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Abstract

Studying the Stochastic Gravitational Wave Background (SGWB) anisotropies, can offer new tools
to discriminate between different sources of GWs. While PTA’s detection has recently confirmed the
presence of the SGWB, the origin of this background is still debatable. In this thesis, we provide a
wide review on the production of the SGWB from some cosmological sources, on characterizing the
anisotropies of this backrgound, and on the sensitivity forecast of several detectors to the SGWB
and its anisotropies. These anisotropies can be inherited at the time of the SGWB production and
during its propagation through our perturbed universe. The Boltzmann approach has been used to
study the propagation effects on the SGWB through scalar and tensor perturbations. Throughout
that approach, the initial anisotropies turns out to have an order-one dependence on the frequency,
which can be seen in the example of Axion-Inflaton, while those due to propagation are independent
of the frequency at linear order. We also discussed the case of anisotropies for Phase Transitions
and expressed it in terms of the photon density. The anisotropies are also affected by the presence
of various decoupled particle species through their effect on the Sachs-Wolfe (SW) and Integrated
Sachs-Wolfe (ISW) effects, we show that this effect is mainly a suppression of the anisotropies at
larger cosmic scales in the angular power spectrum of the SGWB. As for the initial conditions, they
have usually been considered to be adiabatic. We explore the recently proposed possibility of non-
adiabaticity of the initial conditions, which in fact enhances the angular power-spectrum w.r.t the
adiabatic case by a factor of 10. The cross-correlation between the Cosmological GWB (CGWB)
and CMB can give us information about the primordial perturbations and the initial conditions.
The total contribution CCMB×CGWB

ℓ turns out to be dominated by the SW x SW and SW x ISW
contributions. Finally, we explore the sensitivity of some detectors to the SGWB and its anisotropies
to have an idea of the values that could be relevant to us. For the SGWB itself, we show LISA’s
sensitivity to three different scenarios of first-order PTs, its sensitivity to different multipoles, and its
sensitivity to detect the kinematic dipole and quadrupole. For the anisotropies, SNR analysis for the
CMB x CGWB cross-correlation shows that BBO can have a higher SNR than LISA for the same
signal amplitude. Using Fisher analysis, we explore different detectors’ sensitivity and precision to
detect the anisotropies. For the case of LISA and LISA-Taiji (LT), LT has powerful sensitivity to
more ℓ modes than LISA does, and for adiabatic perturbations LT can access weaker signals. BBO,
on the other hand, can probe the cosmological anisotropies with more precision. Lastly, ET alone
does not have powerful sensitivity to odd ℓ modes, but a combination ET+CE significantly improves
that, making it sensitive to all modes between ℓ = 1 and ℓ = 6.
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Chapter 1

Introduction to Cosmology

Cosmology is the study of the universe, or cosmos, regarded as a whole. It is the scientific
discipline that studies the origin, structure, evolution, and overall nature of the universe as a whole.
It seeks to understand the fundamental properties and processes that govern the cosmos, including
the distribution of galaxies, the formation of stars and planets, the cosmic microwave background
radiation, dark matter, dark energy, and the large-scale structure of space and time. By employ-
ing observations, mathematical models, and theoretical frameworks, cosmology aims to unravel the
mysteries of the universe’s past, present, and future, providing insights into its underlying laws and
guiding principles.

In this chapter, we review the basic concepts of Cosmology, we start by giving an idea on
the observed universe, the concept of homogeneity and isotropy, the expanding universe and Cosmic
Microwave Background Radiation (CMB). Then we turn to the background and the Standard cos-
mology, we define the Friedmann-Robertson-Walker metric and give a brief summary of Einstein and
Friedmann equations. After that, we head to one of the two main topics we are going to discuss;
Inflation and Phase Transitions. We talk about the theory of Inflation, how it was introduced as
a solution to the shortcomings of the big bang model and introduce the scalar field named Inflaton
and its dynamics. We give an introduction to phase transitions and the resulting topological defects.
Inflation and Phase Transitions are two possible sources of the cosmological gravitational wave back-
ground (CGWB) and its anisotropies. So, it is important to give an introduction about these two
mechanisms before proceeding with studying the production of gravitational waves (GWs) and its
anisotropies. We end this introductory chapter by a brief talk about the measurement of the Stochas-
tic Gravitational Wave Background (SGWB) by the Pulsar Timing Array (PTA) collaboration.

1.1 The Observed Universe

1.1.1 Homogeneity and Isotropy

Saying that the universe is isotropic means that there are no preferred directions in the uni-
verse; it looks the same no matter which way you point your telescope. Saying that the universe is
homogeneous means that there are no preferred locations in the universe; it looks the same no matter
where you set up your telescope. But bear in mind that, the universe is isotropic and homogeneous
on large scales. And by “large scales” we mean scales of roughly 100 Mpc or more. The isotropy
of the universe is not immediately obvious. In fact, on small scales, the universe is very obviously
anisotropic. And on significantly larger scales, the universe is still anisotropic. It isn’t until you get
to considerably larger scales that the universe can be considered as isotropic. Similarily, on small
scales, the universe is obviously inhomogeneous, or lumpy, in addition to being anisotropic. And
on significantly larger scales, the universe is still inhomogeneous. It’s only when you contemplate a
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1.1. THE OBSERVED UNIVERSE

Figure 1.1: Expansion of the universe. The comoving distance between points on a hypothetical grid
remains constant as the universe expands. The physical distance is proportional to the comoving
distance times the scale factor, so it gets larger as time evolves. Taken from [46].

sphere ≫ 100 Mpc in diameter that you feel the homogeneity.

Note that homogeneity does not imply isotropy. Note also that isotropy around a single point
does not imply homogeneity. In general, then, saying that something is homogeneous is quite dif-
ferent. from saying it is isotropic. However, modern cosmologists have adopted the cosmological
principle, which states “There is nothing special about our location in the universe.” But in fact, the
cosmological principle holds true only on large scales [94].

1.1.2 The Expanding Universe

We have good evidence that the universe is expanding. This means that early in its history the
distance between us and distant galaxies was smaller than it is today. It is convenient to describe
this effect by introducing the scale factor a, whose present value is set to one. At earlier times a was
smaller than it is today. We can picture space as a grid as in Fig. 1.1 which expands uniformly as
time evolves [46]. Points on the grid maintain their coordinates, so the comoving distance between
two points — which just measures the difference between coordinates — remains constant. However,
the physical distance is proportional to the scale factor, and the physical distance does evolve with
time.

If the Universe is homogeneous and isotropic, the distance between any two comoving points
is proportional to a universal scale factor a(t), where t is the cosmic time. A comoving point is the
one moving with the expansion of the Universe. To understand the history of the universe, we must
determine the evolution of the scale factor a with cosmic time t. Note that the dependence of a on t
varies as the universe evolves. At early times, a ∝ t1/2 while at later times the dependence switches
to a ∝ t2/3. How the scale factor varies with time is determined by the energy density in the universe.
The relation between the scale factor, temperature and cosmic time is shown in Fig. 1.2. To quantify
the change in the scale factor and its relation to the energy, it is first useful to define the Hubble rate,

H(t) ≡ da/dt

a
≡ ȧ

a
, (1.1)

which measures how rapidly the scale factor changes, i.e. the rate of expansion of the Universe. For
example, if the universe is flat and matter-dominated, so that a ∝ t2/3, then H = (2/3)t−1.

Present measures of the Hubble rate are parameterized by h defined via [46],

H0 = 100h km sec−1 Mpc−1

=
h

0.98 × 1010years
= 2.133 × 10−33h eV/ℏ , (1.2)
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1.1. THE OBSERVED UNIVERSE

Figure 1.2: Evolution of the scale factor of the universe with cosmic time. When the universe was
very young, radiation was the dominant component, and the scale factor increased as t1/2. At later
times, when matter came to dominate, this dependence switched to t2/3. The right axis shows the
corresponding temperature, today around 2.7 K. Taken from [46].

where h has nothing to do with Planck’s constant ℏ. It is a dimensionless parameter, often used to
parameterize H0 in cosmological equations. It typically ranges between 0.6 and 0.8, with the best-
fitting values based on various cosmological observations.

The distance of a given comoving point, measured from our location, can be written r(t) = xa(t).
The constant x is called the comoving distance and is equal to the physical distance at the present
epoch, since the scale factor today is 1. The relative velocity of a pair of nearby comoving observers,
separated by distance dr ≪ H−1, is v = Hdr ≪ 1. With our chosen unit c = 1, this is equal to the
redshift dλ

λ of a photon passing between the observers. It is also equal to the fractional increase da/a
in the scale factor, and the wavelength λ of a photon as seen by a sequence of comoving observers
stretches with the scale factor.

At the present epoch, the redshift z of light from a cosmological source is defined by [79],

1 + z ≡ λobs
λemit

, (1.3)

where λobs is the observed wavelength and λemit is the wavelength at the point of emission.

For z ≪ 1, the redshift is given by Hubble’s law as z = Hdr, which would allow an accurate
determination of the present value H0 if the distances of galaxies were known accurately.
Whether or not z is small, the redshift z of the light emitted at time t1 is given by,

1 + z =
a(t0)

a(t1)
. (1.4)

We usually specify both times and distances in terms of redshift. When redshift is used to refer to a
time, it simply means the time at which the scale factor was a fraction 1/(1 + z) of its present value.
When used to refer to a distance, it means the distance that light can have travelled since that time.
It is important to understand that because the Universe expands as the light propagates, the redshift
distance is not equal to the redshift time multiplied by the speed of light.

The universe is also characterized by its geometry. There are three possibilities: flat, open, or
closed universes. We can imagine them by considering two freely traveling particles which start their
journeys moving parallel to each other. For each possibility there’s a different scenario:

1. In the case of a flat universe, the particles remain parallel as long as they travel freely.

2. In the case of closed universe, gradually the initially parallel particles converge. In this case
the universe is said to have positive curvature.

3. In the case of open universe, the initially parallel paths diverge.

6



1.1. THE OBSERVED UNIVERSE

Figure 1.3: The map of CMB temperature fluctuations ∆T/T over the whole sky, as measured by the
Planck satellite. The foreground emission from the Milky Way galaxy and the dipole component due
to the motion of the galaxy relative to the CMB have been removed. The colours from blue to red
indicate the magnitude of underdensity to overdensity. Photo Credit: ESA and Planck Collaboration.

These possibilities are also related to the energy density as we will see in section 1.2.3.

1.1.3 Cosmic Microwave Background Radiation

Cosmic Microwave Background is a faint, nearly uniform glow of microwave radiation that fills
the universe. The CMB is a crucial piece of evidence for the Big Bang theory, which is the prevailing
cosmological model explaining the origin and evolution of the universe. The CMB is incredibly uni-
form, with tiny fluctuations or temperature variations. These fluctuations correspond to the seeds
of structure formation in the universe, leading to the formation of galaxies and galaxy clusters. The
CMB radiation is in the microwave portion of the electromagnetic spectrum, with a temperature
of approximately 2.7 Kelvin. It is extremely cold by human standards but is still detectable with
sensitive instruments. The temperature of the CMB radiation across the sky is remarkably uniform:
∆T/T ∼ 10−5 on angular scales ranging from 10 arc seconds to 180◦ (after the dipole anisotropy
has been removed) [72]. The map of CMB temperature fluctuations ∆T/T over the whole sky, as
measured by the Planck satellite is shown in Fig. 1.3.

The photons in the cosmic microwave background last scattered off electrons at redshift z ∼
1100; since then they have traveled freely through space. They are therefore the most powerful probes
of the early universe. A crucial fact about this history, though, is that the collisions with electrons
before last scattering ensured that the photons were in equilibrium. That is, they should have a
blackbody spectrum.

The specific intensity of a stream of photons with a blackbody spectrum is,

Iν =
4πℏν3/c2

exp{2πℏν/kBT} − 1
, (1.5)

where Iν is the specific intensity, ν is the photon frequency, kB is Boltzmann constant and T is the
temperature in kelvin.
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1.2. BACKGROUND AND STANDARD COSMOLOGY

1.2 Background and Standard Cosmology

Our current understanding of the evolution of the Universe is based upon the Friedmann-
Lemâıtre-Robertson-Walker (FLRW) cosmological model, or the hot big bang model as it is usually
called. The model is so successful that it has become known as the standard cosmology.

1.2.1 FLRW Spacetime

We now proceed following our previous discussion that our observable universe is homogeneous
and isotropic on large scales, and also that our spacetime is maximally symmetric space satisfying the
Cosmological Principle. The best evidence for the isotropy of the observed universe is the uniformity
of the temperature of the cosmic microwave background radiation: intrinsic temperature anisotropies
is smaller than about one part in 105 as we mentioned earlier.

The FLRW metric, can be written as,

ds2 = −dt2 + a2(t)
[ dr2

1 − kr2
+ r2dθ2 + r2sin2θdϕ2

]
, (1.6)

where (t; r; θ; ϕ) are comoving coordinates, a(t) is the cosmic scale factor and k can be chosen to
be +1, −1, or 0 by rescaling the coordinates for spaces of constant positive, negative, or zero spatial
curvature, respectively. We can also write the FLRW metric as,

ds2 = −dt2 + a2(t)gijdx
idj , (1.7)

where we have,

g11 =
1

1 − kr2

g22 = r2

g33 = r2sin2θ . (1.8)

Recalling from the GR course, one can then calculate the Christoffel symbols from,

Γµνλ =
1

2
gµρ
(∂gρν
∂xλ

+
∂gρλ
∂xν

− ∂gνλ
∂xρ

)
, (1.9)

The relevant components of the Riemann tensor can also be calculated from,

Rλσµν = ∂µΓλσν − ∂νΓλσµ + ΓλµρΓ
ρ
νσ − ΓλνρΓ

ρ
µσ , (1.10)

And calculate the Ricci Tensor Rµν and the Ricci Scalar R down to the Einstein tensor from,

Gµν = Rµν −
1

2
gµνR . (1.11)

1.2.2 Einstein Equations

The evolution of the background metric can be obtained starting from the following action,

S =

∫
d4x

√
−g
( 1

16πG
R+ Lm(gµν , ϕm)

)
, (1.12)

where g denotes the determinant of the metric and R the Ricci scalar.
The first term of the action (1.12) corresponds to the Einstein-Hilbert action. Thus containing all the
information about the geometry of the spacetime. The second term Lm(gµν , ϕm), instead, accounts for

8



1.2. BACKGROUND AND STANDARD COSMOLOGY

all the energetic content of the Universe, let’s call it “the rest of the world”, which acts as a source for
the gravitational field gµν . In this sense ϕm is the field associated to any of the particles of the system.

Varying the action with respect to the metric gµν we obtain Einstein’s equations:

Gµν ≡ Rµν −
1

2
gµνR = 8πGTµν , (1.13)

where Rµν and Gµν are the Ricci and Einstein tensors, respectively.
We have defined the stress-energy tensor for the rest of the world (matter, radiation, and so on) as:

Tµν = − 2√
−g

δ(
√
−gLm)

δgµν
, (1.14)

for a perfect fluid, isotropic and homogeneous,

Tµν = (ρ+ P )uµuν + Pδµν = diag(−ρ, P, P, P ) , (1.15)

with uµ the 4-velocity of the fluid. In its rest frame, where uµ = (1, 0, 0, 0), and it is normalized
as uµuµ = −1, it follows immediately T 0

0 = −ρ and T ij = Pδij , where ρ is the background energy
density and P is the background isotropic pressure. Usually, a linear relationship between P and ρ
of the type,

P = wρ , (1.16)

is considered. Where w is known as the equation of state parameter. From the conservation laws
associated with the energy-momentum tensor,

∇µT
µν = 0 , (1.17)

one gets,

ρ̇+ 3H(ρ+ P ) = 0 (1.18)

⇒ ρ̇+ 3H(ρ+ wρ) = 0

⇒ ρ̇+ 3Hρ(1 + w) = 0

⇒ ρ̇+ 3
ȧ

a
ρ(1 + w) = 0

⇒ dρ

ρ
+ 3

da

a
(1 + w) = 0 , (1.19)

and by integrating (1.19) we get,

ρa3(1+w) = constant . (1.20)

This relation relates the scale factor to the energy density, confirming what we said earlier about
them being related.

1.2.3 Friedmann Equations

Rewriting Einstein equation in the form,

Rµν = 8πGN

(
Tµν −

1

2
gµνT

λ
λ

)
. (1.21)

Because of isotropy, there are only two independent equations, namely the 00-component and any
one of the non-zero ij-components. Then,

−3
ä

a
= 4πGN(ρ+ 3P ) , (1.22)

ä

a
+ 2

ȧ2

a2
+ 2

k

a2
= 4πGN(ρ− P ) , (1.23)
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1.3. INFLATION

Figure 1.4: Depiction of possible geometries of our universe. Photo Credit: Physics Forums.

using the first equation to eliminate ä/a from the second, one obtains the set of equations for the
Hubble rate,

H2 +
k

a2
=

8πGN

3
ρ , (1.24)

and for the acceleration,

ä

a
= −4πGN

3
(ρ+ 3P ) , (1.25)

together, this set of equation is known as the Friedman equations.

The expansion rate of the universe is determined by the Hubble rate H which is not a constant
and generically scales like t−1. The Friedmann equation can be recast as,

Ω − 1 =
ρ

3H2/8πGN
=

k

a2H2
, (1.26)

where we have defined the parameter Ω as the ratio between the energy density ρ and the critical
energy density ρc,

Ω =
ρ

ρc
, ρc =

3H2

8πGN
. (1.27)

Since a2H2 > 0, there is a correspondence between the sign of k and the sign of (Ω − 1),

k = +1 ⇒ Ω > 1 CLOSED

k = 0 ⇒ Ω = 1 FLAT (1.28)

k = −1 ⇒ Ω < 1 OPEN

there, the relation we promised. Such possible geometries of the universe and their relation to the
current energy density paramater is shown in Fig. 1.4.

1.3 Inflation

The theory of inflation was first proposed by Alan Guth in 1981 [59] as a way to solve the
shortcomings of the Big Bang model. It is described as a rapid and exponential expansion of the
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Figure 1.5: History of the Universe – gravitational waves are hypothesized to arise from cosmic
inflation. Photo Credit: Roen Kelly, after BICEP2 Collaboration.

early universe during its very first moments, driven by the vacuum energy density of a scalar field
which we call inflaton. As we mentioned before, one of the early universe possible mechanisms for
the production of GWs is the cosmic inflation. The history of the universe and the accompanying
GWs are shown in Fig. 1.5.

1.3.1 Shortcomings of the Standard Cosmology

We list here some of the shortcomings of the Standard Cosmology that were the motivation for
proposing Inflation. But before we go through the different problems, we have to define a necessary
concept; Number of e-foldings.

Number of e-foldings

It is necessary to define a way in order to quantify the amount of inflation, since both the horizon
and the flatness problem require not only a period of inflation, but actually a large enough amount
of expansion. This is done by defining the number of e-foldings:

N =

∫ tf

ti

H(t)dt = ln(
af
ai

) , (1.29)

which is essentially related to the ratio of the scale factors at the beginning (ti) and at the end (tf )
of inflation.

One can calculate the minimum number of e-foldings needed to address the limitations of the Hot
Big Bang model. To successfully solve both the horizon and flatness problems, inflation begin from
arbitrary initial conditions and evolve them such that they end up today in what we experimentally
measure. Following such an approach, the required number of e-foldings is found to be at least
N ≃ 60 − 70 [33].

Horizon Problem

At a given time t, what are actually the regions in the universe that could have been possibly

11



1.3. INFLATION

causally connected with us? The answer to this we call the Particle Horizon; it is the farthest distance
from which we, or any other observer, can receive a signal. Assuming that a photon could have been
emitted at t = 0, the particle horizon is defined as [33]:

RH(t) = a(t)

∫ t

0

dt′

a(t′)
. (1.30)

To evaluate this expression, it is necessary to find the solution for a(t) in an expanding Universe. For
standard RW cosmologies, we have,

a(t) ∝ tα , (1.31)

where α = 2/[3(1 + ω)]. This proportionality holds in spatially flat universe, or at least we can say
that it is a good approximation at early times as k is negligible.

So, one finds:

a(t) = a∗

( t
t∗

) 2
3(1+w)

, (1.32)

where t∗ is an arbitrary reference time and a∗ = a(t∗). Substituting (1.32) inside (1.30) and integrate,
we get:

RH(t) =
3(1 + w)t

1 + 3w
, (1.33)

and it follows that RH is finite if and only if w > −1/3 , i.e. ä < 0. This suggests that the Standard
Hot Big Bang model, which describes an always decelerating expansion, cannot explain the causal
connection between points farther than the particle horizon distance. This contradicts the experimen-
tal evidence of an homogeneous CMB, since points separated by an angle of more than few degrees
could not have been able to be in causal connection at the epoch of last scattering. So, how come
they share the same properties?

Actually the situation is even worse. The particle horizon is the distance from which an observer
can receive a signal emitted any time after the Big Bang. But to have an homogeneous CMB a con-
stant exchange of information between points is needed, so that they can share the same temperature.
Such a causal connection is described by the Hubble Radius:

Rc =
1

H(t)
, (1.34)

and corresponds to the maximum distance between points that can exchange information over a
Hubble time τ

H
= H−1. What is interesting about Hubble radius is that the evolution of its Comoving

counterpart rc = (aH)−1 depends on the dynamics of the Universe. In fact:

ṙc = − ä

ȧ2
. (1.35)

It is then possible to define the comoving Hubble sphere, which contains all the points in causal
contact, at a given instant, with the observer located at the centre. We see from equation (1.35) that,
in the case of a decelerating Universe ä < 0, such a sphere expands over time, such that the observer
comes in causal contact with new, never seen before, points. It follows that we, as observers, are now
in causal contact with points that could not have been able to communicate before the last scattering
epoch, and thus we can explain the homogeneity of the CMB only by means of finely-tuned initial
conditions. This is what is called the horizon problem.

Flatness Problem

Another problem, similar to the horizon one, involves the measured spatial curvature of the
space-time. We know that observationally the Universe is very close to be flat. This is due to the
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fact that today the density parameters of the various components add up almost exactly to a total
Ω0 ∼ 1, which corresponds to k = 0 inside the first Friedmann equation (1.26). The latter can be
rewritten as,

Ω(t) − 1 =
k

(aH)2
= kr2c , (1.36)

where in the second equality we have applied the definition of the comoving Hubble radius.
It is then possible to define the density parameter associated with the spatial curvature Ωk(t) ≡
1 − Ω(t) = −kr2c . From this definition, it follows that Ωk vanishes in the spatially flat case and it is
positive (negative) for a spatially open (close) spacetime. The latest measurements from the Planck
collaboration [38] constrain the value today to be Ωk0 = 0.001± 0.002. This value is compatible with
a spatially flat Universe and it is way too small to be reasonable after the standard Hot Big Bang
evolution.

We can understand why by looking back to the first Friedmann equation (1.24) and analyzing
the two terms after H2: the first term is, as already stressed, related to the spatial curvature and
goes like a−2, the second accounts for the energy contribution of the fluid components, whose energy
density decreases at best as a−3 in the case of matter. We can then conclude that, approaching
early times, the curvature term, along with Ωk, starts to become more and more negligible inside the
Friedmann equation. The so-called flatness problem lies in the fact that the measured value for Ωk0,
frequently expressed as |Ω0 − 1| < 10−3, would require an initial condition, computed at Planck time
tP , of |Ω(tP ) − 1| ≃ |Ω0 − 1|10−60, which is of course a finely-tuned assumption.

The same conclusion can be deduced by taking the time derivative of the density parameter Ωk:

d

dt
Ωk = −k d

dt
r2c = 2krc

ä

ȧ2
, (1.37)

this result tells us how the spatial curvature density parameter evolves when going back in time. It is
straightforward to verify that, for a decelerating Universe (ä < 0), Ωk approaches zero at early times,
both in the case of positive or negative curvature. This leads to the same conclusion given before
about the necessity for a fine-tuning at early times.

1.3.2 Inflation in a nutshell

The precise definition of inflation is simply any epoch during which the scale factor of the
Universe is accelerating:

INFLATION ⇐⇒ ä > 0 , (1.38)

Inflation sometimes is described just as a rapid expansion, though it is not very clear with respect to
what the expansion is supposed to be rapid.

There is an equivalent alternative expression of the condition for inflation that gives it a more physical
interpretation:

INFLATION ⇐⇒ d

dt

H−1

a
< 0 , (1.39)

because H−1/a is the comoving Hubble radius, the condition for inflation is that the comoving Hub-
ble radius, which is the most important characteristic scale of the expanding Universe, is decreasing
with time. Viewed in coordinates fixed with the expansion, the observable Universe actually becomes
smaller during inflation because the characteristic scale occupies a smaller and smaller coordinate
size as inflation proceeds.

Assuming that we work within general relativity, the condition for inflation can be rewritten as
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Figure 1.6: Left : Evolution of the comoving Hubble radius, (aH)−1, in the inflationary universe. The
comoving Hubble sphere shrinks during inflation and expands after inflation. Inflation is therefore
a mechanism to ’zoom-in’ on a smooth sub-horizon patch. Right : Solution of the horizon problem.
All scales that are relevant to cosmological observations today were larger than the Hubble radius
until a ∼ 10−5. However, at sufficiently early times, these scales were smaller than the Hubble radius
and therefore causally connected. Similarly, the scales of cosmological interest came back within the
Hubble radius at relatively recent times. Taken from [24].

a requirement on the material driving the expansion. Dircetly from the acceleration equation (1.25),
we find,

INFLATION ⇐⇒ ρ+ 3P < 0 , (1.40)

which is equivalent to saying that we must have w < −1/3. Because we always assume ρ be positive,
it is necessary for P to be negative to satisfy this condition, which is independent of the curvature of
the Universe. The three equivalent conditions for inflation therefore are:

• Decreasing comoving horizon

• Accelerated expansion

• Negative pressure

Horizon Problem Revisited

Looking again at equation (1.35), it seems natural to try to solve this inconsistency by admitting
an early time of accelerated expansion, during which the Hubble radius decreases and points in causal
connection get pushed far apart. A decreasing comoving horizon means that large scales entering the
present universe were inside the horizon before inflation (see Fig. 1.6) [24]. Causal physics before
inflation therefore established spatial homogeneity. With a period of inflation, the uniformity of the
CMB is not a mystery.

It is then sufficient to request the comoving Hubble radius today to be less than what it was
before inflation:

rc(t0) < rc(ti) (1.41)

⇒ ṙc < 0 , (1.42)

which is consistent with ä > 0, according to Eq. (1.35). And we obtain a past causal connection
with all the points from which we can receive signals today (see Fig. 1.7). Condition (1.41) can be
made more explicit by combining the definition of comoving Hubble radius and equation (1.32) for
the evolution of the scale factor. The latter assumes different values for different equation of states
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1.3. INFLATION

Figure 1.7: How inflation solves the horizon problem. Taken from [51].

w, determined by the dominating fluid component during a certain period of expansion. Accounting,
after the end of inflation, for a radiation dominated period followed by a matter dominated one, the
condition (1.41) brings to the qualitative result:

N ≳ 60 . (1.43)

Flatness Problem Revisited

Once again, the solution is to admit a period of inflation sufficiently long to satisfy, in analogy
with (1.41), the inequality:

1 − Ω−1
i

1 − Ω−1
0

≥ 1 , (1.44)

which corresponds to asking that the density parameter today (Ω0) must be closer to unity than the
density parameter at the beginning of inflation (Ωi). The main mechanism is that, Ω, starts at the
beginning of inflation from a generic value which deviates considerably from 1. But because of the
accelerated expansion, it quickly decrease and it is pushed toward 1 at the end of inflation. If the in-
flation lasts sufficient number of e-foldings, this means that Ω at the end of inflation will be pushed so
close to 1 that even if after inflation Ω starts growing again, it will still be very close to 1, see Fig. 1.8.

Furthermore, from the first Friedmann equation (1.24), it is possible to derive that the combination
(Ω−1 − 1)ρa2 = const is actually conserved over time. Using this result inside (1.44), remembering
(1.32) and splitting again the history of the Universe into the three periods of inflation (w ≃ −1),
radiation domination (w = 1/3), and matter domination (w = 0), it is possible to recover the same
amount of required inflation as the one computed by solving the horizon problem, which is approxi-
mately N ≳ 60.
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1.3. INFLATION

Figure 1.8: How inflation solves the flatness problem. Taken from [51].

1.3.3 Scalar Field Dynamics

But how to achieve such a period of early accelerated expansion?
The most straightforward method to achieve a phase of cosmic inflation involves the existence of a
scalar field during the universe’s earliest moments. This scalar field, which we refer to as the inflaton
field φ(t, x⃗), plays the main role in driving the accelerated expansion of the universe at that time. This
field’s energy density is responsible for powering the inflationary epoch, during which the universe
rapidly expands. The starting point to study the single scalar field inflation is then the following
action:

S =

∫
d4x

√
−g
( 1

16πG
R− 1

2
gµν∇µφ∇µφ − V (φ)

)
, (1.45)

which basically corresponds to the action (1.12) where subdominant fields, other than the inflaton,
have been neglected in Lm. Apart from the Einstein-Hilbert sector, action (1.45) contains the most
standard scalar field Lagrangian, with a canonical kinetic term and a self-interaction potential. In
principle, it is possible to construct different inflationary models by choosing various profiles for the
potential, but later we will see that there are some underlying requirements which have to be fulfilled.
An example is given in Fig. 1.9.

Varying the action (1.45) with respect to φ results in the Klein-Gordon equation for the inflaton:

φ̈+ 3Hφ̇− ∇2φ

a2
= −∂V

∂φ
. (1.46)

Applying (1.14) to the inflaton part of the action (1.45), it is possible to compute the inflaton stress-
energy tensor:

Tµν = ∂µφ∂νφ− gµν

(1

2
gαβ∂αφ∂βφ+ V (φ)

)
. (1.47)

In order to proceed, it is necessary to split the inflaton into its background value plus a small
fluctuation around it [72]:

φ(t, x⃗) = φ0(t) + δφ(t, x⃗) . (1.48)

The background value φ0(t) is allowed to be only a function of time due to the symmetries of the
background FLRW spacetime, and it represents the classical background evolution (trajectory) of the
inflaton field, with δφ≪ φ0 being the quantum fluctuation of φ(t, x⃗) around the classical trajectory.
By definition, ⟨δφ(t, x⃗)⟩ = 0, so that ⟨φ(t, x⃗)⟩ = φ0(t) is the inflaton vacuum expectation value. At
first, we will focus only on the background evolution, leaving the treatment of the fluctuations for
later, when we will see how they can be regarded as the origin of the structures we observe today.
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Figure 1.9: Example of a slow-roll potential. During inflation, the inflaton ϕ rolls down along the
plateau of the potential. Taken from [24].

Equation (1.47), evaluated for the background inflaton, can be written in components as follows:

T 0
0 = −ρφ = −

(1

2
φ̇2 + V (φ)

)
, (1.49)

T ij = pφδ
i
j =

(1

2
φ̇2 − V (φ)

)
δij , (1.50)

where, from now on in this section, we indicate the background inflaton just with φ. The first
Friedmann equation (1.24) now reads:

H2 =
8πG

3

(1

2
φ̇2 + V (φ)

)
, (1.51)

where we have neglected the spatial curvature. This is possible because during inflation, the curvature
density parameter is pushed to zero.

We can finally verify how the inflaton stress-energy tensor can behave as the driving force of an
inflationary period. Remembering the condition (1.40) and substituting (1.49) and (1.50), we get:

wφ =
pφ
ρφ

=
1
2 φ̇

2 − V (φ)
1
2 φ̇

2 + V (φ)
< −1

3
, (1.52)

which is the constraint that the equation of state of the inflaton must satisfy in order to achieve ä > 0,
i.e., accelerated expansion. In particular, making the assumption V (φ) ≫ φ̇2, it follows wφ ≃ −1,
with the inflaton behaving almost like a cosmological constant. This is called slow-roll inflation, from
the fact that the inflaton has little kinetic energy and slowly rolls down its potential. We stress that
it can’t be wφ = −1 (de Sitter spacetime case) exactly because in such a case there would not be a
way to end the period of accelerated expansion. In the slow-roll regime, considering the background
value of the inflaton field, equations (1.46) and (1.51) can be approximated to:

3Hφ̇ ≃ −V ′(φ) , (1.53)

H2 ≃ 8πG

3
V (φ) , (1.54)

where we have also assumed, reasonably, φ̈≪ 3Hφ̇ in the first equation. This condition ensures that
the slow-roll requirement φ̇2 ≪ V (φ) is fulfilled for a long enough period.

We can now introduce some useful parameters in order to better quantify the condition of slowly
rolling we have just introduced. The first slow-roll parameter is defined in the following way:

ϵ ≡ − Ḣ

H2
. (1.55)
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Furthermore, we can write:

0 < ä = ȧH + aḢ = aH2(1 − ϵ) . (1.56)

From which it immediately follows the condition ϵ < 1, necessary to obtain an accelerated expansion.
However, inflation requires a more stringent constraint. Rearranging (1.55), in fact, with the help of

(1.54), results in ϵ ∝ φ̇2

V (φ) ≪ 1. Exploiting also (1.53), it is possible to obtain a constraint on the

first-order derivative of the potential:

ϵ =
1

16πG

(V ′

V

)2
≪ 1 , (1.57)

meaning that the inflaton potential has to be sufficiently flat. A second parameter may also be
introduced, exploiting the assumption made on the inflaton acceleration φ̈≪ 3Hφ̇:

η ≡ − φ̈

Hφ̇
≪ 1 , (1.58)

from which it follows a condition on the second derivative of the potential:

ηV ≡ η + ϵ =
1

8πG

V ′′

V
, (1.59)

with |ηV | ≪ 1. A whole hierarchy of slow-roll parameters may follow, of higher orders than the two
just introduced, constraining higher order derivatives of the potential.

Therefore, the situation can be summed up as follows: during inflation, the Universe undergoes
an accelerating expansion, driven by the energy density (mostly potential) of a single scalar field,
which slowly rolls along its potential. This goes on until the slow-roll conditions are satisfied (essen-
tially until ϵ ∼ 1). At this point, inflation ends, and the inflaton energy density gets converted into
all the particles needed to start the Hot Big Bang phase, via a process called reheating [72]. This
situation is described in Fig. 1.9., where a typical potential profile is represented. In particular, it
can be observed that inflation occurs while the potential is sufficiently flat, so that the inflaton can
slowly roll on the plateau. Eventually, this flatness is spoiled, and inflation ends: the inflaton starts
oscillating around the true minimum of the potential and decays into other particles.

1.3.4 Primordial Fluctuations from Inflation

Now that we have seen the basic idea behind the background evolution in a single scalar field
inflationary model, we can turn to a fundamental topic for the scope of this thesis, which is the treat-
ment of quantum fluctuations during inflation. In other words, we now consider the full φ(t, x⃗) as a
quantum field and see what is the evolution of the fluctuation δφ(t, x⃗) we have previously neglected.
Because of this fluctuation, there will be local differences δt(x⃗) in the time when the inflation ends.
This means that the local expansion history varies from one point to another, in other words, on large
scales φ will assume the same value φ0 everywhere, making every point in the universe experience
the same history, but at slightly different times, and leads to the production of local inhomogeneities
in the energy density δρ(x⃗), which then evolve into the CMB temperature inhomogeneities δT (x⃗) we
measure today. The aim of this section and the following one is to show how these perturbations
generate from the primordial inflaton fluctuations δφ(t, x⃗).

We start by writing the perturbed part (linear in δφ) of the Klein-Gordon equation (1.46):

δ̈φ+ 3H ˙δφ− ∇2δφ

a2
= −V ′′(φ0)δφ , (1.60)

It is now convenient to perform the following rescaling:

δφ(t.x⃗) =
δφ̃(t, x⃗)

a(t)
. (1.61)
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Using this and passing to conformal time τ , equation (1.60) becomes:

δφ̃′′ − a′′

a
δφ̃−∇2δφ̃ = −∂

2V

δφ2
(φ0)δφ̃ , (1.62)

where the ′ symbol denotes derivatives with respect to τ . In order to solve this equation, it is useful
to write it in Fourier space:

u′′
k⃗
(τ) +

[
k2 − a′′

a
+
∂2V

δφ2
(φ0)

]
uk⃗(τ) = 0 , (1.63)

Where uk⃗ is defined as the Fourier transform of δφ̃:

δφ̃(τ, x⃗) =
1

(2π)3

∫
d3k⃗eik⃗x⃗uk⃗(τ) . (1.64)

We first consider the massless scalar field case, where m2φ = ∂2V (φ0)
∂φ2 = 0. Equation (1.63) can be

rewritten as:

u′′
k⃗

+ ω2
kuk⃗ = 0 . (1.65)

So that each Fourier mode satisfies the harmonic oscillator equation of motion with frequency ω2
k =

k2− a′′

a . Canonical quantization can thus be performed in analogy to the quantum harmonic oscillator
[24]. We promote the perturbation δφ̃(τ, x⃗) to a quantum operator δφ̂(τ, x⃗), such that the mode
expansion can be written as:

δφ̂(τ, x⃗) =
1

(2π)3

∫
d3k⃗
[
uk(τ)âk⃗e

ik⃗x⃗ + u∗k(τ)â†
−k⃗
e−ik⃗x⃗

]
, (1.66)

where âk⃗, â†
k⃗

are, respectively, the annihilation and creation operators, i.e., âk⃗|0⟩ = 0 and ⟨0|â†
k⃗

= 0,

where |0⟩ is the vacuum state. The vector notation in uk⃗ and u∗
k⃗

has been dropped since the frequency

ω2
k(τ) = k2− a′′

a depends only on the absolute value k, and the same happens for the mode’s evolution
[24]. Canonical quantization conditions read:

[âk⃗, âk⃗′ ] = [â†
k⃗
, â†
k⃗′

] = 0 , (1.67)

[âk⃗, â
†
k⃗′

] = (2π)3δ(3)(k⃗ + k⃗′) . (1.68)

And are ensured by the following normalization for the modes:

u′k(τ)u∗k(τ) − uk(τ)u∗k
′(τ) = −i . (1.69)

To fix the vacuum state |0⟩, we exploit the information that at sufficiently early time (τ → −∞) all

modes of interest are still inside the horizon (k2 ≫ a′′

a ).

In the sub-horizon regime (k ≫ aH ↔ k2 ≫ a′′

a ):
In this case ω2

k = k2, and so,

u′′
k⃗

+ k2uk⃗ = 0 . (1.70)

The solution at early times corresponds to a plane wave in a flat spacetime:

lim
τ→−∞

uk(τ) =
1√
2k
e−ikτ . (1.71)

This initial condition for the mode functions defines what is called the Bunch-Davis vacuum. Similar
to the rescaling we did before, we have,

δφk =
uk
a

=
1

a
√

2k
e−ikτ ,

⇒ |δφk| =
1

a
√

2k
. (1.72)
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Figure 1.10: Fluctuations getting frozen on super-horizon scales. Taken from [51].

This solution tells us that, during inflation, modes inside the horizon oscillate while their amplitudes
decrease as the inverse of the scale factor a. This behavior goes on, for a given k, until the mode
crosses the horizon when k2 ∼ a′′

a .

In the super-horizon regime (k ≪ aH ↔ k2 ≪ a′′

a ):

In this case ω2
k = −a′′

a , and so,

u′′
k⃗
− a′′

a
uk⃗ = 0 . (1.73)

This kind of equations are solved by,

uk(τ) = B(k)a(τ) +A(k)a−2(τ) , (1.74)

where A, B are integration constants. Therefore,

δφk = B(k) +A(k)a−3(τ) ≃ B(k) = constant , (1.75)

where we have neglected the decaying term which gets washed away by inflation. This solution means
that fluctuations don’t die out on super-horizon scales, instead they get frozen (see Fig. 1.10). We
can find the amplitude in this regime making a matching between the two regimes at horizon crossing,
since from that moment on it will get constant. At horizon-crossing k = aH, thus,

|B(k)|a =
1√
2k

∣∣∣
k=aH

, (1.76)

therefore,

|δφk| = |B(k)| =
1

a
√

2k

∣∣∣
k=aH

=
H√
2k3

. (1.77)

We have already said that inflation needs some dynamics, and the Universe cannot end up
in a de Sitter spacetime, since otherwise, it would go on inflating forever. We thus want to solve
equation (1.65) in a so-called quasi de-Sitter spacetime, where, using the slow-roll parameter already

introduced, ϵ = − Ḣ
H2 ≪ 1. In this approximation, it is possible to rewrite (1.65) in the form of a

Bessel equation [15]:

u′′k(τ) +
[
k2 −

ν2 − 1
4

τ2

]
uk(τ) = 0 , (1.78)
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where ν2 = 9
4 +3ϵ. Solutions of this equation can be found going into the sub-horizon or super-horizon

limit. In the first case, it is similar to the solution already given in Eq. (3.40). Without going too
much into details, solving Eq. (1.78) in the super-horizon regime leads to the following result [15]:

|δφk| ≃
H√
2k3

( k

aH

) 3
2−ν

, (1.79)

with 3
2 −ν = −ϵ, this thin-scale dependence of order ϵ would be absent in the case of a pure de-Sitter

spacetime. What the result (1.79) tells us is that, after crossing the horizon, an oscillating k-mode
(with vanishing expectation value) freezes out with an almost constant amplitude, thus generating
a classical perturbation of the field φ. In the more general case of a massive field, the same result

(1.79) holds, this time with 3
2 − ν = ηV − ϵ [15], where ηV =

m2
φ

3H2 . The slow-roll condition |ηV | ≪ 1
then requires φ to be very light (with respect to the Hubble parameter).

1.3.5 Primordial Power Spectrum

To facilitate the comparison between theoretical predictions and observational data, it becomes
necessary to define the observable properties associated with these fluctuations. Quantum fluctua-
tions, while inherently non-deterministic, can be characterized using a quantum random field denoted
as δφ(x⃗, t). This field describes the amplitude of fluctuations at each point in spacetime.

It’s important to note that these fluctuations exhibit correlations across different points in
spacetime. In fact, even if the ensemble average is zero by definition (it is in fact the vacuum
expectation value), one can calculate the two-point correlation function. This function quantifies
the statistical relationships between fluctuations at different spacetime locations, providing valuable
insights into the behavior of these quantum fluctuations. The two point correlation function is,

ξ = ⟨δ(x⃗+ r⃗, t)δ(x⃗, t)⟩ , (1.80)

which in a homogeneous and isotropic universe is a function of |r⃗|. If we take the two point correlation
function of the Fourier transform of a generic stochastic field,

δ(x⃗, t) =
1

(2π)3

∫
d3keik⃗·x⃗δk(t) , (1.81)

the result is,

⟨δ(k⃗, t)δ(k⃗′, t)⟩ = (2π)3P (|⃗k|)δ3(k⃗ + k⃗′) , (1.82)

where P is the power spectrum . It depends only on the modulus of k⃗ due to isotropy, the presence
of the delta function comes due to homogeneity. Furthermore, the power spectrum P is the Fourier
transform of ξ, using Eq. (1.82),

ξ(r⃗) = ⟨δ(x⃗+ r⃗, t)δ(x⃗, t)⟩ =
1

(2π)6

∫
d3k

∫
d3k eik⃗x⃗+ik⃗

′(x⃗+r⃗)⟨δ(k⃗1, t) δ(k⃗2, t)

=
1

(2π)3

∫
d3k′eik⃗

′r⃗P (|⃗k1|) . (1.83)

The variance, i.e. the two-point correlation function at zero separation, is then,

⟨δ2(x⃗, t)⟩ = ξ(0) =
1

(2π)3

∫
d3kP (|⃗k|) =

1

2π2

∫ ∞

0

dkk2P (k)

=
1

2π2

∫ ∞

0

dk

k
k3P (k) =

∫ ∞

0

dk

k
∆(k) , (1.84)

where we defined the adimensional power spectrum as ∆(k) = k3/(2π2)P (|k|), which is the contri-
bution to the variance per logarithmic integral.
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For the inflaton field quantum fluctuations, remembering that, |δφk| = |uk|/a,

⟨δφk⃗1 , δφ
∗
k⃗2
⟩ = (2π)3|δφk⃗1 |

2δ3(k⃗1 − k⃗2) , (1.85)

therefore,

P (k) = |δφk|2 =
|uk|2

a2
→ ∆(k) =

k3

2π2

|uk|2

a2
. (1.86)

On super-horizon scales, from Eq. (1.79), we get,

Pφ(k) =
H2

2k3

(
k

aH

)3−2ν

, ∆φ(k) =

(
H

2π

)2(
k

aH

)3−2ν

, (1.87)

where in the most general case 3 − 2v = 2ηV − 6ϵ. We can then define the spectral index n(k) as,

n(k) − 1 =
d ln ∆(k)

d ln k
, (1.88)

which describes the shape of the power spectrum.

Let’s discuss two cases:

• n ≡ 1 ↔ Harrison-Zel’dovich spectrum: it means that the amplitude of δφ does not depend on
the cosmological scale.

• n = constant↔ ∆(k) can be written w.r.t. a “pivot scale” k0 as,

∆(k) = ∆(k0)

(
k

k0

)n−1

, (1.89)

n and ∆(k0) are indeed the two main observables one can constrain observing the CMB.

To assess how well inflationary models align with cosmological observations, an additional step
is required. This is because when we observe phenomena like the anisotropies and polarization in
the CMB, we are not directly detecting quantum fluctuations of the inflaton field. Instead, our
observations pertain to fluctuations in the energy density of matter, which includes entities like CMB
photons, as well as perturbations in the metric of spacetime, present, e.g., at the last scattering surface.
Let us consider ζ, which is called curvature perturbation on uniform energy density hypersurfaces.
It has three properties:

1. ζ is a gauge invariant quantity defined as,

ζ = −Φ̂ −H
δρ

ρ̇
. (1.90)

In the Φ̂ = 0 gauge, therefore, we have,

ζ = −H δρ

ρ̇
. (1.91)

2. This is a very general definition, since in the case of inflation the density is the density of the
scalar field, but it also applies during all the evolution of the universe:

ζ → δρφ
ρ̇φ

,
δρm
ρ̇m

,
δργ
ρ̇γ

,
δρA
ρ̇A

. (1.92)

3. On super horizon scales it is constant in time (in single field models of inflation)

ζ

∣∣∣∣
t
(1)
H (k)

= ζ

∣∣∣∣
t
(2)
H (k)

. (1.93)
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In that sense, we are able to compare the amplitude of primordial density perturbations with known
quantities, as CMB temperature fluctuations.

Let us imagine looking at two different scales λ, λ′, where the latter re-enters during matter

dominated epoch and the former during radiation domination. Let us then call t
(1)
H (k) the time at

which λ crosses out the horizon and t
(2)
H (k) the time in which it re-enters. The same will apply to

λ′ → k′. Thanks to Eq. (1.93), we can compare density perturbation at the time of inflation with
respect to radiation epoch,

ζ

∣∣∣∣
t
(1)
H (k)

= ζ

∣∣∣∣
t
(2)
H (k)

,

−H δφ

φ̇

∣∣∣∣∣
t
(1)
H (k)

=
1

4

δργ
ργ

∣∣∣∣∣
t
(2)
H (k)

, (1.94)

since during radiation domination the density is given by ρ = ργ ∝ T 4 → δρ/ρ̇ = 4δT/T and
ρ̇γ ≃ −4Hργ . In other words, there is a direct link between temperature fluctuation and primordial
inflaton fluctuations,

ζφ ∼ δT

T
∼ 10−5 . (1.95)

1.4 Phase Transitions

Phase transitions in cosmology refer to abrupt changes in the fundamental properties of the
universe as it evolves over time. These transitions are similar to the familiar phase transitions in
condensed matter physics, such as the transition from a liquid to a gas or from a solid to a liquid.
In cosmology, phase transitions can have profound effects on the universe’s structure, dynamics, and
evolution. They can lead to the generation of cosmic defects like cosmic strings, domain walls, and
monopoles, which can leave imprints on the large-scale structure of the universe. The effects of phase
transitions can potentially be observed through their imprints on the CMB radiation, the distribu-
tion of galaxies, and the formation of large-scale structures. Detecting these signatures can provide
valuable insights into the universe’s early history and fundamental physics.

They can also be related to the production of gravitational waves. The cosmic defects we men-
tioned earlier are topological features that arise when a field undergoes a phase transition and settles
into a new vacuum state. Cosmic strings, in particular, are one of the most significant sources of
gravitational waves in the context of phase transitions. They are one-dimensional topological defects
that can form during a phase transition. These strings have extremely high energy densities and
can stretch across vast cosmic distances. As they move through the expanding universe, they can
generate gravitational waves through various mechanisms, such as kinks and cusps along the strings.
The gravitational waves produced by cosmic strings have a characteristic spectrum, which depends on
the cosmic string network’s properties. This spectrum includes contributions at different frequencies,
and it can extend from very low frequencies to potentially observable frequencies in the gravitational
wave spectrum.

Detecting the gravitational waves from cosmic strings and other cosmic defects is a challenging
but exciting possibility for gravitational wave observatories like LIGO and Virgo. These gravitational
waves could leave distinctive signatures in the CMB radiation and the large-scale structure of the
universe. They could also be detected directly through precise measurements of gravitational wave
detectors.

It is also worth mentioning that Inflation is thought to have been driven by a scalar field that
underwent a phase transition. While inflation itself is not typically associated with the generation of
gravitational waves, some inflationary models can generate primordial gravitational waves.
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Figure 1.11: An example of a potential that implements SSB. Taken from [51].

1.4.1 Spontaneous Symmetry Breaking (SSB)

We are referring to relics produced in the early universe as a consequence of the spontaneous
symmetry breaking (SSB) of some (gauge) symmetry: breaking of grand unified theory (GUT) at
TGUT ∼ 1014−1016 GeV into a lower gauge symmetry that includes a U(1) group leads to the produc-
tion of point-like (0-dimension) magnetic monopoles, cosmic strings (1-dimension) can be produced
by the SSB of a U(1) gauge group, domain walls (2-dimension) arise when a discrete symmetry is
spontaneously broken, and textures (3-dimension) arise from SSB of, e.g., SU(2) gauge theories.

We will explain below how such a mechanism can be realized dynamically in a cosmological
context through phase transitions at high temperatures in the early universe. Also, the SSB is key to
understand some of the inflationary models proposed in the “early days of inflation” in the context of
particle physics. On the other hand some aspects related to phase transitions and cosmic topological
defects are of present interest. For example, both phase transitions and cosmic defects can be a
source of primordial gravitational waves, and indeed they are the target of present and future direct
interferometers (together with the stochastic background of gravitational waves produced during
inflation).

We illustrate this mechanism using a simple model. Consider a real scalar field described by
the Lagrangian density [72],

L =
1

2
∂µφ∂

µφ− V (φ) , (1.96)

V (φ) = −1

2
m2φ2 +

1

4
λφ4 . (1.97)

The potential V (φ) is shown in Fig 1.11. Note that the Lagrangian is invariant under the discrete
symmetry transformation φ ↔ −φ. The minima of the potential (determined by the conditions
V ′ ≡ ∂V/∂φ = 0 and V ′′ ≡ ∂2V/∂φ2 > 0), denoted by σ± and are called the “True Vacua”, and the
value of the potential and its second derivative at the minima, are given by,

σ± = ±
√
m2

λ
,

V (σ±) = −m
4

4λ
,

V ′′(σ±) = 2m2 . (1.98)

Since V (+(m2/λ)1/2) = V (−(m2/λ)1/2), both σ± = ±(m2/λ)1/2 are equivalent minima of the po-
tential. On the other hand, although V ′(0) = 0, ⟨φ⟩ = 0 is an unstable extremum of the potential
because V ′′(0) < 0, and it is called the “False Vacuum”. Since the quantum theory must be con-
structed about a stable extremum of the classical potential, the ground state of the system is either
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Figure 1.12: The temperature dependence of V (φ) for a first-order phase transition. Taken from [51].

⟨φ⟩ = +(m2/λ)1/2 or ⟨φ⟩ = −(m2/λ)1/2, and the reflection symmetry φ ↔ −φ present in the La-
grangian is broken by the choice of a vacuum state. A symmetry of the Lagrangian not respected by
the vacuum is said to be spontaneously broken. The mass of the physical boson of the theory is deter-
mined by the curvature of the potential about the true ground state: M2 = V ′′(σ±) = 2m2 = 2λσ2

±.

The stress tensor for a scalar field φ is given by,

Tµν = ∂µφ∂νφ− Lgµν . (1.99)

Taking φ to be constant, φ = ⟨φ⟩, we find that Tµν = V (⟨φ⟩)gµν , so that the energy density of the
vacuum is,

⟨T 0
0⟩ ≡ ρ

V
= −m

4

4λ
. (1.100)

The contribution of the vacuum energy to the energy density of the Universe today can at most be
comparable to the critical density ρc = 1.88× 10−29h2g cm−3 ≃ 10−46 GeV. A larger vacuum energy
would lead to a present expansion rate greater than that observed. Since the vacuum energy must be
so incredibly small relative to any other fundamental energy scale, it is tempting to require ρ

V
= 0.

This can be accomplished by adding the constant +m4/4λ = λ⟨φ⟩4 to the Lagrangian. This constant
term will not affect the equations of motion or the quantum theory; its sole effect is to make the
present vacuum energy vanish. By adding this constant, we can write the potential in the form,

V (φ) =
λ

4
(φ2 − σ2)2, σ2 = σ2

± . (1.101)

The phase transition from the symmetric phase to the broken phase in this model is second
order. In general, a symmetry-breaking phase transition can be first or second order. The tempera-
ture dependence of V (φ) for a first-order phase transition is shown in Fig. 1.12, where Tc is known
as “critical temperature” and it is our reference scale. For T ≫ Tc the potential is quadratic, with
only one minimum at φ = 0. For T = Tc, the two minima become degenerate, and below Tc, the
φ ̸= 0 minimum becomes the global minimum. If for T ≤ Tc the extremum at φ = 0 remains a
local minimum, there must be a barrier between the minima at φ = 0 and φ ̸= 0. Therefore, the
change in φ in going from one phase to the other must be discontinuous, indicating a first-order phase
transition.

Moreover, the transition cannot take place classically, but must proceed either through quantum
or thermal tunnelling. Finally, when T ≪ Tc the barrier disappears and the transition may proceed
classically.
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Figure 1.13: From [72] a domain wall network formed in a numerical simulation of a cosmological
phase transition where a Z2 symmetry is spontaneously broken. The contour lines indicate the domain
walls that separate the regions of different vacua.

1.4.2 Domain Walls

Domain walls are hypothetical two-dimensional surfaces or boundaries that separate different
regions of the universe with distinct vacuum states or field configurations. These vacuum states are
associated with different energy levels or properties of a scalar field. Domain walls are a type of
cosmic defect that can form during phase transitions in the early universe.

The energy density within a domain wall is typically higher than that in the surrounding regions.
This elevated energy density is due to the energy associated with the scalar field transitioning from
one vacuum state to another across the wall. Imagine that symmetry-breaking transitions were not
“perfect”, and that false vacuum remnants were left behind, frozen in the form of topological defects:
domain walls, strings, and monopoles.

While domain walls can form during phase transitions, they are not observed in the universe
today. This is known as the domain wall problem. If domain walls had persisted until the present
day, they would have had significant effects on the large-scale structure of the universe, creating sharp
boundaries between regions with different properties. In many cosmological models, domain walls
are assumed to have decayed or annihilated long before the formation of galaxies and galaxy clusters.
This assumption is based on the idea of a scaling solution, where the number density of domain walls
decreases over time as the universe expands.

Recall that the Lagrangian for a real scalar field that undergoes SSB can be written as,

L =
1

2
(∂µφ)2 − 1

4
λ(φ2 − σ2)2 . (1.102)

The Z2 reflection symmetry of the Lagrangian, i.e., invariance under φ↔ −φ, is spontaneously
broken when φ takes on the vacuum expectation value ⟨φ⟩ = +σ or ⟨φ⟩ = −σ. So far we have
assumed that all of space is in the same ground state, but this need not be the case! Imagine that
space is divided into two regions. In one region of space ⟨φ⟩ = +σ, and in the other region of space
⟨φ⟩ = −σ. Since the scalar field must make the transition from φ = −σ to φ = +σ smoothly, there
must be a region where φ = 0, i.e., a region of false vacuum. This transition region between the two
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Figure 1.14: The solution φw(z) for an infinite wall in the x− y plane. Taken from [51].

vacua is called a domain wall. As we shall see, domain walls can arise whenever a Z2 (or any discrete)
symmetry is broken.

Imagine something similar to Fig. 1.13 but consider an infinite wall in the x-y plane at z = 0.
At z = −∞, φ = −σ, and at z = +∞, φ = +σ. The equation of motion for φ is,

−∂
2φ

∂z2
+ λφ(φ2 − σ2) = 0 . (1.103)

The solution to the equation of motion, subject to the boundary conditions above, is,

φw(z) = σ tanh(z/∆) , (1.104)

where the “thickness” of the wall is characterized by,

∆ = (λ/2)−1/2σ−1 . (1.105)

This solution is illustrated in Fig. 1.14.
The finite, but non-zero, thickness of the wall is easy to understand. The terms contributing to the
surface energy density include a gradient term, proportional to,

∆ × (∇φ)2 ∼ σ2/∆ , (1.106)

and a potential energy term, proportional to,

∆ × V (φ) ∼ ∆λσ4 . (1.107)

The gradient term is minimized by making the wall as thick as possible, while the potential term is
minimized by making the wall as thin as possible. The balance between these terms results in a wall
of thickness,

∆ ∼ λ−1/2σ−1 . (1.108)

1.4.3 Cosmic Strings

Cosmic strings are hypothetical one-dimensional topological defects in the fabric of spacetime,
predicted by some theories in the field of cosmology and high-energy physics. Cosmic strings are
thought to form when the universe undergoes phase transitions. During these transitions, the sym-
metry of the universe changes, leading to the formation of topological defects. Cosmic strings are
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Figure 1.15: Cosmic Strings. Photo Credit: The Stephen Hawking CTC.

one such defect. They are extremely thin and dense. They are essentially one-dimensional (see Fig.
for a graphical representation) objects with a concentration of energy along their length. The core
of a cosmic string is characterized by high energy density. Cosmic strings can cause gravitational
lensing, bending light from distant objects as it passes near the string. This can lead to observable
effects such as the creation of multiple images of a single distant object. They can also generate den-
sity perturbations in the early universe, which can affect the distribution of galaxies and large-scale
structure formation. The motion of cosmic strings through the universe can generate gravitational
waves. These gravitational waves could potentially be detected by gravitational wave observatories.

1.5 Pulsar Timing Array’s Detection of the SGWB

Pulsar Timing Array (PTA) is a collaborative project that aims to detect and study low-
frequency gravitational waves by precisely monitoring the arrival times of pulses from a network of
millisecond pulsars, which are rapidly rotating neutron stars that emit beams of electromagnetic ra-
diation from their magnetic poles. PTAs are designed to detect gravitational waves in the nanohertz
(nHz) frequency range, which is significantly lower than the frequency range observable by ground-
based detectors like LIGO and Virgo. PTA involve international collaborations of astronomers and
institutions. Examples of PTA initiatives include the North American Nanohertz Observatory for
Gravitational Waves (NANOGrav), the European Pulsar Timing Array (EPTA), the Parkes Pulsar
Timing Array (PPTA), the Chinese Pulsar Timing Array (CPTA), and the Indian Pulsar Timing
Array (InPTA).

The PTA collaborations, NANOGrav [5], EPTA/InPTA [9], PPTA [91], and CPTA [103], have
presented evidence for an isotropic SGWB by measuring to ∼ (3 − 4)σ the expected Hellings-Downs
angular correlation between pulsars’ line of sight [61][68]. The GWB is a persistent signal that should
increase in significance with number of pulsars and observing time span. This is confirmed by the
analysis made by [5]. The detection of a cosmological GWB offers a new window into the physics
beyond the standard model that characterize the early Universe [31].

Using the data given by the PTA collaboration, the authors of [50] have recently discussed the
interpretation of the detected signal by PTA observations as a GWB of cosmological origin, including
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supermassive black hole binaries (SMBHBs), inflation, cosmic strings, first-order phase transitions,
large scalar fluctuations, and audible axions. For example, for the case of inflation, their fit to a
Power Law spectrum leads to a tensor-to-scalar ratio (at the pivot scale k∗ = 0.05 Mpc−1) within the
range r0.05 ∈ [4.37 × 10−14, 3.47 × 10−9] at 68% CL, which is much below current CMB constraints
r0.05 < 0.032 [99]. A condition of a low-reheating temperature Treh ≲ 10.6 GeV at 68% CL also
must be imposed to respect extra radiation ∆Neff constraints [7][25][27][31][76][97]. Also the inter-
pretation calls for an extremely blue tensor spectrum, with spectral index nT ≃ 2 (nT ≃ 1.8 ± 0.3
[100]). While not impossible, an inflationary origin for the PTA signal looks implausible: within
well-motivated inflationary models it is hard to achieve such a blue tilt, whereas models who do tend
to predict sizeable non-Gaussianities, excluded by observations [100]. Their fit of the PTA signal also
shows a Broken Power Law spectrum, which can be interpreted as a GWB originated in a first-order
phase transition. In that case they obtained a central temperature of T∗ ≃ 20 MeV (≃ 94 MeV) for
a strong (weak) PT, which suggests a first-order PT at the MeV scale that is in tension with lattice
QCD [11] and BBN prediction [28]. For magneto hydrodynamic (MHD) turbulence (see Chapter 3),
their best fit peak position corresponds [85] to a primordial magnetic field of strength B0 ≃ 23.3 µG
and correlation length lB ≃ 0.25 pc, which is close to the current constraints on primordial magnetic
fields [34][35][67][86].

They also analyzed the other scenarios. To determine which of the models is favored, a model
selection/comparison Bayesian analysis was performed. They found that Scalar Induced GWB with
a Gaussian bump (gSIGWB) provides the best fit, with a very strong evidence in NANOGrav data
and strong in EPTA data [50]. However, Refs. [5][10][48] show that SMBHBs can also fit well the
data. Therefore, we still don’t have a clear conclusion about the origin of the signal. And this is why
we are trying to construct reliable tools to distinguish between the different origins.
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Chapter 2

The Cosmological Perturbations

Cosmological perturbations are thought to have originated during the early moments of the
universe, possibly during the inflationary epoch. Quantum fluctuations in the energy density and
other fields during these early times are believed to have been stretched to cosmological scales during
inflation. Understanding the nature of these initial fluctuations, such as their amplitude, spectrum,
and statistical properties, is a fundamental aspect of the theory of cosmological perturbations. These
initial conditions serve as the seeds for the structure that we observe in the universe today. The
perturbations grow and evolve over cosmic time due to the influence of gravity. Regions that are
slightly denser than average attract more matter over time, leading to the formation of structures
like galaxies and galaxy clusters. The theory of cosmological perturbations helps describe how these
fluctuations evolve and give rise to the large-scale structure we observe.

As we mentioned before, one of the most significant pieces of evidence for the theory of cosmo-
logical perturbations comes from the Cosmic Microwave Background CMB radiation. The CMB is
a snapshot of the universe’s early state, and it exhibits tiny temperature fluctuations. These fluctu-
ations in the CMB are directly related to the primordial perturbations. The theory of cosmological
perturbations is closely linked to the inflationary model of the universe. Inflationary theory provides
a mechanism for generating the initial perturbations during the early universe’s rapid expansion, and
it predicts specific properties of these perturbations that match observations.

In this chapter, we study the cosmological perturbations at first order, we define the gauge
issue and the gauge choice, and review the gauge transformations and gauge-invariant quantities. We
also review the comoving curvature perturbation and the curvature perturbation on spatial slices of
uniform energy density, and show that on super-hubble scales they’re both equal.

2.1 Cosmological Perturbations at First Order

The components of a perturbed spatially flat Robertson–Walker metric can be written as (adopt-
ing the notations used in [81]),

g00 = −a2(η)

(
1 + 2

+∞∑
r=1

1

r!
ψ(r)

)
, (2.1)

g0i = a2(η)

+∞∑
r=1

1

r!
ω
(r)
i , (2.2)

gij = a2(η)

{[
1 − 2

(
+∞∑
r=1

1

r!
ϕ(r)

)]
δij +

+∞∑
r=1

1

r!
χ
(r)
ij

}
, (2.3)
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where χ̂
(r)i
i = 0, and η is the conformal time. The functions ψ(r), ω

(r)
i , ϕ(r), and χ

(r)
ij represent

the r-th order perturbation of the metric. In the context of perturbations, it is a common prac-
tice to decompose them into distinct components known as scalar, vector, and tensor parts. This
decomposition help us understand how different types of perturbations behave and interact:

• Scalar Perturbations (Scalar Parts): These are associated with a scalar potential, and they
represent variations in the density and pressure of a physical quantity. Scalar perturbations are
often referred to as longitudinal perturbations. They describe changes that can be expressed
as a scalar field, which can have both spatial and temporal variations.

• Vector Perturbations (Vector Parts): These perturbations are related to transverse vector fields.
They describe variations in a physical quantity that can be represented as a divergence-free
(solenoidal) vector field. Vector perturbations typically involve changes in the directional flow
or rotation of quantities.

• Tensor Perturbations (Tensor Parts): Tensor perturbations are associated with transverse trace-
free tensors. They describe variations that can be represented as symmetric traceless tensors.
In cosmology, tensor perturbations are often used to describe gravitational waves.

In our specific case, the shift field ω
(r)
i can be decomposed as,

ω
(r)
i = ∂iω

(r)∥ + ω
(r)⊥
i , (2.4)

where ω
(r)⊥
i is a solenoidal vector, i.e., ∂iω

(r)⊥
i = 0. Similarly, the traceless part of the spatial metric

can be decomposed at any order as,

χ
(r)
ij = Dijχ

(r)∥ + ∂iχ
(r)⊥
j + ∂jχ

(r)⊥
i + χ

(r)⊤
ij , (2.5)

where χ(r)|| is a suitable function, χ
(r)⊥
i is a solenoidal vector field, and ∂iχ

(r)

⊥

ij = 0; subsequently,

Dij ≡ ∂i∂j −
1

3
δij∇2 . (2.6)

To first-order only, the full perturbed line element has the following expression:

ds2 = a2(η)
[
− (1 + 2ϕ)dη2 + 2ω̂idηdx

i +
(
(1 − 2ψ)δij + χ̂ij

)
dxidxj

]
. (2.7)

We can write the perturbed stress-energy tensor as,

Tµν = T (0)
µν + δTµν = ρuµuν + phµν + Πµν , (2.8)

where uµ is the four-velocity of the fluid, while ρ and p are the energy density and isotropic pressure
as defined before, and hµν = gµν + uµuν is a projection tensor onto the hypersurfaces orthogonal to
the four-velocity. The perturbative term Πµν accounts for the presence of anisotropic stresses and
thus has a vanishing background value. Let’s write the perturbed expression for each component.
The energy density can be written as,

ρ(η, x⃗) = ρ(0)(η) +

∞∑
r=1

δρ(r)(η, x⃗) , (2.9)

and similarily for the pressure p(x⃗, η),

p(η, x⃗) = p(0)(η) +

∞∑
r=1

δp(r)(η, x⃗) . (2.10)

Writing p = p(ρ, S), with S being the entropy, its perturbation can also be split in the following way:

δp =

(
∂p

∂ρ

)
S

δρ+

(
∂p

∂S

)
ρ

δS . (2.11)
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Where the second term accounts for non-adiabatic (δS ̸= 0) contributions, while the first defines the
adiabatic speed of sound c2s = (∂p/∂ρ)S , computed at constant entropy S.

The anisotropic stress tensor Πµν has only non-vanishing spatial components Π̂ij , which can be
further decomposed into scalar, vector and tensor parts as:

Π̂ij = DijΠ + ∂iΠj + ∂jΠi + Πij . (2.12)

It is considered to be traceless, Π̂i
i = 0, since its trace can be absorbed into the definition of the

isotropic pressure p. In analogy to the spatial components of the metric, the tensor degrees of free-
dom Πij are defined as transverse ∂iΠij = 0. We will consider only the linear part of perturbation
(2.12), but in principle, it includes terms up to any order.

Substituting the perturbative expansions back into Eq. (2.8), and keeping terms up to first
order, it is possible to recover an explicit expression for the linear perturbation of the stress-energy
tensor.

On the other hand, the four-velocity of a comoving observer is,

uµ =
1

a

(
δµ0 +

∞∑
r=1

υµ(r)(η, x⃗)

)
, (2.13)

since the unperturbed four-velocity is just uµ(0) = δµ0 /
√
−g00 = δµ0 /a. As for the perturbations, it can

be shown (from the normalization condition u2 = −1) that at linear order,

υ0 = −ϕ . (2.14)

2.2 The Gauge Issue

The Newtonian view of space-time is adequate only for scales well inside the horizon. On larger
scales, one has to worry about the choice of coordinates, and in the presence of perturbations there
is no uniquely preferred choice.

Let us continue to denote the coordinates by the same symbols that we used for the Newtonian
case, namely t and x⃗ ≡ (x1, x2, x3). A choice of coordinates defines a threading of space-time into
lines (corresponding to fixed x⃗) and a slicing into hypersurfaces (corresponding to fixed t) [79]. The
lines of fixed x⃗ are chosen to be timelike, so that they are the worldlines of possible observers. Also,
the slices are chosen to be spacelike. We can imagine that the Universe is populated by observers
corresponding to the threading. On each of the slices one can ask whether geometry is Euclidean. If
it is, the coordinates x⃗ can be chosen to be Cartesian, and the space defined by the slices is said to
be flat. Otherwise it is said to have (intrinsic) curvature.

Consider first the limiting case of the unperturbed Universe. In that case there are indeed
preferred coordinates, distinguished on several grounds. The threading corresponds to the motion
of comoving observers, defined as those who see zero momentum density at their own position. The
comoving observers are free-falling, and the expansion defined by them is isotropic. The slicing is
orthogonal to the threading, and on each slice, the Universe is homogeneous. The time coordinate
is chosen to correspond to proper time along cach worldline. In the critical-density case the slices
are flat, and the space coordinates can be chosen to be Cartesian. This formidable array of proper-
ties makes the preferred coordinates so valuable that no others are ever considered, except that one
sometimes uses spherical polar coordinates instead of Cartesian coordinates.

In the presence of perturbations, it is impossible to find coordinates satisfying all of these prop-
erties, and there is no uniquely preferred choice. The only universally accepted constraint is that
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2.2. THE GAUGE ISSUE

the coordinates must reduce to the standard ones in the limit where the perturbations vanish. A
choice of coordinates satisfying this constraint is called a gauge , and there is no unique preferred
gauge, though there are a few simple choices. In particular, we can find gauges that satisfy some but
not all of the conditions listed in the preceding paragraph. Well after horizon entry, all gauges ever
suggested become the same, corresponding to the Newtonian description of space-time.

As will become clear, the only function of a gauge choice in cosmological perturbation theory is
to define a slicing and threading of space-time. The slicing and threading in turn define the perturba-
tions. For a perturbation g(x⃗, t), the space-time coordinates can be regarded as those of unperturbed
space-time because to include their perturbation would be a second-order effect. Once defined, the
perturbations live in unperturbed space-time!
We can consider the gauge choices for scalar, vector, and tensor perturbations separately. It turns out
that the evolution equations for the tensor perturbations are gauge independent, and we are taking
the vector perturbations to vanish, which means that we actually are concerned only with the gauge
choice for scalar perturbations.

Following the work of [23], we consider the homogeneous FRW spacetime and make the following
change of the spatial coordinates,

x̃i = xi + ξi(η, x⃗) . (2.15)

We assume that ξi is small, so that it can also be treated as a perturbation. Using:

dxi =
∂xi

∂x̃ν
dx̃ν = dx̃i − ξi′dη − ∂jξ

idx̃j . (2.16)

Therefore, we get,

ds2 = a2
[
− dη2 − 2ξ′idηdx̃

i + (δij + ∂iξj + ∂jξi)dx̃
idx̃j

]
. (2.17)

2.2.1 Gauge Transformations

Consider now the gauge transformation induced by a generic infinitesimal change of coordinates:

x̃µ = xµ − ξµ(x) . (2.18)

Where the presence of the minus sign is such that the results we find agree with the sign convention
usually adopted in the literature. It is necessary to understand how a given quantity transforms as
a consequence of (2.18). In order to do so, we exploit the transformation properties of tensors. We
know, in fact, that any given tensor T transforms with the Jacobian (and its inverse) of the change
of coordinates, namely:

T̃µν(x̃) =
∂x̃µ

∂xρ
∂xσ

∂x̃ν
T ρσ(x) . (2.19)

Where the generalization to a different combination of indices is straightforward. We want to compute
the consequences on T of a gauge transformation along the direction ξ. We thus combine equations
(2.18) and (2.19) to obtain the relation between the new and old tensors, both evaluated at the same
coordinate point:

T̃µν = (δµρ − ∂ρξ
µ)(δσν + ∂νξ

σ)T ρσ(x+ ξ) = Tµν − ∂ρξ
µT ρν + ∂νξ

ρTµρ + ξρ∂ρT
µ
ν , (2.20)

where we have kept the linear order in ξ. A similar transformation law is valid for tensors of any
order. All the first-order terms in (2.20) can be grouped together into what is known as the Lie
derivative of the tensor T along the direction ξ:

LξTµν = ∂ρT
µ
νξ
ρ − T ρν∂ρξ

µ + Tµρ∂νξ
ρ , (2.21)

where all the terms are evaluated at the same coordinate point. This reflects the independence on
the coordinate system of the Lie derivative. Furthermore, the fact that all terms in (2.21) are already
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2.2. THE GAUGE ISSUE

linear in the perturbations lets us consider only the unperturbed part of a tensor T0 inside the Lie
derivative when dealing with first-order CPT.

It is now possible to derive what is the behavior under a gauge transformation of all the metric
and stress-energy tensor perturbations we have previously defined. In doing so, it is useful to scalar,
vector and tensor decompose the infinitesimal displacement ξµ in the following way:

ξ0 = α , (2.22)

ξi = ∂iβ + di , (2.23)

with ∂idi = 0, so that the 4 degrees of freedom are split up between two scalars and one divergenceless
vector.

Applying the transformation law (2.20) on the perturbations of the linearly perturbed metric (2.7),
we can find how they behave under the infinitesimal change of coordinates (2.18):

g̃µν = gµν + Lξg(0)µν . (2.24)

As an example, we show the explicit computation for the perturbation ϕ of the g00 = −a2(1 + 2ϕ)
component:

−a2(1 + 2ϕ̃) = −a2(1 + 2ϕ) − 2aa′α− 2a2α′ , (2.25)

where we have applied equation (2.24) and used the decomposition (2.23) for the infinitesimal dis-
placement ξ. Solving for ϕ̃, we find the following gauge transformation law:

ϕ̃ = ϕ+ Hα+ α′ , (2.26)

with H ≡ a′/a defined in analogy with the Hubble parameter but using instead the conformal time
η. In a similar way, it is possible to obtain an analogous expression for each of the perturbations in
the metric (2.7). We just write down the results of the computations:

ψ̃ = ψ −Hα− 1

3
∇2β ,

˜̂ωi = ω̂i + ∂iα+ ∂iβ
′ + d′i , (2.27)

˜̂χij = χ̂ij + 2Dijβ + ∂idj + ∂jdi .

Applying an scalar, vector and tensor decomposition, it is also possible to separate the scalar, vector,
and tensor degrees of freedom defined in (2.4) and (2.5):

ω̃ = ω − α+ β′ ,

ω̃i = ωi + d′i ,

χ̃ = χ+ 2β , (2.28)

χ̃i = χi + di ,

χ̃ij = χij ,

from which it is clear that (transverse and traceless) tensor components are gauge-invariant, at least
at linear order in the perturbations.

Similarly, one can compute gauge transformations for the stress-energy tensor perturbations. The
procedure is totally analogous to what we have done in the metric perturbations case. For the energy
density, it gives:

δ̃ρ = δρ+ ρ′0α . (2.29)

Considering instead the 4-velocity, and separating the temporal and spatial components, the gauge
transformations are:

υ̃0 = υ0 −Hα− α′ , (2.30)

˜̂υi = υ̂i + ∂iβ + di′ . (2.31)
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The scalar, vector and tensor decomposition allows to write v̂i = ∂iv + vi, so that it follows:

υ̃ = υ + β , (2.32)

υ̃i = υi + di′ . (2.33)

2.3 Curvature Perturbation

2.3.1 The Comoving Curvature Perturbation

The intrinsic spatial curvature on hypersurfaces on constant conformal time η and for a flat
universe is given by [93],

(3)R =
4

a2
∇2 ψ . (2.34)

The quantity ψ is usually referred to as the curvature perturbation. We have seen, however, that
the curvature potential ψ is not gauge invariant, but is defined only on a given slicing. Under a
transformation on constant time hypersurfaces η → η + ξ0 (change of the slicing),

ψ → ψ + Hξ0 . (2.35)

We now consider the comoving slicing, which is defined to be the slicing orthogonal to the world
lines of comoving observers. These observers are free-falling, and the expansion defined by them is
isotropic. In practice, this means that there is no flux of energy measured by these observers, i.e.,
T0i = 0. During inflation, this means that these observers measure δϕcom = 0 since T0i goes like
∂iδϕ(x⃗, η)ϕ′(η). Since δϕ ∝ δϕ − ϕ′δξ0 for a transformation on constant time hypersurfaces, this
means that,

δϕ→ δϕcom = δϕ− ϕ′ ξ0 = 0 =⇒ ξ0 =
δϕ

ϕ′
. (2.36)

That is, ξ0 = δϕ/ϕ′ is the time-displacement needed to go from a generic slicing with a generic δϕ to
the comoving slicing where δϕcom = 0. At the same time, the curvature perturbation ψ transforms
into,

ψ → ψcom = ψ + H ξ0 = ϕ+ Hδϕ

ϕ′
. (2.37)

The quantity,

R = ψ + Hδϕ

ϕ′
= ψ +H

δϕ

ϕ
, (2.38)

is the comoving curvature perturbation. This quantity is gauge-invariant by construction and is related
to the gauge-dependent curvature perturbation ψ on a generic slicing to the inflaton perturbation δϕ
in that gauge. By construction, the meaning of R is that it represents the gravitational potential on
comoving hypersurfaces where δϕ = 0.

2.3.2 The Curvature Perturbation on Spatial Slices of Uniform En-
ergy Density

We now consider the slicing of uniform energy density, which is defined as the slicing where
there is no perturbation in the energy density, δρ = 0. Since δρ ∝ δρ− ρ′ξ0 for a transformation on
constant time hypersurfaces, this means that,

R = ψ|
δϕ=0 . (2.39)
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That is, ξ0 = δρ/ρ′ is the time-displacement needed to go from a generic slicing with a generic δρ to
the slicing of uniform energy density where δρunif = 0. At the same time, the curvature perturbation
ψ transforms into,

δρ→ δρunif = δρ− ρ′ ξ0 = 0 =⇒ ξ0 =
δρ

ρ′
. (2.40)

The quantity,

ψ → ψunif = ψ + H ξ0 = ψ + Hδρ

ρ′
, (2.41)

is the curvature perturbation on slices of uniform energy density. This quantity is gauge-invariant
by construction and is related to the gauge-dependent curvature perturbation ψ on a generic slicing
and to the energy density perturbation δρ in that gauge. By construction, the meaning of ζ is that
it represents the gravitational potential on slices of uniform energy density.

ζ = ψ + Hδρ

ρ′
= ψ +H

δρ

ρ′
. (2.42)

Notice that, using the energy conservation equation ρ′ + 3H(ρ+ P ) = 0, the curvature perturbation
on slices of uniform energy density can also be written as:

ζ = ψ|
δρ=0 . (2.43)

During inflation, ρ + P = ϕ̇2. Furthermore, on super-Hubble scales from what we have learned
that the inflaton fluctuation δϕ is frozen in and δϕ̇ = (slow-roll parameters)×Hδϕ This implies that
δρ = ϕ̇δϕ̇+ V ′δϕ ≃ −3Hϕ̇δϕ leading to,

ζ = ψ − δρ

3(ρ+ P )
, (2.44)

where V is the potential of the inflaton field.

ζ ≃ ψ +
3Hϕ̇

3ϕ̇2
δϕ = ψ +H

δϕ

ϕ̇
= R (ON SUPER - HUBBLE SCALES) . (2.45)

The comoving curvature pertubation and the curvature perturbation on uniform energy density slices
are equal on super-Hubble scales during inflation.
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Chapter 3

The Cosmological Gravitational
Wave Background

Gravitational waves are ripples in spacetime caused by the acceleration of massive objects, par-
ticularly those with strong gravitational fields. This includes events such as the collision or merger of
black holes, neutron stars, or other massive astrophysical objects, as well as the asymmetric motion of
massive objects, like rotating neutron stars. They are a fundamental prediction of Albert Einstein’s
theory of general relativity, which was published in 1915. Gravitational waves carry energy away
from their source and travel at the speed of light, like electromagnetic waves, but they interact with
matter and spacetime in a distinct way. They are transverse waves, meaning that their oscillations
are perpendicular to their direction of propagation. They cause space to stretch and compress in a
rhythmic fashion as they pass through, imagine the stretching and compressing of a rubber sheet,
well, it is very similar.

The Laser Interferometer Gravitational-Wave Observatory (LIGO) and the Virgo interferometer
are ground-based observatories designed to detect gravitational waves. They use laser interferometry
to measure tiny changes in the lengths of two perpendicular arms caused by passing gravitational
waves. LIGO and Virgo have made groundbreaking detections, including the first observation of
gravitational waves from merging black holes. This first detection of gravitational waves on Sept.
2015 [1], has happily ended 50 years of experimental effort towards a direct detection of GWs.

Gravitational waves can be generated by a variety of astrophysical sources, including binary
neutron star systems, binary black hole systems, supernovae, and even the early universe during
different possible mechanisms like Inflation, Phase Transitions or Primordial Black Holes. Each type
of source produces gravitational waves with different frequencies and amplitudes. In this chapter
we focus on the cosmological (early universe) sources, particularly Inflation and Phase Transitions.
These waves are described mathematically by the linearized form of Einstein’s field equations, which
is a set of partial differential equations. These equations describe how spacetime curvature changes
due to the presence of mass and energy. The linearized equations reveal how gravitational waves
propagate through spacetime as small oscillations or ripples.

In this chapter, we start by describing the Gravitational Waves in a linearized theory of gravity
in both cases, the flat Minkowski background, and the curved background. We show how we can
distinguish the GWs from the background. We then define the concept of the Stochastic Gravitational
Wave Backrgound (SGWB) and its different contributions. We end the chapter by discussing the
case of two of these contributions, Inflation and Phase Transitions.
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3.1. GRAVITATIONAL WAVES IN A LINEARIZED THEORY OF GRAVITY

3.1 Gravitational Waves in a Linearized Theory of Gravity

We already know that Einstein’s field equations, which describe the behavior of gravity in terms
of the metric tensor, are highly nonlinear. However, for small perturbations of a flat spacetime (i.e.,
weak gravitational fields), they can be linearized. This means that you can write down simplified
equations that describe how these small perturbations propagate through spacetime. So, in order to
describe the GWs in such a linearized theory of gravity, we start by the approach followed in [31],
where we consider a small perturbation over a flat Minkowski background ηµν ≡ diag(−1,+1,+1,+1),

gµν(x) = ηµν + hµν(x) , |hµν(x)| ≪ 1 , (3.1)

where hµν is that small perturbation and it describes how the spacetime metric deviates from flat
Minkowski spacetime. The condition |hµν | ≪ 1 holds only if we are considering weak gravitational
fields as we just mentioned, and for a restricted set of coordinate systems where Eq. (3.1) holds.
General Relativity is invariant under general coordinate transformations,

xµ −→ x′µ(x) , (3.2)

and so the metric tensor can transform as,

g′µν(x′) =
∂xα

∂x′µ
∂xβ

∂x′ν
gαβ(x) . (3.3)

So, under general infinitesimal coordinate transformations,

x′µ −→ xµ + ξµ , (3.4)

with ξµ(x) an arbitrary infinitesimal vector, to derive the transformation law for the perturbation
field h′µν(x′), we proceed as follows:

From (3.1) and (3.4) and using (3.3), since we’re interested in the linearized theory (|hµν(x)| ≪ 1),
we can use a Taylor expansion for the transformation xα → x′α:

∂xα

∂x′µ
≈ δαµ − ∂µξ

α . (3.5)

Substituting this approximation into (3.3):

g′µν(x′) =
(
δαµ − ∂µξ

α
) (
δβν − ∂νξ

β
)
gαβ(x) . (3.6)

Now, simplify the right-hand side:

g′µν(x′) = gµν(x) − ∂µξ
αgαν(x) − ∂νξ

βgµβ(x) + ∂µξ
α∂νξ

βgαβ(x) . (3.7)

Remember that gµν(x) = ηµν + hµν(x), and since, again, we’re interested in the linearized theory,
we’ll neglect terms of O(h2) and higher:

gµν(x) ≈ ηµν + hµν(x) . (3.8)

Substitute this approximation into the above equation:

g′µν(x′) ≈ ηµν + hµν(x) − ∂µξ
α(ηαν + hαν(x)) − ∂νξ

β(ηµβ + hµβ(x)) + ∂µξ
α∂νξ

β(ηαβ + hαβ(x)) .

(3.9)

Now, subtract the Minkowski metric ηµν from both sides:

h′µν(x′) = hµν(x) − ∂µξν − ∂νξµ + ∂µξ
α∂νξα . (3.10)

This equation (3.11) represents how the gravitational wave perturbation hµν changes under a coor-
dinate transformation ξµ.

h′µν(x′) = hµν(x) − ∂µξν − ∂νξµ . (3.11)
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Expressing Eq. (3.1) in the new system of coordinates gives,

g′µν(x′) = ηµν + h′µν(x′) , |h′µν(x′)| ≪ 1 . (3.12)

Note that |∂αξβ | must be as small as (or even smaller) |hαβ |.

Now we express the affine connection (Christoffel symbols) to linear order in the tensor per-
turbation in order to find the expressions for the Riemann tensor, Ricci tensor and Ricci scalar as
follows,

Γαµν ≡ 1

2
gαβ(∂νgβµ + ∂µgβν − ∂βgµν) =

1

2
(∂νh

α
µ + ∂µh

α
ν − ∂αhµν) + O(h2) , (3.13)

where,

hµν ≡ ηµαhαν = hν
µ , (3.14)

and so,

Rαµνβ = ∂νΓαµβ − ∂βΓαµν =
1

2
(∂µ∂νh

α
β + ∂β∂

αhµν − ∂ν∂
αhµβ − ∂β∂µh

α
ν) , (3.15)

Rµν ≡ −Rαµνα =
1

2
(∂ν∂

αhαµ + ∂µ∂
αhαν − ∂µ∂νh−□hµν) , (3.16)

R = Rµµ = (∂α∂βhαβ −□h) , (3.17)

where h ≡ hαα is the trace of the metric perturbation, ∂α ≡ ηαβ∂β and □ ≡ ∂α∂
α = ηαβ∂α∂β . From

these expressions we can construct the Einstein tensor, first defined in Eq. (1.13), again to first order
in the metric perturbation, as

Gµν ≡ Rµν −
1

2
ηµνR =

1

2
(∂ν∂αh

α
µ + ∂µ∂

αhνα − ∂µ∂νh−□hµν − ηµν∂
α∂βhα

β + ηµν□h)

=
1

2
(∂α∂ν h̄

α
µ + ∂α∂µh̄να −□h̄µν − ηµν∂α∂

βh̄αβ) , (3.18)

where in the last line, for convenience, we have introduced a new metric perturbation,

h̄µν ≡ hµν −
1

2
ηµνh . (3.19)

As the trace of h̄µν has the opposite sign to that of hµν , h̄ = −h, h̄µν is referred to as the trace-
reversed metric perturbation. And so, writing Gµν in terms of h̄µν has the advantage of eliminating
the trace.

We can simplify Eq. (3.18) by exploiting the invariance of the linearized theory under slowly
varying infinitesimal coordinate transformations. Under the transformation in Eq. (3.4), the metric
perturbation hµν changes as in Eq. (3.11), whereas the trace-reversed perturbation in Eq. (3.19)
transforms as,

h̄′µν(x′) = h̄µν(x) + ξµν(x), ξµν(x) ≡ ηµν∂αξ
α − ∂µξν − ∂νξµ . (3.20)

Having the expression of Gµν in terms of h̄µν , it seems convenient to make a coordinate transformation
such that the metric perturbation verifies,

∂µh̄µν(x) = 0 . (3.21)

This is the Lorentz gauge choice, which we can prove that it is always possible. This condition ensures
that the wave equation for hµν simplifies to a form that resembles the d’Alembertian wave equation
for a massless scalar field, which is easier to work with. Given an arbitrary perturbation h̄µν , for
which ∂µh̄µν ̸= 0. The Lorentz gauge condition, using Eq. (3.20), transforms as:

∂′µh̄′µν(x′) = ∂µh̄µν(x) −□ξν . (3.22)

39



3.1. GRAVITATIONAL WAVES IN A LINEARIZED THEORY OF GRAVITY

So that we can always demand that ∂
′µh̄′µν(x′) = 0, as long as,

□ξν = fν(x) , fν(x) ≡ ∂µh̄µν(x) . (3.23)

One can always find solutions to the above Eq. (3.23), simply because the d’Alembertian operator □
is invertible. Hence, it is possible to take advantage of the linearized theory’s property of remaining
unchanged under small coordinate transformations to select the Lorentz gauge.

The advantage of expressing Gµν in terms of the trace-reversed metric becomes now manifest.
Restricting the coordinate systems to those verifying the Lorentz-gauge condition Eq. (3.21) leads
to, as promised, a very simple expression for the Einstein tensor,

G(L)
µν = −1

2
□h̄µν , (3.24)

where (L) refers to the Lorentz gauge. Recall (1.13), in the Lorentz gauge, linearized Einstein gravity
reduces therefore to the equation,

□h̄µν = − 2

m2
p

Tµν , (3.25)

which is nothing else but a wave equation with a source, and mp = 1/
√

8πG. The general homoge-
neous solution to the wave equation, based on the superposition of the linearly independent solutions,
can be written as,

h̄µν(x) =

∫
d3k(h̄µν(k⃗)eikx + h̄∗µν(k⃗)e−ikx) , with kµh̄µν = 0 , (3.26)

where,

kx ≡ kµxµ = −ω(k)t+ k⃗ · x⃗ , ω(k) = k , (3.27)

and h̄µν(k), are functions that depend solely on the wave vector k. The latter are not free but must
rather satisfy,

kµh̄µν = 0 . (3.28)

This equation essentially expresses that the gravitational wave field h̄µν is transverse to the direction
of propagation given by the vector kµ. In other words, the components of h̄µν along the direction of
the wave’s propagation are zero.

3.1.1 Gravitational Waves in a Curved Background

Now we consider the case of GWs over a curved background. According to General Relativity,
matter and energy contribute to the curvature of spacetime. Our goal is to find expressions for the
energy and momentum carried by GWs, and so we have to explore in which sense GWs are themselves
a source of space-time curvature. In the rest of this chapter we will be dealing with GWs generation
processes operating in the early universe, mainly Inflation and Phase Transitions, and hence it is
crucial that we determine how to define GWs over a FLRW background, which naturally corresponds
to a curved background.

We need to generalize the theory to,

gµν(x) = ḡµν(x) + δgµν(x) , (3.29)

with,

|δgµν(x)| ≪ |ḡµν(x)| , (3.30)
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and ḡµν(x) a general metric of a curved spacetime.

The only way to define fluctuations representing gravitational waves in this context is to exploit
a possible separation of scales/frequencies, if:

• The background ḡµν(x) varies over a typical length-scale LB (or its time variation is character-
ized by a typical frequency fB)

• The GWs have a typical reduced wavelength λ̄ = λ/2π (or frequency f = 1/λ)

One can distinguish the GWs from the background if, and only if, LB ≫ λ̄ (fB ≪ f). In this case, the
GWs can be viewed as small perturbations on a smooth background, or rapidly varying perturbations
over a slowly varying background.

3.2 Stochastic Background of Gravitational Waves

It is basically a sea of gravitational waves that permeates the entire universe. Unlike the dis-
crete and localized gravitational waves produced by individual sources like merging black holes or
neutron stars, the stochastic gravitational wave background consists of a superposition of gravita-
tional waves from a multitude of unresolved and randomly distributed sources throughout the cosmos.

The stochastic gravitational wave background is generated by the collective contributions of
many astrophysical and cosmological processes, such as the early universe’s inflationary phase, cos-
mic strings, phase transitions, and binary compact object mergers. It is characterized by its frequency
spectrum, which describes how the amplitude of gravitational waves varies with frequency. Different
astrophysical sources and cosmological events produce gravitational waves at different frequencies,
and the SGWB is composed of a wide range of frequencies spanning from extremely low frequencies
to very high frequencies.

The SGWB also carries crucial information about the universe’s history and evolution. For
example, it can provide insights into the nature of the early universe during inflation and other cos-
mological phase transitions. It can also offer information about the abundance of cosmic strings and
the distribution of binary compact object mergers. Researchers are continually developing techniques
to improve the sensitivity of gravitational wave detectors and search for the SGWB. Additionally, they
are working to distinguish the various contributions to the SGWB and extract valuable cosmological
information from it.

3.3 Gravitational Waves from Inflation

In this section, we study the production of GWs from Inflation, since the inflationary scenario
predicts also the production of a background of stochastic GW. During the inflationary epoch, quan-
tum fluctuations in the inflaton field can lead to the generation of primordial perturbations. These
fluctuations occur on incredibly small scales but are stretched to cosmological scales by the rapid
inflation. Just as quantum fluctuations in a field can produce density fluctuations, they can also
give rise to gravitational waves. These gravitational waves are the result of fluctuations in the space-
time metric itself. They are sometimes referred to as primordial gravitational waves or inflationary
gravitational waves. Gravitational waves in the context of inflation are often described as tensor per-
turbations. These tensor perturbations represent the perturbations in the metric tensor of spacetime
caused by the quantum fluctuations during inflation. Mathematically, they are typically denoted as
hij , where i and j represent spatial indices. Gravitational waves from inflation can leave a specific
imprint on the CMB. In particular, they can produce a characteristic pattern of polarization known
as B-mode polarization [70][83]. Detecting B-mode polarization in the CMB is a significant goal
of observational cosmology because it would provide strong evidence for the existence of primordial
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gravitational waves and validate the inflationary theory.

The evolution of the tensor fluctuations is only regulated by the traceless spatial part of the
Einstein equation, which, in the presence of perfect fluids does not contain direct influence from the
energy content of the universe except for the underlying background solution. We will see later that
a coupling between GWs and the content of the Universe grows up only in the presence of anisotropic
stress tensor.

Also in this section, we find the expression for the tensor power spectrum, the tensor spectral
tilt and the consistency relation for the case of a slow-roll inflationary model.

3.3.1 Power Spectrum

The action of a scalar field minimally coupled to gravity,

S =

∫
d4x

√
−g

[
1

2
M2

plR− 1

2
gµν∂µφ∂νφ−V(φ)

]
, (3.31)

where Mpl is the Planck mass, R is the Ricci scalar, and φ is our scalar field and a(t) is the scale
factor. Perturbing it at first order leads to the following action for tensor perturbations [56][57][60],
which represents the action for the transverse-traceless (TT) part of the metric perturbation hij in
the framework of cosmological perturbation theory:

S
(2)
T =

M2
pl

8

∫
d4x a2(t)

[
ḣij ḣij −

1

a2
(∇hij)2

]
, (3.32)

hij is gauge-invariant, so varying the action with respect to this quantity, we get the required equation
of motion,

∇2hij − a2ḧij − 3aȧḣij = 0 . (3.33)

Recalling that hij is symmetric, transverse and traceless, the solution of Eq. (3.33) is given by,

hij(x⃗, t) = h(t)e
(+,×)
ij (x⃗) , (3.34)

where e
(+,×)
ij is a polarization tensor satisfying the conditions eij = eji, k

ieij = 0, eii = 0, with +,×
the two GW polarization states [82]. From Eq. (3.34) we can see that tensor modes are left with two
physical degrees of freedom. The most general solution of Eq.(3.33) reads,

hij(x⃗, t) =
∑

λ=(+,×)

h(λ)(t)e
(λ)
ij (x⃗) . (3.35)

It is now useful to perform the transformation,

υij ≡
aMpl√

2
hij . (3.36)

In terms of vij the action (3.32) reads,

S
(2)
T =

M2
pl

8

∫
d4x

[
υ′ijυ

′
ij − (∇υij)2 +

a′′

a
υijυij

]
, (3.37)

which can be interpreted as the action for two scalar fields in Minkowski space-time, with effective
mass squared equal to a′′/a [60]. Being interested in the power-spectrum, we move to Fourier space
and write,

υij(x⃗, t) =

∫
d3k⃗

(2π)3

∑
λ=(+,×)

υ
(λ)

k⃗
(t) e

(λ)
ij (k) eik⃗·x⃗ , (3.38)
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where v
(λ)
k is the Fourier transform of the scalar amplitude. From (3.38), the equation of motion for

each mode v
(λ)
k then reads:

υ
(λ)

k⃗

′′ + (k2 − a′′

a
) υ

(λ)

k⃗
= 0 . (3.39)

We obtained a wave equation. Let us study the qualitative behavior of its solutions. We can
identify two main regimes depending on the relative magnitude of the second and third term.

In the sub-horizon regime (k ≫ aH):
This implies that a′′/a ≪ k2 since a′′/a ∼ (a′/a)2 and in case of de Sitter spacetime a(η) ∼ 1/η.
So, ignoring the second term in parenthesis, the equation for vk becomes that of a free harmonic
oscillator,

υ
(λ)

k⃗

′′ + k2 υ
(λ)

k⃗
= 0 , (3.40)

so that tensor perturbations hij oscillate with a damping factor 1/a. Keeping in this regime, the
solution of (3.40) reads,

υk(η) = Ae−ikη , (3.41)

which means that the amplitude of the modes of the original field hij decrease in time with the inverse
of the scale-factor as an effect of the Universe expansion.

In the super-horizon regime (k ≪ aH):
This implies that a′′/a≫ k2. In this case the second term is negligible with respect to the third one,

υ
(λ)

k⃗

′′ − a′′

a
υ
(λ)

k⃗
= 0 . (3.42)

There are two possible solutions of the equation (3.42):

υk(η) ∝ a , and υk(η) ∝ 1/a2 , (3.43)

which corresponds to h ∝ const solution and a decreasing in time solution, respectively. We are
interested in the solutions with constant amplitude.

Now we calculate more accurately the power-spectrum of tensor perturbations, solving (3.39).
We perform the standard quantization of the field writing (similarily to what is done in Chapter 1),

υ
(λ)

k⃗
= υk (η) â

(λ)

k⃗
+ υ∗k (η) â

(λ)†
−k⃗

, (3.44)

where the modes are normalized so that they satisfy v∗kv
′
k − vkv

∗
k
′ = −i, and this condition en-

sures that â
(λ)
k and â

(λ)†
−k behave as the canonical creation and annihilation operators. Following

the simplest and most natural hypothesis, as initial condition, we assume that the Universe was in

the vacuum state defined as â
(λ)
k |0⟩ = 0 at past infinity, that is the “Bunch-Davies vacuum state” [29].

Equation (3.39) is a Bessel equation, which, in case of de Sitter spacetime, has the following ex-
act solution [2][60]:

υk⃗ (η) =
√
−η
[
C1H

(1)
ν (−kη) + C2H

(2)
ν (−kη)

]
, (3.45)

where C1, C2 are integration constants, H
(1)
v , H

(2)
v are Hankel functions of first and second order and

v ≃ 3/2+ ϵ. Remember we have negative sign to η because, from its definition, it lies in −∞ < η < 0.
To determining C1 and C2, we impose that in the sub-horizon scales, the solution matches the plane-
wave solution e−ikη/

√
2k found before. This hypothesis is a direct consequence of the Bunch-Davies

vacuum condition. Using the asymptotic form of Hankel functions:

H(1)
ν (x≫ 1) ∼

√
2

πx
ei(x−

π
2 ν−

π
4 ) , H(2)

ν (x≫ 1) ∼
√

2

πx
e−i(x−

π
2 ν−

π
4 ) . (3.46)
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The second term in the solution has negative frequency, so that we have to fit C2 = 0, while matching
the asymptotic solution to a plane wave leads to,

C1 =

√
π

2
ei(ν+

1
2 )

π
2 . (3.47)

Then the exact solution becomes,

υk⃗ =

√
π

2
ei(ν+

1
2 )

π
2
√
−ηH(1)

ν (−kη) . (3.48)

But actually as we mentioned earlier, we are interested in the super-horizon wavelength behaviour,
where the Hankel function reads,

H(1)
ν (x≪ 1) ∼

√
2/πe−i

π
2 2ν−

3
2 [Γ (ν)/Γ (3/2)]x−ν , (3.49)

so that the fluctuations on such scales become,

υk⃗ = ei(ν−
1
2 )

π
2 2(ν−

3
2 )

Γ (ν)

Γ (3/2)

1√
2k

(−kη)
1
2−ν , (3.50)

where Γ is the Euler function.

With the latter equation we can now write the adimensional tensor power-spectrum. Considering
that here we deal with two polarization states. Similar to Eq. (1.86), we have,

PT (k) =
k3

2π2

∑
λ

∣∣∣h(λ)
k⃗

∣∣∣2 , (3.51)

so that on super-horizon scales, similar to Eq. (1.87) the following power-spectrum holds,

PT (k) =
8

M2
pl

(
H

2π

)2 (
k

aH

)−2ϵ

. (3.52)

Notice that it is almost scale-invariant, which means that all the GW produced, nearly frozen on
super-horizon scales, have all the same amplitude. In this case the power-spectrum is called red,
where nT = −2ϵ and ϵ > 0, while for nT > 0 it is indicated as blue, and the case in which nT = 0 is
referred to as scale-invariant. In general, the tensor spectral tilt nT is given by,

nT =
d ln PT(k)

d ln k
, (3.53)

with,

PT(k) ∝ knT , (3.54)

which is already shown in Eq. (3.52).

3.3.2 Consistency Relation

The relative contribution of GW is often indicated by the tensor-to-scalar ratio r, defined as,

r(k∗) ≡ AT(k∗)

AS(k∗)
, (3.55)

where AT(k∗) is the tensor amplitude at some pivot scale k∗ and AS(k∗) is the scalar amplitude at
the same scale. That yields the amplitude of the GW with respect to that of the scalar perturbations
at some fixed pivot scale k∗. We take it to be k = aH, i.e. at horizon crossing. From Eq. (3.52), this
quantity depends on the time-evolution of the inflaton field, as

r =
8

M2
pl

(
φ̇

H

)2

, (3.56)

44



3.4. GRAVITATIONAL WAVES FROM PHASE TRANSITIONS

that is r = 16ϵ. Furthermore, we have shown that a nearly scale-invariant spectrum of tensor modes
is expected, being nT = −2ϵ. Therefore at the lowest order in slow-roll parameters, one finds the
following consistency relation [79]:

r = −8nT . (3.57)

If this relation really holds true it means that it will be very hard to measure any scale dependence
of the tensors, since a large spectral index would invalidate the consistency relation. The consistency
relation tells us that if inflation produces a significant amount of gravitational waves (large r), then
the tensor perturbations should have a specific spectral tilt, or spectral index (nT ). In particular, if
inflation is consistent with observations and produces observable gravitational waves, then r and nT
should be related by the above equation.

3.4 Gravitational Waves from Phase Transitions

We are aware of the concept Phase Transitions (PTs), the simplest image we have of phase
transitions is that between solid, liquid and gas. PTs can also be cosmological: regions of the
universe can abruptly transition from one ground state to another. In this section, we study how
gravitational waves are produced by first order phase transitions. We find that there are three
process that contribute to the GW production. Before discussing each contribution separately, we
define some relevant parameters that parametrize these different contributions. We also obtain an
order of magnitude estimate for the characteristic frequency today, which will be shown to be different
for each contribution.

3.4.1 First-order Phase Transitions

A first-order cosmological phase transition can occur when two local minima of the free en-
ergy coexist for some range of temperatures. In this scenario, the relevant scalar field can quantum
mechanically ’tunnel’ or thermally fluctuate into the new phase, see the discussion in Section 1.4.1.
These quantum or thermal processes involve the nucleation of bubbles in a sea of the metastable
phase. These bubbles will then expand and eventually collide with each other. This sequence of
events can give rise to a significant stochastic background of gravitational waves. But these bubbles
have to collide to source GWs, if they stay isolated, they will not source GWs.

In the production of gravitational waves during a first-order phase transition, three processes
play varying roles:

1. Collisions of bubble walls and (where relevant) shocks in the plasma: These collisions
can be treated using the ”envelope approximation” [64][74] and contribute to the GW spectrum
from the scalar field itself.

2. Sound waves in the plasma: After the bubbles have collided, sound waves can propagate
in the plasma until expansion dissipates the kinetic energy. These contribute to the GW back-
ground.

3. Magnetohydrodynamic (MHD) turbulence: This arises in the plasma formed after the
bubble collisions and contributes to the GW background as well.

These three processes typically coexist during a first-order PT, and their contributions to the stochas-
tic GW background combine linearly, at least approximately. So that,

h2ΩGW ≃ h2Ωϕ + h2ΩSW + h2Ωturb . (3.58)

During the adiabatic expansion of the universe, it may have undergone several phase transitions
driven by the decreasing temperature. These primordial PTs can give rise to various processes that
lead to the production of a Stochastic Gravitational Wave Background. In many cases, a relic SGWB
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is the only observable remnant after a PT occurs, making it a crucial source of information about
the nature of the phase transition itself. Studying the SGWB can provide valuable insights into the
physical processes and particles involved in these early universe transitions.

First-order phase transitions are characterized by the presence of a potential barrier within the
potential energy landscape associated with an order parameter. This barrier serves as a boundary
between two distinct states: the false, symmetric vacuum state and the true, symmetry-breaking
vacuum state. As the temperature of the system decreases, the true vacuum state becomes ener-
getically favored over the false vacuum. To make this transition from the false vacuum to the true
vacuum possible, the potential barrier must be overcome. This can occur, as we mentioned earlier,
through one of two mechanisms: quantum tunneling or thermal fluctuations. In terms of physical
space, this transition corresponds to the formation of small bubbles of the true vacuum within the
larger, space-filling region of the false vacuum. These bubbles then undergo expansion, driven by the
pressure difference acting on their walls. This process ultimately leads to the transformation of the
entire system from the false vacuum to the true vacuum state.

In the simplified scenario of a phase transition occurring in a vacuum, the energy released dur-
ing the transition primarily contributes to the kinetic energy of the expanding bubble walls, causing
them to accelerate to nearly the speed of light. However, in the early universe, where these phase
transitions take place, the surrounding space is filled with a primordial plasma. In this more realistic
setting, a significant portion of the energy released is converted into thermal energy, elevating the
temperature of the surrounding plasma. Furthermore, some of the released energy remains invested
in the kinetic energy associated with the motion of the bubble walls. Additionally, because the field
responsible for the phase transition is often coupled to other fields present in the plasma, a portion
of the released energy is transferred to the collective motion of the surrounding fluid. These complex
interactions give rise to a diverse range of physical processes and generate sources of gravitational
waves linked to first-order phase transitions in the early universe.

In fact, when examining the energy-momentum tensors associated with the gradient energy
stored in the expanding bubble walls of the field and the energy-momentum tensor representing the
kinetic energy of the bulk plasma motions, if they possess non-zero components of anisotropic stress
in their spatial dimensions (typically represented by ’ij’). Then, these non-zero tensor components
with spatial anisotropy can serve as origins or sources of gravitational waves. This potential for
gravitational wave generation is indicated by [31],

ḧij(x⃗, t) + 3H ḣij(x⃗, t) −
∇2

a2
hij(x⃗, t) = 16πGΠTT

ij (x⃗, t) , (3.59)

contributing to the stochastic gravitational wave background. The anisotropic stress, when it exists,
can be one of the factors contributing to the production of GWs during first-order phase transitions
in the early universe. Here ∇2 = ∂i∂i is the Laplacian associated to the comoving coordinates xi, a
dot denotes derivative with respect to t, H = ȧ/a is the Hubble rate, and ΠTT

ij is the transverse and
traceless part of the anisotropic stress. The anisotropic stress is given by,

a2Πij = Tij − p a2(δij + hij) , (3.60)

where Tij denotes the spatial components of the energy-momentum tensor of the source, and p is
the background pressure. In the RHS of Eq. (3.60), the term in p δij is a pure trace that does not
contribute to ΠTT

ij , while the term in p hij cancels out with an identical term of opposite sign that
emerges in the derivation of Eq. (3.59).

In general, the detection of a SGWB would serve as a valuable probe for studying the occurrence
and nature of cosmological first-order phase transitions, bringing new insights into the underlying
high-energy theory describing the primordial universe.
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3.4.2 Relevant Parameters and Frequency Shape of the SGWB Spec-
trum

The gravitational wave signal originating from first-order phase transitions is contingent upon
several critical parameters [31][32]. These parameters encompass various aspects of the evolving bub-
bles within the symmetry-broken phase, including their sizes at the moment of collision and the speed
at which their walls expand. Also, an essential factor is the amount of energy available for generating
gravitational waves. This energy reservoir is linked to tensor anisotropic stresses, which, in turn,
are influenced by a range of contributing factors. Among these factors, the strength of the phase
transition itself plays a significant role. The interaction of the field undergoing the phase transition
with the surrounding plasma particles is pivotal in determining the energy release and consequent
gravitational wave generation as well.

It’s important to note that the precise numerical values of these parameters are highly depen-
dent on the specific details and particle physics characteristics of the phase transition in question.
However, but the gravitational wave signal can be effectively described in a phenomenological manner
that is nearly model-independent, in terms of these parameters. The gravitational wave signal from
first-order phase transitions is a complex interplay of bubble dynamics, energy release mechanisms,
and the interactions between the transitioning field and the surrounding plasma. Understanding and
characterizing these parameters is essential for predicting and interpreting the gravitational wave
signatures associated with such phase transitions in the early universe.

Of significance for gravitational wave production is T∗, which represents the temperature of the
thermal bath at the moment t∗ when GWs are generated. This typically occurs towards the conclusion
of the phase transition, coinciding with the time of bubble collisions. For phase transitions that do
not involve significant supercooling and reheating, T∗ is approximately equivalent to the nucleation
temperature, denoted as Tn. The nucleation temperature is determined by the nucleation rate shown
below [58] and corresponds to the temperature at which the probability of nucleating one bubble per
horizon volume becomes roughly one,

Γ(t) = A(t)e−S(t) , (3.61)

where A is a pre-factor with unit of energy to the fourth power, A(t) ∼ M4, where M ∼ T is the
typical energy scale of the transition and S is the Euclidean action of a critical bubble [77][90] also a
function of T [58]. One can define an approximate inverse time duration of the PT, denoted as β, as
the rate of change of the bubble nucleation rate, taking into account that most of the time variation
of Γ(t) is associated with S(t),

β ≡ −dS
dt

∣∣∣∣
t∗

≃ Γ̇

Γ

∣∣∣∣∣
t∗

. (3.62)

The ratio between the inverse duration of the PT, denoted as β, and the inverse characteristic rate
of expansion of the universe at the PT time H(T∗), represents a fundamental parameter for the GW
signal, as we will demonstrate. From the adiabaticity of the expansion of the universe, dT/dt = −TH,
therefore,

β

H∗
= T∗

dS

dT

∣∣∣∣
T∗

. (3.63)

This parameter determines R∗, which represents the size of the bubbles near the end of the
PT. If vw is the speed of the bubble wall in the rest frame of the fluid and far from the bubble, then
R∗ ≃ vw/β.

The strength of the PT is quantified by comparing the vacuum energy density released during
the transition to the radiation energy density in the universe at the time of the PT. This parameter
is sometimes defined in the literature in terms of the latent heat instead of the vacuum energy,

α =
ρvac
ρ∗rad

. (3.64)
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The magnitude of the gravitational wave signal hinges on the available reservoir of energy capable
of generating these waves. In many scenarios, the phase transition takes place within a thermal
environment where a substantial portion of the liberated energy is transformed into heat, contributing
little to GW production. However, during the phase transition, the process of bubble nucleation
unfolds, setting the stage for the motion of bubble walls. Toward the latter stages of the phase
transition, as these bubbles collide, they give rise to a non-zero tensor anisotropic stress, which serves
as a catalyst for GW generation. As we discussed, this anisotropic stress can emerge from two
primary sources: the gradient energy stored within the bubble walls or the collective motion induced
within the fluid by the bubbles. This is true assuming that the field responsible for driving the phase
transition is coupled to the surrounding plasma. Hence,

κϕ =
ρϕ
ρvac

, κv =
ρv
ρvac

. (3.65)

From [31], one has,

ρ∗GW

ρ∗tot
∼
(
H∗

β

)2(
Π

ρ∗tot

)2

, (3.66)

which shows that the GW energy density scales like the square of the ratio of the GW source duration
and the Hubble time, and the square of the ratio of the energy density in the source and in the universe
at the emission time, which makes sense. Also from [31], the amplitude of the SGWB today becomes,

h2 ΩGW ∼ 1.6 × 10−5

(
100

g∗(Tp)

)1/3(
H∗

β

)2(
κα

1 + α

)2

, (3.67)

where, to rewrite Π/ρ∗tot, we have used ρ∗tot = ρ∗rad + ρvac, and we have set κ ∼ Π/ρvac, where κ can
be either of the parameters defined in (3.65).

To generate a gravitational wave signal above the sensitivity threshold of a future interferometric
detector like LISA (h2ΩGW ≳ 10−13), certain conditions must be met. Typically, detectable signals
are produced by very energetic processes involving a substantial fraction of the total energy density in
the universe. Simultaneously, these processes need to be relatively slow, minimizing the value of the
parameter β/H∗. Specifically, for a GW signal to be detectable, the product (H∗/β)(Π/ρ∗tot) should
be greater than or roughly of the order of 10−4. These conditions could be understood looking at
Eq. (3.67).

As previously mentioned, the processes leading to the production of the stochastic gravitational
wave background primarily occur towards the end of the phase transition when bubble collisions take
place. The characteristic wave number k∗ of the SGWB generated by these processes corresponds to
the inverse of the typical time or length scale of the problem. Specifically, it can be related to either the
duration of the PT or the size of the bubbles. Therefore, k∗/a∗ ≃ 2πβ or k∗/a∗ ≃ 2π/R∗ ≃ 2πβ/vw,
depending on the specific characteristics of the source. In these expressions, a∗ represents the scale
factor at the time of SGWB production, β is the inverse duration of the PT, and R∗ is the size of
the bubbles during the late stages of the PT.

If the growth of the bubble proceeds at a highly relativistic speed, the two time/length scales
are equal. Setting, for example, k∗/a∗ ≃ 2πβ, you can [31] obtain an order of magnitude estimate for
the characteristic frequency today. This estimate is given by:

f ∼ 1.6 × 10−5 Hz
β

H∗

(
g∗(T∗)

100

) 1
6 T∗

100 GeV
. (3.68)

Since at the end of the PT one expects the entire universe to be converted to the broken phase, i.e.
true vacuum, in general the PT must complete faster than a Hubble time, so that β/H∗ > 1.

From the above equation, it appears that indeed, the characteristic frequency of gravitational
waves emitted during a phase transition, such as the Electroweak (EW) symmetry breaking at around

48



3.4. GRAVITATIONAL WAVES FROM PHASE TRANSITIONS

100 GeV, can fall within the frequency range of space-based interferometers like LISA. Specifically,
for values of 1 ≲ β/H∗ ≲ 105, the characteristic frequency is in the LISA frequency range. This is
an interesting feature because it suggests that future space-based interferometers like LISA may have
the capability to detect the stochastic gravitational wave background generated during such phase
transitions, providing valuable insights into the early universe and the nature of these transitions.

3.4.3 Contribution to the SGWB from the Scalar Field driving the
PT: Bubble Wall Collisions

Gravitational wave production resulting from the collision of bubble walls during a phase tran-
sition is often analyzed using the envelope approximation. This modeling approach streamlines nu-
merical simulations by approximating the bubble walls as spherical, infinitely thin shells, rather than
explicitly evolving the scalar field using the Klein-Gordon equation. Under this approximation, grav-
itational waves originate from the transverse-traceless (TT) component of the energy-momentum
tensor associated with the uncollided envelope of these spherical bubbles.

This method has demonstrated its validity in various scenarios, particularly for strongly first-
order phase transitions that occur both in vacuum and thermal environments. It is particularly
effective when these phase transitions advance at supersonic speeds, a condition often referred to as
“detonation”. In such cases, the energy-momentum tensor characterizing the collective fluid motions,
which are responsible for generating gravitational waves, can be effectively concentrated within a thin
shell located near the bubble wall.

Recent numerical simulations using the envelope approximation have provided improved accu-
racy and a better understanding of a larger portion of the GW spectrum. These simulations have
also allowed for a more detailed analysis of the high-frequency behavior of the SGWB spectrum. The
resulting SGWB spectrum is [64][102],

h2Ωϕ(f) = 1.67 × 10−5

(
H∗

β

)2(
κϕ α

1 + α

)2(
100

g∗(T∗)

)1/3(
0.11 v3w

0.42 + v2w

)
× 3.8(f/fϕ)2.8

1 + 2.8(f/fϕ)3.8
, (3.69)

where the peak frequency fϕ corresponds roughly to the characteristic time-scale of the PT, i.e. its
duration 1/β,

f∗
β

=
0.62

1.8 − 0.1vw + v2w
, (3.70)

which becomes, once redshifted to today,

fϕ = 1.65 × 10−2 mHz

(
f∗
β

)(
β

H∗

)(
T∗

100 GeV

)(
g∗(T∗)

100

) 1
6

. (3.71)

3.4.4 Contribution to the SGWB from the Bulk Fluid Motions:
Sound Waves

The characteristics of the bulk flow depend on the strength of the coupling of the field driving
the PT to the fluid particles: this coupling strongly influences the bubble evolution, as demonstrated
by many analyses. In general, it can be assumed that the propagation quickly reaches stability, and
the bubble walls expand with a constant velocity, vw, which can be either subsonic (deflagration)
or supersonic (detonation). The bubble wall speed, vw, should be determined by a full analysis
of the microscopic interactions, of the type carried out. However, from the point of view of GW
production, the problem can be tackled by introducing a phenomenological parameter, the friction,
η, and by studying the bubble evolution as a function of this parameter [49]. Both semi-analytical
methods (see e.g., [65]) and numerical simulations (see e.g., [55]) show that the friction modeling the
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interactions influences the bubble wall velocity and the transfer of kinetic energy of the scalar field to
bulk kinetic energy of the fluid [49], which are important parameters entering the GW production rate.

The most recent and detailed numerical simulations of the full system of the scalar field per-
forming the transition and the surrounding fluid coupled to it via a friction parameter η have been
performed in Refs. [62][63]. These have demonstrated that compressional modes, i.e., sound waves,
are induced in the surrounding fluid by the expansion of the bubbles due to the coupling between
the scalar field and the fluid. At bubble collisions, the sound waves give rise to a non-zero tensor
anisotropic stress that is a powerful source of GWs. Simulations have furthermore found that the
sound waves continue to act as a source of GWs well after the merging of the bubbles is completed
and the scalar field has everywhere settled in the true vacuum. They remain present in the fluid
until either they are damped by viscosity or they generate shocks. The long-lasting nature of the
sound waves in the primordial fluid enhances the GW signal by a factor β/H∗, making them the most
relevant contribution to the SGWB spectrum in the case of PTs that are not very strongly first order
and happen in a thermal environment.

The SGWB spectrum from sound waves, fitted from the numerical results of [63], is given by:

h2Ω
SW

(f) = 2.65 × 10−6

(
H∗

β

)(
κv α

1 + α

)2(
100

g∗(T∗)

)1/3

vw ×
(

f

f
SW

)3(
7

4 + 3(f/f
SW

)2

)7/2

,

(3.72)

where the peak frequency is set by the characteristic size of the bubbles at the end of the transition,

and it is approximately given by fsw ≃ 2√
3

(
β
vw

)
, which, after redshifting, becomes:

fSW = 1.9 × 10−2 mHz
1

vw

(
β

H∗

)(
T∗

100 GeV

)(
g∗(T∗)

100

) 1
6

. (3.73)

3.4.5 Contribution to the SGWB from the Bulk Fluid Motions:
MHD Turbulence

In addition to sound waves, the merging of bubbles during a phase transition could also give
rise to swirling or rotational motions within the surrounding fluid. These rotations, or vortical mo-
tions, constitute an independent source of gravitational waves. The primordial plasma in the early
universe is characterized by an extraordinarily high Reynolds number, which is on the order of 1013

at energies around 100 GeV and at the typical scale of the bubbles. This high Reynolds number
indicates that when the bubbles collide, they inject energy into the surrounding medium, leading
to the formation of what is known as magneto-hydrodynamic (MHD) turbulence and a subsequent
generation of GWs through the anisotropic stresses of the chaotic fluid motions and magnetic fields
that become prevalent in this energetic environment. It’s important to note that turbulence in the
early universe is often accompanied by the presence of magnetic fields, as the plasma in this era is
fully ionized and exhibits extremely high electrical conductivity. Turbulence can also enhance small
magnetic fields that are generated due to charge separation processes at the bubble walls.

In the simulations of [62][63], the vortical component of the bulk fluid motions has been evalu-
ated and was always largely sub-dominant with respect to the compressional one. However, after a
characteristic time τsh ∼ (vw/

√
κvα)β−1 (see e.g., [87]), one expects the formation of shocks that will

eventually convert the acoustic signal into a turbulent one. This happens, of course, only if τsh ≤ H−1
∗ ,

i.e., if shocks can develop within one Hubble time. From [26][30], the resulting contribution of MHD
turbulence to the GW spectrum is,

h2Ωturb(f) = 3.35 × 10−4

(
H∗

β

)(
κturb α

1 + α

) 3
2
(

100

g∗(T∗)

)1/3

vw

× (f/fturb)3

[1 + (f/fturb)]
11
3 (1 + 8πf/h∗)

, (3.74)
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where,

κturb = ϵ κv , (3.75)

represents the (yet unknown) fraction of bulk kinetic energy associated to the vortical motions, as
opposed to the compressional modes. Similarly to the sound waves case, the peak frequency is
connected to the inverse characteristic length-scale of the source, the bubble size R∗ towards the end
of the PT: fturb ≃ (3.5/2)(β/vw), which becomes, after red-shifting,

fturb = 2.7 × 10−2 mHz
1

vw

(
β

H∗

)(
T∗

100 GeV

)(
g∗(T∗)

100

) 1
6

. (3.76)
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Chapter 4

Anisotropies of the Cosmological
SGWB

As we discussed earlier in Chapter 3, the Stochastic Gravitational Wave Backrgound consists
of a superposition of gravitational waves from many unresolved and randomly distributed sources
throughout the cosmos. It could be due to astrophysical and cosmological processes. It is character-
ized by its frequency spectrum, since different astrophysical sources and cosmological events produce
gravitational waves at different frequencies.

This stochastic background showed some degree of anisotropy, that could have been inherited
both, at the time of its production, and during its propagation through the perturbed universe. We
aim to study and characterize the anisotropies of this background. Studying the directionality de-
pendence of the SGWB will help future dectectors with a better angular resolution of anisotropies of
the background, to distinguish among the various backgrounds.

In this chapter, we mainly review what has been done in [14] and [19], and we re-do all the
computations but in more details. We follow the Boltzmann approach to study the propagation effects
on the SGWB through scalar and tensor perturbations, and we find the expression for the energy
density contrast. We write the first order Boltzmann equation in terms of the function Γ, which
represents the perturbed part of the distribution function of gravitons, and we find the solution
for Γ. We then decompose the solution in Spherical Harmonics for each contribution: the Initial
condition term, the Scalar-sourced term, and the Tensor-sourced term. After doing so, we compute
the 2-point and 3-point correlation functions of the GW anisotropies, from which we get the angular
power spectrum and the angular bispectrum of the GW energy density. Recall that we are interested
in the cosmological sources, so after we probe the approach, we will mention two examples, one for
Inflation, and the other for Phase Transitions. We then show the imprint of relativistic particles on
the anisotropies of the SGWB. Finally, we move our attention to the initial conditions and study
the possibility of them being non-adiabatic, instead of the adiabatic assumption we have followed all
along.

4.1 Boltzmann Equation for Gravitational Waves

In this discussion, we explore the propagation of gravitons using a Boltzmann approach [39],
a method commonly employed in the study of the Cosmic Microwave Background (CMB) (refer to
[22][46]). Our analysis considers the distribution f of gravitons within the framework of a FLRW
background, incorporating first-order scalar and tensor perturbations. At the unperturbed level, in
accordance with the isotropic and homogeneous nature of the background, the graviton distribution
relies solely on time and the GW frequency p/2π where p⃗ is the physical momentum of the gravitons
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through q ≡ pa, where a represents the scale factor of the universe. Essentially, gravitons propagate
freely, with their physical momentum experiencing redshift during their journey. This behavior bears
a resemblance to that of CMB photons.

However, a fundamental distinction emerges when comparing the SGWB with the CMB: while
the temperature anisotropies in the CMB arise exclusively at the last scattering surface or later, the
universe remains transparent to GWs at all energy levels below the Planck scale. Consequently, the
SGWB offers a snapshot of the universe’s conditions immediately following inflation, carrying infor-
mation about the primordial universe and the mechanisms underlying GW formation. Additionally,
in contrast to photon distribution, gravitons’ initial population is not expected to be thermal, pre-
serving a ’memory’ of the initial state to the distribution. As we demonstrate, the non-thermal nature
of the spectrum typically results in angular anisotropies characterized by an order-one dependence
on the GW frequency. This stands in contrast to the CMB, where such dependence only manifests
at the second order in perturbation theory.

This initial state is inherently anisotropic since no GW production mechanism can be perfectly
homogeneous. Furthermore, GW propagation within the perturbed universe introduces additional
anisotropies. Our primary focus centers on large scales, operating within a regime where the comov-
ing momentum q of GWs is much larger than the comoving momentum k of large-scale perturbations;
q ≫ k.

We consider first order perturbations around FLRW background in the Poisson gauge,

ds2 = a2(η)[−e2Φdη2 + (e−2Ψδij + hij)dx
idxj ] , (4.1)

where a(η) is the scale factor as a function of the conformal time η. Φ and Ψ are scalar perturbations
while hij represent the transverse-traceless (TT) tensor perturbations. Following [14], [19] and [39]
we neglect linear vector modes since they are not produced at first order in standard mechanisms for
the generation of cosmological perturbations (as scalar field inflation), and we consider tensor modes
at linearised order.

We consider a distribution function f such that,

f = f(η, xi, q, ni) , (4.2)

which is a function the position xµ and the momentum pµ = dxµ/dλ, where λ represents an affine
parameter along the trajectory of GWs. This distribution is subject to the Boltzmann equation,
which is expressed as L[f ] = C[f(λ)] + I[f(λ)]. In this equation, the Liouville term L corresponds to
the derivative with respect to λ. The terms C and I respectively account for two distinct processes:
the interactions and collisions of GWs within their respective patches and their production from cos-
mological and astrophysical sources.

The collision interactions among GWs primarily affect the distribution at higher orders (within
an expansion series involving the gravitational strength 1/MPl) than those we are currently consid-
ering. For our purposes, these collision effects can be safely neglected. The term ’emissivity’ pertains
to the rate at which GWs are emitted and can arise from various sources, including astrophysical
phenomena like the merger of black holes in the relatively recent universe, as well as cosmologi-
cal processes such as inflation or phase transitions. In this particular study, our focus is solely on
the stochastic GW background originating from cosmological sources. Consequently, we treat the
emissivity term as an initial condition governing the GW distribution. This approach leads us to
investigate the free Boltzmann equation, expressed as df/dη = 0, in the perturbed universe,

df

dη
=
∂f

∂η
+
∂f

∂xi
dxi

dη
+
∂f

∂q

dq

dη
+
∂f

∂ni
dni

dη
= 0 , (4.3)

where n̂ ≡ p̂ is the GW direction of motion, and where we have used the comoving momentum q ≡ |p⃗|a
(as opposed to the physical one, used in [39],[46]). This simplifies the equations by factorizing out
the universe expansion.
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The first two terms in Eq. (4.3) encode free streaming, that is the propagation of perturbations
on all scales. At higher order this term also includes gravitational time delay effects. The third term
causes the red-shifting of gravitons, including the Sachs-Wolfe (SW) [95], integrated Sachs-Wolfe
(ISW) and Rees-Sciama (RS) effects. The fourth term vanishes to first order, and describes the effect
of gravitational lensing.

Keeping only the terms up to first order in the perturbations, Eq. (4.3) gives,

∂f

∂η
+ ni

∂f

∂xi
+ [

∂Ψ

∂η
− ni

∂Φ

∂xi
+

1

2
ninj

∂hij
∂η

]q
∂f

∂q
= 0 . (4.4)

We now assume that the distribution of GWs consists of two components: a primary, dominant
contribution characterized by a distribution function denoted as f̄ which is homogeneous and isotropic.
Alongside this dominant component, there exists a secondary, subdominant contribution represented
by δf These two distribution functions are determined by solving equation (4.4) at both zeroth and
first orders within the framework of perturbations. The subdominant anisotropic component δf can
be present as an initial condition. However, even if it is initially absent, Eq. (4.4) shows that this
anisotropy is produced by the propagation of the isotropic component f̄ in the perturbed background.
It is convenient to rescale the perturbed part of the distribution function as [14][96],

δf ≡ −q ∂f̄
∂q

Γ(η, xi, q, ni) . (4.5)

So, the distribution function f can be expanded as,

f(η, xi, q, ni) = f̄(q) + f (1)(η, xi, q, ni) + .... ≡ f̄(q) − q
∂f̄

∂q
Γ(η, xi, q, ni) + .... . (4.6)

In the case of a thermal distribution with temperature T it is observed that the parameter Γ is
proportional to δT/T This relationship holds true, particularly in the context of the CMB, where
the thermalization process ensures that temperature anisotropies remain independent of frequency
up to the second order in perturbations. For gravitons, as previously noted, the collisional term is
exceedingly small, and in the case of a general production mechanism, the parameter Γ typically
exhibits an order-one dependence on frequency. Note that, as we will demonstrate below, also in the
case of GWs, the effects of propagation lead to perturbations that are independent of frequency at
the linear order.

From the graviton distribution function, evaluated at the present time η0, we can compute the
SGWB energy density,

ρ
GW

(η0, x⃗) =
1

a40

∫
d3q q f(η0, x⃗, q, n̂) ≡ ρcrit,0

∫
d ln q ΩGW (x⃗, q) , (4.7)

where,

ΩGW (x⃗, q) =
1

ρcrit,0

dρ
GW

d ln q
, (4.8)

with dρ
GW

being the energy density in GW contained in the comoving momentum interval q to q+dq
[18], and from the chain rule we have,

d q

d ln q
= q . (4.9)

Substituting Eq. (4.9) and (4.7) into (4.8), we get,

ΩGW (x⃗, q) =
1

ρcrit,0

1

a40
4π q3 dq

1

d ln q
f(η0, x⃗, q, n̂) =

4π

ρcrit,0
(
q

a0
)4f(η0, x⃗, q, n̂) , (4.10)
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and similarily, its homogenous component,

Ω̄GW (q) ≡ 4π

ρcrit,0
(
q

a0
)4f̄(q) . (4.11)

For the full spectral energy density, account for a possibly anisotropic dependence, we define,

ΩGW (x⃗, q) ≡ 1

4π

∫
d2n̂ ω

GW
(x⃗, q, n̂) , (4.12)

where,

ω
GW

(x⃗, q, n̂) ≡ 4π

ρcrit,0
(
q

a0
)4f(x⃗, q, n̂) . (4.13)

In very good approximation, we can assume that the detector occupies a typical position in the
universe where ΩGW (x⃗, q) = Ω̄GW (q) [96] so that we disregard the dependence on the position. The
SGWB density contrast is given by,

δGW ≡ δω
GW

(x⃗, q, n̂)/Ω̄GW (q) ≡ ω
GW

(x⃗, q, n̂) − Ω̄GW (q)

Ω̄GW (q)
. (4.14)

From Eqs (4.11) and (4.13), the density contrast can be written as,

δGW =
δf(x⃗, q, n̂)

f̄(q)
, (4.15)

and since,
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Ω̄GW (q)

q

=
q
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+ 4 , (4.16)

therefore, we have,

[4 − ∂ ln Ω̄GW (q)

∂ ln q
]Γ(η0, x⃗, q, n̂) = − q

f̄(q)

∂f̄

∂q
Γ(η0, x⃗, q, n̂) , (4.17)

and finally,

δGW = [4 − ∂ ln Ω̄GW (q)

∂ ln q
]Γ(η0, x⃗, q, n̂) . (4.18)

We now aim to write the first order Boltzmann equation in terms of the function Γ, going term by
term, using Eq. (4.6),

∂f

∂η
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∂q
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ni
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q
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q
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ninj
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q
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− higher orders ,
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collecting all the terms together, neglecting the higher orders,

−q ∂f̄
∂q

∂Γ

∂η
− q

∂f̄

∂q
ni
∂Γ

∂xi
+
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q
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q
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1

2
ninj

∂hij
∂η

q
∂f̄

∂q
= 0 , (4.19)

and we get the desired form,

∂Γ

∂η
+ ni

∂Γ

∂xi
= S(η, xi, ni) , (4.20)

where,

S(η, xi, ni) =
∂Ψ

∂η
− ni

∂Φ

∂xi
− 1

2
ninj

∂hij
∂η

, (4.21)

is the source function which includes the physical effects due to cosmological scalar and tensor inhomo-
geneities. Clearly the source is q-independent, confirming what we said earlier about the anisotropies
arising at first order from propagation effects being frequency-independent.

It is convenient to Fourier transform with respect to spatial coordinates,

Γ ≡
∫

d3k

(2π)3
eik⃗·x⃗Γ(η, k⃗, q, n̂) , (4.22)

going again term by term,

∂Γ

∂η
=

∫
d3k

(2π)3
eik⃗·x⃗

∂Γ

∂η
,

ni
∂Γ

∂xi
= ni
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(2π)3
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∂Ψ

∂η
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(2π)3
eik⃗·x⃗

∂Ψ

∂η
,

ni
∂Φ

∂xi
= ni

∫
d3k

(2π)3
eik⃗·x⃗ikiΦ ,

1

2
ninj

∂hij
∂η

=
1

2
ninj

∫
d3k

(2π)3
eik⃗·x⃗

∂hij
∂η

,

so that, the first order Boltzmann equation in terms of the function Γ in fourier space is given by,

Γ′ + ikµΓ = S(η, k⃗, n̂) , (4.23)

where from now on prime denotes a derivative with respect to conformal time, and where we denote
by,

µ ≡ k̂ · n̂ , (4.24)

the cosine of the angle between the Fourier variable k⃗ and the direction of motion n̂ of the GW. In
Fourier space the source term reads,

S = Ψ′ − ikµΦ − 1

2
ninjh′ij . (4.25)

Integrating Eq. (4.23) gives,

Γ(η, k⃗, q, n̂) = eikµ(ηin−η)Γ(ηin, k⃗, q, n̂)

+

∫ η

ηin

dη′eikµ(η
′−η)[

dΨ(η′, k⃗)

dη′
− ikµΦ(η′, k⃗) − 1

2
ninj

∂hij(η
′, k⃗)

∂η′
] , (4.26)
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and integrating the second term by parts gives,

Γ(η, k⃗, q, n̂) = eikµ(ηin−η)[Γ(ηin, k⃗, q, n̂) + Φ(ηin, k⃗)] − Φ(η, k⃗)

+

∫ η

ηin

dη′eikµ(η
′−η)[

d[Ψ(η′, k⃗) + Φ(η′, k⃗)]

dη′
− ikµΦ(η′, k⃗) − 1

2
ninj

∂ĥij(η
′, k⃗)

∂η′
] , (4.27)

with the last two terms in the first line being the boundary terms of this integration. We are not
interested in the monopole term, so we can disregard the −Φ(η, k⃗) contribution to the solution, and
write,

Γ(η, k⃗, q, n̂) =

∫ η

ηin

dη′eikµ(η
′−η)([Γ(ηin, k⃗, q, n̂) + Φ(η′, k⃗)]δ(η′ − ηin)

+
∂[Ψ(η′, k⃗) + Φ(η′, k⃗)]

∂η′
− 1

2
ninj

∂ĥij(η
′, k⃗)

∂η′
) . (4.28)

In the following section, we decompose the n̂-dependence of that solution in spherical harmonics.

4.2 Spherical Harmonics Decomposition

Now, we separate the different contributions to the solution (4.28) and decompose each by
spherical harmonics,

Γ(η, k⃗, q, n̂) = ΓI(η, k⃗, q, n̂) + ΓS(η, k⃗, n̂) + ΓT (η, k⃗, n̂) , (4.29)

where I, S, and T stand for Initial, Scalar and Tensor sourced terms respectively and they are given
by,

ΓI(η, k⃗, q, n̂) = eikµ(ηin−η)Γ(ηin, k⃗, q) , (4.30)

ΓS(η, k⃗, n̂) =

∫ η

ηin

dη′eikµ(η
′−η)(Φ(η′, k⃗)]δ(η′ − ηin) +

∂[Ψ(η′, k⃗) + Φ(η′, k⃗)]

∂η′
) , (4.31)

ΓT (η, k⃗, n̂) = −1

2
ninj

∫ η

ηin

dη′eikµ(η
′−η) ∂ĥij(η

′, k⃗)

∂η′
. (4.32)

In order to compute the angular power spectrum, in an all-sky analysis we decompose the fluctuations
using spin-0 or spin-2 spherical harmonics. Since Γ is a scalar, we can express it as,

Γ(n̂) =
∑
ℓ

ℓ∑
m=−ℓ

ΓℓmYℓm(n̂) , (4.33)

inverted by,

Γℓm =

∫
d2nΓ(n̂)Y ∗

ℓm(n̂) . (4.34)

So now, we can write,

Γℓm =

∫
d2nY ∗

ℓm(n̂)

∫
d3k

(2π)3
eik⃗·x⃗Γ(η, k⃗, q, n̂)[ΓI(η, k⃗, q, n̂) + ΓS(η, k⃗, n̂) + ΓT (η, k⃗, n̂)]

≡ Γℓm,I + Γℓm,S + Γℓm,T . (4.35)

Now, let’s evaluate each term.
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4.2.1 Initial Condition Term and q-dependent Anisotropies

Let’s first evaluate the initial condition term,

Γℓm,I =

∫
d3k

(2π)3
eik⃗·x⃗0Γ(ηin, k⃗, q)

∫
d2nY ∗

ℓm(n̂)e−ik(η0−ηin)k̂·n̂ . (4.36)

We make use of the identity,

e−ik⃗·y⃗ =
∑
ℓ

(−i)ℓ(2ℓ+ 1)jℓ(ky)Pℓ(k̂ · ŷ) = 4π
∑
ℓ

ℓ∑
m=−ℓ

(−i)ℓjℓ(ky)Yℓm(k̂)Y ∗
ℓm(ŷ) . (4.37)

Since complex conjugation commutes with multiplication, in other words, taking the complex con-
jugate of the product of two complex numbers is the same as taking the product of their complex
conjugates in reverse order, then:∫

d2n
∑
ℓ

ℓ∑
m=−ℓ

Yℓm(k̂)Y ∗
ℓm(n̂)Y ∗

ℓm(n̂) =

∫
d2n

∑
ℓ

ℓ∑
m=−ℓ

Yℓm(n̂)Y ∗
ℓm(k̂)Y ∗

ℓm(n̂) = Y ∗
ℓm(k̂) . (4.38)

Therefore,

Γℓm,I = 4π(−i)ℓ
∫

d3k

(2π)3
eik⃗·x⃗0Γ(ηin, k⃗, q)Y

∗
ℓm(k̂)jℓ(k(η0 − ηin)) . (4.39)

Here x⃗0 denotes our location (that can be set to the origin), η0 denotes the present time, and ηin the
initial time. We can clearly see the dependence of the initial condition on the frequency q.

4.2.2 Scalar and Tensor Sourced Terms

Another source of anisotropy arises from the propagation of gravitational waves within the large-
scale scalar perturbations present in the universe. These scalar perturbations exhibit much smaller
wavenumbers (denoted as k) compared to the frequency of the gravitational waves (q). In that sense,
gravitational waves serve as a means to probe these extensive background scalar perturbations. As
long as these scalar perturbations remain within the linear regime (which is the case for the large-scale
modes that are relevant to the significant anisotropies we are interested in), we can describe them
using a transfer function. This transfer function is essentially a deterministic function that encodes
how these perturbations change with time, times a stochastic variable ζ However, this description
assumes the absence of isocurvature modes, particularly the absence of anisotropic stresses caused by
factors like relic neutrinos. Also, this assumption relies on the statistical properties of ζ being well-
established prior to the stage of propagation that we are examining. These properties are typically
determined during earlier cosmic epochs, such as during inflation or some early phase transition.
Therefore, the scalar perturbations are,

Φ(η, k⃗) = TΦ(η, k)ζ(k⃗) , Ψ(η, k⃗) = TΨ(η, k)ζ(k⃗) . (4.40)

And so, the scalar sourced term becomes,

ΓS(η0, k⃗, n̂) =

∫ η0

ηin

dη′eikµ(η
′−η0)[TΦ(η′, k⃗)δ(η′ − ηin) +

∂[TΨ(η′, k) + TΦ(η′, k)]

∂η′
]ζ(k⃗)

≡
∫ η0

ηin

dη′e−ikµ(η0−η
′)TS(η′, k)ζ(k⃗) . (4.41)

Note that we are assuming a single adiabatic mode (i.e. ζ(k⃗) is the operator associated with the
conserved curvature perturbation at super-horizon scales, see the discussion in the end of Chapter
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2). In spherical harmonics,

Γℓm,S = 4π(−i)ℓ
∫

d3k

(2π)3
eik⃗·x⃗0ζ(k⃗)Y ∗

ℓm(k̂)[TΦ(ηin, k)jℓ(k(η0 − ηin))

+

∫ η0

ηin

dη′
∂[TΨ(η′, k) + TΦ(η′, k)]

∂η′
jℓ(k(η0 − η′))] . (4.42)

From which, it is clear that, also the SGWB, feels, similarly to the CMB, a Sachs-Wolfe and integrated
Sachs-Wolfe effect, which are represented by the first and the second term in (4.42), respectively.

The last contribution is due to the GW propagation in the large-scale tensor modes, i.e., per-
turbations in the metric itself. The tensor sourced term becomes,

Γℓm,T = −
∫
d2nY ∗

ℓm(n̂)

∫
d3k

(2π)3
eik⃗·x⃗0

1

2
ninj

∫ η

ηin

dη′eikµ(η
′−η0) ∂hij(η

′, k⃗)

∂η′
(4.43)

To evaluate such term we decompose the tensor modes in right and left-handed (respectively λ = ±2)
circular polarizations [21],

hij ≡
∑
λ=±2

eij,λ(k̂)h(η, k)ξλ(ki) . (4.44)

The three factors involved in each term are, respectively, the tensor circular polarization operator,
the tensor mode function (equal for the two polarizations), and the stochastic variable for that tensor
polarization. Using the computations in Appendix A of [19], we get,

Γℓm,T = π(−i)ℓ
√

(ℓ+ 2)!

(ℓ− 2)!

∫
d3k

(2π)3
eik⃗·x⃗0

∑
λ=±2

−λY
∗
ℓm(Ωk)ξλ(k⃗)

∫ η0

ηin

dηh′(η, k)
jℓ(k(η0 − η))

k2(η0 − η)2
. (4.45)

It is better to write the three contributions in a more compact form as,

Γℓm,I = 4π(−i)ℓ
∫

d3k

(2π)3
eik⃗·x⃗0Γ(ηin, k⃗, q)Y

∗
ℓm(k̂)jℓ(k(η0 − ηin)) ,

Γℓm,S = 4π(−i)ℓ
∫

d3k

(2π)3
eik⃗·x⃗0ζ(k⃗)Y ∗

ℓm(k̂)T S
ℓ (k, η0, ηin) ,

Γℓm,T = 4π(−i)ℓ
∫

d3k

(2π)3
eik⃗·x⃗0

∑
λ=±2

−λY
∗
ℓm(Ωk)ξλ(k⃗)T T

ℓ (k, η0, ηin) , (4.46)

where,

T S
ℓ (k, η0, ηin) ≡ TΦ(ηin, k)jℓ(k(η0 − ηin)) +

∫ η0

ηin

dη′
∂[TΨ(η, k) + TΦ(η, k)]

∂η
jℓ(k(η − ηin))] ,

T T
ℓ (k, η0, ηin) ≡

√
(ℓ+ 2)!

(ℓ− 2)!

1

4

∫ η0

ηin

dη
∂h(η, k)

∂η

jℓ(k(η0 − η))

k2(η0 − η)2
, (4.47)

are linear transfer functions which represent the time evolution of the graviton fluctuations originated
from the primordial perturbation.

4.3 Correlators of GW Anisotropies

We now compute the 2-point and the 3-point angular correlators of the solutions (4.46). We
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assume that the stochastic variables are nearly Gaussian, with the 2-point functions,〈
Γ(ηin, k⃗, q)Γ

∗(ηin, k⃗
′, q)

〉
=

2π2

k3
PI(q, k)(2π)3δ(k⃗ − k⃗′) ,〈

ζ(k⃗)ζ∗(k⃗′)
〉

=
2π2

k3
Pζ(k)(2π)3δ(k⃗ − k⃗′) ,〈

ξλ(k⃗)ξ∗λ′(k⃗′)
〉

=
2π2

k3
Pλ(k)δλ,λ′(2π)3δ(k⃗ − k⃗′) , (4.48)

and the 3-point functions,〈
Γ(ηin, k⃗, q)Γ

∗(ηin, k⃗
′, q)Γ∗(ηin, k⃗

′′, q)
〉

= BI(q, k, k
′, k′′)(2π)3δ(k⃗ + k⃗′ + k⃗′′) ,〈

ζ(k⃗)ζ(k⃗′)ζ(k⃗′′)
〉

= Bζ(k, k
′, k′′)(2π)3δ(k⃗ + k⃗′ + k⃗′′) ,〈

ξλ(k⃗)ξλ′(k⃗′)ξλ′′(k⃗′′)
〉

= Bλ(k, k′, k′′)δλ,λ′δλ,λ′′(2π)3δ(k⃗ + k⃗′ + k⃗′′) . (4.49)

The assumption of nearly Gaussian modes is experimentally verified for the large-scale perturbations
of ζ and of ξλ, as obtained from the CMB data [37]. We assume that this is the case also for the
initial condition term. For simplicity of exposition, we have here assumed that the various terms are
not cross-correlated.

The computations performed so far assume statistical isotropy. Correspondingly, when we
combine (4.48) and (4.49) with (4.46) we obtain angular correlators with well specific dependence on
the multipole indices. Specifically, the two point correlators have the dependence,〈

ΓℓmΓ∗
ℓ′m′

〉
≡ δℓℓ′δmm′C̃ℓ ,

〈
Γℓ1m1

Γℓ2m2
Γℓ3m3

〉
≡
(
ℓ1 ℓ2 ℓ3
m1 m2 m3

)
b̃ℓℓ′ℓ′′ , (4.50)

while, under the above assumption, the angular power spectrum and the reduced bispectrum consists
of the three separate contributions,

C̃ℓ = C̃ℓ,I(q) + C̃ℓ,S + C̃ℓ,T , b̃ℓ1ℓ2ℓ3 = b̃ℓ1ℓ2ℓ3,I(q) + b̃ℓ1ℓ2ℓ3,S + b̃ℓ1ℓ2ℓ3,T . (4.51)

We recall that the form of the bispectrum factorizes the Wigner-3j symbols [73], which are nonvan-
ishing only provided that

∑
imi = 0 and that the three ℓi satisfy the triangular inequalities,

|ℓ1 − ℓ2| ≤ ℓ3 ≤ ℓ1 + ℓ2 ,

|m1| ≤ ℓ1 , |m2| ≤ ℓ2 , |m3| ≤ ℓ3 .

4.3.1 Angular Power Spectrum of GW Energy Density

We now compute the 2-point function for the initial condition term, using (4.46),〈
Γℓm,I(q)Γ

∗
ℓ′m′,I(q)

〉
=(4π)2(−i)(ℓ−ℓ

′)

∫
d3k

(2π)3
eik⃗·x⃗0

∫
d3k′

(2π)3
e−ik⃗

′·x⃗0

〈
Γ(ηin, k⃗, q)Γ

∗(ηin, k⃗
′, q)

〉
× Y ∗

ℓm(k̂)Yℓ′m′(k̂′)jℓ(k(η0 − ηin))jℓ′(k
′(η0 − ηin)) . (4.52)

we make use of the orthonormality condition of the spherical harmonics,
∫
d2n̂sYℓmsY

∗
ℓ′m′ = δℓℓ′δmm′ ,

and using (4.48), we compute the angular power spectrum as follows,∫
d3k

(2π)3
eik⃗·x⃗0

∫
d3k′

(2π)3
e−ik⃗

′·x⃗0

〈
Γ(ηin, k⃗, q)Γ

∗(ηin, k⃗
′, q)

〉
=

∫
d3k

(2π)3
eik⃗·x⃗0

∫
d3k′

(2π)3
e−ik⃗

′·x⃗0 × 2π2

k3
PI(q, k)(2π)3δ(k⃗ − k⃗′)

=

∫
4πk2dk

(2π)3
1

(2π)3
2π2

k3
PI(q, k)(2π)3

=

∫
dk

k
PI(q, k) ,
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which leads to, 〈
Γℓm,I(q)Γ

∗
ℓ′m′,I(q)

〉
= δℓℓ′δmm′4π

∫
dk

k
[jℓ(k(η0 − ηin))]2PI(q, k) . (4.53)

And using (4.50) we finally find,

C̃ℓ,I(q) = 4π

∫
dk

k
[jℓ(k(η0 − ηin))]2PI(q, k) , (4.54)

and analogously for the other terms,

C̃ℓ,S = 4π

∫
dk

k
T (S)2
ℓ (k, η0, ηin)Pζ(k) ,

C̃ℓ,T = 4π

∫
dk

k
T (T )2
ℓ (k, η0, ηin)

∑
λ=±2

Pλ(k) . (4.55)

4.3.2 Angular Bispectrum of GW Energy Density

The characterization of the non-Gaussian properties of the SGWB is a potential tool to dis-
criminate whether a SGWB has a primordial or astrophysical origin. The primoridal 3-point function
of the GW field, ⟨h3⟩, is unobservable, due to the decoherence of the associated phase (because of
the propagation, and the finite duration of the measurement [16][17]), with, possibly, the exception
of very specific shapes [45][88]. It is more convenient to consider the non-gaussianity associated to
the GW energy density angular distribution, which is not affected by this problem [13].

Starting from the initial conditions again, using (4.46) and the first of (4.49) we get,〈
3∏
i=1

Γℓimi,I(q)

〉
=

3∏
i=1

[4π(−i)ℓi
∫

d3ki
(2π)3

Y ∗
ℓimi

(k̂i)jℓi(ki(η0 − ηin))]

×BI(q, k1, k2, k3)(2π)3δ(3)(k⃗1 + k⃗2 + k⃗3) . (4.56)

And using the representation of the Dirac δ-function,

δ(3)(k⃗1 + k⃗2 + k⃗3) =

∫
d3y

(2π)3
ei(k⃗1+k⃗2+k⃗3)·y⃗ , (4.57)

where d3y = y2dydΩy, and so,∫
d3y

(2π)3
eik⃗·y⃗ =

1

(2π)3

∫ ∞

0

y2dy

∫
dΩy e

ik⃗·y⃗ , (4.58)

and from (4.37),

eik⃗·y⃗ = 4π
∑
LiMi

iLjL(ky)YLiMi
(k̂)Y ∗

LiMi
(Ωy) , (4.59)

therefore,

1

(2π)3

∫ ∞

0

y2dy

∫
dΩy e

ik⃗·y⃗ =

∫ ∞

0

y2dy

∫
dΩy

1

(2π)3
4π
∑
LiMi

iLijLi(kiy)YLiMi(k̂i)Y
∗
LiMi

(Ωy)

=

∫ ∞

0

y2dy

∫
dΩy

1

2π2

∑
LiMi

iLijLi(kiy)Y ∗
LiMi

(Ωy)YLiMi(k̂i) . (4.60)
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And using the orthonormality of the spherical harmonics again, we arrive to,〈
3∏
i=1

Γℓimi,I(q)

〉
=

∫
d2n̂Yℓ1m1

(n̂)Yℓ2m2
(n̂)Yℓ3m3

(n̂)

×
∫ ∞

0

drr2
3∏
i=1

[4π

∫
4πk2i dki

(2π)3
jℓi(ki(η0 − ηin))

1

2π2
jℓi(kir)](2π)3BI(q, k, k

′, k′′) ,

(4.61)

where we have made use of the property Y ∗
ℓimi

(n̂)Yℓimi
(k̂i) = Yℓimi

(n̂)Y ∗
ℓimi

(k̂i). Therefore,〈
3∏
i=1

Γℓimi,I(q)

〉
= Gm1m2m3

ℓ1ℓ2ℓ3

∫ ∞

0

drr2
3∏
i=1

[
2

π

∫
dkik

2
i jℓi(ki(η0 − ηin))jℓi(kir)]BI(q, k, k

′, k′′) ,

(4.62)

where we have introduced the Gaunt integrals,

Gm1m2m3

ℓ1ℓ2ℓ3
≡
∫
d2n̂Yℓ1m1

(n̂)Yℓ2m2
(n̂)Yℓ3m3

(n̂)

=

√
(2ℓ1 + 1)(2ℓ2 + 1)(2ℓ3 + 1)

4π

(
ℓ1 ℓ2 ℓ3
0 0 0

)(
ℓ1 ℓ2 ℓ3
m1 m2 m3

)
. (4.63)

We remark that also the bispectrum from the initial condition also generally as an O(1) dependence
on the GW frequency.

Similarily for the Scalar and Tensor sourced contributions we get,〈
3∏
i=1

Γℓimi,S

〉
= Gm1m2m3

ℓ1ℓ2ℓ3

∫ ∞

0

drr2
3∏
i=1

[
2

π

∫
dkik

2
i T S
ℓi (ki, η0, ηin)jℓi(kir)]Bζ(k, k

′, k′′) ,〈
3∏
i=1

Γℓimi,T

〉
=
∑
λ=±2

3∏
i=1

[4π(−i)ℓi
∫
k2i dki
(2π)3

T T
ℓ,i(ki, η0, ηin)

∫
dΩki−λY

∗
ℓimi

(Ωki)]

〈
3∏
i=1

ξλ(k⃗i)

〉
.

(4.64)

The tensor sourced contribution can be also written in the form:〈
3∏
i=1

Γℓimi,T

〉
= Gm1m2m3

ℓ1ℓ2ℓ3
[

3∏
i=1

[4π(−i)ℓi
∫
k2i dki
(2π)3

T T
ℓ,i(ki, η0, ηin)]

∑
λ=±2

F̃λ
ℓ1ℓ2ℓ3(k1, k2, k3) , (4.65)

where,

F̃λ
ℓ1ℓ2ℓ3(k1, k2, k3) ≡

√
4π

(
ℓ1 ℓ2 ℓ3
0 0 0

)−1 ∑
m1,m2,m3

(
ℓ1 ℓ2 ℓ3
m1 m2 m3

)

× [

3∏
i=1

∫
dΩki

−λY
∗
ℓimi

(Ωki)√
2ℓi + 1

]
〈
ξλ(k⃗1)ξλ(k⃗2)ξλ(k⃗3)

〉
. (4.66)

Note that we have neglected for simplicity all the mixed scalar-tensor correlators.

4.3.3 Reduced Bispectrum

We now write the explicit form of the reduced bispectra contributing to (4.51),
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b̃ℓ1ℓ2ℓ3,I =

∫ ∞

0

drr2
3∏
i=1

[
2

π

∫
dkik

2
i jℓi(ki(η0 − ηin))jℓi(kir)]BI(q, k1, k2, k3) ,

b̃ℓ1ℓ2ℓ3,S =

∫ ∞

0

drr2
3∏
i=1

[
2

π

∫
dkik

2
i T S
ℓi (ki, η0, ηin)jℓi(kir)]Bζ(k, k

′, k′′) , (4.67)

and for the tensor bispectrum,〈
3∏
i=1

Γℓimi,T

〉
= Gm1m2m3

ℓ1ℓ2ℓ3
[

3∏
i=1

[4π(−i)ℓi
∫
k2i dki
(2π)3

T T
ℓ,i(ki, η0, ηin)]

∑
λ=±2

√
4π

(
ℓ1 ℓ2 ℓ3
0 0 0

)−1

×
∑

m1,m2,m3

(
ℓ1 ℓ2 ℓ3
m1 m2 m3

)
[

3∏
i=1

∫
dΩki

−λY
∗
ℓimi

(Ωki)√
2ℓi + 1

]
〈
ξλ(k⃗1)ξλ(k⃗2)ξλ(k⃗3)

〉
. (4.68)

Therefore,

b̃ℓ1ℓ2ℓ3,T =
4

π2

∑
λ=±2

∑
mi

(
ℓ1 ℓ2 ℓ3
0 0 0

)−2

Gm1m2m3

ℓ1ℓ2ℓ3
[

3∏
i=1

(−i)ℓi
2ℓi + 1

∫
d3kiT T

ℓ,i(ki)−λY
∗
ℓimi

(Ωki)]

× δ(k⃗ + k⃗′ + k⃗′′)Bλ(k⃗, k⃗′, k⃗′′) (4.69)

4.4 First Example: The Axion-Inflaton

As we previously mentioned, we will give two examples, one being on Inflation. Our goal here is
to understand under which conditions the initial term ΓI(q) has a nontrivial q-dependence, making it
distinct from other contributions to the anisotropy. We are specifically examining a scenario where an
axion inflaton ϕ sources gauge fields, which in turn generates a large GW background. In particular
we consider the specific evolution shown in Figure 4 of [52]. In this scenario, the inflaton potential
is chosen in such a way that it results in peak in the GW signal at frequencies that are relevant
for LISA, without overproducing scalar perturbations and primordial black holes. The amount of
GWs sourced in this mechanism is controlled by the parameter ξ ≡ (ϕ̇/2fϕH), where fϕ is the decay
constant of the axion inflaton. The present fractional energy in GW, ΩGW (η0, q), is related to the
primordial GW power spectrum Pλ(ηin, q) by [31],

ΩGW (η0, q) =
3

128
Ωrad

∑
λ

Pλ(ηin, q)[
1

2
(
qeq
q

)2 +
4

9
(
√

2 − 1)] . (4.70)

Since we are interested in the modes with q ≫ qeq, that entered the horizon during radiation domi-
nation, we consider only the second term in the square bracket, and we find,

ΩGW (η0, q) = constant ×
∑
λ

Pλ(ηin, q) . (4.71)

We are studying here the contribution from the initial condition, so we can safely neglect the
scalar and tensor modes. We therefore assume that the value of the energy density that arrives to
the location x⃗ from the direction n̂ is controlled by the parameter,

ξ = ξ̄ + δξ(x⃗+ dn̂) , (4.72)

where ξ is the value that this parameter had during inflation at the location x⃗ + dn̂, and d is the
distance covered by the gravitons between the initial and the present time (equal for all directions,
since we are disregarding the effect of the long scale modes ζ). In writing this relation, we have
assumed that the parameter ξ is in turn controlled by a dynamical field (the rolling axion, in the
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example of [52]), which results in the background value ξ̄, and in the perturbation δξ.
We generalize Eq. (4.1) to,

ωGW (η0, x⃗, q, n̂) = constant ×
∑
λ

Pλ(q, ξ(η0, x̃, n̂)) , (4.73)

which has the background value Ω̄GW (η0, q) = constant×
∑
λ Pλ(q, ξ̄). Therefore we have,

4 − ∂ ln Ω̄GW (η0, q)

∂ ln q
= 4 −

∂ ln[
∑
λ Pλ(q, ξ̄)]

∂ ln q
. (4.74)

The density contrast is given by,

δGW (η0, x⃗, q, n̂) =

∑
Pλ(q, ξ(η0, x⃗, n̂)) −

∑
Pλ(q, ξ̄)∑

Pλ(q, ξ̄)
. (4.75)

The numerator can be written as,∑
Pλ(q, ξ(η0, x⃗, n̂)) −

∑
Pλ(q, ξ̄) =

∑
Pλ(q, ξ̄ + δξ(x⃗+ dn̂)) −

∑
Pλ(q, ξ̄) . (4.76)

Taylor expanding the first term on the R.H.S, we get,

Pλ(q, ξ̄ + δξ(x⃗+ dn̂)) = Pλ(q, ξ̄) +
∂Pλ
∂ξ̄

δξ(x⃗+ dn̂) + . . . . (4.77)

Therefore,∑
Pλ(q, ξ̄ + δξ(x⃗+ dn̂)) −

∑
Pλ(q, ξ̄) =

∑(
Pλ(q, ξ̄) +

∂Pλ
∂ξ̄

δξ(x⃗+ dn̂) + . . .

)
−
∑

Pλ(q, ξ̄)

=
∑ ∂Pλ

∂ξ̄
δξ(x⃗+ dn̂) + . . . . (4.78)

Substituting this result back into the density contrast expression, we find,∑ ∂Pλ

∂ξ̄
δξ(x⃗+ dn̂)∑
Pλ(q, ξ̄)

=
∂ ln[

∑
λ Pλ(q, ξ̄)]

∂ξ̄
δξ(x⃗+ dn̂) . (4.79)

And the final expression is,

δGW (η0, x⃗, q, n̂) =

∑
Pλ(q, ξ(η0, x⃗, n̂)) −

∑
Pλ(q, ξ̄)∑

Pλ(q, ξ̄)
=
∂ ln[

∑
λ Pλ(q, ξ̄)]

∂ξ̄
δξ(x⃗+ dn̂) . (4.80)

From Eq. (4.18) we can write,

ΓI(η0, x⃗0, q, n̂) ≡ F(q, ξ̄)δξ(x⃗0 + dn̂) , (4.81)

with,

F(q, ξ̄) ≡ 1

4 − nT

∂ ln[
∑
λ Pλ(q, ξ̄)]

∂ξ̄
, nT ≡

∂ ln[
∑
λ Pλ(q, ξ̄)]

∂ ln q
, (4.82)

where we used the definition of the tensor spectral tilt nT mentioned earlier in (3.53). So, basically,
the question of whether we have or have not spectral distortion depends on whether the quantity
F(q, ξ̄) is or is not q-dependent. This provides an immediate criterion for evaluating whether and
how much the GW anisotropies depend on frequency.

We show in Figure 4.1 (taken from [19]) the evolution of the function F corresponding to the
GW production shown in Figure 4 of [52]. We see that indeed this quantity presents a nontrivial scale
dependence, and therefore the correlators of the anisotropies will be different at different frequencies.
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Figure 4.1: Quantity F as a function of the frequency f = q/2π of the GW signal for the model of
axion inflation described in the text. Taken from [19].

4.5 Second Example: First-Order Phase Transitions

In Chapter 3, we have described how first order phase transitions can produce GWs, contribut-
ing to the background. This gravitational wave background bears a similarity to the CMB, which
consists of 3K photons. Similar to how CMB radiation originates from the surface of the last scatter-
ing, gravitational waves effectively originate from a remote surface at the outer reaches of our universe
during the primordial times. These gravitational waves subsequently journey toward us, experiencing
substantial cosmological redshift along the way. Hence, they exhibit frequencies in the range of mHz
to Hz, along with signal strengths that could potentially be detected by some gravitational wave
observatories. The detailed frequency spectrum of this stochastic GW background would reflect the
physics of the PT, during a cosmological era otherwise difficult to access. The SGWB generated by
PTs also have anisotropies due to the primordial fluctuations, which could be generated during a
possible inflationary era well before the PT itself.

Following [53] and [75], we can define the two-point correlation function of GW perturbation
as:

CGW (θ) ≡ ⟨ρ
GW

(1)ρ
GW

(2)⟩θ
ρ̄2

GW

, (4.83)

where we are averaging over all pairs of points on the sphere, 1, 2, separated by a fixed angle θ. And
with δGW ≡ δρGW /ρGW , it can also be written as,

CGW (θ) ≡ ⟨δGW (n̂1)δGW (n̂2)⟩ . (4.84)

We expand the anisotropies in Legendre polynomials,

CGW (θ) =
1

4π

∑
ℓ

(2ℓ+ 1)CGWℓ Pℓ(cos θ) , (4.85)

with n̂1 · n̂2 = cos θ. From the CMB observation, besides small deviations coming from the physics of
inflation/reheating [24], we expect the large-scale GWB perturbation should be almost scale-invariant.
An exact scale invariant spectrum would correspond to,

CGWℓ ∝ [ℓ(ℓ+ 1)]−1 . (4.86)

Our ability to observe such GW anisotropies will be limited by detector sensitivity (which we will
discuss briefly in Chapter 6), as well as our understanding and ability to subtract the GW ”fore-
grounds” arising from astrophysical mergers and to account for the peculiar motion of the Earth.
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In [53], they assumed the bubble wall moves at the speed of light, and all of the latent heat goes
into GW and expressed the energy in GW in terms of the energy in CMB photons today as follows,

ρtoday
GW

= 0.06
ρ2PT
ρ2tot

(
H∗

β

)2

ργ , (4.87)

where ρPT is the energy density in the sector undergoing the PT, but clearly the largest signal
would arise if the entire contents of the universe undergoes the PT such that, ρtot = ρPT . This is
what they assumed and they have also assumed a single source of primordial fluctuations, and so
(δρ/ρ)GW = (δρ/ρ)CMB = 4.6 × 10−5. And so, from (4.87) the anisotropy is,

δρ
GW

= 2.8 × 10−6

(
H∗

β

)2

ργ . (4.88)

While in [75], they used (δρ/ρ)GW = 6 × 10−5, which would give,

δρ
GW

= 3.6 × 10−6

(
H∗

β

)2

ργ , (4.89)

which is of the same order anyways.

The Planck satellite CMB data [36] put isocurvature constraint is on the anisotropy such that,

δρ
GW

≲ 10−6ργ . (4.90)

4.6 The Imprint of Relativistic Particles on the Anisotropies of

the SGWB

In this section, we explore how the presence and motion of high-energy, relativistic particles,
such as photons and neutrinos, influence the observed variations in the SGWB across different direc-
tions in the universe. Relativistic particles can interact with gravitational waves in various ways. For
instance, gravitational waves passing through a medium containing relativistic particles may experi-
ence scattering or other interactions that modify their properties. The motion of relativistic particles
relative to an observer can also introduce a Doppler effect on gravitational waves. The presence of
relativistic particles can also lead to energy transfer between the particles and gravitational waves.
As a result, the energy content and spectrum of the SGWB can be influenced by these interactions.
In the early universe, when relativistic particles were abundant, their interactions with gravitational
waves could have had a significant impact on the observed anisotropies in the SGWB. This can pro-
vide insights into the conditions and processes that prevailed during the cosmic history.

It was shown in [43] and [101], that the energy density is sensitive to the evolution of the relativis-
tic degrees of freedom g∗ before matter-radiation equality (k > keq). The effective number relativistic
degrees of freedom is then given by the temperature-weighted sum of all particle contributions is,

g∗(T ) =
∑
i

g∗,i

(
Ti
T

)4

, (4.91)

where g∗,i is the intrinsic degrees of freedom of the different species, and Ti is their temperature. The
term (Ti/T )4 accounts for the temperature dependence of the contribution of each of the species i to
the energy density. It reflects the fact that as the universe expands and cools, the energy density of
relativistic particles decreases as T 4.

The energy density of relativistic particles can be written then in terms of g∗ as,

ρ(T ) =
π2

30
g∗(T )T 4 . (4.92)
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From the end of inflation until the present epoch, the temperature of the different particle species
decreases, and some particles would become non-relativistic before the others [101] and stop con-
tributing to the radiation energy density. In that sense, Tα ≲ mα, giving no more contribution to
g∗, which changes from g∗(T ≥ 104 MeV) ≃ 106, when all the SM particles contribute, to g∗(T ≤ 0.1
MeV) ≃ 3.36, when only photons and relativistic neutrinos contribute [43].

When relativistic particles are present in the universe, they can contribute to the anisotropic
stress. The transverse-traceless part of Einstein’s equations focuses on the behavior of gravitational
waves in the presence of perturbations in the stress-energy tensor, including the anisotropic stress.
The anisotropic stress, σdec, associated with certain species of relativistic particles can affect the
evolution of scalar metric perturbations through its influence on the gravitational field, as described
by the transverse-traceless part of Einstein’s equations [96],

k2(ϕ− ψ) = 16πGa2ρ̄decr σdec . (4.93)

The fractional energy density of decoupled relativistic particles is given by [43][96],

fdec(ηin) ≡ ρ̄decr (ηin)

ρ̄tot(ηin)
=
gdec∗ (Ti)

g∗(Ti)
, (4.94)

where gdec∗ (Ti) are the relativistic degrees of freedom of decoupled particles evaluated at temperature
Ti at the end of inflation, corresponding to conformal time ηin.

This influences the initial conditions for the scalar metric perturbations at the end of inflation,
such that it sets the value of the transfer function Tψ(ηin, k) in the expressions of ∆AD

ℓ and ∆SW
ℓ

in (5.9). Plus, any variation of fdec(ηin) over time leads to a nonzero derivative (ϕ′ + ψ′), and thus
contributes to the ISW transfer function ∆ISW

ℓ of (5.9). So, you see now how it affects the scalar
metric perturbations.

According to [43], [80] and [96], the solution of the perturbation equations on super-Hubble
scales and for the adiabatic mode gives,

ψ(ηin, k) =

(
1 +

2

5
fdec(ηin)

)
ϕ(ηin, k) , (4.95)

ϕ(ηin, k) = −2

3

(
1 +

4

15
fdec(ηin)

)−1

ζ(k⃗) , (4.96)

where ζ(k⃗) is the the gauge-invariant curvature perturbation of comoving spatial hyper-surfaces at
the end of inflation we defined before.

The fractional energy density of decoupled relativistic particles varies since ηin down to tempera-
tures around 0.1 MeV, when it reaches a constant value which depends on the chosen Neff ; for
instance for 3 light neutrino species that are free-streaming it corresponds to fdec(ηT<0.1MeV ) = 0.4
[43][96]. That means that, in this interval ϕ and ψ evolve for different fdec(ηin) values.

Now, we quantify the effect of the extra relativistic species on the angular power spectrum of the
scalar perturbation-induced anisotropies given in the first of Eqs (4.55) and (4.47), which dominate
on large scales, and as such they are the ones which can be probed by GW interferometers considering
their limited angular resolution. Rewriting the equation,

C̃ℓ,S = 4π

∫
dk

k

(
TΦ(ηin, k)jℓ(k(η0 − ηin)) +

∫ η0

ηin

dη
∂[TΨ(η, k) + TΦ(η, k)]

∂η
jℓ(k(η − ηin))

)2

Pζ(k) .

(4.97)

The authors of [43] modified the public code CLASS for the computation of CMB anisotropies [78]
adapting it to the SGWB. Then they have plotted C̃ℓ,S , showing how different values of fdec(ηin) (and
thus different choices for the end of inflation energy scale and implicitly for the number of relativistic
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Figure 4.2: SW contribution to the angular power-spectrum of the SGWB. We can see that by
increasing fdec(ηin) we are decreasing more and more the amplitude of the angular power spectrum.
For values of fdec(ηin) close to 1 we observe a saturation. Taken from [43].

particles present at that time) affect differently the spectra. The plot is shown if Fig. 4.2 and it shows
the effect on the SW contribution. Values of fdec(ηin) close to 1 are only considered for illustrative
purposes; as such a large fraction is not physically achievable. They then Considered that the effect
is generated by particles which are relativistic at their decoupling (Tdec > m), a simple estimate of
the damping at low ℓ is given by,

C̃SWℓ,S
4π

=
4

9

(
1 +

4

15
fdec(ηin)

)−2 ∫
dk

k
Pζ(k)j2ℓ (k(η0 − ηin)) . (4.98)

But why low multipoles? because measuring deviations in the SGWB anisotropies at low ℓ from the
angular power-spectrum for fdec(ηin) = 0 would be a proof that at early epochs there were decoupled
relativistic particle species contributing to the total energy density by an amount fdec(ηin).

As for the ISW contribution, it depends upon the variation of the potentials between ηin and
η0; so it is sensitive the evolution of fdec(ηin) up to low energies scales (T ≲ 0.1 MeV). Thus mea-
surements of the anisotropies of the SGWB anisotropies can constrain extra particles species both at
high and low energy scales. The effect of the change of number of relativistic degrees of freedom on
the ISW contribution to the angular power-spectrum is represented in Fig. 4.3 also plotted by the
authors of [43]. As anticipated, a higher number of relativistic species suppresses the ISW contribu-
tion at the largest angular scales through its effect on the early ISW contribution.

They also summed up the two scalar contributions to show the main effect on large angular
scales that, in the future, can be probed by GW interferometers. They plotted the result and it is
shown in Fig. 4.4, where the impact of a varying number of decoupled relativistic species is evident.
Note that they did not consider the contribution coming from the tensor background perturbations
since they found that they do not alter the spectrum at scales that can be probed in the future by
GW direct detection experiments.

We conclude that, the anisotropies observed in the SGWB, which originate from gravitational
waves produced during their propagation through the universe, starting from their decoupling at
the end of inflation and extending to the present day, are influenced by the presence of relativistic
particle species that have decoupled from the thermal bath. Given the limited angular resolution of
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Figure 4.3: ISW contribution to C̃ℓ,S . We observe a bump at large ℓ due to the fact that the potentials
at large ℓ have the maximum variation. Taken from [43].

Figure 4.4: Total scalar contribution to the SGWB angular power spectrum, sum of the SW and the
ISW terms. Taken from [43].
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future gravitational wave detectors, our focus has been on understanding the most significant effects
on large cosmic scales. Similar to the CMB, the SGWB at these large scales is subject to two main
effects: the Sachs-Wolfe (SW) effect and the Integrated Sachs-Wolfe (ISW) effect. Previous works
have undertaken a quantitative analysis to assess the impact of various decoupled particle species
on both the SW and ISW effects, and have calculated the SGWB angular power spectrum. These
findings reveal that the collective influence of a greater number of decoupled relativistic particle
species leads to a suppression of anisotropies at larger cosmic scales in the angular power spectrum
of the SGWB. This suppression effect holds the potential to become an observable phenomenon as
soon as advanced instruments detect these anisotropies.

4.7 Adiabaticity vs Non-adiabaticity of the Initial Conditions

So far we have focused much more on the propagation effects than the initial conditions, so,
maybe it is time we give our attention to those initial conditions. During our discussion, we have
always assumed the initial conditions, or the primordial fluctuations, to be adiabatic. But what if
they are not? In this section we investigate that possibility, but please put in mind that this is a
recently proposed research point, and so, not a lot of work has been done on it. We review what has
been done so far, in a brief way.

Recently, the authors of [96] have assumed that the monopole Γ0 is dominant over the dipole Γ1

and hence neglected the dipole for the non-adiabatic case just like in the adiabatic case. Consequently,
they defined the initial perturbation of Γ of the graviton phase-space distribution as follows,

Γ(ηin, k⃗, q, n̂) = Γ0(ηin, k⃗, q) = TAD
Γ (ηin, k, q)R(k⃗) + ΓNAD

0 (ηin, k⃗, q) . (4.99)

And, in the Newtonian gauge and for the adiabatic contribution, they used,

Γ0(ηin, k⃗, q) = − 2

4 − ngwb(q)
ψ(ηin, k⃗) , (4.100)

and expressed the adiabatic transfer function of Γ at a given frequency q as follows,

TAD
Γ (ηin, k, q) = − 2

4 − ngwb(q)
Tψ(ηin, k) . (4.101)

These expressions allowed them to write the total angular power spectrum of the CGWB auto-
correlation, including both, the adiabatic and non-adiabatic initial condition terms,

CCGWB×CGWB
ℓ

(4 − ngwb)2
= 4π

∫
dk

k

{[
∆AD
ℓ (k, η0, ηin, q) + ∆SW

ℓ (k, η0, ηin) + ∆ISW
ℓ (k, η0, ηin)

]2
PR(k)

+ [jℓ(k(η0 − ηin))]2 PNAD
Γ (k, q)

+ jℓ(k(η0 − ηin))
[
∆AD
ℓ + ∆SW

ℓ + ∆ISW
ℓ

]
P×(k, q)

+
[
∆T
ℓ (k, η0, ηin)

]2 ∑
λ=±2

Phλ
(k)
}
, (4.102)

where,

∆AD
ℓ (k, η0, ηin, q) ≡ − 2

4 − ngwb(q)
Tψ(ηin, k)jℓ(k(η0 − ηin)) ,

∆SW
ℓ (k, η0, ηin) ≡ Tψ(ηin, k)jℓ(k(η0 − ηin)) , (4.103)

∆ISW
ℓ (k, η0, ηin) ≡

∫ η0

ηin

dη
∂[Tψ(η, k) + Tϕ(η, k)]

∂η
jℓ(k(η0 − η)) .
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and the one for the tensor term is given before in Eq. (4.47). They also expressed the non-adiabatic
and cross-correlation primordial spectra,

PNAD
Γ (k, q) =

〈∣∣∣ΓNAD
0 (ηin, k⃗, q)

∣∣∣2〉 , (4.104)

P×(k, q) =
〈
R(k⃗) ΓNAD*

0 (ηin, k⃗, q) + R∗(k⃗) ΓNAD
0 (ηin, k⃗, q)

〉
. (4.105)

Few months later, the authors of [44] proposed that the adiabaticity of the initial conditions is
no longer valid, and that the such non-adiabaticity arises from the presence of independent tensor
perturbations during inflation, which behave as two extra fields that affect the standard single-clock
argument. Their argument was that: in cases where the CGWB originates directly from the infla-
ton field, such as during the decay of the inflaton into GWs in processes like reheating, the initial
conditions are adiabatic. This adiabatic nature occurs particularly in single-field models of inflation
because the characteristics of the energy spectrum of the source (in this case, the inflaton) are inher-
ited by the decay products. This adiabatic behavior aligns with the “separate universe assumption”,
a concept that ensures that when a single cosmic clock governs the evolution of the Universe, the
presence of adiabatic modes, where quantities like entropy remain constant, is practically inevitable.
However, a different scenario arises when stochastic GWs are generated by the intrinsic quantum fluc-
tuations of the metric. In this case, these fluctuations represent two additional independent degrees of
freedom, corresponding to the two polarizations of tensor perturbations. Under these circumstances,
non-adiabatic modes may emerge, even within the framework of single-field inflation.

In the case of the production of the CGWB by the decay of the inflaton during reheating, along
with other particle species, the initial conditions for the energy density of the CGWB are connected
to the perturbations of the inflaton, because the inhomogeneities in the inflaton field propagate to its
decay products. And so, they are adiabatic. They finally arrived to the same equation in (4.100).

In the case of the production of the CGWB by quantum fluctuations of the metric during
inflation, the scenario differs significantly. To apply the short-wave approximation, it is crucial that
the initial conditions for the CGWB are set when the high-frequency GWs have already crossed the
cosmological horizon. This is because it is important that the initial conditions for the CGWB are
set when the high-frequency GWs have already experienced multiple cosmic expansion phases. This
ensures that their wavelengths are considerably shorter than the current cosmological horizon size.
Another condition is thet the energy produced in the form of gravitational radiation is relatively
minor when compared to the energy from standard radiation sources because, according to Big-Bang
Nucleosynthesis and Planck constraints [31], one has the upper bound,

ρ̄GW(ηin)

ρ̄rad(ηin)
≲

(
gS(T0)

gS(Tin)

)4/3
7

8
∆Neff ≈ 4 × 10−3∆Neff , (4.106)

where the effective numbers of degrees of freedom are gS(T0) = 3.91 and gS(Tin) = 106.75, while
∆Neff = 0.046 [38]. Einstein’s equations exhibit a high degree of insensitivity to the presence of the
CGWB due to its relatively minor energy density contribution compared to other forms of radiation,
where ρ̄

GW
/ρ̄

rad
≪ 1. Moreover, the (0, 0) of Einstein equation, carries minimal information about

δGW . Also, the perturbations of gravitons are not directly linked to the perturbations of photons, since
they originate from two different sources. Therefore, the authors computed the energy-momentum
tensor of GWs in a perturbed FLRW metric, using the definition given in [66]. They found that,

ρ̄GW =
1

32πGa2
⟨h′ijhij ′⟩ , (4.107)

δρGW

ρ̄GW
= −2Φ + 4Ψ + 2Hk

n

⟨h′ikhin′⟩
⟨h′ijhij ′⟩

, (4.108)

which then they related to the perturbation of the distribution function of gravitons, showing the most
important features that this new initial condition produces on the anisotropies of the cosmological
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background. Here hij is the small-scale mode of the transverse-traceless tensor perturbation. The
result is,

Γ(ηin, k⃗, q⃗) =
1

4 − ngwb(q)

[
− 2Φ(ηin, k⃗) + 4Ψ(ηin, k⃗) + 2H(ηin, k⃗)(1 − µ2)

]
, (4.109)

considering the expansion for an unpolarized background Hij(η, k⃗) =
∑
λH(η, k⃗)eλij(k̂). Hij is the

large-scale mode of the transverse-traceless tensor perturbation

Expanding in spherical harmonics gives,

Γℓm,I = 4π(−i)ℓ
∫

d3k

(2π)3

[
Y ∗
ℓm(k̂)R(k⃗)∆I−S

ℓ (η0, k, ηin)

+
∑
λ

Y ∗−λ
ℓm (k̂)Hλ(k⃗)∆I−T

ℓ (η0, k, ηin)
]
, (4.110)

where,

∆I−S
ℓ =

1

4 − ngwb(q)
[−2TΦ(ηin, k) + 4TΨ(ηin, k)]jℓ[k(η0 − ηin)] , (4.111)

∆I−T
ℓ = − 1

4 − ngwb(q)
TH(ηin, k)

1

2

√
(ℓ+ 2)!

(ℓ− 2)!

jℓ[k(η0 − ηin)]

k2(η0 − ηin)2
. (4.112)

From which, the angular power-spectrum of the CGWB is given by,

CGW
ℓ

4π(4 − ngwb)2
=

∫
dk

k

[
PR(k)(∆I−S

ℓ + ∆SW
ℓ + ∆ISW

ℓ )2 + PT (k) (∆I−T
ℓ + ∆ISW−T

ℓ )2
]
. (4.113)

Neglecting the tensor perturbations, which are not so relevant here, it is clear that the contribution
to the anisotropy of the CGWB from the initial conditions in the case of single-field inflation, for
example, enhances the angular power-spectrum w.r.t adiabatic case by a factor,

CSFI+SW
ℓ

CAD+SW
ℓ

≈
(

4TΨ + [2 − ngwb(q)]TΦ
−2TΦ

)2

. (4.114)

Therefore, if ngwb = 0, the angular power-spectrum is enhanced by a factor 10. Another important
finding, is that, the angular power-spectrum of the CGWB at large angular scales is sensitive to the
fractional energy density of relativistic and decoupled species [43], as we already discussed in the
previous section, since the impact of these parameters depends on the choice of the initial conditions.

Finally, they plotted the angular power-spectrum of the CGWB with initial conditions in the
case of single-field inflation and for the standard adiabatic case, for ngwb = 0.35 considering the two
cases in which all relativistic particles are coupled, fdec = 0, and decoupled, fdec = 1. Their plot is
shown in Fig. 4.5. From that plot, it is clear that for the case of single-field inflation, the sensitivity
to this extra parameter is larger than in the case of standard adiabatic, i.e., the deviation of the
dashed line from the solid one is larger.

Okay but how can we test the nature of these initial conditions? and how can we use the result
to our benefit? Well, one way is by cross-correlating the CGWB with CMB (which we will study in
more details in the next chapter, but only considering adiabatic scalar perturbations). Focusing more
on the initial conditions and the scalar perturbations, since they are the dominant effects on large
angular scales for both backgrounds, and considering the constraints on the angular power spectrum
of CMB anisotropies that show that the initial condition for photons is adiabatic [92], we have two
cases:

• When we consider adiabatic initial conditions of the CGWB, the correlation is very large.
Because they are also exposed to the same scalar perturbations.
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Figure 4.5: Plot of the angular power-spectrum of the CGWB for adiabatic (blue) and single-field
inflation (orange) initial conditions, with ngwb = 0.35, in the case in which all the relativistic particles
at ηin are coupled (solid) and decoupled (dashed). Taken from [44].

• When we consider also non-adiabatic initial conditions of the CGWB, i.e., the case of single-field
inflation, they are still correlated with large-scale CMB anisotropies at last scattering, because
they are still exposed to the same the scalar perturbations, but since the initial conditions
combine differently with the other contributions to the angular power-spectrum, the correlation
decreases by a small fraction.

This fraction can be quantified using a correlation parameter defined as follows,

rCMB×CGWB
ℓ ≡

CCMB×CGWB
ℓ√
CCMB
ℓ CCGWB

ℓ

. (4.115)

From which, it is possible to show that, on large scales, in the case of adiabatic initial conditions,
r ≈ 0.98 while in the case of single-field inflation, r ≈ 0.8 − 0.9 [44]. So, if this parameter has
a different value for each case, then measuring it would be a way to test the nature of the initial
conditions, once the CGWB is detected.
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Chapter 5

Cross-correlating Gravitational
Wave Backgrounds with the
Cosmic Microwave Background

The cross-correlation between the cosmic microwave background (CMB) and gravitational waves
(GWs) involves studying the correlation between the temperature or polarization patterns of the
CMB and the gravitational wave signals from various sources, such as cosmic inflation or astrophys-
ical events. The correlation between the CMB and inflationary GWs can provide evidence for or
constraints on inflationary models. This cross-correlation can also reveal the amplitude and shape of
the primordial GW power spectrum. However, it can be challenging due to the presence of various
astrophysical foregrounds and instrumental noise in CMB observations. Careful data processing and
analysis are required to extract the gravitational wave signals. This cross-correlation give us infor-
mation about the primordial perturbations and the initial conditions as we will show in the following
sections.

In this chapter, we study the cross-correlation between CGWB and CMB, define the different
contributions, and study each of them separately at different multipoles.

5.1 CMB x CGWB

At this point we know that the gravitational wave background has both, astrophysical and cos-
mological origins. We are only interested in the cosmological background, and so, we will not consider
the astrophysical one here. The physics that governs SGWB anisotropies (at least in the geometric
optics limit) displays strong analogies with that underlying CMB fluctuations. General Relativity
predicts a non-zero spatial correlation between the SGWB and the CMB, since gravitons share their
perturbed geodesics with CMB photons. We study this correlation considering only the perturbations
induced by scalar fluctuations on cosmological scales, which provide the dominant contribution.

Assuming adiabatic scalar perturbations only, we can write the CMB x CGWB cross-correlation
angular power spectrum as [96],

δℓℓ′δmm′CCMB×CGWB
ℓ (q) ≡ 1

2
⟨δGW,ℓm(η, q)a∗ℓ′m′(η) + δ∗GW,ℓm(η, q)aℓ′m′(η)⟩ , (5.1)
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in which,

aℓm = 4π(−i)ℓ
∫

d3k

(2π)3
eik⃗·x⃗0 Y ∗

ℓm(k̂)R(k⃗) ΘS
ℓ (k, η0) , (5.2)

ΘS
ℓ (k, η0) =

∫ η0

ηmin

dη
[
g(η)

(
TΘ0

(η, k) + Tψ(η, k)
)
jℓ[k(η0 − η)] (SW)

+ g(η) k−1Tθb(η, k)j′ℓ[k(η0 − η)] (DOP)

+ e−κ(η)
∂[Tψ(η, k) + Tϕ(η, k)]

∂η
jℓ[k(η0 − η)]

]
, (ISW) (5.3)

where κ(η) is the photon optical depth, g(η) the visibility function, TΘ0 the transfer function of the
photon temperature monopole, and Tθb(η, k) the transfer function of the divergence of the baryon
bulk velocity [96]. The line-of-sight integral features three terms standing for the Sachs-Wolfe (SW),
Doppler (DOP) and Integrated Sachs-Wolfe (ISW) contributions.

And,

δGW,ℓm = 4π(−i)ℓ(4 − ngwb)

∫
d3k

(2π)3
eik⃗·x⃗0 Y ∗

ℓm(k̂)R(k⃗)

×
[
∆AD
ℓ (k, η0, ηin) + ∆SW

ℓ (k, η0, ηin) + ∆ISW
ℓ (k, η0, ηin)

]
(5.4)

Recall from Eqs (4.39) (4.42) that,

Γℓm,I = 4π(−i)ℓ
∫

d3k

(2π)3
eik⃗·x⃗0Γ(ηin, k⃗, q)Y

∗
ℓm(k̂)jℓ(k(η0 − ηin)) , (5.5)

and,

Γℓm,S = 4π(−i)ℓ
∫

d3k

(2π)3
eik⃗·x⃗0ζ(k⃗)Y ∗

ℓm(k̂)[Tϕ(ηin, k)jℓ(k(η0 − ηin))

+

∫ η0

ηin

dη
∂[Tψ(η, k) + Tϕ(η, k)]

∂η
jℓ(k(η0 − η))] . (5.6)

And since we are assuming adiabatic initial conditions, we can use the relation [96],

Γ(ηin, k⃗, q) = − 2

4 − ngwb(q)
ψ(ηin, k⃗) . (5.7)

We express [96] the adiabatic transfer function of Γ at a given momentum/frequency q as,

TAD
Γ (ηin, k, q) = − 2

4 − ngwb(q)
Tψ(ηin, k) . (5.8)

Then, recalling Eqs (4.81) and (4.82), we conclude again that,

∆AD
ℓ (k, η0, ηin, q) ≡ − 2

4 − ngwb(q)
Tψ(ηin, k)jℓ(k(η0 − ηin)) ,

∆SW
ℓ (k, η0, ηin) ≡ Tψ(ηin, k)jℓ(k(η0 − ηin)) , (5.9)

∆ISW
ℓ (k, η0, ηin) ≡

∫ η0

ηin

dη
∂[Tψ(η, k) + Tϕ(η, k)]

∂η
jℓ(k(η0 − η)) .

And ζ(k⃗) being equal to R(k⃗).
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Figure 5.1: Contributions to the CMB x CGWB cross-correlation angular power spectrum. Taken
from [96].

5.2 Contributions to the Cross-Correlation Spectrum

The cross-correlation spectrum can be expanded as the sum of six terms,

CCMB×CGWB
ℓ = CSW×SW

ℓ + CSW×ISW
ℓ + CISW×SW

ℓ + CISW×ISW
ℓ + CDOP×SW

ℓ + CDOP×ISW
ℓ , (5.10)

since for CMB we are including the effects of SW, Doppler, and ISW, and for GW we are including
the effecrs of Adiabatic initial conditions, SW, and ISW. But here, we refer to both the SW of the
CGWB and the monopole of the adiabatic initial anisotropies, called AD in previous equations, as SW.

We give approximate expressions for these six terms, based on the instantaneous decoupling
approximation g(η) = δ(η − η∗), where η∗ is the conformal age of the universe at the time of photon
decoupling, i.e. last scattering surface. This assumption implies that the optical depth is given by
the Heaviside function κ(η) = H(η− η0). The six contributions of Eq. (5.10) to the cross-correlation
spectrum are plotted in Fig. 5.1 (taken from [96]), as well as the total cross-correlation spectrum. It
can be shown that, when we compute the angular power spectrum, the product of the two Spherical
Bessel integrated over k, differs from zero only if the Bessels are peaked in the same time interval [92],
which becomes more and more narrow by increasing the multipole considered. This means that if
two anisotropies are generated at different times, the cross-correlation between them is non-vanishing
only if the spatial separation of the events that generated the anisotropies is much smaller than the
scale of the perturbation considered, otherwise the two events are uncorrelated. Let us now study
each contribution separately.

5.2.1 SW x SW

Similarily to what is done in Section 4.3.1, we find by cross-correlating the SW anisotropies of
the CMB to those of the CGWB,

CSW×SW
ℓ

4 − ngwb
= 4π

∫
dk

k
PR(k)jℓ[k(η0 − η∗)]jℓ[k(η0 − ηin)]

×
[
TΘ0(η∗, k) + Tψ(η∗, k)

]
[TAD

Γ (ηin, k, q) + Tψ(ηin, k)] (5.11)

The contributions here originate from two different last scattering spheres, since as we know, the
decoupling time for the CMB is at η∗ while for CGWB is at ηin, such that η∗ ≫ ηin. Such a differ-
ence would make you think that these fluctuations cannot be correlated, but that’s not true. Indeed,
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primordial perturbations with a comoving wavelength 2π/k larger than the radii difference (η∗− ηin)
imprint nearly the same patterns on the two spheres, and lead potentially to strong correlations. The
correlation induced by each of these wavelengths in the early universe is visible to us today at a spe-
cific angle, denoted as θ ≃ π/kη0. Here, k is the comoving wavenumber of the perturbations, and η0
is the conformal time at the present epoch. This angle θ describes how the perturbations, originating
from a particular wavelength, are observed in the sky today. It corresponds to a multipole moment,
ℓ ≃ kη0. Thus, we expect that for ℓ ≪ 2πη0/(η∗ − ηin) ∼ 300 the angular spectrum is expected
to be prominent and observable. Conversely, primordial perturbations with a comoving wavelength
2π/k smaller than (η∗−ηin) imprint different patterns on the two spheres and should leave negligible
correlations. Thus, the angular spectrum should be suppressed for ℓ≫ 2πη0/(η∗ − ηin).

This expectation has been confirmed analytically in [96]. In the expression of CSW×SW
ℓ in Eq.

(5.11), the transfer functions TΘ0
, Tψ, T

AD
Γ , which are independent of k on super-Hubble scales, can

be pulled out of the integral in first approximation. We can do the same with the primordial curvature
spectrum PR(k) ≃ As, assuming a tilt ns close to one. Then, the shape of CSW×SW

ℓ as a function of
ℓ depends on,

Iℓ =

∫
dk

k
jℓ[k(η0 − η∗)]jℓ[k(η0 − ηin)] ∝ 1√

ℓ(ℓ+ 1
2 )
e−

η∗−ηin
η0

ℓ , (5.12)

which, obviously, gets suppressed exponentially for ℓ ≫ η0/(η∗ − ηin). This can clearly be seen in
Fig. 5.1.

5.2.2 SW x ISW

In this case we have,

CSW×ISW
ℓ

4 − ngwb
= 4π

∫
dk

k
PR(k)jℓ[k(η0 − η∗)]

[
TΘ0

(η∗, k) + Tψ(η∗, k)
]

×
∫ η0

ηin

dη
[
T ′
ψ(η, k) + T ′

ϕ(η, k)
]
jℓ[k(η0 − η)] (5.13)

In this term, CMB perturbations contribute at the time η∗ (at photon decoupling) and GW pertur-
bations at all times in the range ηin ≤ η′ ≤ η0 (from the end of inflation to the present epoch). The
correlation between the CMB and GW perturbations peaks when the two types of perturbations are
probed on the same sphere, that is, when η′ ∼ η∗. The behavior of this term is governed by the prod-
uct of transfer functions [TΘ0(η∗, k) + Tψ(η∗, k)][T ′

ψ(η∗, k) + T ′
ϕ(η∗, k)], all evaluated around the time

of photon decoupling. The connection between the behavior of this product term and the observed
anisotropies i.e., the shape of CSW×ISW

ℓ as a function of ℓ, is described by the angular projection
relation θ ∼ π/kη0 or ℓ ∼ kη0.

The factor [TΘ0
(η∗, k) + Tψ(η∗, k)] exhibits distinct characteristics on various angular scales.

It remains nearly constant on very large cosmic scales, where (kη∗ ≪ 1), and then has damped
oscillations. The factor [T ′

ψ(η∗, k) + T ′
ϕ(η∗, k)], however, exhibits a broad peak in its behavior on

scales similar to those of the first acoustic peak in the CMB power spectrum. Consequently, CSW×ISW
ℓ

possesses distinctive features (see Fig. 5.1):

• On large angular scales, this spectrum has a plateau, indicating relatively constant values. This
plateau arises from the nearly constant behavior of the factor [TΘ0

(η∗, k) + Tψ(η∗, k)] on very
large cosmic scales.

• In addition to the plateau, there is a prominent peak in the spectrum that aligns with the first
acoustic oscillation in the CMB power spectrum. This peak is a consequence of the broad peak
exhibited by the factor [T ′

ψ(η∗, k) + T ′
ϕ(η∗, k)] on similar scales.

• Beyond the peak, the spectrum exhibits smaller damped oscillations. These oscillations stem
from the oscillatory nature of both factors [TΘ0(η∗, k) +Tψ(η∗, k)] and [T ′

ψ(η∗, k) +T ′
ϕ(η∗, k)] as

a function of kη∗.
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The reason behind the plateau and the peak having opposite signs lies [92] in the nature of the transfer
functions associated with SW and ISW effects. These transfer functions have opposite signs, because
the SW effect in the CGWB relates to the energy lost by a graviton as it escapes from a gravitational
potential well, while the ISW effect in the CMB corresponds to the energy gained by photons as they
traverse through regions affected by the decay of scalar perturbations. The cross-correlation between
these effects is negative because when one background (CGWB) experiences an increase in energy,
the other background (CMB) undergoes a decrease in energy.

5.2.3 ISW x SW

In this case we have,

CISW×SW
ℓ

4 − ngwb
= 4π

∫
dk

k
PR(k)jℓ[k(η0 − ηin)]

[
TAD
Γ (ηin, k, q) + Tψ(ηin, k)

]
×
∫ η0

η∗

dη
[
T ′
ψ(η, k) + T ′

ϕ(η, k)
]
jℓ[k(η0 − η)] (5.14)

In this term, the contributions of CMB perturbations and GW perturbations are over different time
intervals. The CMB perturbations contribute over the entire range of times η∗ ≤ η ≤ η0, while the
GW perturbations, on the other hand, contribute only at a specific moment, precisely at ηin, which
corresponds to the end of the inflationary period. Clearly, the times at which these contributions oc-
cur do not overlap. This lack of temporal overlap significantly affects the correlation between the two.

Although the correlation is not exactly zero, it remains exceedingly small. This small non-zero
value arises from the fact that, on the largest angular scales, the same initial primordial fluctuations
contribute to the anisotropies observed on both last scattering spheres. However, despite the shared
primordial fluctuations, the correlation remains very small. This is primarily due to the behavior
of the transfer function [T ′

ψ(η∗, k) + T ′
ϕ(η∗, k)] in the super-Hubble limit. In this limit, the scalar

fields ϕ and ψ essentially remain constant over time. As a result, the correlation term CISW×SW
ℓ is

sub-dominant compared to other contributions (see Fig. 5.1).

5.2.4 ISW x ISW

In this case we have,

CISW×ISW
ℓ

4 − ngwb
= 4π

∫
dk

k
PR(k)

∫ η0

η∗

dη
[
T ′
ψ(η, k) + T ′

ϕ(η, k)
]
jℓ[k(η0 − η)]

×
∫ η0

ηin

dη̃
[
T ′
ψ(η̃, k) + T ′

ϕ(η̃, k)
]
jℓ[k(η0 − η̃)] (5.15)

In this term, CMB perturbations contribute at times in the range η∗ ≤ η ≤ η0 and GW perturbations
are all times in the range ηin ≤ η′ ≤ η0. The primary source of correlation between CMB and GW
perturbations occurs when their respective time intervals overlap. Specifically, the correlation is most
significant when η ≃ η′ with η∗ ≤ η ≤ η0. This term includes a tilted plateau (see Fig. 5.1) in
the angular power spectrum for small values of ℓ. The presence of this plateau corresponds to the
late-ISW effect, which in the case of CMB, reflects the influence of evolving large-scale structures on
its temperature anisotropies, leading to a characteristic plateau in the spectrum. Additionally, the
term features a prominent peak in the angular power spectrum, and this peak aligns closely with the
scale associated with the first acoustic peak in the CMB power spectrum. This peak arises from the
early-ISW effect, which results from the evolution of density perturbations in the early universe.
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5.2.5 DOP x SW

In this case we have,

CDOP×SW
ℓ

4 − ngwb
= 4π

∫
dk

k
PR(k) j′ℓ[k(η0 − η∗)] jℓ[k(η0 − ηin)]

× k−1Tθb(η∗, k)
[
TAD
Γ (ηin, k, q) + Tψ(ηin, k)

]
(5.16)

The analysis of this term is similar to the SW x SW case. The difference lies in the fact that
the transfer function associated with the Doppler term, Tθb , vanishes on super-Hubble scales, unlike
[TΘ0 +Tψ]. This is because on super-Hubble scales perturbations are subject to the dominant influence
of cosmic expansion. In that sense, the redshift due to cosmic expansion becomes the dominant factor
affecting the observed frequencies of photons, overshadowing the frequency shifts induced by Doppler
effects. Thus, this term only has a broad peak for ℓ ∼ 100 (see Fig. 5.1).

5.2.6 DOP x ISW

In this case we have,

CDOP×ISW
ℓ

4 − ngwb
= 4π

∫
dk

k
PR(k) j′ℓ[k(η0 − η∗)] k−1Tθb(η∗, k)

×
∫ η0

ηin

dη
[
T ′
ψ(η, k) + T ′

ϕ(η, k)
]
jℓ[k(η0 − η)] (5.17)

A reasoning similar to the SW x ISW case shows that the correlation now depends on the product
of the transfer functions Tθb(η∗, k)[T ′

ψ(η∗, k) + T ′
ϕ(η∗, k)], all evaluated around the time of photon

decoupling. They show distinctive behaviour at different scales:

• Tθb(η∗, k) vanishes on scales larger than the sound horizon. Meaning that its effect is negli-
gible for perturbations with wavelengths larger than the sound horizon at the time of photon
decoupling. But, on smaller scales, it has oscillations due to the interplay between the motion
of baryonic matter and the overall cosmological conditions at η∗.

• T ′
ψ(η∗, k) + T ′

ϕ(η∗, k) are suppressed on scales smaller than the sound horizon.

Consequently, CDOP×ISW
ℓ displays two small peaks on intermediate scales (see Fig. 5.1). These

peaks are comparable to the scales associated with the first two acoustic peaks observed in the CMB
spectrum. However, they exhibit a different phase compared to the SW case.

5.2.7 Total Contribution

The total contribution CCMB×CGWB
ℓ is dominated by the SW x SW and SW x ISW contribu-

tions, as their effect is larger and dominant over the others, but the others still contribute of course.
We therefore have (see Fig. 5.1):

• On large scales: a tilted plateau, mainly due to the contributions of the plateaus of SW x SW,
SW x ISW, and ISW x ISW.

• On intermediate scales: a peak, mainly due to the contributions of the peaks of SW x SW and
ISW x ISW.

• On small scales: a few damped oscillations, mainly due to the contributions of the damped
oscillations of SW x ISW.
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Note that, because of its origin in the SW x ISW contribution, the main peak does not originate
simply for the first oscillation of the photon density transfer function, and reaches its maximum at a
slightly larger ℓ than the first CMB peak.

Although our work is focused only on the CGWB, it is really important to explore such cross-
correlation between the CMB and the CGWB, because the future GW detectors, such as LISA or
BBO, have the ability to measure such cross-correlation signals. The detectibility of these signals is
explored by performing a SNR, as we will see in the next chapter.
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Chapter 6

Detection Possibilities of the
SGWB and its Anisotropies

In this chapter, we will discuss the sensitivity of some detectors to the SGWB and its anisotropies.
We will not go through the details of detectors and how they work, which is a more observational
approach than a theoretical one, and we are mostly interested in the latter. We will consider detectors
like LISA, Big Bang Observer (BBO), and Einstein Telescope (ET). We will explore the sensitivity
of LISA to the SGWB itself and its anisotropies, then we will explore the sensitivity of BBO and ET
to the anisotropies. We will review briefly the use of Fisher Analysis for the anisotropies.

6.1 LISA

The Laser Interferometer Space Antenna (LISA) mission [8] is a planned space-based observa-
tory designed to detect and observe gravitational waves in the low-frequency range (from millihertz
to a few hertz) ∼ 10−5−0.1 Hz with high sensitivity [47]. LISA is a collaborative effort involving the
European Space Agency (ESA) and NASA. LISA’s primary goal is to detect and study gravitational
waves in a frequency range that cannot be observed from Earth-based detectors like LIGO and Virgo.
LISA consists of three identical spacecraft, 5 million kilometers apart, positioned in a triangular for-
mation (shown in Fig. 6.1), following the Earth in its orbit around the Sun. The spacecraft are
connected by laser beams, forming a Michelson interferometer in space. This configuration allows
LISA to detect tiny changes in the distances between the spacecraft caused by passing gravitational
waves. The mission involves cutting-edge technology, including high-precision laser interferometry,
drag-free spacecraft, and advanced data analysis techniques. The spacecraft are equipped with iner-
tial sensors and thrusters to maintain their precise positions relative to each other. LISA is planned
for launch in the 2030s. Once in space, it will operate as an observatory, continuously monitoring
gravitational wave signals from distant cosmic events.

The variable characteristics of the (e)LISA (evolved LISA) configuration analysed in some
papers were the low-frequency noise level (N1 and N2, see [71]), the number of laser links (4 or 6),
the length of the interferometer arm (1, 2 or 5 million km), and the duration of the mission (2 or
5 years). Since then, a major achievement has been reached: the LISA Pathfinder satellite has own
and demonstrated that the expected instrumental noise in (e)LISA can be reduced six times below
the original requirement [12]. The noise that we adopt in this analysis is therefore the so-called N2
noise level [71]: this has been tested by the pathfinder at frequencies f > 1 mHz, but the forecast
is that it will be finally achieved over the whole frequency spectrum. Moreover, the outcome of the
GOAT study accompanied by the renewed international interest in the (e)LISA mission, in particular
from NASA, following both the first GW direct detection by the LIGO and Virgo collaborations and
the successful flight of the Pathflnder, prompted the community to anticipate that the number of
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Figure 6.1: LISA’s configuration. Photo Credit: NASA

laser links of the future GW Observer can be six. Correspondingly, the name goes back to LISA.
Therefore, in this work we consider six LISA configurations: having fixed the number of laser links to
six (L6) and the best low-frequency noise level (N2), we let vary the length of the arms (A1, A2, and
A5 for respectively 1, 2, and 5 million km) and the mission duration (M2 and M5, for respectively 2
and 5 years).

6.1.1 Sensitivity Forecast

In 2013, applying a Bayesian method, refs. [3] and [4] found that, over one year, the best 6-link
configuration (with N2 noise level and 5 million km arms) can detect a white noise background at
the level of h2ΩGW = 10−13. One can use this result and convert it into a threshold SNR above
which the signal is visible. In order to do so, in 2016, the authors of [20] computed for every LISA
configuration the power law sensitivity curve defined in [98]. With respect to the power law sensi-
tivity curve, the SNR corresponding to a white noise spectrum with h2ΩGW = 10−13 is SNR = 10;
we therefore classify every signal with SNR > 10 as visible by a six-link LISA configuration. They
plotted the power law sensitivity curves for the six configurations, as shown in Fig. 6.2. It is clear
from the plot that the configurations with A5 (arm length of 5 million km) has the highest sen-
sitivity. They also presented, in Fig. 6.3, the detectability by the six LISA configurations, of a
generic GW background parametrised by a single power law, ΩGW = A(f/f∗)nT . The regions in
parameter space (nT , A), for several values of the pivot frequency f∗, have been derived applying
the strategy described above, in particular they represent values of the parameters for which the
signal is visible with SNR > 10. They have chosen representative values of the pivot frequency f∗,
ranging from far smaller to far larger than the frequency of maximal sensitivity of the instrument
configurations. Values of the spectral index close to zero are only visible for high enough amplitudes.

In 2016, the authors of [32] have studied eLISA’s sensitivity considering the three cases related
to first order PTs:

1. Non-runaway Bubbles

2. Runaway Bubbles in a Plasma

3. Runaway Bubbles in Vacuum

For case 1, they plotted (Fig. 6.4) the GW spectra that can arise if the PT proceeds through non-
runaway bubbles, for fixed T∗, α and vw, and varying β/H∗. In this case, the bubbles expanding
in a plasma can reach a relativistic terminal velocity. Consequently, the energy in the scalar field
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Figure 6.2: Power law sensitivity curves for the six LISA configurations considered in this work: red
A5M5, red dashed A5M2, blue A2M5, blue dashed A2M2, green A1M5, green dashed A1M2. Taken
from [20].

is negligible and the bulk motion of the fluid contributes the most to the signal. This can be in
the form of sound waves and/or MHD turbulence. Setting ϵ = 0.05 in Eq. (3.75), makes the signal
from sound waves is dominant. Turbulence can play a role at high frequencies, because the signal
from sound waves decays faster and the peak positions are not that different. Increasing β/H∗ at
fixed T∗ and vw causes the peak position to shift towards larger frequencies, and the overall ampli-
tude to decrease. Correspondingly, the contribution from turbulence becomes less and less important.

For case 2, they plotted (Fig. 6.5) the GW spectra that can arise if the PT proceeds through
runaway bubbles in a plasma, for fixed T∗, α, vw and α∞ and varying β/H∗. In that case, If a model
predicts a first-order PT already at the mean-field level, it is possible for the bubble wall to accelerate
indefinitely and hence run away, with vw → c. Bubbles can run away even if expanding in a thermal
plasma. This time, the energy density stored in the scalar field cannot be neglected. The gradients
of the scalar field also act as a source of GW together with sound waves and MHD turbulence. Note
that fixing α∞, the minimum value of α such that bubbles run away, sets the relative amplitude of
the scalar field-related and the fluid-related contributions. For small β/H∗ the contribution from
the scalar field can dominate the GW spectrum, since the β/H∗ enhancement of the amplitude that
operates for long-lasting sources is less relevant. As β/H∗ increases, the sound wave contribution
gains importance (provided that α∞ is large enough). At sufficiently high frequencies however the
scalar field contribution always dominates because of its shallow decay.

The highest GW signals are expected for runaway bubbles in vacuum (Case 3) for which the GW
spectrum has the simplest shape, being determined only by the scalar field contribution. Since in that
case, plasma effects are negligible, and the bubble wall will accelerate indefinitely, with vw quickly
approaching c.

In 2022, the authors of [18] have estimated the relative sensitivity of LISA to different ℓ-
multipoles by assuming that only one multipole dominates the SGWB and that multipoles with the
same ℓ but different m are obtained from the same Gaussian statistics. This amounts to assuming a
statistically isotropic SGWB, with correlators given by Eq. (4.50). Summing over the 3 channels A,E
and T, they obtained a relation for the sensitivity and plotted the total sensitivity to the ℓ-multipole
for multipoles up to ℓ = 10. The plot is shown in Fig. 6.6.

83



6.1. LISA

Figure 6.3: For a power-law stochastic background of the form ΩGW = A(f/f∗)nT , the shaded regions
represent the detectable regions in the (nT , A) parameter space visible by the six LISA configurations
under analysis: red A5M5, red dashed A5M2, blue A2M5, blue dashed A2M2, green A1M5, green
dashed A1M2. We have chosen six representative pivot frequencies, f∗ = 0.05, 0.5, 3, 5, 50, 100 mHz.
Taken from [20].
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Figure 6.4: Example of GW spectra in Case 1, for fixed T∗ = 100 GeV, α = 0.5, vw = 0.95, and
varying β/H∗: from left to right, β/H∗ = 1 and β/H∗ = 10 (top), β/H∗ = 100 and β/H∗ = 1000
(bottom). The black line denotes the total GW spectrum, the green line the contribution from sound
waves, the red line the contribution from MHD turbulence. The shaded areas represent the regions
detectable by the C1 (red), C2 (magenta), C3 (blue) and C4 (green) configurations. Taken from [32].
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Figure 6.5: Example of GW spectra in Case 1, for fixed T∗ = 100GeV , α = 1, vw = 1, α∞ = 0.3, and
varying β/H∗: from left to right, β/H∗ = 1 and β/H∗ = 10 (top), β/H∗ = 100 and β/H∗ = 1000
(bottom). The black line denotes the total GW spectrum, the blue line the contribution from the
scalar field, the green line the contribution from sound waves, the red line the contribution from MHD
turbulence. The shaded areas represent the regions detectable by the C1 (red), C2 (magenta), C3
(blue) and C4 (green) configurations. Taken from [32].
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Figure 6.6: Estimated LISA sensitivity to a given multipole ℓ of the SGWB, for multipoles up to
ℓ = 10. Even (odd) multipoles are shown with solid (dashed) lines. The sensitivity is obtained by
optimally summing over the LISA channels. Taken from [18].

Figure 6.7: SNR of the angular power spectrum of the cross-correlation versus monopole energy
density of the CGWB, in the case of BBO (blue line), LISA (red line), and noiseless (black line)
cases. Taken from [92].
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6.1.2 Signal-to-Noise Ratio

The Signal-to-Noise Ratio (SNR) is a measure of the strength of a signal relative to the back-
ground noise or uncertainty. The SNR is a fundamental parameter in signal processing and analysis.
The general mathematical expression for SNR is:

SNR =
Signal Power

Noise Power
, (6.1)

where the Signal Power represents the power or strength of the desired signal. In our case, it is the
amplitude or power of the signal of the gravitational wave. Noise Power represents the power or
intensity of the background noise or uncertainty that interferes with the signal. For GWs, it is the
noise level in the detector, which includes various sources of noise like electronic noise, thermal noise,
and environmental noise. So, basically, the SNR is a dimensionless value that quantifies how well the
signal can be distinguished from the noise. A higher SNR indicates a stronger, more distinguishable
signal. Conversely, a lower SNR suggests that the signal is weaker or less distinguishable from the
noise.

In 2021, the authors of [92] have studied the detectability of the CMB x CGWB signal calculated
earlier in Chapter 5 by performing a SNR analysis. The expression for the SNR is,

SNR2 =

ℓmax∑
ℓ=2

(
CCMB×CGWB
ℓ

)2
σ2
ℓ

, (6.2)

where the angular spectrum of the noise Nℓ is given by the sum of instrumental noise and cosmic
variance,

σ2
ℓ =

(
CCMB×CGWB
ℓ

)2
+
(
CCGWB
ℓ +NCGWB

ℓ

)
CCMB
ℓ

2ℓ+ 1
. (6.3)

In their study, they have neglected the instrumental noise of the CMB experiment, considering that
at the multipoles we are interested in (ℓ ≲ 100), available CMB data are completely cosmic vari-
ance dominated. They have estimated the SNR as a function of the GW background energy density
Ω̄CGWB , considering either an ideal, noiseless case scenario, or noise levels expected by e.g. LISA or
BBO, and plotted the result (shown in Fig. 6.7). It can be clearly seen from the figure that, for the
LISA detector, if the amplitude of the monopole GW signal is large enough (Ω̄CGWB ≈ 10−8), the
SNR for the cross-correlation can be of order unity. In the BBO case, due the the better sensitivity,
a lower GW signal is instead suffcient (Ω̄CGWB ≈ 10−12 − 10−11) to produce a detectable signal
(SNR ∼ 2 − 5). Such GW monopole amplitudes can be generated by many primordial mechanisms
characterized by a blue (i.e., nT > 0) tensor power spectrum, like axion-inflation models and other
post-inflationary mechanisms including phase transition.

In 2022, the authors of [18] estimated and plotted the SNR for LISA to detect the kinematic
dipole and quadrupole induced by a scale-invariant profile of Ω′

GW (f) = constant in the SGWB rest
frame. Doppler anisotropies induced by the motion of the detector with respect to the SGWB rest
frame count among the guaranteed features of the SGWB. Following [6], which sets the basis for
the analysis of SGWB anisotropies with ground-based GW interferometers, estimated the prospects
for ground-based detectors to measure the kinematic dipole of the SGWB, they considered the same
for LISA. The plot is shown in Fig. 6.8, which shows clearly that LISA has a better sensitivity to
detecting a quadrupole (i.e., ℓ = 2) than it does for the dipole (i.e., ℓ = 1) by a factor of ∼ 103.

6.1.3 Fisher Analysis

We will not discuss the details of this analysis/forecasting, but we will give the basics of what
it is, how it works, and the forecast results for our case.
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6.1. LISA

Figure 6.8: The SNR for the dipole (left) and the quadrupole (right) induced by boosting an isotropic
SGWB with fractional energy density GW, assumed to be scale free across the LISA band. An
observation time of T = 1 year is assumed. Taken from [18].

We start be defining what is Fisher Forecast. It is a statistical technique used to estimate the
precision with which cosmological parameters can be measured from a future astronomical survey
or experiment. In cosmology, researchers are interested in measuring a set of parameters that de-
scribe various aspects of the Universe. These parameters may include things like the density of dark
matter, the density of dark energy, the amplitude of primordial fluctuations, the Hubble constant,
and many others. The Fisher forecast focuses on how precisely these parameters can be determined.
The likelihood function quantifies the probability of obtaining a set of observational data given a
particular set of model parameters. It essentially describes how well the data constrains the param-
eters. Practically, the likelihood function is often approximated as a Gaussian distribution around
the best-fit model. The Fisher information matrix is constructed using the second derivatives of the
logarithm of the likelihood function with respect to the model parameters. It encodes information
about how sensitive the likelihood function is to changes in the parameters. This matrix is a square
matrix whose elements represent the covariances and variances of the parameters. Once calculated,
it can be inverted to obtain the covariance matrix of the parameter estimates. From which one can
determine the uncertainties associated with each parameter.

Recently in 2023, the authors of [40] have used Fisher Analysis to study different detectors’
sensitivity to an anisotropic GW sky. In this section we will focus on LISA and LISA-Taiji, in Section
6.2 we review their results for BBO, and in Section 6.3 we review those for ET. For cosmological
SGWB, the power in a single ℓ-mode (averaged over m-modes) is given by,

ΩℓGW(f) ≡
√
Cℓ,GWΩ̄GW(f) , (6.4)

where Ω̄GW (f) is the monopole of the fractional energy density, and Cℓ,GW is the anisotropy power
spectrum. Using Fisher Analysis, they calculated Fisher Matrix [40], Fℓ, and from which they got
the fractional precision with which the multipoles can be measured,

σ2
Cc

ℓ,GW
=
[
F−1
ℓ

]
11
, (6.5)

and,

1

σ2
κ

=
∑
ℓ

(ln ℓ)2

σ2
Cc

ℓ,GW
+ 1

2ℓ+1

, (6.6)

where κ is the spectral tilt [40].

That being said, for LISA and LISA-Taiji they computed σ2
Cc

ℓ,GW
as as a function of various val-

ues of Ccℓ,GW(Ω̄cGW)2. The result is shown in Fig. 6.9. The vertical Band shows the isocurvature

constraint [54] that rules out regions with
√
Ccℓ,GW(Ω̄cGW)2 > 10−10, and consider only the regions
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6.2. BIG BANG OBSERVER (BBO)

Figure 6.9: Precision on cosmological uncertainties from a Fisher analysis. We assume a PT centered
around a frequency of 4 mHz. Taken from [40].

with σCc
ℓ,GW

< 0.5. The fact is that, LISA has the necessary sensitivity to only the ℓ = 2, 3, 4 modes,
while LT has powerful sensitivity to the other ℓ modes as well, ℓ = 1 through ℓ = 6. This can be seen
clearly in the plot.

For the case of Phase Transitions, assuming adiabatic perturbation, we have [75] in general,

δΩpeak
GW h2 = 8 × 10−11

(
HPT

βPT

)2(
α

1 + α

)2

(6.7)

For α ≳ 1 and (βPT/HPT)2 < 103 we have δΩpeak
GW h2 ∼ 10−14 − 10−11. However, assuming the

presence of primordial isocurvature perturbations, we can have δΩpeak
GW ∼ 10−12 for α ∼ 1 and just

βPT/HPT ∼ 30. So, we don’t need a strong SGWB, weaker PT can still give rise to observable
anisotropies if the GW signal carries these isocurvature perturbations. For LISA, in the case of
adiabatic perturbations, the result shows that LISA can observe cosmological SGWB anisotropies
(ℓ = 2, 4) only for a strong SGWB, for example, from those with (βPT/HPT)2 ≃ 10 and α ≃ 1. But
as we discussed, provided the presence of isocurvature perturbations, we can detect signals arising
from weaker PT. LT, on the other hand, can access weaker signals such as with (βPT/HPT)2 ≃ 100
and α ≃ 1 even for adiabatic perturbations.

What if we deviate from LISA’s and LT’s favourite frequency, 4 mHz? How will that affect the
precision? The answer is shown in Fig. 6.10, where we considered the case of 10 mHz. It clear that
the cosmological anisotropies can now be measured with less precision.

6.2 Big Bang Observer (BBO)

Now we turn to the case for BBO. BBO is designed to detect and study gravitational waves
from the early universe, particularly those generated during cosmic inflation, a period of rapid cosmic
expansion shortly after the Big Bang, and to detect gravitational waves at higher frequencies than
other gravitational wave detectors like LIGO and Virgo. This allows it to target gravitational waves
associated with inflation, which are expected to be at higher frequencies. The frequency range of
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6.2. BIG BANG OBSERVER (BBO)

Figure 6.10: Same as Fig. 6.9, except the cosmological signal has a peak at 10 mHz, instead of 4
mHz. Taken from [40].

Figure 6.11: BBO’s Configuration. Taken from [42].

BBO is ∼ 0.1 − 1 Hz [41]. It consists of four LISA-like triangular constellations orbiting the Sun
at 1 AU. The GW background is measured by cross-correlating the outputs of the two overlapping
constellations. This configuration is shown in Fig. 6.11.

The authors of [40] have also used Fisher Analysis to study this detector’s sensitivity to an
anisotropic GW sky. Again, they computed σ2

Cc
ℓ,GW

as as a function of various values of Ccℓ,GW(Ω̄cGW)2.

The result is shown in Fig. 6.12. It is pretty clear that, in contrast to LISA and LT, BBO can probe
the cosmological anisotropies with more precision.

For the case of Phase Transitions, assuming adiabatic perturbation, BBO can detect the
anisotropies for which (βPT/HPT)2 ≃ 103 and α ≃ 1 with O(10%) precision, unlike the case of
LISA and LT where for (βPT/HPT)2 ≳ 103 and/or α ≪ 1, anisotropies become smaller than this,
and so is the ability to detect it. And if SGWB anisotropies carry isocurvature perturbations, BBO
can detect anisotropies for which (βPT/HPT)2 ≃ 104 and α ≃ 1 with O(10%) precision as well.
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6.3. EINSTEIN TELESCOPE (ET)

Figure 6.12: Precision on cosmological uncertainties from a Fisher analysis. We assume a PT centered
around a frequency of 0.25 Hz. Taken from [40].

6.3 Einstein Telescope (ET)

The Einstein Telescope (ET) is a proposed underground infrastructure to host a third-generation,
gravitational-wave observatory. It builds on the success of current, second-generation laser-interferometric
detectors Advanced Virgo and Advanced LIGO. The Einstein Telescope will achieve a greatly im-
proved sensitivity by increasing the size of the interferometer from the 3 km arm length of the Virgo
detector to 10 km, and by implementing a series of new technologies.

Following the same procedure again but for ET, the authors of [40] have focused on frequencies
in the range of ∼ 1 − 100 Hz. And although in that range, temporal shot noise is significant [69],
they have assumed that the temporal shot noise can be fully reduced and considered only the actual
astrophysical anisotropies. Their result is shown in Fig. 6.13. Note that they also included the Cos-
mic Explorer (CE), since while ET or CE alone does not have powerful sensitivity to odd ℓ modes,
ET+CE significantly improves that, making the combination sensitive to all modes between ℓ = 1
and ℓ = 6.

For the case of Phase Transitions, assuming adiabatic perturbation, ET+CE can detect the
anisotropies associated with a strong SGWB corresponding to (βPT/HPT)2 ≃ 10 and α ≃ 1, with
O(10%) precision. And if it carries isocurvature perturbations, then they can detect anisotropies for
which (βPT/HPT)2 ≃ 103 and α ≃ 1 with O(10%) precision as well.
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6.3. EINSTEIN TELESCOPE (ET)

Figure 6.13: Precision on cosmological uncertainties from a Fisher analysis. We assume a PT centered
around a frequency of 7 Hz. Taken from [40].
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Conclusion and Future Prospects

In this work, we have given an introduction to Cosmology, where we have briefly reviewed
the cosmological principle, the expansion of the universe, the cosmic microwave background (CMB)
radiation, the FLRW spacetime which was of important use later, and Friedmann’s and Einstein’s
equations. Since the goal of this thesis is to investigate the cosmological gravitational wave back-
ground anisotropies, focusing on the case of Inflation and that of Phase Transitions, introducing them
was a must. We also reviewed the theory of cosmological perturbations, as we are mainly dealing
with perturbations, and it is the main source of the anisotropies we are discussing. We then intro-
duced the gravitational waves (GWs) and how they can be described mathematically. Stochastic
Gravitational Wave Background (SGWB) is a superposition of gravitational waves from many un-
resolved and randomly distributed sources throughout the cosmos. We focused on the cosmological
sources, specifically Inflation and Phase Transitions. For inflation, GWs are produced by quantum
vacuum fluctuations of the metric. We have shown that on sub-horizon scales, the amplitude of the
modes of the GWs decrease in time with the inverse of the scale-factor as an effect of the Universe
expansion, while on super-horizon scales, we consider the solution where the amplitude is constant in
time, and we have shown an expression for the power spectrum and the consistency relation [79]. For
first-order phase transitions, GWs are produced through three processes: collisions of bubble walls,
sound waves, and MHD turbulence. We have shown that each has a different characteristic frequency
and a different SGWB amplitude, with sound waves and MHD turbulence contributing the most.

We have studied and investigated the spatial anisotropies of the SGWB that arise from cosmo-
logical sources [14] [19]. These anisotropies could have been inherited both, at the time of the SGWB
production, and during its propagation through the perturbed universe. We followed the Boltzmann
approach [14][19][39][96] to study the propagation effects on the SGWB through scalar and tensor
perturbations. Our primary focus was on large scales, operating within a regime where the comoving
momentum q of GWs is much larger than the comoving momentum k of large-scale perturbations;
q ≫ k. In doing so, we considered first order perturbations around FLRW background in the Pois-
son gauge which includes the scalar and tensor perturbations. By solving for the function Γ which
is related to the anisotropies and separating the solution into initial, scalar, and tensor terms, we
found that the anisotropies that come from the initial conditions have an order-one dependence on
the frequency, but those due to propagation are independent of the frequency at linear order. We
computed the 2-point correlation function for the anisotropies, and showed the non-Gaussianity of
the SGWB by computing the 3-point correlation function, such non-Gaussianity is a potential tool
to discriminate whether a SGWB has a primordial or astrophysical origin. After characterizing these
anisotropies, we considered giving two examples of the possible SGWB sources. Through the example
of the Axion-Inflaton [52], we showed that also the correlators of the SGWB anisotropies will be dif-
ferent at different frequencies. We also discussed the example of anisotropies due to first-order phase
transitions [53][75] and expressed the SGWB anisotropies in terms of the photon energy density, and
by assuming the entire contents of the universe undergoes the PT, we got δρ

GW
∼ 10−6ργ [36]. So

far we haven’t considered that the presence of relativistic particles would have an effect on these
anisotropies, and so for a complete characterization, we explored how the presence and motion of
such high-energy, relativistic particles, such as photons and neutrinos, influence the observed varia-
tions in the SGWB across different directions in the universe [43][96][101]. Our focus has been on
understanding the most significant effects on large cosmic scales. And since SW and ISW effects op-
erate on such large scales, we studied the impact of various decoupled particle species on both effects.
We found that a greater number of decoupled relativistic particle species leads to a suppression of
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anisotropies at larger cosmic scales in the angular power spectrum of the SGWB. This is important
because the suppression effect holds the potential to become an observable phenomenon as soon as
advanced instruments detect these anisotropies. We also explored the recently proposed possibility
of non-adiabaticity of the initial conditions [44][96]. We have shown that the contribution to the
anisotropy of the CGWB from the initial conditions in the case of single-field inflation which includes
non-adiabatic initial conditions, for example, enhances the angular power-spectrum w.r.t adiabatic
case by a factor of 10. We then showed how we can test that nature of the initial conditions through
a CGWB x CMB correlation parameter, where on large scales, in the case of adiabatic initial condi-
tions, the value was 0.98, while in the case of single-field inflation it was 0.8 – 0.9, showing a smaller
correlation in the case of non-adiabatic initial conditions [44]. We then studied the cross-correlation
between CGWB and CMB in more details [92][96], incorporating the effects of the SW, ISW and
Doppler for the CMB, and the effects of SW (including the adiabatic initial conditions) and ISW for
the CGWB. We showed that the total contribution CCMB×CGWB

ℓ is dominated by the SW x SW and
SW x ISW contributions, as their effect is larger and dominant over the others, but the others still
contribute as well. The total cross-correlation spectrum featured a tilted plateau on large scales, a
peak on intermediate scales, and few damped oscillations on small scales.

Finally, we have discussed the sensitivity of some detectors to the SGWB and its anisotropies.
This is just a forecast which is to be confirmed later in the future once we have an actual detection.
We have explored the sensitivity of LISA to the SGWB itself using many LISA configurations in the
sense of the arm length and the mission duration, and we showed that [20] the configurations with
A5M5 (arm length of 5 million km and duration of 5 years) has the highest sensitivity to the SGWB.
We then showed [20] the detectability by the six LISA configurations, of a generic GW background
parametrised by a single power law, ΩGW = A(f/f∗)nT , using a driven parameter space (nT , A) with
values for which the signal is visible with SNR > 10, for several values of the pivot frequency f∗. We
then studied the LISA’s sensitivity [32] with four different configurations to the SGWB considering
the three cases related to first order PTs: Non-runaway Bubbles, Runaway Bubbles in a Plasma, and
Runaway Bubbles in Vacuum. We showed how the different contributions dominate over each other
and the behaviour of their amplitudes in LISA’s favourite frequency range, and how the peaks shift
by changing the value of β/H∗, i.e., the duration of the PT. We also showed [18] an estimation for
the relative sensitivity of LISA to different ℓ-multipoles by assuming that only one multipole dom-
inates the SGWB, and using SNR analysis, also the SNR for LISA to detect the kinematic dipole
and quadrupole induced by a scale-invariant profile of Ω′

GW (f) = constant in the SGWB rest frame,
due to Doppler anisotropies induced by the motion of the detector with respect to the SGWB rest
frame. We found that LISA has a better sensitivity to detecting a quadrupole (i.e., ℓ = 2) than
it does for the dipole (i.e., ℓ = 1) by a factor of ∼ 103. Using the SNR analysis, we have studied
[92] the detectability of the CMB x CGWB signal as well, showing that for LISA, the SNR for the
cross-correlation can be of order unity if the amplitude of the monopole GW signal is large enough
(Ω̄CGWB ≈ 10−8), while for BBO, a lower GW signal is instead suffcient (Ω̄CGWB ≈ 10−12 − 10−11)
to produce a detectable signal (SNR ∼ 2−5). For exploring the sensitivity to the anisotropies of the
SGWB, we showed the results given by Fisher Analysis [40] to study different detectors’ sensitivity to
an anisotropic GW sky. For LISA and LISA-Taiji, we have shown the precision σ2

Cc
ℓ,GW

as a function

of various values of Ccℓ,GW(Ω̄cGW)2, considering the isocurvature constraint [54] that rules out regions

with
√
Ccℓ,GW(Ω̄cGW)2 > 10−10, and consider only the regions with σCc

ℓ,GW
< 0.5 and assuming a PT

centered on around a frequency of 4 mHz. We found that LISA has the necessary sensitivity to only the
ℓ = 2, 3, 4 modes, while LT has powerful sensitivity to the other ℓ modes as well, ℓ = 1 through ℓ = 6.
In the case of adiabatic perturbations, the result shows that LISA can observe cosmological SGWB
anisotropies (ℓ = 2, 4) only for a strong SGWB, for example, from those with (βPT/HPT)2 ≃ 10
and α ≃ 1, but with the presence of isocurvature perturbations, it can detect signals arising from
weaker PT. LT, on the other hand, can access weaker signals such as with (βPT/HPT)2 ≃ 100 and
α ≃ 1 even for adiabatic perturbations. We also showed that when we changed the frequency from
4 mHz to 10 mHz, the cosmological anisotropies can then be measured but with less precision. For
BBO, following the same analysis, we showed that in contrast to LISA and LT, BBO can probe the
cosmological anisotropies with more precision. For the case of Phase Transitions, assuming adiabatic
perturbation, BBO can detect the anisotropies for which (βPT/HPT)2 ≃ 103 and α ≃ 1 with O(10%)

95



precision and if SGWB anisotropies carry isocurvature perturbations, BBO can detect anisotropies
for which (βPT/HPT)2 ≃ 104 and α ≃ 1 with O(10%) precision as well. Similarly for ET, focusing
on frequencies in the range of ∼ 1− 100 Hz and assuming a PT centered around a frequency of 7 Hz,
also assuming that the temporal shot noise [69] can be fully reduced, we found that ET alone does
not have powerful sensitivity to odd ℓ modes, but a combination ET+CE significantly improves that,
making it sensitive to all modes between ℓ = 1 and ℓ = 6. Assuming adiabatic perturbation, ET+CE
can detect the anisotropies associated with a strong SGWB corresponding to (βPT/HPT)2 ≃ 10 and
α ≃ 1, with O(10%) precision. And if it carries isocurvature perturbations, then they can detect
anisotropies for which (βPT/HPT)2 ≃ 103 and α ≃ 1 with O(10%) precision as well.

In addition to the discussion we made on the sensitivity forecast for the SGWB and its
anisotropies, two possible ideas for investigating the Cosmological Gravitational Wave Background
Anisotropies can be followed in future work. As we mentioned before, these anisotropies are inher-
ited during the production of the GWs and due to propagation effects, which we have studied using
Boltzmann approach. Another approach for studying the propagation effects is by studying the per-
turbed geodesics for the gravitons. A similar study has been done for the CMB in [84][89] where
they studied the behavior of light rays in perturbed RW cosmologies, calculating the redshift between
an observer and the surface of last scattering to second order in the metric perturbation, and [84],
where they also considered the second order perturbations of the metric itself obtaining them, for
a universe dominated by a collision-less fluid, in the Poisson gauge. They found that second order
terms of potential observational interest may be interpreted as transverse and longitudinal lensing
by scalar perturbations, and a correction to the ISW effect. So, for gravitons, following a different
approach will either confirm our results, provide some corrections, or both. The other idea is for
the initial conditions, which we mostly assume to be adiabatic, until recently. But we have shown
that the initial conditions for the cosmological background, generated by quantum fluctuations of
the metric during inflation, even in the single-field case depart from the adiabaticity. The idea is
to explore such possibility but considering other mechanisms, for example, perturbations induced by
other decoupled particle species that fluctuate during inflation, or any inflationary mechanism that
gives rise to adiabatic initial conditions for radiation and matter perturbations. For example, one
can consider the Axion-Inflaton case.
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Sebastien Clesse, and Sachiko Kuroyanagi. Probing anisotropies of the stochastic gravitational
wave background with LISA. Journal of Cosmology and Astroparticle Physics, 2022(11):009,
nov 2022.

[19] Nicola Bartolo, Daniele Bertacca, Sabino Matarrese, Marco Peloso, Angelo Ricciardone, An-
tonio Riotto, and Gianmassimo Tasinato. Characterizing the cosmological gravitational wave
background: Anisotropies and non-gaussianity. Physical Review D, 102(2), jul 2020.

[20] Nicola Bartolo, Chiara Caprini, Valerie Domcke, Daniel G. Figueroa, Juan Garcia-Bellido,
Maria Chiara Guzzetti, Michele Liguori, Sabino Matarrese, Marco Peloso, Antoine Petiteau,
Angelo Ricciardone, Mairi Sakellariadou, Lorenzo Sorbo, and Gianmassimo Tasinato. Science
with the space-based interferometer LISA. IV: probing inflation with gravitational waves. Jour-
nal of Cosmology and Astroparticle Physics, 2016(12):026–026, dec 2016.

[21] Nicola Bartolo, Valerie Domcke, Daniel G. Figueroa, Juan Garcia-Bellido, Marco Peloso, Mauro
Pieroni, Angelo Ricciardone, Mairi Sakellariadou, Lorenzo Sorbo, and Gianmassimo Tasinato.
Probing non-gaussian stochastic gravitational wave backgrounds with LISA. Journal of Cos-
mology and Astroparticle Physics, 2018(11):034–034, nov 2018.

[22] Nicola Bartolo, Sabino Matarrese, and Antonio Riotto. CMB anisotropies at second-order II:
analytical approach. Journal of Cosmology and Astroparticle Physics, 2007(01):019–019, jan
2007.

[23] D. Baumann. Cosmology Part III Mathematical Tripos. 2015.

[24] Daniel Baumann. Tasi lectures on inflation, 2012.

[25] Ido Ben-Dayan, Brian Keating, David Leon, and Ira Wolfson. Constraints on scalar and tensor
spectra from in/isubeff/sub. Journal of Cosmology and Astroparticle Physics, 2019(06):007–007,
jun 2019.
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