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Abstract

Black Box Optimization (BBO) has seen a growing interest in the field of optimization, and
nowadays it is creating even more interest due to its applications in the area of computational
neuroscience, machine learning, materials design, and computational biology.

The objective of BBO is to find a global minimum point under some resource constraint prob-
lems (e.g. the maximum number of function evaluations) of an expensive and possibly noisy
non-smooth function, with no gradient information.

Thanks to the latest efforts made in this field, the Bayesian Adaptive Direct Search (BADS) al-
gorithm proposed a hybrid Bayesian Optimization (BO) method. This approach combines the
Mesh Adaptive Direct Search (MADS) method and a Gaussian Process surrogate to compete
and find comparable or better solutions of existing state-of-the-art non-convex derivative-free
optimizers.

In this thesis, we provide an extended study on BADS, by presenting PyBADS, a Python
version of the existing complex MATLAB library of BADS. We include in this study the im-
plementation of a new approach based on the Stochastic Mesh Adaptive Direct Search (Sto-
MADS), by integrating it into the existing framework of BADS. The integration provides a
new method for proving the convergence of the algorithm towards stationary points for non-
smooth stochastic functions. The implementation of this method is present in the PYBADS
python library.

Moreover, we developed a generic black box optimization benchmark for testing and evaluat-
ing different optimizers. In this work, we limited its usage to assess and compare PyBADS and
BADS on different black box optimization problems, by designing an evaluation method with
high statistical power for assessing the performance of the optimizers.

From the benchmarking results, PyBADS has achieved same and competitive outcomes as BADS,
this achievement shows the correctness of the porting of BADS.
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Introduction

Optimization theory plays a big role in many STEM areas, and it has been studied by numerous
scholars and research groups. A particular field of optimization, called Black Box Optimization
(BBO) has shown great interest in the scientific community as it deals with extremely challeng-
ing problems. Nowadays, this field finds a broad application in the areas of energy, materials
science, computational engineering and computational neuroscience. Moreover, its usage has
been expanded even more because of its applications in the recently raising fields of Machine
Learning and Deep Learning, like tuning hyperparameters of Neural Networks or statistical
models. The aim of BBO is to find in a feasible region €2 the global minimum of a target func-
tion f without knowing its full structure. Most of the Black Box Optimization problems in-
clude cases where the function evaluations are very expensive to obtain or when they involve
costly constraints evaluations. Moreover, most of the time in these problems we do not have
access to the gradient information of the function, or even if we have the access to the informa-
tion it is often unavaible to guide the search. In addition, the objective function can be possibly
noisy when numerical approximations and stochastic simulations are required in order to find
an optimal solution. Solving such problems can be very challenging even in low dimensional
conﬁgurations asitrequires ﬁtting a non-smooth function which can present many minimum
and saddle points. These optimization problems also need to take in account computational
cost and find the solution of the problem within a budget of number of function evaluations
allowed.

In this work, we analyze Bayesian Adaptive Direct Search (BADS, Acerbi and Ma 2017), a



hybrid Bayesian Optimization algorithm which combines the Mesh Adaptive Direct Search
(MADS, Audet and Dennis 2006) and aims to find the minimum (optimally the global mini-
mum) of possibly noisy functions in the setting of Black Box Optimization problems. BADS is
a fairly popular optimizer developed in MATLAB, and it is used by many computational labs
all over the world. Its popularity has been achieved because of its performance, indeed it has
been shown to perform equally or better than many other popular state-of-the-art MATLAB
optimizers, such as fminsearch, fimincon, and cmaes (Acerbi and Ma 2017).

Because of its increasing use, a Python version has been very much requested by several labs.
Moreover, releasing a Python version of the library would increase its accessibility to other users,
since Python is one of the most popular languages across the scientific community.

To satisfy such demand, we developed PyBADS, the Python version of the existing BADS
MATLAB library. We report in this work a detailed description of the new version and its
performance analysis against BADS.

Moreover, the work did not only consists in a mere porting of the algorithm, but we also tried
to improve the existing algorithm with new approaches and combine the recent work found in
Adaptive Direct Search for stochastic target functions made by Audet, Dzahini, et al. 2021 to
ensure and improve the convergence of the algorithm to a stationary point.

The thesis is divided in four main chapters. In chapter 2, we first cover the background
knowledge required to understand BADS and Black Box optimizations, by explaining three es-
sential components of BADS: the Mesh Adaptive Direct Search (MADS), Gaussian Processes
and Bayesian Optimization. Chapter 3 contains instead the core work carried out in this thesis,
which includes a report on the new Python implementation of BADS, the analysis carried on
Sto-MADS and the work involved for integrating Sto-MADS in BADS. Moreover, this chap-
ter comprehends the evaluation method used to set, run and evaluate the experiments. It also
contains a description of the benchmark software developed for comparing the algorithms on
different problems made of synthetic data. Finally in the last two chapters we report the ex-
perimental results obtained by comparing different optimizers and the investigation carried
out to assess the if the algorithms developed in this thesis are demonstrating equal or better

performance than the existing BADS algorithm.



Background

This chapter covers all the main content required to grasp and understand the work carried
out in this thesis on the Bayesian Adaptive Direct Search (BADS) algorithm (Acerbi and Ma
2017). The Background chapter is divided into four sections, their sequence order is designed
to define a clear path to guide the reader for a complete understanding of BADS. Together all
the contents will be later combined and used in BADS, as explained in the last section.

In Section 2.1 we explain the Mesh Adaptive Direct Search framework and introduce some
theoretical insights of non-smooth black-box optimization problems. In the next sections (Sec-
tion 2.2, Section 2.3) we cover Gaussian Processes and later Bayesian Optimization. We first
recall the Multivariate Normal (MVN) distribution and extend its structure to introduce Gaus-
sian Processes. Once having understood the theoretical content, we present the Bayesian Opti-
mization framework, a recent method (independent from existing adaptive direct search meth-
ods) that has shown a great potential in solving Black Box Optimization problem. Section 2.3
will also show the importance of Gaussian Processes in the Bayesian Optimization framework,
and will be the final content to complete our prerequisites before introducing BADS in Section
2.4. In the final Background’s section, we present a comprehensive explanation of BADS, by
explaining the main steps of the iterative algorithm and the choices made related to the hyper-

parameters of the surrogate model and the algorithm.



2.1 MESH ADAPTIVE DIRECT SEARCH (MADS)

MADS (Audet and Dennis 2006) has been one of the most influential algorithm in the field
of BBO, and it proposes a general method (illustrated in Algorithm 1) for minimizing a deter-
ministic nonsmooth function f : R” — R U {+00} under general constraintz € Q # () C

RP. To cope with nonsmooth functions it exploits Clarke’s generalized directional derivatives

(Clarke 1990),

. ) + tv) —
y—, yeQ tl0, y+tveN t

(2.1)

and the Lipschitz continuity assumption near & (the incumbent) for building a compact set of
directions D C R” (called poll directions). Under appropriate assumptions, these directions
allow to reach a local stationary point ensured by the theoretical convergence analysis made
in Theorem 3.17 of MADS (Audet and Dennis 2006). The directions are built such that each
Clarke derivative is non-negative for every direction in the hypertangent cone, making them an
asymptotically dense set of refining directions. Thanks to the construction of these directions,

the method guarantees a stationary point 0 € 0 f (&), such that:

fo(#;v) > 0forallv e R" <= 0€9f(&):={s e R": f(&;v) > v'sforallv € R"},
(2.2)

allowing to state a stronger result than a finite number of directions as stated in the Generalized
Pattern Search (GPS) algorithm (Booker et al. 1999).

The MADS algorithm is made of two main phases, a POLL phase and a SEARCH phase,
which both depend on the current mesh defined as: M, = J ¢, {x + A'Dz: z € NP}

where S, € R is the set of all points evaluated with the oracle from the start until the k-th

Algorithm 1: General MADS algorithm

r Init: Letzg € Q, A < A8 D, G, 7,w™and w*
» while Stopping Criteriado

3 Optional SEARCH

4 LOCAL POLL
5
6

Parameters Update
end




iteration, A7* € R is the mesh size parameter that scales a finite set of directions D € RP*"p,
D must be a positive spanning set and each direction d; € ID be the product G'z; of a fixed non-
singular generating matrix G € R™"™ and an integer vector z; € Z". In the use case, the D
spanning set is chosen to be D = [Ip, —Ip|, where I} is the identity matrix in dimension D

as proposed in LTMADS, a practical implementation of MADS that will be introduced later.

2.1.1 POLL PHASE

The POLL method guarantees theoretical convergence towards the Clarke stationary point.
This stage consists of a local exploration of the optimization space that evaluates testing points
in the neighbourhood of the current incumbent &, by exploiting the constructed poll direc-
tions to move the incumbent in each direction depending on the iteration dependent mesh.
The construction of the poll set of directions D), = span {D} of the poll candidate points
Py = {x) + Al'v : v € Dy} C M, (called frame) is fundamental for the stationary point
convergence. The poll set defines which directions have to be tested in order to achieve the
Clarke stationary point. Instead, the iteration dependent mesh size controls the step size for

such directions: the higher the step size, the higher the step towards the constructed directions.

In addition to the mesh size, the POLL stage introduces the poll size parameter A}, which de-
fines the maximum length of poll displacement vectors Aj'v for v € Dy, from the incumbent
@i. The poll size must be A? > AT and typically A} ~ AT’||v||, in a such manner it allows
the number of positive spanning sets Dy, to be non-constant over all the iteration, and makes
the poll points in P, to be chosen from alarger directions set Dy,. If the mesh size coincides with
the poll size (as it is done in GPS), the algorithm results into having constant number of positive
spanning and restricts the possible directions from the Dy, set. A clear example that emphasizes
such scenario can be seen in Figure 2.1 and Figure 2.2. The sampled directions are retrieved
from the compact set D defined as {(dy, d2)” # (0,0) : di,dy € {—1,0,1}} C R? and
AP =n /AT
By comparing the two figures, we see that the candidate points in the case of A} = n\/A}"
(Figure 2.1) can be sampled among the mesh points lying in a higher space of directions which
is delineated by the dark contour in the figure.

Using such technique, MADS can exploit more combinations and possible directions within
AP||d|| < APmax{||d’|| : d’ € D} constraint, and it allows the directions to not be con-

fined to a finite set, as it is done in GPS.
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Figure 2.1: Example of MADS frames P, = {xy + AJ'v : v € Dy} = p1,p2, p3 where A} = n, /AT (repro-
duced from Figure 2.2 of MADS, Audet and Dennis 2006).

2.1.2 SEARCH rHASE

During the optimization of the unknown function, MADS alternates between the SEARCH
and POLL phases. The former has the aim of exploiting the mesh space by injecting problem
specific information into the optimization problem. The framework of the algorithm allows
the freedom of using any search strategy with the only restriction that all the points have to
lie on the current mesh. By only this restriction, the search method does not require to state
formal guarantees for a new minima, limiting the result to be in the mesh grid suffices the con-
vergence of the algorithm to the stationary point when switching back to the POLL phase.

If the search step is not able to find an improved point in the minimization of the objective
function, the search fails and calls the POLL before terminating the iteration of the algorithm.
Examples of search strategies mostly include surrogate like the Surrogate Management Frame-
work (Booker et al. 1999), the Gaussian Process surrogate proposed by Serafini et al. 1998, and
other heuristic strategies can also be used like the randomized evolution strategy with covari-
ance matrix adaptation (CMA-ES, Hansen, Miiller, and Koumoutsakos 2003).

In BADS instead, during this phase we perform Bayesian Optimization as a search strategy by
using a Gaussian Process as a surrogate model of the unknown function. More detailed infor-

mation about this method is given in the Section 2..4 of this work.

6
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Figure 2.2: Example of GPS frames P, = {x, + AJ'v : v € Dy} = p1, p2, p3 where Ai = A" (reproduced from
Figure 2.1 of MADS, Audet and Dennis 2006).

2.1.3 PARAMETERS UPDATE

As we have seen in the previous sections when exploring and exploiting the current mesh space,
the mesh size and the poll size parameters play an important role in the algorithm. They de-
scribe the displacement length of the new incumbent applied to the directions retrieved from
both search strategies. Moreover, their magnitude tells us how much promising is the retrieved
direction at the current stage of the optimization problem. Therefore, defining an update rule
is crucial in order to make the algorithm converge to the minimum point.

To define such rule, we need first to evaluate if the new candidate point does describe an im-
provement in the optimization problem, i.e what a successful point is. Since we deal with a
deterministic objective function MADS simply defines an improved mesh point by a trial mesh
point with a lower objective function value than the current incumbent value f (). When it
occurs, theiteration is called as a successful iteration, thus f(xr11) < f(x))holds. Accordingly

to this event the mesh update rule is defined at the end of the iteration as following:

. T A" if an improved mesh point is found (3)
k+1 — ) : 2.3
T AY otherwise

The 7 hyper-parameter is defined as 7 > 1 and wy, € N. On the other hand, when updating
the poll size parameter A}, | the update rule should satisfy the A} < A} condition for all &



and
lim A" =0 <= lim A} = 0 for any infinte subset of indices K. (2.4)
keK keK

When both iterations fail, thus either the search strategy or the poll one fails to find an improved
mesh point, we increase the mesh resolution, i.e we reduce the mesh size in order to look for
candidate points that are closer to the incumbent. Instead, when a successful point is found
the mesh size can be increased or remains the same as described on the previous rule. In addi-
tion, when an improved mesh point is found, the poll method can be opportunistic and switch

directly to the search phase. The algorithm proceeds until a stopping criterion is met.

2.1.4 LIT-MADS

During the POLL phase, MADS requires to construct a set of poll directions that has to be in
a tangent cone, in order to match the theoretical properties and ensure the convergence to a
Clarke’s stationary point. MADS proposes a specific implementation of the algorithm, called
LTMADS (Audet and Dennis 2006), that includes a stochastic method to construct such set of
directions. The strategy is based on a random lower triangular matrix and ensures with proba-
bility 1 that the set of refining generated directions is dense in the whole space, more precisely
in the hypertangent cone. This method is also exploited by BADS (Section 2.4) during the poll
phase. The algorithm fixes D = [Ip — Ip] as the viable search directions in dimension D
with7 = 4,; w~ = —land w™ = 1. Itinitializes the mesh and the poll size parameters
to 1 (Af' = 1, Af = 1), and the update rule using these parameters never exceeds 1. After
setting such configuration the algorithm generates randomly uniform directions, with the con-
straint that one of the direction has to be dependent on the mesh size parameter. We report in
this work the procedure used also in BADS for generating the poll directions with 27 basis. A
more general rule instead can be found in the section 4 of the MADS paper (Audet and Dennis
2006). In our case, the 2n poll directions are constructed as described in the Algorithm 2.

The first method generates some random uniform 2n poll directions, and later it combines
the directions with a diagonal mesh dependent vector. The resulting matrix is permuted and
finally extended to a positive basis by mirroring it, leading to a basis in RP. Thanks to the mesh
dependent diagonal, the resulting matrix has a positive basis Dy, and it ensures the convergence
to the stationary point, indeed the union of all directions is dense in RP with probability 1.
These two properties are proved in the Proposition 4.2 and Theorem 4.4 of MADS (Audet

and Dennis 2006).



Algorithm 2: MADS 2n Poll basis vectors
i Input: Let zp € Q, A" < A

. AR
Nmax = Min <1, |_A£ ])
D e 72P*P ~ U {0,1}
D = 2nmax D — Tmax
D = til(D,-1)
d = N 2 (U {1,3} — 1.5)
D=D+1p06d
D = permute(D)”

D

2= | )

1o return B

»

B NN

~ [ )

<«

o

2.2 GAUSSIAN PROCESSES

Gaussian Processes (GPs) are statistical models for approximating an unknown function f in
supervised regression and classification problems. They incorporate prior knowledge of the un-
known function and exploit Multivariate Normal distribution (MVN) properties for building
uncertainty-aware models. Indeed, they allow to quantify the presence of uncertainty for each
prediction point by giving its estimated variance. In this paper, we will cover the regression
problem since it is related to our work, but their applications can be extended to classification
and clustering tasks as shown in (Kapoor et al. 2010) and (Kim and J. Lee 2007).

From a mathematical and a probabilistic point of view, Gaussian Processes are stochastic
processes, i.e a collection of random variables indexed by time or space, such that every finite
collection of random variables hasa MVN distribution. In addition, they can be seen as infinite-
dimensional generalization of a Multivariate Normal distribution, since each random variable
is described by a Normal distribution. Gaussian Processes are analytically very convenient as
they inherit and exploit properties of normal distributions. For this reason, we will first cover

MVN distributions and their properties to understand their crucial role in GPs.

2.2.1  THE MULTIVARIATE NORMAL DISTRIBUTION AND ITS PROPERTIES

The Gaussian distribution occurs in nature because of the Central Limit Theorem (CLT) as ei-
ther the sum of a large number of random variables or their mean lead to a Normal distribution,

making it very attractive for modelling data as they occur often. Moreover, they hold analytical



convenient properties like the infinite divisibility property - linear combinations of Gaussian
random variables are still normally distributed - and the joint distribution of Normal random
variables remains a Gaussian. Because of the latter properties, extending from the univariate
case to the multivariate case can be described in a straightforward manner by a joint Gaussian
distribution X € R? made by a mean vector g1 € R? and a covariance matrix ¥ € R%*,
thus X ~ N (p, X). The mean vector describes the expected value of each Normal random
variable, instead the covariance matrix defines the variance and the pairwise similarity for each
dimension. The diagonal of the square 3 matrix describes the variance of each variable, and
the off-diagonal elements outline the correlation between the i-th and the j-th random variables.
Moreover, because each component of the MVN is normally distributed, if two variables are
uncorrelated then they are also independent. The covariance matrix expresses also the shapes of
the normal distribution and it is always symmetric and has to be positive semi-definite. Assum-
ing that the random variables are normally distributed, a useful result is the that the predictive
distribution is accessible in a closed form solution, and marginalization and the conditional dis-
tribution of Gaussians results to be again a Gaussian distribution. Both results can be achieved
by exploiting the analytical structure of this family of distribution. Indeed, having the multi-
variate joint distribution allows us to obtain easily the marginal distribution by dropping out
the needed variable from the mean vector and from the diagonal of the covariance matrix. On
the other hand, conditioning the multivariate normal distribution on a new observed variable
Y € R%lead to a new MVN distribution in the following form:

XY ~ N (px +ZxvEyy (Y — py) , Bxx — ExyEyyZvx) . (23)

2.2.2 GAUSSIAN PROCESS: A GENERALIZATION OF MVN

We can now extend the concept of Multivariate Normal distribution to define Gaussian Pro-
cesses, which are stochastic processes of infinite dimensional domain. Thanks to the Kolmogorov
extension theorem, we can construct them by only using the distribution of arbitrary finite sets
of functions values (Jksendal 2003). Therefore, we can benefit of the finite dimensional mul-
tivariate Gaussian distributions to inherit their properties and generate a stochastic process,
which in our case is a Gaussian Process. GPs can be seen as a generalization of the MVN distri-
bution, to clearly distinguish the two objects we have to keep in mind that Multivariate Normal
distributions use scalars or vectors random variables as domain, instead the GP is a stochastic

process that governs properties of functions which span an infinite dimensional space (Gar-
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nett 2022). Examples of sampled functions from the Gaussian Process can be seen in the Figure
2.3.

Having an unknown function f : X — R to approximate, and some observations y € R,
building a Gaussian Process that fits f just requires to replace the parameters of the MVN by
a mean vector, where each value is retrieved from a mean function t : X — R, and by a
positive semi-definite covariance function matrix, where the values are described by a similarity

kernel function K : X x X — R. We can summarize the GP using the following notation:
p(f) = GP(f; u, K). In addition, we have that:

plyle) =N (y; 1, ) where p = Eylz] = p(x); (2.6)
Y =covylz] = K(z,x).

Often the mean function  is set to be a constant zero function, since the data can be centered,
and for this reason it is often uninteresting. Indeed, most of the effort when designing the Gaus-
sian Process is spent on ﬁnding the correct covariance function. But having a zero or constant
mean function implies the model to predict test points to such a constant value that can be far
away from the training set to such a constant value. Instead, in other cases we may want the
model to not converge to a constant but to have a different asymprotic behaviour. However,
integrating a mean function ¢t # 0 is a straight forward task, it only requires add the mean
term to the resulting function values after the prediction step.

The covariance matrix 3 is the main component that defines the process’s behaviour, each
pair of points of the covariance matrix is made by evaluating the kernel function, i.e ¥;; =
K (2;,x;). In addition, the covariance function does not solely describe a similarity measure
into a higher space but, it specifies a prior distribution over functions in the GP and it deter-
mines which of function is more probable than others. Indeed, just by changing the kernel the
samples of functions retrieved from the Gaussian Process change drastically as shown in the

Figure 2.3.

Therefore, the choice of the kernel introduces domain knowledge making the GP flexible
and capture the trends of the data. Moreover, they enhance their flexibility by composing dif-
terent kernels resulting a more complex and rich function. These functions can be combined
together by concatenating or composing them. Covariance functions can be divided into sta-
tionary and non-stationary kernels. The former ones are functions which are invariant to trans-
lation and points only depend on their relative position . Instead non-stationary kernels do

not have invariant translation and depend on their absolute location (Gértler, Kehlbeck, and
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o? exp (— M) ,corresponding to the prior samples of the GP.

Deussen 2019). A full overview on different kernels and their properties as well their usage
(including composite kernels ) can be reviewed in the thesis’s work of Duvenaud (Duvenaud

20I5).

When dealing with a stochastic function fg, where the noise can be caused by some mea-
surement errors or generally by some uncertainty in the unknown function, the GP can model
the noise by adding an error term in the model. To formalize this problem we can describe the
observations by y = f(X) + € where € is commonly assumed to be € ~ N (¢; 0, o?) and
identically independent distributed. Therefore, to fully define the Gaussian Process we need
to specify the mean and the kernel function and finally the noise distribution. Once having
defined all these elements, we can retrieve the joint distribution by exploiting normality as-

sumptions, independent noise, and we also assume zero mean for simplifying the derivations.

oo ya)| o] [kata)+0® k)T
U@ =GP\ T D hme) Kawt ol

y(wy,) 0

Furthermore, since we inherit all the MVN properties computing the posterior distribution
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f(2*)|y can be done using the following closed form solution:

1

F@) |y ~N <k (2%, %) 7 (K + 021)

k(z*,2) + 0% + k (2", x)" (Kxx + 02]1)_1 k (:cﬂx))

y(x),
(2.8)

From the previous distribution we can obtain a prediction for an input £* value by sampling
from the posterior, otherwise we can extract the the marginal distribution of the mean function
and the standard deviation by dropping out the needed variable from the mean vector and the
covariance matrix of the posterior distribution and finally construct the confidence interval for

each prediction.

In order to fit the Gaussian Process to the data we commonly want to find the model param-
eters 6 such that maximize the observed data and take in consideration the prior knowledge of
the parameters. A common practice for solving this task is to estimate the parameters of the
Gaussian Processes by using the maximum a priori (MAP) estimate method. The parameters
0 of the Gaussian Process include the mean function f, the error parameter o, and the pa-
rameters of the kernel function. We consider some prior knowledge of the parameters and we
estimate them by maximizing the maximum a posteriori probability, more formally we solve

the following problem:
0" = arg max log p(y| X, 0) + log p(0)] (2.9)

Other approaches instead consider a fully Bayesian Inference framework by approximating the
tull posterior distribution using for example variants of Markov Chain Monte Carlo (MCMC)
methods or distributional approximation techniques like Variational approximation or Laplace
approximation. In general, these methods result to estimate better the parameters of the model,

but they do require more computational costs than MAP estimation method.

Unfortunately, Gaussian Processes come also with some known disadvantages like intractabil-
ity and high computational costs when considering high dimensional problems - in general they
require O(NN?) time complexity and O(N?) memory complexity, where N describes the train-
ing size - (Belyaev, Burnaev, and Kapushev 2014) moreover they can not best perform when the
likelihood is not Gaussian.

However, different prominent works have been proposed for addressing this issue by using dif-
ferent approaches which exploit for example faster methods for decomposing covariance matri-

ces and fast inference in multidimensional problems, reducing the O(N?) complexity of GP
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learning and inference to O(N) and the standard O(NN'?) complexity per test point prediction
to O(1) (Wilson, Dann, and Nickisch 2015). Moreover, we would like to share that many other
works in the recent years have been published to scale the GP to a lower complexity problem
(Gardner et al. 2018; Tran, Ranganath, and Blei 2015; Rossi et al. 2020), making this field a very

active area of research.

2.3 BAYESIAN OPTIMIZATION

Solving an optimization problem can be seen as a sequence of decisions to reach the minimum
or maximum point of an objective function. These decisions are taken by an iterative algo-
rithm that decides where to retrieve the observations by exploiting some prior knowledge of
the problem and the available data. In the case of Black Box Optimization (BBO) we want to
find the global minimum of an unknown expensive function for which we do not have access
to the analytical form and its gradient information. In this configuration, designing a sample
efficient algorithm is much needed because of the budget constraint on the maximum number
of function evaluations. One of the leading strategies, in the field of BBO that fully adopts
Bayesian decision theory is Bayesian Optimization (BO). Its usage has been shown to solve a
wide range of problems (Mockus 2012), such in Machine Learning and Deep Learning models
for hyper-parameter tuning (Bergstra et al. 2015; Snoek, Larochelle, and Adams 2012), compu-
tational neuroscience (Acerbi and Ma 2017), experimental particle physics (Cisbani et al. 2020),
material design (P. I. Frazier and Wang 2015) and many others (Lizotte et al. 2007; Brochu, N. d.
Freitas, and Ghosh 2007; P. Frazier 2018).

Bayesian Optimization uses active learning methods to guide the optimization algorithm by
reasoning on uncertainty measures and the predicted mean given by a surrogate model. The
main core of Bayesian Optimization is to define optimization policies based on uncertainty in
order to reach the global minimum of the function. The policy in BO corresponds to the so-
called acquisition function o : X — R, a function that provides a score to each potential
observation location with the aim of finding the next point to evaluate so that minimize the
number of function evaluations, and aid the optimization task while maximizing the model ac-
curacy (Agnihotri and Batra 2020). Contrary to the main objective function of the black box,
this heuristic function has to be tractable. Indeed, they are typically cheap to evaluate and an-
alytically differentiable. They define a rule that balances between exploring uncertain regions
and exploiting certain regions. Several acquisition functions have been proposed for Bayesian

Optimization, but we will focus on the most popular ones and those related to our work, we
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will describe their functionalities, properties and analytical closed form solution when assum-
ing the surrogate being a Gaussian Process.

Expected Improvement (EI)

One of the most used acquisition is Expected Improvement. It retrieves the point pey that
in expectation most improves the objective from the current point observation f’. This corre-

sponds to:

u(z) = max(0, f(z) — f) (2.10)

Tpew = argmax agy = arg max E [u(z)|z, D] .

When considering the Gaussian Process as the surrogate model, the 2.10 expression corresponds

to the following closed form solution:

El(r) = (1(x) = ' =€) ©(Z) + o(x)b(2) ffff@) >0 (1)
0 ifo(z) =0
g a) —f—e

o(x)
The function ® describes the cumulative distribution function (CDF) of the standard normal
random variable Z and ¢ its probability density function (PDF), instead € € R™ balances
the rate of exploitation and exploration, the higher it is the more it explores. We can see that
the Expected Improvement will be high when 1(x) — f’ is high or when the uncertainty o ()
around a point is high.
Probability of Improvement (PI)
Another acquisition function is the Probability of Improvement. It retrieves the point with
the highest probability of improvement from the current minimum f”. It uses the following

utility function

u(z) = 1 iff(x) > f'+e¢ | (1)
0 else

and maximizes the expected utility as:

Tnew = argmax apr(z) = argmax E [u(x)|z, D] . (2.13)
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When considering the Gaussian Process as surrogate model, the closed form solution of the

above problem corresponds to the following CDF of the GP:

Tnew = arg max apr(x) = arg max @ (M(I)_f/_e) , (2.14)
(@)
where the € regulates the gained improvement. Moreover, increasing € possibly results in find-
ing candidate point with larger variance, as their PDF is spread (Agnihotri and Batra 2020).
Lower Confidence Bound (LCB)

Finally, one of the last acquisition functions that we would like to cover in this work is the
Lower Confidence Bound, which is also used in BADS (Acerbi and Ma 2017). The function
has been designed to guide the optimization task to choose point with highly uncertain ob-
servations which have a wide range of plausible values, therefore the heuristic encourages the
exploration of plausible optimal locations. The acquisition function has a very simple form

and it corresponds to the quantile function:

Tpew = arg min arcB (fL') = arg min (IM(Q?) - \ﬁO‘(l‘)) : (2.15)
X xT
The v hyper-parameter sets a confidence value and determines the confidence value: with rela-
tive low value exploitation is favoured by giving little credit to locations with high uncertainty,
instead high values of v heavily favour exploration.

For designing these acquisition functions there has been a wide range of functions, and a full
review about of them can be seen in (Garnett 2022). The choice of acquisition functions is a
non trivial task; its choice is still often unclear, and it s still an open question in the field. Several
different functions have been proposed but none of them works well for all classes of functions
(Hoffman, Brochu, and N. d. Freitas 2o011). However, the most common and well-known ac-
quisition functions that have been used in many applications of Bayesian Optimization are the
Expected Improvement and the Lower/Upper Confidence Bound functions that we have been
covered in the previous paragraph.

Instead of a single acquisition function, another possible strategy can be carried out by using
a portfolio of acquisition functions. This method involves the usage of a pool of acquisition
functions and defines a policy by an online multi-armed bandit strategy for picking a function
from the pool. Such a method has been used in the work of Hoftman et al. where they have
shown that it outperformed individual acquisition functions in some common benchmarks of

Bayesian Optimization, making this strategy a promising method to use in some cases.
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(a) Example of the BO algorithm using the Expected Improvement (El) acquisition function. Unfortunately, with this config-
uration the algorithm get stuck in a local minima of the GP.
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(b) Example of the BO algorithm using the Lower Confidence Bound (LCB) acquisition function. This configuration of the
algorithm achieves a point close the Oracle solution with the same amount of iterations used for the El function.

Figure 2.4: Summary of ashallow Bayesian optimization algorithm showing its performance after 8 iterations on a bi-modal
stochastic function f(z) = sin(3z) + 22 — 0.7z +Ewhere £ ~ N (0, 1). The examples report two configurations of
acquisition functions (El and LCB). In the first row of each figure, the black line describes the Oracle function, the blue line
is the predicted mean of the GP and the purple area represents its estimated variance. The point elected by the acquisition
function is reported with the red star. Instead, the second row reports the utility function u(x) and a vertical line showing
the elected minimum point of the utility function, which corresponds to the acquisition point.
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Algorithm 3: General and basic BO algorithm

1 Input: initial dataset D = { X, y}, prior 7y, parameters @ ~ p(@|7), unknown f
» while Stopping Criteriado

3 Approximate p(0|D) = % o p(D|0,~)p(0]v)

4 x = arg max,,cy o(x’; D)

5 Observe y,, = f(x)

6 D=DU{x,y}

7 end

s Return the candidate minimum point of the model.

To describe and fully capture the work-flow of the Bayesian Optimization framework we
reported a general scheme in Algorithm 3, summarizing the main steps required by a BO algo-
rithm. The framework requires: an initial dataset or point, and a statistical model that provides
a parametrized posterior distribution retrieved using Bayesian inference, where the parameters
come from a prior v, thus @ ~ p(@|7). The algorithm at each iteration first update its pa-
rameters and the posterior probability distribution of the surrogate model using the chosen
inference method. Afterwards, it uses the acquisition function to find the new point to evalu-
ate. Finally, it evaluates the function on the new point and adds it in the dataset. The method
continues with the previous step until a stopping criterion is satisfied and returns the found
minimum point with its uncertainty measure.

A common choice for the surrogate model in Black Box Optimization are Gaussian Processes.
They have been the building blocks of Bayesian optimization (P. Frazier 2018) and they have
found a lot of applications in BBO like in BADS (Acerbi and Ma 2017) and for tuning hyper-
parameters in Deep Neural Networks (Xiao, Xing, and Neiswanger 2021). They have been also
used in statistical inference problems to boost inference methods like it has been done in Vari-
ational Bayesian Monte Carlo (VBMC, Acerbi 2020) and in the work of Gutmann, Cor, and
er 2016. Moreover, they are commonly used in Bayesian Optimization because they provide
closed form solutions when designing activation functions. Other types of surrogates like en-
sembles of Deep Neural Networks can also be used when considering non expensive functions

as it has been done in the work of Swersky et al. 2020.
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2.4 BAYESIAN ADAPTIVE DIRECT SEARCH (BADS)

Thanks to the general scheme of MADS it is possible to extend the framework and incorporate
a search method that can significantly speed up the convergence toward a stationary point.
Several approaches have been proposed in the literature by integrating surrogate models in the
search method of MADS (Audet, Béchard, and Digabel 2008; Serafini et al. 1998; Digabel and
Gramacy 2011). Contrary to these works, Bayesian Adaptive Direct Search (BADS, Acerbi and
Ma20r7) method has stood out from the existing work because it does not only include a surro-
gate model in the search phase, but it encapsulates the Bayesian Optimization framework into
the adaptive direct search method of MADS.

The algorithm combines both frameworks, it exploits the direct search method to guarantee
theoretical convergence to a Clarke stationary point, and Bayesian active methods combined
with a Gaussian Process to guide the sequence of decisions in the optimization problem and
making the algorithm sample efficient. MADS has been designed for deterministic nonsmooth
functions, integrating Bayesian Optimization and the Gaussian Process extends its usage also
to noisy black-box functions. Indeed, BO has been considered as a state-of-the-art for black box
optimization problems, including stochastic targets (Jones, Schonlau, and Welch 1998; Brochu,
Cora, and N. d. Freitas 2010). Furthermore, BADS empirically has been proved to find better
solutions or comparable ones against other optimizers on several model fitting problems with
real data and models retrieved from cognitive, behavioural and computational neuroscience,
which included noisy observations (Acerbi and Ma 2017).

We now describe BADS, which is summarized in Algorithm 4. The algorithm is divided in
two stages like in MADS: the POLL phase and the SEARCH phase. Contrary to MADS, that
selects the points in the mesh grid that most minimize the unknown target function only us-
ing the function evaluations, BADS in both stages exploits the Gaussian Process as a surrogate
model to approximate the unknown function, and the acquisition function to select the next
point of the Poll or Search set based on the variance estimated by the GP.

To summarize, BADS alternates between the two stages. During the POLL phase, it performs
a failsafe exploration of the optimization problem, by gathering local information of the ob-
jective function using a model-free method - as it is carried out in MADS. Each observation
made during the POLL is then added to the training set of the GP. The aim of this phase is not
only to minimize the objective function by using the model-free method, but also to provide
an adequate surrogate for the SEARCH stage when the POLL phase ends.

As soon as the algorithm switches to the SEARCH phase, the method exploits the built model
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Algorithm 4: Bayesian Adaptive Direct Search

1 Input: initial dataset D = {X, y}, objective function f, starting point &, hard
bounds LB, UB, optional plausible bounds PLB, PUB, optional barrier function c,
additional options

2 Do

3 for 1. Nepyer, 5 > SEARCH stage
4 do

s Lsearch < SearchOracle ; > Local BO step
6 Observe f(Zgearch)

” if .40 18 a success then X, < x,; break;

8 end

9 if SEARCH not sucessful then

10 compute poll set Py, ; > POLL stage
r evaluate opportunistically f on Py sorted by oo p(Py)

12 if @, is a success then Tpey < Tp;
13 end
14 if iteration k is sucessful then

I Tit1 < Thews > Grid parameters update
16 if POLL is was a success then A} < 207" A} |+ 2775
17 else AT+ AT AD | — SAT;
18 end
19 k<« k +1

20 until fevals > MaxFunEvals and StoppingCriteria;
21 Return the candidate minimum point of the model.

to effectively optimize the space by computing local fast optimization steps. This phase stops
when the model is not able to find a better improvement in the minimization problem — which
can be caused by a misspecified model or excess uncertainty — then the algorithm switches back

to the POLL stage by updating first the parameters of the search space (poll size, mesh size).

2.4.1 GAUSSIAN PROCESS SETUP

By default the observations y*) are assumed i.i.d Gaussian, y ~ N (f(z®), 0?) witho > 0.
Even when [ is deterministic, we assume a small noise ¢ > 0, as it helps for the numerical
stability of the Gaussian Process and its predictive accuracy (Gramacy and H. K. Lee 2012). The

GP is configured with a constant mean function m(x) € R and a smooth automatic relevance
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determination (ARD) rational quadratic (RQ) kernel,

—a D
1 1
krq (x, ') = [1 + — o’ r?(x, )} . with 7 (z,2') = g —3 xq—a)’

where [y, ..., [p are the kernel length scales for each coordinate direction, av > 0 describes the
shape, and O'J% is the variance parameter. All these hyperparameters @ = (m, 1, ...,Ip, @, 07)
are modelled by independent prior distributions with hard bound constraint as described in
Table 2.1. The priors are defined based on the data and they are updated using a quick heuristic
approximation called Empirical Bayes (Supplementary Material A.3 Acerbi and Ma 2017).
Moreover, 6 is estimated using maximum a posteriori (MAP) estimation to fit the GP via a
gradient-based non-linear optimizer, and finally update the posterior distribution.
This task is computed either every 2D to 5D function evaluations or whenever the GP is inac-
curate according toa normality test of the residuals assuming independent observations,
20 = (40— @) yFED + 07
In addition, to improve the Gaussian Process stability and to build a more precise local approx-
imation around the incumbent xy, the training set X of the GP is designed to select a subset
of the points evaluated so far (Quinonero-Candela, Ramussen, and Williams 2007). At each
time that either the GP parameters @ are fitted or the incumbent is moved to a new point,
the algorithm rebuilds the training set of the model by first sorting the points based on their
I-scaled distance 12 (Equation 2.16) from the incumbent xy, then adds the closest n,,;, = 50
to the training set. Secondly, additional points up to 10.D that satisfies r < 3ppg () are added
into X, where ppg(a) = Va el’a —1isa radius function that depends on the decay of the
kernel (see Supplementary Material of BADS, Acerbi and Ma 2017). Finally each new point is
added in the set using fast rank-one updated of the GP posterior.

2.4.2  ACQUISITION FUNCTION IN BADS

BADS embodies the acquisition function in MADS by applying it on the Poll set or in the
Search set to elect the candidate point which will be evaluated using f and then later added
in the training set of the GP. By default, the algorithm uses the Lower Confidence Bound
(LCB) acquisition function, which elects the point by taking in consideration the uncertainty
in the observation and encourage possible optimal regions with the aim of reducing the vari-

ance present in such location.
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Hyperparameter Prior Bounds

GP Kernel
Length scales{y  In{y ~ N1 (3 (In7max 4+ In i) 5 5 (I07ax — In rmin)z) Pl g
Signal variability o;  Inoy ~ N (InSD(y), 22) (1073, 10°]
RQkernel shape  Ina ~ Np(1,1) [-5, 5]
GP observation noise ¢ Ino ~ N (Inceg, 1) [4-107%, 150]
deterministic f ooy = /1073AF
noisy f Oey =1
GP mean u p~ N (Q0.9(y)7 5% (Qouo(y) — Q0,5(y))2) (=00, 00)

Table 2.1: GP hyperparameters priors (Acerbi and Ma 2017). Empirical Bayes priors and bounds for GP hyperparameters.
N7 denotes the truncated normal, defined within the bounds specified in the last column. 7,4 and Ty, are the maxi-
mum (resp., minimum) distance between any two points in the training set. The L4 is the parameter range (U By — L By),
for1 < d < D.SDJ(-)isthe standard deviation of a set of elements, instead Q is the ¢—th quantile of a set of elements.

The function is defined as:

sl (X,9),0) = (o)~ VuA(@). =2 (P). G

where v and ¢ are both positive hyper-parameters of the function (v,d) € Rt \ {0}, the
former one is the confidence value and the latter one describes the probabilistic tolerance, ¢ is the
number of function evaluations so far and 3; represents the learning rate chosen to minimize
the cumulative regret under certain assumptions.

For BADS, it is recommended to use the values v = 0.2 and 6 = 0.1 (Acerbi and Ma 2017).
Other types of acquisition functions have been also tested for the experimental analysis carried
outin BADS, but the LCB function has been found to perform better than others (Acerbi and
Ma 2017).

2.4.3 INITIAL CONFIGURATION

At first the algorithm is initialized by giving a starting point &, the objective function, the
hard bounds (LBp, UBp) and optionally the plausible ones (PLBp, PUBp), then it checks
if the given function is noisy by evaluating multiple times from the starting point and assess-
ing if the difference between the observations is more than a fixed tolerance noise. After this
assessment, the algorithm generates i, = D additional points using a space-filling quasi-
random Sobol sequence, and sets the incumbent @, as the point with the minimum function
value. All the input points require to be inside the hard bounds, otherwise they are projected
in the plausible bounds, which identify a region in parameter space where most solutions are

expected to lie. Moreover, all the variables are scaled into the standardized box [—1, 1], such
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that the box bounds correspond to [PLBp, PUBp], in the original space. In the case that all
the bounds are positive and the plausible range spans at least one order of magnitude of differ-
ence, i.e PUB/PLB > 10, a log-scaling is applied on the input variables of the function. The
algorithm allows the hard bounds to be infinite, but then it needs the plausible bounds to be
finite. In such a way, it supports both constrained and unconstrained optimization problems,
and a constraint can be passed as an input to BADS via a barrier function c.

After having standardized the bounds, the algorithm initializes the MADS parameters, i.e the
frame size and the mesh size, by setting Al = 1, A7* = 279 and 7 = 2. In such a way, the
algorithm can span the plausible regions and the mesh grid is relatively fine and the increment
in step size (7) is applied only after a successful POLL. Finally, before starting the optimization
problem, the Gaussian Process is initialized by setting the prior distributions of the hyperpa-
rameters and fitting the model on the initial training set made by the observations returned by

the space-filling method.

2.4.4 BADS IMPLEMENTATION: INTEGRATING MADS inTo BO

PoLrr sTAGE IN BADS

The first iteration of the algorithm is by default characterized with the POLL phase, the subse-
quent iterations of the POLL instead are performed when the SEARCH method fails. BADS
during the POLL phase explores the mesh grid using the LTMADS (Audet and Dennis 2006)
algorithm for constructing the dense poll set of directions Dy, and additionally it rescales each
direction vector proportionally to the GP length scale /5. The new candidate point is retrieved
from the acquisition function applied on the @, + D}, input set. The elected point is then eval-
uated with the target function and added in the training set of the Gaussian Process. During
this task the GP is fitted when computing the first observation of the poll set or when it is not
well calibrated. The POLL is opportunistic, thus when a successful improvement is found it
stops. Otherwise if it does not find such improvement it continues to process the poll set until
cither all the new points @, + D), have been discarded or the poll iterations exceeded twice the

number of the input dimensionality.

THE SEARCH STAGE AND ES

The search strategy has the aim of exploring the local region of the mesh grid in an effective

way by computing fast optimization steps thanks to an adequate Gaussian Process surrogate
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model. BADS combines different search strategies inspired by the CMA-ES numerical opti-
mization method (Hansen, Miiller, and Koumoutsakos 2003) adopting a portfolio allocation
strategy (also called bedge search) for allocating and choosing between different kinds of evolu-
tion strategies. The hedge search tracks the record of cumulative improvements among all the
strategies according to the Hedge algorithm (Hoffman, Brochu, and N. d. Freitas 2o11).

All the search methods share a general rule of sampling points in the neighbourhoods of the
incumbent &y, which are drawn from a multivariate Normal distribution N (s, A\>(AF)X),
where x, is the current search focus, A a scaling factor and X a search covariance matrix. Sam-
ples that violate non-bound constraint (c() > 0) or the hard bounds are projected to the
closest mesh point inside the bounds. The difference among the search methods lies on the co-
variance matrix passed to the Normal distribution. BADS uses two different strategies: the
first one is called ES-WCM method and it constructs a matrix Xy cas proportional to the
weighted covariance matrix of point in the training set of the Gaussian Process. Instead, the
other method is ES-ELL that uses a diagonal matrix made of the re-scaled length scales of the
Gaussian Process, diag(1? /|1, ..., 1% /|1]?).

Once drawn the samples from the Normal distribution of the search method, the acquisition
selects the @ eyrcn candidate point, which is later evaluated using the target function, and finally
the observation is added to the training set of the GP.

The method performs a maximum of Nyegeen = max{D, |3 + D/2]} unsuccessful SEARCH
steps, if they exceed the trials it switches to the POLL phase. On the other hand, when a suc-
cessful improvement is found, the incumbent is moved and a new SEARCH from scratch is

started from the new point.

INCUMBENT AND UPDATE RULE

Both stages assess if a new point presents an improvement in the minimization problem, de-
pending on its results the mesh size and the incumbent are both updated.

BADS defines an improvement depending on the incumbent function value and the new ob-
served value. If f(Znew) — f(2%) < O then itis an improvement and the incumbent is moved
towards the new point. In addition to this rule, BADS defines also a sufficient improvement,
which occurs when f(2new) — f(21) < (AR)?/2. The latter heuristic does not just move the
incumbent, but defines a successful point and updates the mesh grid parameters. Indeed when
a successful point is found during the POLL, the mesh size and the poll size are incremented
by a factor 7 = 2. Instead, if the point is found during the SEARCH strategy then the poll is

skipped, the incumbent moved and the grid parameters remain the same. When no successful
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improvements have been found in both of the strategies, then the mesh size and the poll size

are both reduced by 7 = 271

Tjpil ¢ Tnew; Ay 207 AL 200 f(@pew) — f(xr) < O0and f(xy) < (AR)3/2
Lp+1 < Lhew f(mnew) - f(wk) <0
W 27TAR AV 271AD otherwise

(2.18)

UNCERTAINTY HANDLING

Noisy tasks are more challenging problems and when they are encountered in BADS they are
addressed by the Gaussian Process which quantifies the uncertainty in the predictions and by
the Bayesian optimization framework. Although thisapproach can be sufficient in simple cases,
due to the noise we can not simply rely on the y; output values of the function as a ground truth
value, especially when evaluating the decision rule for the incumbent update. For this reason,
BADS replaces y; with the GP latent quantile function following the work carried out by V.
Picheny et. al. (Picheny et al. 2013):

(]ﬁ(".l?; {va}’ 9) = Qﬂ(m) = [L(ZB) + (I)_l<ﬁ)8<m)7 B € [0'57 1)7 (2-19)

where ® (") is the quantile function of the standard normal distribution, s() the estimated
variance at & and 3 the statistical significance threshold rate used as a hyperparameter. By de-
fault 8 = 0.5 for promoting exploration, making the algorithm more stochasticand less conser-
vative when moving the incumbent. In addition, to have a better accounting of the uncertainty
BADS keeps a set of incumbents {z; }¥_; and at the end of each POLL it re-evaluates g for all
the incumbents and select the the point with the lowest g3.

At the end of the algorithm, &g is selected in a conservative and robust manner using 3 =
0.999. Moreover, when BADS minimizes a stochastic target it adds some initial configurations
for dealing better with a noisy function. It doubles the minimum number of the GP training
data to a maximum size of the 200, it increases the minimum number of Sobol’s sequence sam-
ples to be at least ;,,;s = 20, and it doubles the number of allowed stalled iterations. Finally,
when the algorithm needs to retrieve the final function value, BADS returns either the GP pre-

diction value jt(€cpnq), or an unbiased estimates of E [ f(2,q)| using a simple Monte Carlo

25



sampling method.

STOPPING CRITERIA

BADS uses several stopping criteria, the simplest one being when the algorithm exceeds the
function evaluations allowed by a defined budget (default 500D) or the number of iterations
allowed. But more sophisticated rules are also applied, like the detection of the minimal frame,
i.e when the poll size shrinks towards zero which is checked when A} > 107 making the
algorithm to stop. Another stopping criteria is used when there is no significant improvement
on the objective function for more than 4 + | D/2 | iterations.

When a stopping criterion occurs, before the algorithm returns the final @, it transforms the

incumbent to the original coordinate space.
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Methods

BADS is available in an open and accessible GitHub repository' and it is developed in MAT-
LAB. Thealgorithm has been shown to perform equally well or better than many other popular
optimizers like fiminsearch, fmincon, and cmaes (Acerbi and Ma 2017).

A Python version has been much requested by several labs and for this reason we developed Py-
BADS, the Python version of the existing BADS MATLAB library. We reported in this thesis
a detailed description of the new version and its performance analysis against BADS.

The objective of this chapter is to describe the work carried out for porting BADS, which did
not only consist of a mere porting but also included the analysis of a new method integrated
in PyBADS for the optimization of stochastic targets. The aim was to improve its convergence
rate towards stationary points and providing a theoretical result for its convergence. The study
involved the integration of the existing BADS with the recent Stochastic Mesh Adaptive Di-
rect Search (Sto-MADS) framework (Audet, Dzahini, et al. 2021), which guarantees theoreti-
cal convergence towards stationary points for non-smooth stochastic functions. This chapter
also presents a generic black-box optimization benchmark library in Python used to evaluate
and assess different optimizers for black-box optimization problems. In this thesis work, we
restricted its usage to the comparison between BADS and PyBADS, by testing them on some

optimization problems using synthetic functions as reported in our experimental results.

Chapter 3 is structured as follows: it first briefly describes the porting of the MATLAB

'BADS: https://github.com/acerbilab/bads
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code to the Python version, followed by the new stochastic variant method included in Py-
BADS. Since the new approach has been adapted from the existing work of Sto-MADS (Audet,
Dzahini, et al. 2021), we dedicated a section for summarizing the main algorithm steps of Sto-
MADS and its theoretical results for convergence guarantees. Section 3.2 describes the studies
and the changes made on PyBADS to integrate it with Sto-MADS.

The section 3.3 of the chapter presents a robust evaluation method with high statistical power,
designed for deterministic and stochastic black box optimization problem. The description of
the evaluation method provides the scheme used for assessing the performance of the optimizer
on a target function. Finally, the chapter reports a brief description of the Black Box Optimiza-

tion (BBO) benchmark, since it includes the implementation of the evaluation method.

31 PyBADS

PyBADS is a black box optimizer developed using Python, and is a port version of BADS. The
new Python optimizer is based on NumPy (Harris et al. 2020) and SciPy * as scientific com-
puting libraries. In addition, it also utilizes a lightweight Gaussian Process regression library
developed by the Machine and Human Intelligence research group (PI: prof. Luigi Acerbi)
?, called GPyReg®. This library is currently a private repository and it is used for providing
a wrapper object of a Gaussian Process. The main aim of this work is to provide a modular
implementation of the GP in a single place to make its usage fairly simple for users. By just
providing some configurations to GPyReg, a Gaussian Process object can be quickly ready to
use for fitting a dataset with a Gaussian Process and making predictions of unobserved points.
The work carried out for developing the Python version of BADS did not consist of a sim-
ple line-by-line porting, but it was a non-trivial task. It involved a complex algorithm with a
large code-base, and also required to develop changes in the GPyReg library, for example the
implementation of the ARD-RQ kernel function with its related tests.
PyBADS has been designed in an Object-Oriented Programming method by providing a neat
structure in order to make it simple to use for users. A user only requires to configure and run
the optimizer on a target function, by instantiatinga BADS object class and using the optimize
function to run the optimizer. Although it seems very simple to use, the main class hides many

complex classes and functions involved when using the optimizer. Therefore, the code has been

'SciPy: scipy.org
*Machine and Human Intelligence: machine-and-human-intelligence

3GPyReg: https://github.com/acerbilab/gpyreg
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developed by dividing it in many modules such that it can be easy to understand, test, main-
tain and exploit modularized classes and functions. More detailed examples and description
of code can be found in the repository of PyBADS #, soon to be released with its related doc-
umentation. In addition, we also reported in the Appendix A.2 some examples of its usage by
providing brief descriptions of the main functions.

PyBADS preserves almost all the features of the MATLAB version. However, the two li-
braries do slightly differ from each other from a computational point of view, and in the struc-
ture and implementation of the code. The difference in the computational aspect arises because
of two main reasons. The first one comes from the different use of the Memory and CPU of
the two programming languages. Secondly, they do differ because of the different numerical

computing libraries (e.g Numpy ) and optimization tools they used.

3.1 PYBADS AND BADS IMPLEMENTATION DIFFERENCES

Despite these unavoidable differences, PYBADS presents also some little variations and choices
in the code compared to BADS. For example, the initialization of the GP hyperparameters is
made differently than BADS. In PyBADS we use a heuristic approach that calculates a High
Posterior Density (HPD) of the initial training points, which consists of a fraction (default
80%) of the bottom training set (ascending ordered training set), and returns the estimators
of the GP hyperparameters using the selected data. The estimator of the prior mean of the
mean function is described by a Normal distribution centered with the median of the HPD
observations. Instead, the prior distributions of the covariance function parameters are cen-
tered at the standard deviation of the data. One of the major difference in PYBADS compared
to BADS comes with the optimization of the Gaussian Process hyperparameters. Indeed, con-
trary to BADS which uses the optimization toolbox of Matlab, PyBADS uses the GPyReg
library which applies the SciPy optimizer for optimizing the hyperparameters. The optimiza-
tion configuration is similar to BADS, but PyBADS exploits also multiple initial points for the
hyperparameters optimization, designed by a quasi-random space filling of the GP objective
function. The sample size of the initial points are defined by a decreasing polynomial function
dependent on the size of training set of the Gaussian Process, with a default of maximum ini-
tial points set to 128, to a minimum of 8. This choice does not only help the hyperparameters

optimization, but also speeds up the algorithm.

+PyBADS: github.com/acerbilab/pybads
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Another minor change in PyBADS consists in the initial points sample size of the global opti-
mization problem. PyBADS uses the Sobol’s sequence rule with a different sample size than

BADS for generating the evaluated points. It uses a sample size correspondington = 2 [logs (n0)]
where n for deterministic targets corresponds to the dimension problem 1y = D, and for

stochastic objective functions 129 = 20. The power base choice is dictated by the recommenda-
tion of the SciPy Sobol method to preserve the balance properties during the quadrature rule

used by the library for generating the initial points.

Finally, PyBADS includes a new configuration of the algorithm which follows the method pro-

posed in Sto-MADS (Audet, Dzahini, et al. 2021) as discussed in the next section.

3.2 STO-MADS AND BADS

While BADS can already handle stochastic targets, its implementation follows a set of very effec-
tive heuristics. On the other side, the Mesh Adaptive Direct Search framework only supported
deterministic function evaluations. However, in 2021 the MADS framework has been extended
by Sto-MADS (Audet, Dzahini, et al. 2021) to support stochastic targets. The new approach
provides theoretical guarantees and convergence of the algorithm towards a Clarke’s stationary
point also for a stochastic function. The work carried out by C. Audet et al. in the algorithm
proves the extensibility of the MADS framework and provides a distinctive theoretical result
in the field of noisy black-block functions, which has been a goal of intensive research efforts.

In this thesis, we first provide a short summary of the algorithm and the tools used by Sto-
MADS. Afterwards, we report the changes made by us to integrate Sto-MADS into BADS’s

framework.

3.2.1  FrRoMm MADS 10 STO-MADS

Contrary to MADS, since the objective function is affected by some unknown random noise,
the optimization problem turns to be stochastic, i.e we want to find * = arg min, , Eg [fo(x)].
Therefore, Sto-MADS comes with the main idea of evaluating the mesh points using an esti-
mator function f to measure the uncertainty present in the points generated by the poll direc-
tions and control the variance of the estimator by reducing it as more samples evaluations are
collected.

The algorithm scheme of Sto-MADS is very similar to MADS, but it presents two crucial dif-

ferences. The first one is made by the usage of a function estimates f, which is built using the
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observations made by black-box evaluations, and it is used to give points estimations and assess
the improvement of a new point in the optimization problem. By all means, all the predicted
points by f require to be accurate up to a tolerance and satisfies some variance condition (dis-
cussed later) to prove the convergence of the algorithm.

The other main difference comes within the update rule of the mesh and poll size. Since we are
dealing with a noisy target, Sto-MADS introduces the concept of uncertain interval Z, . . (A})
for assessing a candidate point. Assuming that the estimator f is e-accurate (see the definition
in Equation 3.2) the algorithms checks the improvement which is categorized in three different

states using the following rule:

successful iffsk — fZ‘ < —vey (AI;)Z
certain unsuccessful if ff — ff > yey (A’;)z (3.1)
uncertain unsuccessful  if /¥ — ¥ e Ly, (AF) = (—*yef (A’;)Q JYES (A’;)z)

where x describes the currentincumbent, and s is the candidate point retrieved from the SEARCH
or POLL method. Z, ., (A) is the so-called uncertainty interval which is reduced when an un-
certain unsuccessful iteration happens, and 7 is a positive constant between (2, +00).
Depending on the case, Sto-MADS accordingly updates the mesh parameters by increasing
or decreasing the mesh. When a sufficient decrease condition is satisfied on candidate point
s, i.e ff — ff < —ney (A’;)Q, the iteration is called successful. Therefore the incumbent
is replaced with the new candidate point and the mesh parameters are incremented. More
specifically, the mesh parameters are updated as AF*! = min {T_zA];, 7%} and AR =
min {AX (AF)2Y where 7 € (0,1) N Qis a fixed constant and 2 € Z a large fixed inte-
ger such that the frame size is upper bounded by a positive constant.

For the unsuccessful cases, the incumbent is never replaced with the new candidate point. Al-
though, we do not update the incumbent when an uncertain unsuccessful iteration happens the
frame size is reduced just by 7, i.e A';H = TA’;. Instead, an aggressive decrease of 72is applied

on the poll size when a certain unsuccessful iteration is detected.

3.2.2 A GENERAL ESTIMATOR FUNCTION FOR STO-MADS

The main aim of the function estimate f in the algorithm is to provide an accurate estimator
at the evaluated points and ensure the theoretical convergence of the algorithm. Indeed, Sto-

MADS needs the estimator to assess the improvement at a new candidate point, which has to
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be sufficiently and probeabilistically accurate. In other words, we need to assess if the estimator
is accurate up to a tolerance for a fixed probability that does not require to be equal to one, but
larger than a constant. By satisfying these conditions, Sto-MADS proves the convergence of

the algorithm towards a stationary point by building a sequence of accurate estimators.

To theoretically prove the convergence of Sto-MADS, we need first to introduce some defi-
nitions and assumptions about the function f, its noise, and the functions estimate ]E )
All the stochastic quantities considered from now on lie in a probability space (€2, F, IP), where
(2 is the sample space of the algorithm, F is the o-algebra and PP the probability measure.
Definition 1

A

[ is said to be a e-accurate estimator at a point  if:

P 2
)

[f(z) = f(2)] < ef (AF) (3.2)

where € ¢ isa positive fixed constant that adjusts the initial amplitude of the uncertainty Interval

Z

VHEF
size parameter A’;, in this manner the poll size does not only update the resolution of the mesh

(AF). The accuracy of the estimator in Sto-MADS is made dependent on the current poll

but adaptively controls also the variance of the estimator (Audet, Dzahini, et al. 2021).
Definition 2
The e-accurate estimator is subsequently extended by the notion of 3-probabilistically € ¢-

accurate estimator:

~

P|[f(x) = f(@)] < e (A5)°] < 8. 63)
where § € (0,1).
Assumption 1

f is locally Lipschitz continuous everywhere and all iterates ¥ generated by Sto-MADS lie
in a compact set X',
Remarks: assumption 1 makes the poll size A} and the function f(X*) integrable in the prob-
ability space, i.e A, f(X") € L'(Q, G, P) for all k (see Proposition 2 of Audet, Dzahini, et
al. 2021), which is necessary for the convergence analysis of Sto-MADS.

Assumption 2

The variance present in the target function is upper bounded by some constant V' > 0,

Varg [fo(z)] <V < 400 forall z. (3.4)
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All the above assumptions are very common in many optimization problems and they are used
to introduce and define the problem. But to prove the convergence of Sto-MADS, the follow-
ing core assumptions about the estimator function need to be satisfied.

Assumption 3

(i) Asequenceof random estimates { ;f, f;k } generated by the algorithm is -probabilistically
g-accurate for some 3 € (0,1):

P({| 75" = 1] < e (a0}
{ FE(s) _f(sk))‘ < ey (A';)2} | ]:,f_1> >3 Vk>O0,

where F; ,{_1 is the 0 —algebra of events up to the choice of zy.

(3.5)

(i) There exists £y > 0 s.t the sequence of estimates { }7 fi,k} generated by the algorithm

satisfies the following & -variance conditions for all £ > 0 iterations:

d
?|

Assumption 3 states a key assumption about the accuracy of the estimator and defines a lower

) = [ 17 < o (A1) and

e = 16 17 < o (o)

bound on 3 by any £ iterations of the algorithm. Such a lower bound can be achieved by a
function estimate that is defined in terms of ¢4, K ¢, and by the sample size used by the estima-
tor.

Satisfying Assumption 3 allows to derive the following 1 that plays a crucial part in the con-
vergence analysis.

Lemmal

Let Assumption 3 hold, and suppose that all the estimators at each point are generated by
Sto-MADS described by Jj, a sequence of random estimate { k ff} of B-probabilistically

€ f-accurate such that [P [Jk|]:,f_1] =K |:]].Jk |F,f_1} . Denote its negated form by Jj, i.e a set
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made by bad estimates. Then

B | 2 1) VL < 0 e ()

(3.7)
and E |:]].jk

e = 16O 17 < - e (80)°

In a few words, the above Lemma demonstrates the relationship between the r-variance con-
ditions and the probability of obtaining a bad estimates, which can be controlled by the num-
ber of samples size used by the estimator. A full detailed proof of the Lemma can be seen in
Lemma 1 of Sto-MADS (Audet, Dzahini, etal. 2021). Therefore, if the function estimates satis-
fies Assumptions 3, we can exploit Lemma 1 and use it for proving Theorem 1 of Sto-MADS
(Audet, Dzahini, et al. 2021), which guarantees the convergence of the algorithm to a station-
ary point using the designed function estimates and the scheme of the algorithm proposed by
Sto-MADS.

3.2.3 THE STO-MADS PROBABILISTIC ESTIMATE

As we have seen until now the Sto-MADS framework does not state many assumptions about
the noise of the target or the dependencies of the observed values, by leaving the method gen-
eral and adaptable to different choice of function estimates.

Indeed, more tightening assumptions can be added accordingly to the function estimates with
the aim of proving Assumption 3 which ensures the convergence of the algorithm.

For example, Sto-MADS assumes unbiased noise Eg [fo(x)] = f(z), identically indepen-
dent distribution observations, and it uses the Monte Carlo method for estimating the func-
tion values of the target function. More formally, let « be the incumbent point and s the
candidate point, we have the corresponding independent estimators f;’f = # Z‘il fo,.(x¥)
and ﬁ: = # Zf:l fe.. (s%), where p* denotes the sample size and O, 1, Oz2...0, ,» and
Os.1,O52...0, pr are indeed independent random samples of O, and ©,. Using this function
estimates makes Assumption 3 easy to prove.

Indeed, by exploiting Chebyshev’s inequality and noticing that the estimators are unbiased and
that the expected value and variance of the estimators are [E ( ff) = f(«*) and Var ( ff) =
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z%’ it follows that:

: o Var(f5)
P(|fk—f(2")| >er (AF)7) < 5 < 1 (3.8)
and by choosing
k 4
PSP a-va () +
we obtain that )
P ( fE=f (:r’“)’ <eg (A’;)2> > /8. (3.10)

Since f} and fj areindependent we similarly get that P ( f;" — f(a¥+ s )’ <ef (A§)2> >

v/, and it follows that

P({| =] = (ah)}n

proves the point (i) of Assumption 3. Finally, since the estimators are unbiased we can also

frmf s <5 a)°}) 28 G

easily prove point (ii) of Assumption 3 as following

~ k ] 2 N R 1%
B (|7 7 @) ) = ver (42 - 1 (04)) = var () < 52 < (e 0=/ ()"
(3.12)

and by choosing (k) > (£4)° (1—+/8), we finally prove the second point of the assumption,

taking in consideration that the same result holds also for f¥.

From the previous results we can see the control effect on & y-variance condition and ensure
an accurate estimator by a finite number of observed values described by the p* sample size of
the estimator. Indeed, this result is particularly exploited in the case of a bad estimate in the
proof of Theorem 1 of Sto-MADS’s convergence analysis, which ensures that an accurate esti-
mator can be obtained by increasing the sample size to satisfy the desired variance condition.
Although, we can prove theoretically the convergence of the algorithm using this estimator,
from Equation 3.9 we can see that the sample size required to satisfy the variance condition is
very high in the case of small magnitude values of the poll size and € p-accurate tolerance. For
this reason, in the actual implementation of Sto-MADS they proposed a biased estimator based
on Monte Carlo method to reduce the number of function evaluations. The proposed estima-

tor can be seen in Equation 7 of Sto-MADS (Audet, Dzahini, et al. 2021), and this scheme has
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been adopted by the authors because of its efficiency in the practical case of expensive black-
boxes functions. Despite this fact, the Monte Carlo estimator allows to prove easily Assump-

tion 3 required by Sto-MADS to satisfy the accuracy condition on the function estimates.

3.2.4 INTEGRATING STO-MADS 1n BADS

In this part of the section we introduce the changes made in the PyBADS to adapt the existing
BADS scheme to the strategy proposed by C. Audet et al. in Sto-MADS (Audet, Dzahini, et
al. 2021). As we have analyzed in the previous paragraphs Sto-MADS proposes a Monte Carlo
method as function estimates, which can be a very expensive choice, as the estimator might
require many samples to satisfy the variance condition set by the algorithm. In addition, Sto-
MADS does not state many assumptions about the noise present in the target function, which
might be affected by high and heteroskedastic noise. Therefore, choosing such an estimator
would lead to underestimating the target and would require many samples to build an accurate
estimator at the candidate point.
Because of the previous points, we chose to rely on the Gaussian Process of BADS as the func-
tion estimates in our implementation. More precisely, the estimator at the candidate point sk
is obtained from the posterior mean given from the Gaussian Process conditioned on the func-
tion evaluation at the candidate point, i.e we add the observed value to the training set of the GP
and retrieve the posterior of the Gaussian Process. Once obtained the estimation point, we ap-
ply the criteria used in Sto-MADS, i.e we check the improvement presents with the new point,
by following the rule based on the uncertainty Interval Z, . (A¥) of Sto-MADS, and apply
the update rule to the mesh parameters as described in Sto-MADS. A noteworthy decision we
made on the uncertainty interval concerns about the & parameter of Z, ., (AY). We defined
it as the sum of the latent GP function uncertainty present in the incumbent and at the candi-
date point. Therefore, IW(A’;) = (—% /é)'chI + 6?‘5 (A’;)Z VA /&J%z + 6?‘5 (A’;)z), where
67, and 67, are the posterior variance of the GP at the incumbent 2 and at the candidate point
8. 7y is chosen by the user as a hyperparameters of the algorithm, as it also done in Sto-MADS.
Despite Sto-MADS uses a new method for generating the polling directions based on the
Housceholder matrix to meet the nonsmooth optimality condition (Section 3.2 of Sto-BADS,
Audet, Dzahini, et al. 2021), the LT-MADS (Audet and Dennis 2006) implementation of the
polling directions still matches the nonsmooth optimality condition required for the conver-
gence of the algorithm (Audet, Dzahini, et al. 2021). Therefore, in our implementation we kept

the LT-MADS method, which is already presentin BADS and used it for generating the polling
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directions during the poll phase.

With all the above changes introduced in BADS and assuming that the Gaussian Process
can ensure the variance condition of the function estimate, we satisty all the requirements of
Sto-MADS and fully adopt its framework. To prove the choice of the Gaussian Process as a the
function estimates, we also worked on the theoretical aspect by providing a sketch of the proof
reported in the Appendix A.1.

The implementation of this stochastic variant can be configured in PyBADS by passing the

stobads flag to the BADS object, and a more detailed example of its usage is described in Ap-
pendix A.2).

3.3 EVALUATION METHOD

Evaluating and comparing result for global optimization problems is not a trivial task. This
problem is more emphasized either in the case of stochastic objective functions, where the op-
timization problem is not characterized just by a single solution, or in high dimensional target
problems. Indeed, sometimes the evaluation method is underestimated, and some algorithms
can present biased results, showing great performance but performing very poor in the mean
case. For example, rather than reporting the central tendency of the solution, some works have
been reporting just the best result of the optimizer, thus making the evaluation unfair and bi-
ased. For these reasons, the assessing criteria needs to be fair and transparent by containing a

detailed evaluation study of the solutions reported.

3.3.1 THE BOOTSTRAPPING EVALUATION METHOD

Taking in consideration fairness and transparency, we report in this section the evaluation
method used in our experiments, which has been designed for benchmarking BADS, by Acerbi
and Ma 2017, and implemented in the Inference Benchmark® repository. The criteria for assess-
ing the solution of the optimization problem is based on a bootstrapping method, and assesses
separately deterministic with the stochastic cases Differentiating the two cases is an important
matter, indeed when dealing with a stochastic target it’s non-trivial to determine what an algo-
rithm would return at an arbitrary point during the trajectory, because it’s not necessarily the
last point nor the best observed point - which instead we can do easily for a deterministic target,

just get the best point until that point of the trajectory.

Sintbench: https://github.com/lacerbi/infbench
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Now, we briefly introduce the bootstrapping method and the benchmark procedure used
in the experiments followed by some notations . All the optimizers are evaluated on a set of
problems (also called tasks) P = { Py, ..., P,}, every Problem P is defined by a target func-
tion, the dimension of the problem, its bounds, and the budget of maximum function eval-
uations. For each Problem P, we run n (default n = 50) independent optimization runs
R = {ry,ry, ..., s}, with randomized starting points within the specific problem bounds.
Each run r; describes the solution of the optimization problem and contains the information
of the trajectories of the optimization run made by the algorithm. For a fair comparison when
comparing different optimizers the optimization runs are started from the same randomized
starting points.

Once having all the runs results, we apply a bootstrapping method, i.e we randomly sample
from 12 and concatenate the runs until we reach the maximum budget of function evaluations
allowed by the problem. In the case that the last sampled run exceeds the problem budget, the
last solution from the trajectory of the iterative algorithm satisfying the budget is taken. This
process is repeated ¢ times (e.g ¢ = 10000), until we have constructed a set of bootstrap samples
S = {51, 5, ..., St} where S; = {ry, ..., rp} is the single bootstrap sample, with 7; € R de-

scribing the sampled run and 7, the last sample run satisfying the budget problem. Finally, we

stat(S;)
t >

where the chosen statistics follows two different methods depending if the target is noisy or

. t
compute the mean across the chosen statistics of the bootstrap samples, FSR = >,

not that we are going to see separately. The result of the mean in both cases corresponds to
a measurement expressed as a percentage corresponding to the fraction solved rate (FSR) of
the selected problem. This metric is used in our experiments to report the performances of the
optimizers in function of number of function evaluations (deterministic case) or in function
of the error tolerance present in the solution (stochastic case).

To assess the error present in the solution proposed by the optimizer Jfo...» we assume to have
access to the Oracle function value at the global minimum f,,;,, and we check if the error
made by the algorithm is less than a given error tolerance ¢, i.c | Founs = Fmin| < € where
e € [0.01, 10] (log-spaced).

This bootstrapping method presents the excellent property of having a high statistical power
because of the large runs sample size used and the randomic sampling method used for con-
structing the approximation of the final s, making the method detect the true solutions.
Deterministic target case

The default budget of function evaluations for solving a deterministic target is set to 500 x D,

where D represents the dimension of the problem. The statistics used by the bootstrapping
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method for the deterministic target corresponds to the fraction of successful runs, where a suc-
cessful run is defined as the current best function value (taken from the trajectories of the
optimizer) within the given error tolerance € from the true solution of the oracle fi,,. The
solution in the deterministic case is represented by the current best function value incum-
bent that first satisfies the error tolerance. The fraction of successful runs is computed as a
function of number of objective evaluations, and is averaged over different chosen €. An ex-
ample of a range of € can be a 100 dimension row vector with linear spaced values between
[exp(log(0.01))... exp(log(10))]. Moreover, to take in consideration the dimensionality of
the problem the number function evaluations are divided by the the dimension of the prob-
lem.

Stochastic target case

When considering a noisy objective function, the default budget of function evaluations is set
to 200 X D. The successtul run is described by the last solution of the optimizer, ®c;q. The
choice of only considering the &4 solution is due to the noise present in the objective func-
tion and because we can not know which solution would be returned by the algorithm at each
iteration. Indeed the solution of the algorithm may not be the lowest observed value.

For the stochastic case, we also compute the fraction of successful runs, but contrary to the de-
terministic case, we do not average across the error tolerance but we track the fraction rate as

function of e. In this case, the € is defined in the range of [exp(log(0.1))... exp(log(10))].

3.3.2 BBO-BENCHMARK

The previous bootstrapping evaluation method for optimization problems has been imple-
mented in an stand-alone Python project called Black Box Optimization (BBO) benchmark
¢. It has been developed with the aim of accommodating any black box optimizer, potentially
independent from the programming language used.

BBO benchmark does not only include the bootstrapping evaluation method, but it is a whole
benchmark tool that allows to test and compare different optimizers on several problems with
multiple evaluation methods. Moreover, the code architecture of the benchmark has been de-
veloped to be general and easy to follow when an optimizer is needed to integrate or test in the
framework. In addition, BBO benchmark is developed based on the Hydra’ framework, an

elegant tool that allows to compose and run configuration of an application by avoiding boil-

*BBO-benchmark: https://github.com/acerbilab/bbo-benchmark
7Hydra framework: https://hydra.cc
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erplate codes and giving a highly adaptable architecture for different applications.

The benchmark comes with the following main key features:
* Hierarchical and composable implementation of an optimization benchmark.
* Run simulation of a configured optimizer on a designed benchmark.
* Integrate and implement a set of optimization problems.

* Run multiple simulations jobs with different arguments with a single command on a

local machine or remotely on a High Performance Computing cluster.
* Provide performance evaluation of the optimizers on the defined problems.

* Evaluate optimizers made in different programming languages than Python, by loading

and mapping their results into the benchmark

The hierarchical and composable structure comes from the implementation of general classes.
Indeed, our framework describes a benchmark by defining a set of Problems called Tasks, rep-
resented by the object class Task , a configured optimizer algorithm described by the Algorithm
class, and finally the AlgEvaluator class that describes which method is used for evaluating the
optimization runs. All these components together defines an implementation of a benchmark,
which are contained in the OptimizationBenchmark object class.

A concrete example of a benchmark instance can be described by the BBOOptimizationBenchmark
object class designed for benchmarking black box optimizers. It takes as input an optimizer like
PyBADS described by the wrapper class PyBADS of BBO benchmark, a target function that ex-
tends the Task class, and an implementation of the evaluator like the bootstrapping evaluation
method described in the 3.3.1section, which isimplemented in the PyBADSBootstrappingEvaluator
class. The BBOOptimizationBenchmark has the aim of running n independent runs of the opti-
mizer with random starting points on the selected task and finally use the evaluator to assess
the performance of the algorithm.

A full detailed description of the benchmark can be seen in the GitHub repository®, and sev-
eral examples can also be seen in the Appendix of this thesis, which provides some use cases for

configuring and running different tasks on the benchmark A.2.

®bbo-benchmark https://github.com/acerbilab/bbo-benchmark
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Experiments and Results

We provide in this chapter the experimental analysis carried out in our work. The main objec-
tive of our investigation is to analyze the performance of PyBADS against BADS . The com-
parison between them not only provides the information about the performance among the
two algorithms, but it has been a crucial part of the work for debugging and testing PyBADS
in order to detect possible issues present in its code. Moreover, we also compared the stochastic
variant of PyBADS that integrates the existing features of BADS into the Sto-MADS frame-
work.

This chapter first describes the design of the BBO benchmark by reporting the problems set
and the procedure we followed for evaluating the algorithms. Section 4.2 compares BADS and
PyBADS on several problems and discusses the main results we obtained by testing them on
the benchmark. Afterwards, the last section describes the comparison of results we obtained

with the stochastic variant of PyBADS (introduced in Section 3.2.4).

4.1 BENCHMARK

Both BADS and PyBADS have been evaluated by designing the BBO benchmark, which has
been configured with 18 objective functions including noisy functions benchmark. Afterwards,
the last section describes the comparison of results we obtained with the stochastic variant of Py-

BADS (introduced in Section 3.2.4). Moreover, since BADS is also able to handle heteroskedas-
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tic noises, we also designed problems within this noise configuration, for a total of 20 objective
functions in the presented benchmark.
All the deterministic functions and their stochastic variants are part of the standard bench-
mark for black box optimizations, and they have been taken and adapted from the IEEE-CEC
2014 expensive optimization test bed (Erlich et al. 2014). We evaluated all the problems on
D = {2,3,6,10} dimensions. We configured the BBO benchmark for each optimizer with 50
independent runs per optimization problem. We used the bootstrapping evaluation method
described in Section 3.3.1 for assessing and comparing the algorithms. This method suffices for
evaluating the optimization problems because of its high statistical power. We set a budget of
500 x D function evaluations for the deterministic targets and 200 x D for the noisy cases. In
all plots we omitted the error bars since the standard errors would be about the size of the line
markers or less.

Before diving into the results, we first list all the problems and their configuration used in
the benchmark to evaluate the algorithms.

Ackley function

611 Z cos (cxz)) +a+exp(1) (4.1)

Where a = 20, b = 0.2 and ¢ = 27 such that its global minimum is at * = (0, ..., 0) with
f(x*) = 0. The function is characterized by a nearly flat outer region, and a large hole at the

centre, with many local minima points. The bounds of the optimization problems are defined

within the z; = [-32,32] Vi = 1, ..., D hypercube.
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Cliff Function

d
foo) =) al+ 10" 5 <o) (4.2)

i=1
The function is defined as a non-continuous step function characterized by some high step
values. The domain of the problem is restricted in the hypercube made of z; = [—20, 20] Vi =
1, ..., D. The global minimum of the function isat x* = (0, ..., 0) with f(x*) = 0.
Griewank function

(4.3)

This target is made by widespread local minima, which are regularly distributed due to the
presence of the cosinusoidal functions. The bounds of the optimization problem in our case
are defined in the range of z; = [—600,600]Vi = 1,..., D. The global minimum of the
function isat x* = (0, ..., 0) with f(z*) = 0.
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Rastrigin function

f(x) =10d + Z [27 — 10 cos (27x;)] (4-4)

i=1

The function is made by several local minima and it is a highly multimodal function as we see
from the picture, but locations of the minima are regularly distributed. The global minimum
is located at &* = (0, ...,0) with f(z*) = 0. The domain of the function in our case are
defined in the hypercube of z; = [—20,20]Vi =1, ..., D.

Rosenbrock’s banana function

fl@) =3 [b (e — o)+ a e — 17 (+3)

The global minimum of this function is inside a long, narrow parabolic shaped flat valley, where
finding the valley is trivial but the convergence to the global minimum is not a piece of cake. We
seta = land b = 100 such thatits global minimumisatax™ = (1,...,1) with f(z*) = 0. The
domain of optimization problem is defined within the x; = [=5,5] Vi = 1, ..., D hypercube.
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Sphere Function

o) =3 i (4.6)

The function has D local minima except for the global one which is at * = (0, ..., 0) with
f(*) = 0. This objective function is a convex and unimodal but it is non trivial to optimize
due to different local minima in higher dimension and when is affected by some noise. The
domain of he optimization problem is defined in z; = [—20,20]Vi =1, ..., D.

Step function

f0) = lwi+05)° (4.7)

i=1

The function is defined as a non-continuous step function with a parabolic shape. The do-
main of the problem is restricted in the z; = [—20,20] Vi = 1, ..., D hypercube. The global
minimum of the function is at x* = (0, ..., 0) with f(x*) = 0.
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Styblinskitang Function

d
Z (x} — 1627 + bu;) (4.8)

i=1

f(x) =

DN | =

The function is very commonly used in many optimization benchmark. It presents a global
minimum at £* = (2.903534, ,2.903534) with f(x*) = 39.16599D. The domain of opti-
mization problem is defined within the z; = [—5, 5] Vi = 1, ..., D hypercube.

Note that the previous examples we have just mentioned are all deterministic functions, but
in the benchmark we also considered stochastic targets. We implemented them by adding an
i.i.d Gaussian noise with variance 1 to the function, i.e the noisy targetisbuiltas g(x) = f(x)+
g & ~ N(0,1). Asimple 3-D example of a stochastic function can be seen in Figure 4.1.

Since BADS supports heteroskedastic noise, we also tested the optimizer on this configuration.

Figure 4.1: Noisy Griewank function

Flx) = (z;l:l 2 TTL cos (f) + 1) te e~N(0,1)

The two examples of functions with heteroskedastic noise chosen in the benchmark are based
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on the Ackley and Rosenbrock functions such that the variance of the observations increases

for solutions away from the optimum. More precisely, they correspond respectively to:
9(x) = fackiey(x) +10g N (0,1) + fackiey(x), (4.9)

Q(X) - fRosenbrock(X) + logN (07 1) + (fRosenbrock(X) - 1) . (4-10)

4.2 BADS vs PYBADS

In this part of the chapter we analyze the results obtained from PyBADS and compare its per-
formance with BADS. For a fair comparison, both algorithms have been set with their default
configuration, as presented in Section 2.4 and suggested in BADS’s paper (Acerbi and Ma 2017).
To review the complete description of the configuration set for the optimizers, it is possible to
access at the public GitHub repository of BADS *, and follow the default options presented in
the code.
Deterministic targets

To start with the comparison of the two algorithms, we first compared all the deterministic
targets from a low dimension problem up to D = 10. In Figure 4.2, we reported some of
the main results we obtained by running the algorithms on all the deterministic functions with
D = {2, 3} dimensions using the bootstrapping method of BBO benchmark. We reported in
the x-axis, the number of function evaluations divided by the dimensionality of the problem
and in the y-axis the fraction solved rate of the problem. We omitted to report some of the
target functions of the benchmark for this dimensional configuration since their results were
completely overlapping with the performance of BADS. We can see some little differences be-
tween the performance of the two optimizers in Figure 4.2. Both achieve very similar results
and they show the same overall convergence rate to the optimum points.

However, we have found that the major differences in terms of performance between the al-
gorithms are raised up by increasing the dimensionality of the problems. Indeed, in Figure 4.3
we reported the results obtained on the deterministic targets for D = {6, 10} dimensional
problems showing different performances among the two optimizers. We can see that for the
Rastrigin target function BADS shows to perform better in the case of D = 6 as it is able to
achieve a lower minimum point. On the other hand, PyBADS on the same target function

achieves a lower minimum point when D = 10 with less number of function evaluations. De-

'BADS configuration: https://github.com/acerbilab/bads/blob/master/bads.m#L184
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Figure 4.2: BBO benchmark deterministic functions for D = {2, 3} Main optimization problems with the most relevant
differences when comparing PyBADS with BADS. In the x-axis are reported the number of function evaluations divided by
the dimension problems, and in the y-axis the Fraction of successful runs (for e € [0.01, 10]).

spite this fact, we have also to highlight that by increasing the dimensionality of the problem
the optimization results in a more complex optimization task, and with the Rastrigin function
both optimizers results in a solution that is far away from the global minimum - the maximum
fraction solved rate achieved is less than 0.03.

Although we see these differences, sometimes PyBADS performs better (e.g when applied to
Clift ) and other times BADS achieves better outcomes. If we average the results across the tar-
get functions and their dimension problems for both algorithms as shown in Figure 4.4, we

see that PyBADS performs on average equally as BADS when considering all the deterministic

functions of the benchmark.

48



Fraction solved rats

Fraction selued rate

CIiff D=10

Fraction sohved rate

Cliff D=6
—_— i
i et
i
fe
3
£ o
“
-
o = = 5 & = s =
Rasrigin D=6 Rastrigin 0210
] =] 3
et s | | 2
7 r
[l
+ Lo k.
f -
;' H ®
i § oo 4
pics 4
ir
oo | s
T 5 2 = = 5 & & s =

Rosenbrock D=10

Rosenbrock D=6

s R ———
Pes [ means

i ¢ H

¥ § o T

/ i i

3 fa

4 02 ’A

1 J
- "
P w . £ T £ o %

Function evaluations /0

Figure 4.3: BBO benchmark deterministic functions for D = {6, 10}. Main optimization problems with relevant differ-
ences when comparing PyBADS and BADS. The x-axis reports the number of function evaluations divided by the dimension
problems, and the y-axis presents the Fraction of successful runs (for e € [0.01, 10]).

Summary performance

¥ BADS
PYBADS
08
1
B 06
°
?
¢
: {
3
5 04 ¥
] 3
®
&
y
02 7
4
T
0.0 -
10 100 300 500

#Function evaluations / D

Figure 4.4: BBO benchmark deterministic targets for D = {2, 3,6, 10}. Overall performance of PyBADS and BADS
averaged across the 8 deterministic functions and among D dimensions. The x-axis reports the number of function evalu-
ations divided by the dimension problems, and the y-axis presents the Fraction of successful runs (for e € [0.01, 10]).

49



Homoskedastic noisy targets

To fully investigate and asses PYBADS, we also need to analyze the stochastic cases and evalu-
ate the behaviour of PyBADS in these cases. Therefore, in Figure 4.5 and Figure 4.6 we reported
lower and higher dimensional problems of the BBO benchmark function with homoskedastic
noise. Although, we run the algorithms on all the designed problems, we reported the tasks
that presented relevant differences in terms of performance with BADS. We omitted the tasks
which showed same results as BADS. Note that this time, we reported in the x-axis the error
tolerance present in the algorithm since we are dealing with stochastic targets. When consid-
ering the low dimension functions, we clearly see that PyBADS outperformed or equally per-
formed BADS. However, when taking in consideration higher dimension as shown in Figure
4.6, BADS performed slightly better.

Noisy ackley D=2 Noisy ackley D=3

s
Fyeans

[
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Noisy cliff D=2 Naisy cliff D=3
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Pybans Fysans

Naisy resenbrock D=2 Moisy rosenbrock D=3

+ m0s 10 Bans

PyBans PyBans

Figure 4.5: BBO benchmark noisy functions for D = {2, 3}. Performance comparison between PyBADS and BADS on
relevant optimization problems with homoskedastic noise. The x-axis reports error tolerance, and the y-axis presents the
Fraction of successful runs (for e € [0.1, 10]).
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Among all these tasks, BADS demonstrated to achieve lower minimum points especially for the

noisy Ackley function when D = {6, 10}, butalso when considering the noisy Styblinskitang

function with dimension D = 6. For these cases, we investigated the behaviour of PyBADS

by analysing and comparing the runs of the optimization problems with BADS.
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presents the Fraction of successful runs (for ¢ € [0.1, 10]).
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By looking at the trajectories of the GP and the Oracle of each run as reported for the Ackley
example in Figure 4.7, we can see that the results obtained by PyBADS is affected by some
optimization runs where the algorithm is trapped in a minimum point in the beginning of the
optimization. The same behaviour is also present in BADS as we can see on the right side of

the Figure. However, this issue in BADS is less pronounced than PyBADS.

Figure 4.7: Ackley jittering. Example of trajectories line charts used to diagnose the noisy Ackley problem with D =
10. We report on x-axis the number of function evaluations and on the y-axis the oracle function evaluations or the GP
prediction. The example shows the convergence of the algorithms and highlights the presence of some jittering behaviours
in the beginning of the optimization.
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The problem comes in both algorithms just with the stochastic targets, and by debugging the
code we have concluded that this issue might raised up due to the combination of several heuris-
tic methods used when dealing with a noisy target (recall the paragraph on Uncertainty Han-
dling of Section 2.4). These policies might cause a zig-zagging behaviour when updating and as-
sessing the incumbent with a candidate point. This issues happens rarely and it only happened
in high dimensional problems for two particular configuration against the whole benchmark
optimization problems we considered until now. Moreover, the heuristic methods applied for
the noisy targets have shown in many optimization problems to be a good rule for making
BADS exploring the mesh space and avoid local minima for the noisy targets.

Despite this particular issue, we can see from Figure 4.8 that also for the noisy targets PYBADS

results on average across dimensions and tasks to perform the same or even better than BADS.
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Figure 4.8: Summary of BBO benchmark noisy targets for D = {2, 3,6, 10}. Overall performance of PyBADS and
BADS on all 8 homoskedastic noisy functions. We first report the overall performance of PyBADS and BADS grouped by
the most relevant target functions, by averaging the fraction solved rate across the D dimensions. Instead, in the last Figure
we report the overall performance across dimensions and functions.
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Briefly,we would also like to report that PyBADS as well handles heteroskedastic noise and
we tested it by adding the designed noise to the Rosenbrock and Ackley functions. From Figure
4.9 we can see the comparison of the algorithms on the two targets function by evaluating them
on D = {2,3,6,10} dimensions. The overall result highlights PyBADS to perform better
than BADS for these cases.
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Figure 4.9: Heteroskedastic examples for D = {2, 3,6, 10}. Overall performance on the Ackley and Rosenbrock het-
eroskedastic noisy functions across dimensions D = {2, 3,6, 10}, and in the last figure we port the average perfor-
mances among the two functions. The x-axis reports the error tolerance, and the y-axis presents the average of successful
fraction runs (fore € [0.1, 10]).

4.3 StocHAsTIC PYBADS (STO-PYBADS)

In this section we analyze the Sto-PyBADS introduced in Section 3.2.4, and compare it with
PyBADS and BADS using the BBO benchmark with the same homoskedastic noise configu-
ration problems used when we compared BADS and PyBADS. We investigated Sto-PyBADS
by running different instances of the algorithm for each problem of the benchmark. Every in-
stance of the algorithm corresponded to a different configuration, that was obtained by setting
the main <y hyperparameter of Sto-MADS, which defines the width of the uncertainty interval
Z,(AF) used for assessing the improvement of a candidate point.

We set v = {1.96, 2,5, 10, 15, 20, 25, 30}, other range of values have been also tried but we
omitted them in this thesis because they led worse results. In Figure 4.10 we summarize out-

comes of the algorithms by giving a summary of the performance across dimensions and tasks.
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Unfortunately the algorithm has not been able to perform better, but just equally or some-
times worse than BADS and PyBADS. Despite for the Rosenbrock and Rastrigin noisy tasks,
Sto-PyBADS showed to achieve lower minimum point. In addition, it is not clear which 7 pa-
rameter should be chosen as a general rule. Sometimes small magnitude values of y performed
better other times we got the opposite results, and other times the parameter did not show
much effect in the results. The overall performance of Sto-PyBADS across all the problems is
just slightly worse than the optimizers of reference. However, a point in favour of Sto-PyBADS
is that for most of the tasks it has been shown to resolve the given problems. Moreover, by
proving the schematic proof proposed in Appendix A.1 it would demonstrate theoretical con-
vergence of the algorithm towards stationary points for black box functions, which is currently
lacking in the BADS/PyBADS for stochastic targets.
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Conclusion

From the experiments we carried out in this work, the results we obtained from the benchmark,
as described in Chapter 4, have shown similar performance between PyBADS and BADS. The
overall outcomes are very optimistic and PyBADS revealed to stand up its MATLAB version,
especially for the stochastic targets. Moreover, seeing that the algorithms behaved as BADS for
most of the tasks tested the correctness of the porting from Matlab to Python carried out in
thesis. The study made in this work also involved the porting of BADS, but included the inte-
gration of Sto-MADS (Audet, Dzahini, et al. 2021) into BADS’s framework, with the aim of
improving the existing algorithm and providing a theoretical convergence guarantees of BADS
for stochastic targets. This integration is contained in PyYBADS as a configuration of the algo-
rithm, and the major work involved by developing a new criteria for assessing and moving the
incumbent by combining the uncertainty interval defined by Sto-MADS in its update rule and
the usage of GP as function estimate. Although the method comes with neat structure, the
experimental results have shown to not improve the existing performance of BADS. Despite
the fact that Sto-PyBADS has been able to accomplish all the tasks, the overall outcomes are
slightly worse than PyBADS or BADS. This result comes in favour of BADS and shows the
effectiveness of the heuristics used by the method to deal with stochastic targets. However, the
advantage of the approach proposed with the integration of Sto-MADS into BADS comes with
the theoretical guarantees of the algorithm, which could be proved by following the schema of
the proof described in the appendix.

The work accomplished by developing the Python implementation of BADS makes its usage
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to a broader audience, which in last years has steadily risen each year, and we hope this trend to
increase. Indeed, BADS has shown to compete different state-of-the-art optimizers on several
benchmarks as described in its published paper (Acerbi and Ma 2017). More recently, it has also
been tested on a new benchmark for black box optimization problems developed by D. Stenger
and D. Abel for engineering applications (Stenger and Abel 2022), and achieved the top rank in
most settings of the benchmark, resulting in the most sample efficient algorithm for D = |3, 5]
dimension problems only using 25 x D function evaluations.

We end this work by leaving some discussion about future works. This thesis could still be
extended in several ways and could involve different future plans. For example, a first priority
would be to test PYBADS on more complex optimization tasks and model-fitting problems
as carried out in BADS, using the CCN17 benchmark for cognitive and computation neuro-
science studies (Acerbi and Ma 2017). This task would involve also to extend the developed
BBO benchmark used for testing PYBADS and BADS.

Important future works would consist to provide a complete proof of BADS for theoretical
zeroth-order convergence towards Clarke stationary point of non smooth functions, based on
the new method we proposed in this thesis. Other possible horizons instead could consists
in designing for BADS a smart multi-start optimization problem based on the existing work
present in Bayesian Optimization, and investigate some of its heuristic approaches involved

with stochastic targets by proposing other methods which could exploit approximate inference.
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Appendix

A1 SUPPLEMENTARY MATERIAL

In this part of the Appendix, we give a sketch of the Sto-PyBADS proof to prove the conver-
gence guarantees of the algorithm to the Clarke’s stationary point, using the schema of the
method described in Section 3.2.4 based on the framework proposed in Sto-MADS (Audet,
Dzahini, etal. 2021). In particular, the aim of the proof is to demonstrate that the Gaussian Pro-
cess surrogate model used in Sto-PyBADS matches the assumptions required by Sto-MADS for
the convergence guarantees of the algorithm.

We first state the assumptions involved in the proof and the give the sketch of the proof.

Assumptions

* Let f the target function and defined as f : RP — R, affected by some unbiased noise,

thus Eg [fo(z)] = f(x)

* Let y; be the observation at z; made on f, and defined as y; = f(z;) + 7(x;), where

7 ~ N (0, 0%(x;)) is a heteroskedastic noise. Moreover 02 (z;) < V < +o0.
» Let the likelihood function distributed asy | X ~ N (uy, X;)

* Let GP ( fg; 1, Z) be the prior GP with fixed hyperparameter 0 collecting the the mean
function parameters, the length-scale and the signal variance of the covariance function,

and the noise variance.
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* Assume that the prior GP ( fg; 1, E) is smooth enough such that f € {GP ( fg; 1, E) }

From now on we note ¥ as the incumbent and s* as the candidate point at k-th iteration,
retrieved from the poll or the search method.

The objective of the proof consists more formally into prove that:

(i) The sequence of estimates { f* (xk) , f k (sk)} is 3-probabilistic € j—accurate for
pe(0,1)andes > 0,ie:

P({| 2" - 1] < e (a5)} 0
{|F56) = M) 2 (20)}) 28 v >0,

(i) Ixy > Osuch that the sequence of estimates { f k (xk ) ) f k (sk ) } satisfies the following

(A.)

K p—variance conditions for all £ > 0

E|Iff = fEPIfE] < 63 (A)) and
(A.2)
!

B (15— fAPI7 ] < w3 (AR) R >0
By Proving (i) +(ii), it follows from Lemma 1 of Sto-MADS (Audet, Dzahini, et al. 2021) that:

B[l ff = FEPIfE] < (1= 8) hp (A)” and
) ) (As)
> [ﬂjklff—fﬂzlf!:] < (1—8)"2 ks (A8 VE>0, ’

where J;, = { * fFare B—probabilistic & -accurate estimators} and

Jp = { * f% are not S—probabilistic € ¢—accurate estimators}.
Thanks to this Lemma, we satisfy the assumptions required in Theorem 1 of Sto-MADS (Au-
det, Dzahini, et al. 2021), and we fully integrate our function estimates into the framework of

Sto-MADS by guaranteeing the convergence of the algorithm.

Proof steps
We now state the sketch of the proof to demonstrate points (i) + (ii), using the assumptions
mentioned above.

Let (y*, y*) be the observations at point (", s*) at iteration k. Since the likelihood is nor-
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mally distributed and the prior also follows a Normal distribution, the posterior and the prior

distributions are conjugate distributions. Therefore, the probability distribution of the poste-

rior at (ZL’k, Sk) corresponds to a Bivariate Normal distribution and can be computed using the

following closed form solution:

p(fk|y’;, yﬁ) ~ N ( diag (0;2) (2_1 + diag (0'7_2))_1 y*+ 27! (E_l + diag (0';2))_1 W,
(57 + diag (07%) ).
(A.4)
where o~ 2 is the vector noise at (xk, Sk), Y1 € R?*2 is the covariance matrix of the GP at
the two points, and g the prior mean of the GP.

In addition, by sampling n,, and 5 new observations respectively at points #* and s* we obtain

a more accurate posterior and reduce its variance, leading to the following distribution:

p(FH155.58) ~ N ( diag (%) (57" + diag (7)) ' gF + =7 (27 + diag (0,7)) " e,
(57 + diag (07,2) ).
(Ass)

where g and o2 are column vectors defined as:

g = 72] v Val’ [g ] =g 2 = O-TJ"
Tn Ny ? Tn Tan Mg
Sz (]) 2

> Vs o
Tt 7 _ 2 _ T71s
Pon = = Var[y,,| =07, = .

37 - [gxnagSn]T 0-72'n = [02 2 }T'

Tan,’ Tsn

We observe that by increasing the number of sampled observations at 2* and s* the resulted
variance o2 will be driven to zero for the weak law of large numbers. On the other hand, by
increasing the sample size at the two points ¢ will tend to the true expected value Eg [ fo ()] =
f(x) of the target function as the we assumed unbiased noise on f.

From the posterior distribution p( f klyk yk), we note that the last term of the mean function
includes also the bias term ¥ ! (E_l + diag (a‘T_n 2) ) - p made by the prior p, which might
be faraway from the true expected value Eg [fo(-)].
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However, by increasing the number of the sample size at (%, y¥), the resulting covariance
matrix of the posterior distribution will drive the standard deviation at the two points to zero,
and their expected value function will also converge to the true function by cancelling the bias
term as more observations are collected. By having such control, there exists some n, and n
sample size such that the posterior of the GP satisfies the 5—probabilistic € f—accurate condition
for some B € (0, 1) (point (i) of the proof), and the « y—variance condition (point (ii) of the
proof).

Assuring both conditions allows us to prove the results of Lemma 1 and Theorem 1 of Sto-
MADS (Audet, Dzahini, et al. 2021), and to integrate our function estimates to the framework

of Sto-MADS and ensure the convergence of the algorithm.
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A.. CODE

A.21 EXAMPLES OF USAGE OoF PYBADS

PyBADS defines an optimization problem by instantiating a BADS object, which receives as
input the target function, the hard/plausible bounds, and optionally the initial point. Once
defined the problem, to run the optimization we simply call the run() function, which returns
adictionary result containing the solution found by the optimizer and other useful information

about the executed run.

A.22 ExaMPLE 1 - ROSENBROCK’S BANANA FUNCTION

In the first example of PyBADS, we show a basic example on the Rosenbrock’s function (de-
terministic case). We define for this problem wide hard bounds and tighter plausible bounds
that contain (hopefully) the solution, we set the Rosenbrock function as target function and
passes as the initial point 2y = (0, 0). In the case that an initial point is not passed, PyBADS
randomly samples it from the plausible/hard bounds. Note that the global minimum of the

target function is found at 2* = (1, 1)

 import numpy as np
. from pybads import BADS

. def rosenbrocks_fcn(x):
s 77”Rosenbrock’s ’banana’ function in any dimension.”””
6 x_2d = np.atleast_2d(x)

return np.sum(roo * (x_2d[:, o:—1]**2 — x_2d[:, 1:])**2 + (x_2d[:,

0:—1]—1)**2, axis=I)

8
o Ib = np.array([-20, -20]) Lower bounds
o ub = np.array ([20, 20])
« plb = np.array ([ -5, =5])
= pub = np.array([s, s])

5 X0 = np.array ([o, o]);

Upper bounds
Plausible lower bounds

Plausible upper bounds

FH FH O B R

Starting point

14

s bads = BADS(rosenbrocks_fcn, xo, lb, ub, plb, pub)

« optimize_result = bads.optimize ()
» Xx_min = optimize_result[ x ]
s fval = optimize_result[’ fval’]
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w print (f”BADS minimum at: x_min = {x_min. flatten ()}, fval = {fval:.4g}”

)

print (f”total f-count: {optimize_result[’func_count’]}, time: {round(

N
o

optimize_result[’total_time '], 2)} s”)

print(optimize_result)

In the last part of the code we print the result of the optimization problem. The first two
outputs show the minimum point and its estimated function found by the algorithm. In the
last output we see the dictionary result of the optimization problem that contains all the useful
information about the executed run, like the trajectories, the mesh size values per iteration and

other useful attributes of the of the computed optimization.

A.2.3 EXAMPLE 2 - ROSENBROCK)S BANANAFUNCTION WITH CONSTRAINT
VIOLATIONS
PyBADS supports not just box constraints problems , but also handles function constraints

violation. In the next example, we see PyBADS running with the previous target function but

with unit circle constraint violations implemented by the  circle_constr  function.

import numpy as np

> from pybads import BADS

, def rosenbrocks_fcn (x):
s ”?”Rosenbrock’s ’banana’ function in any dimension.”””
6 x_2d = np.atleast_2d(x)
return np.sum(roo * (x_2d[:, o:—1]**2 — x_2d[:, 1:])**2 + (x_2d[:,

0:—1I1]—1)**2, axis=1)

o xo = np.array([o, o]); # Starting point
o lb = np.array ([ -1, -1]) # Lower bounds
«ub = np.array ([1, 1]) # Upper bounds

s def circle_constr(x):
“ ??”Return constraints violation outside the unit circle.”””
s x_2d = np.atleast_2d (x)

16 return np.sum(x_zad#**2, axis=1) > 1

s bads = BADS(rosenbrocks _fcn, xo, lb, ub, non_box_cons=circle_constr)

v optimize_result = bads.optimize ()



Y

2;

S

23

2;

26

N

x_min = optimize_result[ ’x’]

fval = optimize_result[’ fval’]

print (f’BADS minimum at: x_min = {x_min. flatten ()}, fval = {fval:.4g}”
)

print(f”total f—count: {optimize_result[’func_count’]}, time: {round(
optimize_result[’total_time '], 2)} s7)

print (f”Problem type: {optimize_result[’ problem_type ’]}”)

A.2..4 EXAMPLE 2 - QUADRATIC HOMOSKEDASTIC NOISY FUNCTION

The second examples, involves a quadratic noisy function with i.i.d Gaussian noise. In this case,
PyBADS detects automatically if the target function is noisy, by performing two consecutive
function evaluations at the initial points and checking if they differ more than 1.5 - 107,
However, it is a good practice to set the uncertainty_handling option to True as shown in the

example section A.2.s.

import numpy as np

from pybads import BADS

def noisy_sphere(x,sigma=1.0):

”?”?Simple quadratic function with added noise.”””
x_2d = np.atleast_2d(x)

f = np.sum(x_ad#**2, axis=r1)

noise = sigmax*np.random.normal(size=x_ad.shape[o])

return f + noise

xo = np.array([ -3, —-3]); # Starting point
Ib = np.array([-s5, -5]) # Lower bounds
:ub = np.array ([s, s]) # Upper bounds
plb = np.array([-2, -2]) # Plausible lower bounds
pub = np.array ([2, 2]) # Plausible upper bounds

bads = BADS(rosenbrocks_fcn, xo, lb, ub, plb, pub)

s optimize_result = bads.optimize ()

; print(optimize_result)

A.Z.S ExaMPLE 3 - QUADRATIC HETEROSKEDASTIC NOISY FUNCTION

Based on the previous target function, we now provide an example of a heteroskedastic func-

tion with user-specified noise, i.e the function not only returns the noisy estimate but also the
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standard deviation of the noisy evaluation.

For this configuration we also specify to PyBADS some options about the problem:

* the ” uncertainty_handling ”: True option set to True. It tells that the target is noisy, al-

though it can be automatically detected, it is a good practice to specify it.

* the ” specify_target_noise ” : True option set to True. It tells that the noisy target func-

tion provides the standard deviation of the noisy evaluations.

* the ” noise_final_samples ” : 100 option se to 100. It tells that the solution point is re-
evaluated 100 times to build an accurate estimate of the function. In this case, we set it

to 100 since the target function is not expensive. By default PyBADS uses 10 samples.

. def noisy_sphere_estimated_noise (x,scale=1.0):
”?”” Quadratic function with heteroskedastic noise; also return
M »

noise estimate .

; x_2d = np.atleast_2d (x)

4 f = np.sum(x_2d**x2, axis=I)
5 sigma = scalex(1.0 + np.sqre(f))
6 y = f + sigma*np.random.normal(size=x_2d.shape[o])

; return y, sigma

o xo = np.array([-3, —3]); Starting point
o lb np.array ([ -s, —s])
«ub = np.array ([s, s])

= plb = np.array([-2, -2])
s pub = np.array ([2, 2])

Lower bounds

Upper bounds

Plausible lower bounds

H FH FH R R

Plausible upper bounds

5 options = {

>

6 >uncertainty_handling”: True,

>

17 "specify_target_noise”: True,

1 noise_final_samples”: 100

v}

2o bads = BADS(noisy_sphere_estimated_noise , xo, lb, ub, plb, pub,
options=options)

x optimize_result = bads.optimize ()



1

A.3 EXAMPLES OF USAGE OF THE BBO BENCHMARK

In this part of the Appendix we provide some use case examples for running the BBO bench-
mark on the optimization problems we reported in the experiments chapter of this work (see
Section 4).

To run an instance of the benchmark on the designed optimization problems, we need to config-
ure four main components of the benchmark: the algorithm used for optimizing the function,
the target to minimize, the evaluation method used, and the benchmark name instance. The
BBO benchmark is based on the Hydra framework, which makes its configuration easy to con-
figure for running multiple instances of the benchmark.

The results of the evaluation method are saved by default in the directory from which you exe-
cuted the experiments under either the outputs or multiruns directories, where they are further
organized by date and time. All the results of the evaluation method are stored as dictionaries
in .json files. The output folders will also contain some default line charts, plotting the per-
formance of the optimizer on the optimization problem ran in the benchmark.

We now provide some examples for running PyBADS on the BBO benchmark on several
optimization problems, by starting from the most shallow configuration to more complex ones.
All the examples we reported below use the bootstrapping method for evaluating the results of
the algorithm, and the default configuration options of the benchmark described in Section
3.3.1, like the number of runs per optimization problem (s50), the budget of the optimization
problem (200 x D or 500 x D number of function evaluations depending if the target is noisy
or not).

The first example consists in running a single instance of BBO benchmark on the Rosen-
brock’s function with D = 2 dimensions.

[~/bbobench]$ python bbobench benchmark=bbo_benchmark algorithm=pybads

evaluator=pybads_evaluator task=rosenbrock

Listing A.1: Simple Rosenbrock’s function benchmark run

To run an optimization problem with a bigger dimension problem we just need to override the
default configuration of the task by specifying the task . options .D attribute, e.g for D = 6 we
have:

[~/bbobench]$ python bbobench benchmark=bbo_benchmark algorithm=

pybads evaluator=pybads_ecvaluator task=rosenbrock ++task.options.D
=6
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From now on, we omit the evaluator argument since BBO benchmark uses by default the
bootstrapping method for evaluating the results of the algorithms.
The BBO benchmark supports also multi-run operations, which allows the benchmark to be
ran over a range of configurations with one single command lines using -m or —-multirun
flag.
For example, to run all the deterministic targets designed in our experiments we just need to
run the following line on the bash:

[~/bbobench]$ python3 bbobench benchmark=bbo_benchmark algorithm=

pybads task=ackley ,rosenbrock , cliff , griewank , rastrigin ,sphere,

stepfunction , styblinskytang ++task.options.D=2,3,6,10 +seed=3 —m

Listing A.2: Command for benchmarking deterministic targets

With the previous commands we lunch the BBO benchmark on all the deterministic targets
with D = {2, 3,6, 10} dimensions. In particular, we create an instance of the benchmark for
each optimization problem which is identifies by the dimension D and the target function. The
sequence of the instances can be executed in parallel when exploiting HPC services otherwise
it will try to parallelize each configuration on the local machine. For enabling the HPC feature
we just need to uncomment in the appropriate lines in bbobench/config/ default .yaml :

— submitit —slurm—options

— override hydra/launcher: submitit_slurm

We also report a single line command example for running all the stochastic targets used in the
experiments. For good practice we also specified the uncertainty_handling attribute of PYBADS
since in this example we involve all noisy functions. But it can be omitted as PyBADS can
automatically detect if the target function is noisy.

[~/bbobench]$ python3 bbobench benchmark=bbo_benchmark algorithm=
pybads ++algorithm . kwargs.options.uncertainty_handling=True task=
noisy_ackley ,noisy_rosenbrock , noisy_cliff ,noisy_griewank ,
noisy_rastrigin ,noisy_sphere, noisy_stepfunction s

noisy_styblinskytang ++task.options.D=2,3,6,10 +seed=3 -m

Listing A.3: Commnads for benchmarking homoskedastic noisy targets

Finally, we report the last two examples of this tutorial. The first one configures the BBO
benchmark for evaluating the performance of PyBADS on the heteroskedastic target functions

designed in our experiments.



: [~/bbobench]$ python3 bbobench benchmark=bbo_benchmark algorithm=
pybads ++algorithm .kwargs.options.uncertainty_handling=True ++
algorithm . kwargs. options.specify_target_noise=True task=

noisy_he_ackley , noisy_het_rosenbrock +seed=3 -m

Listing A.4: Command line for benchmarking heteroskedastic noisy targets

The next example shows the command lines needed for running Sto-PyBADS on some noisy
targets with different values of the v parameter of the uncertainty interval of the method (see
Section 3.2.4).

+ [~/bbobench]$ pythons bbobench benchmark=bbo_benchmark algorithm=
sto_pybads ++algorithm .kwargs.gamma_uncertain_interval =1.96 ,2.0,5.
task=noisy_ackley ,noisy_cliff ,noisy_griewank , noisy_rastrigin ,
noisy_rosenbrock ,noisy_sphere ,noisy_stepfunction ,

noisy_styblinskytang task.kwargs.D=3,6 +seed=3 -m

Listing A.5: Sto-PyBADS benchmark command line example
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