusion

This study evaluated two strategies for expanding Padova’s bike-sharing infrastructure: the
Component and Routing approaches. The Component approach provided a comprehensive
view, identifying 355 gaps, particularly in high-demand areas like the city center and near the
train station, requiring approximately 175 km of new infrastructure. The Routing approach,
refining theComponentmethod, provedmore efficient by focusing on detailed routingwithin
components, adding around 125 km of new paths while maintaining similar coverage.

The methodology involved a structured framework combining both approaches. It began
with network creation using OSMnx, followed by flow analysis to assess demand, and simpli-
fied the network to focus on core paths. Disconnected components were prioritized using a
modified centrality measure that included flow data, and routing optimization improved net-
work connectivity within components.

Key metrics used includedWeighted Link Closure andWeighted Benefit, adapting existing
measures to balance infrastructure needs with cyclist demand. The study highlights the im-
portance of integrating empirical traffic data, utilizing RideMovi data to prioritize projects
effectively. The two-step process—macro identification of deficiencies and detailed routing
optimization—ensures targeted improvements.

Prioritization should focus on:

• Central Areas: Significant gapswere identified in the city center due to complex routing
constraints.
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• Train Station: High priority due to its role as a major transit hub.

• High-DemandZones: Areaswithhigher cyclist activityneeding targeted improvements.

• Gaps Distribution: Concentrated in key transport hubs and high-demand areas.

The key findings for each methodology step are:

• Component Identification: Identified 619 disconnected components, reduced to 355
after filtering. Significant gaps were particularly found in central and high-demand areas
such as the city center and train station.

• ComponentPrioritization: TheWeightedBenefitmetric prioritized components based
on cyclist demand and strategic importance, providing a more efficient and targeted so-
lution compared to the standard Benefit metric.

• Routing Approach: Demonstrated greater efficiency by reducing required infrastruc-
ture from 175 km (Component Approach) to 125 km. The Routing Approach proved
more effective in connecting key zones with fewer additional kilometers.

• QualityMetrics: TheRoutingApproach andWeightedBenefitmetric showed superior
performance in optimizing network connectivity and minimizing new infrastructure.
Path, trip, and route coverage were achieved faster with the Weighted Benefit approach.

The primary limitations of this study include the availability of up-to-date bike path data
and the potential for incorporating alternativemethods for determining origin and destination
points. Key challenges involved accurately tracking existing bike paths and avoiding overlaps
with established routes. Future work should focus on refining both theComponent andRout-
ing approaches by adjusting thresholds andhyperparameters to optimize component reduction
and routing effectiveness. Overall, the Routing Approach proved to be a more efficient solu-
tion for improving bike network connectivity, while the Component Approach offered valu-
able insights into broader network coverage.
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