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Abstract

Neuronal disorders could result in changes at brain connectomics level. One

of the main goal of structural connectomics analysis deals with the possibility

to detect the changes at neuronal level by studying brain connectivity. These

result is possible by generating the tractography maps from diffusion MRI data,

however, the algorithms for this step are affected by high sensitivity and low

specificity. As a consequence, this technique could lead to result not completely

reliable, with many false positive. New techniques based on tractograms filtering

have been developed to resolve the problem.

This thesis studies the impact of tractogram filtering for rats brain diffu-

sion data (divided in rats with and without hearing problems) analyzing the

changes on structural connectivity derived from tractograms considering the

hearing cortex areas. In particular, Spherical-deconvolution informed filtering

of tractograms (SIFT) has been used as filter. Furthermore, after the analysis of

structural connectivity, a statistical based approach has been uses to classify the

connectivity matrices to analyse if there was any difference between unfiltered

and filtered data performance.

Metrics extracted from the connectivity matrices showed differences between

the unfiltered and filtered data considering the single nodes. This means the

connectomes changed and, in particular, the main connections. Connectomes

weighted by Fractional Anisotropy (FA), Mean Diffusivity (MD) and Radial

Diffusivity (RD) showed similar results. Statistical analysis based on classifica-

tion performed better in average with filtered matrices as input. The biggest

difference has been observed with raw data, 27.27% more accurate for filtered

data.

These are the limitations of the study: number of subjects was small, Region

of Interest (ROI) masks were hand made (not default atlas) and needed manual

registration.
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1 Introduction

Analysis of lab animals brain (like rats, mice and rodents) permit to have a

preliminary study and result of the human brain. This is possible due to the

very similar cerebral structure organizations that allows to have an idea of what

to expect from human brain analysis before doing them [27].

It is possible to better understand brain disease by studying brain connec-

tivity. Auditory system is just one example of brain cortex that is formed by

multiple regions (rats’ anatomy at section 6.6) that communicate each to work.

However, these connection could be altered by a brain disease.

Starting from image technique diffusion magnetic resonance imaging (dMRI)

is possible to extract the the fiber pathways in the brain. This evaluation is pos-

sible thanks to the motion of water molecules along the neuronal axons (section

6.1). Considering specific predefined areas is possible to extract the connectivity

between these areas, characterized by the tracts that connect them. However,

the traditional techniques to perform tractography suffer of high sensitivity and

low specificity. This problem could lead to have a lot of false positive (section

6.2) so the need to discover and use new techniques is evident. To resolve this

problem, it has been developed a technique based on filtering the tracts from the

traditional tractography (section 6.4). There are many possible way to perform

it and the firsts studies are promising [26].

The aim of this study is to verify if tractogram filtering influence and im-

proves the traditional tractography. This analysis is performed with statistical

analysis of connectoms (unfiltered and filtered) extracted from a group of rat

brains divided by control subjects without any disease and patient subjects

affected by hearing problems. The analysis is focused on the hearing cortex.

2



2 Methods

In this chapter all the methodologies to process the data are presented. Starting

from the data-set (section 2.1) composed by diffusion and structural data of

11 different rats, divided in patient (OBST) and control (CTRL) subjects, the

data were processed to be prepared for extraction of tractography (section 2.2.1)

and the application of tractogram filtering (section 2.2.2). Then a parcellation

map was built from ROIs masks (section 2.3.1) to evaluate the connectivity

matrices (section 2.3.2). The final step has been the extraction of different

metrics from the connectivity matrices (section 2.4) and to perform statistical

analysis (section 2.5) between the two groups of subjects (OBST and CTRL)

to evaluate the differences.

2.1 Data

The rats ex-vivo were perfused with intravenous normal saline, and then fixated

with intravenous formaldehyde. The brains were put in fomblin solution before

scanning. The data extraction took several hours to be completed.

The dataset is composed by a subest of diffusion magnetic resonance images

dMRI) and a set of 10 different ROI masks of the cortex related to auditory nerve

system for each subject. Here are the 10 regions (for both brain hemispheres):

Auditory Cortex (AC), Cochlear Nuclear Complex (CN), Inferior Collicus (IC),

Medial Geniculate Body (MG) and Superios Olivary Complex (SOC). The

dataset and the masks were preprocessed by Karolinska Institutet of Stockholm.

The images are from 11 different rats ex-vivo (12 months old), 7 of them were

diagnosed with auditory problems and belong to the OBST class, meanwhile

the other 4 had not any auditory problem and belong to the CTRL class. The

diffusion images contain 48 axial slices with 48 diffusion-weighted directions (b=

1250 s/mm2), the voxels size is 0.1125x0.15x0.15 mm3. The masks have been

created manually by a doctor at Karolinska institutet.
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2.2 Region of Interest Masks Processing

Some discrepancies between the orientation of the masks and the diffusion im-

ages, they were not overlaying correctly. In fact the ROI masks were originally

created for the same dMRI images but before the processing, therefore the

b-value of the dataset held was not correct for these images were the masks

were fitting. This problem has been faced trying to use many tools for im-

ages registration. The final decision was to impose to the masks images the

same q-form of the diffusion images and to manually rotate the masks around

one of the axis. The q-form was imposed through the function fslorient of

the software FSL (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki). For the manual reg-

istration has been used an image processing module from software MeVisLab

(https://www.mevislab.de/). For each mask it has been tried to reach the best

result in matching the right brain area.

The registration was a necessary step due to use the masks to analyze the

ROIs in the tractograms and in the connectivity matrices and to build a par-

cellation map (needed for connectivity matrix evaluation).

2.3 Tractography

Tractography is a technique used to reconstruct brain neural fiber pathway.

It can be computed using different type of approach, the principal one are

probabilistic and deterministic. In this case the tractograms have been evaluated

through the iFOD2 algorithm (probabilistic approach). The iFOD2 algorithm

is better for crossing fiber reconstruction [32] . However, this neuronal fiber

reconstruction suffer from low specificity. For this reasons, tractogram filtering

algorithm technique SIFT [22] is applied to the tractograms evaluated by the

algorithm iFOD2. Both SIFT and iFOD2 were applied to the data through the

software MRtrix3 (https://www.mrtrix.org/).
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2.3.1 Tractogram Generation

To compute the tractograms from the data it as been used MRtrix3 software, as

said in the previous section. In particular, it has been chosen the tckgen script,

that requires some specific prerequisites starting from the generation of the

Fiber orientation distribution (FOD). The FODs were computed through the

MRtrix script dwi2fod using the csd algorithm, that is designed for single-shell

data and only uses a single b-value. Moreover, the response functions for white

matter (WM), grey matter (GM) and Cerebrospinal fluid (CSF) is required for

FODs extraction. therefore, response functions were evaluated for each subject

with dwi2response script and the dhollander algorithm.

To run the final script is necessary to choose the algorithm to use (iFOD2

in this case), a tractography seeding mechanism. For the seeds it has been used

a mask created from the ROIs, specific for each subject, where the streamlines

were imposed to start. Moreover, it has been imposed other parameters: first

of all a mask corresponding to the whole brain for the streamlines were allowed

to go. Afterwards, it has been decided for the number of streamlines to find,

the minimum length and the cutoff as shown in table 1. These parameters have

been changed from the one used in other papers [26, 38] for similar goals. The

reason of these choices has been the good results obtained by the other papers

and have been adjusted to this case. The idea was to start with a lower number

of streamlines and to grow it, while changing minlenght and cutoff values. The

initial number for streamlines was one million but the results were not promising.

Looking at the results visually it was possible to valuate the parameters if they

were good enough or not.
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Table 1: parameters used to compute all the tractograms with tckgen script.

-select is the number of streamlines to find, -minlength is the minimum length

for the streamlines in mm, -cutoff set the FODs amplitude. Other parameters

were -mask and -seed image

Parameters

-select -minlength -cutoff

7000000 2 0.08

2.3.2 Tractogram Filtering

The filtered tractograms were generated using the algorithm SIFT through the

MRtrix3 script tcksift. To make it run is necessary to give as input the trac-

tograms evaluated and the FODs response for the WM. It has been imposed a

threshold to stop the extraction of the filtered tractograms after a certain input:

700’000 tracts. The ratio between the starting number of streamlines and the

number of streamlines to leave after filter application is 1/10 according to a

similar study applied to human brain [26]. The other option was to use SIFT2

algorithm but it uses a different approach. In fact, it assign a weight to each

streamlines without deleting them [22]. Since the data are not human, it would

have been difficult to regulate this algorithm and choose the right threshold.

2.4 Connectivity Matrix

The connectivity matrices were extracted both for raw tractograms and filtered

tractograms taking in account only the ROIs of the dataset, the software used

was MRtrix3. In order to evaluate the matrix, it has been necessary to create a

parcellation map starting from the 10 masks. Afterwards, the space dimension

for the matrices was 10x10, each element of the matrix correspond to the edge

between two regions. From this matrices it was possible to start the analysis on

metrics obtainable.

To have different points of view, the matrices and the metrics were evaluated

6



considering 4 different weights for the connections: no weights, FA weighted,

MD weighted and RD weighted. For each weight have been created 22 matrices,

for each subject 8 matrices.

2.4.1 Connectivity Matrices Generation

The script used to evaluate the connectivity matrices was tck2connectome (pro-

vided by MRtrix3 ). In the case on no weights on the connections, the inputs

required are the streamlines file (filtered or not) and the node parcellation file,

the output is the metric of connectitvity quantified in the matrix as the num-

ber of streamlines. The parcellation map has been created assigning a unique

number to each of the 10 ROIs mask and putting them in a single NifTI file.

To create weighted matrices it has been used one of the option of the same

script, tck2connectome, that allows to scale each stramlines by weight individu-

ally in another file. In order to do that, it was necessary to extract the weighted

images from the diffusion data using the estimation of the diffusion tensor,

evaluated through the dwi2tensor script from MRtrix3, and than by using the

tensore2metric script with the chosen option for the chosen image (-fa, -rd or

-adc, corresponding to FA, RD and MD). Both these script were provided by

MRtrix3. To scale the streamlines it has been used the script tckscale (by MR-

trix3 ) giving as input the the streamlines file, the weighted image (FA, MD or

RD) and using the option -stat tck to get the mean. For each streamline, the

value of the underlying weighted image is sampled for each vertex and the mean

is calculated to have a single value for streamline. Then the contribution of each

streamline that was assigned to the nodes of connectome is multiplided with the

mean calculated prior for that specific streamline. Finally, for each connectome

edge, a mean of the values assigned by all the streamlines mean is calculated.

Afterwards, the oputput of tcksample has been given to tck2connectome with

the option -scale file. Even in this case, to have a single value, it has been

imposed to get the mean with the option -stat edge.

The generated matrices were imposed to be symmetric with the parameter
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-symmetric. Additionally, the self-connection of each region (diagonal values of

the matrix) has been imposed equal to zero with parameter -zero diagonal.

2.4.2 Connectivity Metrics

From the connectivity matrices have been extracted some connectivity metrics

to evaluate a difference between the filtered matrices and the unfiltered matrices.

All the metrics operation have been implemented through the python library

networkX (https://networkx.org/).

The first metric evaluated was the betweenness centrality (1) for each node

(v) and for each graph (weighted and not), that is the is the sum of the fraction

of all-pairs shortest paths that pass through that specific node.

cB =
∑

s,t∈V

σ(s, t|v)

σ(s, t)
(1)

Where V is the set of nodes, σ(s, t) is the number of shortest (s, t)-paths,

and σ(s, t|v) is the number of those paths passing through some node v other

than s, t. Secondly, it has been evaluated the eigenvector centrality (2) for each

matrix, it computes the centrality for a node based on the centrality of its

neighbors. The eigenvector centrality for node i is:

Ax = λx (2)

Where A is the adjacency matrix of the graph, with eigenvalue λ. Thirdly,

it has been extracted the node strength (3) from each node of the different

matrices. It is the reflex of the property of a node to connect to others with

a high number of connections or weights. The node strength is calculated for

node i with the formula:

Si =
n∑

j=1

Aij (3)

S is a one dimensional vector with n elements (n is the number of nodes).

The last metric considered has been the global efficiency for each subject. The
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efficiency of a pair of nodes in a graph is the multiplicative inverse of the shortest

path distance between the nodes. The average global efficiency of a graph is the

average efficiency of all pairs of nodes.

The goal of the evaluation of the metrics is to make a comparison of the

output values through the subjects between the matrices filtered and unfiltered.

It has been taken in account some of the most used metrics to describe graghs

and their characteristics.

2.5 Statistical Analysis

Statistical analysis has been evaluated to compare the performances of some

statistical techniques on two different input, filtered and unfiltered. The idea is

to extract the accuracy on predicting the class of CTRL rats and OBST rats,

and to compare the result for the same datasets before and after the filter SIFT

application. The environment used to perform the statistical computation and

graphics is R software (https://www.r-project.org/).

2.5.1 Datasets Creation

A fundamental step of the analysis was the creation of the datasets. The final

choice was between datasets with the following two structures: the first structure

was thought as a dataset with 11 rows (one for each rats), or observations, and

52 columns, or features. The columns were decided to represent one of the

connectivity metrics evaluated for each of the node. Moreover, the same dataset,

would have included the metrics of the nodes for the weighted matrices too (FA,

MD and MD). Therefor, the output would have been two datasets 11x52 for

the unfiltered and filtered data. The second structure considered presents 11

rows, as the other propose, and 55 columns. Each of the columns represents the

connectivity between two nodes. therefor, in this case were considered directly

the matrices as input, and not the metrics extracted. Another different is the

number of datasets, in fact, this second propose, has a total of 8 datasets, 4 for

the unfiltered matrices and 4 for the filtered matrices (raw, FA, MD and MD).
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For both the proposes, there was an additional column called ”class” to set the

category of each of the 11 rats (OBST or CTRL).

Both datasets were tried and the second structure has been chosen for the

final statistical analysis. This decision was due to the possibility to divide the

analysis for each weight of the matrices.

2.5.2 Classification Methods

The analysis is based on a binary classification based on the feature class, de-

scribed in the previous sub-paragraph. The techniques chosen for this goal are

the supervised learning methods Random Forest and Naive-Bayes. Both these

algorithms are applicable when there are more features than observations, and

both binary and multi-category classification tasks. Moreover, Naive-Bayes,

permits to value and visualize the influence of each feature based on the dis-

tribution of the features for the two classes. Random Forest, instead, performs

embedded features selection, important for the next analysis step, incorporates

interactions between features [34, 35].

Other binary classification techniques have been considered as logistic regres-

sion, but it seemed to be a too simplistic model with these particular datasets.

Support vector machines was discarded for the high number of parameters to

set, not easy to balance. K-Nearest neighbours was avoided due to the small

number of observation.

To train the model of random forest and Naive-Bayes it has been used a leave

one out cross validation considering there are just 11 observations. Moreover,

the metric considered as output is accuracy. The reliability of the results has

been evaluated through the Kappa statistic. It is relevant to know that for Ran-

dom Forest and Naive-Bayes there are some parameters as output that define

the best model (the parameters name are typical of the software R managing

with Random Forest and Naive-Bayes specifically). For Rondom Forest is the

number of features, calledmtry, used to split the trees. Instead, for Naive-Bayes,

there is the parameter kernel with output true or false. If true, a kernel density
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estimation (KDE) can be alternatively used to obtain a non-parametric repre-

sentation of the conditional probability density function instead of the Gaussian

distribution (false).

2.5.3 Features Analysis

After the classification step, the most relevant features have been extracted from

each datasets to compare the outputs between the unfiltered and the filtered one.

In order to do this has been used an algorithm based on random forest called

Boruta (https://www.rdocumentation.org/packages/Boruta), from software R.

This package is able to classify the features of a datasets as important or not

important by training the dataset and considering the mean decrease accuracy

of each features (in this case has been used 1000 iteration, the maximal number

of importance source runs, to resolve the most of the attributes left as tentative).

The goal is to discuss the differences and to perform again the classification with

the same methods, but considering just the most important features combined

in different ways.

In addition, has been performed a principal component analysis to consider

the possible differences on the variance of the datasets.
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3 Results

In this chapter are presented the results obtained from the processing steps

described in the methods. The outcomes are presented starting from the pro-

cessing of the masks (to understand where is the focus), going through the

classification performance on the different datasets and weights of the matrices.

Finally, it is presented the comparison between the relevant features and the

relative new classification performances for the datasets considering different

group of features.

3.1 Mask Processing Output

In this section are presented the final masks orientation over the diffusion data

images. To understand the steps done by each mask it is shown the original

mask image not fitting (figure 1), the re-oriented mask image after fslorient

application and the manual registration output (figure 2). To get the precision

of the whole process, a representation of how the masks should fit with the

diffusion images not correctly oriented is showed too (figure 3). Due to the

fact that is possible just to visualize 2D images and the data are 3D, not every

direction is shown. It has been chosen the coronal space of the brain and the

auditory cortex mask, trying to show more or less the same level of depth to

make a comparison.

Figure 1: Image representing coronal plane of the brain and the auditory cortex

mask region of interest not fitting
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Figure 2: Image representing the coronal plane of the brain and the auditory

cortex mask region of interest after the manual registration

Figure 3: Image representing how the auditory cortex mask region of interest

and the image should fit

3.2 Filtering Effects on Metrics

The following paragraphs present the differences of the connectograms generated

before applying the SIFT filter and after. The attention is focused on the values

on of the connectivity matrices and the metrics extracted. These comparison are

presented for the raw data (weight based just on the counting of the streamlines

between the brain regions) and weighted data (FA, MD and RD).

As mentioned, the difference of connectograms is expressed in form of be-

tweenness centrality, eigenvector centrality, node strength and global efficiency.

For the first one is applicable considering the weights on each nodes, therefore,

it is different for each different matrix weight. The second metric is applied was

to the network and not for every single weight. The third metric was analyzed

for both matrix types (weighted and not weighted). For these three metrics the

comparison is based on the difference between their values for the two classes

CTRL and OBST for each one of the 10 nodes. To graphic them it has been
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used a series of boxplots, is possible to visualize the mean, as a line in the boxes,

and the different quartiles, as the boxes and axes. The global efficiency output

is a single value for each subject, therefore, the comparison between the unfil-

tered and filtered data has been visualized in a single figure with two different

lines representing the values for each subject.

The individual betweenness centrality for each weight and for unfiltered and

filtered matrices is represented in figures 4, 5, 6 and 7. For the raw matrices is

possible to see some small differences, before and after applying the filter, on

the sizes of the boxplots (figure 4). In term of mean, the value for the CTRL

class passes from 0.176 (unfiltered) to 0.193 (filtered). Meanwhile, for the OBST

class the mean passes from 0.202 (unfiltered) to 0.180 (filtered).

Figure 4: Betweenness centrality for each node between the two classes CTRL

and OBST for the unfiltered raw matrix (left) and the filtered raw matrix (right)

Analyzing the output graphs of FA weighted connectograms the differences

caused by SIFT filtering becomes detectable (5). In fact, is possible to note

how some boxplots that are not present for the unfiltered data, appear after

filtering. The means for the classes changed passing from 0.008 (unfiltered) to

0.019 (filtered) for CTRL class, and from 0.006 (unfiltered) to 0.017 (filtered)

for OBST class.
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Figure 5: Betweenness centrality for each node between the two classes CTRL

and OBST for the unfiltered FA weighted matrix (left) and the filtered FA

weighted matrix (right)

For the MD weighted matrices the difference noted in the FA is more evident

looking at the boxplots (figure 6). In fact, for 5 nodes, that has zero value for the

unfiltered data, the betweeness centraly distribution value after filtering present

difference between the two classes. The mean for the CTRL class passes from

0.006 (unfiltered) to 0.019 (filtered), for the OBST class it passes from 0.006

(unfiltered) to 0.017 (filtered).

Figure 6: Betweenness centrality for each node between the two classes CTRL

and OBST for the unfiltered MD weighted matrix (left) and the filtered MD

weighted matrix (right)

The analysis on the RD weighted connectograms follows the same trend of

the other weights. In fact, for 4 nodes the betweenness centrality passes from
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zero to have positive value for at least one of the two classes. The mean values

0.007 (CTRL) and 0.006 (OBST) for the unfiltered data, 0.019 (CTRL) and

0.017 (OBST) for the filtered data.

Figure 7: Betweenness centrality for each node between the two classes CTRL

and OBST for the unfiltered RD weighted matrix (left) and the filtered RD

weighted matrix (right)

The output of the node strength analysis is shown in figures 8, 9, 10 and 11.

Analyzing visually the results for not-weighted data is possible to say that the

ranges for the various nodes change after applying the filter but not drastically.

In term of mean, it passes from 10.5 (unfiltered) to 9.65 (filtered) for class

CTRL, and from 10.6 (unfiltered) to 9.77 (filtered) for class OBST (figure 8).

Figure 8: Node strength for each node between the two classes CTRL and OBST

for the unfiltered data (left) and the filtered data (right)
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Considering the FA weighted data, the results on the influence of filtering

are visually similar to the non-weighted data (not great changes) as shown in

figure 9. Evaluating the mean, for class CTRL it passes from 3.74 (unfiltered)

to 3.20 (filtered), and for class OBST from 4.37 (unfiltered) to 3.75 (filtered).

Figure 9: Node strength for each node between the two classes CTRL and OBST

for the unfiltered FA weighted matrix (left) and the filtered FA weighted matrix

(right)

Analyzing the node strength of the MD weighted connectograms (figure 10)

is possible to notice a change on the ranges of the boxplots, wider after the

SIFT application. The mean for the unfiltered data is 0.00432 (CTRL) and

0.00421 (OBST), meanwhile, for the filtered data is 0.00406 (CTRL) and 0.00397

(OBST).
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Figure 10: Node strength for each node between the two classes CTRL and

OBST for the unfiltered MD weighted matrix (left) and the filtered MD weighted

matrix (right)

The node strength of the RD weighted data (figure 11) showed a difference

in term of ranges for the boxplots as the MD weighted data. Considering the

mean, it passes from 0.00349 (unfiltered) to 0.00334 (filtered) for CTRL class,

and from 0.00326 (unfiltered) to 0.00315 (filtered) for OBST class.

Figure 11: Node strength for each node between the two classes CTRL and

OBST for the unfiltered RD weighted matrix (left) and the filtered RD weighted

matrix (right)

The outcome of the eigenvector centrality is presented in figure 12. The

difference between the filtered and unfiltered data is not marked, however, it is

possible to note how the distribution of the value never grows, it stays in the

same range or smaller (keep attention on the different y-axis unit). The mean
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is 0.315 (CTRL) and 0.316 (OBST) for the unfiltered data, and 0.314 (CTRL)

and 0.314 (OBST) for the filtered data.

Figure 12: Eigenvector centrality for each node between the two classes CTRL

and OBST for the unfiltered data (left) and the filtered data (right)

Global efficiency outputs are shown in figure 13 for each one of the eleven

rats. The difference between the unfiltered and the filtered data is visually clear,

in fact, before the SIFT application, the global efficiency is visually bigger than

after the filter. The mean for the unfiltered data is 0.976, meanwhile, after

filtering, is 0.929.

Figure 13: Global efficiency for each subject between the two classes CTRL and

OBST for the unfiltered data and the filtered data
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3.3 Classification Performance

The classification performances were evaluated with two different models, ran-

dom forest and Naive-Bayes. Afterwards, as mentioned in 2.5.1, it has been

given as output the datasets created from the connectivity matrices. The first

experiment deals with the raw matrices, the second has been run with weighted

matrices. Every run the goal is to compare the performances with unfiltered

and filtered data considering the accuracy and the Kappa statistic (2.5.2), based

on the factorial feature called class with CTRL as 1 and OBST as 2. For every

experiment it has been used a cross validation leave one out to evaluate the

classification performance. Moreover, it is reported the best extra parameter

(mtry and kernel).

3.3.1 Raw Matrices

The results in table 2 show that the accuracy has been improved after the

SIFT application for both the models used. furthermore, the Kappa show a big

difference in the reliability of the results, in fact, for the unfiltered data is not

even bigger than 0. The accuracy for the filtered data is the same for both the

models, but the Kappa for Naive-Bayes is higher.

For Random Forest the best output had a mtry of 2 unfiltered data and 28

for filtered data. Naive-Bayes best model had true kernel parameter for both

datasets.

Table 2: Classifier performances in percent of Random Forest and Naive-Bayes

models for raw data dataset before SIFT and after SIFT

Random Forest Naive-Bayes

Accuracy Kappa Accuracy Kappa

RAW 63.63 0 45.45 -0.18

RAW SIFT 72.72 0.29 72.72 0.38
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3.3.2 Weighted Metrics

Classification performances applied to weighted datasets (FA, MD and RD)

are shown in table 3. The results, in term of accuracy and Kappa, are very

high. In fact, for FA weights, the models are able to distinguish the two classes

perfectly with perfect Kappa value both before and after SIFT application.

The unique improvement registered regards Naive-Bayes performances for MD

weighted data, where the accuracy grows 0.9%. Considering the remaining

outcomes, it has not been recorder any improvement, neither for accuracy nor

for the Kappa.

For FA data the mtrys and the kernels for the best performance were the

same for unfiltered and filtered data: 28 features for the Random Forest splits

and true as kernel for Naive-Bayes.

MD weighted matrices mtrys were 2 for both datasets, meanwhile, kernels

were different, false for unfiltered data and true for filtered data.

Regarding RD data, the extra parameters were the same for the datasets: 2

mtry and true kernel.

Table 3: Classifier performances in percent of Random Forest and Naive-Bayes

models for FA, MD and RD data datasets before SIFT and after SIFT

Random Forest Naive-Bayes

Accuracy Kappa Accuracy Kappa

FA 100 1 100 1

FA SIFT 100 1 100 1

MD 90.90 0.79 90.00 0.74

MD SIFT 90.90 0.79 90.90 0.79

RD 90.90 0.79 90.90 0.79

RD SIFT 90.90 0.79 90.90 0.79
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3.4 Feature Analysis Outcome

The feature analysis has been evaluated to extract the most important features

used to classify the different datasets. It has been used a Random Forest based

algorithm (2.5.3) to classify the features as important or not. From the outcome

of this algorithm has been created a scheme to represent the network and the

different most important connections to evaluate the differences between the

unfiltered and filtered data.

3.4.1 Raw matrices

Looking at figure 14 is possible to see which connections (or features) have been

classified as important for the classification models. The difference between the

unfiltered data and the filtered data in evident, in fact, just one connection is

shared by the two (CN1-IC1). Moreover, the filtered data show more connec-

tions than the unfiltered, a total of 7 important connection (2 non plausible)

against 3 (2 non plausible).

Figure 14: Graphic representation of the network and its strong connections for

unfiltered RAW data (left) and filtered RAW data (right). Continuous arrows

represent connections that make anatomic sense, orange boxes self connections

and dashed arrows connections that not make anatomic sense
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3.4.2 Weighted matrices

Considering weighted matrices the outcomes of important features analysis show

differences between data before and after filtering.

As shown in figure 15, unfiltered FA weighted data has a total of 28 important

connections: 22 connections between different nodes (8 non sense) and 6 self

connections. Meanwhile, filtered data has a total of 26 relevant connections:

16 between different nodes (5 non sense) and 10 self connections. Many of

these connections are in common. It is important to note how the non sense

connections are in a small number for data after SIFT.

Figure 15: Graphic representation of the network and its strong connections for

unfiltered FA weighted data (left) and filtered FA weighted data (right). Con-

tinuous arrows represent connections that make anatomic sense, orange boxes

self connections and dashed arrows connections that not make anatomic sense

Considering MD data connections (figure 16), the differences noted in the

previous graphs is kept. In fact, for unfiltered data there are 3 relevant connec-

tions plus 3 self connections, for filtered data there are 4 important connections

(1 non sense) plus 3 self connections. Between the two networks there are 1

connection (CN1-SOC1) and 2 self connections (SOC1 and IC1) in common.
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Figure 16: Graphic representation of the network and its strong connections for

unfiltered MD weighted data (left) and filtered MD weighted data (right). Con-

tinuous arrows represent connections that make anatomic sense, orange boxes

self connections and dashed arrows connections that not make anatomic sense

RD weighted data showed the biggest difference in the important connections

analysis (figure 17). The number of non sense connections is greatly decreased

after filtering and the graph looks less chaotic. For data before filtering there

are 13 (5 non sense) and 3 self connections. Instead, for filtered data, the are 9

(2 non sense) and 5 self connections.

Figure 17: Graphic representation of the network and its strong connections for

unfiltered RD weighted data (left) and filtered RD weighted data (right). Con-

tinuous arrows represent connections that make anatomic sense, orange boxes

self connections and dashed arrows connections that not make anatomic sense
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3.5 Classification Performances on Relevant Features

After the analysis for important datasets features it has been evaluated another

classification with the same models and modalities of before (3.3), considering

just the subset of relevant connections as features. The experiment is set in 2

steps: first one is to perform classification for raw datasets with the union and

the intersection between the relevant connections, second one is to use weighted

matrices as input but with the union and intersection of important features for

the same weight. For this experiment it has been considered just the connections

that make sense shown in the previous section.

3.5.1 RAW Matrices

Raw matrices shown better results for classification considering the union of

relevant features (table 4) both for Random Forest and Naive-Bayes. In par-

ticular, for unfiltered data, the classifiers are not able to reach accuracy higher

than 72.72%, meanwhile, for filtered data it is able to reach more than 90%.

Table 4: Classifier performances in percent of Random Forest and Naive-Bayes

models for raw data dataset before SIFT and after SIFT considering the union

of the relevant connections

Random Forest Naive-Bayes

Accuracy Kappa Accuracy Kappa

RAW 72.72 0.30 63.63 0.21

RAW SIFT 90.90 0.79 90.90 0.79

Considering the intersection of the relevant features the improvements with

filtered dataset are smaller. In fact, for Random Forest, the accuracy is the

same, but with a higher Kappa. However with Naive-Bayes the performances

are better.
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Table 5: Classifier performances in percent of Random Forest and Naive-Bayes

models for raw data dataset before SIFT and after SIFT considering the inter-

section of the relevant connections

Random Forest Naive-Bayes

Accuracy Kappa Accuracy Kappa

RAW 72.72 0.30 72.72 0.30

RAW SIFT 72.72 0.37 81.81 0.56

3.5.2 Weighted Matrices

Analyzing the results from the weighted matrices as input, the performances

are similar both before and after applying SIFT. In particular, considering the

union of the features (table 6), for FA weighted data the values of accuracy and

Kappa are the same. Meanwhile, considering MD weights, the performances are

increased for both models getting a perfect classification of 100%. RD weights

reached the same results for Random Forest, but, for Naive-Bayes, accuracy and

Kappa are increased to 100% and 1 respectively.

Table 6: Classifier performances in percent of Random Forest and Naive-Bayes

models for FA, MD and RD data datasets before SIFT and after SIFT consid-

ering the union of the relevant connections

Random Forest Naive-Bayes

Accuracy Kappa Accuracy Kappa

FA 100 1 100 1

FA SIFT 100 1 100 1

MD 90.90 0.79 90.90 0.79

MD SIFT 100 1 100 1

RD 90.90 0.79 90.90 0.79

RD SIFT 90.90 0.79 100 1
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The results considering the intersection of relevant features (table 7) are

almost the same of union. FA and RD weighted data reached the same accu-

racy and Kappa models. Meanwhile, Random Forest with MD data increased

reaching 100% both for unfiltered and filtered data, Naive-Bayes kept the same

performances of the union.

Table 7: Classifier performances in percent of Random Forest and Naive-Bayes

models for FA, MD and RD data datasets before SIFT and after SIFT consid-

ering the union of the relevant connections

Random Forest Naive-Bayes

Accuracy Kappa Accuracy Kappa

FA 100 1 100 1

FA SIFT 100 1 100 1

MD 100 1 90.90 0.79

MD SIFT 100 1 100 1

RD 90.90 0.79 90.90 0.79

RD SIFT 90.90 0.79 100 1
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4 Discussion

This section tries to discuss about results and gives a possible meaning about

them. Possible errors made and possible future works are mentioned too.

4.1 Connectivity Metrics

The evaluated metrics are betweenness centrality, node strength, eigenvector cen-

trality and global efficiency. Considering these graph metrics is possible to say

that SIFT filtering is able to modify the weight of nodes and edges. This is sup-

ported by the fact the results in most cases are different between the unfiltered

and filtered data (weighted and not). Considering the betweenness centrality,

there is the biggest change, in fact, just looking at the boxplot graphs in section

3.2 is possible to notice how a lot of nodes, that did not have any value for

unfilttered data, assumes a range of value after filtering. Interesting to note

how many of the range values become smaller with SIFT, maybe it could make

the outcome more accurate.

Eigenvector centrality shows similar behave as the betweenness centrality.

Dealing with the node strength the results show a general increase (form unfil-

tered to filtered data) of the ranges of the boxplots both for the non weighted

and weighted data, and both for CTRL and OBST class. These changes could

mean that some weights of the connections changed with the filter. In term of

mean, it does not show a big difference after the SIFT application. Meanwhile,

the global efficiency for each subject decrease with filtering, this could be caused

by the fact that many of the tracts are deleted so the connection between the

various nodes counts less possible path to communicate.

4.2 Relevant Feature Analysis

Relevant features extracted with Boruta algorithm for the unfiltered and filtered

data have a clear characteristic: important connections for unfiltered data are

mostly changed after filtering with other connections, both for raw and weighted
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data. Some of the features are in common though. However, it is very important

to notice how the filtered data show much less nonsense connections, this could

be by the fact that SIFT is able to delete them and keep the real ones.

4.3 Classification

The classification between the two classes, ctrl and obst, have had better accu-

racy and Kappa most of the time after filtering. Moreover, using the unfiltered

dataset, the classification methods have been able just to reach the same results

as with the filtered dataset. The biggest differences in performances were using

the raw data, both considering all the features of the datasets both after impor-

tant features selection. In fact, the increase due to the filter application with

all the features, and even with the union of the important features, was ∼27%,

from features intersection was ∼10%. For the whole datasets the best perfor-

mances have been reached by the FA weighted, the accuracy is 100% both for

Random Forest and Naive-bayes, before and after applying filter. Meanwhile,

considering the reduced number of feature after selection and their union, be-

sides FA datasets, MD weighted data reach 100% of accuracy after filtering for

both classification model, as RD weighted data with Naive-Bayes after SIFT.

These weighted datasets reached the best same results with the intersection of

features too, the only difference was for MD unfiltered data that reached 100%

accuracy with Random Forest. The improvement of performances after feature

selection was expected, in fact a lot of noisy feature have been deleted.

The high performances on the weighted data could be caused by the low

number of subject and, after the weighing step, it became very easy to dis-

tinguish the two classes. However, it is important to note that the rats were

supposed to be easily distinguishable, as the results suggest. It would be in-

teresting to evaluate the performances with same models but with a lot more

subjects.

Raw data are the best case to show the relevance of SIFT filtering, I wonder

if it would get the same improvement with a bigger dataset.
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4.4 Possible Errors and Limitations

The main possible errors and limitations could have been the masks processing

step. In fact, all the mask were created manually by a surgeon, the chances that

the ROIs were not perfect is very high. Moreover, these masks needed to be

registered from the original space position to make them fit as best as possible

in the correct place. Obviously, this registration step could not have been done

perfectly due to the fact manual registration was needed (2.2). These steps

played a crucial role in the evaluation of tractograms and connectivity matrices.

It is important to consider the small dataset used, it was formed by 11 rats.

It is relevant to take in account this detail, results from a small dataset could

represent a singularity.

Tractograms generation needed a lot of parameters to be set, considering

that this work deals with rats data, it was not easy to choose a correct set of

parameter.

4.5 Future works

After the conclusion of this work it would be interesting to verify the good result

after SIFT filtering with a bigger dataset and less specific. Introduction in the

pipeline of masks generated by a default atlas would be relevant too.
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5 Conclusion

In this thesis it has been studied the effect of SIFT filtering on tractograms

through analysis of connectivity metrics and the classification performances

of the connectivity matrices (between ctrl and obst classes) generated focus-

ing on specifics region of the rat brain, the hearing cortex. Classification was

performed with Random Forest and Naive-Bayes considering a leave one out

cross-validation.

The effect of SIFT filtering is translated on a change of edge weights and

nodes connectivity. These results are shown by the difference of the metrics

value (betweenness centrality, node strength eigenvector centrality and global

efficiency) before and after filtering.

Classification performances, measured with accuracy and Kappa statistic,

based on the the connectivity matrices, before, and on a specific set of relevant

features, after, showed improvement with filtering, or at least the same result,

both for raw and weighted data. The biggest difference was achieved consid-

ering raw data (27.27% more accurate for filtered dataset). The best absolute

performance was achieved with weighted dataset (FA, MD and RD) with 100%

accuracy, in some cases both for unfiltered and filtered data.

Feature analysis showed an interesting outcome about the network structure.

In fact, filtered data relevant connections had a smaller number of nonsense

connections than unfiltered data relevant connections. The specific connections

were different too, showing a different distribution of the important tracts in

the network.

The results evaluated in this work bring to a conclusion: tractogram filter-

ing is a very powerful technique that can improve the traditional tractogram

generation. The improvement on classification performances supports this the-

ory. However, due to the several number of steps needed to apply filtering, is

important to weight carefully every decision on this technique.
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6 State Of the Art

The following section wants to give the reader the possibility to better under-

stand the arguments dealt with during this thesis.

6.1 - Diffusion Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI) is a non-invasive imaging technique to

probe the structural environment of brain tissues applying strong magnetic

fields and gradients in different directions. It makes use of the intrinsic spin

of atom nuclei and its changes [1]. However, when the main objective of MRI

studies involves even small tissue elements like neuron fibers of white matter,

traditional MRI methods are not sufficient. It is necessary to use diffusion MRI

techniques to analyze the movement of molecules inside brain tissues and their

interaction with external environment. Water molecules are the most analyzed

for these studies. This technique is characterized by a specific MRI sequence in

the direction of the gradients and their frequency [2]. Therefore, the aim of diffu-

sion MRI is to detect hindrances in free movement of water molecules diffusion.

Basically, it is possible to recognize two different kinds of movement: isotropic

(same diffusion intensity in all directions) and anisotropic (diffusion intensity

dependent from direction). The parameter that regulates the desired amount

of water diffusion is called b-value (s/mm2), and it represents the strongness of

diffusion [3].

The main idea is to acquire different images using different direction for

gradient q. However, it is too time consuming to acquire all possible signals

from every direction, therefore, different techniques have been developed to

evaluate diffusion characteristics with few directions in every voxel. The first

one is diffusion weighted imaging (DWI) that requires just 4 directions for a

single measurement of diffusion, this technique is used to characterize isotropic

tissues. If the tissues are anisotropic, it could be used the diffusion tensor

imaging (DTI) for analyze the main direction voxel by voxel using a tensor,

and just acquiring 7 different directions [3,4]. However, these two techniques
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are not useful for modern issues, where the main goal is to extract information

even where there are crossing fibers. For this reason, a more advanced model

has been proposed for high angular resolution diffusion imaging (HARDI) that

permits to evaluate the orientation distribution functions (ODF). By analyzing

the peaks of the ODF it is possible to estimate different fibers in the same voxel

[4].

Diffusion MRI techniques are the base to investigate brain tissues. It is

possible to characterize different tissues (DWI), analyze anisotropy and main

direction (DTI), and to evaluate tractography (HARDI).

6.2.1 - Tractography

Tractography is a method used to identify and measure the pathways of fiber

population for the white matter. It is the only method available to extract this

information in vivo non-invasively [5,7].

It is possible to evaluate all the information about white matter structure

from diffusion MRI signal, in fact, we need to analyze the distribution function

of water molecules to obtain the principal directions to visualize the directional

information of the axonal fiber. Furthermore, we can draw maps with each voxel

represented as a vector of the tensor or, in alternative, with an ellipsoid built

by the three principal directions. This relation between the diffusion tensor and

the direction of the fibers is because water molecules tend to be hindered by

the partition of axons. This makes the dominant direction of the diffusion even

the possible axon fiber direction we are trying to detect. So, it is possible to

extract the main eigen vectors of the diffusion tensor related to the principal

eigen values, for each voxel, to understand how the fibers are structured [5].

The first family of methods is called deterministic tractography and assumes

of the equality between the voxel-wise principal diffusion eigenvector and the line

tangent to the axonal fiber belonging to the same voxel. The fiber is represented

as a line called streamline, which is the discussed tangent line. It is necessary

to set an initial value, as the starting point of the streamline (it is often called
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as starting seed), where reconstruction is starting. This technique has stopping

criteria based on local fiber orientation probability or curvature: the first is

based on the value of fractional anisotropy (FA), when it falls below a certain

threshold you might face with high uncertainty about diffusion direction. The

second imposes a maximum curvature for the streamline, so the angle between

two consecutive voxels cannot exceed a certain value [6,7].

However, there are many problems with deterministic tractography that are

fundamentally ill-posed: this means this technique could lead to inaccurate re-

sults, and so to inappropriate connectivity maps empty of false positives and

omit true positives. The main reasons are some limitations in using just the

principal eigenvalue as the indicator for the fiber direction. In fact, the noise

of the diffusion image partial volume effect could influence affect the direction

of the principal eigenvector [5]. This is very important considering the possible

paths of the fibers that could lead to cases where it is very difficult to esti-

mate the correct structure. Considering conditions where there are more fibers

crossing, bending, fanning, or kissing, it is not possible just to use the single

diffusion direction voxel by voxel, because they can all give rise to the same

MRI measurement, making it impossible to distinguish between different cases

[6,7,8].

To try to overcome these problems, another type of algorithms has been

developed, called Probabilistic tractography. Basically, this method, generates

multiple distributions of directions from different initial points. The aspect that

makes these algorithms different from deterministic ones, is that the direction

of diffusion for every voxel is picked randomly based on the fiber distribution.

Once the various streamlines are evaluated, probabilistic tractography take in

account the tracts with the highest density [6].

Another family of methods is called Global tractography. It tries to re-

construct full track of the brain at once by finding the configuration that best

describes diffusion MRI data. However, these methods, even if promising, not

always permits to reach a truth solution for tractography [6].

To resolve many of the problems discussed for the previous tractography
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methods it could be used a process analysis for microscopic diffusion. An exam-

ple of another method proposed is q-ball imaging (QBI), based on high angu-

lar resolution diffusion imaging (HARDI). However, this method allows only a

computation of the diffusion orientation distribution function (dODF) which is

a blurred version of the underlying fiber distribution (fODF) and this method

is very time consuming [9].

6.2.2 - Spherical Deconvolution

In tractography, the fiber tracking algorithm tries to follow the estimated fiber

orientation cited yet (fODF), so it would be more useful to directly calculate it

(not passing through the dODF), it allows more powerful constraints to be used.

It would be more advantageous to use a free-model technique, so to have less

restrictions for the analysis, and use a continuous representation of the ODF.

Based on these considerations the natural choice for the best technique falls into

spherical deconvolution [10].

There are multiple kinds of spherical deconvolution that differ on how they

work and the representation of the fODF, but we are going to see the main

characteristic of this technique to understand the mechanism. This method can

estimate the fiber orientation without any prior assumptions on the number of

fibers but directly from the diffusion-weighted MR signal. The central concept

behind is that the signal registered from every voxel is just the sum of all the

signals originated from the various fibers, weighted by their respective volume

fraction, and rotated into their specific orientation. This is because we assume

the diffusion characteristic from each fiber is identical in all apart from its ori-

entation, even if not true, but it helps since the problem remains linear and the

orientation is not affected by this assumption [10]. To evaluate mathematically

this function (S) we can assume that it is generated by the convolution of an

axially symmetric response function, R, that represents the typical diffusion-

weighted signal profile of a single fiber, and the fiber orientation distribution

function, fODF, that contains all the volume fraction information (every fiber
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is represented by a Dirac delta function oriented as the fiber orientation). This

leads us to the following equation:

S(θ, φ) = F (θ, φ)⊗R(θ) (4)

In the equation S is the total signal, F is the fiber ODF, R is the response

function, θ is the elevation angle in spherical coordinates, φ is the azimuthal

angle in spherical coordinates [10, 11, 12].

If R is known a priori it is possible to estimate F with spherical deconvolution

though a reduction to a simple set of matrixes multiplication. This is possible

considering the matrixes coming from the spherical harmonic decomposition of

F(θ, φ) and from the rotational harmonic decomposition of R(θ). Now it is

possible to write the equation of deconvolution:

Sn = RFn (5)

S, R and F are the matrixes coming from the decomposition of the original

components, n in the order of the decomposition [11].

Figure 18: Possible graphical representation of spherical convolution: multiple

fibers within a voxel contribute with additive signals (f1S1, f2S2) to the total

signal (S). For assumption of a common fiber signal profile, fODF (F) is convo-

luted with fiber response function (R). Reprinted from [11] with permission of

Elvesier

Despite spherical deconvolution is a very strong and useful technique, it

is not perfect. In fact, it is still ill-posed and susceptible to noise (with high
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b-values in particular). Moreover, the fODF and the response function need

some assumptions, so it is not completely free model. In addition, spherical

deconvolution approaches apply the same response function on every voxel, and

this could be not true, in fact, for white matter tracts with different diameter

it would be expected to influence the registered signal. Another problem that

needs to be resolved is the ideal number of directions to use, in dependence of

the b-values, due to the signal to noise ratio (SNR) [10, 12].

6.3.1 - Structural networks of the brain

Next step is to create the structural networks of the brain considering the mea-

sures extracted from the tractography, so it is possible to access connectivity

between brain regions. To do so it is used the paths created through tractogra-

phy. There are different kinds of brain networks connections achievable: with

dMRI you can evaluate structural connectivity and measure the strength of it;

with fMRI, usually, you can get functional and effective connectivity, where you

can get even a direction of the binding between different regions [13].

Analysis of brain networks is a necessary step to reach a discrimination in

connection changed due to neurodegenerative disease that could modify the

neural web [14]. In literature there are many examples where structural con-

nectivity is used to characterized and improve the knowledge of the condition

[15,16,17].

Structural connectivity is based on the possibility to represent the brain

composed by graphs , where every region corresponds to a node, multiple nodes

can form a module (represents a bigger area of the brain), and the connections

between them is called edge. The edges have not a direction and could be defined

weighted; usually they are organized in a matrix called adjacency matrix (square

matrix with dimension as big as the number of nodes).

However, before the analysis of connections, it is necessary to do a prepro-

cess step where another representation of white matter is built, in addition to

whole brain tractogram. This step is called parcellation of brain and consists
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in defining distinct part of the brain [18]. There exist two categories of meth-

ods: cortical-parcellation-based or fiber clustering. The first one is computed,

usually, from T1-weighted or T2-weighted MRI. Ones the parcellation is pro-

duced it is possible to make it collaborate with tractogram through a process of

co-registration. These steps are fundamental to be able to defines all the nodes

and the edges [19].

6.3.2 - Quantitative measures graph analysis for matrix

The most popular measures extracted for the connectivity matrix are computed

from the modeling of dMRI signal. In particular, the characteristics of the dif-

fusion tensor (eigenvalues and eigenvector) are used to evaluate the matrix of

connection defined by the parameters considered: the principal measures are

called fractional anisotropy (FA), radial diffusivities (RD), and mean diffusivi-

ties (MD). All these different weights generate different matrixes that give the

possibility to do various analysis [19].

Graph measures are based on the type of analysis you want to evaluate,

from local measures to global measures. At a local level, the scope is to quantify

properties of a single region of interest (ROI), a node, related to its connections.

It is possible to define different metrics: first is betweenness centrality, it consists

in all the shortest paths in the network that pass through the given node. The

third is participation coefficient, quantifies to what extent the node connects to

different modules. The last one is the clustering coefficient, which represents the

fraction of the node’s neighbors that are also neighbors to each other, in other

words, it is a reflex of the good or bad organization of nodes around a single node

[17,18,19]. Other important metrics are node degree and corresponding weighted

form, known as node strength. Node degree is one of the most basic metrics, it

consists in the number of edges that connect a node to others. Meanwhile, node

strength considers also the weight of each edge connected to a node [33].

Passing to the global measures, it is possible to analyze the efficiency of the

structure considering the whole brain, and not only a single region or node. An
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example is the global efficiency, which represents the capability of the transfer-

ring of information between long distances in the brain network. We consider

that shortest paths mean strongest connection [17, 19, 20].

These are just some of the metrics evaluable from connectivity maps, other

are described in detail in [20].

Figure 19: The figure shows, from ‘a’ to ‘c’, a human brain parcellated in differ-

ent region of interest, then the output of tractography (white matter extracted)

and at the end the connectivity matrix. Reprinted from [13] with the permission

of Elsevier

6.4 - Tractogram filtering

As said before, one of the main problems for tractography methods is the high

rate of false positives that lead to non-plausible result for streamlines. To solve

this problem, many filtering techniques to apply directly to tractogram have

been developed. This section will explain the principal tractogram filters.

The basic idea behind the following techniques is that dMRI signal could

be generated from tractogram, so the main goal is to inspect which streamlines
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can generate the original signal as close as possible and delete others. These

techniques are called Linear Fascicle Evaluation (LiFE), Convex Optimization

Modeling for Microstructure Informed Tractography (COMMIT) and Spherical

Deconvolution Informed Filtering of Tractograms (SIFT). The first two try to

minimize the distance between the raw data and the reconstructed one from the

tractography, assigning weights to every streamline. So filtering is performed

by discarding the streamlines with low weights [21].

SIFT differs from the other two techniques because instead of aiming for

the dMRI original signal, it tries to reconstruct the fiber orientation distribu-

tion function (fODF) in every voxel. The advantage of this methods is that it

adds the possibility for a biological interpretation of the process by analyzing

the fODF. The filtering process for every voxel works similarly to the previous

methods: the streamlines considered useless and redundant in generating the

original fODF would be deleted. Important aspect to know is that SIFT does

not generate weights for streamlines. The SIFT2 is the developed method of

SIFT: it differs from the previous because instead of removing streamlines for

each voxel, it computes weights that are then considered [21, 22, 23].

Other families of methods exist, and they differ from the one illustrated by

the way they approach the problem. For example, it is possible to implement

anatomical approach to identify section where streamlines are or are not sup-

posed to be. Another family approach is based on the shapes of streamlines to

decide if it is plausible or not. Moreover, other techniques are based on the pos-

sibility to cluster streamlines by the region they belong and analyze similarity

[21].

Important to know is that the structural connectomes generated from the

output tractogram of the filters will be different from the original one, and

this is the main point where tractogram filtering plays: the possibility to get a

structural connectivity more evident, even if I lose some information [22].
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6.5.1 - Statistical analysis and classification

The goal of tractogram filtering, as said, is to improve the credibility of stream-

lines and so of the structural connectivity structure. However, this is real only if

analyzed with a statistical point of view, it is necessary to classify the data with

filter and no-filter to see if the performances are improved. To do that we’ll

see some real examples to understand what kind of analysis have been made

usually.

The techniques used to perform classification are based on machine learning

and deep learning concepts. In this case we are dealing with a binary classi-

fication where the subjects are classified as a patience or not. For example,

in [24], they tried to classify subjects affected by Alzheimer’s disease by using

the Support Vector Machine (SVM), K-Nearest Neighbor (KNN), and Naive

Bayes (NB) considering different aspect like the weights and the dimension of

the adjacency matrix (number of nodes to consider). As described in [25], the

popularity and the efficacy of deep learning techniques are getting more used, for

disease prediction (including from brain networks), so they tried to use Convo-

lutional Neural Networks (CNN) to predict Multiple Sclerosis. It is important

to highlight the importance of considering different number of nodes. Other

similar analysis could be done considering only the most relevant features of the

matrix, after a statistic test (for example Fisher’s test [15]). Another relevant

result has been reached in [26], where the classification performances of connec-

tomics in subjects with mild impairment have been improved by the tractogram

filtering and selecting the features, considering more graph metrics and matrix

weights.

Most of the analysis are made considering not only the entire structural

connectomes but, usually, with few and most important features, that, in this

case, correspond to nodes. We must remember that, due to the tractogram

filters, lot of nodes could lose or gain importance in this analysis.

There are many metrics to evaluate the goodness of the classification like

accuracy, precision, specificity, and sensitivity. All these performance factors

42



are derived from the values and operation between true positive, false positive,

true negative and false negative.

6.5.2 - Evaluation of statistical results

Statistical analysis are all those steps of data processing with the goal of high-

lighting relevant information and characteristics. One of the way of use statistic,

as said in the previous subparagraph, is machine learning. It use a process that

lead to the identification of a mathematical model with the best performances

possible [35]. However, it is important to know how the training and the eval-

uation of the classification methods assess the performances. The idea behind

these tools is to compare the output of the models, for a specific feature, with

the real data feature and to build a confusion matrix. With this matrix it is

possible to get how many of the data have been classified rightly, for one class

or the other. the basic measures of this techniques are accuracy, specificity

and sensitivity. Accuracy is evaluated ads the ratio between the correct predic-

tions and the total number of samples. Meanwhile, sensitivity is the ratio of all

correctly classified true samples and the total of number of true samples, and

specificity is the ratio between all the true negative over true negatives and false

positives samples [34,35].

It is important to know that there is another measure that permits to have a

feedback about the credibility of the statistical analysis performed: the Kappa

statistic. This value range between -1 and 1, and reflects the possibility that

the results achieved are repeatable. Value equals to 1 means total agreement

in the results, -1 means total disagreement and 0 means random agreement [36,

37].

A relevant step of statistical analysis and performance evaluation is the way

of perform them by splitting the dataset in training, test and validation test. A

common way to perform this division is cross validation. This technique permits

to create subsets for training, testing and validation by choosing the number

of folds to divide the entire dataset, then the classification is performed for a
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total of times as the number of folds (each time the training and test sets are

changed). The output result is the mean of the outputs of each iteration [34].

6.6 - Rats auditory system

Animal brain models have been fundamental in development for studying the

human brain. For example, lab animals (rodent, rats, and mice) brains have

been studied due to their structural cerebral organization, that is enough like

human one to permit generalization [27].

To realize how rats’ auditory system is organized is fundamental to under-

stand the brain connectivity. Principal anatomical parts are: Cochlear Nuclear

Complex (CN), Superior Olivary Complex (SOC), Nuclei of the Lateral lemnis-

cus (LL), Inferior Colliculus (IC), Medial Geniculate Body (MG) and Auditory

Cortex (AC). CN receives the auditory stimulus through the auditory nerve,

from here the signal is processed and transmitted to SOC. Now the signal

propagates to LL and IC, and, finally, to the AC directly or through the MG

[28,29,30].
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Figure 20: represented the anatomical positions of the principal section of rats’

auditory system. Areas in a) are sliced in coronal slices in c). Volumes are shown

in b). Yellow scale represents degree of activation when animal was exposed to

sound. Reprinted from [31] with permission of Elsevier.
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Sorg, C. (2012). Prediction of Alzheimer’s disease using individual structural

connectivity networks. Neurobiology of Aging, 33(12), 2756-2765.

[25] Marzullo, A., Kocevar, G., Stamile, C., Calimeri, F., Terracina, G.,

Durand-Dubief, F., & Sappey-Marinier, D. (2019). Prediction of Multiple Scle-

rosis Patient Disability from Structural Connectivity using Convolutional Neural

Networks. 2019 41st Annual International Conference of the IEEE Engineering

in Medicine and Biology Society (EMBC), 2087-2090.

[26] Kopff Marvin, 2020, Impact of tractogram filtering and graph creation

for structural connectomics in subjects with mild cognitive impairment, KTH

thesis

[27] Halliwell, C. (2018). The Role of Animal Models in Developmental

Brain Research. In The Neurobiology of Brain and Behavioral Development

(pp. 81-95).

[28] Kraft Sandra, 2016, Routine Development for Artefact Correction and

Information Extraction from Diffusion Weighted Echo Planar Images of Rats,

KTH thesis

[29] Savva Androula, 2019, Assessment of functional connectivity impair-

ment in rat brains, KTH thesis

[30] Manuel S. Malmierca, Chapter 29 - Auditory System, Editor(s): George

49



Paxinos, The Rat Nervous System (Fourth Edition), Academic Press, 2015,

Pages 865-946, ISBN 9780123742452,

[31] Cheung, M., Lau, C., Zhou, I., Chan, K., Cheng, J., Zhang, J., . . . Wu,

E. (2012). BOLD fMRI investigation of the rat auditory pathway and tonotopic

organization. NeuroImage (Orlando, Fla.), 60(2), 1205-1211.

[32] Tournier, J., Calamante, F., & Connelly, A. (2012). MRtrix: Diffusion

tractography in crossing fiber regions. International Journal of Imaging Systems

and Technology, 22(1), 53-66.

[33] Fornito, Alex, Andrew Zalesky, and Edward Bullmore. “Chapter 4 -

Node Degree and Strength.” Fundamentals of Brain Network Analysis. Elsevier

Inc, 2016. 115–136. Web.

[34] Zhou, Zhi-Hua. Machine Learning. Gateway East, Singapore: Springer,

2021. Print.

[35] Jeyaraman, Brindha Priyadarshini, Ludvig Renbo Olsen, and Monicah

Wambugu. Practical Machine Learning with R: Define, Build, and Evaluate

Machine Learning Models for Real-World Applications. Birmingham: Packt

Publishing, Limited, 2019. Print.
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