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Introduction

In this thesis we aim at some geometric properties of multi-curve interest rate
models. We investigate problems which are not still solved in a post-crisis con-
test. In particular, we analyse an infinite-dimensional system of forward rate
processes, each of them described by a stochastic differential equation, driven by
a d-dimensional Brownian motion. We aim at conditions under which these pro-
cesses are consistent with a given parameterized surface, defined on the infinite-
dimensional domain of the solution. Therefore, we provide conditions on the
forward rate processes which guarantee the existence of finite-dimensional real-
izations. We investigate these problems because after the last financial crisis the
structure of forward rate processes has become more complex. In particular, from
a single-curve model, we now have to manage a vector of forward rate processes,
in which each component is related to the others.

This work is structured as follows. In the first chapter, we describe the profound
changes which the interest rate market has suffered since the financial crisis of
2007 — 2008 and we derive the system of stochastic differential equations (SDEs)
which describe it. In particular, in the post crisis framework, the counterparty and
liquidity risk are no longer negligible. As a consequence of this fact, it is no more
possible to describe the complete interest-rate market by a unique fixed-income
instrument, the zero-coupon bond (ZCB), whose price is denoted by (B(T"))sc(0,17,
where T is the maturity of the contract. Moreover, the equivalence between the
simple spot rate —%, computed for the time interval [T',T + 6] and the
LIBOR rate L(T;T,T + 0), which is an interbank interest rate for lending and
borrowing for a set of banks called LIBOR panel, does not hold any longer. Indeed,
from market data we can notice that spreads between the LIBOR rates associated
with different time interval’s length 0 emerged. In particular, while the pre-crisis
equivalence is respected for 0 = 1 day, more 0 is high, more the LIBOR rate
associated with ¢ is higher than the simple spot rate.

To describe the interest rate market, several authors adopted a Heath-Jarrow-
Morton (HJM) approach which consists in modeling not directly the price of a
ZCB, but the instantaneous forward rate f,(T) = —2log B,(T'). We adopt the
same approach to model the interest-rate market in the post crisis framework. By



4 Introduction

the presence of these spreads, it is necessary to describe separately each forward
instantaneous LIBOR rates associated with a finite set of positive time intervals
S < -++ < 6. Hence, we introduce the LIBOR rates L°(T;T,T + §) for 6§ €
{d0,...,0m}. Moreover, it is convenient to define positive multiplicative spread
processes S° which connect the LIBOR rate associated with §y (risk-free) and the
LIBOR rate associated with § € {6y,...,8,,}. For each § € {d1,...,d,,}, by S° a
fictitious 6-bond associated with L°(T; T, T +§) can be introduced. In conclusion,
by non arbitrage conditions, we derive the following Heath-Jarrow-Morton system
of Stochastic differential equations:

dri(z) = (Fri(z) + 5.(t + @H&) dt + 5,(t + z)dWy;
dré(z) = |—B0od*(t + x) + o (t + x)Ho? + Frf(x)] dt + ol (t+x)dWy; (1)
av? = (=r3(0) = SIIB7II + ru(0) ) dt + Baw,

where () = f(t+x) and 70 () := f’(t+x) are the instantaneous forward rates
associated with each &, whereas the finite-dimensional process Y?° is the logarithm
of the spread process S°, defined for each § € {61,...,d,,}. The x variable stands
for the time to maturity T = ¢t + x. Finally, at the end of the first chapter we
describe an analogy between the market model determined by (1) and a model for
the multi-currency interest rate market.

In the second chapter, we describe the problem of consistency. First of all,
adopting the geometric approach developed by Biérk in |5], we introduce a Banach
space H C CT™°(R,,R) in which the solution of each instantaneous forward rate
7% lives. Therefore, the domain of the solution of system (1) is a Banach Space
H = H" ! x R™ satisfying suitable conditions. In this framework, we generalize
the results proposed by Bjork et al. in [5] and [2]. These results are related to the
problem of consistency between a model M and a parameterized family G C A,
where we say that a model M is the solutions of the system (1), where the volatility
terms (a,0%, ..., 0% 3% ... (%) are specified. The consistency problem can be
intuitively described as follows:

Take as given a model M and a parameterized family G C H of forward rate
curves, we say that the couple (M, G) is consistent if given an initial forward rate
curve rM(z) € G, the interest rate model M starting on r™(z) produces forward
rate curves belonging to the family G.

We provide a characterization of the consistency determined by the geometric
concepts of vector fields and tangent space. Therefore, we analyse several examples
of models M and parameterized families G, in particular we provide results for the
model Hull-White and Ho-Lee related to the family of Nelson-Siegel and Svensson
and their generalizations. Differently from the pre-crisis framework, now we have
to manage the presence of the spreads and how the spreads entangle the structure



Introduction 5

of the model M. In particular, we construct a strategy for these examples which
provides the conditions which have to be satisfied by the components of G related
to the spreads.

In Chapter 3, we focus on the problem of the existence of finite-dimensional
realization in particular cases. The problem can be introduced as follows:

Given a model M, finite-dimensional realizations exist if the forward rate pro-
cess

Pi(w) = (Fu(2),rp" (), ..o (2), B, L B0,

describing the model M, admits a suitable mapping G : R* — # and a finite-
dimensional process Z, such that:

dZ, = a(Z,)dt + b(Z,)dW,,
ri(x) = G(Z,)(2),

where W is the same Brownian motion of (1).

To solve it, we exploit an analogy between the post-crisis interest rate market
and a multi-currency interest rate market. In particular, we generalize the results
proposed in [21] for the finite-dimensional realization in multi-currency market
context adapting it to our purposes. We provide an equivalent condition on the
volatility term of the solution of the system (1) when the volatility term is not
dependent on the entire solution 7 but only on the time-to-maturity = and a
sufficient condition when the volatility term has the following form:

5(F,x) = (" (N (2), ..., " ()N (@), B(F), ..., B7(7)),

where the mappings ¢ are real-valued, ¢* : H — R. In order to provide these
results, we adopt a geometric approach deriving the conditions which guarantee the
existence of finite-dimensional realizations by strong results of infinite-dimensional
differential geometry related to the concepts of tangential manifold and Lie algebra
generated by a given set of vector fields.

Finally, in Appendix A we briefly describe the pre-crisis context and the Heath-
Jarrow-Morton approach, whereas in Appendix B, we introduce the main concepts
of infinite-dimensional differential geometry and we prove the results we need for
our purposes.






Chapter 1

Fixed-Income Markets 1in the
Post-Crisis Framework

In this chapter we aim at presenting the main differences between the fixed-income
market in a pre-crisis environment, described in Appendix A and the framework
which has developed after the financial crisis of 2007 — 2008. First of all, we will
give a brief description of the problems generated by liquidity and credit risk and
their consequences, related in particular with the inequality of the classical pre
crisis relation between the interest rate and the price of a particular contract,
the Zero Coupon Bond. These facts have led to the necessity to provide new
conditions on the fixed-income market, which was described, after the crisis, by
a system of forward rate equations different from the one used in the pre-crisis
environment (see Appendix A). Finally, at the end of the chapter, we will show
a connection between the forward rate system developed in this new context and
a multi-currency interest rate market, described by Slinko in [21]. We will exploit
this connection in the next chapters in order to analyse some properties of the
fixed-income market, in the post-crisis framework.

1.1 Post-crisis framework

After the financial crisis of 2007-2008 the fixed-income market has undergone deep
changes. This is due to the fact that, before the crisis, in the interbank market
it was possible to neglect the counterpart and the liquidity risk. These concepts
respectively represent the risk related to the impossibility for the counterpart to
fulfil its obligations in a financial contract and the risk of excessive costs of funding
a position in a financial contract due to the lack of liquidity in the market.

After the crisis it was necessary to take into account these problems, and this

7



8 Fixed-Income Markets in the Post-Crisis Framework

necessity has led to many consequences also in the general fixed-income market.
Indeed, many contracts pledged in the fixed-income market are determined by
derivatives on interbank interest rates, for example Euribor or Libor.

The main consequence of this fact can be observed by comparing quoted prices
of same contracts for different maturity dates. Market data have shown how the
relations between prices quoted in the market with different maturity dates have
no longer respected standard no arbitrage relation, which held in a pre-crisis envi-
ronment (see (A.1)). In particular, we can observe spreads between LIBOR rates
and the swap rate, based on the overnight indexed swaps (OIS), which have taken
a crucial role in the framework that we are developing.

In conclusion, if we aim at describing the fixed-income market, we can not pa-
rameterize the interest-rate curve, as in the pre-crisis environment, with the in-
stantaneous forward rate (described in (A.3)) of a Zero Coupon Bond, but it is
necessary to distinguish all the interest-rate curves associated with the spreads
introduce above, adopting an approach called multi-curve.

1.1.1 Interbank Rates

LIBOR is the acronym for London InterBank Offered Rate, we take the descrip-
tion of LIBOR rate by ICE Benchmark Administration IBA (from the website:
https://www.theice.com/iba/libor), which is administering the LIBOR as of Febru-
ary 2014:

"ICE Libor is designed to reflect the short term funding costs of major banks
active in London, [...]. The ICE Libor is a polled rate. This means that panel
of representative banks submits rates which are then combined to give the ICE
Libor rate. Panel banks are required to submit a rate in answer to the ICE Libor
question: At what rate could you borrow funds, were you to do so by asking for
and then accepting inter-bank offers in a reasonable market size just prior to 11
a.m.?. |...]. Reasonable market size is intentionally unquantified. The definition
of an appropriate market size depends on the currency and tenor in question, as
well as supply and demand.|...]|".

Before the crisis, the spot LIBOR rate was assumed to be equal to the floating
rate defined through Zero Coupon Bond (ZCB) prices. This expression of LIBOR
rate (A.2) represented the rate at time 7" for the interval [T, 7T + 0].

In this context, the LIBOR panel, which determined this rate, was composed
by a set of banks, whose credit quality was guaranteed. Indeed, if one of these
banks had had a deteriorated credit quality, it would have been replaced by a
bank with a better credit quality. This condition had made possible to assume
risk-freedom in the panel and this property is implicitly given supposing (A.1).
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After the crisis, this mechanism is still valid, but the credit and liquidity risks
described above are no longer negligible because they can affect also solid banks,
which are in the panel, in short time. As a consequence of this fact it is no longer
possible to suppose that LIBOR rates are not affected by interbank risks, thus the
definition (A.1) does no longer hold:

 Br(T'+9) -1

L(T:T,T +6) # BT +0)

(1.1)

1.1.2 Forward Rates Agreements

The problem described in the previous section has led to the consequence that a
pre-crisis connection between ZCB (see (A.1.1)), LIBOR interest rate and a fixed-
income contract, called Forward-Rate-Agreements, (FRA) does not hold anymore.

Definition 1.1.1. A forward rate agreement, is an OTC (over the counter) deriva-
tive, which allows to the holder to lock at any date 0 < t < T, the interest rate
between the inception date T and the maturity T + 9, 6 > 0 at a fixed value K.
At the maturity, a payment based on K is made and the one based on the relevant
floating rate (usually the spot LIBOR rate L(T,T + ¢)) is received. The notional
amount s denoted by N.

The payoff of the FRA with notional amount N and inception date T, at maturity
T + 6 is given by:

M RA(T +6;T,6, K, N) = N§(L(T, T + 0) — K). (1.2)

In the following we will consider, without loss of generality N = 1. Therefore,
we can use the following notation:

MFRAT + 6, 7,0, K,1) = TTF*ANT + 6, T, 0, K).

We introduce now a filtered probability space (2, F, (F)cjo,r+], P), where T* is
the time horizon. All the stochastic processes introduced below are supposed to
be adapted processes, defined on this probability space, whereas P is supposed to
be an objective probability measure.

Using general pricing approach, if we want to compute the price of a FRA at
time ¢t < T, we have to compute the conditional expectation with respect to the
(T + §)-forward martingale measure Q79 | which is obtained using as numeraire
the OIS price process B (T + §) that in the following will be simply denoted by
Bi(T + 6). The justification of this choice will be described in the next section.
Under this condition, we obtain that:

ERA(4 T, T + 6, K) = 0B,(T + O)EY " [L(T: T, T + 6) — K|F)], t<T. (1.3)
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Recalling that (1.1) holds, it is no longer possible to compute spot LIBOR rate,
using only ZCB price processes. As a consequence of this fact we cannot describe
the forward LIBOR rate as in the pre-crisis context ((A.1)). This implies that the
price IIF24(¢; T, §; K) cannot be determined using a replicating portfolio of ZCBs,
and thus we have to consider a new fixed-income market, different from the one
described before the crisis, formed by all the ZCBs, but also all the FRAs.

To solve the non sustainability of classical definition of forward LIBOR rate,

in general we need to give an alternative definition, which is in accord with spot
LIBOR rate L(T,T + 6).

Definition 1.1.2. The forward LIBOR rate with for the period [T,T + ] at time
t < T, is the value of K, such that IIFEA(; T, T + 6; K) = 0. It is given by:

LT, T+6) :=EY " [L(T:T, T +§)|F), 0<t<T. (1.4)

In particular, we can observe that:

: _ QT T 1( B(T) )

L(t;T, T+46)=E [L(T;T,T + 6)|F] # S\B.(T +9) 1). (1.5)

In the previous definition, the forward LIBOR rate is dependent on the time

interval 9, also called tenor, which will play a crucial role in the approach that we

are developing. Indeed, by the above inequality, it is no more possible to deter-

mine the connection between LIBOR rates associated with different tenors, simply

through direct non arbitrage relations. In particular, each tenor determines the

behaviour of the contracts associated with it, which evolve in a proper independent

way. This fact leads to the necessity to define a set of forward interest rates, each
of them associated with a given tenor 4:

LT, T +68) =EY " [LY(T,T,T + 6)|F. (1.6)

This implies that it is necessary to model separately each component of the
market, associated with each tenor. To do that, we will follow a multi-curve ap-
proach, based on modeling spread processes, which will characterize the dynamics
of the contracts associated with every tenor. As we will see below, a spread process
associated with tenor ¢ will take into account both forward LIBOR rate (1.4) and
the classical pre-crisis definition (A.1). In particular, we will describe multiplica-
tive spreads given by the ratio between normalized forward rates, defined by a
forward rate agreement (as in (1.6)) and associated with a finite family of tenors
and normalized compounded forward rates associated with 6 = 1 day. This choice
will be formally justified in the next sections and it is based on the fact that if a
contract is associated with a tenor equal to one day, we can consider it risk free,
thanks to its very short maturity.
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1.2 The multi-curve approach

1.2.1 Tenor Structures

In the end of the previous section, we have seen how the classical structure of
fixed-income market is not adapt to describe the current market environment. To
do this, we need a new approach which takes into account different tenors.

First of all, we recall the notation for a time horizon T%. Adopting the notation
of [GR15], we define:

Definition 1.2.1. A discrete tenor structure T° with tenor 6 is a finite sequence
of dates:

where we consider & := TP —T? . It represents the year fraction corresponding to
the length of the interval (T? |, T}?], for k=1,..., M;.

LIBOR rates produced by ICE are given each business day for seven maturities
(1 day, 1 week, 1, 2, 3, 6 and 12 months). In accord with this choice, we consider
tenor ¢ range from one day (6 = 355) to twelve months (§ = 1). This approach
has to manage many different tenor structures, hence we define a collection of
tenors D := {0; < d2--- < d,,} and for each of them we consider the tenor
structure 7% = {0 < Tgi < Tfi < < ij;é_ < T*}. Moreover, we assume that
Tor C TPt C - CTHCT,where T :={0<Ty<Ty < <Ty <T*}is
the reference tenor structure. Finally, we suppose that T]‘\sjé_ = Ty for all 7; in this
way all the tenor structures have the same final date. '

1.2.2 Overnight Indexed Swaps

In paragraph 1.1.2, we have seen that interest rates associated with different tenors
does no more evolve equivalently, then one of the main problems is the choice of
the discount curve.

In order to solve this problem, there are two possibilities. The first choice
consists in considering a different discount curve for each tenor structure, and as a
consequence, considering each market determined by tenor ¢, as a separate market.
This is not an efficient choice because the complete fixed-income market has to
be arbitrage free and, adopting that approach, it is very difficult to determine
conditions (on the separated markets) which guarantee the absence of arbitrage
on the entire market. The other choice is to choose a common discount curve,
which is used to compute the discounted price of all instruments, whatever their
tenor is.
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Nowadays, the last possibility is obliged and we adopt it to develop our disser-
tation. The common discounting curve that it was chosen is the one associated to
the overnight indexed swap (OIS) contract.

First of all, it is convenient to give the definition of an interest rate swap.
Therefore, we briefly describe what an OIS contract is.

Definition 1.2.2. An interest rate swap is a financial contract, in which a stream
of future interest rate payments linked to a pre-specified fixed rate denoted by K,
is exchanged for another one linked to a floating interest rate (generally it is used
the Libor rate), based on a specified notional amount N (which in our dissertation
is supposed to be equal to 1).

The swap’s inception date is Ty > 0, and Ty < --- < T, (Ty > Ty) denote the
payment dates with 6 = Ty, — Tp—1, Yk € {1,...,n}. The value of this contract at
time t < Ty (supposing N=1), is determined by a combination of FRA contracts.
It holds indeed that:

HSWAP(t; TO; s 7TTL7 K) = Z 5kBt(Tk>]EQk [L(Tk—17 Tk_l’ Tk) o K|Ft -
k1

= Z HFRA<t; Tk—17 Tka K)v

k=1
where Q% is the Ty -forward martingale measure.

The OIS rate is a particular Swap contract, described as follows:
In a OIS contract the counterparties exchange a stream of fixed rate (K') payments
for a stream of floating rate payments linked to a compounded overnight rate. In
order to compute the value of this contract at time t < T, we follow the idea
described in [11] (chapter 1, section 4.4).

First of all, we compute the fixed leg payments:

IOt To, . Toy K)piw = K Y 0k Bi(Th). (1.8)

k=1

To obtain the floating leg payments we need to describe how the floating rate
is computed. For the time (T}_1,7%), it is get compounding the overnight rates
between these dates:

N

1
FON(Tk—laTk) = 5_k<H[1 + 5t";_1,t‘?F0N(t§—lvt?)] - 1)- (1.9)
j=1
We have divided the considered time interval in this way:
Ty =t < tf < --- < ti = T, where o = th — 15 | = 1day, thus
=173
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FON(tk_ |, t*) denotes the overnight rate for the period (¢%_ 1,t§)

This overnight rate is supposed to be related to the bond price process, through
the classical pre-crisis formula:

FON(¢F_ %) = By ()~ 1
J=17 5tk o By (t?)

Jj—173 Jj—1

This is due to the fact that, since the time interval associated with this interest rate
is 1 day, the liquidity and credit risks are almost negligible. Hence, the formula
for the floating leg payments is:

O (4 Ty, ..., T, K) fioating = Z Sk Bi(Ti) FON (¢, Ty, Ty) =
k=1

S snml (G ) -
:Bt(TO) — B(T,),

where the equality % is due fact that, since the overnight rate is supposed to be
risk free and we are assuming T, = tﬁw the following equivalence holds:

Nk

ol
FON(t; T} _, Ty,) =E2 [5k (TI0+ 8w FOV (st = 1)1 =
j=1
1 T) . th (tég 1)
=—E%* L 1
5 [ By (%) 7|

= Repeating the same procedure =

Bt ) (T s
Z%[E#@*] ]!

where B.T stands for Abstract Bayes Theorem (for the proof see [3|, Appendix
B, Proposition B.41). Moreover, we have used the fact that the Lebesgue-Radon-
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Nikodym derivative between the two forward measures is:

I _ Q' _ Bi(ty,)Bo(ty, )
Lt e Byt )Bo(th,)

(1.11)

In conclusion the value at time ¢ of an OIS payer (in which the floating rate is
received and the fixed rate is payed) is:

IO'S(t: Ty, ..., Tn, K) = By(Ty) — BuTy) — K Y 6:By(T). (1.12)

k=1

By analogy to the FRA rate definition, the OIS rate K919(¢; Ty, T;,), for t < Ty is
defined imposing that the OIS’s value is equal to zero at time ¢:
_ B(T,) — Bi(Tp)

ZZ:1 0k Bi(Tk) '

If we consider a single payment date, we obtain the classical formula for the for-
ward rate in the pre-crisis environment:

KOIS(t; To, Tn)

i  B(T+6) - B(T) 1 B(T)
KEPGT T+ 0) = =505 _S[Bt(Tw)_l]'

In the following, we will denote the simply compounded forward rate
KOIS(t; T, T + §) with LP(t;T, T + §), because, as we will see in the next section,
it will be associated with the discount curve.

(1.13)

1.2.3 The choice of the discount curve

In (1.3) we have chosen the discount curve, used to compute the price of a fixed-
income instrument in the post-crisis framework, as a money market account, which
pays the OIS rate. We have followed this strategy, because, as we have seen, the
overnight rate determines very low risk, thanks to its short maturity, and then
we can consider it risk free. Moreover, in Subsection 1.1.2, we have denoted with
BOT5(T) the OIS bond price processes, which are not necessarily traded in the
market, but they are simply determined by the OIS rate (1.13) through bootstrap
algorithms, as done in the pre-crisis environment (for more details, see [1]). Using
OIS bond price processes is a good choice, also because B9 (T') is associated with
the reference tenor structure (that is the one which contains more dates) and it
can be used to compare the Bonds associated with the other tenor structures.
From BP19(T), which in the following will be simply denoted by By(T'), we define
the instantaneous forward rate, as done in the pre-crisis setting (see (A.3)),

f(T) = —moga—?fm. To do this, we assume that the prices curve T" — By(T)
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is sufficiently regular to compute the forward rate f,(7'). Finally, we define the
instantaneous short rate: r, = f(¢,t).
Given the OIS short rate 7, we define money market account in the same way

of (A.4):
B, = exp(/o rsds). (1.14)

Then we consider a martingale probability measure Q, equivalent to the objective
one P, under which all discounted by B; traded assets are martingales. In particular
we postulate the condition for the OIS bond price processes By(T):

B(T) = E@{Bﬂ;‘ft} _ EQ{eacp[— /tT rsds} 7). (1.15)

Bg?) is a Q-martingale, after a normalization with By(T),
- )<t

Since the process <

we can use it as density process to change Q, with the equivalent forward mesaure
Q7 which will be used in order to compute prices of other market instruments.

1.3 Heath-Jarrow-Morton approach in post-crisis
framework

1.3.1 The parameterization of spreads

In the context described in the previous sections, we aim at adopting an Heath-
Jarrow-Morton approach (A.3) to describe all interest rate curves, each one asso-
ciated to a different tenor 6. We follow the article [8].

We have seen in section 1.2.2 that we can assume the OIS rate L (¢t; T, T + 6)
(defined on (1.13)) to be risk-free, whereas, adopting the concept of tenor structure
1.2.1 associated with the set of tenors D we have to manage with a set of LIBOR
forward rates, each of them associated with a tenor § and defined as (1.6). As we
have seen, the LIBOR forward rates no longer respect classical pre-crisis relation,
but also the following inequality is typically verified:

LT, T +6) > LP(t; T, T +9). (1.16)

Moreover, we can observe from market data that the Libor rate is an increasing
function of tenor 6. We can observe this property in figure 1.1

As a consequence of the inequality (1.16) it is convenient to follow a multi-curve
approach. We can model the OIS rate L” and a family of multiplicative spread
processes ,each of them associated with a tenor §. These spreads will be related to
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Figure 1.1: Term structure of additive spreads between FRA rates and OIS forward
rates, on Dec. 11, 2012 for § € {5, 3, 5, 1}. Source [8]

the credit and liquidity risk associated with the LIBOR forward rate L°.directly
the different LIBOR rates, but, chosen the OIS rate LP(t;T,T + ).

Hence we can give the following definition:

Definition 1.3.1. The multiplicative forward spread rate between the LIBOR for-
ward rate, defined on d-tenor structure, and the OIS rate is:

14+ 6L0(t; T, T +9)
1) . )L
S, T) = T PET T 3) (1.17)

wn particular, the spot spread rate, between the respective spot LIBOR rates respects:

14+ 6L5(T;T,T +9)
0T T) = o . 1.1
SUT.T) 1+ 6LP(T;T, T+ 0) (1.18)

In this context the process (S°(T,T))r represents the evaluation, given by the
market, of the LIBOR panel credit and liquidity quality, at time 7' and for the
time interval [T, T + ¢].

Recalling that the Lebesgue-Radon-Nykodim derivative between the (7" + §)-

dQT+9 _ B(TH+9) Bo(T)
dQT |z Bo(T+9) Bi(T)

forward measure and the T-forward measure is L, =
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Vt < T, we can derive some properties of the spread process S°(t,T):

5 1+0L°(tT, T +6)
ST = 5@ T, T +0)
BT +9)
~ By(T)
51 By(T + 0) EQ[(1 + L(T; T, T +6)) - Lr|F]

 B(T) Ly
_Bt(T + 5) BO(T + (5) . Bt(T)
~ Bi(T) B(T+6)By(T)

=B | Bp(T + 6)(1 + 0L(T; T, T + 6))

EY (1 + 0L(T;T,T + 6)|F)

Br(T + 6) By(T)
By(T + 6) Br(T) ‘Ft]

ft} — g% [Sé(T, T)‘ft]

EQ" [(1 FOL(T;T, T +9))

(1.19)

From the last equivalence, we can observe that the process (S(t,T)); is a Q-
martingale.

In order to develop the HIM framework, it is moreover convenient to split the

spread process S°(t,T) in the spot component S°(¢,t) and a forward component.
In particular, we assume that:

Assumption 1.3.2. In accord with [12], we assume that for each t < T, it holds:

BI(T)
By(T)’

SO(t,T) = S°(t,t) (1.20)

where the term B?(T)) can be interpreted as a fictitious bond, since the classical
terminal bond equivalence holds: B (t) =1,V t € R,.

Remark 1.3.3. Through the previous assumption, we can observe that the ficti-
tious bond’s price curve is given by:

S, T) (T) = 1+ 0L°(4T, T +90) 1+5LD(t;t,t+5)B(T)_
TSt t) N T 1+ 6LP( T, T +6) 1+ 0Lttt +0)
1+ 0L (T, T +6) BT+ 6)By(t)
= - . (T =
1+ 8L%(t;t,t+0) By(T)By(t +9)
1+ 6L (T, T +6) BT +6)
1Lkt t+6)  By(t+9)

B} (T)

1.3.2 HJM approach description

In this paragraph we describe the Heath-Jarrow-Morton approach, which we will
use in the following of the dissertation.
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Our aim is to model an interest rates market composed by m+ 1 curves: one curve
associated to the OIS curve, chosen as the discounting curve and one LIBOR rate
for each given tenor 6 € {1,...,m}. In order to adopt the HIM approach (see
A.3), based on multiplicative spreads, we follow [8], using a slightly different (but
equivalent) parameterization. To do this let us consider the filtered probability
space (2, F, (Ft)icp,r+, Q), defined on the first section, where Q is a martingale
probability measure.

OIS Curve For the OIS curve, we use the same parameterization of [[8], Section
3.2], based on instantaneous forward rates fi(7), for 0 <t <T < T™:

1) = D)+ [ a(T)ds + / ()W, (1.21)

where W = (W;);>0 is and R%valued Brownian motion and & and & satisfy the
same conditions of A.2.1.

Moreover, we can pass to the Musiela parameterization (A.3.1): ri(z) := fi(t + x).
We obtain the following dynamics:

dry(z) = ((%rt(x) 5t + o) /O Go(t + u)*du) dt + Gt +2)dW;,  (1.22)

where the volatility term is a row vector and, with A*, we denote the transpose of
the vector or the matrix A.

Finally, we denote with By(T') = exp(— fOTft r(z)dz) the price of an OIS zero-
coupon bond.

Libor Curve The Libor curve, associated with the tenor 9, is obtained by the
multiplicative spread process (S°(t, T))sejo.17, for each T' < T*, defined as in (1.17).
Moreover, we choose to adopt the parameterization of (S°(¢,T))se(o,r] described in
(1.20).

The fictitious Bond, associated with tenor ¢ (also called §-bond) and introduced
in (1.20) is supposed to have the following structure:

BXT) := ea:p(—/t F(u)du), (1.23)

where the associated forward rate process (f(T))sejo.r) is given by:

AT :fg(T)+/ta§(T)ds+/ta§(T)dWS. (1.24)

Finally we give the following assumption:
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Assumption 1.3.4. We impose that
So(t,t) = e, (1.25)

where (Y?)>o is an adapted Ito process, which dynamics is driven by a Q- Wiener
Process.

In particular, the exponent process (Y;?);, is supposed to satisfy

t t
Vi =i [ addss [ giaw. (1.26)
0 0

We assume that all the processes introduced to define all the dynamics respect
assumptions A.2.1.

HJM drift condition After the crisis, we have observed that FRA contracts
have to be explicitly considered in the fixed-income market. Recalling the equiv-
alence (1.3), we are going to describe the price of a FRA contract in terms of
multiplicative spreads. By the formula of FRA value at time ¢ (1.3), we can ob-
serve that:

HFRA(t T,T + 6, K) _ 5Bt< +5)EQT+5[(L5(T T, T+5) )‘ft} =
= 0BT + &) (LYt; T, T +6) — K) =
D g —
* spr )[<1+5L (t; TT5+5>>S (t.T) 1_K] _
e+ P50, 1) - i+ ) -
= B,(T)S (t,T) Bt(T+5)(5K+1)=
= B,(T)S°(t,1) BT _ g (T+0)(0K +1) =
= t y Bt(T) t
= S°(t,t)B)(T) — B(T + 6)(0K + 1)
(1.27)

146 L0 (T, T+96)

where in equivalence Y we have used the definition of spread: S°(t,T) = T LD (LT T3

and the classical pre-crisis relation, which holds for OIS bonds:

L+ 0LP (5T, T+ 6) = gt

As we have observed in Section 1.2.3, the term (

B¢(T)
By

In order to get absence of arbitrage in fixed-income market, we need to find con-
ditions under which also the leg dependent on the spread is a Q-martingale, when
discounted by the bank account defined on (1.14).

> is already a Q-martingale.
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We have thus to analyse the dynamics of the following process:

S°(t. ) B)(T)

KT,5 _
t Bt

(1.28)

Hence we compute:
v, 7w
S9(t,4) B (T) —exp{Y05+/0t;y§d8+/Oti3§dWs/tTj[fg(u)+/Ota;i(u)ds+/0t0§(u)dws} du}
F':Texp{Y05+/O vgds—i—/o 5§dWS—/O fg(u)du+/0 £ (u)dut
/;(/tTag(u)du)ds/Ot</tTJf(u)du)dWS}
—exp{¥§ + /0 ds + /0 g, - /0 " Fiwdu + /0 S u)dut
/Ot(/T (u )du/t (u )du)ds/t(/T (u )du/t o3 (w)du) WV, } =
—exp{¥§ + / ds+/ BRAW, — / fou du+/ £ (u)dut
+ ([ aswa)as+ [ ([ otwanaw.+ [ amas+ [‘sinaw.),

where
{AS(T - f; ol (u)du = — f(;fs a’(s + u)du;
So(T) == [, od(uw)ydu=— [; " od(s +u)du

Moreover, using the stochastic version of Fubini Theorem (for the proof see [14], chapter 6,
Theorem 6.2), we obtain:

/Ot Fo(u)du = /Ot [fg(u)Jr/Ou ai(u)der/ou o‘g(u)dWS}du:
_/Otf;?(s)dH/Ot(/:afz(u)du)dﬁ/:(/:gg(@du)dm

Finally:

S (0BT = ean{Y§ - | " fi(u)du+ / 5 130 + AT s + / RS AY

(1.29)
We recall that the process (K °);er is a local martlngale if it does not admit drift
term. In particular, applying Ito formula: dK T(S(utdt + vy dWy), where:

pe =0+ F(0) + AT) 4 3118+ ST ),
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we have to impose that:
1
vf+ff(t)+At(T)+§|Iﬁf+2t(T)ll2—n(0) =0, Vtel0,T], vT <T". (1.30)

In particular, if t = T we get: 77 + f7(t) + 1[|82]]* — 7(0) = 0.
By the previous equivalence, we obtain the drift condition:

1 1
ou(T) = ~5 1187 + ST + S5 =
= ST ~ LIS

differentiating with respect to the 71" variable we get:

*

BT = =B () + o (1) /0 ol u)du) . (1.31)

Then, if we consider the forward rate process (f(T))sepo,r) described through
Musiela parameterization (r)(x) = f2(t + ), we obtain

0
drd(z) =df (t + ) + a—Tff(t +x)dt =
=al(t + z)dt + ol (t + 2)dW; + (%ff(t +z)dt =

T % 0
=|— fof*(t+x)+af(t+x}(/ Uf(t+u)du> +%Tf(x)}dt+of(t+x)dm.
0

whereas the It6 process (Y,?); which determines the exponent of the spot spread
process satisfies the following dynamics:

avy = (= 50) — SUGHIP +r0) )t + 57V, (1.82)

Conclusions The HJM approach and the condition of arbitrage free market have
determined the following system of SDEs:

|OIS Curve| dry(z) = <F7"t(x) + ot + :E)H5> dt + o4(t + x)dWy;
[Libor Curve| dr?(z) = [— 000 (t + x) + 0 (t + 7)Ho? + Frf(m)} dt + ol (t + x)dW;

[Log Spot Spread] dY;? = <—rf(0) — H1B0|1* + rt(O))dt + BodW;.
(1.33)
where F := %, Ho = fox of(t+u)du. The previous system is composed by 2m + 1
stochastic differential equations, 2 for each tenor ¢ and one for the OIS curve.
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1.4 Foreign exchange analogy

It is possible to observe an analogy between spot spread processes defined on
the previous section (S°(¢,t)); and an exchange rate, which characterizes a multi
currency framework. Under this interpretation, we can represent model (1.33) in
this way:

e Each fictitious bond BY(T), associated with LIBOR interest rates defined on
the J-tenor structure, can be interpreted as a Zero-Coupon Bond traded in
a foreign risky market;

e OIS ZCBs are associated with the domestic contracts.

We consider a market defined on a filtered probability space (Q, F, {F; }o<t<r+, P),
where P is classical objective probability measure.

If pP(t +x), pf'(t + x) are respectively the price processes of a domestic ZCB
and a foreign ZC'B, with maturity date t+x. Defining the respective instantaneous
forward rates r?(z),rf'(z), the classical pre-crisis HIM framework (obtained by

Musiela parameterization) can be used:

drP? =< FrP(z) + oP(t + x)HaD}dt +oP(t+x)dWpP, rf(z)= 7"(?70(@5
arf ={Frf(z) + of (t + 2)Ho" bt + of (¢ + 2)aWF, (@) = (2);

where the meaning F, H is the same of (1.33).

In the previous system, the random sources are respectively driven by a QP-Wiener
process WP and a QF-Wiener process W[, where QP QF are martingale measures
for the respective currency markets.

As done in section 1.2.3, we assume that the evolution of money account in each

market BX = exp{fg rf(O)ds} for K € {D, F}. Then it holds:

dBF = BFrF(0)dt;
dBP = BPrP(0)dt.

In order to have two arbitrage free markets, the martingale measure Q¥ , with K €

{D, F} is obtained supposing that all discounted prices in each market are Q-
martingale. We assume that the exchange rate process (S;); follows this dynamics:

dSt = St(’ytdt + ntthD). (134)

This process represents the following equivalence: we can buy the foreign currency
and invest in the foreign market (with the foreign short rate rf(0) and in an
equivalent way we can invest in a domestic asset determined by the money account
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of the foreign market evaluated in the domestic currency through the exchange rate
process B = S; B} . In particular, the dynamics of B} is:

=0

. o
dBf =d(S,BI') = dBf - S, + B - dS, + d[B", 5] =

t

=BF[(rF (0) + y,)dt 4+ mdWP).

Bf is the price of a contract quoted in the domestic market, then the associated
discounted price has to be a QP-martingale. As done before, we compute the
differential of the discounted price. Successively, we impose that the drift term of
this process is null.

BN _ Bl roy b b
d BD) ~ BD [(r;(0) = 77(0) + ) dt + n,dW 7],

t t
then, the condition on the drift is: v, = 7”(0) — r/(0). Hence, we obtain:

dS, = Sy((rP(0) — rF(0))dt 4 n,dW}P).

Passing to the logarithm Y = log S, we get:
1
aY; = {rP(0) = 1 (0) = 5 Im[* }dt + maWV;P. (1.35)

Moreover, the Lebesgue-Radon-Nikodym derivative between measure QF, Q on
Fi is:

L= Sen{- | P~ rF(0)ds},

therefore, the relation between the two Wiener processes is:
AW} = dwpP — ndt.

This condition allows us to describe the foreign forward rate dynamics in driven
by the domestic Brownian motion.

In conclusion, the system composed by the domestic forward rate, the foreign
forward rate and the exchange process is:

(arP ={FrP(t+2) + 0P (t + 2)HoP Ldt + P (¢ + 2)dWP,
rP(z) = TOD’O(x);
arf ={Brf(t+2) +of (t+ 2)Ho" = of (L + @) fdt + of (¢ + @)W,
F _ k0 .
Ty (z) =157 (2);

av, = {rP(0) = rf (0) = 4llml* }at + naw?.

(1.36)
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We can see that this system is equivalent to (1.33). In the following of the disserta-
tion, we will use this analogy to describe some properties of fixed-income market in
post-crisis framework. Indeed, we will exploit the techniques developed by Slinko
in [21], in order to find conditions under which the infinite-dimensional system
(1.33) possesses finite dimensional realizations (we will describe these concept in
details in chapter 3).



Chapter 2

The Geometric Approach and
The Consistency Problem

At the end of Chapter 1, we introduced the forward rate system which describes the
dynamics of instantaneous forward rates associated with each tenor 0, belonging
to a finite set of tenors D = {01,...,0m}-

In this chapter, we aim at describing the problem of consistency in the post-
crisis context. To this effect, we will adopt the geometric approach described by
Bjork in [5]. This approach provides a different interpretation of the system (1.33),
which is interpreted as a finite-dimensional system of SDEs, each of them defined
on an infinite-dimensional space. We aim at generalizing the strategy developed in
[2], in order to find conditions which guarantee that couple (M, G) is consistent,
where M and G denote respectively a forward rate model and a parameterized
family of forward rates. The concept of consistency can be introduced as follows:
we say that an interest rate model M and a parameterized family of forward rate
curves G are consistent if M produces forward rate curves which belong to G for
a strictly positive time interval.

Mathematical finance is interested in the previous concept because the problem
of consistency is related to the problem of parameter recalibration of a concrete
interest rate model. The parameter recalibration is essential in the analysis of
a financial market through a model, because when we use a model M in order
to describe the fixed-income market (i.e. we define a volatility term &(7;) which
determines a forward rate system as (1.33)) we have to take into account the fact
that M is an approximation of the real financial market, hence, after a sufficient
time interval, the comparison between the values provided by the model M and
the market data will not coincide. Therefore, recalibrating the parameters of the
model using the current market data, we can correct the behaviour of M, adding
the information given by the market data.

25
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In order to recalibrate a model we have to develop the following strategy. First
of all, we have to deal with the problem of production of a forward rate curve
'™ = {rM(z); > 0} from market data. Indeed, only a finite number of bonds
are actually traded in the market, then we have to fit a finite set of points to obtain
the entire term structure ' . In order to do this, we can follow several approaches.
The main strategies we can follow are described in [14] Chapter 3 and they consist
in using splines or parameterized families of smooth forward rate curves, such as
the Nelson-Siegel family or the Svensson family, which will be studied in details in
Section 2.3.

When we have provided the term-structure from market data, we have to deal
with the problem of recalibration. In order to face this problem, we can follow a
strategy which takes into account times series combined with cross-section data.
These strategies are justified only from a statistical point of view, hence, deeper
theoretical motivations are related to the concept of consistency, between the dy-
namics of a given model M and the term structure determined by a parameterized
forward rate family G.

This chapter is structured as follows: in the first sections, we will provide a
formal characterization of this concept of consistency in the post-crisis framework.
Then, we will discuss the validity of the general consistency conditions in the con-
text of several specific examples. The class of models and parameterized families
which will be studied is inspired by [2].

2.1 The geometric approach

The system (1.33) is a system of SDEs depending on a positive real parameter z
(time to maturity). If we try to analyse the properties of this system directly, we
have to deal with an infinite number of SDEs. In order to overcome this problem,
we can interpret each equation of the system as a unique SDE, defined on an
infinite-dimensional space. For ease of presentation, let us first consider only the
OIS forward curve.

In order to formalize this idea, we use from now, this notation:

ry . forward rate curve at time ¢ ,
r: the stochastic process (7:):>¢ of forward rate curves .

The stochastic process r can be interpreted as a curve evolving on a infinite di-
mensional space:

H C CT(R,,R).

Using this notation for r : R, — H, r; can be interpreted as a point on H.
In what follows, we will suppose that each equation of the system (1.33) respects
some particular properties, which lead to the following definition of the space H:
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Definition 2.1.1. For each t > 0, the solution of each forward rate equation
of the system (1.33) at time t, vy and ri i = 1,...,m, belongs to the following
infinite-dimensional space:

H = {r: Ry — R infinite times differentiable, and s.t. ||r||, < +oo},
where the norm || - ||, is defined as follows:

) +oo +oo ) 2
= 27" 7t 0.
I =322 [ (gart@) e o

We have used the convention 88—;)7“(:1:) =r(x).

The space (H, ||-||,) is an Hilbert space for each v > 0 (we refer to |4]|Proposition
4.2] for the proof of this result), then we fix a value for v and in the following, for
simplicity of notation, we denote the norm without the subscript.

Remark 2.1.2. The choice of such a norm is necessary to quarantee the existence
of a strong solution for the first m + 1 rows of the system (1.33) (associated with
the infinite-dimensional dynamics). Indeed, the operator F: H — H, defined by
F .= (% s bounded:

R =Y 2 / 7 (L riw))) e
n=0

€[0,+00)

+oo [t gi 2 T oo
=2 Z 277 /0 (%r(ac» e dx — 2/0 r?(x)e " dx
=0

<2|r|)* < +oo.

Recalling that the operator norm is defined as:

||F7"||}

1Bl = sup {
rerv(oy &[]

we conclude that: ||F|| < V2.

If we generalize this approach to multi-curve framework, we have to interpret
each solution of the first m + 1 equations of system (1.33), as a function on a space
isomorphic to H. We introduce the following notation:

r— 7, (2.1)
Pt ie{l,...,m}, (2.2)
B —s B, ie{l,...,m}.
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Under this notation, the entire solution of the system (1.33) can be interpreted as
a vector forward rate process defined on the space:

Ho=H"x - x H" x R,

where H* = H and we recall that d is the dimension of the Brownian motion
which drives the stochasticity of the model. In particular, each R component is
associated with the spread process associated with a tenor d;. H is still an Hilbert
space since it is a finite product of Hilbert spaces and the solution of (1.33) will
be denoted in the following by:

OIS LIBOR Log Spot spread
~ = - % %

Y Y
A 0 1 m 1 m
Fe=1[rf re,.,r Yo, o Y]

Assumption 2.1.3. The dynamics describing system (1.33) are completely deter-
mined by the volatility terms o¥(t + ), ot (t+z), % V6 € {61,...,0m} (this is
due to the Heath-Jarrow-Morton drift condition (1.31)).

We introduce the same notation of (2.1): ¢¥i = 0!, &, =0 p% =l In
analogy to [21], we suppose that:

o The adapted processes describing the volatility of each component are defined

as follows:
ol (t +x) = (7, t + 2);
ol(t + ) = o' (Fl,t + 2);
B = B,
where o', 37 i€ {0,...,m}, j€{1,...,m} are deterministic functions:

o0 H — (H)?,
ol H — (H)? ie{l,...,m},
fH — RY jed{l,...,m},

supposed to be smooth, in the sense of the Remark B.1.3.

e The following mappings are supposed to be smooth:

P — 0°(F)Ho (7) — 222 (7,)6 (),

P — ol (P)Ho'(7) — L92(7,)6(7,) — o' (i) B (), i=1,...,m.
In particular, we rewrite the system (1.33) as:
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where:

Fro + o%(7)HoO(7)

Fr! + al(f’)Hal

. Frm + o™
() = Bro( Mo
Br? — 2 —
B - B

(7) = B0 ()

5||20 (7) c 7.

14117
1671

)~
1
2
1
2

T’”—%\W’”HZ

where B denotes the mapping B : # — R, defined as follows:

and

57 (7)

VredH

(2.5)

For the details regarding infinite-dimensional Ité’s formula we recall [9] and [10].
In order to adopt a classical differential approach, we need to use a slightly
different notation, based on the Stratonovich integral definition:

Definition 2.1.4. Given two semimartingales X,Y , the Stratonovich integral of

X with respect to Y is defined by:

t t
1
/XsodYF/ XY+ (X, V),
0 0

where (Xy,Y;) is the quadratic covariation process between X; and Y;.

The following proposition can be proved:

Proposition 2.1.5 (Chain Rule). If F(t,y) is a smooth function and Yy is an Ito

process, then:

aF(tY) = -

9 b viyde +

0
8—yF(t,Yt) odY,.
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Proof. By 1to’s formula:
2

0 o)
—F(t,Y,)dt + —F(t,Y;)dY; + 2357

where . .
Yt=Y0+/ gosds+/ ud WV,
0 0

where, for simplicity, we have supposed that the Brownian motion (W;)¢>o is 1-
dimensional.
Then, computing the Ito’s derivative of %F(t, Y:):

0 0 0 0? 103
A5, F(0:Y0)) =5, 5 F Yt + 5 F Y)Y+ 5 55 (6 V(Y ),
8 a 2 3 82
=[G1 9y P YO+ 53 F (4 Yput 5 5 (YR i+ 5 F (1 Yo Wi
Hence 3 o
A g FCY)Y), =GPt Yt

On the other hand, by definition of Stratonovich integral:

) ) )

5y F(E Y0 0 Yy = F(1,Y)aY, + d<ayF( Y),Y>t
) 1 o2
=g, LYY+ 555 F(t,Y,)y7dt.

Finally, by substituting in (2.6):

dF(t,Y;) = %F(t, Y,)dt + (%F(t, Y,) o dY,.

Passing to the Stratonovich formulation, we rewrite (2.4) as follows:
1
=p(7y)dt — §d(&(f), W)+ () o dW;

Recalling by [9][Theorem 4.17] how to compute the Ité’s derivative of an infinite-
dimensional SDE, we compute:

06 10%(R)
dO’(?}) :8f (Tt)dr + = 9 o2 d<7'>t
06 1%
=S (00) ()t + 6(7)AW, | + 555 ()a () - 6 ()t
06, o 18% 0, .
= | G (i) + 555 ()3 () - 6(7) | dt 4+ 52 (7)) AW,
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where % denotes the Fréchét derivative.
Then, d{(¢(7), W), = 9276 (F;)dt. Therefore, the solution of the forward rate
system (2.4) can be rewritten as:

A7)

N
dry = [u(ry) — 357 (7)o ()] dt + &(7;) o AWy, (2.7)
where: [i : H— His given by:
F?”O + O'0<ft)HO'O<7’At) O'0<ft)
Fr' +o'(7)Ho' () — o' (7,) 8" o' (F4)
: 196 :
i) = | Fr™ + o™ (A Ho™ () — o ()8™ | = 552 (0) [ o) [ (28)
Br’ —Br' — §[|8'|? B(7)
Br? — Br - 4l|3"|? 53
where o0 o0 o\ 50 a0 -
?‘g(?}) e 8:7? (Tt) 8;;'11<Tt) e QYUT (Tt>
005 () ... S%(fh) 5 () o (Fe)
86 ~ o™ [ A g™ [ A o ~ o™ [ A
87/; (Tt) = agrfi (Tt) %T’!;L (Tt> %Yl (Tt) %Y'rln (Tt>
8_50(7:t) 85777 (ft) 85'1 TAt) aYBm< t)
o (1) S (7)) G (1) o (7)
Remark 2.1.6. We observe that, since
6:(6—17...7&d):7:[—>7:[d7
and R )
i:H— H,

are smooth mappings by Assumption 2.1.3, we can interpret ji, &; for each
j€{l,...,m} (locally) as vector fields defined on the Banach space H.

2.2 The consistency problem

In this section, we aim at providing a description of the property of consistency
and a general characterization of the consistency between a model M and a pa-
rameterized G. We generalize the results provided by Bjork and Christensen in [2]
to the multi-curve context.
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Suppose that we have specified:

e A volatility 6. In this sense we are representing an interest rate model M,
described by the SDE system (2.4).

e A mapping G, which determines a forward rate curve manifold G C .

In particular, in order to obtain a submanifold determined by GG we have to assume
that:

Assumption 2.2.1.
G:Z—H, Z CR"” (2.9)

is an injective function such that the differential of G (in the sense of Definition
B.1.8):
dG|, : R" — H,

for each z € Z.
For simplicity, we will use the following notation for the differential of a func-

tion: dG|, = G,(2).

Recalling Example B.1.11, the previous assumption allows to obtain that G is
an immersion. In particular, G := I'm[G] is a submanifold of H.

The consistency problem consists in finding conditions under which a model
M and a submanifold G are consistent in the sense described by the following
definition:

Definition 2.2.2. Given a forward rate dynamics, as (2.4), describing a model
M and a family of forward rate curves, described by a submanifold G C 7:[, we
say that the couple (M, G) is locally invariant under the action of 7 (solution of
(2.4) ) if for each (rs,s) € G X R, there exists 7 : G x Ry — R, stopping time,
such that:

7_(7"5, S) > S, Q — a.s. (210)
r €0, for each t € [s,7(s,T5)). (2.11)

If 7(s,rs) = 00, for each (rg,s) € G, Q — a.s. we say that the couple (M, G), is
globally invariant.

In order to prove a characterization of the previous definition in terms of the
vector fields i(7), 6(7) and the mapping G, we give the following definition:

Definition 2.2.3. We say that G s locally 7-invariant under the action of the
forward rate process v if for each 1o € G there exists a Q-a.s. strictly positive
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stopping time T(7o) and a stochastic process (Zy); taking values in R™, which has
a Stratonovich differential of the form:

dZt = CL(Zt)dt + b(Zt) @) Wt, (212)

such that for each t € [0,7(r9)), ri(x) = G(z,Z;) for each x Q-a.s., where G is
assumed to be an immersion on H, such that G = Im[G].

In what follows, we will prove local results, then we will use the term invariant
or r-invariant in order to denote the local invariance and the r-local invariance
respectively.

We now prove that, under the conditions given for GG, the previous two defini-
tions are equivalent. To this effect, we need classical results of functional analysis
(see [6] and [18]).

Proposition 2.2.4 (Local left inverse). Consider a mapping g : X — ), where
X, Y are two Banach spaces. Let hg € X and suppose that

1. g is a differentiable function, with Fréchet derivative denoted by %g;
2. the linear map %g 1S injective;

3. there exists a bounded left inverse of %g, denoted with A at the point hg; in
particular:

0
A2
3hg ho

where idy s the identity map on the Banach space X .

= idX7

Then:
There exists two open subset U C X and W C Y, which respectively contain
ho and g(ho) and a function f: W — U such that f(g(z)) = x, for each x € W.

Proof. Define ¢ : X — X by p(z) := Ag(x), then %gp(x) = Aa%g(x) = idy, (it
is linear and bounded). Then, by the inverse function theorem there exists U C X
open and a function ¢y : U — U such that ¢y(p(z)) =z, =z €U.

Then, we define W := ¢(U) and the function:

W — U

v — vo(Ay)
In particular, for each x € U: f(g(x)) = ¥o(A(g(x))) = vo(p(z)) = . O

We now need to show the regularity of the inverse function described in Propo-
sition 2.2.4:
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Lemma 2.2.5. Let ¥ : X — Y be a bounded injective linear mapping between
two Banach spaces X, with closed range.
If we denote with U* the adjoint mapping, then the linear mapping:

Hy = (U*0) "1y~

15 a bounded left inverse of V. Moreover, the operator Y — Hy s infinitely
differentiable in the norm operator.

Proof. W is injective with closed range, then (U*W) is invertible.
If we consider y = Uz, then:

Hyy = (U*0) 10y = (U 0) " H (U W) x = .

The smoothness descends from the fact that ¥ — ¥* and A — A~! are smooth
operators. ]

Remark 2.2.6. We can apply Proposition 2.2.4 to a function which satisfies the
boundary condition on the local inverse of the Fréchet deriwvative. Therefore, if we
want to apply this result to a function G which satisfies Assumption 2.2.1, we have
to assume that the local inverse of G' is bounded.

In the following proposition we will prove the equivalence between the concepts
of equivalence and 7-equivalence under the Assumption 2.1.3 Assumption 2.2.1.

Proposition 2.2.7. Let us consider a model M, determined by (2.4) whose pa-
rameters satisfy Assumption 2.1.8 and a parameterized family G C H, described
as the image of a mapping G which satisfies Assumption (2.2.1).

Then the couple (M, G) is invariant in the sense of Definition 2.2.2 if and only

if G is T-invariant, in the sense of Definition 2.2.5.

Proof. r-invariance = invariance: It follows directly from the definitions.
invariance = r-invariance:

for an arbitrary fixed 7y € G, thanks to the hypothesison G : Z2 — G C 7:l, we

have that: 7o = G(z), for a unique zy € Z.

Moreover, %G(zo) is injective, then it has left inverse, denoted by W (7). We

can also note that the left inverse U : H —» R? Since the codomain is finite-

dimensional, the mapping ¥ () is not only linear but also bounded.

We have thus shown that G satisfies the hypotheses of Proposition 2.2.4. There-
fore, G has local left inverse, denoted by F : U — W (U, W are defined as the
open subsets introduced in the proof of Proposition 2.2.4).

Let us define:
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around 7y € U. Computing the Stratonovich dynamics on Z, we obtain:

oF oF

dz, = r) (1) dt
t aft(rt)Mrt) + o7,

(7)o (7e) o dW. (2.13)

Thus, (Z;); is the solution of a finite dimensional system of SDEs like in (2.12),
where:

_OF

(z) =22 (GNHE)), (2.14)
b(2) =L (G0 (G(2)). (2.15)

By construction, F(7;) = Z; and since G is the local inverse of F' around 7, the
following equation holds:

G(Z1) = G(F(7h)) = 7.

We can prove now the central result of this section:

Theorem 2.2.8 (Invariance). If we consider the forward curve manifold
G = Im|[G] and the model M, the couple (M,G) is invariant if and only if the
following conditions hold:

A(G(2)) € Im[G.(2)] = TeG: (2.16)
5,(G(2)) € Im[G.(2)] = Tey G, Vi€ {l,....d} (2.17)

where 7 = G(z), for each z € Z domain of definition of G.

Proof. (=) We exploit the equivalence between 7-invariance and invariance, proved
in Proposition 2.2.7.
By Ito’s formula (with the correction term given by Stratonovich):

{dft = G.(Z)a(Z)dt + G.(Z,)b(Z,) o dW,
720 == G(Zg),

where 7 is chosen arbitrarily in G.
Then, recalling that 7 satisfies (2.4) and equating the corresponding terms we
obtain:

i(Pe) = G(Zi).a(Zy), (2.18)
0(7) = G(Z4):b(Z); (2.19)



36 The Geometric Approach and The Consistency Problem

these conditions are equivalent to: i(7:), ;(7) € Im|G,(Z:)],
for each j € {1,...,d}.

(<) Let us suppose that (r), (rt) € Im|[G.(Z;)]. This means that there
exists two vector fields a(z), b(z) € R", defined on the open subset Z, such that:

(G (2)) = G(Z)a(Z), (2.20)
5(G(2)) = G.(Z)b(Z). (2.21)
From the injectiveness of G,(z) a(z),b(z) are uniquely determined.

Since R™ is finite-dimensional, G,(z) has closed range, then by Assumption
2.1.3 we can apply Lemma 2.2.5 to G.

Therefore, choosing an arbitrary point 2, € Z and denoting by H the local
inverse of dG/(z) around zy (H : TG|gw) — R", where U is an open subset of Z
containing zp), we have that H is smooth This 1mphes that:

a(z) = H(G(2))(G(2)), (2.22)
b(z) = H(G(2))6(G(2)) (2.23

are smooth too.

Since a(z), bj(z), for each j € {1,...,d} are smooth vector fields defined on
U, they are locally Lipschitz. This condition allows us to define a process (Z;); as
the unique strong solution of the equation:

dZt = G,(Zt)dt + b(Zt) o th
ZO = 20-

Given the initial point zo the solution of the previous SDE is local on U. A priori,
there could be no global solution of hte previous SDE on Z.
Finally, we define the process (y;); C H, as y; = G(Z;) which satisfies the
dynamics:
{dyt = G(Z1)a(Zy)dt + G.(Z)b(Z;) o AW,
Yo = G(Zo).

We can observe that yy = 7o = G(z) and both the process (y:)i>0 and (7)o
solves the same SDE.

By the uniqueness of strong solution of SDEs, we conclude that y, = 7. Since
G is locally 7-invariant, then we can apply Proposition 2.2.7 in order to say that
the couple (M, G) is locally invariant, which is the thesis. n

The previous result is basically equivalent to Proposition 4.2 of [2|, with a slight
different notation, due to the multi-curve approach that we are developing.

The main change is due to the fact that (7)), o(7) are vector fields defined
on 7:[, which is a product of Banach spaces. This fact implies that it is possible
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to determine relations between the components of the Fréchet derivative of the
function G computed on the vector fields a(z) and b(z), which guarantee that the
couple (M, G) is invariant.
Using the notation:
G, = (Gg,G;,...,Gf,G?+1,...,G§m) : (2.24)
condition (2.16) can be rewritten, emphasizing the relations among the different
components. We obtain that:

Gla(z) = FG°(2) + 0°(G(2))Ho"(G(2)) — %8; (G(2))a(G(2)), (2.25)
for j € {1,...,m}:
Gla(2) = PG (2409 (G(2) o (G(2)) - (G(2))o (G(2)) - 2 (GG,
(2.26)
forje{m+1,....2m}:
Gla(z) = BG(2) - BG"(2) — |# (GNP — 1 22 (@(2)a(E(2)).
(2.27)
The condition on the volatility term is:
GIb(z) = 09(G(2)), j €{0,...,m};
{ng(z) ), e mt . am), (2.28)

Substituting conditions (2.28) in the conditions on the drift equation (2.25) be-
comes:

190"

Gla(z) = FG°(2) + GU(:JHGU(2) — 5 = (G(2))(G(2)),
which can be rewritten as:
PG(2) = GU:)lalz) — HAHEN(:)] — s (@E)0(C(:). (229)

Equations (2.26) can be reinterpreted as follows:

Gi(a(z)) =FG’(2) + [GLb()|H[Gb(2)]+

1907 R (2.30)
107 e,

= GLTb(2)[GLb(2)]"
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Recall that the following equivalence hold:
G HIGIH(:)] () = C2b(2) ) / ()] (5)ds

2(91:“/ (G2b(2))(s)ds 2

Therefore it holds that:

Gla(z) =F G (2) + %FH /0 x[ng(z)](s)ds\ ‘2+

— GIT(2)[GIb(2)]* — ; %f (G(2))a(G(2)),

In conclusion, exploiting the linearity of F:

G {a(z) + b(2)[GEb(2)] ) = F[G”la H/ G )ds]| ]+ (2.31)
- 58;‘f(c;(z))&(G(z)),

where j € {1,...,m}.
Finally, for equations (2.27), we obtain the following equation:

Gla(z) = BG'(:) - BG™(2) — LG — 1 2 (@@)e(ee), 2:32)

where j € {m+1,...,2m}.

We can conclude that the family G has to satisfy the conditions imposed by
equation (2.31) and (2.32), which represent the relations between the components
of the forward rate equation satisfied by 7.

In the following remark we try to analyse if it is possible to divide the compo-
nents of the solution of (1.33), in particular if there exists conditions under which
we can check the consistency conditions only on the coordinates associated with a
forward rate equation and which automatically guarantee those conditions on the
components associated with the log-spread components.

Remark 2.2.9. Looking at Definition 2.2.3 one could think that the existence of a
process Zy and a mapping G which guarantee the r-invariance conditions, crucial in
the introduction of the concept of consistency, has to be texted only for the equations
of the system (1.33) associated with the forward rate r* for each i =1,...,d, since
only those components are infinite-dimensional. This problem can formalized as
follows:
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If there erists a finite-dimensional process Z; and a set of functions G* for
J=0,...,m such that: ri(x) = G'(z,Z;) for each i, then we have the consistency
condition:

i(z) = Gz, Zy), where Z, = (Z,,Y)),

and the process Y; = (Y}, ..., Y;™) is the log-spot spread process.

Such a condition allows us exploit the fact that the log-spot processes Y, are
finite-dimensional in order to consider them as a part of the finite-dimensional
process Z;. Consequently, we can check the consistency conditions only on the
infinite-dimensional equations of the system (1.33), which solutions are r® for every
7=0,.

Unfortunately in the general framework this property does not hold. Indeed,
analysing the conditions (2.25) and (2.26) it is possible to note that the components
of the volatility term o' and 3* depend on the entire forward structure defined on
H. This fact implies that, for each j = 0,...,m, the condition on Gla(z) is
dependent on the entire function G, which is defined on H and therefore, it is
dependent also on the last m components of G, associated with the log-spot spread
processes. In particular, by the previous consideration we conclude that in order
to check the consistency condition for a couple (M, G) we have to describe all the
2m + 1 components of G and text the conditions (2.16) (2.17) also for the last
m component. Since in the pre-crisis environment the spread processes were not
defined, we do not have a family of functions which is used in the literature to
parameterize the spreads (different from the forward rate curves associated with
each tenor, for which several parameterized forward families have been introduced,
for example the family of Nelson-Siegel or Svensson, which will be described in
the next section). As a consequence of this fact, we try to find conditions for the
components of G related to the log-spreads, in order to guarantee the consistency. In
order to do this, we consider the function G of Definition 2.2.8 and we assume that
the function G = (G°,...,G™)* is injective and its Fréchel derivative is injective
too. Moreover, according to what we observed at the beginning of the remark, we
suppose that the volatility term 6(r) does not depend on the log-spread processes,
but it is only a function of Ty = (r), ..., r™)*. Under this assumption, which does
not allow to consider very complex models, but it is respected by the models we will
describe in Section 2.3, we can invert the conditions (2.25) and (2.26):

FG°(2) + 0°(G) Ho"(G) — 1 %= (G(2))(0°(G(2)), - .., o™ (G(2)))"

~ ~ o1 or \> /) N
a a(z) = FGl(Z) + UI(G)Hgl(G) — %%UF (G(Z))(O’O(G(z)), o 70‘"L(G(Z)))* _ 51(G(z))01*(G(z))

FG™(z) + 0™ (G)Ho™(G) — $ %2 (G(2))(0°(G(2)), ... o™ (G(2)))" = B™(G(2))o™* (G(=))

After this computation we can determine the vector a(z) and then we can use it
in order to provide conditions on the differential G for each i = m +1,...,2m
such that the condition (2.27) is satisfied. Through this procedure, we determine
the conditions on the functions which define the log-spot spreads which respect the
consistency.
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2.3 Examples

In this section we shall use the Theorem 2.2.8 to determine if classical models such
as the Ho-Lee model (1986) or, for instance, the Hull-White model (1990) and
classical parameterized forward curves manifolds, such as the Nelson-Siegel family
or the Svensson family (or their modifications) are consistent.

We proceed by generalizing the results obtained in [2] to the multi-curve frame-
work. In order to do this, we consider a forward rate model M, defined on the
Banach space . It will be determined by a system of SDEs, in which each
component is described by a well known dynamics (for instance, the Ho-Lee or the
Hull-White). On the other hand, we will introduce a vector forward parameterized
family, denoted by G, whose components are described by forward parameterized
families such as the Nelson-Siegel or the Svensson family. We will provide explicit
conditions for the consistency of the couple (M, G).

We will first consider the same forward rate family for each component and the
same model for each component of M. Afterwards, we will describe a model in
which the first component (associated with the OIS curve) will be equipped with
a richer structure than the components associated with the LIBOR forward rate.

In analogy to [2]|, we introduce a forward parameterized family, frequently used
in literature, the Nelson-Siegel family (in the following, we denote it with N.S).

2.3.1 The Nelson-Siegel family

The NS forward curve manifold G was described for the first time in [17]. It is
parameterized by z € Z := R*, through the mapping G, defined in the following
way:

G(z,x) = 21 + 20 1" + zgwe™ ™% = 21 + € *%[z9 + 237]. (2.33)
For a detailed description of this family we recall [13]. If we want to consider G
as a function defined on R, and taking values on H,, we need to suppose that:
24 > —%

We consider now the Fréchet derivative of G:

o if 2, #0:

g_f(z,x) = (1 e we™™® —we (2 + 237)) . (2.34)

o If zy = 0, the family is described by the mapping G = 2y + 25 + x23. The
term 25 is redundant, so that we impose that zo = 0 and G becomes

G(z,x) = z1 + 237, (2.35)
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where z = (21, z3). In this case the Fréchet derivative of G is:

oG
5(2’@ =(1 z). (2.36)

If z4 = 0 the family G := Im[G] is called degenerated NS family.

We consider a NS family for each component of the multi-curve family. The
parameters describing each row of this family are supposed to be independent row
by row. Therefore, we have to consider a vector of parameters:

z= (2 2,2 (2.37)
Then, the first m + 1 rows of the mapping G are defined by:

20 + 20e % 4 g20e~ %"
Gl 7) = 2l 2Je AT palem T (2.39)
2+ zgne_zfl;l;—l— r2yle
We can determine the Fréchet derivative of GG, defined by the matrix:

1 [e7#®] [xe #4%] [—we **%(29 4 z32)] O 0 0 0
0 0 0 0 1 [e %] [ze *7"] [—we *%(29 + 237)]

For the degenerated case the Fréchet derivative is given by:

1 2000 -- 00

oG 00120 -+ 00

S R S

000O0O0O O 1 =z
The Nelson-Siegel family is the main forward rate family analyzed by Bjork and
Christensen in [2|. In particular, the consistency is checked in relation with two

models.
We briefly describe them in the following paragraphs.

2.3.2 The Ho-Lee model

The Ho-Lee model (in the following denoted by HL) is a short rate model, devel-
oped in 1986 in [15]. Tt is described by the following SDE:

drt = @(t)dt + O'th, (239)

e}
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where r; is the short rate, ¢ > 0 is constant and the function O(t) is satisfying the
conditions which guarantee the existence and uniqueness of strong solution.

We can derive the dynamics of the associated forward rate f;(7"). The function
O(t) will be determined by the HJM-drift condition. In order to compute f;(T),
we introduce the following general dynamics:

df,(T) = a,(T)dt + o,(T)dW,, (2.40)

where the drift term is supposed to respect the HJM-drift condition (A.18).
Let us consider constant volatility term: o,(7") = ¢ > 0, then:

fi(T) :fo(T)Jr/Otozs(T)der/OtadWS
= fo(T) + o° /t(T — 8)ds + oW, = fo(T) + a2t<T — %) T oW,
0

If we compute the short rate associated with this forward rate, we obtain:

re = fi(t) = fo(t) + 02% + oW,.

In conclusion, the dynamics of r; is described by:
0 2
dry = (a—Tfo(t) Yo t)dt + od W,

The previous dynamics corresponds to (2.39) with O(t) = 2 fo(t) + o2t
The forward rate equation associated with the HL model is:

[ 2 f Oro(x) 2
dri(z) = [a t(x + 2) + o +o t} dt + odW, (2.41)

where ro(z) = fo(x) for each x € R,.

2.3.3 The Ho-Lee model and the Nelson-Siegel family

Similarly as in the single-curve approach the Ho-Lee model and the Nelson Siegel
family are inconsistent. We focus only on the first m + 1 rows of (2.7). In order to
prove the inconsistency of the couple (M, G), where M is the model determined by
a constant volatility term o > 0 and G = I'm[G], where G is the mapping describing
the NS family, we need to check the conditions of Theorem 2.2.8. Moreover, in
analogy to the fact that o is constant, we will also assume that (3, the volatility term
of log spot spread process, is constant. The consistency condition is equivalent to:

((G(2)),61(G(2) € TanG, Yje{0,...,m}, Vie{l,... d}
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If we try to check this condition for 7 = 0 on the drift term, we obtain the following
result.
First of all, we can make the following observation:

0
—0o"(#) =0, (since o

or

0 is constant).

Adopting the notation G = (Go,...,Gm, Gms1,---,G2m)", the previous condition
implies that:
i(G(2))(z) = FG°(2)(z) + 0"Ho" € Tgo(,)Go. (2.42)

This is equivalent to the existence of a vector n = (1, ...,n4) such that, for every
x € Ry and for z € Z:

a x
%Go(z, x) + 00/0 olds = n + nge_zgf” + n3xe_22x — xe_z%(zg + 297)n,

e (=228 — 208w + 2) + (0°)%w = 1 + e (o + 2 (ns — 29ma) — 225m)
However, for x — +oo and 29 > 0, the left member tends to +oo whereas the
right one is constant. Since the first condition does not hold, then we can say that
the couple (M, G) is not consistent.

We can see that, recalling [2]|| Proposition 5.3], in the single curve approach
the NS degenerated family is consistent with the HL model, indeed:

%G(z,x) + 0% = + 1px => 23+ 0%T =01 + Mo

If we aim at checking the consistency of (M, G?) where G? is the parameterized
family described by the degenerated NS mapping and M is the Ho-Lee model,
we have to prove that: i(G(z)) € Tg(»G?. By simplicity in the following of the
dissertation we will assume that every component of the function G is described
by an independent set of parameters. In particular, if the coordinate G° is deter-
mined by the parameters 20, 29, the i component G will be described by z¢, 2%
which are different from 2z).29. For the equations associated with the OIS and
LIBOR forward rates, this condition is equivalent to the existence of a vector

n= (7797773777%,77%7 s 77]{”77]?):

FG°(2) + (0”)

r =) +rbw
FG1(2)+<01)2Z‘—ﬁ1 1

ol =nf +mx (2.43)

FG™(2) + (0™)?w — o™ =i + '
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and this is equivalent to:

2+ (0°)2w =) + nh
A+ (0V)2x — Blot =} +nja 4t
7+ (0m)2 — o™ =t + gt
Therefore, choosing:
772:(0-j)27 V]ZO, -, M,
m =2, (2.45)

the equivalence requested holds.
The condition on the volatility term, in the first m+1 coordinates is equivalent
to the existence of a vector (£9,£9,&],&3,...,&™, &), such that:

o =€ +&x, Vie{o,...,m}, (2.46)

and such a condition can be obtained imposing that:

g

, 247

e 247

for each j € {0,...,m}. In particular, until now we have introduced n := 2(m+1)

parameters.
The condition on the log-spreads (the last m components of the system) is, in
this case:

GO(2,0) — G (2, 0) — %(5]‘%)2 CG()n(z), Vi—mt ... 2m. (2.48)

Recalling the definition of G, and Remark 2.2.9 the previous condition becomes:
. . 1 .
Gln(e) = ) — o = (Y

- X S Gk 30 (- ) £ G+ 3
he{1,3} k=0 k=1 k=0
(2.49)

By linearity, we can consider for instance:

= Gg?zg + Gig Ca (2.50)
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. 0
If we consider z3 = 0, the previous equation will lead to: G7(z),2)) = %zg +

c(z?), where ¢ is a suitable function on the z{ variable. Hence, equation (2.50)
becomes:

0 23 700V L0 0 23 10,0 1(.,0 23

z] = +cz>z‘+z:> +cd(z)=0—=c(27) =—

V= (Gop T D) R+ A = o+ =~
which is impossible, because c is function only of 2, by definition. Therefore, it
is necessary to introduce other parameters in order to have the consistency. In
particular, we consider the following vector:

(2.51)

Z=(z,ut,...,u™)*" € R"" = R™+2 (2.52)

where v’ are additional parameters. Since G’ for each j = 0,...,m are the de-
generate Nelson Siegel family, then 6?” G’ = 0 for each j. If we introduce, with an
abuse of notation the function G’(2) = GJ(z) for j = 0,...,m, n(z) = n(z) and

the vector field:
n(z) = (n(2), 777L+1(E)7 s 7nn+m(§))*7

we obtain that: GL(2)7(Z) = G%(z)n for each j = 0...,m. On the other hand, we
define the functions G7*™(Z) = v/ for each j = 1,...,m. This implies that:

Gj}LE()’ vj#h‘—i_m?
Gﬁf[m =1.
Moreover, we introduce the last m coordinates of the vector field 7 as follows:
: 1 .
@) =4 - - ()P, i=1...m (2.53)

In particular, the equivalence GL*"7j(2) = 20 — 2] — $(B)?, j=1,...,m holds.

We have proved the consistency condition for the drift term. Now we consider
the last m coordinates of the volatility term. Since the vector field on £(z) which
respects the drift condition for the first m + 1 components is given by (2.47), then
adding the other m components on &, we define the vector field:

E(Z) = (&)

Hence, we obtain that the condition on the spreads’s volatility is:

GLIM(2)EZ) =, (2.54)
then, by the definition of the last m component of G given before:
GIt™(Z) = ! (2.55)

and imposing that &t" = 37, condition (2.54) is satisfied.
In conclusion, we have proved the following proposition:
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Proposition 2.3.1. If we consider a model M for the fired-income market in
which each forward rate equation is given by the Ho-Lee model and the parameter-
ized family G, defined by the mapping G : R3™2 — H,

0 0
z] + 237
1 1
Z1 + 23

GZ)=|z"+20x |, (2.56)

ul

um

where Z is introduced in (2.52), then the couple (M, G) is consistent.

2.3.4 The Hull-White model

The second model analyzed by Bjork and Christensen in Section 5.2 of [2] is the
Hull-White model. This model is a generalization of the Vasicek model and it
describes the short rate which satisfies the following dynamics:

dry = {®(t) — ar }dt + odW;, (2.57)

where a > 0 and ® is supposed to satisfy usual conditions which guarantee the
existence and uniqueness of strong solution.

In order to analyse a multi-curve model determined by the SDE (2.57) it is
necessary to provide the dynamics of the associated forward rate.

Lemma 2.3.2. If ry satisfies the Hull-White equation, then the forward rate f,(T),
such that fi(t) = ry satisfies the following SDE:

dft(T) = CJét<T)dt + (J‘E_a(T_lt)dI/Vt7 (2.58)
where at(T) = %e—a(T—t) [1 _ 6—(1(T—t)i| _

Proof. Section 2.4.1. O]

Passing to the Musiela parameterization, we obtain that the forward rate equa-
tion (2.58) can be rewritten as:

2

dri(z) = %e_” [1 - e_“x} dt + oe” “dW,. (2.59)
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2.3.5 The Hull-White model and the Nelson-Siegel family

As done for the Ho-Lee model, we aim at checking the consistency of the couple
(M, G), where M is determined by the vector forward rate equation (2.7) in which,
for each component, we have chosen the volatility term as in (2.59): o7(t,z) =
ole=® Moreover we have chosen G = I'm[G], with G determined by (2.33). Also
in this case the volatility is constant on .

We consider a model M associated with the forward rate equation (2.7), such
that each component is given by the Hull-White forward rate equation associated
with a couple of parameters (a’,07) for each j = 0,...,m. We have to check the
conditions provided by Theorem 2.2.8, in particular:

i(G(2)),0:(G(2)) € ToG, Vie{l,... d} (2.60)

For this example we consider a 1-dimensional Brownian Motion, i.e. d = 1.
If we test the condition on i°(G(2)), we observe that, since the volatility term
is constant in H:

i(G(2))(x) = F(G"())() + 0° (¢, 2)Ho" (¢, 2), (2.61)

whereas the first row of the family G, is given by: G%(z, x) = 20420247 4 z20e =%,
Recalling the computation provided in (2.128), we obtain the following equiv-
alence:

- (ZOCE 1 CLOx
o°(t,2)Ho'(t,7) = (o) [e - 1} , (2.62)
Then, condition (2.61) amounts the existence of a vector (17, ...,n}) (by simplicity

of notation, we omit to the dependence of z) such that:

1
e A7( 2950 2900 4 )+ (00)2672“0‘”5 [eaoz _ 1] _
=+ e A () + 2 () — z9n) — 2*=5n)),
On the other hand, the condition on the volatility term 6°(G(z)) = oo™ ** is
equivalent to the existence of a vector ¢ = (£,...,£Y), omitting as done for n the

dependence on z, such that:
7(10x 7Z01‘
goe™ " = &) + e + x(€y — 2pE)) — 2°256)), Vo € Ry,

which holds if and only if z) = a°. Therefore, the couple (M, G) is not consistent.

Starting from the previous result, we can compute a parameterized family G
such that the couple (M, G) is consistent. The strategy, developed in analogy to
[2]|Proposition 5.2|, is given as follows: we try to modify G, in order to impose the
consistency condition.
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The first step is imposing that 20 = a”. We can observe that, since a® > 0, the
condition on z; which guarantees that G(z) € H is satisfied. Therefore, since sz is
constant, then the condition on the drift (2.61) requires the existence of a vector

(17, -, 75), such that:

1
e (=29 — apQx + z3) + (0°)2e 2" —

a [eaoz a 1] = + e + njze .

To deal with the term e 20" it can be convenient to expand the NS manifold
adding an exponential of the form e~22°z Hence, we introduce the augmented NS
family, defined by the following mapping;:

G (2, x) = 20 + 20679 4 Qwe ¥* 4 202", (2.63)
where 20 = (2¥,...,20) and 2z = (2%,...,2™*). The Fréchet derivative of this
mapping is:

3G0A
(=) = (1 e ge ' 2%, (2.64)
In particular, defining G4 := Im[G“], we conclude that the consistency property
(for the first row of i(G(2)) is equivalent to the existence of a vector (n?,...,n3)
such that:
1
—a’z 0,0 0,0 —2a%2 (5 0,0 0\2 ,—2a% a%z
e A Zy — @ 230 + 2 e 2a°z)) + (07)%€ —[e —1]:
(~a = a®af + 28) — R R00) + (e M .
=) + e + e 4 e,
If we choose the parameters in the following way
m =0,
0= —a0 + 29+ (U i
IS R (2.66)
ng a ¢ 237 0)2
ng = —2a°2 — (&,

we prove the consistency condition on °(G(2)).
Following the same strategy for the other forward rate components of i, we
introduce the following functions:

"y L o o .
G2, x) = 2]+ 2e™ @ 4+ Zwe™ T + 217, j=1,...,m
J

where 27 = (21, ..., zi) Then, we consider the vector mapping:

GA = (G, ..., G™A gt G,
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We recall that:

[ (GA(2)) = FGI4(2)(x) + o’ (t, x)Ho! (t, x) — Fo?*(t, ).

Therefore, i7(G*(2)) € Tgia(.)G; is equivalent to the existence of a vector (n,....m)
such that:
eV (—alz) — dl da + ) — e T(2d7 7)) + (JJ)Qe’QGJI—j [eaﬂx = 1} — Blole ¥ =
a
= 77{ + nge—aja: + ngxe—aj + nie—Qajx’
(2.67)
which is equivalent to:
; o . 7)2 o o - o 72
efajx(—a]zé + 25+ @ — Blo? — ajzf;x) 4 o200 (—Qajzf1 — (U—])) =
a a
=11 + (7 + mhw)e " + e
This condition is verified when the following equivalences hold:
m =0, N
: o L o
n%:—ajz%—kzé-f—%—ﬁjaj, (2.68)
s
M = —2alz] — Cr.

The condition on the volatility is easier to prove, since we have to check the
existence of a vector (&],...,&]) such that:

O—jefajx _ é{ + égefajz + ggxefaj:p + &Jl'eanjx’

and this can be verified choosing:

g =0,
& =0,
& =0,
£ =0.

for each j =0,...,m.

Finally, we can assume that the volatility of the log-spot spread 37 is constant.
We try to exploit the conditions on the vector fields n and ¢ in order to provide
the components of the function G associated with the spreads. If this procedure
does not lead to a conclusion, we will follow the same strategy outlined in Section
2.3.3 adding an opportune number of parameters. First, we can observe that the
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components n{ = 0 for each j = 0,...,m. We can use this property in order to
solve the problem.
At this point, we describe explicitly the conditions on the last m components

of G:

G (2n(z) =BGOA(2) ~ BGA(2) — 4 ()

. (2.69)

_ 0 0 0 g g g Loaive
—z1+22+z4—zl—22—z4—2(ﬁ), i=1,...,m.

Let us suppose that the function G™%7 is dependent 29, 29, 29, 29, 21, 23, 2], 2} be-
cause the other variables do not appear in equation (2.69). In these terms, the
conditions on the components related to the drift become:

m+j 0.0 0 (‘70)2 m+j 0.0 m+j i j j (Uj)2 i
Gy (2) (a0 + 25 + 205 ) + G (—a®28) + G (—aled + 2+ S - Bl )+
2 a 3 ) a

+ G (o) = b+ = o = — 2] = (B

Let us suppose that the real parameters z§,z§ > 0, then we can consider the

function:

- 1 %2 1 A1
czﬂuwi;}£+(f£—%w2+§wwﬂby§—§—§£h-

)
(07)?  plo’ j Zga L
20?2 ) log 23 + a * 524}’

(2.70)

1r . .
—l—g[z%—ir(z{—l—

In this case, by the vector 7 is given (2.66) and (2.68), by the following equivalences
hold:

G (—a" g+ + EF) = - F - 5k,

Gy () (—a"28) = =0 + i — 5(F)° + 3,
GZE)H(Z)(—Q&OZE %) zg+2(&00))22,
Gr(a)(—aid + 2+ SF — pol) = —f + G+ (BF - 2,
G (=) (~alz)) = —=] — 5 + 25—

\GZZH(Z)( 9a) 2 (Uajj)j> - 2(27;]_))227

hence, summing the right members of the previous system we obtain the right
member of (2.69), whereas, summing the left members of the previous system, we
obtain the left member of (2.69), therefore, condition (2.69) is satisfied.
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At this point it is necessary to find the conditions which guarantee that the
function defined above are consistent also for the volatility term. We recall that
the consistency condition for the forward rate equations leads to a vector field £
such that §j = o/ and 5,{; =0for j =0,...,mand k € {1,3,4}. Hence, since
G™1J is defined (2.70), we obtain that:

0 J
. " _— » , ol o P
GUHEE =GR G+ GG =8 & —Gt = j=1...m
<2
(2.71)
Therefore, it is necessary to assume that 37 = ﬂ — Z5 in order to have the consis-

tency for the volatility term.

This implies that the functions G™" defined in (2.70) satisfy the condition
which guarantees the consistency. In conclusion, we have proved the following
Proposition:

Proposition 2.3.3. If we consider the model M given by the Hull-White model
for each forward rate equation and the family G determined by the function
G RYUMY s H where 7 = ﬂ - % for each j =1,.

—af _ 40 _ 9,0
Zl+226ar+z$eax+2062az
Zl+26ax+zmeax_|_zl—2am

Zin + Z;ne—amx + mee—amx + Zme—Qamm
o 0
54+ (-4 - & W) log 4 — 3 — 324 +

1.1 1 (01)2 1.1 » (272)
Tar [22 + (21 T oz o ) log 25 + a_1 + 524}

0.0 2 . O
5 [—zg + (—z? - —2(((10)2 + %(BJ)2> log 2§ — 2 — %zg} +
L [zgn + (z{" + i) - ’Bzmm> log 25" + ;% + 5211”}

then the couple (M, G) is consistent.

On the other hand, recalling the same stralegy of Proposition 2.3.1, we have
that the model M is consistent with the family G where G is determined by the
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mapping G R s

Zl—|—Z€ ax-'-Z.’L'@ az+Z0 —2a%z
2l 4zl 4 Zlye @'t 4 plem20le

G(Z) = | 2"+ 2ie™ 2" + 2lgpe=0"e 4 e 20 | (2.73)

!
um
where Z = (z,ul, ... u™)*.

We can make a last observation for the Hull-White model. In Remark 5.1 of
[2] the following result is shown:

Remark 2.3.4. The augmented manifold G4 is not the smallest possible mani-
fold consistent with Hull-White. The minimal manifold satisfying the consistency
property is given by:

G(z,7) = 217 + z9e 2. (2.74)

This remark still holds in the multi-curve framework. Indeed, choosing a pa-
rameterized family described by (2.74) for each component G’ with i € {0,...,m},
for the first coordinate of the drift i°(G(z)), there exists a vector (n?,79) such that:

e aO:B - (LO:E 1 aO:B —[lox - aOfL'
—a%20e=" — 2002572 4 (022 @[e - 1} =nle + e 2 (2.75)

Indeed, choosing (1?,719) as follows:
0 _ (0 )
s = —2a°29 — 0

the condition (2.75) is verified.
For the other coordinates, the consistency condition is given by the existence

of a vector (1], 73) such that, for each j =1,... ,m:
— e Bl (o P e 1| = ot < e e,

which is equivalent to

J)2 , o 7)2 , ) . . ;
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Also in this case, in order to impose the consistency condition, it is sufficient to
choose:

i _o.j.d _ (07)*
M = —2a’2 @

- . - O'. 2 . .
{n{ = —ad'z + ) Bigd,
For the volatility term, we recall that o7(,) = o/e~%'% for each j = 0,...,m.
Hence, the condition is:

j—alr _ ¢j —alz j 72an
ole = e + &e

therefore, the solution is given by &/ = (07, 0)*, for each j = 0, ..., m. In particular,
we have constructed two vector fields defined on R2*+1 one for the drift term
and one for the volatility term:

nz) = m 0 omo e ),
E)=(8 & & & - & &)
Now it is necessary to consider the last m components of G. As done before,
first, we try to find suitable conditions using the parameters already introduced,
if a solution can not be found, we exploit the procedure outlined in the previous
subsection and we add an opportune number of parameters.

The conditions for the coordinates of the drift are:

) ) 1 .
G (2)n(z) =BG"(z) =BG (z) — 5 ()",

’ o (2.78)
:Z?+Z?_Z{_Z%—§(ﬁj)2, j=1,....m,

where the vector field n is given by (2.77). If we assume that the function G

satisfies: ‘ ‘
0, 1.0 Jo 1.7

m—+j _ e
G (Z)_ a0 + al o J 17"-7m7
therefore, the left member of (2.77) is given by:
- 1 (@)Y _ 1 G »
G (2)n(z) = —E(—aoz? +— ) — @<—2aozg - ) + (—a]z{—i-

AV o VAV | J g
+ ﬂ)—. + (—2&32’5 - ﬂ)— — 5—(.7

al /ol al /) 2al a’

(a2 (al)?
hence, condition (2.78) on the drift is satisfied if and only if:

(5J) 3ol I ((00)2 (Jj)2>,

— .0 0

j j flol 1 <(UU>2 (Uj)2>7

a’ 2
(87)2 — 2535_7J B ((0

)
o @2 ()

0)2 2 —
ga P (@) (2.79)

2 (Uj)2>

=0,
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whose solutions are:

} (2.80)
ol o .

:gig, j—17...,m.
On the other hand, for the volatility term the condition is:

o g7

B =GrE(z) = -t

Ea
Recalling the conditions provided in (2.80), we obtain that the unique condition
on (3 is:
.ol o
j _ - 2 -
5 =55 ] 1,...,m, (2.81)
which is the same provided in (2.71).

The previous equivalence determines a dependence of the volatility of the LI-
BOR forward rates, expressed by the ratio Z—j from the volatility of the associated
spread 7 and the volatility of the OIS forward rate, expressed by the ratio 3—3 In
conclusion, the following Proposition is proved:

Proposition 2.3.5. If we consider the model M determined by the Hull-White
model for each forward rate equation and the family G described by the function
G : R+ s H where 37 satisfies (2.81) for eachi=1,...,m:

0 0

2?6 ax Z(QJean T
1 _ 9,1
2116 a'x Z%G 2a"x

—aqm . m
G(Z) . Z{ne amzx + z;ne 2a™zx
0410 1411
_zit5% + 2i+5725
a9 al

, (2.82)

0,1,0
_zl+§z2
a0

m_y 1, m
21"+ 525

+ =

then, the couple (M, G) is consistent.

On the other hand, recalling the same stralegy of Proposition 2.3.1, we have
that the model M 1is consistent with the family G where G 1is determined by the
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mapping G R3™2 9.

—a0 0
2?6 a’x de 2a°x
1 1

2%6 a'x Z%B 2a"x

G(z) = Z{ne—amx + Z;ne—&zmx 7 (2.83)

ul
um
where Z = (z,ul,... u™)*.

2.3.6 The Svensson family

The Svensson family is one of the most widely employed forward parameterized
families. The Svensson family is described by a six-dimensional vector of parame-
ters: z = (z1,..., 26) (for the details we refer to [14] Chapter 9.5.2). The mapping
which describes this submanifold is:

G(z,x) == 21 + (22 + z32)e” " + z4we” *0". (2.84)
In particular, the Fréchet derivative of this mapping is:

Gz(z,a:):(l BT pe AT pe T —p(zg 4 z3x)e T —,2’4.7326_2696).

The Svensson family and the Hull-White model We consider the Hull-
White model (2.59). Then, the couple (M, G) we aim at studying is determined
by:
M : d’f’At = ﬂ(ft)dt + &(7’}) ¢) th,

where each row associated with the above SDE is described by the volatility term
ole~¥® (Hull-White volatility term), whereas we suppose that the volatility term
of the spread processes is constant. )

On the other hand, the submanifold G C H is defined componentwise by the
Svensson family: G := I'm[G], where G is:

20 _,0

2+ (29 + 20z)e %" + 2)we 6"
1 1 1) p—28 L.,z

21 + (25 + 232)e™ %" + z we” %67

Gz, x) = | 2"+ (25" + 25'w)e " + zllwe %6 |, (2.85)
Gm+1<2>

GQ?’;L(Z)
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where z = (29,...,28"). First of all, we focus on the first m + 1 coordinates
and when we find the consistency conditions for those components (associated
with the forward rate equations) we can characterize the conditions on the last m
components of the functions G.

By construction, G is defined on an open subset of a finite-dimensional real
vector space, Z, and in order to assure that G(z,x) € H, for every z, we need to
impose that zg, zé > —3 for each j =0,...,m,

In order to determine whether the couple (M, G) we exploit the invariance
Theorem 2.2.8. As before, we need to check conditions (2.60). Starting from the

first coordinate of the drift term i°(G(z)) we get:

i0(G(2)) = F(G(2))() + 0"Ho"

= el — (D + 2B oD — gt 4 O

Condition (2.60) is equivalent to the existence of a vector n° = (n?,...,n0) € R®
such that:

[(G(2)) =) + e[ + anf — ang (25 + 232)] + ze %[0 — zjang].  (2.87)

Clearly, the previous equivalence does not hold if: {2, 28} # {a° 2a°}. Then we
suppose that: 20 = a°, 20 = 2a°. Under these assumptions, the Svensson forward
rate function associated with i = becomes:

Gz, x) = 2V + 270" 4 Ope=a’e 4 0pe—2 2.88
17T %2 3 4

The Fréchet derivative of GG is given by:

O

GY(z,2) = (1 e~a’ ged xefza%), (2.89)
whereas:

FG(z, 1) = e "%[(29 + 232) (—a®) + 2] + e 2"[z4 — 2a°z42]. (2.90)

Therefore, the consistency condition p°(G(z)) = G2(2)n°(2) is equivalent to:

0)2

502
e_“%[(zg + z07)(—a®) + 23] + G_QGOI[Z4 —2a’z42) + oy ema'T _ (ao) g2 —

QO$ [ (IOI

=y +e ") + nix] + nize

(2.91)
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Imposing that the coefficients of the exponential terms are equal

m=0 (2.92)
0_ 00,0 ,0 (0%)? 0, 0
z3 —a (2 +237) + L + 3w (2.93)
(0°)?
20(1 — 2a°z) — = nx. (2.94)
If the last equivalence holds for each z then 29 = (200)2, then we have the inconsis-

tency of the couple (M, G). This implies that the Svensson family is inconsistent
with the Hull-White model.

We can enlarge the previous family adding a term zse™ %, where 25 is a new
parameter, in order obtain the consistency. Indeed, if we consider the mapping:

2a

GOz, 2) = 20 + [29 + 20a]e™** + [0 + 20)e~2"". (2.95)

The previous mapping is an extension of the mapping G4, defined on (2.63). The
associated submanifold: G := I'm[G] forms with the Hull-White model a couple
whose first row respects condition (2.60) on the drift. In particular, if we compute
the drift term on a function G which takes value on H and such that its first
coordinate is G°, we obtain:

2

g _ 40 —949
+ 0) (6 a’x 2az)

a
0)2 0)2
g _.0 g _ .0

:<( ) —aozg—l—zg—zgaox)e ‘”“"4—(—( ) —20224—22—222@2)6 @

a® a®

whereas,

—aOI —aOI — GOI - aox
Gz, (2) =(2) + € (2) + we (=) + we () + e 2)
—aox - (IOCC
=" [i(2) + o (2)| + e lan(z) + n3(2)| + il (2),

Which implies that:

~

m(z) =0,

M (z) = - — a%2f + 24,

n9(z) = —23a°, (2.96)
ny(2) = —2230°,

| 78(2) = —(200)2 2a°20 + 2.



58 The Geometric Approach and The Consistency Problem

For the condition on the drift terms for j = 1,...,m, we need to follow the
same strategy adopted for j = 0. In particular, the Svensson family (2.84) is
inconsistent with the model Hull-White model. The same discussion can be done
for the family (2.95) since the drift term associated to the j —th coordinate of the
forward rate equation is:

i (G(2)) = F(GY(2))(x) + 0'Ho' (z) — flo™(2),
where G7(z) is given by:

Gz, 2) = 2 + [ + zgx]e_“j“” + [z + zg]e_Qajx.
The Fréchet derivative of this mapping is:

GJZ‘(Z7 x) _ (1 e~ po—dlz  Lo—2d0 e—2ajx) ’

and the consistency condition for this component becomes:

o (4 ) + )+ e 20 + 2) o)+ D e[y
_ ﬁjo-jefajx c TGj(a:)gj'

Rewriting the previous expression:

. 2 . )2
o' _aj<zj+zjx)+zj+7<aj) —Bigl | e 2 —2aj(zja:+zj)—(0]) +21| € Toi(yG7
2 3 3 al 4 5 al 4 Gi(z)Y -

If we consider the vector:
7 = (0 [—ajzg + 2+ (%)2 — Bjoj} [—a?2)] [—2a77%]] [—2ajzg - (%)2 + zﬁD :

where we omitted the dependence on the z variable of 7. Hence, we get that
(G (2))(x) = Gz, 2 (=),

Finally, we have to check that the volatility term of the model M satisfies
condition (2.60). In particular, by the form of the mapping which defines the
extension of the Svensson family (2.95), the condition on the volatility of the first
m + 1 components of the forward rate equation is:

ole@’® — Gi(z, x)E,

where £ = (0 ¢/ 0 0 0)".
For the coordinates related to the spreads components G™*!, ... G*™ we ob-
serve that, for every 7 = 1,..., m the condition is:

. . 1
GI () (2) =BG°(2) = BGY — S (5)?
, : , 1 (2.97)
:Z?+28+2g—z{—zﬁ—z§—§(ﬂj)2, j=1,....m.
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For simplicity, we can assume that the function G™%, for every j = 1,...,m

depends only on the variables zl,zg,zg,zg,zg,zl,22,23,z4,z5 because the other

coordinates do not appear in equation (2.97). Adopting a similar strategy to
Proposition 2.3.3 and assuming that 23,29, 24, 2} we introduce the function, for

every 7=1,...,m

: 1 20 29\ logzd/ (07)? 22
m+ _ 5 4 4
G (z) = _E<Z2 + 29 log 29 —|— -+ 5 ) ~ 500 2(a0)2> 4(a0)2+ 98,
— | 2 Z710g 2 — - - -
G R Ry R v 20ai2) T A(a)?
We observe that the following equivalences hold:
( ~m 50)2 20 59)2
G;z)“ —aoz§> =29+ Z—%,
m 0.0 2 ZO
ng+] —QCL Z4> — 2((120))2 + ﬁ,
G,ZJH _(U:)2 —20%20 + 22> " (ETO); N ﬁ7
GTT;+J< ajZ + Z + T BJO-]) = _22 + + EaJ;Q - %7
)
e <_GJZ3> =—2] - Z—%‘;
23 )
m-+j . 592 I
G (~2012) = — {2 — &,
m+j ol 09)2 ] 2
(G (- 2F 2w+ 4]) = 2k — A+ 5

In particular, condition (2.98) becomes:
metj 0L 0 0 T i
GI(2)n(2) = 23 + 21 + 25 — 2 — 55] A1 T R

which is satisfies if and only if 37 = % Therefore, it is necessary to control the
condition on the volatility. Recalling that the vector field £ = (£°2,... &™), the
condition is:

0 j ‘ 0

m+j — BJ LT LT g 9 _pi
GZ (Z)§(Z> - 6 = CLO + aj - /6 = CLO - 6 )
for each 7 =1,...,m. In conclusion, we have proved the following Proposition:

Proposition 2.3.6. If we consider the model M determined by the Hull-White
model or each forward rate equation and the family G = Im|G| described by the
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function: G : R>m+1) 7:[, where (37 = 2= Z—g, for each j =1,...,m:

2a7

204 (29 4 292)e™ " + (20x + 20)e 20"

214 [25 + 2x]e T 4 [2P e + 2D ]em 2T

29 29 log 29 c9)2 29
—al—o (Zg + Z? log Zg + =2 4+ 75> - zgao4 (2(((10))2> - 4(651))2"‘

a0

1 1
log 24 2y

— 23 23 o1)2
G(z) = —i—a%(z% + z{log 23 + 3 + j) + 5ot (2((a1))2> + Tahe ’

29 20 log 29 a9)? 29
—w <z8 + 2 logzy + 35 + ?5> — S (2((a0))2> ~ Taoe t
+% <Z£n + Zin log Zén + %T: + %) + 102gai%” (2((‘0::1))22> + 4(Z£)2

(2.99)

where z = (20,...,22, 2{,...,...,25)*, hence the couple (M, G) is consistent.

On the other hand, recalling the same strategy of Proposition 2.3.3, we have
that the model M is consistent with the family G where G = Im|[G] and the
mapping G : RS — H is:

22+ (29 + zgx)e_“% + (292 + 22)6_2’1%
~ 21+ [ 4 2x]em T + [P + 2De 2T

G(z) = ) : (2.100)

u

where Z = (z,u', ... u™)*.

2.3.7 Hybrid models

We can also consider hybrid models, where each component is described by differ-
ent model. For instance, we can consider the following forward rate model M:

d’f’At = /l(f’t)dt + C}('ft) o th,

where

df?(aj) = e—a T |:1 _ e—aox:| dt _|_ O_Oe—aox o th7 (2101)

dfi(z) = [(ai)%(x n %) n a’g—(”ﬁ) n (ai)Qt} dt +olodW,,  Vie{l,... mb).
) (2.102)
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In other words, we model the OIS forward rate with the Hull-White model while
the forward rates associated with each LIBOR rates are described by the Ho-Lee
model. We suppose moreover that the log-spread processes have constant volatility.

In the previous paragraphs we have determined conditions which guarantee
the consistency of a couple (M’,G’) where G’ is a forward rate family and M’
is a multi-curve model in which each forward rate equation is described by the
same model. We can exploit those results in order to understand which structure
a consistent forward rate family has to respect. First of all, denoting with G the
candidate forward rate submanifold, we have to impose that the first coordinate of
G forms with the Hull-White model associated with the first row of M, a consistent
couple. For instance, in analogy to (2.74), we can choose:

0 N . 0 _—al 0, —2a%
G (z,x) = zje + zge :

Therefore, we have to find conditions for the equations associated with the LIBOR
forward rates. In particular, we can observe that it is no longer possible to choose
the same family:

. o i .
G(z,2) =2]e ™" 4+ e ™" j=1,...,m,

because that family is not consistent with the Ho-Lee model. Indeed, for the
invariance Theorem 2.2.8, the condition on the drift term is given by:

[/ (G(2)) = FG/(2) + 0'Ho' — Blo? € Tgi()&, me{l,...,m}.

If we write explicitly the previous equation, we can observe that the condition is
equivalent to the existence of a vector / = (] n53), such that:

i J —adizx 2 —2d9x i\2 i 5§ —ad j —2aIx
—a’zle — 2a°ze + (07)°x — B’ =nle + nle :

Clearly the previous equation has no solution, so that the entire couple (M, G) is
inconsistent.

One possibility is to build a linear combination of the family determined by
the function (2.74) and the degenerated NS family (2.35):

GI(z) =20 + 2z + e " 4 e 27, (2.103)

but it seems not to be an efficient strategy to follow, because we introduce to
many parameters. Therefore, in order to solve the problem of consistency for such a
forward rate model, we can build a sub-manifold with a different structure for each
row. We proved in Proposition 2.3.1 that the degenerate NS family is consistent
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with the Ho-Lee model, therefore we construct the following sub-manifold:
z?e_“% +Z(2)€—2a0$

1 1
2] + 2T

G(z,x) = 27"+ 20z ,
Gm+1 (Z)

G2m(2)
where as usual we do not focus at the moment on the last m coordinates of the
mapping G.

Recalling (2.76) and (2.45), the condition on the drift G.(2)n(z) = u(G(z)) is
satisfied by:

n(z) = (—aoz? + (‘Zﬁ —2a"28 — ((Z# 2z — ot (ob)? ..o 2 — Bme™ (Um)2> ;

whereas the condition for the first coordinate is: G%(z) = ¢%~"* which is
equivalent to impose that the vector

)= (k) &) &) &k) ... &) &),

satisfies £0(2)e "7 4+£Je 20" = g% ~4°* which implies that £ = ¢ and £) = 0. On

the other hand, computing the equivalence G7(2)&(z) = o for every j=1,...,m
we obtain: & + & = o?. The previous equivalence is satisfied by imposing that
& =09 and & = 0 for each j = 1,...,m. In conclusion:

£(z)=(" 0 o' 0 62 0 -+ o™ 0).

Now, we analyze the condition on the last m component in order to understand if
it necessary to add a suitable number of parameters or it is possible to exploit the
form of the vector fields n and ¢ in order to characterize the functions G™*7. In
particular, we observe that the condition on the m+j components, for j =1,...,m
is:

G (2)u() =BG(2) ~ BGI(2) — 5(51)
=+ o~ (PP

Differently from the previous cases, we assume that G™*% is dependent on the

. i1 . . .
variables 20,29 27 22 221 for ever = 1,....m — 1 and the function G?" is
19729 ~1y <2y ~2 9 ) )
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dependent on the variables 2, 29, 27, 23, z3. Foreach j = 1,...,m—1, the condition
becomes:

‘ 0)2 , 0)2 4 . o
G;’(lé“(z)( %20 + <‘20) ) + G;"g“(z)(—zaozg - ((;0) ) + G (2)(2 = Fo)+

+ G (7)) + GLR (7)) = 2] + 25 — o] - %(ﬁjﬂ

2

(2.104)
If we consider the function:
L ,
Gm+j(2’) _ _Z(l) + %Zg _ z%"‘ 2 n (32)22%+1 B (z%)?)
@B AT 1 (0 |
R (UJ+1)2 2 ((6 )= (a0)2>’
the condition (2.104) is satisfied, indeed if j =1,...,m — 1:
0.0 2 O’O 2
GZSL,H(Z) —a’2) + (ao) ) =29 — %,
m+j o0)2 2
GZS+J(Z) —20,02[2) _ (a(’) ) 2 + ((aU))Q’
— . . ZJ+1ZJ J+1 .
GZ{—H(Z)(Z% - 6]0']) == _(;j+1)22 + (20.3'.&])2]; (2106)
i . 1 2
G ()(07)?) = Fh — 3
i i . ZJ’ 2 zj'HBjaj . o0)2
@) =~ + s - ok - (7 - 55),

the condition (2.104) is

‘ (o) (%2 474 Mg
G (2)n(z) =2) — 5 + 23 — = .
2 (2)n(2) (a0)2 2+ 2(a%)2  (oitl)? (o7+1)2 +
23T (2))? (=) At pied y (092
+ (02.3421) — 2(;].)2 — 2] + 2(02j)2 - (20—j+1) - _<(5 ) (CL )2)

Whereas, the conditions for the function G*™ are the same of (2.106), but
23t = 21, Now, it is sufficient to find conditions for the functions G/ and the
vector field £. In particular, the conditions which has to be respected is:

GI(2)E(z) =0, j=1,...,m,

where G™! is described in (2.105). The conditions is explicitly:

A S
—E—m—ﬁ y J=4...,Mm,
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which has no solutions. In conclusion, it seems very difficult to find conditions
which guarantee the consistency also for the components associated with the
spreads without adding new parameters. Hence, as in Proposition 2.3.1, only
the following result is proved:

Proposition 2.3.7. If we consider the model M for the post-crisis interest rates
market, given by the Hull-White model (2.59) for the OIS forward rate equations
and the Ho-Lee model (2.41) for the forward rate equations associated with the
LIBOR rates and the parameterized family G given by the function G : R3™+2 — 7%,

_q0 _9,0
Z(l)e ax—FZSG 2a°x
1 1
2y + 25T

G(z) = 2"+ 2P , (2.107)

ul

um

0o ,0 ,1 .1

where Z = (z,ul, ..., u™)* and z = (29,29, 21,23, ... 21, 20%)*, therefore the couple

(M, G) is consistent.

2.3.8 Vector Brownian motion examples

In this subsection we aim at describing the case where the Brownian motion W,
which drives the dynamics, is characterized by different correlation structures.
First, we will consider the case in which the Brownian motion is 1-dimensional
and the volatility term is the same for each forward rate equation, afterwords
we will analyse the case of d-dimensional Brownian motion and a volatility term
0 such that each forward rate equation is driven by a specific Brownian motion
independent from the others.

Common volatility for all forward rate equation

We consider the Hull-White model introduced in (2.59). For each forward rate
equation, we consider a 1-dimensional Brownian motion and a volatility term given
by:

ol(z)=0e™ ™, Vj=0,...,m,
where o, a > 0. The volatilities of log-spot spread processes are given by a constant
(7 = B, for each j = 1,...,m. In particular, there is one 1-dimensional Brownian
motion W which drives every equation.
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We check the consistency of this model coupled with a parameterized forward
rate family G determined by the function G introduced in (2.74). Differently from
the previous examples, we can use less parameters. Indeed, if we introduce the
following family:

G(2) = z1e7 ™ 4 zpe 2™, (2.108)
GI(2) = (z3+21)e ™ + e j=1,...,m, (2.109)

the conditions which guarantee the consistency (2.16) and (2.17) are given by:

(
(G () (@) + Te=[1 - ] = (@) (e).
: }

#(G(2))(2) PG (2)(a) + e [1 = o] — oe e = (Gapn(=) (),
P (G(2) = (G)E)),

for suitable vectors &, € R3 and for each j =0,...,m.
Explicitly, the conditions on the drift become:

2ax

+ 7]267 )

7211:13( ax

_ _ o _
—azie”® — Qaze 2 4 ¢ e’ — 1) =mne

a
2

— CL(Zl + 23>efaw _ 20“2,26*20@ + %eanx(eam _ 1) _ 5o_€7ax — nlefax T 7726720,517 4 7]3€7a$.

In the following of the subsection, we will omit the dependence on the z variable
for the vector fields n and &. The previous equations are satisfied imposing that:

o? o?
n=(—az +—,—2az — —,—azs — fo)*. (2.110)
a a
On the other hand, the conditions on the volatility terms become:
oe " =& e 4 Le (2.111)
e =£1e7Y 4 e T2 4 Liem (2.112)

which is satisfied by the vector
¢ =(0,0,0)". (2.113)

At this point, we have to determine functions G : R* — Rfor j =1,...,m
where n is an opportune natural number, such that:

G™(2)n(z) =BG® — BG7 — %52

1 1 .
=Zl+22—(23+31)—22—552:—23—552, Jj=1...,m.
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In particular, we can observe that the previous condition does not depend on j.
This implies that it sufficient to add one parameter, which will be denote by u in
analogy to the examples of the previous sections.

Explicitly, we introduce the following finite-dimensional vector: z = (21, 29, 23, u)* €
R*. We introduce the following vector fields:

{TI(Z) = (—az -1+ %2 —2azy — %2 —azz — Po —z3 — %ﬁQ) ,
§z)=( 00 B,

and the function G : R — H:

Zle—aa: + 226—2(11’
Zle—ax + Z2e—2a:c

G(z) = | 21679 + 29727 | . (2.114)
U

u

Therefore, GL(2)n(z) = 1/ (G(2)) and GZ(2)&(z) = 0?(G(z)) for every j =0, ..., m.
Moreover, the coordinates related to the spreads satisfy:

GI(z)n(z) = —z — 38%  j=1....m
GI(z)E(z) =B, j=1,...,m.

In conclusion, the following result is proved:

Proposition 2.3.8. We consider the model M determined by the volatility vector:
o(z) = (e ™ - oe ™),

and the family G = Im[G], where G is given by (2.114). Hence, the couple (M, G)
18 consistent.

Independent Brownian motion for each forward rate equation

In this paragraph, we aim at analysing the case of a R%valued Brownian motion
W, where d > m. We introduce the volatility term of each forward rate equation
as follows:

j-th component

ol(x) = (0,---,0, ole ¥ |0,---,0), j=1,....m, (2.115)
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and similarly:

i-th component
W:(o’...’o, B ,0,-+-,0), j=1,...,m, (2.116)

where o7, 37, a’ are positive constants. Under this assumption, we have that each
component of the forward rate equation is driven by a component of the vector
Brownian motion W. As a consequence, all forward rates are independent pro-
cesses. If we want to check the consistency condition for the model M determined
by the previous volatility terms and the parameterized families introduced in the
previous subsections, we can make the following observation. The term o/Ho7 is
given by:

0
. 0 . . x .
U](x)HU](w):(O 0 -+ olem®® 0 ... 0) Jo ole="5ds :U]eajx/ ole s,
0 0
0

which is equivalent to the one introduced in (2.120) for the drift condition of the
Hull-White model. Through the same computations we can observe that ol I =
0le~"?[37 as the term introduced in (2.67) for the 1-dimensional Brownian motion
case. On the basis of these considerations, we can conclude that the consistency
results associated with this model corresponds exactly to the ones demonstrated
in sections 2.3.5, 2.3.6, 2.3.7.

Independent Brownian motion for each forward rate equation and com-
mon volatility term

In this paragraph, we construct a trade off between the previous two examples. In
particular, we consider the case of a R%-valued Brownian motion W, where d > 0.
The volatility term of each forward rate equation is defined as follows:

O-j<x) — (()’... L0,0e7% 0, - ,Q)’ (2.117)
and '
BJ:(O>"'707B>()7"'70)7 (2118)
where o, a, § are positive constants. As in the last example, for each i =1,...,d
the term:

ol (z)Ho? (z) = ae“‘r/ oge “*ds,
0
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and the term 0757* = o3 for every j.

In particular we obtain the same structure of the first paragraph of this sub-
section.

In conclusion, we have proved the following proposition:

Proposition 2.3.9. If we consider the vector volatility term associated with the
Hull-White model, the following statements hold:

1. The Brownian motion W is R%-valued, where d > m, and the volatility term
which determines M is given by equations (2.115) and (2.116). Then, the
consistency conditions are analogous to Sections 2.5.5, 2.5.6, 2.5.7.

2. If the Brownian motion W is R%-valued, where d > m, and the volatility term
which determines M is given by equations (2.117) and (2.118), then we have
the consistency between the model M and the forward family described by the
function G given by (2.108) and (2.109).

The general case

We consider a d-dimensional Brownian motion which drives a forward rate model
M determined by the following volatility term:

_ 40 _ .0 _ .0
odemm®  glemm® ... gOeaa® o?
a1 _ 1 _ .1 1
0'%6 ajx 056 axx . 056 agT o
(i) = | omeats gpe—age . gme—ape | = | om | (2.119)
1 1 1 1
o5 65 Ba &
m m m m
b1 65 Ba 8
where o a] and (3] are positive real constants, for ever ¢ = 1,...,d and j =

0,...,m.

First, it is necessary to generalize the computation provided in (2.128), in order
to manage the term o7 (t, v)Ho/ (¢, z), where o7(t, ) is a vector. In particular, we
obtain the following equivalence:

fow a{e*a{sds
T _j o—als
: : S ; S oye”%2%ds
o’ (t) l’)HO’j (t) l’) — (O,{e—ajlx O.%e—a“;ac . O_Zle_a]x) fO 2 '

[ ole-isds (2.120)

d 2 . ;
:Z(Uij) 6_2agz<ea§z_1)’ j:(:]7,,,,77’L7
=1
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whereas the term related to the presence of the spread on the LIBOR forward rate
dynamics is given by:

ﬁz* Z O,Jefa xﬁ]

Hence, we analyse the problem of consistency between the model M, previously
defined and a suitable parameterized family. We recall the conditions on the drift
and volatility terms, /i(G(2)),6:(G(2)) € Tg(»)G, where G = Im[G] and for every
1 =1,...,d. The drift term is given by:

FG(2) + (0"Ho")(2)
FG'(z) + (0'Ho')(2) — £, 0} (G(2))81(G(2))

A(G(2) = FGm<z>+<o—mHam><>¥ ¢ om(G(2))Br(C(2))
BGO(z)—BGlm—l (1)

2

BGO(Z)—BG’”( ) =5 i (B

At this point, we consider the function defined on (2.74). We observe that it is not
possible to use that function in order to have the consistency, because the element
o0’Ho? involves the sum of 2d exponential terms. Hence, we propose the following
generalization of the function introduced in (2.74):

d
Gj(z,x):Z(zje_“m—l—w e 2“5w>, j=0,...,m, (2.121)

7
=1

where the vector z € R?4™+1) is introduced by the following notation:
2= (20,29, . 20wl wh e, ) (2.122)

If we consider the previous function the existence of a vector field 7 defined on the
domain Z C R¥™+1) guch that u(G(2))(x) = G%(z,x)n(2) is satisfied. Indeed:

W (G(2)) = FG'(2) + (c"Ho")(2)

—af O' _ 0
= (—a?zioe T 200 le™? o ) + E 0 2] x( b — 1)
a;
7

i=1 =1

0)2

d 0y2
= St e+ ] - ettt + ]}
ay i

i=1 i i
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On the other hand, we compute the Fréchet derivative of G°(2) against the vector
field . In order to simplify the computation, we introduce the following notation
for n:

77(2) = (772(1)777287 s 77722777111(1)7 cee 7771027772%7 R ﬂ?z&") S RQd(m+1)'

In particular, the consistency condition is satisfied by:

nzo——aozo—i—(ao), 1=1,....,d,
o = —2a%w) — ZF 0 i=1,...4,
We have not already provided conditions for 7_;,n, ; for j =1,...,m. In order to

do this, we consider the other conditions for the drift term:

,2ax<a ) Zaea:pﬁj ()()

Recalling the shape of the function G’, j = 1,...,m given by (2.121), the consis-
tency condition on the drift is:

d d
Z(”Zj(z)e_agx T Uw-?(z)e_zazx> B Z(_“%e‘“fx - 2afwfe‘2“3x>+

=1 i=1

W (G(2)) =FG (2 +Z

=1

d ‘ d
+Z —2a§x( —az_l) Zo_ge axﬁ]

J J

d
=S [ete(—aled + (o2)® — olBl) + et (—2alu] —(Uiyﬂ,
=1 ag &g

which implies that:

n(z) = —alzl + G2 _oigl =14,
my () = —2adwd - @2 i1 4
for every j =1,...,m.

On the other hand, the consistency condition for the volatility is equivalent to
the existence of a vector field & (z) € R ™+ j =1 ... d, such that ¢/(G(2)) =
G (2)&(2). In particular, we recall that ¢/ (G(z)) = ole %%, hence, for each
1 =1,...,d, we can choose

{gi’zj(z):af, j=0,...,m,

&ial2) =0, otherwise.
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It necessary to control the conditions on the coordinates related to the spreads.
In particular, we have to determine the shape of G™% such that G (2)n(z) =
" (G) and G 26;(2) = B(2) for every j=1,...,m.

We base on Proposition 2.3.5 and we exploit the linearity of the Fréchet deriva-
tive in order to construct a suitable function G™*7. Explicitly, the conditions on
the drift term are:

d
. . 1 .
GI(2)n(=) =BG°(=) =BG (=) — 5 Y (8)?
i=1
J | o, (2.123)
=S [ ul - (8.
i=1
We introduce the family:
d 0_ 1,0 3o 1]
G ](z)—Z(— 20 + o > j=1...,m.
i=1 t 7

By the previous definition, G (z)n(z) becomes:

d 0)2 0)2 7\2 J J\2
m+j _ 0_(01) o, (0i) g (d7) I R (a7)
Gz * (2)77(2) - ;( 7 (a?)g +wi + 2(@?)2 Zj + ((Ig)2 CL{ Bz 7 2(@3)2

y BN R L O R G
_ 0 0 __ J_ oYy - = 7 Zi39 i
= ;(Zl +w;, —z —wl) 5 ; [(a?)Z + 2@g Iox @) ,
hence, condition (2.123) is equivalent to:
g _N~[O? (@D ol
2= 2l )
d . 20_3 ; (0_5)2 (0_?>2 - 0 (2124)
2|02 el |

77777

(2.125)
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If we test the consistency condition on the volatility term of the spreads, we obtain:

m d
B‘Z —G;nﬂ(z)gl(z) — ZG:;H (Z)é}(z)
j=1 =1
m d
Oii 0,50 Cio &
:ZZ(—@&;Z? + ”j é’wg) = — &OZ + = (2.126)
j=1i i a i al
7j=1 =1 2 i 5
UQ a'j

where dy, stands for the Kronecker delta between the indeces h and k. Hence, by
(2.125) and (2.126) the condition on 3! is:

‘ a? a{ . ,
53:—(1_?—9—?7 j=1,....om,1=1,...,d. (2.127)

In conclusion the following proposition is proved:

Proposition 2.3.10. If we consider the model M for the fived-income market
determined by the wolatility term described in (2.119) where the volatility terms

of the spreads satisfy (2.127) and the family G = Im|G| given by the function
G : R2dm+1) 3y

d 0,—a% 0,—2a%
Zi:1<zz‘6 A wge T

d —aq™m _ m
S (ape et w2

(A
G(z) = s (~epet ey |

=

Zc-l_l (_ z?—i—%l;)? z{”-l—éw{”)
where z is given by (2.119), then the couple (M, G) is consistent.
On the other hand, recalling the same strategy of Proposition 2.5.3, we have that

the model M is consistent with the family G where G = Im|G] with the mapping
G : R@HYmt2d o 97 given by

d 0,—a% 0,—2a%
Zi:l(zie A wpem

Gz = | 2 (zf‘e‘“” + wl”e‘%?”””)

Ul
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where Z = (z,ul, ... u™)*.

2.4 Appendix

2.4.1 Hull-White forward rate

In this section we will provide the proof of Lemma 2.3.2.

Proof. Let us consider the following SDE:
dfy(T) = oy(T)dt 4+ oe " T=Vaw,.

If fi(T) represents the forward rate associated with the short rate r;, solution of
the Hull-White equation, f;(7) has to satisfy the HJM-drift condition (A.18). In
particular:

T T
oy (T) = ge~ T / oe " T=9) s = ae_“(T_t)ae_“T/ e*ds
¢ ¢

2 9 (2.128)
= 9 |:€—a(T—t) _ e—2a(T—t)] — g_e—a(T—t){l _ e—a(T—t)}'
a a
Then:
2 t 2 t ¢
ft(T) = fO(T) + U_/ e~ UT=5) g U_/ e~ 20(T=s) J¢ +0/ e_a(T_S)dWS
a 0 a 0 0
o2 t 2 . )
= fo(T) + —eaT/ e*ds — —62aT/ e**ds + O'/ e T,
a 0 a 0 0
0'2 0'2 t
= folT) + Tpe et (e = 1) = e (= 1) o / e T,
a a 0
Computing the short rate:
02 —at 02 —2at ! —a(t—s)
0 05 1)) o [,
0

and differentiating it:

0.2 2

t
dry = {ifo(t) 4 Tt _ T pm2at 0/ —ae*“(tfs)dWS}dt + odW;.
oT a a 0

Recall now that:

2

o [t == S (1= ) =3 (1- )] - s
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In conclusion:

dry Z{a%fo(t) + %26_“ - %26_2’“ —ary + %2 Kl - e‘“t) - %(1 - 6_2“)} - fo(t)}dt + odW;
Z{a%fo(t) _ %%26_2@ —ar + %2 - fo(t)}dt + odW,
:{a%fo(t) + g [1 - e‘Qat} — folt) — art}dt + odW;.

The previous SDE is the Hull-White equation, if

2

B(1) = - folt) +

% [1 — e’Qat} — fo(t).



Chapter 3

Finite-dimensional
Realizations

In this chapter we will exploit the concept of invariance developed in Chapter
2, in order to understand if the solution of the system (1.33) can be described
as the image of a process, whose dynamics given by a finite-dimensional SDE.
Moreover, if it is the case, we will provide a strategy to construct this process
and the mapping which associates it to the forward rate 7. To this effect, we will
exploit the geometric theory developed in Appendix B, applying it to the geometric
interpretation of equation (1.33) described in Section 2.1. The general conditions
will be applied to the study of particular cases: first, we will analyse the case of
deterministic volatility (constant in the space 7:[), then we will study the case of
constant direction volatility.
The main references for this chapter are represented by [4], [5] and [21].

3.1 The general result

In the previous chapter we developed a geometric interpretation of system (1.33),
representing the infinite-dimensional system of SDEs as a unique SDE of the form:

dft = [L(f )dt + (Af(ft) o) th,
o = 7M. (3.2)
We have seen that, since 1 : Upny — H and 6 tUppt — ¢ are smooth functions,
they can be interpreted as local vector fields on H, as described in Definition B.1.14,
denoting by U;m a neighborhood of #M in H.

We define as follows the main concept of this chapter, the finite-dimensional
realization. First of all we need the following concept:

75
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Definition 3.1.1. We say that 7, given an initial point #, has the local repre-
sentation around M given by a function G : Z C R* — H for a suitable n and
a finite-dimensional stochastic process Z; defined on Z, if there exists a strictly
positive stopping time 7(FM) such that 7 = G(Z;) for each t € [0, 7(FM)).

Now we say that a the system (1.33) possesses finite-dimensional realizations
if it has n-dimensional realizations, defined as follows, for a suitable n:

Definition 3.1.2. We say that (3.1) has a n-dimensional realization if for each
= H, there exists zo € R and (d+ 1)—smooth vector fields a,b; ..., by, defined
on a neighborhood of zy denoted with Z and a smooth mapping G : Z — H, such
that v has the local representation:

ft - G(Zt),

where
dZt = CL(Zt)dt + b(Zt) @) th,

ZU = 20,
where b := (by, ..., bg).

Remark 3.1.3. The definition of finite-dimensional realization is strictly related
to the concept of r-invariance. In particular, the existence of a finite-dimensional
realization for a model described by (3.1) is equivalent to the existence of a 7-
mvariant G for 7.

By the invariance Theorem 2.2.8, given a forward rate model M, a submanifold
G C H is such that the couple (M, G) is invariant if and only if i(G(2)), 6(G(2)) €
Te(»)G, for each G(z) € U, where U is a neighborhood of #* and #¥ € G.

The condition [i(G(z)),d(G(2)) € TymG is equivalent to assume that the dis-
tribution (see Definition B.1.13) generated by i and & is a subset of TG, where
TG is the tangent bundle of G (B.1.12). In other words, we are looking for a
tangential submanifold G of the distribution F' = Span{i,5}. We recall Theorem
B.3.2, which guarantees the existence of a tangential sub-manifold for a smooth
distribution F if and only if F is involutive (see Definition B.1.22). We will use the
Frobenius theorem (Theorem B.2.4) in order to construct a tangential submanifold
when the distribution F' generated by ji and ¢ is involutive.

Unfortunately, given equation (3.1), do not exist a priori conditions under
which the distribution generated by [, is involutive. As we observed in Ap-
pendix B, given a distribution F' generated by n-vector fields, the smallest invo-
lutive distribution which contains F' is the Lie algebra of F' (see Definition B.3.4).
Therefore, denoting by £ := {ji,1,...54}.4 the Lie algebra of F, we obtain that
the existence of finite-dimensional realizations is equivalent to the existence of a
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finite-dimensional tangential submanifold. By Theorem B.3.2, this is equivalent
to the condition:

dim|L] = dim{ji,61,...,04}pa < +00. (3.3)

The analogous condition for the pre-crisis environment is provided in [5][Theorem
1.2].

If the above condition holds, a finite-dimensional realization can be provided.
To this end, we provide a strategy based on [5][Chapter 5|. This strategy is de-
scribed in the following steps:

1. Choose a finite number of vector fields &1, . .. &,, which span {ji, 61, ...64} 143
2. Compute the invariant manifold
G(Zl, c 7Zn) = egnzn e eglzl,f,M’

where ef**n denotes the integral curve of &, at time z, (as in Proposition
B.3.3);

3. Through the mapping G defined in the previous step, define the state space
process Z, such that 7 = G(Z). Z is a R™- valued process determined by:

dZ, = a(Z,)dt + b(Z,) o AW, (3.4)

where
G.a(G(2)) = G.(2)al2) = AG(2)), (3.5)
G*b](G(Z>> = GZ(Z)b](Z) = 5'](G(Z))7 JE {177d}7 (36)

where, as before, we have denoted with G,(z) the Fréchet derivative of G.
We recall that the symbolA G.a stands for the G-related vector field to the
vector field a, defined on H, introduced in Definition B.1.20.

The uniqueness of a and b is guaranteed since G respects Assumption 2.2.1,
then it is a local diffeomorphism. Therefore applying Definition B.1.20, there
exists a unique vector field defined on Z a for 4 and b; for &; for every
i =1,...,d such that conditions (3.5) and (3.6) are satisfied.

In the following section we will analyze the problem of the existence of finite-
dimensional realizations for model whose volatility has a certain structure.
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3.2 Constant volatility

We now examine the case in which the volatility vector field &(7) is constant. In
particular, ¢ does not depend on 7. Equivalently, this assumption means that
0% o', ..., 0™ are all constant vector fields and ', ..., 3™ are constant on R%. In
this section we generalize the results provided in [21][Section 3.

The logarithm of the spread process associated with the tenor ¢; is given by:

aY; = {Br! = Br} = J||#'|[* at + 3'dW;,

whereas the drift and volatility terms of equation (3.1) are respectively given by:

Fr’ + ¢"Ho'
Fr! 4+ oc'Ho! — Blot

a(r) = | Fr™ + o™Ho™ — ™0™ | |
BrO— Bri — 1131

Brf — Br — 3157

gm
We aim now at computing the successive Lie brackets between /i and &, in order to

determine suitable conditions under which (3.3) holds. Recalling Definition B.1.18
we have to compute:

[, 61(7) = dia(7)(6 (7)) — d& (7) (A7),

where dji denotes the differential of i, which is locally represented by the Fréchet
derivative of the local representation of £ (with an abuse of notation we will denote
by ji the local representation of [i since all the properties that we are studying are
local). Therefore, recalling that:

F=00%. ™Y Y™,

Y
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Fréchet derivatives of it and 6 are respectively given by:

whereas

o o 1

0 0
F 0
0 F
0 0
-B 0
0 -—-B
0 0

o

0 --- 0
0 --- 0
0 --- 0
0 - 0], (3.7)
0 --- 0
0 --- 0
0 --- 0

where we have denote with O the matrix of the same dimension of (3.7) such that

0;; = 0 for each 7 and j.

Computing the Lie bracket of i and 4;, for i € {1,...,d}, we get:

Fo?

7

1
Fo;

Fo"
Bo? — Bo}

Bo) — Bo"

We can observe that the Lie brackets is constant on 7. This means that in
{/1,6} A, the only vector field which is not constant is fi. Therefore, it is sufficient
to find a law which describes the Lie bracket between & and the successive Lie
bracket between i and 6. The other Lie brackets will be null by definition. For

instance, if we compute:

_ 2 _m
= Fo} ,

F?50
F?o}

BFOZO — BFU;

BFO’? — BFo"



80 Finite-dimensional Realizations

where the Fréchet derivative of the Lie bracket is null, since [/, 7] is constant.
If we generalize the previous procedure inductively, we obtain the following
result:

L= {6} = Spcm{;l,&l, GV kEN, i=1,... ,d}, (3.8)
where
Fro?
Fkal-1
vF = From : (3.9)

BF* o) — BF* g}

BF" o) — BFF 1o

In order to find sufficient conditions under which dim|L] < +o0o we introduce the
following definition:

Definition 3.2.1. A quasi-exponential function (QE) is a function of the form:
f(z) = Z M 4 Z e [p;(z) cosw;x + ¢j(x) sinw;z],
i J
where \;, aj and w; are real numbers and p;, q; are real polynomials.

For a detailed description of quasi-exponential functions we refer to [19] and
[7]. The following characterization of QFE functions is crucial for our purposes:

Lemma 3.2.2. A function [ is QFE if and only if it is a component of the solution
of a vector valued linear ODE with constant coefficients:

on n—1 o

We prove now the main result of this section, which characterizes condition
(3.3). It is based on [21]|Proposition 3.2].

Theorem 3.2.3. System (3.1) with constant volatility possesses finite-dimensional
realization (FDR) (i.e. equivalence (3.3) holds) if and only if: o}(x) are QE func-
tions for each j € {1,...,d} and i € {0,...,m}.
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Proof. As a preliminary, we can observe that:
N

L = Spani{ji, 61, ....,64} + Span{(V)ie1...a, k € N},

where + denotes the sum between vector spaces. This implies that dim[L] < +o0
if and only if dim[N] < 4+00. Therefore, to prove the theorem it suffices to prove
that N is finite-dimensional if and only if c?f are QE functions foreach i =1,...,d
and for each j =0,...,m.

(=) Suppose that N is finite-dimensional. Then, for each ¢ Span{v®,n € N}
is finite-dimensional. In particular, this fact means that the following condition
holds:

7

Vi=1,...,d3dn; e N: Vﬂi+1:Zak7iuf, (3.10)
k=1

where ay; € R for each ¢ and k. The first m + 1 rows of the system (3.10) imply

that: .
ni+1_0 __ ng 0
FU o) = ) iy aniFro;

ni+1 _m __ ng k _m
F"“ ol =% 1 oy Flo]

By Lemma 3.2.2, for the previous system all the constant vector fields o, ..., o™
are QE-functions. ‘
(«<=) Let us suppose that o] (z) are QE functions for each i = 1,...,d and j =
0,...,m. By Lemma 3.2.2, for each j and ¢ there exists a polynomial:
Pz(])()‘) _ )\nZ—I—l o 057(;')71-/\711 . Oész'),lyi)\ng_l aé];l%
such that Pi(j)(F)afj) =0, where F" = 2.
If we consider now the polynomial:
M) =[PPV, (3.11)
§=0
then, the following conditions hold:
M;(F)o? = 0,
(3.12)
M;(F)oi" =0,

The degree of M; is n; = Z;n:o nf + 1.
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Denoting the polynomial M; with: M;(X) = X" +a% A1 4+ a4 A + o,
we obtain:

ni -0 | ~i n;i—1 _0 ~i 0 ~i 0 __
F LO'z- +Oénl_1F v O-i +'+O[1FO-,L +0500-,L —0,

Frlom 4+ ol F" o+ ...+ aiFol" + a0 = 0.
We can also observe that:
0 = F0 = FM;(F)o) = M;(F)[Fo}], (3.13)

0 =F0 = FM;(F)o) = M;(F)[Fol], forj=1,...,m, (3.14)

By the linearity of F and applying a reduction between the equations of (3.12), we
get M;(F)(c? — ¢7) = 0. This means that M;(F)(c? — o7)(x) = 0 for each = € R,.
In turn, this 1mp11es that:

BM;(F)(0? — o)) = My(F)(c? — 07)(0) = 0. (3.15)
Writing (3.13),(3.14),(3.15) in expanded form, we have that:

Fritt o + @, Fo] + - -+ @ F?0) + djFo? = 0,

Fritls j +a! _Flol +.. + a’lFQUJ + ajFo! =0,

BF" ? BF”af—k&jLi_l( BF" 60 — BF" '¢/) + ... + & (BF¢® — BFo/)+
+ai(Bo? —Bol) =0

In conclusion, we obtain:

Fritlo? Fo) Fo!

Fritlo] Frio} Fo!

F’““ " = —a, Frigm — - —ay Fop"
BF" 5! BF’“ BF" !g? _BF o 1 B! — Bo}
BF"g) — BF"g" BF" g0 — BF" g Bo?) — Bo!"

which is equivalent to:
yitt = Z i vl

Since the previous equivalence holds for each ¢ € {1,...,d}, the vector space
Span{v|n € N} is finite dimensional for each i. Therefore, N is the sum of d
finite-dimensional vector spaces, then it is finite dimensional too. In conclusion,
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for what we said at the beginning of the proof, the Lie algebra {ji, 6} 14 is finite-
dimensional. Moreover, this result implies that if the condition on volatility &

holds, then the dimension of {fi,61,...,04}.4 is dominated by:
d d
dim{ji,61,...,6a}pa <1+d+ Y ni=1+) (1+n). (3.16)
i=1 i=1

]

3.2.1 Construction of finite-dimensional realizations

In order to construct explicitly the finite-dimensional realizations, we can apply
the strategy outlined at the end of Section 3.1. We have to compute the integral
curve of each vector field which span the Lie algebra generated £ = {f1,61,...,0,}.
We have seen that if the volatility is constant then the Lie algebra £ is determined
by equation (3.8). Therefore, by Theorem 3.2.3, it is sufficient to compute e
for:
cc{p,br,.. 600 i=1,...,d k=1,...,n},

because these vector fields generate the entire Lie algebra. We now introduce the
following notation:

~ *
M:(M(]aula"'7Mm7:um+17“'7:u21ﬂ) )

k k k k * .
I/Z :(Vi,07yi,17“'7yi,2m) 5 ]{?:0,...,’”7;, 1 = ]_’...7d,

where, with a slight abuse of notation we denote: &; = /). Moreover, we use the
following notation for the initial value 7:

Now, we compute the integral curves of all these vector fields. We do this compo-
nentwise:

The integral curve of ug is a curve, denoted by 79%\/1, solution to the following
ODE:

dt 7Ty

49 m (t) = /Lo(ﬁr(z)\/f () = Fﬁr(z)u + o"Ho?,
U, (0) = rdl.

By assumption, c’Ho? is constant on H°. Therefore, the solution to this ODE
can be computed in analogy to the finite-dimensional case:

t
Opae (1) = Flrg! +/ F=9 5015 ds,
0
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where:
+o00 +oo
Ft M\ _ (FO)" oy 1o
e'ry (x)—nzo 7o (:L’)—ngon‘an @)t +x—2)" =1} (t+2).

The previous equivalence is obtained by the Taylor expansion of r}! around z. We

can follow this strategy because it is possible to prove that if 7}f € H, then r}! is

an analytic function.
Moreover:

t t
/ <6F(t’S)JOHJO> (x)ds = / (c"Ho®)(z + t — s)ds.
0 0
If we define S%(z) = f s)ds, then:

;aiH S @II* = H/ dSHQZOO(ﬂs) /Owao*(S)dSZ(JOHJO)(gj),

In conclusion, the solution is given by:

To

t
9 (@) = 1M (¢ + 2) + / ¢FU=5) ;OF 40 s
0

10, 5
=rf(t+z)+ ——||S (x+t—s)||"ds

(3.17)
x—i—t 1 a 0 )
=g (t+a) + 5115 (W] du
1
=1y (t+)+ §[H50($+t)\|2— 15° ()]
Wi, g =1,....,m ‘The integral curve of the drift term of each component 77, j =1,...

satisfies the following ODE:
G () = (0,20 (1)) = Foom (t) + 0/ Ho? — flo7”,
J
gﬁr;\{ (O) = 7’;-‘/[.

Similarly as in the previous case we can notice that c?Ho? — 370" is constant on
‘H; therefore:

8, (0)(w) =t + )+ 2[S9+ I~ 159 @)IP) - / (Fe707 ) (2)ds
=Mt +x) + % :HSj(t—irx)HZ - ||Sj(;1:)H2: - /Otﬁjaj*(ter— s)ds
=+ a) + (157 + DIP ~ 19 @IP] ~ (87 +2) - $9(a)) 7

(3.18)
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where S7(x) = [ 07(s)ds.

’,uj, j=m+1,..., 2m‘ The integral curve of the drift term of the last m com-
ponents is the solution of the following ODE:

{%%ym(t) =y (1)) =Biu(t) = Bou () — 5|67,

i (0) =70,

then

Pym

j—m

() =1+ [ 00 (90) = by, (5105 = 7 e

j—m

If we exploit (3.17) and (3.18), we obtain:
1 Ir i,
p, O =0t [ {0+ 3 [15°0+ I = TS°OP] = o) = 157"+
0
=0

N O] — (577 (s) = 5 )) g s — Sl P

t y 1 t .
:yj]\{m +/0 (T(J]\/l(8> — T’jj\{m(s))ds + 5/{; [HSO(S>H2 _ ||Sj—m(8)‘|2} ds+
- ssds 57 - L
0 2

(3.19)

We now compute the integral curves of each component of the vector filed v/} for
each k = 0,...,n; and i = 1,...,d. In this case, the vector fields v* defined in
(3.9) are constant, then their integral curves are lines defined on . In particular,
the integral curve of ¥ at time ¢, denoted by e t#M has the following form:

k ~ .
e”itrM:rM—FVft, 1=1,...,d; k=0,...,n,.

Recalling Proposition B.3.3 and the notation €%, in order to describe the integral
curve of a vector field ¢ we can compute the tangential manifold of the involutive
distribution {/i,51,...,64} 14 which contains the initial point #* as the image of
the mapping G : R" — A,

G(zo,ziz i=1,...,d; k=0,...,n;)(x) = ((_ H A@”f)@‘lfM)(x)
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Remark 3.2.4. For the state-space vector z € Z, we introduce the following
notation. Remembering the condition (3.16), we have that the dimension of the
Lie algebra £ isn =1+ 30 (1+n;). Therefore, we use (2°,(2F)) to denote:

Z* = (Zov (Zf);‘kzl,‘..,d k:O,...,ni)*7

kyx n—1 ;o o .
where (27)i_1 4 r=0...n, € R""" is given by:

)

(Zlk)::lv'"vd k=0,...n; — (ng s >Zga 2017 O R 7252)*

Moreover we will use the same notation for the finite-dimensional vector field a

and b; 1 = ,d which define the process Z; introduced in (3.4).

In particular, the coordinates G’ for j = 0,...,2m of the function defined in
(3.20) are given by:

if 7 =0:

d 1

Gozoz =M :E—I—z + Fk0 —(118%z + 20|17 = |1S°(2)]|?),

(2%, 2)(x) = rg 2]; F 518 I = 157@)IF)

(3.21)

for j =1

d
GI (20, 28 (z) =rM (z + 2°) + Z Frol(z)2F + %(HSJ(x + 29|+
1 k=0
) = (87 (z +2%) = 57 (x)) 8"

d
= (4 20+ 30 Y Frol @)k + 5187w+ )~ 18 @) )+

(3.22)
and finally, for j =m+1,...,2m:
d 20
ZZ (BFF 100 — BFF15] )2k +Zﬁ D Y / (7"6”(5)+
i=1 k=1 0

~0

—rits))ds + 3 [ ISR - 1871 dse

ZO
- [ s s)ds g - Gl P,
0
(3.23)
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Afterword, we have to perform step 3 of the strategy outlined at the end of
Section 3.1. In particular, we have to find two vector fields on R™ where a and
b which satisfy respectively conditions (3.5), (3.6). For brevity of notation, in
the following we will not indicate the argument z € R™ on the coordinates a®, b
for each h,l € {1,...,n}. First of all, we search for a vector field a such that:

GY%(2)a = po(G(z)). Explicitly, the members of the previous equation are given
by:

Gg(z)a:a[)(Fréw(:r: 2%) + 0"Ho(z + 2° ) ZZaka 9(x
i=1 k=0
1o(G(2)) = FG°(2) + ¢"Ho"
In particular, since G is given by (3.21), the following equation holds:
9Ho?

ZZFkJrl 0 Z +FTO (l"—i—z )+F[1(||SO(5E+Z )||2 ||So<w)||2) )

=1 k=0

then:

d n,
:Z Fod(2)2F + Frif(z 4+ 2°) + 0"H(z + 2°) — 6"Ho (2) + 0c"Ho ' (2).
i=1 k=0

Hence, the condition is given by:

a0<Fré”(a:—|—z)+aoHa x + 2° ) Zaka O(x
1=1 k=0

—ZZF’““ Oz) 2l + Fril(z +2°) + o"H(x + 2).
1=1 k=0

Since the last equivalence must hold for every x € R, the conditions on the
vector field a are:

a’ =1, (3.24)

al =0, i=1,...,d, (3.25)
d d

ZZ T el ZZ ZFFRG0( (3.26)
i=1 k=1 i=1 k=0

Since we are assuming the existence of a finite-dimensional realization, Theorem
3.2.3 must hold. Hence, the functions ¢ has to be QE for each i, then by Lemma
3.2.2 there exists a = (a°, (aF)*)* € R™ such that:

n;
P o) = Y Fod(o)al,
k=1
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Therefore:

This implies that:
alf = 2F1 4 2 righ k=1,....,n;, 1=1,...,d. (3.27)

The vector field a is uniquely determined by the injectiveness of dG, so that we
have described the solution of the condition (3.5). Moreover, we can observe that
the other coordinates of condition (3.5) lead an analogous conclusion. Indeed, the
following statements hold:

o |GI(z)a=p(G(z)) j=1,...,m|The two members of the equation are given
by:
d
G(2)a =a° (FT’JM(I + 2°) + 0/Ho (z + 2Y) — 5”) + Z Fk I(x)ak,
i=1 k=0
d n;
1i(G(2)) =FG(2) + 0’Ho'* — o7 37" = > Y "FF'ol(x)2f

i=1 k=0
+ FrjM(x +2°) + o’Ho' (z + 2°).

Comparing the previous expressions, we obtain again conditions (3.24), (3.25),
(3.27).
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o |Gi(2)a=pj(G(z)) j=m+1,...,2m| Also in this case we get:

Gl(2)a =’ (—%IW‘"‘IIQ — ST ()BT () — M (0)+

d ng

1
+ o (ISP = (1877 (2" >~+ i (BF"lof+
5 (15" IE) )+ 20 (3 el o
d
_BFk—lag—m)> Zﬁz a,
=1

=Z<i {(BF? - BF’“ozM)>+§(Hs°<zom2—nsfm<z0>r\2)+

=1

) = () + )P~ I

Also in this case, comparing the previous expressions we obtain again con-
ditions (3.24), (3.25), (3.27) indeed the following condition

On the other hand, analysing the behaviour of the volatility term, we can compute
the value of the coordinates b. In particular, we have to solve the condition:
G.(2)b(z) = 6(G(z)), for each z € Z. This condition corresponds to the following

system:

Gi2)bi(z) = 0)(G(2), i=1,....d;
GL(2)bi(2) = 0] (G(2) - d; .
GIT™(2)bs(2) = B (G(2)), z-l,...,d; j=1,...,m.

For each + = 1,...,d the first condition of the previous system is explicitly given
by:

0 (r8(x + 2°) + (0"Ho®) (@ + 2° )+§:§:M1#() 2)) = o%(G(2)),

h=1 k=0
which implies that:
bi, =0, h=1,....d j#i;k=1,...n,. (3.30)

If we analyse the other conditions, we obtain the same result as in the drift term.
Indeed:
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L= = 18 (Fr)!(z + 2°) + 0/Ho' (2 + 2°) = o7 ()7 ) +

d np
+) 0 Frol(a)bf, = 0(G(2)),

h=1 k=0
which is satisfied if conditions (3.28), (3.29), (3.30);

o |Gi(2)bi =B "(G(2) j=m+1,....2m

J

G ()b =1 (—%Ilﬁj‘mIIQ — S () — () 4 o (1IN

np

- ||sj—m<z0>||2)> + > (Dt (BFoh — BF ol )+

d
h=1 k=1
d . .
=Y BT, = 5TG(2)).
h=1

which is satisfied if conditions (3.28), (3.29), (3.30), too.
In conclusion, we have proved the following proposition:

Proposition 3.2.5. If the model M, described by the equation (1.33) is determined
by a constant volatility term &, then there exists finite-dimensional realizations if
and only if the function aj-(x) are QF functions for each i = 1,...,d and j =
0,...,m. In this case, the existence of finite-dimensional realizations is guaranteed
and the coefficients of the R"-valued process dZy = a(Z,)dt + b(Z;) o dWy, are

determined by conditions (3.25), (3.25), (3.27), (3.28), (3.29), (3.30).

3.3 Constant direction volatility

In this section we aim at analysing the existence of finite-dimensional realizations
for a model M determined by a volatility term given by:

) (F)N) ()
i (M)A (z)

bi(fx) = | @M @) |, i=1,....d, (3.31)
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where M () are elements of H for each i = 1,...,d; j = 0,...,m and ¢! (7) are
smooth scalar vector fields defined on 7, i.e.: gpl( ) € C®(H, R) This condition
implies that we can divide the dependence on the variable time to maturity ()
and the dependence on the entire solution 7. The contents of this section are based
on [21][Section 4].

In order to find conditions which guarantee finite-dimensional realizations we
need the following assumption:

Assumption 3.3.1. For each i = ..,d and 7 = 0,...,m we suppose that:
@ (7) # 0 and B (7 )#Oforeachreﬂ

In what follows we characterize the drift term introduced in (2.8) when the
volatility is given by (3.31). First of all, it is convenient to introduce the following
notation for the volatility:

AN AN
AN el | [

o) = [ O - oM | = |
sl k) :

fn.(ft) 53".(73) -

Recalling that the Stratonovich dynamics of 7 is given by (2.7), we have to com-
pute the term related to the Fréchet derivative of the volatility involved by the

Stratonovich correction term. In particular, if 7 =0,...,m:
do? " 007 (7)) 4, — I (1)
T (emo00 =3 e )+ 3 )
m d ]( m d
D) BLCLIIBES 9y gl
h=0 i=1 h=1 i=1
d m m ]
8 7 . ) L O0gl (P .
= ; (Z N (x % 2 i (F)A] (70) + Z i () g}ﬁht) zh(rt)) :
It is also necessary compute the term o7 (7;)HoV (74):
x d x
(1B (1) = (PN @) [ GONGs)ds = (AN ) [ ()
0 pry 0

8@2 [)\h] in order to denote the Fréchet

derivative of gpg on the variable r" computed on 7 acting on the vector A7, for each

Moreover, we introduce the notation
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h,j=0,....,2m and ¢ = 1,...,d. It is convenient to introduce also the following
notation:

D! (x) ::)\g(x)/ M(s)ds, j=0,....,m,i=1,...,d.
0

Therefore, in the Stratonovich form, the dynamics of each equation of system
(1.33) is given as follows. If j = 0:

d m
. 3% r
i =|r0 4 S (0D - 13 (Zw 122 oy
i=1 i=1 h=0 "
8@1 Tt
+Z S ) dt+2¢l z) o dWy,
whereas for j =1,...,m:

d_F] D] 1d)\j - hAaSOg(ft))\h
T r ‘|’Z 901 EZ i Z%(Tt)w[ it

=1 i=1

Op; (7 »
+Z “gg/; —2wz<t>ﬁi<m>

1cs:

dYtj:{B Brj—lzwj( ))? — %[ZZ%&?MW@?@H

85 7“t
+Z gy Pi )

for each j = 1,...,m. We aim at determining conditions under which the Lie
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algebra generated by ji and &; © = 1,...,d is finite-dimensional, where:
Fro+ S (000))2 DY — 3 00 A (S @l (r) 2552 ) + 7, 2555267 (7))
Fri+ S (0} (7)) D} = 3 00 A (S @l () 2552 0 i1+z;”18“gy<?>ﬁﬂ< O+
+2p} () B} (7 )
) = | Frm 4+ S (e ()P DF — 3 S, A (S ¢ () 2559 ) + 7, 25569 87 )+
_|_2907n (,',,t)/BTYL(T.t))

Br' - Br! = L 10, (8160) - 3 [ (e 52 INIed () + Sy 255281 )|

Br® — Brm — L (81 (0)? - 3| (e L5 Nl () + 5y 255528 (70)) |
(3.32)
and

65(7)(x) = o , i=1,....,d. (3.33)

Differently from the case described in the previous section, the drift term is more
complex and it seems very difficult to compute the integral curve of i. This implies
that we cannot compute the integral curve directly. In order to overcome this
problem, we exploit Lemma B.3.5 and, to apply it, Assumption 3.3.1. Therefore
we provide conditions such that a larger distribution than {/,dq,...,d4} is finite-
dimensional. In this way, we will determine a sufficient condition which guarantees
the existence of finite-dimensional realizations.

We consider a model M determined by a drift term in (3.32) and a volatility
term in (3.33). We introduce now the following set of vector fields:

N2:{§0 f;m,%!jIO,...,m, i=1,....d, k=1,...,m},

where

FrO°
Fr!

¢ = Frm , & =MNE;, nl=DIE;, % =FEnu,
B — Br!

B — Brm
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P ~
where E£; = (0,---, ~ 1 ,0,---,0)* € H=H"" xR™ for j =0,...,2m.
We can see that:

) = €+ 3 > ((Al)n = wigl) = 3¢ (3:34)

where

h=0 h=1

ayh B ()| +2(1 _52>@g(ft)ﬁg(ft)}a

and 4 is the Kronecker delta of indeces 0 and h, whereas

o= oo+ 3 (3t + 3200t ) |

i=1 i=1 h=0

Moreover, for each : = 1, ..., d the following holds:

6i(re) = Z i (F)& + Z@h(ft)%- (3.35)
h=0 h=1

Conditions (3.34) and (3.35) imply that
L={p6i=1,....d}pa CL = {8 ) li=0,...om i=1,....d, k=m+1,...,2m} 4.

Therefore, if we provide conditions such that £! is finite-dimensional, we will
determine sufficient conditions which guarantee that L is finite-dimensional.
To this effect, we prove the following result, closely related to [21]|] Proposition
121].

Theorem 3.3.2. If )\f(x) is a quasi-exponential function for each 7 = 0,...,m
and1=1,...,d, then the Lie algebra L s finite-dimensional.

Proof. We can observe that all the vector fields which generate £; are constant
except £°. This implies that, to compute £; it is necessary to compute only the
Lie brackets [€°, ¢] for each ¢ € N\ {€°}. Indeed, the Lie brackets between all the
other couples of vector fields in N are 0, since [v,w] = 0 if v, w are constant vector
fields and [£°,£°] = 0, by definition. Moreover, since ¢ is linear as a function of 7,
the Lie brackets [€°, ¢] are constant vector fields on H. Therefore, it is sufficient
to compute [£°, ¢] for each ¢ € N\ {£°}.



3.3 Constant direction volatility 95

If g =&, foreach j=0,...,mandi=1,...,d:

F 0 0 -~ 0 0 --- 0
O F 0 -+ 0 0 -+ 0]/0 0
I 0 0 F 0 0 ol [ . _
—~~ o . :
0 o 98 ;508 : ' 0 0
T B -B 0 0 0 ol | o 0
B 0 -B 0 0 0 :
: 0 0
B 0 0 B 0 0

whereas if ¢ = 773:
€] = (F D) B,
and, finally:
[507 Wk] = 0.

Iterating this procedure in order to compute the successive Lie brackets, we achieve
a similar result to the one obtained in Section 3.2. In particular we can conclude
that:

L, :Span{go, (F"X)E;, (F"DE;, v | j=0,....m,
(3.36)
i:L”wdk:L”wm,neN}

Therefore, by Lemma 3.2.2 and through the strategy proposed in the proof of
Theorem 3.2.3, if the functions X are QF functions, then {F"X/| n € N} is finite-
dimensional for each i and j. Moreover, in this case, also (!(7))2D! are QE
functions for each ¢ and j. Indeed, if a function is QE, also its integral function is
QFE and, also, the product between two QE functions is still a QE function. Hence,
we obtain that {F"D’| n € N} is finite-dimensional for each i and j. In conclusion,
L, is finite dimensional if and only if both {F")/| n € N} and {F"D/| n € N} are
finite-dimensional and this holds if the functions Aé- are QE. O

The previous theorem determines sufficient conditions on the functions X such
that the Lie algebra L is finite-dimensional, in particular, the following proposition
holds:

Corollary 3.3.3. If the functions )\z defined on (3.31) are QF functions for each
t=1,....,dand j=0,...,m, then:

dim[L] = dim[{f,0;, 1 =1,...,d}pa] < +00.
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3.3.1 Construction of finite-dimensional realizations

In the previous subsection we proved a general sufficient set of conditions which
guarantees the existence of finite-dimensional realizations for a model M, deter-
mined by a volatility term as in (3.31). In this subsection we will use Corollary
3.3.3 in order to describe the finite-dimensional realizations in the constant direc-
tion volatility case.

We assume that each function M (z) is QE for each i = 1,...,d and j =
0,...,m. Under this assumption, also the functions Df(x) are QE. Then, by
Lemma 3.2.2 there exists natural numbers nf and p{ for each ¢ = 1,...,d and
j =0,...,m such that the following ODEs are satisfied:

i1
FUN = A FN(x), (3.37)
k=0
pl—1
F¥ Dl (x Z dl. F* D! (x (3.38)

for a suitable real constants ¢, and dJ,.
In this case, the dlmenswn n of the Lie-algebra £, is dominated by

In order to build an invariant manifold we introduce the following notation to
JHOCIEE L
denote a vector of the state-space z € R™H1H2i=1 Zi=o(ni+71).

2= (W’ w', ... w™, (2))", (x],)")", where (3.39)
4 . o

(z2)* = (201, 2015 - - - Zgg—l,p 2oy ey 722371,51)* € REi=1 Xm0 (3.40)
. d , j

(i)™ = (@01, 280, oy e Ty )" € RXi=1 =07 (3.41)

Using this notation we construct the tangential manifold of £; following the same
strategy developed in Section 3.1., based on Proposition B.3.3.
This manifold is described by the following mapping:

Gz)= [ (F (e P @) ()i,
i=1,...,d
j=0,..., m
k=0,..., n’
h=0,..., p’

i
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for an arbitrary point #M = (r}, .. M yM My e 3.

We have to compute the integral curve of each vector field which determines
Ly, introduced in (3.36). The integral curve of £%(r) = (£0,£%,...,&9 )* is given
componentwise by:

{%@2151&1(75) = f?(%pgdw(x)) = FSOE{TJM(t)a
0 0) = rM
Cirti ) (0) =75
and the solution is given by:
O i (8) = () =M (t+2),  j=0,...,m. (3.42)
g
For the last m components the integral curve is:
%@?yﬁm (t) = 5?(902—@;{7”) = B9087ré»4(x) (t) - ng_mjr%m(x)(t)
e 0 =4

and the solution of this system is given by:
t

t
S (1) =yt / B 1) (5)-Bel e ()] ds =yt + / ry!(s) =1t (s)ds,

Yi—m
(3.43)
foreach j=m+1,...,2m. _
Since (FFM) is constant, the integral curve of &/, denoted by €54 is given
by: _
eSityM — rju +tFIX, j=0,...,m. (3.44)
In the same way, the integral curve of 77{ , emtpM s given by:
e”gtrM(t) =M 4L tFID! j=0,...,m. (3.45)

Finally, the integral curve of the constant vector field v, e’'rM™ is given by:

{(€7ktr )j:rj,w’ jzoa"'7m7

; 4
(M), =M 4 50t j=mt1,...2m, (3.46)

where ¢} is the Kronecker delta between indexes j and k.

Now, we observe that we can compute the tangential manifold G starting by
the integral cuve £°, (3.42), (3.43) and then the integral curves of (3.44), (3.45)
and (3.46) because they have a simpler shape. Following this strategy, we obtain
that each component of G = (G°,...,G*™)* is given by:

ng—l pZ—l -
Z 2] FRN () + Z ] F* ()\f (:v)/O )\g(s)ds> }, Jj=0,...,m,
k=0 k=0

d
GI(z,x) = ré‘/l(wo +x)+ Z{
T (3.47)

wO

G(z,z) = yj” + / (rd1(s) — rjw(s))ds +wl, j=m+1,...,2m. (3.48)
0
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At this point, we have to compute the step 3 outlined at the end of Section 3.1.
In particular, we will determine the coefficients of a finite dimensional process of
the form:

dZt = CL(Zt)dt + b(Zt) 9 th,

such that G,a = i and G.b; = 6; for each © = 1,...,d. For simplicity we will omit
the z variable on the functions a and b and we use for those functions a notation
similar to the one introduced in (3.39):

(ao, at, ... a™, (aii)*, (Ziii)*)*,

a
b=(b, 0%, 0™, (b)), (b)),

We observe that, since the Brownian motion W which drives the dynamics is d
dimensional, the term 0, similarly as the volatility ¢ is a d-dimensional vector.
Hence it is necessary to introduce an additional parameter h = 1,...,d in order
to compute consistency condition:

b= (by,...,b)",
b = (B, by, - O, ()™ (D))", h=1,....d.

Therefore, for each 7 =0,...,m
-1 pl—1

(GL(2)a)(z) = Fri(w’ + z)a Z Z F*\ (x)al, + Z F*DI(z)a, |, (3.49)
k=0

whereas for j =m+1,...,2m:

GL()a = a (1} () =} (") + o

In order to obtain explicitly the condition G2(2)a = u°(G(z)), we have now to
compute [i(G(2)):

d d
HO(G(2) (@) =FCO(z,0) + 3 (G(:))* DY) — 5 S A% {Zwl (N2 G+

m o
Z z G(Z))},

where we exploit hypotheses (3.37) and (3.38) in order to provide the following
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computation:

nd—1 pY—1
FG°(z,2) = Fri!(z + w°) + { 2D FIN () + Z xZiFkHD?(x)}

0 k=0

= Fryf(z +w°) +

k=
i
i=1 { k=

d n;—1 p?—l
PO +z{zzg )+ Y L F D)

k=1

d
i=1
d - P
Z ngl,iFk)‘?(x) + Z x%MFkD?(x)}
1 k=1

= Fry' (z +w’) + Z{ Z (2p_1 + 22071,@'021')Fk>\?(55) + 2(552—1,1‘4’

k=1 k=1
+ 5529_17¢d2i)FkD0( ) + 2, nd—1 7,601)‘0( )+ xgg—udgiD?(x) }7

Therefore the first component of the drift term is given by:

H(G(=) = Fril (o 4+ ') + Z{A?m [ -3 (Z PG LGN+

=1 h=0

+Dj(x) [(s@?(G(Z))>2 + a0y o |+

n?—l pL—l
+ (22—1,1' + 200—1,icgi>Fk)‘0 + Z Thoy it z, pO—1 zdzz>FkD0( )}
k=1 k=1

(3.50)
In conclusion equating (3.50) and (3.49) for j = 0, we obtain p°(G(z)) = G2(z2)a.
The comparison of each term of this equation leads to:

—1,
I m  0g?
ag; = 200 1,0 — 3 (Zh 001 (G(2)) 5 (G(2)IN] + 200, ain(G(Z))ﬁf(G(Z)))
a,% = 23 1+ Zpo_1,:Chis k=1,...,n0 —1,
8, = (G
\aki = xk’—l,i + xg()fudgm k=1,... 7]%0 -1

(3.51)
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Following the same strategy, we compute the other coordinates of the drift term:

9 (G() =Fr (2 + ) + Z{Az (@) [cf - (Z AN 2 G+
£ BEEN DA (G + 22 (GBI <>>> +
FDI@[@CEN +o, B+ G+, AIFN )

' k=1

(3.52)

Therefore, by the comparison between (3.52) and (3.49) we obtain the equation
1w (G(z)) = Gla, which leads to:

'ao—l
ab = 2, o= 3 M (G() G )N+
5 m(G( ) 5k(G(2) + 261 (G()F(G(2)) ).

' _ 3.53
a{m—zk 1z+znj71ﬂc,7m, kE=1,....,n] —1, (3:53)
aOz ((pz (G( )))2 +x;j,17idg]i7

\’df%:xk 1Z+x;g_1’idf” k=1,...,p] — 1.

Finally, for j=m+1,...,2m:

j 0 j—m 1 d j—m 2 1 d S 86i_m h1 h
W(G() =BE(E) ~BG() — 2 S (G 230X DL @G

= oYy h
d ny-1 d nl7 =1
=ro (@) + >3 ARFN0) =, (w®) =Y ST ATER T 00+
1=1 k=0 =1 k=0
- liw*m@( D2 -1 [Z S e G+
2 ' 2 orh R
=1 i=1 h=0
+3 S @EnBieL)
h=1
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Therefore, comparing with the last m components of G.a, we obtain:
a’ =1,
@ = S [ A F0) - S A FN(0) — S(B(G())+
(S (G NIENG=) + Ty 2 (GE)BNG=) ) .

foreach j=m+1,...,2m.

We follow the same procedure in order to compute the value of b.Therefore we
analyse the equation G.b, = 6,(G(2)), for each h =1,...,d.

Then, for 7 =0,...,m

nl—1 pl—1
(GL(2)n) () = Frit(u® + o), + Z(Z FEN (0)h + D FEDI ()b,
i=1 = k=0
= o (G(2)) N, (2).
Therefore:

bo =0,

bg)hh SOh(G( z)),

b{hh—O i#h, i=1,...,d, (3.55)

b?mh 0, k=1,...,nl —1,

bf”h—() k=0,...,p] — 1.

On the other hand, for j =m+1,...,2m andhzl ,d:
GL(2)bn = by (g’ (w®) — 1} (w®)) + b, = 5”( (2)),

which leads to:

b =0,
oy =BUG(R),  j=1,...,m. (3.56)
bjh—O 1#h, j=1,....m
In conclusion, we have proved the following result:
Proposition 3.3.4. Let us consider a forward rate model M, described by:
dry = [(r)dt + &(r,) o dWy,

where [i and &;, 1 = 1,...,d are respectively determined by (3.32) and (3.33)
and the functions /\g are QF for each v = 1,...,d and 7 = 0,...,m. Hence,
M possesses finite-dimensional realizations. In particular, the equation 7(x) =
G(Z;, ) holds in a neighborhood of an initial point P, where G is defined in
(3.47)and the finite-dimensional process Z;, such that:

dZt = G(Zt)dt + b(Zt) o} th,

where the drift a and volatility b terms are described by the conditions (3.51),
(3.53), (3.54), (3.55), (3.56).
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3.3.2 Necessary and sufficient conditions for a simplified
constant direction volatility model

Let us consider a volatility term for a model as (1.33)

Al ()

()
Bt

m

5

where 7, = (r°,...,r™)* and [/ are real constants.

the volatility term introduced in (3.31). In particular,

of the form:

(3.57)

This is a simplified case of

the scalar vector field ¢; is

the same for each component of 6; and differently from the previous section, in
©; there is no dependence on the last m components of the forward rate structure
7 (the ones associated with the spreads). This assumption allows us to separate
the components associated with the forward rate equations to the components

associated with the spreads, following the strategy out

Under this assumption, the drift term introduced
form:

Fri+ YL, |(0i(7)* D) - L (soz 0)>

Frf+ 30, (i) DY @) — 3 (@)i(7) X2

lined in Remark 2.2.9.
in (3.32) has the following

m 0801 7't

h=0 9rh P\h]}
o 2200 1 2(¢i(71))28} )}

h=0 " §rh

i) = [ Frm 4 0L [mm»zm( ) - 3N )(wm) o 228G  + 2(i(7)28 )|
B — Br! — § YLy [(0ilF) (8D + Blei(F) iy 25 M)
Br' — Br™ — § 0 [ (0i(7)2(B7)? + Bli(Fe) Yo 2552 A
(3.58)
where D7 (z) := M (z ) Jy M (s)ds, for each 7 =0,...,mandi=1,...,d.

We aim at providing equivalent conditions such that the Lie algebra:

E = {ﬂ’(/jj? e ,a'd}LA
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is finite-dimensional. We consider the following vector fields:

A ()

¢ = A%ﬁ“’) . di=1,....d, (3.59)

B
and

Hf+2i&M~WD%>
Fri+ 30 (0i(7))2 D) — S0, M (@) (9i(7))? 8!

& = | P + X0 (0(7)2D0(2) — S A (@) ()28 |- (3.60)
Br{ — Br{ — 1 30 (pi(71))?(81)?

Br{ —Bry" — 5 30, (i(F))*(5")
Therefore, by the comparison of the vector fields defined in (3.58),(3.59) and(3.60),

we obtain:
~ =13l (325 )e

and '

(3'@(72> :@z(?t)fz 1= 1,,d,
and since —3 ijl %(ﬁ)(ZT . dgzgrjrf [)\JD and ¢;(7;) are scalar vector fields for
each ¢ =1,...,d, we can conclude that:

‘C: {goaglw"vgd}LA = *Cl- (361)
Therefore, the Lie algebra L is finite-dimensional if and only if £, is finite-dimensional.
In order to compute the conditions under which dim[L;] < oo, we need the suc-
cessive Lie brackets between the vector fields which determine L.
First of all, we describe the Fréchet derivative of £ for i = 1,...,d, that will
be denoted with &%, and we use the notation:
q)<~> = ((801(?15))27"'7 (
Di(x) = (Di(@),..., Di(x))", (
(6 ) ((81)%,- (ﬁi)z)*7 (3.64
N (@) = (X ()8, - Xl (
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Therefore, we can denote:

Z(%(rt))2(53)2 = (7)(#),

()N ()B] = 2N (@)

Using the same notation introduced for the Fréchet derivative of &' for the scalar
vector field ®, 22(7) = ®,;(7), we compute the Lie brackets of £°, ¢ for each

1=1,...,d. F,1rgtjof all, it is necessary to compute:
F + ®,0(7)D° ®,.1(7)D° ®,m (7¢)D° 0 - 0
Do (7) (DL = ALBY) F 4+ @ (7)(DP = MBY) - @u(@)(DI—ABY 0 - 0
“=|B- %@A(ﬂ(ﬂlﬁ -B- %@L(?’)(ﬁlf —%@J@(ﬂl)z 0 o 0
Boloa@E™? BB o B om0 o 0

whereas ¢! = O, where O means that £& is 0 in each element of the matrix, since
the vector field ¢! is constant in H, for each @« = 1,...,d. Then, we compute the
following Lie bracket:

FA? + 3750 @ (T[N D°
FL+ 37, B (DD - 19

_ (e =) — G = | TN i@ (AN(D™ — Amgm)

A(0) = AH0) = 28" ( iy @, (MIN])

N(0) = A7 (0) = 5(8™) (s @ (PN
(3.66)
Therefore, we introduce the following notation for the second order derivative of

the function ® on the variables 7", 7!, computed on the couple of vector fields A2,
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A€ H: ®on AP L], We can observe that:

FA?
F!

n' = FAP +) @, (7)[M]
B\ — BA! h=0

B\ — BAT

DO

Dl - /\161

—3m?

Hence, if we compute the Fréchet derivative of 7, we obtain:

D° ZZT:() Do (F) P‘?7 ] T
(D' = N8N Yy @npo (DAY, ] - (D

—3(8)? Zh 0 rhro(N)[/\?w]

LB S Dy (PN ]

Using (3.67), we can compute the vector field x* =

nLk=1,...,d:
DOy Z:UZL:O q;;h,.z A3 AL
(Dl - /\151) 21:0 Zh:o Dy [)\?’ )\2]

I{ik = (Dm ; )\:ngm)";;iomzznzo (prhr]ll[)\%’ )\2]
_5([3 ) ZZ:O Zh:o (I)T'hrl P‘z l )‘k]

_%(5171)2 27;0 ZT:O Pnp [)‘?’ /\2]

We introduce the following assumption:

Assumption 3.3.5. We suppose that:

(Dm _ )\mﬁm) ZZL:() D, 10 (7:')[)\?7 ] - (Dm _

D3

)\mﬁm) ZZ"L:O q)rh,,,‘m

&y (AL,
T /\161) Z;;n:o (prhrm (?/)[)‘?7 }

D™ —xmgm | =1, d
~4(8°

- OO

ML) 0

~1(8 >zz"o N1 VIR

Il
=)

NE
it

LR Y B (PN O

B, A AL

féfﬁmﬂAA’ £0,

=0 h=0

foreach i,k =1,....d.

DO
Dl _ )\161

pDm _ \m Bm
—3(8")?

~4my

(

| | (3.67)
[, €F] = ni(€F) for each

(3.68)

3.69)

0
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We denote with (¢, (7;))2,,.[Al, A},] the second order derive of (¢,(77))? on the

variables r" r! acting on the couple of vector fields A and A\, for each n = 1,...,d.
Therefore, we can make the following observation, recalling that ® is given by
(3.62):

DO DO
Dl—/\lﬁ1 D1 _g\lﬁl
ZZ‘I’W LN D™ = AmB™ L =33 (o (7))t [N A | D= AmBi |
1=0 h=0 —1(Bh)? n—=11=0 h=0 *%(571;,)2
_%(67”)2 _%(ﬁ;n)Q
for each 7,k =1,...,d. We introduce now the vector fields:
DO
_ T)L\l 51
"= \|Dr=X"grl, n=1,....d, (3.70)
—5(8,)°
—5(8)?
In particular, we can observe that k™ = ci*¢, for each i,k = 1,...,d where
D YEXCINEE
1=0 h=0

are real constants. Hence, the d? vector fields % can be written as linear com-
bination of the d vector fields (,. Afterwards, we introduce the following vector
fields:

FA?
FAl

o FAm . i=1,....,d. (3.71)
B\ — B)!

B — BA™

We observe that the vector fields (" and ¢’ are constant in the space H, for each
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n,i =1,...,d. Moreover, we consider the vector field °, defined as follows:
Fr0
Fr!
0 = Frm : (3.72)
Br’ — Br!
Br? — Brm

Now we are able to prove the following result:

Proposition 3.3.6. The vector fields (", o°, £, 1°, respectively introduced in (3.70),
(3.71), (3.59) and (3.72), for eachn,i = 1,...,d, determine the Lie algebra L, i.e.

L= {lau 6-1) s 76-d}LA = {C17 Qi7§i7 V0| i’ = 1a s 7d}LA = £2‘ (373)

Proof. We proved that £ = {£° ... &4} 4 in (3.61). We observe that:

d
50 =" + Z(Son(ﬁ)QCnv (374)
n=1
d m
n=0 4 ) D (eaMHNIC, i=1,.d, (3.75)
n=1 h=0
d m m
KR =3NS (a2 ML AIC k=1, d, (3.76)
n=1 [=0 h=0

Hence, if we compute the successive Lie brackets between two elements of £, we
can exploit the bilinearity of the Lie brackets, equations (3.74), (3.75), (3.76) and
Lemma B.3.5, in order to substitute

K& i k=1,...,d— (", n=1,...,d,
n, i=1,...,d — o, i=1,...,d,
§O—>y0,

j'n {507517"'7§d}LA = {£O7£Z7nz7l§/k2| Z7k = 17"'7d}LA = {V()?é-l?Cn’ Qz| Z7n
1,....dypa.

o

o

By Proposition 3.3.6, £ is finite-dimensional if and only if the Lie algebra
is finite-dimensional.

2
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We observe that all the vector fields in £, are constants except °. Hence, by
an analogous strategy to the one provided in the proof of Theorem 3.3.2, we de-
termine equivalent conditions under which dim[£s] < 4+00. Indeed, if we compute
[v, w] where v, w are constant vector fields we obtain [v, w] = 0 and by definition
[P0 = 0. Therefore, it suffices to compute [1°, ¢| where ¢ € {£%, (", 0| i,n =
1,...,d}.

In pirticular, in analogy to the strategy developed at the beginning of Section

3.2 for the constant volatility case, we can observe that the Fréchet derivative of
¥ is the same of the one computed for the drift term in (3.7). Hence, the Lie

brackets involving ¥ are given by:

A F2))

FA7" )
0 il _ 0 _'mi1 0 41 _ FA"

B0 _ BAm BB)! — BFA
and the analogous result is obtain for (", n=1,...,d:
FD°
[VO Cn] _ FD;n - ﬂ;nF)‘;n
617 | BD? —BD! + BIBAL

BD? — BD™ + BmBA™

Therefore, iterating this procedure, we obtain that the Lie algebra L, is given
by:

FF\)

. o Fkam
‘CQ = Span VO7 szgn7gl’¢l,k = k— : k— ’
{ BFF1)\) - BF* 1)}

BF*'\0 — BFF '\
F*DY
F*D! — BIFF Al

Wik = FFDm — gmEF ™ li,;n=1,...,d, ke Ny.
BF*~'D? - BF*~'D} + g/BF* '\l

BFf~'1D0 — BFF~1 D7 4 gmBFF A7
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Hence, a necessary condition for

dim[Ls] < +00 (3.77)
is:
dim[Span{1°, &, ¢"F|i=1,...,d, k € N}] < +oo, (3.78)
and this is equivalent to
dim[Span{¢™*| k € N} < 400, i=1,...,d. (3.79)

In equivalence, we have to prove that:

pi—1
Vi=1,..,d3p eN: ¢ =" ¢, (3.80)

k=0

for a suitable set of real coefficients {ay;}. At this point, we recall the proof of
(=) part of Theorem 3.2.3. In particular, by firs m + 1 components of (3.80), we
can affirm: , _

FP0 = S0 oy RN,

FPAm = S0 o FRAm,
By the previous system and applying Lemma 3.2.2, we conclude that

Al are QE functions Vi=1,...,d, j=0,...,m. (3.81)
Vice versa, if )\f are QE function for each i = 1,...,d and j = 0,...,m, we can
follow the strategy outlined for ¢7(z) in the proof of (<) of Theorem 3.2.3, in
order to conclude that Span[¢**|k € N] is finite-dimensional for every i = 1, ... d.

At the moment, we have shown that condition (3.81) is equivalent to a necessary
condition for (3.77). Therefore, we aim at proving that (3.81) is also a sufficient
condition for (3.77). In particular, if \/(z) are QE functions also

dim|[Span{y™*| k € N}] < oo. (3.82)

Indeed, if M (z) are QE functions, D!(x) and DJ(z) — /X () are QE functions
for each i = 1,...,d and 5 = 0,...,m, because the integral of a QE function is
a QE function too and a linear combination of QE functions is a QE function
too. By Lemma 3.2.2, for each ¢ = 1,...,d, we can provide the common minimal
annihilator M; for Df and Df — BN, for each j =0, ..., m. To do this, we exploit

R
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an analogous strategy to he one provided in the proof of Theorem 3.2.3 part (<).
In particular, the following equations hold:

My(F)D! =0, j=0,...,m (3.83)
M(F)(D! = NpHy=0, j=1,...,m, (3.84)

for each i = 1,...,d. Moreover (3.83) implies that M;(F)D}(z) = 0 for each
x € R, therefore:

B(M;(F)D)(z)) =0, j=0,...,m, (3.85)
B(M;(F)(D!(z) — mJ( N =0, j=1,...,m. (3.86)

Finally, we observe that:
M;(F)D! =0 = M;(F)(FD))=0, j=0,...,m, (3.87)
M;(F)(D](x) = BN (2)) = 0 = M;(F)(FD](z) — BIFX](x)) =0, j=1,....m.
(3.88)

Rewriting in components equations (3.85),(3.86),(3.87),(3.88), we obtain:

Fq +1DO k 0’7k2FkD0
F? +1<D1 5 ) k O’Yksz(Dil _51‘1)‘1‘1)7

O (DF = BINR) = S BN (D — BAT),
BF? DY — BFY D? — BFY D! + IF\! = Y0~ (BFF1DY — BRI DI 4
+AIBF* A,

BF? D? — BE‘qiD? — BFY DM + Bm"BFY A" = 37 4,.(BFF1D? — BFF ' D4
+B"BEFTIAT),

\

for a suitable set of real coefficients {v;;}. The last m components are obtained
computing the difference between (3.85) for j = 0 and (3.86). The previous system
is equivalent to:

qi
i,q'+1 _ Z i,k S
7/)q - Vk,zw ) 2_17"'7d7
k=0

which implies that (3.82) holds. In conclusion, if (3.81) holds, both (3.79) and

(3.82) hold. But in this case (3.77) holds. Hence, we have shown that \/(x) is a

QE function for each i = 1,...,d and j = 0,...,m is equivalent to dim[Ly] < occ.
In conclusion, we have proved the following proposition:
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Proposition 3.3.7. Given a model M described by a forward rate system of
SDEs as (1.33) and determined by a forward volatility term & of the form (3.57),
such that Assumption 3.3.5 holds, the Lie algebra £ = {ji,61,...,04} is finite-
dimensional if and only if the functions )\3- are QF functions for eachi=1,...,d
and 7 =0,...,m.






Appendix A

Interest Rate Models 1n a
Pre-crisis Framework

This Appendix aims at describing the structure of fixed-income market models,
before the last financial crisis. We need this, because we want to understand why
the framework adopted until 2007 — 2008 is no longer appropriate. To develop
these contents we based on [3].

A.1 Zero-Coupon-Bonds and interest rate processes

Fixed-income instruments are contracts, which form the fixed-income market, that
guarantee to the holder a fixed (deterministic) amount of money at a given date
T, called maturity date.

In a pre-crisis environment every fixed-income contract can be determined,
through no-arbitrage considerations, by a portfolio composed of Zero-Coupon-
Bond contracts. These instruments are defined as follows:

Definition A.1.1. A Zero-Coupon-Bond (ZCB) with a maturity date T, is a
contract which guarantees to the holder 1 unit of currency to be paid at date T.
We will denote the price at time t < T of this contract as By(T).

In this framework the fixed-income market is formed by all the ZCBs. This
market is supposed to respect the following assumptions:

Assumption A.1.2.
o The relation Bi(t) =1 holds ¥t > 0;

o For eacht € [0,T] the price Bi(T) is a differentiable function with respect to
the time maturity T

113
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Then, we denote I'; := {(T, B,(T")),T € Ry} as the bond price curve at ¢. T
represents the term structure of the bond price process.

Therefore, in our dissertation, we suppose that for each T fixed the price p(-,T) is
a scalar stochastic process, whose trajectory is driven by a d-dimensional Brownian
motion, W;.

This market is composed by an infinite number of assets (one for each maturity
time T'), therefore, one of the main problems which we have to face is to find
relations between prices associated with different maturities, in order to ensure
the absence of arbitrage opportunity. Hence, it is convenient to introduce the
concept of interest rate, which describes the relation between 1" bonds computed
by different maturities, 7" and T + 0. Recalling the notation of [3], we define:

Definition A.1.3.

1. The simple forward rate for [T, T + 0|, contracted at time t, is defined as:
By(T +6) — B(T)

Lt;T,T+6)=— Al
2. The simple spot rate for [I',T + 9], is defined as:
Br(T+96) -1
L(T, T +9) :=— A2
(LT +9) 5B (T +0) (A.2)
3. The winstantaneous forward rate with maturity T', contracted at t, is de-
fined by:

J(T) = Q7 (A.3)

4. The instantaneous short rate at time t is defined as:

r(t) = fi(t).

Remark A.1.4. Before the last financial crisis, the simple forward rate and the
simple spot rate denoted the LIBOR rate (forward and spot respectively), but, as
it 1s described in Chapter 1, these equivalences, in general, do not hold anymore.

Instead of analyzing directly the evolution of prices it is convenient to study
the evolution of forward rate processes. Indeed, bond prices can be determined by
instantaneous forward rate as described in the following lemma:

Lemma A.1.5. Vt < 5 < T it holds:
T
Bi(T) = B(9) - exp(—/ ft(u)du)
s

In particular, if S =t, it holds that: B,(T) = exp(— ftT ft(u)du>
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Finally we define the money account B; as:

B, = exp{/ot Tsds} (A.4)

dBt = TtBtdt
By=1

which is equivalent to:

We will use the money account as the numeraire for a martingale measure Q.

A.2 Relation between interest rates and ZC'B prices

In the previous section we have introduced the structure which characterizes a
fixed-income market. Now we want to show explicit relations between the processes
defined before, under suitable assumptions.

First of all, let us consider a stochastic basis (Q, F, (F;)i>0, P, W;), where (W),
is a Q-Wiener process. On this space we define the following processes:

[Short rate| dry = a(t)dt + b(t)dWy; (A.5)
ro=1M (A.6)

[Price| dBy(T) = By(T)m(t, T)dt + By(T)v(t, T)dWy; (A.7)

By(T) = By'(T) (A.8)

[Forward rate| dfy(T') = a(T)dt + o(T)dW. (A.9)
fo(T) = f3(T) (A.10)

where we assume that the initial conditions can be determined by market data.
In order to respect the assumption A.1.2, it holds:

Assumption A.2.1.
e a(t),b(t) are scalar adapted processes: a(t),b(t) € Fy, ¥Vt > 0;

o m(t,T),v(t,T),a(T),00(T) are a 1-parametric family (on T-variable) of
adapted processes, such that each of them is CY(R) on T-variable (we will
use mp(t,T) to denote the partial T-derivative).

e [t is supposed that each dynamics allows to differentiate under the integral.
The next proposition analyzes how those processes are related each other.

Proposition A.2.2. Under Assumption A.2.1 the following hold:
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1. If f(T) satisfies (A.9), then the short rate satisfies (A.5), where:

a(t) = 2 f(t,t) + alt,t);
{b(t) = o(t,1).

2. If f(T) satisfies (A.9), then the price satisfies

dB,(T T){r(t)+A(t,T)+ —HS(t,T)\]Q}dt+Bt(T)S(t,T)th, (A.11)
where
A(LT) = — / " on(s)ds: (A.12)
S(T) = — / " o(s)ds: (A.13)

Proof. Part 1

By definition we have that r; = f,(¢) then, by definition:

= folt) + /Ot a,(t)ds + /Ot o, (t)dW,.

Hence, by the fundamental theorem of calculus, we have that:
{oz s(t) = as(s) + f
os(t) = os(s) + fst 2o(u)du
Therefore:

Ty :fo(t)+/0t ds—l—/ / S7(w)du d8+/0t0s(8)dWs+
+/Ot</: a%as(u)du)dwsz
:/Otas(s)ds—i—/otas(s)dWs—ir Ota%fo( d8+fo // a7 u)dsdu+

t u 8
+// a—TUS(u)dWsds:

u a t
—TO+/O / aT d3+/0 a_Tgs(u)dWs>}du+/o US(S)dWS

_,,,0+/0 fulu ))du+/0 o5(5)dW,
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where we have used the stochastic version of Fubini theorem (for the proof see [14],
chapter 6, Theorem 6.2), and the possibility to differentiate under the integral sign.
We can conclude that:

dry = (at(t) + a% ft(t))dt + oy () AW,

Part 2

First of all, we define the following process: Y, (T) = — ft fi(s)ds, which means:
By(T) = exp Y(T).
Using Ito’s formula:

dBy(T) = exp(Yi(T))d(Yi(T))) + sexp(Yi(T))d(Y:(T))?
dYy(T) = d(— 7 fi(s)ds

Therefore, using Ité s formula and the integral version of A.9, we can compute the
differential of Y;(7"), and we can use it to compute the dynamics of B;(T'):

/fo o [ [faoass [ [ osravia)
—=—[ m@mS—/°/ﬁaA$MMs—/ /lm@mwumz
—/Tfo(s)ds—// dsdu—// oo (8)dsdW,+

/fo ds—i—/ot/uau dsdu—l—//au )dsdW,, =

t T

/fo )ds — // (s dsdu—// ou(s)dsdW,+

/fo ds—i—//au duds—l—//au VAW, ds =
o Jo

/fo ds—// (s dsdu—// ou(s)dsdW,+
# [+ [t [Casiw}as-

-~

Ts

/ fols ds+/ {TS+A(S T)}ds+/0t2(s,T)dWS,

where:
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In conclusion, we have:
d(Yi(T)) = (re + A(t, T))dt + X(¢t, T)dW;
Hence the quadratic covariation is:
d(Y,(T))* = [[(¢, T)|*dt
Therefore we can conclude:
dBi(T) = By(T)|r; + A(t,T) + %HZ(t,T)W dt + By(T)X(t, T)dW;

The third equivalence is determined by a stochastic version of Fubini Theorem.
This results is provided by Filipovié¢ in [14], chapter 6, Theorem 6.2. ]

A.3 Heath-Jarrow-Morton Framework

In the previous sections we have analyzed the theoretical results concerning fixed-
income-market. If we want to model the market, we have to specify the processes
which have been introduced above.

In order to do this, we can follow different strategies. The main approaches
are:

e Short rate models;
e FForward rate models.

e LIBOR market models;

The first method consists in defining parameters for the short rate process (A.5),
whereas the second one is obtained specifying the dynamics of (A.9). Finally,
given a set of tenor D, a LIBOR market model is formed by a discrete family of
log-normal stochastic processes, each of them describing the dynamics of a forward
rate associated with a tenor 6 € D.

We follow the second approach, because it is too restrictive to assume that
the whole money market is governed by only one stochastic differential equation.
Hence, we describe the market with an infinite system of stochastic differential
equations (one for each maturity). Using this construction, we can define:

Definition A.3.1. The Heath-Jarrow-Morton (HIM) framework is a family of
models for the fized-income market, built assuming that: for every T > 0, the
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dynamics of forward rate f(-,T) is described by the following stochastic differential
equation, defined on (0, F, (F)e, Q) where Q is a martingale measure:

fo(T) = f3'(T) (A.15)
where Wis a Q Brownian motion the processes a.(T),0.(T) are adapted.

One of the main problem is the choice of the parameters in the previous system,
in order to have an arbitrage-free fixed-income market.

To solve this problem, we remember that a ZCB is a contract which guarantees
1 at maturity date 7. By the pricing formula. we get that:

By(T) = E© [exp{— /OT rsds}] (A.16)

where Q is a martingale measure.
Then, if we recall Lemma A.1.5, we have that:

B(T) = exp{— /tT ft(s)ds} (A.17)

where it holds that: ry = f,(s).

Comparing (A.16) and (A.17), we can determine a condition on the drift of
the price process, called HJM drift condition. We describe this condition in the
following Proposition:

Proposition A.3.2 (HJM drift condition). Under the martingale measure Q, the
processes o and o must satisfy the following relation, for every t and every T > t:

T
CYt(T> = O't<T)/ Ut(S)*dS (A18)
t
where A* denote the transpose of the vector (or the matriz) A.
Proof. First of all we recall that, by Proposition A.2.2 we have that:
1
AB(T) = B(T) |ri+ A(t,T) + SII2( DI 2| dt + BUAT)S(E T)dW,

Therefore, thanks to the fact that Q is a martingale measure, the drift term of the
previous equation has to be equal to the short rate r;. Thus we get:

1
re+ At,T) + §||E(t,T)||2 =r

T 1 T 5
—/s as(u)du—i-iH/s Us(u)duH =0

If we differentiate the previous equation in the T-variable we get the thesis. O]

this means that:
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A.3.1 DMusiela parameterization

For our results it is more convenient to adopt an equivalent parameterization to
describe the forward rate. Instead of describing the dynamics as an infinite family
of SDEs, parameterized with the T-variable, we choose the Musiela parameteri-
zation, which does not consider the maturity time 7', but the time to maturity
x:=T —t. In terms of x the forward rate will become:

r(z) = fit +x), x>0. (A.19)

In order to analyze the dynamics of the forward rate parameterized in this way,
we recall the following result:

Proposition A.3.3 (Musiela equation). Assume that f,(T) is specified as in
(A.9).Then:
dri(z) = {Fro(z) + ou(t + 2) / oot + 8)dsydt + oyt + 2)dWh,  (A.20)
0

where F = g.
T

Proof. Using Ito’s formula for processes which is stochastic in t-variable, but also
it has a component which is a differential function in that variable, we have that:

0
Then, computing the Ito differential for the first term, we obtain:

dri(x) = au(t + z)dt + o (t + x)dW, + %n(m)dt

t+x
Drift condition = o(t + x) / oi(8)*ds + oy (t + x)dW; + %Tt(x)dt (A.21)
¢

= {Fri+o,(t +x) / o (t + s)*ds}tdt + oy (t + x)dW,.
0



Appendix B

Differential Geometry On An
Infinite Dimensional Vector
Space

In this chapter we aim to describe a geometric theory necessary to provide some
results, on the geometric properties of forward interest rate curves.

In the first section, we will provide the main concepts of a general theory of

varieties, defined on a Banach space. In particular, we will give the definition
of H-variety, where H is a Banach space. Then we will introduce the concepts
of tangent space and tangent bundle, which are essential to understand the most
important class of objects we need: the distributions. Then, by relying on the
concept of Lie bracket, we will studying the notion of involutive distribution.
In the second section, we will show some preliminary propositions and remarks
necessary to prove the Frobenius theorem. Finally, we will introduce the concept
of Lie algebra, which will be foundamental in order to describe how to provide
final dimensional realizations for a forward rate model.

B.1 A brief introduction on infinite dimensional
differential geometry

In this section, we recall some basic notions of differential geometry. Our presen-
tation is based on [16].

Let us consider a Banach space (H, || -||), where || - || denotes the norm defined
on the R-vector space H. In this dissertation, we admit the case in which H is
infinite-dimensional.
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B.1.1 “H-manifolds

To introduce the concept of manifold defined on a Banach space H, it is necessary
to give the definition of compatible Atlas of a topological space X

Definition B.1.1. An atlas on a connected topological space X is a collection of
pairs {(U;, ;) Yiez (Z is an arbitrary set of indexes), which satisfies:

e Fach U; is a subset of X, Vi and {U, }ier cover X;

o Fach p; is a bijection between U; and an open subset of a Banach space H.
Moreover, we suppose that for any i, j : ¢;(U; N U;) is open in H.

o the map pip; " - @;(U;NU;) — i(U; N U;) is a differentiable function for
each pair i, j.

The element (U;, ;) is denoted as chart.
Moreover, we say thal two atlases A', A* are compatible if, given (U, ;) € A,
for every chart (U, @) € A? the differentiable condition is satisfied by p;p~ .

In particular the connection of X implies that the second property of atlas
holds with the same Banach space ‘H (modulo isomorphism).

We can see that the compatibility condition is an equivalence relation, so that
we can consider the set of all the equivalence classes of atlases. Given one of these
classes we can formulate the following definition:

Definition B.1.2. A structure of H-manifold (simply denoted with manifold), on
a connected topological space X, is a class of equivalent atlases.

For example, every open subset of a Banach space H is a manifold.

Remark B.1.3. From now, when we talk about the differential of a function

[ Hi —> Hs defined between two Banach spaces, we intend differential in the
sense of Fréchet derivative:

The Fréchet derivative of a function f is a bounded linear operator L : Hi — Ha

such that:
[f(x 4 h) — f(x) = Lhl|y,
[1h]]3, 0 7|2,

=0,

where || - ||z, denotes the norm of H; fori=1,2.

Then we can say that a function f . Z — X between two H-manifolds Z, X f, is
differentiable if V z € Z, when we consider two charts (V1) of z and (W, ) of
f(z) such that f(V') C W, the so called local representation of f:

f=pofop™ i (V) = (W) is a differentiable function of Banach spaces.
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One of the crucial points now is how to determine those conditions which
guarantee the structure of manifold on a subset of an H-manifold. In order to
solve this, we provide the following definition:

Definition B.1.4. Let X be a H-manifold. A subset Y C X is a submanifold of
X ifVy e exists a chart (V,,1,) at y satisfying the following properties:

o V, =Vi x Vo with Vi, Vo <H and ,(Y NV,) = Vi X vy, where vy € Va;
e 1, induces a bijection: 1y, : Y NV, = V.

The collection of pairs (Y NV, ¥1,)yey constitutes an atlas for ).
Now, we introduce the concept of immersion on an H-manifold X,

Definition B.1.5. Let f : Z — X be a differentiable function between two H-
manifolds Z, X. We say that f is an immersion at z if U C Z open and containing
z ewists, such that fiu is an isomorphism between U and a submanifold of X. If f
is an immersion at each point, it is called global immersion (or simply immersion).

B.1.2 Distributions

The definition of immersion is strictly related to the concept of tangent space. In
order to give the definition of tangent space at a point x of an H-manifold X, it
is necessary to introduce the definition of tangent vector.

Definition B.1.6. Let X be an H-manifold and let x be a point of X. We consider
triples v := (U, p,v) where (U, ) is a chart at x and v is an element of the vector
space (H) in which o(U) lies.

We say that two triples (U, ¢,v) and (V,¥,w) are equivalent if (z/Jgo_l)Zp(l,) (v) =
w. Clearly, the previous equivalence describes an equivalence relation. We call
tangent vector an equivalence class of triples, as defined above.

Definition B.1.7. The tangent space at a point x of X is the set of all tangents
vectors of X at x, denoted by T,(X).

Through the concept of tangent space we can generalize the differential of a
function, defined between two manifolds:

Definition B.1.8. If f : X — Y s a differentiable function between two H-
manifolds, we define the differential of a function: df (x) : To(X) — Tyu)(Y) as
the unique linear function satisfying:
V (U,p) chart at x € X and ¥ (V,4) chart at y € Y such that o(U) C V., given a
tangent vector v := (U, p,v) it holds:

[df (2)](v) = w = (V. ), w)] where [(fo™") (¢(2)))(v) = w.
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Remark B.1.9. [t can be proved that T,(X) is a vector space. Moreover, and
choosing a chart at z, (U, p), we can provide an isomorphism between T,(X) and
H. Indeed, chosen a point x € U C X, the differential of ¢, computed on x is an
isomorphism with its image:

doy : To(U) = Ty (pU) =H (B.1)

We are now able to provide a proposition, which characterizes the definition of
immersion, in terms of tangent spaces:

Proposition B.1.10. Let X', Y be manifolds and let f be a differentiable function
between those manifolds. Then, the function f is an immersion at x if and only
if the map df (x) is injective and splits TV = Fy x {0} (this means that T, X is
isomorphic to Iy < Ty ).

Proof. see [16]|Chapter I]]. O

Example B.1.11. Recalling that open subsets of Banach spaces are manifolds, we
can consider a differential function f : D — H, where D is an open subset of R"
and ‘H is a Banach space. If f is injective and df (x) is injective too, then im|[f]
is a submanifold of H.

We can generalize the concept of tangent space, introducing a new object: the
Tangent Bundle.

Definition B.1.12. Denoted with T X, the tangent bundle is determined by the
disjointed union of tangent spaces T,(X):

TX ={(z,0): e X, ve T, X}

In order to visualize it, we can observe that T'X is the set of T, X and each of
them is isomorphic to H. Then, using a chart (U, ), we build an isomorphism
(this operation is called trivialization) between: TX|y = U x H.

Asusual, if ¥ =V C H, we can build a global trivialization of V: TX = V xH.

Generally, a map 7 is paired to T'X. This map is the projection of TX on the
first coordinate: 7 : TX — X and each set 7—1(x) is called the fiber of x.

(xo) = =
Now, we can give the central definition of this subsection:

Definition B.1.13. A distribution S s a subset of TX, which satisfies the fol-
lowing property: each fiber of S is a vector subspace of dimension n of H. In
particular we can associate to S a map F : X — TX, where

r — Sg
Sy < T,X =H and dim(S,) = n.
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A distribution represents a finite dimensional vector subspace associated with
each point. If we want to provide a basis for each subspace, we need the following
definition:

Definition B.1.14. Given an H-manifold X, we define a vector field £ as a
function: £ : X — TX, where {(x) = v € T, X, for each x € X. We assume that
a vector field satisfies the following property: w(§(x)) = x, Yo € X if and only if
o § = Zd/\/

If X = U is an open subset of H, then: £ : U — TU = U x H. In particular,
thanks to the fact that T, U = H V z € U, we can describe a vector field as
E:U—H.

Definition B.1.15. We say that a vector field £ lies on a distribution S, if () €
S, Vr e X.

Recalling that S, is a n-dimensional subspace of T, X Vx X, we can find n
vectors which form a base of S,, Vo € X. In particular, we aim to find a set of
vector fields &1, &y, ..., &,, which generate S in this sense:

Span{& (z),.... & ()} =S, Vre X,
where Span denotes the vector space generated by vectors in argument.

Definition B.1.16. Moreover, we say that a distribution S is smooth, if v € X
4 U C X open neighborhood of x such that 3 &1, ..., &, smooth vector fields defined
on U and S, = Span{& (x),..., & (x)} Ve € U.

Remark B.1.17. In the previous definition we introduced smooth vector fields.
With the term smooth, we intend that & is supposed to be a smooth function between
Banach spaces (locally). We use this interpretation of the term smooth in all the
dissertation.

B.1.3 Lie Bracket

The last concept we need in order to develop a self-contained geometric theory is
the Lie bracket.

We consider an H-manifold X and U C X, open. We consider a smooth
function ¢ : U — R. Observing that ¢ is a function between manifolds, we get
that do(z) : T,(U) = Ty)(R) = R is a continuous linear map.

Given a smooth vector field ¢ : X — T X, we can define the function:

(€p) : U — R, defined as: ({¢)(x) = dp(x) (f(x)) We can provide this definition
because we have seen that, at least locally, £ can be treated as a function between
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the open subset U and H. In particular, if £ is already defined on U C H open,
then: (§p)(z) = ¢'(2)(¢(x)).

Through this new function, we can develop a sort of composition of vector
fields, the so called Lie Bracket, defined as follows:

Definition B.1.18. Let &, be two vector fields on X. Then there exists a unique
vector field [£,n] on X, such that ¥ ¢ € C*(U,R) with U C X open, we get:

€, nle = n(&p) — &), (B.2)
Remark B.1.19. In particular, if £,n are defined on U C H open, then:

(16.110) (@) = & ()€ (@)n(a) — o (@)E().
Then, locally:
[€,n](z) = &' (@)n(x) — 0 (2)(x). (B.3)
Now, we use the concept of Lie algebra in order to define a particular class of

distributions, called involutive distributions. First of all, we introduce the concept
of f-relation:

Definition B.1.20. We consider a diffeomorphism f between two manifolds X, ),
defined on the same Banach space H, i.e. f : X>Y. We consider a vector field

&, defined on X. Through f we can induce in a unique way a vector field on Y, n,
defined as follows:

n(f(x)) = (f)(f(x)) = df=(£(x)),

n and & are in this case called f-related.

Remark B.1.21. There is an interesting connection between the concept of f-
relation and the Lie bracket. In particular, we can observe that, if f : X — Y is
a function between two H-manifolds and & and & are two vector fields on X, the
following equivalence holds:

fel€1, &) = [filo, fi&2). (B.4)
We prove this remark locally, supposing then that X = U,Y =V are open subsel
of H. Then:
(felér, &])(@) = f1(2)(§(2)&(x) — &(2)& (2)

Recalling that: n;(f(x)) = f.&(f(z)) = f'(x)&(x), we get:
(1, m2] (f (@) = m (f (@))n2(f (@) — ma(f(2))m (f(2)) =

= (f () f'(@)&(x) — np(f () f(2)61 () =

= (m o f)/(x)(&(x) = (n20 f)(z)(&1(x)) =

= ["(@)& (@) () + f(2)81(2)&(x) — [(2)&(2)6 (2) + f/(2)&(2)& (2)

= ['(@)[§(2)&(2) — &(2)& (@),
where the last equality follows due to the fact that f"(x) is symmetric.
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Definition B.1.22. We say that a distribution S is involutive if, given a two
vector fields &, m which lie on S, also [, n] lies on S.

If we consider a distribution S, it is possible to determine a mapping F' which
describes S. If we consider a diffeomorphism f : X — ), we can also compute f,F.
This mapping is clearly associated in a unique way with a distribution, denoted
with f.F. By Remark B.1.21, we can conclude that S is involutive if and only if
f«F' is involutive, for each diffeomorphism f.

In the following sections, we will denote with distribution, both S and its
associated mapping F'.

B.2 Frobenius Theorem

In the previous section we have developed a consistent geometric theory on H-
manifolds, where H is a Banach space. In particular, we have described the con-
cepts of involutive and smooth distribution. In this section we aim to prove a
useful characterization of involutive distributions, which allows us to introduce
the so called tangential submanifolds. The main result is the Frobenius Theorem.
This section is based on [4] and [16].

We need the following preliminary definitions:

Definition B.2.1. Given a smooth vector field £, defined on a H-manifold X, we
define the integral curve of & at xy as a function o, : J — X, where J C R is an
open interval containing 0, and the following equivalence holds:

o, (t) = &(o4 (1)), Vt € J, such that o(0) = x. (B.5)

zq

In particular, o,,(t) has the following form:

04 (t) = o —l—/o E(ou(8))ds. (B.6)

In several contexts, we will denote the integral curve of a smooth vector field & with
o.(t) = et

The definition of integral curve allows us to introduce the concept of local flow:

Definition B.2.2. The local flow of a vector field &, restricted on an open subset
UC X, isa function © : J x U — X, defined as:

@(t,$0) = Oz (t>v (B7)

where o, is the integral curve of & at x.



128 Differential Geometry On An Infinite Dimensional Vector Space

Now, we prove that, given a smooth vector field £, defined as before, a continu-
ous local flow for £ exists. We prove this result for vector fields already defined on
open subset of the Banach space, since this property is local. It can be proved that
if a function § : H — H is smooth, then an open subset U C H, such that { is
bounded and Lipschitz, can be found ([16]| chapter 7§4, corollary 4.2). Therefore,
we can show the following result:

Proposition B.2.3. Let I be an interval of R containing 0 and let U C H be
open. Let us consider xo € U and a € (0,1) such that: Bs,(x¢) C U, where

Bsa(z0) :={x € H : ||x — 0|| < 3a}.

Let us suppose to have a smooth vector field & : U — H, which is bounded by a
constant L > 1 on U and satisfies a Lipschitz condition on U with constant K > 1.
If we consider b < #%, then

K’
Vo € By(zo) 3O :Jy X By(x) = U,

where Jy, :== [—b,b] C R.

Proof. Yx € B,(x), let us consider the set of functions:

M :={a: Jy — Bay(x0) : «is continuous and «(0) = z}.

Clearly M # ().

M is a complete metric space, if we define the usual uniform metric:

da, B) == supe,|a(t) — B(t)|, VYo,B €M,

We define a mapping S : M — M as follows:

(Sa)(t) == +/U E(a(s))ds. (B.8)

Sa is continuous and Sa(0) = z, moreover:

1(Sa)(t) — ol =/ — 20 + / £(a(s))dsl|
<|Jz — o] + / €(a(s))]ds

§a+Lt§a+Lb<a+%§2a,
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so that, S € M. Moreover, we can observe that V «, 8 € M:
5(Sa, S8) =sup|Sal(t) — SA(1)]
tedy

=Ssup
tedy

< sup / E(als)) — E(B(s)lds

tedy

/ E(a(s)) — (8(s))|ds

Ssup/ Kla(s) — B(s)|ds

teJy

<sup K supseiog)o(s) — B(s)| ds
teJy, Jo ~

5(af)
<bKd(a, B).

Then, choosing b in an appropriate way, we get that S is a shrinking mapping.
By contractions lemma there exists o € M such that Sa = «a. This fact implies

that: t
Qg (1) = g —|—/0 &(a(s))ds

In particular, the mapping « : J, — Bg(z0) is continuous in the t-variable.

We can also note that the mapping zq — ., (t) = zo + (fo )ds) is
continuous, V ¢t € [—b,b]. Actually, we will show that is Lipschitz. Let us consider
the mapping S, : M — M, defined before, where the subscript x emphasizes that
the initial condition depends on on z.

Let x,y be point on B,(zo):

law = Syaa|| = |[Seas — Syas|| < bK|[z —yl|.
Now, denoting C' = bK with 0 < C' < 1 (choosing b in a suitable way), we use the

n times

following notation: S;' = 5,0---05,. Therefore:

low = Syaell < flaw — Syaall + 11800 — Syaull + - + 1S aw — Sya|| =
<(14+C+C+--+C" Yz —yl.

Since lim,, S;‘ax = oy, by the continuity of the norm, we obtain:
law — |l = lim o, = Sjau|| < lim (ch)u —y| < Kelr —yl.

The integral curve is a Lipschitz function of the initial condition and therefore it
is continuous. L
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We do not provide the proof of the uniqueness of local flow and we recall
[16][Chapter IV, §1, Theorem 1.3.].
We are now ready to prove the Frobenius theorem:

Theorem B.2.4 (Frobenius). Let S be a smooth distribution and let F' be the
associated function, defined on a open set V' of a Banach space H. Let x be an
arbitrary point in V. Then, there exists a diffeomorphism ® : U — H defined on
some neighborhood U C V' of x, such that ®.F is constant on ®(U) if and only if
F s involutive.

Proof. Part 1
(=) We suppose that a function satisfying the property described in the state-
ment exists. We note that, if

F(z) = Span{& (x),... & (x)}, x €U, then (B.9)
pul'(p(x)) = Span{p.&i(p()), - plalp(@))}, Vel (B.10)

In particular F' is involutive if and only if ¢, F' is involutive.
By assumption, it also holds that: p.F(p(z)) = ¢'(z)F(z) = w for each z € X,
where w is a vector. This implies that:

el n](f (1) = [l pun](f () = [w,w](f(2)) =0 Vz el

This fact implies that o, F' is involutive. In conclusion, we get that F' is involutive
Part 2

(<) To prove this implication we adopt an inductive procedure, on the dimension
n of the distribution F.

Ifn=1

Suppose that the distribution is generated by one vector field, denoted by &.
Clearly, this distribution is involutive and, without loss of generality, we can as-
sume that 0 € V. Let us define the vector v = £(0), and write H as the direct sum
H = (v) @Y, where (v) = Span{v}. Note that, since (v) is finite dimensional,
then the space Y always exists. Let us now consider the function: ¥ : U — U:

U(tv 4 xg) = O(t, 20) =z + /Otf(\lf(sv + x9))ds, (B.11)

with t € J, where J is a open interval of R, and =y € Y.
By Proposition B.2.3, given a smooth vector field, a continuous local flow ©(¢, ()
exists. From the existence of O(t,zy) the existence and of the (continuous) map-
ping ¥ (tv 4 z) follows by definition.

By the smoothness of £, we can also show the smoothness of . We do not
provide this proof (see [16], chapter IV §I, theorem 1.14).
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Note that:

Moreover, we can exploit the smoothness of £ and ¥, in order to show the following
equivalence:

W (0)(tv 4 x9) = t£(0) + y = tv + xy, (B.14)

indeed:

U(tv + xg) = xo + /0 §(V(sv+ x0))ds =

.
=xo+ /0 E(W(0) +T'(0)(sv + zo) + o(sv + x0))ds =

=g+ /0 (f(O) +&(0)(¥'(0)(sv + x0) + o(sv + xo) )+
+ o(W'(0)(sv + xg) + o(sv + xo))>ds =

= 20+ £O) + £OW(O) (570 + mot) + oftw + 70) =
=z + £(0)t + o(tv + z9).

Then, developing the Taylor expansion of the function U:

U(tv + xo) = ¥(0) +¥'(0)(tv + xo) + otv + x0).

Hence, substituting in the previous equation, we obtain:
U(0)(tv + xg) = 20 + £(0)t = vt + 20 + o(vt + o).

This means that, near 0, U/(0) is invertible (it is the identity). By the smoothness
of U, we get that U'(0) is a local diffeomorphism. By the theorem of inverse
function, we can provide a local inverse ® = W~!. Moreover, we can restrict U
until we get: & : U — U.
Let x = U(tv+xo) if and only if () = tv+x(. Recalling the concept of ®-relation,
we can write:

®(x)

(e m)) = ¥(@) (),
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On the other hand, we have seen that: W' (tv+x¢)v = E(V(tv+x)) = £(z), hence:

(®8)(tv + mo) ='(2)(§(2)) =
=" (U (tv + x0)) V' (tv + zo)v =
=(® o V) (tv + x)v = v.
N——
idon U
Then, ®,£ is a constant vector field.
Ifn>1
For the induction step, we consider an n-dimensional distribution, and suppose
that the theorem holds for every m-dimensional distribution, with m < n.
As done before, we can assume the the origin belongs to V. Therefore, we

suppose that &, ..., &, are vector fields generating S on V. We denote v; = f;(0),
1 =1,...n, and we decompose H as follows:

H=(v)®- D (vp) ®Z,

supposing that (v1) @ --- @ (v,) N Z = (0). Similarly as before, we can say that
such a space Z always exists, since (v1) @ -+ @ (v,) is finite-dimensional.
We now introduce the following subspace:

Hi=(v2) D D (vy) D Z,

For the inductive step, we can suppose that (modulo diffecomorphism) & = v.
Hence, we can apply Gauss elimination, in order to rewrite our generating base in
the following way:

&:’UZ'—FQZ', j:2,...,n,

where g; € C*(V, Z).
By assumption, F' is assumed to be involutive, then there exists a family of scalar
fields a;r € C*°(V,R) such that: [§1,&;] = >0, ajry, for j =2,...,n. Hence:

[€1,&] = 6185 — €61 = 0 — gju
= aj1v1 + ajp(va + g2) - + @jn(Vn + gn).

Note that giv; € Z. As a consequence, it follows that: j =2,....n, k=1,... ,n:
ajr. = 0 and therefore giv; =0 for j =2,...,n.
Then for 7 = 2,...,n, we have:

0
a—tgj(tlvl + h) == g;(tlvl + h)Ul = 0, \V/tl S R, Vh € Hl.
1

Thus g; does not depend on t;, then:
gj(tlvl + h) = g](h), Yh € Hl, th € R.
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If we consider the restriction of &, . . ., &, to Hy, they generate an (n—1)-dimensional
distribution Fy,, indeed: &;(t;v1+h) = vj+g;(tiv1+h) = v;+g;(h) is well defined
on Hi.

Clearly Fy, is smooth and involutive.

Therefore, from induction hypothesis there exists U C ‘H and a diffeomorphism
Oy, UNHy — UNHy such that @y, F is constant near ¢(0).

Finally, we define the map ® : U — U, in the following way:

Cb(tﬂ)l + h) = 751?11 + (I)y(h),

we get a diffeomorphism around 0 € H such that @, F is constant near ®(0). [

B.3 Tangential manifolds for involutive distribu-
tions S

In this section, we introduce the concept of tangential manifold for a given distri-
bution F. Such a manifold is defined as follows:

Definition B.3.1. Let F' be a smooth distribution and let xo be a fixed point in
X, an H-manifold.

A submanifold G C X, with xy € G, is called tangential manifold through xo for
F,if F(x) <T,G, Vx € U, where U is an open neighborhood of x¢ € G.

We use the Frobenius Theorem in order to prove the following result:

Theorem B.3.2. Let F' be an n-dimensional distribution and let xg be a fized point
on an H-manifold X. Then, there exists an n-dimensional tangential manifold
through x for each x in a neighborhood of xq, if and only if F' is involutive.

Proof. Part 1

(<) If F is involutive, using the Frobenius theorem, we get n-smooth vector fields
&1, ..., &, and a local diffeomorphism @ : U — U, defined on U open neighborhood
of zo on X, such that ®,&,..., P, are constant. Denoting ®.£ = w;, we see
that for each x € U, the hyperplane:

T = O(z) + (wy, ..., wy)

is a tangential manifold for the distribution ®,F, passing through ®(z). Pulling
back this plane with ®, we get ® 1(m,), which is a tangential manifold for F,
passing through z, denoted with Gy

Part 2
(=) If there exists an n-dimensional tangential manifold G through z, for each
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x € U, where U C X neighborhood of zg, then: F(z) = Tgx, for each x € U (we
can restrict G in order to have the equivalence).

If &, & are vector fields spanning F', then & (x), & (z) € Tgx, for each x € U, then
&1, & are vector fields on the manifold UNG. But we have seen that also [£, &) is a
vector field on UNG and this means that: [&,&](x) € Tge = F(x). In conclusion,
we obtain that F'is involutive. O

Recalling that, given a smooth vector field £ on an H-manifold X', we denote
the integral curve passing through a point x with o,(t) = ez, with the following
result we can describe how to build the tangential manifold.

Proposition B.3.3. Consider an n-dimensional involutive distribution spanned
by &1, ..., &, and a point xy € X. We have seen that a tangential manifold through
o exists and let us denote with G.

Defining a mapping G : R — X by:

n 1
Gz, ...,2") =" .. 817 g,

then G is a local parametrization of G in the sense that: there exists U C R™ open,
containing 0 and V C G open, containing xy such that V = G(U).
Furthermore, the inverse of Gy is a local coordinate system for G at x.

Proof. From the definition of tangential manifold we have that G(z) € G, for
z € U C R™, open subset containing 0 (we can suppose without loss of generality,
that 0 € U).

Moreover, if we denote the local flow of the vector field & with ©% we have
that:

G(z', ..., 2") = 0% (2", 051 (2" . (22, 0% (2 1)) ...)),

and the differential of G at the arbitrary point (2!,...,2") is given by:

AGr,. oo = 9 .. 2 G)

D217 92t

In particular, for each h € R™ it holds that: dG.1, . .ny(h) = Y7 535G /.
Recalling Example B.1.11, we aim to prove that dG is injective around 0. In
theorem B.3.2, we have seen that G|y, = ®~!(7,), where V is an open neighborhood
of zg and ® : V. — ®(V) C m,. For what we have told at the beginning of the
proof, G(z) € G, for each z € U, then we get ®(G(z)) € 7, where 7, is the plane
introduced in Theorem B.3.2.

Then, by the Remark B.1.21: ®,[¢;, &;] = [®.&;, P.&;] = 0, because the transformed

vector fields are constants.
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Therefore, if we consider the submanifold ®(G(U)), it is generated by ®.&; :=
n; Vi=1,...,n. In particular:

B(G(2)) = M - M .

It can be proved that if [n;,7;] = 0, then the local flows of 7;,n; commute (see
[16], chapter V'§1, theorem 1.5). This fact allows us to permute the integral curves
which define ®(G(U)), in order to compute:

a a n 1
—— _pMm# .. MhZ =,
azzq)(G(Z)) J 821‘6 € (I)(.’L’O) 0 nl(q)('ro))

=(9.&)(®(20)) = @' (20)(&i(20)),
On the other hand, by definition: % ®(G(2))].=0 = ®'(G(0)) %G’ (2)]:=o-
In conclusion, due to the previous equivalences and remembering that G(0) = zg
and that ®'(x¢) is invertible:

(G| = &lwo).

z=0

Since dG(.—g)(h) = Y1) 725Gt oml =) = Y7, E(xo)h/ and &y, ..., &, form
a base, then they are independent, we obtain that dG._g is injective.

By the theorem of inverse function, we can find an open neighborhood of 0 € R", U
and an open neighborhood of zy = G(0), open subset V' | in which G is invertible.
This fact means that we can provide a local coordinate in R™ for the tangential

submanifold G|y, indeed:
G, :6|, —UCR"
[l

We end this chapter with a concept which will be crucial in the search of
finite dimensional realizations for a forward rate model described through H JM-
approach.

Definition B.3.4. Let F' be a smooth distribution on U C H open. The Lie alge-
bra generated by F, denoted by {F'}pa, is defined as the minimal (under inclusion)
involutive distribution containing F'.

We prove now a result, which can be useful when we have to determine the Lie
Algebra generated by a set of smooth vector fields. It is based on Lemma 4.1 of

[5]-

Lemma B.3.5. Let us consider n smooth vector fields &1,...,&, defined on an
X -manifold. Then the following operations does not modify the Lie algebra L =

{51, C.e 7£n}LA"
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1. The vector field & can be replaced by o&; where o is a smooth non-zero scalar

field defined on X;

2. The vector field & can be replaced by:

& + Z o;&;,

J#i
where a; st a smooth scalar vector field, for each j.

Proof. 1If we substitute any vector v with Av with A € R \ {0}, the vector space
generated by v does not change. This fact proves point 1..

Point 2. follows directly from the bilinearity of Lie Bracket, point 1. and the
fact that [£,&] = 0. O

Given a forward rate model, which is described by a distribution F', we exploit
the result of the Frobenius theorem in order to provide a set of vector fields which
span { F'} 4. Doing that, we obtain, by Proposition B.3.3, a local set of coordinates
for a tangential submanifold, associated with the minimal extension of F', which
is involutive. To do that we base on [5],[21].



Conclusions

The aim of this thesis was to generalize the geometric approach developed by Bjoérk
in order to face the problems of consistency and existence of finite-dimensional real-
izations in a post-crisis interest-rate market. As regards the problem of consistency,
we understood that it was no longer possible to consider an identical approach to
the one developed in [5] for the pre-crisis context. Indeed, although the theoretical
conditions can be easily generalized from the pre-crisis environment, the presence
of the spreads between interest rates associated with different tenors had led to
a more complex structure to manage in concrete examples. Therefore, we first
tried to understand if it was possible to circumvent the presence of spreads by
adding them to the finite-dimensional process Z; determined by the consistency
conditions. As we described in Remark 2.2.9, this result can not be achieved with-
out requesting additional hypotheses. Hence, we concluded that it was necessary
to provide conditions on a parameterized family G for the components associated
with the spreads too, in order to guarantee the consistency between a given model
M and G. As a consequence of this fact, we studied concrete examples of forward
rate models M, as the Ho-Lee model and, especially, the Hull-White model, in
comparison to widely used parameterized families, the Svensson family and the
Nelson-Siegel family. In particular, we considered the generalizations introduced
in [2]| of the above mentioned families, in order to guarantee the consistency with
each forward rate components of the analysed models. The main problem was
related to the presence of the spreads. In the analysed examples, we exploited
the independence between the coordinates of the volatility term & from the entire
structure of the solution of system (1.33) in order to construct a procedure which
allows to satisfy the consistency conditions with a very simple functions for the
components associated with the spreads, by adding a suitable number of real pa-
rameters. Vice versa, in some cases we were able to determine the relations on the
coordinates of the vector ¢, which guaranteed the consistency between the model
M determined by ¢ and a suitable parameterized family G, introduced without
adding other parameters. We proved these results in the case of models driven by
a 1-dimensional Brownian motion and, for the Hull-White model and the forward
parameterized family determined by the function (2.74), we provided those results
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in the general case of a d-dimensional Brownian motion.

For the problem of the existence of finite-dimensional realizations (FDR), we
exploited the analogy between the interest rate market in the post-crisis framework
modeled by (1.33) and a system of SDEs which described the multi-currency inter-
est rate market, for which the problem of FDR was analysed in [21] by Slinko. In
this article, the problem of the existence of FDR was faced for a model M given
by 2 different currencies. We generalized those results to the case of a general
tenor structure composed by m tenors and for models driven by a d-dimensional
Brownian motion. In particular, we proved that in the case of a constant volatility
term & the existence of FDR is equivalent to request that the coordinates of ¢ are
given by quasi-exponential (QE) functions. Moreover, for a model M given by a
constant direction volatility term & as (3.31), we proved that if ¢ is determined by
QE functions, then finite-dimensional realizations exist. Finally, we constructed a
simplified constant direction volatility model, for which, under suitable technical
conditions on the volatility term &, requesting that /\f is QE foreach 7 =0,....m
and ¢ =1,...,d is equivalent to the existence of FDR.

In conclusion, we analyzed an open problem concerning interest rate market
models, adopting a geometric approach described by some strong results of func-
tional analysis and differential geometry, in a stochastic framework.
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