




Abstract

Computational Thinking skills, such as abstraction, debugging, decomposition,

generalization and algorithmic thinking, are central assets of the body of knowl-

edge of Informatics, and have general-purpose potential to beneĄt individuals

from all walks of life. Recent literature suggests that: (1) students can acquire

those skills since early age; (2) their learning associates positively with motiva-

tion to carry on learning Informatics in higher education; (3) these skills correlate

positively with cognitive development, in particular with Executive Functioning.

Learning Analytics is the practice of collecting ethically-cleared data about stu-

dentsŠ learning activities, to better understand and improve the learning process.

This work leverages Learning Analytics to further the study of the correlation

between Computational Thinking and Executive Functioning, and collect deeper

and wider quantitative evidence in favor of the argument that Informatics should

be taught in schools throughout all of K-12 curricula.
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Chapter 1

Contextual background

This Chapter describes the background of the present work by first stating the prob-

lems it seeks to address and then presenting a deep-dive in the state of the art of the

relevant literature.

1.1 Introduction

Computation is ubiquitous in present-day society and its relevance to people

from all walks of life is tied not only to its practical applications (e.g. the fact

that many people interact daily with multiple computers, that algorithms dictate

what they Ąnd when they search for information online, etc.) but also to its

fundamental concepts (which can be lenses through which humans may gain new

insights on observed phenomena). Denning and Rosenbloom, in [1], argue that

computation should be seen as a fourth fundamental pillar of science (in addition

to physical, life and social sciences) because it shares with the others three main

characteristics: (1) a distinctive focus that is also relevant to the other domains

(computation and information processes), (2) distinctive subdomains in constant

interaction with each other (computer science, computer engineering, information

technology, etc.) and (3) wide impact on all parts of life (as stated before in this

paragraph).

The term Computational Thinking (CT) refers to the set of skills which gener-

alize principles and methods of the Informatics body of knowledge. The general-

purpose nature of these skills makes them a good Ąt for introducing concepts

and learning activities tied to Informatics in general education. As such, recent

research (cfr. Section 1.4.2) has focused its attention on the effects that CT

activities have on cognitive development and shown that they can have positive

3
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of the long-term goals of this research: the cognitive tests we use are based on

methodologies which predate the massive expansion of computing started during

the second half of the 20th century. As such, they usually involve activities

which require manual interaction and the co-presence of a researcher/instructor

(who is also often tasked with the data collection e.g. by timing the subjects

with a chronometer). Arguably, the digitization of these activities could improve

both their efficiency (e.g. by leveraging automated data collection to change

the researcher-subject relationship from one-to-one to one-to-many) and efficacy

(removing human errors caused by mistakes and delayed reaction times). Figure

1.1 summarizes these arguments.

Of course, this is an open perspective which will require careful work (with

a particular focus on standardization and reliability testing) and collaboration

with experts in cognitive sciences.

1.2 Computational Thinking

This Section presents a summary of recent literature concerning CT. It starts by

reviewing various deĄnitions of CT and by giving a picture of the state of CT

activities conducted in Italian schools. Later, it enumerates arguments for the

importance of teaching Informatics throughout all grades (starting from primary

school) and Ąnally, it presents the constituents of CT and some techniques used

for its assessment.

1.2.1 CT definitions

The term Computational Thinking was Ąrst used by Seymour Papert in his book

Mindstorms: Children, Computers and Powerful Ideas ([4]) and later popularized

by Jeannette M. Wing ([5]) to describe a set of skills and problem solving methods

which have their roots in the development of Computer Science (CS) during the

20th century.

Román-González et. al, in [6], discuss how there is little consensus on a

precise deĄnition of the term and propose a categorization of deĄnitions in three

sets: (1) generic deĄnitions, (2) operational deĄnitions and (3) educational and

curricular deĄnitions. Table 1.1 presents examples of different deĄnitions cited

by the authors.

Enrico Nardelli, in [11], stresses the central role of the information-processing

agent in the deĄnition coined by Cuny, Snyder and Wing and reported in the
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Definition Category

CT “is the thought processes involved in formulating problems and their
solutions so that the solutions are represented in a form that can be effec-
tively carried out by an information-processing agent” Cuny, Snyder and
Wing, [7]

Generic

CT is "the thought processes involved in formulating problems so their so-
lutions can be represented as computational steps and algorithms" Alfred
V. Aho, [8]

Generic

CT is a “problem-solving process that includes (but is not limited to) the
following characteristics: formulating problems in a way that enables us
to use a computer and other tools to help solve them; logically organizing
and analyzing data; representing data through abstractions such as mod-
els and simulations; automating solutions through algorithmic thinking (a
series of ordered steps); identifying, analyzing, and implementing possible
solutions with the goal of achieving the most efficient and effective combi-
nation of steps and resources; generalizing and transferring this problem
solving process to a wide variety of problems” Computer Science Teachers
Association (CSTA) & International Society for Technology in Education
(ISTE), [9]

Operational

CT can be viewed as a set of computational concepts (sequences, loops,
parallelism, events, conditionals, operators and data), computational prac-
tices (incremental, iterative development, testing, debugging, reusing,
remixing, abstracting, modularizing) and computational perspectives (ex-
pressing, connecting, questioning). Summarized from Brennan & Resnick
[10]

Educational

Table 1.1: CT definitions divided by category

Ąrst row of Table 1.1: the fundamental shift is "from solving problems to having

problems solved"; moreover, he generalizes the concept of "solutions to problems"

(which can be misleading by driving people to only think about well-deĄned, ab-

stract problems) to "modeling a situation and specifying the ways an information-

processing agent can effectively operate within it to reach an externally speciĄed

goal"; this broadens the deĄnition to include complex tasks such as simulations

and processes which should impact the real world.

Another way to look for a deĄnition of CT considers its relationship with

other disciplines. Wing, in [12], observes that, while CT intersects with both

Engineering and Mathematics (in particular, they all share the focus on problem

solving), it is distinct from them because:

• It is more constrained than Mathematics: the systems which are the product

of CT run on physical (thus, limited) computing agents and working within

these limitations is a fundamental aspect of CT.
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schools, future teachers studying for the Primary Teacher Education degree are

not trained in this subject.

Nesen et. al, in [17], cite the aforementioned thesis and argue that a lack of

exposure to CS in primary schools can lead to low interest in the Ąeld among

students, even though the subject is available later in K-12 curricula (e.g. in

technical schools at the upper-secondary level).

Both works observe that initiatives like "Programma il futuro"1 represent a

Ąrst step towards the diffusion of CT at the lower school levels but that the educa-

tional system still lacks concrete reforms aimed at the introduction of Informatics

in primary and lower-secondary schools.

Figure 1.3 presents a timeline of recent initiatives and proposals related to

CT in Italy: it is clear that there is some interest around the topic. However, the

ultimate goal of introducing Informatics as a full-Ćedged school subject is still far

from concretization.

1.2.3 The importance of teaching Informatics

Having reported critically (in the previous Section) on the state of CT activities

and CS education in Italy, it is important to answer the question: why is teaching

Informatics to primary and lower-secondary school students important?

The literature gives a variety of responses, which we summarize here:

• Corradini et. al, in [18], state that (1) understanding the inner workings

of technologies allow people to become more informed citizens (e.g. by

fully understanding the consequences of their actions in the digital space);

(2) there is a need for workers qualiĄed in digital skills; (3) programming

offers a means for strengthening knowledge in other subjects (e.g. to build

a physics simulation students must fully understand the concepts before

expressing them in a processable way); (4) Informatics is a way to learn

problem solving.

• Bau et. al, in [19], again argue for the importance of developing digital

expertise for the workforce but also observe that programming can be useful

for reaching "other goals" (e.g. self expression).

• Resnick et. al, in [20], discuss how young people, who are often referred to

as "digital natives", usually have the ability to interact with already existing

1https://programmailfuturo.it/
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technologies (mostly social networks, online games, web browsing, etc.) and

that this does not automatically translate to the capability of designing and

creating new digital applications (or understanding the inner workings of

existing ones). We could rephrase this by saying that learning Informatics

allows people to become creators of digital technologies, rather than just

consumers.

• Denning and Rosenbloom, in [1], argue that computing (i.e. CS, or Infor-

matics) shares important characteristics with the other three main domains

of science (physical, life and social) and that it should be considered as the

fourth (cfr. also Section 1.1).

Two of the four articles mentioned here state the importance of learning Infor-

matics to prepare for high-demand jobs and careers. However, since the present

work focuses mostly on young students, this motivation should not be taken for

granted: Duncan et. al, in [21] cite (understandable) critiques of this focus on

preparing for work (reporting that probably we should leave children to enjoy

their childhood); on the other hand, they highlight (1) the importance of the

general-purpose principles and concepts of CT as opposed to speciĄc program-

ming languages and skills (this is one of the reasons why CT activities are used

as a conduit to Informatics) and (2) the fact that young students learn quickly

and can thus develop good attitudes towards programming and Informatics (this

is similar to what Nesen et. al, report in [17]).

Arguably, the amount of freely available tools and information on the internet

has reached an all-time high in recent years: for an example, students with a grasp

of programming (and basic knowledge of the English language) can access high-

quality game engines (e.g. Godot2, Unity3) and learn how to use them for free

(e.g. by following youtube tutorials); this opens up great possibilities for self

expression.

Moreover, as Caspersen et al. discuss in [22]: widespread Informatics educa-

tion would support research in all sectors and provide fertile ground for (positive)

contamination with other subjects. They highlight the importance of going be-

yond simple digital literacy and the fact that knowledge in this area is more and

more necessary to navigate the digital space as informed participants.

2https://godotengine.org/
3https://unity.com/
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rise because they forgot one passage of dough preparation (namely, burying

the yeast in the Ćour to make sure it does not enter in contact with the

salt).

• Familiarity with algorithms may encourage people to give precise instruc-

tions in any context (e.g. by saying how much Ćour to use for a recipe in

grams instead of cups, which could be of any size).

Of course, the usefulness of CT skills translates to other professional areas

as well; to make an example: Nicole D. Anderson, in [26] argues that CT can

greatly beneĄt psychology students (e.g. algorithmic skills could help in designing

efficient research plans).

1.2.5 CT assessment techniques

Tang et. al, in a recent review ([27]), list four tools for CT skills assessment found

in the literature:

• Selected- or constructed-response tests: "traditional" tests based on multiple

choice or open-ended questions. Grover and Basu, in [28], show an example

of this technique: students are presented with multiple-choice (e.g. select

a word based on some logical constraints) and opend-ended questions (e.g.

explain how a variable changes during the execution of a loop). For other

examples cfr. [29].

• Portfolio assessment: analysis of studentŠs artifacts (programs, games, etc.);

these are mostly evaluated using grading rubrics. This technique is popu-

lar for studies based on Scratch (this is not surprising, as it is not easy to

quantify the learning outcomes of open-ended activities). This is the most

interesting category for this thesis. For a summary of techniques found in

the literature cfr. Section 1.5.2.

• Surveys: often used to evaluate motivation and attitudes towards CT ac-

tivities.

• Interviews: this technique can be very powerful (e.g. asking students to

verbalize their problem-solving process can show how deeply they under-

stand CT concepts) but is very costly (indeed, the authors report that it is

underutilized).
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1.3 Block-based programming languages

In this work, we are interested in the use of block-based programming languages

to expose primary-school children to CT: these languages are united by the use of

puzzle-piece-like blocks to condense programming primitives ([30]). The research

Ąeld interested in the development and study of block-based language (mostly for

educational purposes) is relatively young and gathering some interest, as reported

in [19].

1.3.1 Advantages of block-based programming

Block-based programming languages are often explicitly created for younger audi-

ences. For this reason, they tend to present environments and exercises designed

to be engaging for children (cfr. Code.orgŠs exercises, which use characters from

popular video games like Angry Birds and Plants vs. Zombies). Thus, the most

visible advantage they offer is improving students’ motivation.

Other interesting advantages reported in the literature are: the prevention of

syntactic errors (blocks are self-contained functions which can only be connected

with other compatible blocks, there are no compile-time errors) and the reduction

of the cognitive load of programming (it is easier to recognize an instruction by

color and shape than it is to remember its keyword, parameter list, etc.).

Table 1.3 presents a summary of the beneĄts of block-based programming

languages reported in the literature.

One of the advantages which is not explicitly discussed (but is obviously im-

plied in many works) is the fact that block-based languages are usually presented

inside a programming environment which manages and abstracts away many low-

level intricacies in order to give the best possible feedback on program execution

(e.g. Scratch handles the logic which connects usersŠ instructions to the render-

ing of their games on the screen, Code.org translates usersŠ blocks into programs

under the hood and then executes them to retrieve input instructions for their

maze games, etc.).

1.3.2 Disadvantages of block-based programming

Despite the advantages presented in the previous Section, block-based program-

ming languages can, of course, have their downsides.

Various studies point out how students can take them less seriously, as they

are not seen as "real world programming".
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Advantage Notes Mentioned in

Simplified syntax Blocks prevent the occurrence of
syntactic errors

[31, 32, 33, 34, 35, 21,
19]

Drag and drop Reduces the interface friction
of having to use the keyboard
(and, with touch-screens, also the
mouse)

[31, 34, 35]

Immediate execution
(no compile time)

A weaker point, this is also true for
scripting languages e.g. Python

[31]

Metaphors Instructions for the processor be-
come "giving directions to the
sprite", ecc.

[31]

Motivation Block-based languages are less in-
timidating

[32, 36]

Puzzle-piece-like
blocks

Color and shape help see which
commands can be combined

[34, 35]

Recognition vs. recall Recognizing blocks presented in a
list is easier than remembering key-
words and primitives (block-based
languages reduce the cognitive load
of programming)

[34, 35, 19]

Abstraction Code blocks work as functions and
can abstract low-level instructions

[34, 35, 19]

No compile-time er-
rors

Blocks can not be combined if they
do not work together

[21]

Table 1.3: Advantages of block-based programming languages found in the lit-
erature

Another interesting critique is related to the fact that these languages are less

efficient in the way they use screen space (blocks quickly consume vertical space,

complex programs soon become unreadable) and in the way they are programmed

(dragging a block takes more time than typing, refactoring a block structure can

be more complex than simply changing a variable name).

Finally, some authors question the learning outcomes of activities with block-

based programming languages: it is not clear if programming skills and under-

standing of fundamental concepts transfer to other languages. Moreover, block-

based languages can actively encourage the formation of bad programming habits

([37]).

Table 1.4 presents a summary of the disadvantages of block-based program-

ming languages reported in the literature.
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Disadvantage Notes Mentioned
in

Not "real programming" Some studies report this sentiment
among the subjects (usually older
students)

[38, 34, 35,
39]

Less efficient Blocks take up more space (pro-
grams get longer and more diffi-
cult to read), drag-and-drop is in-
efficient compared to typing

[34, 35, 19]

Misconceptions The puzzle-piece metaphor can
lead students to think that code
blocks have a specific place and not
a variety of uses

[35]

Less expressive / less powerful Blocks condense instructions but
there can not be a block for ev-
ery function (by abstracting low-
level instructions we lose expres-
siveness)

[34, 35]

Transferability issues Competencies gained in block-
based languages do not directly
translate to "traditional" languages

[38, 39]

Incomplete understanding of
operators

Abstracting the intricacies of some
concepts (variables, loops, boolean
logic) leads to less understanding
of the same

[28]

Bad programming habits Extreme bottom-up or top-down
approaches which highlight the
lack of a design phase

[37]

Table 1.4: Disadvantages of block-based programming languages found in the
literature

1.3.3 Distinctions within block-based languages

This Section presents the most important distinction we see in block-based pro-

gramming languages, for the purposes of this study: the distinction between works

using block-based languages in "open-ended" projects and exercises (mostly based

on Scratch4, cfr. Figure 1.5) and works based on curated sets of exercises with

Ąxed solutions (e.g. Code.org).

The Ąrst category stems from the philosophy of constructionism, originated by

Seymour Papert, which asserts the value of learning difficult concepts by building

projects ("learning through making", cfr. [40]) with further beneĄts gained from

the emphasis on creativity (the reason why projects are often "open-ended") and,

4https://scratch.mit.edu/
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1.4.1 EF definition

EF are a set of cognitive skills with a regulatory purpose, i.e. they are used to

control oneŠs thinking and behaviour ([49]). Gilbert and Burgess, in [50], draw a

distinction between automatic and controlled mental operations: automatic oper-

ations are those well-trained, well-explored actions (and thoughts) which humans

can perform virtually automatically (they use "reading a word" as an example);

controlled operations, on the other hand, are those that become necessary when

new and unexpected situations arise and no automatic response is available (this

also encompasses errors and situations in which there is a mismatch between con-

text and automatic response). Thus, EF are the skills which enable "lower-level"

mental processes (linked to automatic behaviour) to be controlled by "higher-

level" ones (tied to controlled behaviour).

Best and Miller, in [51], review various articles on EF from a developmental

point of view; the points of interest for the present study are relative to the

temporal development of these skills:

• EF skills development starts very early (their foundations emerge during

the 1st year of life) and continues until adolescence/early adulthood.

• EF skills develop at a fast rate during preschool and early school years (cfr.

also [3]).

Adele Diamond, in [52], describes core and higher-order EFs; the core skills

are:

• Inhibition and interference control: the ability to control impulses and au-

tomatic responses, to break habit and exit "autopilot" mode; applied to oneŠs

attention, this means also choosing to concentrate on what is important for

the task at hand and avoiding external (irrelevant) stimuli; inhibition is

also tied to motivation (e.g. resisting the temptation to give up during a

difficult task) and the ability to pursue delayed gratiĄcation (necessary for

long and complex tasks e.g. writing a MasterŠs thesis).

• Working memory: the ability to retain information and combine it with

incoming data (e.g. sensory stimuli) which is fundamental for any complex

multi-step task (be it understanding a paragraph, solving a math problem,

building an algorithm).
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from Code.org) and standard Science, Technology, Engineering and Mathemat-

ics (STEM) activities for the control group. The results show improvement in

planning and inhibition skills for the test groups.

To the best of our knowledge, this particular research Ąeld (the effect of

CT, expressed through programming activities, on EF) is not overly populated;

Robertson et. al, in [53], describe an experiment in which 23 students (11-12

year old) participate in a programming workshop with the language Scratch (a

debugging task and a creative open-ended task); the authors use the Dr. Scratch

tool (cfr. Section 1.5.2) to extract "CT coefficients" (i.e. data about the level

of understanding of different concepts of CT like generalization, loops, etc.) and

test the participants with the Behavioural Rating Inventory of Executive Function

(BRIEF2) assessment of EF skills. The results show correlation between EF skills

and the "CT coefficients" collected for debugging and creative programming.

Di Lieto et. al, in two studies ([54, 55]), approach the relationship between

EF and CT from the point of view of robotics. Both works describe studies con-

ducted with groups of 5 and 6 year old children who participate in workshops

revolving around interactions with a simple robot (which can be manually pro-

grammed, through a series of buttons, to make it move according to the desired

trajectory). The children are tested before and after the workshops with various

neuropsychological tests (e.g. Forward and Backward Corsi Block Tapping for vi-

suospatial memory, NEPSY-II for inhibition) and the results show improvements

in working memory and inhibition for the test groups.

Figure 1.7 presents a "geographic" map of the cited studies.

1.4.3 The Tower of London test

The Tower of London task was Ąrst described by Timothy Shallice, in [56] (inter-

estingly, the author reports having taken inspiration for the test from the domain

of artiĄcial intelligence and cites the classic problem of the Tower of Hanoi).

The test requires subjects to interact with beads (of different colors: blue,

red, green) inserted in pegs (of different height) mounted on a board (see Figure

1.8): the goal is to move one bead at a time from a peg to another to reach a

speciĄc conĄguration (shown at the start of the test) with a maximum number

of moves (dependent on the difficulty of the Ąnal conĄguration). The starting

position of the beads is always the same (green and red beads on the longest peg,

blue bead on the medium peg), the task can then vary in difficulty based on the

number of moves required to reach the target conĄguration.
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1.5.1 The research field of LA

The research Ąeld of LA is relatively young: its inception can be traced to the

First International Conference on Learning Analytics and Knowledge (LAK2011),

during which it was deĄned as "the measurement, collection, analysis and report-

ing of data about learners and their contexts, for the purposes of understanding

and optimising learning and the environment in which it occurs" ([57]).

Another Ąeld of research concerned with similar problems is that of Educa-

tional Data Mining (EDM), which predates LA by a few years (the Ąrst conference

was held in 20085).

Baker, Gašević and Karumbaiah, in [58], differentiate LA and EDM by say-

ing that EDM is mainly concerned with an entitative methodological paradigm

(reducing a phenomenon into its smaller components and then analyzing the

relationships among these components) while LA is mainly concerned with a di-

alectical paradigm (according to which the smaller components can be understood

by understanding the whole system Ąrst).

To be more speciĄc, we can look to another distinction drawn by Filvà et.

al, in [59]: EDM, being a branch of data mining and machine learning, is more

concerned with the collection and analysis of educational data; LA, on the other

hand, analyzes studentsŠ interactions with learning systems to extract behavioural

patterns and relate them to learning goals and outcomes.

For the purposes of this study, however, this differentiation is not too impor-

tant; we use the term LA to refer to studies and techniques based on the deĄnition

given in LAK2011. In particular, we are interested in the application of these

techniques to CT. One of the primary ways of teaching CT skills is through pro-

gramming, be it via open-ended projects or increasingly complex and challenging

problems: regardless of the modus operandi, the results of these activities are al-

ways machine readable artifacts (i.e. programs) which naturally lend themselves

to automated analysis which can shed light on interesting facts.

LA, as a research Ąeld, is quite wide; we could see it as a spectrum, based

on the data collection granularity: on one hand it includes works concerned with

"high level" techniques and tools, such as Learning Management Systems (LMS)

for higher education, similar to Moodle6, which collect information about (online)

class attendance, review of study materials, performance on weekly tests and

quizzes ([60]); on the other end it includes works which collect and analyze "low

5https://www.educationaldatamining.org/EDM2008/
6https://moodle.org/



1.5 Learning Analytics 23

level" data including studentsŠ actions and timestamps relative to the solution of

a single exercise ([59]). This project is focused on this kind of Ąne-grained data

collection and analysis.

The motivations driving LA research are: reducing dropout rates, improving

academic performance ([61, 62]), understanding learning strategies and processes,

improving curricula, adapting learning paths to students and recommending con-

tent ([63]), developing learning and meta-learning skills through feedback ([60]).

Other motivations, mainly related to student modeling, are the implementation

of "early warning" systems for teachers and tutors ([58]).

Motivation Related works

Student modeling: coefficients to measure the understanding
of CT concepts

[64, 45, 65]

Student modeling: student categorization [59, 66, 67]

Student modeling: performance evaluation [68, 69]

Student modeling: error evaluation [70]

Exercise modeling [69, 47]

Automatic feedback and suggestions [45, 71]

Adaptive learning [47, 71]

Teacher dashboard for early warning [67]

Effects of CT on EF [2, 3, 54, 55, 53]

Table 1.5: List of LA works divided by motivation

Table 1.5 presents a summary of LA related works, divided by motivation.

1.5.2 Concrete examples

This Section contains a summary of LA techniques (of a "low level" nature, cfr. the

previous Section) found in the literature. The following paragraphs distinguish

them in works that mostly focus on CT processes or outcomes. Figure 1.9 shows

the kind of information that we can gather from Code.orgŠ exercises by using such

techniques.

Works that mostly focus on the CT process

Filvà et. al, in [59], describe an approach to analyze the CT process of students

programming in Scratch (i.e. "open-ended" tasks, cfr. Section 1.3.3) through

clickstream (i.e. the collection and analysis of usersŠ clicks while they interact

with an application); they use unsupervised clustering algorithms (e.g. k-means)
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• Balanced users who develop at a normal pace.

This classiĄcation is particularly interesting because the authors Ąnd that it

correlates with the studentsŠ results in the programming tasks: namely, the trial-

and-error model shows a strong correlation with good results while the blocked

model correlates with unĄnished and very basic programs.

However, these results do not Ąnd conĄrmation in another work, by Kessel-

bacher and Bollin ([67]), who, in fact, Ąnd that the opposite is true. The au-

thors collect very Ąne-grained data on the solution process and outcome of a

single programming task (the subjects are lower- and upper-secondary school stu-

dents): block creation (with relative type), deletion, drag-and-drop, reordering,

etc. Their analysis shows that clicks on the "green-Ćag" button have a moderate

negative correlation with task success. The authors discuss how this could be

caused by the fact that novice programmers have an incomplete understanding of

programming concepts and need to test them frequently by executing their code.

By analyzing clusters of studentsŠ data (k-means and 4 clusters found with the

"elbow technique") the authors conĄrm this result and Ąnd that a balanced usage

of "special" blocks (representing programming concepts like loops, variables, etc.)

tends to correlate with successful solutions.

Fields et. al, in [66] describe a different approach for the study of CT pro-

cesses: the authors collect and analyze frequent snapshots of usersŠ (aged 10-13)

programs during a complex multi-day programming task (the development of a

Scratch application). They show results related to two groups of metrics: missing

initializations (e.g. use of a sprite without setting its initial state) and parallel

programming. The results are plotted on a graph which shows the progress of

these metrics during the multi-day project, this visual representation highlights

interesting patterns, e.g. for the "missing initialization" metrics they Ąnd (1) a se-

ries of spikes which suggest a phase of efficient debugging (problems are solved as

soon as they emerge) and (2) long "plateaus" which show how debugging becomes

more difficult as the projectŠs complexity increases.

Works that mostly focus on the CT outcomes

Moreno-León et. al, in [45], describe Dr. Scratch: a tool to analyze Scratch pro-

grams, i.e. programming outcomes. The tool assigns to each project a "CT score"

based on the inferred level of understanding of the following CT concepts: (1)

abstraction and problem decomposition, (2) logical thinking, (3) synchronization,

(4) parallelism, (5) algorithmic notions of Ćow control, (6) user interactivity and
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(7) data representation (note how some of these, being more "practically focused",

are not among those listed in Table 1.2).

Dr. Scratch evaluates the CT concepts based on a rubric, with scores ranging

from 0 (null), to 3 (proĄcient); for example: the use of an "if" block gives 1 point in

the "logical thinking" category ("basic" competence), the use of an "if-else" block

gives 2 points ("developing" competence), and so on. Moreover, the tool looks for

speciĄc bad programming habits (e.g. code repetition, incorrect initialization of

object attributes, etc.) and uses them to give feedback to users (this feedback

gets more detailed as the CT score increases).

This tool has proved to be quite popular and is used in other works, e.g. [72].

Another interesting approach for the analysis of CT outcomes is presented

by Koh et. al, in a study ([32]) which focuses on semantic similarities among

programs. The authors use vectors to represent usersŠ games, created with the

AgentSheets visual programming language7, by collecting the presence and num-

ber of game actions and conditions (e.g. "move sprite up when key up is pressed").

These vectors can be compared (with cosine similarity) between one another or

with a set of "canonical" vectors which represent CT patterns (in this case the

patterns are related to video games, e.g. collision, hill climbing, transportation,

etc.). The similarity score between a programŠs vector and the "canonical" vectors

can be plotted on a radar graph (called "CT pattern graph") whose shape gives

information on the usage of the different patterns: interestingly, the authors show

how two different implementations of the same game show a very similar shape

(same use of CT patterns) but two different scales (one implementation was more

efficient than the other).

1.5.3 Ethical considerations

The amount of data collection and control that LA techniques allow should raise

questions and (understandable) concerns about the goals and politics of those

who use them. Data is not neutral (as a proof, cfr. the Facebook-Cambridge

Analytica scandal) and the fact that something is technically possible (e.g., in

this case, collecting Ąne grained data on students and their learning processes) is

not, in itself, enough motivation for actually doing it.

This view is shared by Neil Selwyn who, in [73], critically addresses the very

existence of LA. Admittedly, the author mostly refers to those techniques which

I referred to as of "high-level" granularity in Section 1.5.1, i.e. tools used at an

7https://agentsheets.com/
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institutional level (and which can enable "institutional surveillance"). However, I

think it is important to clearly deĄne an overarching goal for studies and activities

in this Ąeld: for the present work the main (long-term) goal is being able to collect

and present quantitative data to strongly support the argument for the inclusion

of CS education in primary and lower-secondary schools (cfr. Sections 1.2.2 and

1.2.3).

1.6 Summary

This Chapter presented the goals of this project and grounded them in the state

of the art of the recent literature.

We argued for the importance of teaching CT skills as a conduit to Informatics

and for the importance of research showing the positive effects of CT activities

as quantitative evidence for the inclusion of Informatics in K-12 curricula.

The interdisciplinary connection with psychological research allows us to

leverage the power of reliable, standardized assessment techniques for EF skills

to show the impact of CT skills on cognitive development.

The CS perspective of this work Ąnds expression in the study of LA tech-

niques to augment our data collection procedures and, potentially, to expand the

amount of information that we can gather by observing CT activitiesŠ processes

and outcomes.

These perspectives and foundations Ąnd natural concretization in the de-

velopment of a platform which combines CT activities and LA data collection

techniques, with the goal of correlating CT and EF results. We present this

application in the next Chapter.
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The limited time allocated for the project (∼6 months) enforced some con-

straints on what we could achieve, in particular:

• We had to quickly build a prototype, in order to be able to collect data

during some of the CT activities of the research group (cfr. Section 3.1).

• Because of the requirement of the previous point, we could not develop a

new series of CT exercises and had to rely on already existing material: the

choice (as for the previous publications of the research group: [2, 3]) fell on

Code.org8.

Code.org is a nonproĄt dedicated to the goal of expanding access to CS ac-

tivities (according to its website, over 70 million students from more than 180

countries engaged with its contents); its website provides a wealth of CT exer-

cises addressed to students from all grades.

Because of its focus on spreading and easing access to CS activities, Code.org

has a strong focus on usability and on being engaging for young users. Because

of this, its exercises often use sprites and assets from popular video games and

franchises (e.g. Angry Birds, Plants vs. Zombies, Frozen, etc.): this poses some

issues tied to copyright, which we shall discuss further in Section 2.6. Moreover,

even though the block-based programming language used in Code.orgŠs exercises

is built upon Google Blockly, and is therefore potentially capable of listening to

usersŠ interactions and collecting Ąne-grained data (for examples cfr. Section 2.7),

the analysis of CT activities is not one of the goals of the platform.

The architecture of Code.orgŠs codebase is shaped by its objectives and, there-

fore, it offers limited access to BlocklyŠs data collection mechanisms; regardless,

it can be augmented by what we call digital sensors and it can thus serve our

purposes, for more details cfr. Section 2.4.2.

2.2 Overview

The preliminary results published by our research group (cfr. [2, 3]) are based on

data collected in two ways: (1) measurements by hand (i.e. using a chronometer

to capture planning and execution time intervals) and (2) measurements collected

by a native Java application named Coding Management Studio.

The downsides of collecting data by hand are easily visible: high probability

of human error (be it because of distraction or limited reaction times) and high

8https://code.org
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human cost (every single test must be directly supervised in order to collect its

data).

The software Coding Management Studio, while being a Ąrst step towards au-

tomation, has its downsides as well: (1) it is a native Java application, this means

that it must be installed on every workstation on which tests are conducted; (2)

it presents a browser-like view of an exercise from Code.org, with no access to its

internal mechanisms; this means that there is no way of hiding unnecessary parts

of the screen, preventing unwanted events (e.g. a login request which blocks the

entire exercise) or capturing relevant information (e.g. it collects the planning and

execution time intervals by requiring students to click on buttons which explicitly

signal the beginning and ending of the respective phases); (3) the collected data

is saved on the hard drive of the test workstation and must be gathered by hand

(and combined with the rest) by the researchers.

Thus, the application Co.Thi. is built to provide these features:

• Being accessible through the web, eliminating the need for manual installa-

tion and taking advantage of one of the most widespread and standardized

runtimes: the browser.

• Collecting exercise data automatically and transparently for the user, thus

solving two problems: (1) eliminating the artiĄciality of having to explicitly

signal the beginning and ending of a phase and (2) reducing human errors

in measurements.

• Storing the collected data in a central database and providing tools to

organize it in (csv) Ąles ready for analysis with statistical software (e.g.

SPSS9).

The platform consists of a client application which interacts with a backend

server and an augmented fork of Code.orgŠs codebase, for more details cfr. the

next Section.

2.3 Project architecture and security mechanisms

Figure 2.2 presents an overview of the architecture of the application and a run-

down of the technologies that support it.

9https://www.ibm.com/analytics/spss-statistics-software
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order to be able to (1) quickly prototype the application, (2) test it "in the

Ąeld" with actual users and (3) use it during the CT activities conducted

by our research group (for more details cfr. Section 3.1).

In order to enable the embedding of the exercises, the fork of Code.org must

be exposed to the internet: this greatly extends the attack surface of the host

machine. Thus, as a security precaution, we implemented a server policy which,

for every incoming request (be it a POST request carrying content, a GET request

for a web page, etc.), checks the presence of a speciĄc session cookie carrying a

secret key (the hash of a password): this cookie is set upon login to the Node.js

web server and is Ćagged as httpOnly in order to minimize XSS risks13. A request

without the security cookie gets a 403 Forbidden response.

Admittedly, strongly motivated attackers could Ąnd a way to steal the se-

curity cookie and gain access to the exposed fork, however, this is not a high

stakes application and the category of attack we can reasonably expect is that

of automated scans and tests for common vulnerabilities. In order to shield the

application from easy attacks we implemented the following security mechanisms

in addition to the security cookie:

• Moving the SSH server from port 22 to port 22666 (usually automated scans

only check the most used ports).

• Removing the possibility of SSH access via username and password (only

public key cryptography).

• Using a systemd service to start and stop Code.orgŠs fork in order to having

it up and running only during school hours (thus temporally reducing the

attack surface).

On top of the security measures, we extended Code.orgŠs fork in order to (1)

have the exercises collect data automatically (cfr. Section 2.4.2) and (2) send this

data to the Node.js web application. This data exchange is handled using the

window.postMessage14 javascript API: this allows the React client application to

work as a data collector and aggregator throughout the exercise solution process.

At the end of each exercise, the cumulative data is sent to the backend server

with a POST request.

13https://owasp.org/www-community/HttpOnly
14https://developer.mozilla.org/en-US/docs/Web/API/Window/postMessage
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Aside from the problem, each exercise consists of a series of tools (i.e. code

blocks available for its solution) which are shown in the toolbox section of the

screen. Having only some code blocks available for a speciĄc exercise is a form

of scaffolding which has the goal of reducing the cognitive load for users: this is

clearly a great distinction from "traditional" text-based languages (cfr. Section

1.3.1) but is also a distinction from "open-ended" block based languages like

Scratch (in which every code block is always immediately available).

Users compose their programs by dragging code blocks from the toolbox to

the workspace section of the screen and connecting them in a vertical column (the

verticality is suggested by the jigsaw-like bumps and indentations on the blocks).

Each exercise has a (predetermined) ideal number of blocks which is shown

by a number at the top of the workspace: this is the number of blocks which would

be used for the optimal (i.e. the most efficient) solution; suboptimal solutions are

allowed as well.

We divide usersŠ solution processes in two phases:

• Planning phase: starts as soon as the components of the problem appear

in front of the user (visual stimulus) and ends when the user takes their

Ąrst action to solve the exercise (moving a block, changing a parameter,

etc.). The boundaries set for this phase are very similar to those used for

the TOL test (cfr. Section 1.4.3).

• Execution phase: starts as soon as the planning phase ends and terminates

when the exercise is solved (for the Ąrst time) or failed for the third time.

Note: this happens as soon as the user clicks the "run" button, regardless

of the time Code.org takes to animate the spriteŠs traversal of the maze (or

the artistŠs drawing).

2.4.2 Data collection details

Code.orgŠs block-based programming language is based on a fork of Google Blockly15

and presented in a wrapper which hides some functionalities (or at least makes

them hard to reach): most importantly, there is no clear pointer to the exercise

workspace handler which would allow to listen for BlocklyŠs Events (which cover

every user interaction we are interested in, cfr. Section 2.7).

15https://developers.google.com/blockly/
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However, by using a black-box approach, interesting information can be gath-

ered directly from the DOM through the javascript MutationObserver API16: this

interface allows the handling of changes to the web page by listening to events

Ąred by observers (a sort of digital sensor) attached to speciĄc DOM elements.

In particular, we augmented Code.orgŠs code with two digital sensors:

• An observer attached to the blockUsed DOM element, which keeps track

of the addition and removal of blocks to the userŠs program.

• An observer attached to the whole document, which checks for the addition

of elements with the classes blocklySelected and blocklyDraggable, thus

identifying when a code block is dragged through the screen.

Other useful information can be collected simply by checking for speciĄc

function calls and conditions; to make an example, the termination conditions

for a userŠs program are handled by a switch statement: it is then sufficient to

extend each condition in order to make it signal the relative event.

It should be clear that these augmentations are not particularly intrusive

and, thus, data collection can be added to Code.orgŠs exercises without dramatic

changes to the codebase. However, a direct access to the workspace handle would

provide a far better alternative, as we show in Section 2.7.

Code.orgŠs fork sends data to Co.Thi.Šs client application via javascriptsŠs

window.postMessage API; Table 2.1 presents a summary of the messages.

The client application listens for the messages sent by Code.orgŠs fork and

aggregates them to create a representation of the solution process; in particular:

• When it receives the initData message it sets the planningStart times-

tamp which signals the beginning of the planning phase of the exercise

solution process.

• When it receives a blockDrag or textChanged message it sets the executionStart

timestamp which signals the beginning of the execution phase of the exer-

cise solution process.

• It uses the blockData messages to (1) keep track of the number of actions

(additions and removals of blocks to the program) a user takes to solve the

exercise; (2) keep track of the number of used blocks (usedBlocks) vs. the

number of ideal blocks (idealBlocks): this is later used to determine if a

16https://developer.mozilla.org/en-US/docs/Web/API/MutationObserver
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Message Sent when Notes

initData Exercise application is mounted

blockDrag User starts dragging a block from
the toolbox (or the workspace)

This "sensor" is disconnected as
soon as the message is sent for
the first time

textChanged User changes a block label (i.e.
parameter)

This "sensor" is disconnected as
soon as the message is sent for
the first time

blockData Whenever the "used blocks" label
changes value

This sends the number of used
blocks and the number of "ideal"
blocks

runButtonClick Whenever the user clicks the
"run" button

Similar messages are sent for the
"step" and "reset" buttons

success User completed the exercise suc-
cessfully

Attached to this message is the
structure of the user’s program

failure... When the different failure condi-
tions are met

e.g. exercise not terminated, in-
finite loop, etc. Attached to this
message is the structure of the
user’s program

Table 2.1: Messages sent by Code.org’s fork to the React client application

solution is optimal; (3) keep track of the sequence of actions of the user:

e.g. addition of 3 blocks, removal of 2 blocks, and so on.

• The success message sets the executionEnd timestamp which signals the

end of the execution phase of the exercise solution process.

• The different failure messages are used to keep track of the userŠs accuracy

score: for each exercise there are 3 attempts and the Ąnal score is set as

3 − n, where n is the number of attempts. The third failure message sets

the executionEnd timestamp.

• The success and failure messages carry a representation of the relative

userŠs program: this is stored and later sent along with the rest of the data.

As soon as the user terminates an exercise (by issuing the Ąrst correct solution

or the third incorrect one) the React client sends the aggregated data to the

backend server which stores it in the database after some Ąnal elaborations; in

particular: (1) the backend analyzes the usersŠ programs to determine the depth of

their nested structures and the presence of special blocks (loops and conditionals)

and (2) it stores the usersŠ programs and sequences of actions in graph form.

Table 2.2 presents the exercise process and outcome metrics collected in the

database.



38 Chapter 2. Outline of the research project

Name Description
planningTime Difference between executionStart and planningStart

(ms)
executionTime Difference between executionEnd and executionStart

(ms)
success true if exercise solved in 3 or less attempts
accuracy 3 − n where n is the number of attempts
optimalSolution true if usedBlocks ≤ idealBlocks

numOfActions Number of additions and removals of blocks from the userŠs
program

if true if userŠs program has a conditional block
repeat true if userŠs program has a loop block
depth Depth of nested block structures in userŠs program

Table 2.2: Exercise metrics stored in the database

2.5 Typical usage

The web application supports two types of user, described in the next Sections; in

particular: Section 2.5.1 describes the typical application usage of the user who

has access to the exercises and Section 2.5.2 describes the Admin dashboard.

Coding and Admin users receive different bundles: these are compressed

javascript Ąles which contain the application code along with all its dependencies

and are generated with webpack17.

Having separate applications for different kinds of users has the following

advantages:

• Reduced weight: every application bundle only includes the dependencies

and code which are actually used by the respective users.

• Increased security: users never receive code they are not allowed to execute,

this reduces the risk of client-side manipulations and security bypasses.

The browser retrieves the bundles through a script tag (present in the

index.html page served by the backend) whose src Ąeld points to a web API

designed to discriminate the usersŠ types. This API Ąrst checks if the user has an

active session (otherwise it serves the login application bundle); then, it checks the

user type (based on their database record) and Ąnally, it sends the appropriate

bundle Ąle.

17https://webpack.js.org/











2.7 Co.Thi. 2.0 43

On top of these limitations, by observing our subjectsŠ coding activities and

discussing with them, we collected the following observations on Code.orgŠs ex-

ercises:

• The presence of the step button adds some ambiguity to the exercise inter-

face: students Ąnd it hard to understand that the possibility of executing

the program step-by-step is just a visual helper and that their program is

actually Ąxed once they make the Ąrst step (i.e. if they modify their code

they have to reset the animation). This is communicated by Code.org with

a textual prompt but we think it would be better to directly remove this

option (at least during tests).

• Some of the exercisesŠ visualizations (cfr. for example Figure A.6) are dif-

Ącult to interpret in terms of distances (i.e. users Ąnd it hard to see the

underlying grid). For this reason we think it would be better to overlay an

explicit grid on top of the exercise "maps".

• Some of our users did not like working with some of the exercisesŠ sprites:

allowing them to choose their preferred avatar for every activity is an easy

addition which would eliminate this problem.

2.7 Co.Thi. 2.0

Having seen in this Chapter how we can expand an existing platform built for a

different purpose with data collection mechanisms, it is interesting to see what we

can achieve by building a new application with this specific goal as a foundation.

This proof-of-concept application (labeled Co.Thi. 2.0 ) offers potential for

very Ąne-grained data collection and can be the basis for further experimentation

(cfr. Section 4.2).

Figure 2.8 shows the interface of a Co.Thi. 2.0 exercise designed to teach

loops, along with its representation in Ąle form. At the current stage the problem

representation is very primitive (it adopts conventions from roguelike19 video

games by representing the user sprite with "@" and walls and obstacles with

"#"), although it can represent the sprite movement through the maze: a future,

more complete, version will have full graphics.

19https://en.wikipedia.org/wiki/Roguelike
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a connection to be created or severed. This information can be used to

detect interesting patterns like a block "shuffle" (change of position inside

the structure of the program).

This prototype is just a proof-of-concept of the possibility of reproducing

Code.orgŠs main qualities and perfect our data collection mechanisms. Further

work is needed to make it useful for future research: Section 4.2.1 presents some

goals and reĆections on this matter.

2.8 Summary

This Chapter presented the main concrete products of this thesisŠ work: the

platform Co.Thi. and its prototype follower Co.Thi. 2.0.

The main highlights we can extract are:

• Fine-grained data collection about block-based programming activities is,

indeed, possible: in the best-case scenario we can ultimately store enough

data to recreate the entire solution process, step-by-step with precise time

intervals.

• Code.orgŠs codebase could be augmented with kind of data collection, with

minimal overhead (especially if BlocklyŠs workspace handle was unwrapped

and made available to the codebase user). The wealth of data that could be

collected by this platform, accessed by millions of users, is easily imaginable.

We were able to extend our data collection beyond the basic accuracy met-

rics and planning and execution time intervals. The next Chapter presents our

experimental evaluation and shows the results we were able to collect with our

augmented data collection techniques.
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Chapter 3

Experimental evaluation

This Chapter presents the study we conducted with the help of the Co.Thi. platform

and the data we were able to collect about primary-school students’ CT processes

and outcomes.

3.1 Test organization

Because of the timing of the project, we were able to deploy the platform Co.Thi.

for the Ąrst time in December 2021: this was the middle point of an activity,

conducted by our research group, which we shall describe in this Section.

This project, informally called Project Coding, involves activities very similar

to those described in the articles previously published by my research group ([2,

3]): a group of interns from the Department of Psychology (we shall call them

instructors), under the guidance of a PhD student from the same department,

conducted training and test sessions in two primary schools in the city of Padua,

from September 2021 to May 2022.

The projectŠs subjects were students from 1st and 4th grade classes who were

divided in a test and control group (we shall refer to them interchangeably with

the terms students and subjects).

Figure 3.1 presents a timeline of the activities for the two groups. This kind

of experiment involves three tests:

• T1 is the baseline CT and EF test: it is done before any other activity and

its results are used to check the effects of the training on students.

• T2 is done after the test groupŠs training: 2 hours of coding a week, for a

month, totaling 8 hours.

47
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Exercise Concepts Notes Original url

Exercise 1 Sequences Navigation with rela-
tive movement blocks
(move forward, turn
left, turn right)

https://studio.

code.org/s/course2/

lessons/3/levels/5

Exercise 2 Loops Potentially solvable
with nested loops

https://studio.

code.org/s/course2/

lessons/6/levels/8

Exercise 3 Sequences &
Debugging

A loop block is avail-
able in this exercise’s
toolbox (but the opti-
mal solution does not
require it)

https://studio.

code.org/s/course2/

lessons/10/levels/4

Exercise 4 Conditionals This exercise requires
some actions to be
taken only under cer-
tain conditions (i.e.
collect nectar only if
present)

https://studio.

code.org/s/course2/

lessons/13/levels/5

Table 3.2: Fourth grade test exercises overview

Students actually solve 8 exercises during the course of the CT test: each

"official exercise" is preceded by a "rehearsal exercise", based on the same concepts

and used to refresh the studentsŠ skills; however, the subjects are not made aware

of this difference (so that they engage each exercise with the same concentration

and effort).

The training activities consist of workshops conducted in the schoolsŠ com-

puter rooms during which the instructors presents students with a series of exer-

cises of increasing difficulty selected in order to cover the CT concepts examined

during the tests (in particular: sequences of operations, loops and conditionals).

During these activities students work alone at their workstation, attempting to

autonomously solve an exercise; they can later compare their results and discuss

difficulties (usually the instructors call forth one of the students and ask them to

discuss their solution). The instructors offer help to those in need by suggesting

different approaches and stimulating their problem solving process but they never

give the Ąnal solution.
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3.1.2 EF tests

The research project involves different EF tests, in particular: the TOL test for

planning skills and Nepsy-II and numerical Stroop for inhibition. For this thesis,

we only focus on the TOL (cfr. Section 1.4.3).

The rules for this test are:

• The subjects must move only one bead at a time.

• At any time at most one bead can be placed on the shorter peg, two on the

middle peg, three on the longer peg.

• When the subject removes a bead from a peg, they must place it down

on another before taking another bead (i.e. any bead movement must be

sequential).

• Every Ąnal conĄguration (based on its difficulty) has a maximum number

of allowed moves.

• The subjects must solve each task (i.e. each Ąnal conĄguration) in under

60 seconds (counted from the moment they receive the visual stimulus to

the moment they complete the task).

For each task completed following these rules, students receive 1 accuracy

point.

3.2 Data overview

Table 3.3 presents the list of metrics we used for our data analysis.

To summarize how we compute these metrics:

• Tower of London (TOL) planning time (TP): measured from the moment

the subject receives the (target conĄguration) visual stimulus, to the mo-

ment they make their Ąrst move. For the correlation analysis we take the

mean of the planning times across the tasks and exercises (this also applies

to execution times and to coding metrics).

• TOL execution time (TE): measured from the Ąrst move to the moment

the subject recreates the Ąnal conĄguration.
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Metric name Definition
TP TOL planning time
TE TOL execution time
TA TOL accuracy
CP Coding planning time
CE Coding execution time
CA Coding accuracy
CAO Coding accuracy + optimality
CAS Coding accuracy + special blocks
CNA Coding mean number of actions
CMD Coding mean depth
CBD Coding block difference
CSO Coding sum of optimal solutions
CHP Planning time change score
CHE Execution time change score
CHA Accuracy change score

Table 3.3: Metrics glossary

• TOL accuracy (TA): 1 point for every TOL task completed following the

rules (cfr. Section 3.1.2). For the correlation analysis we take the sum of

the accuracy measures across the tasks and exercises (this also applies to

coding metrics).

• Coding planning time (CP): measured from the moment the subject re-

ceives the (coding exercise) visual stimulus, to the moment they make their

Ąrst move (dragging a code block or changing a block parameter).

• Coding execution time (CE): measured from the end of the planning time,

to the moment the subjects run a correct solution for the Ąrst time or an

erroneous solution for the third time.

• Coding accuracy (CA): calculated with 3 − n, where n is the number of

attempts.

• Coding accuracy + optimality (CAO): this is equal to CA+1 if the exercise

solution has an optimal number of blocks (i.e. ≤ than ideal blocks of the

exercise, cfr. Section 2.4.1); otherwise it is equal to CA.

• Coding accuracy + special blocks (CAS): this is equal to CAO + (1 × m)

where m is a score which gives 1 point for every relevant special block
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(loops, conditionals) used in the exercise solution. A relevant special block

is one which is actually necessary to the (optimal) solution (e.g. a loop

block in a loop exercise, etc.): we check this by comparing the blocks used

in a solution against a list of exercise annotations.

• Coding number of actions (CNA): this metric counts the number of addi-

tions and removals of (one or more) blocks to the subjectsŠ programs (for

the correlation we take the mean across the exercises).

• Coding mean depth (CMD): mean depth of the nested structures of the

subjectsŠ programs, across all exercises.

• Coding block difference (CBD): this is calculated as the sum of u− i across

all exercises, where u is the number of used blocks and i is the number of

ideal blocks. It is an indicator of the "verbosity" of the subjectsŠ solutions.

• Coding sum of optimal solutions (CSO): 1 × o, where o is the number of

optimal exercise solutions.

• Planning time change score (CHP): this metrics is calculated as the differ-

ence between the (coding) planning times measured after the coding train-

ing and the one measured before. For test subjects this means the difference

between planning times at T2 and T1; for control subjects the difference is

taken between T3 and T2 (this applies to all change scores).

• Execution time change score (CHE): difference between the (coding) exe-

cution times measured after and before the coding training.

• Accuracy change score (CHA): difference between the (coding) accuracy

measures calculated after and before the coding training.

Our tests included 4 Ąrst grade classes (totaling 69 students) and 3 fourth

grade classes (totaling 57 students). Tables 3.4 and 3.5 present some details on

the metrics collected for these two groups: apart from the change scores (which

are computed differently based on the test or control group), we collected all these

values at T3.

As a Ąrst step of analysis, we checked the normality of the data with the

Shapiro-Wilk test implemented in the shapiro.test function20 of the R pro-

gramming language. Most of the metrics are not in normal form: this is not

20https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/

shapiro.test
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Metric Normal Mean Standard deviation
TP X 3.18 1.50
TE 15.35 4.13
TA 6.25 2.68
CP X 11.67 4.37
CE X 83.74 34.95
CA X 5.93 1.35
CAO X 8.96 1.90
CAS X 9.46 2.23
CNA X 9.26 3.34
CMD X 0.24 0.13
CBD X 1.26 2.29
CSO X 3.03 0.75
CHP X -3.24 8.26
CHE -21.09 52.05
CHA X 2.79 2.05

Table 3.4: First grade data characteristics (69 subjects)

particularly surprising because the results were collected after training sessions

for all the subjects. Thus we should expect skewness towards positive results

(e.g. higher accuracy, lower execution times, etc.). Figure 3.2 shows an example

of this bias in the results: in particular it is interesting to note how the CAS met-

ric makes the skewness more pronounced for the fourth grade results (suggesting

a more accurate representation of the actual coding skills of the students).

The negative value of the Planning time change score indicates that, in gen-

eral, students reduced their planning after the training activities: this result is

unexpected because careful planning is actually one of the skills that the training

attempts to teach. However, as Arfé et. al, discuss in [3], this is probably caused

by the increased familiarity that the students develop with the exercise interface

(meaning less time spent deciphering its parts): Section 4.2.2 discusses this mat-

ter in further detail and proposes some future research directions to tackle this

problem.

3.3 Correlations

Because of the non-normal distribution of most of the metrics collected at T3,

we decided to perform our correlation analysis with Spearman’s rank correlation

coefficient: differently from the classic Pearson’s correlation, this method does
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Metric Normal Mean Standard deviation
TP X 2.09 0.78
TE 13.90 3.45
TA X 8.62 2.20
CP X 10.24 4.40
CE X 99.99 50.82
CA X 4.16 2.07
CAO X 6.84 2.75
CAS X 8.42 3.18
CNA X 12.99 4.69
CMD X 0.67 0.16
CBD X 1.39 2.12
CSO X 3.02 0.72
CHP -5.92 6.25
CHE -39.30 60.97
CHA X 2.67 1.97

Table 3.5: Fourth grade data characteristics (57 subjects)

not assume the normality of the data and is usually recommended with these

distributions (Bishara and Hittner, in [74] observe that this is the most commonly

recommended method by statistics textbooks).

Tables 3.6 and 3.7 present the correlation coefficients computed for the Ąrst

and fourth grade subjects. All statistically signiĄcant values are presented in bold,

the number of asterisks is tied to the p value of the correlation tests (*p < 0.05,

**p < 0.01, ***p < 0.001).

The Ąrst and fourth grade groups share some, but not all, of the signiĄcant

correlations. We discuss these in the next Subsections.

3.3.1 Shared results

The most interesting results shared by both Ąrst grade and fourth grade students

are:

• A positive correlation between TOL and coding accuracy measures: this

is stronger for the Ąrst grade results (∼0.4 vs. ∼0.3 for fourth grade re-

sults), moreover, the "augmented" coding accuracy metrics show slightly

better results compared to the "standard" accuracy. This results suggests

that problem solving skills (measured by the TOL test) have a role in

determining the outcomes of the coding activities.
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TP TE TA CP CE CA CAO CAS CNA CMD CBD CSO CHP CHE CHA

TP 1
TE −0.101 1
TA 0.009 0.186 1
CP −0.007 0.045 −0.177 1
CE −0.024 −0.037 −0.087 0.018 1
CA 0.021 0.223 ***0.396 −0.089 **-0.332 1
CAO 0.068 0.186 ***0.401 −0.089 *-0.278 ***0.914 1
CAS 0.054*0.251 ***0.405 −0.113 *-0.295 ***0.898 ***0.965 1
CNA 0.118 0.094 0.055 −0.199 ***0.666 −0.085 −0.008 0.012 1
CMD −0.053 0.078 *0.312 −0.027 −0.116 ***0.420 ***0.412 ***0.438 −0.025 1
CBD 0.100 0.115 −0.007 0.035 0.137 0.143 −0.039 0.051 *0.268 −0.011 1
CSO 0.167 0.127 **0.341 −0.058 −0.130 ***0.522 ***0.791 ***0.751 0.089 **0.325 *-0.275 1
CHP 0.087 −0.232 −0.129 *0.306 −0.208 0.050 0.111 0.078 −0.107 0.003 −0.110 0.128 1
CHE 0.151 −0.148 0.048 −0.141 *0.291 −0.007 0.056 0.034 *0.275 0.117 −0.020 0.141 0.184 1
CHA −0.093 0.052 0.090 **0.362 −0.032 0.205 0.124 0.105 −0.026 −0.019 0.232 0.014−0.120**-0.338 1

Table 3.6: Correlations for first grade students (*p < 0.05, **p < 0.01, ***p < 0.001 )
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TP TE TA CP CE CA CAO CAS CNA CMD CBD CSO CHP CHE CHA

TP 1
TE 0.034 1
TA **0.354 *-0.321 1
CP **0.361 0.055 0.241 1
CE 0.142 0.082 −0.103 0.188 1
CA 0.020 −0.169 *0.293 −0.029 **-0.369 1
CAO 0.059 −0.200 **0.369 0.039 **-0.388 ***0.965 1
CAS 0.036 −0.208 *0.330 0.011 **-0.394 ***0.950 ***0.988 1
CNA 0.135 0.031 −0.086 0.051 ***0.818 *-0.273 *-0.288 *-0.298 1
CMD 0.183 0.149 −0.118 0.083 0.081 0.137 0.108 0.135 0.110 1
CBD *-0.299 0.146 *-0.341 −0.165 0.045 0.008 −0.043 0.015 −0.105 0.088 1
CSO 0.158 −0.163 0.260 0.161 −0.018 0.252 **0.403 **0.396 0.082 −0.021 **-0.357 1
CHP 0.053 0.083 −0.216 −0.055 0.005 −0.032 0.010 0.012 0.070 0.039 −0.188 *0.325 1
CHE −0.014 −0.145 0.026 0.056 −0.044 0.020 0.090 0.093 0.044 0.006 −0.100 0.081 0.123 1
CHA −0.141 −0.032 0.026 0.051 −0.043 0.251 0.196 0.167 −0.055 0.069 0.052 −0.076 −0.068 **-0.379 1

Table 3.7: Correlations for fourth grade students (*p < 0.05, **p < 0.01, ***p < 0.001 )
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3.3.2 First-graders’ results

The most interesting results for Ąrst-graders are:

• A positive correlation between the depth of programs and the accuracy

metrics for TOL and coding. This suggests that the use of special blocks

(for Ąrst graders: loop blocks) correlates with better exercise solutions

(which in turn correlate with better TOL results). This result is not re-

Ćected by fourth-graders: possibly, the reason is in the fact that the more

complex fourth grade exercises create opportunities for more confusion in

the use of special blocks.

• A positive correlation between the sum of optimal coding results and the

accuracy metrics for TOL and coding. This result goes one step further

than the one shared by both groups (a correlation with the "augmented"

accuracy metrics).

• A positive correlation between the coding accuracy change score and the

coding planning time. This means that subjects who improved their results

after the training also tend to spend more time planning.

3.3.3 Fourth-graders’ results

The most interesting results for fourth-graders are:

• A positive correlation between coding and TOL planning times. Even

though the planning time change score is (on average) negative, this re-

sult shows that fourth graders, having learned this skill (planning), tend to

apply it in different contexts.

• A negative correlation between the number of actions and coding accu-

racy. This is similar to the results which indicate a negative correlation

between coding accuracy and execution time: more actions suggest an in-

secure approach. This result suggests the importance of further exploring

and extending this metric (e.g. by counting also the number of block drag

and drop gestures, etc.).

• A negative correlation between block difference and sum of optimal results.

This is not surprising, a higher block difference score indicates the use

of more blocks (with respect to the ideal numbers), this also impacts the

optimality of the results.
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• A negative correlation between block difference and TOL planning and

accuracy. This suggests a correlation between problem solving skills and

the ability of creating effective and efficient solutions. However, this result

is not corroborated by a correlation with coding accuracy measures.

3.4 Other observations

A visual inspection of the data representations shown in the data analysis admin

page of the Co.Thi. application (cfr. Section 2.5.2) suggests some patterns in the

subjectsŠ solution processes; in particular:

• Each exercise shows few (distinct) correct and many (distinct) wrong solu-

tions.

• The students often solve debugging exercises by deleting all the default code

and starting anew (surely an inefficient debugging practice).

Table 3.8 presents quantitative results computed from the programs and ac-

tions graphs and tables in the data analysis page.

Metric First-graders Fourth-graders
Successful programs mean entropy 0.91 1.49
Erroneous programs mean entropy 4.25 4.86
Bad debugging practices 16.36% 31.00%

Table 3.8: Quantitative data on program variety and bad debugging practices

The program entropy is a measure of the variety of the program set and

is calculated with the formula −
√︂n

j=1
pj ∗ log2(pj) where n is the number of

different (successful or erroneous) solutions and pj is the frequency of a particular

solution. The results of Table 3.8 show how erroneous solution sets have a variety

∼4 times higher than the successful solution sets (as Leo Tolstoy famously stated

in the novel Anna Karenina: "All happy families are alike; each unhappy family

is unhappy in its own way.").

The entropy of the solution sets could be an indicator of the complexity of

problems (e.g. a problem requiring loops could be solved without them by simply

sequencing the correct number of actions): Table 3.9 presents the entropy of the

correct and erroneous solution sets for each exercise, along with the respective

success rate (a successful exercise is one solved in less than three attempts). In



60 Chapter 3. Experimental evaluation

Figure 3.3: Success percentage and
entropy correlation:
*** − 0.95

Figure 3.4: Success percentage and
failure entropy correla-
tion: *** − 0.95

this case, the Shapiro-Wilk test attests the normal distribution of the data so we

can use Pearson’s method to check for correlations: both the success and failure

entropy columns correlate with the success percentage with a coefficient of ∼-0.95

and a p-value < 0.001.

Exercise Grade Success % Success entropy Failure entropy
1 1 61.02 0.55 3.97
2 1 63.64 0.32 3.02
3 1 86.78 0.00 3.00
4 1 16.84 2.78 7.00

1 4 43.80 1.16 4.70
2 4 28.68 2.33 5.75
3 4 35.66 2.23 5.57
4 4 61.80 0.26 3.44

Table 3.9: Success percentage and solution sets’ entropies for each test exercise

These results are corroborated by a visual inspection of the scatter plots of

the table columns presented in Figures 3.3 and 3.4.

The bad debugging measure counts the percentage of (successful or erro-

neous) actions sequences for debugging exercises which have the removal of all

the default program blocks as the Ąrst user action. This percentage is not high

but nevertheless not negligible for Ąrst grade results; however, it is quite high for
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fourth grade results, especially considering that, for the fourth grade debugging

exercise, this debugging practice means deleting 8 blocks of code (3 for the Ąrst

grade exercise, cfr. Figures A.2 and A.7).

3.5 Summary

This Chapter presented the experimental evaluation of the platform Co.Thi.,

inserted in the wider context of a research project involving students from two

primary-schools situated in Padua.

The highlights we want to point out are:

• Augmented, more Ąne-grained, metrics seem to give better representations

of the reality of subjectsŠ CT activities. This encourages further reĄnements

and research in this direction.

• Data can give us information regarding (1) usersŠ CT process and outcomes

and (2) exercises and activitiesŠ qualities (e.g. the complexity of a task

based on the variety of solutions that users produce).

The next Chapter presents the conclusions we draw from this project, with

an analysis of the information we can extract from raw data and a discussion of

the research directions this information suggests.
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Chapter 4

Conclusions

This Chapter draws conclusions on the present work. In particular, we discuss the

results we were able to achieve and possible directions for future work.

4.1 Discussion

As stated in Section 1.1, the two main goals of this work are (1) the augmentation

and automation of data collection about Computational Thinking activities and

(2) the extraction of new interesting information with particular attention towards

correlation with cognitive results.

With regard to the Ąrst goal: Chapter 2 lists simple techniques which can be

"plugged-in" in Code.orgŠs codebase to collect Computational Thinking process

and outcome data, thus showing that these augmentations are, indeed, feasible

without dramatic changes. However, we also discuss and show examples of how

an architecture guided by this goal from the beginning is probably the best option

if we want to have the best possible data representation of usersŠ interactions with

Computational Thinking exercises (cfr. Section 2.7).

As for the second goal: Chapter 3 (in particular Sections 3.3 and 3.4) presents

the statistical analysis of the data we were able to collect. The following para-

graphs draw some conclusions from the raw results.

The correlation results shared by both groups of students (cfr. Section 3.3.1)

are probably the strongest Ąnding of this work. The positive correlation between

the accuracy measures of the coding exercises and the Tower Of London tasks

suggest that these activities share a "core skill" which we intuitively identify as

problem solving. This is not surprising but is made relevant by the fact that

the Tower of London is a standardized, reliable measure (something we lack for
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the users, what types of blocks they need to reach them, etc.). Then they make

some observations:

• They argue that icons can be useful for pre-literate users but also warn that

images can carry ambiguity and can not really express complex concepts

(e.g. a conditional block).

• They state that text-based blocks belong to a spectrum which goes from

natural language to code-like language. Designers should choose where to

place their block-based language based on the goals of the application (e.g.

being a Ąrst introduction to programming vs. being a transition to text-

based languages). The language could also move along the spectrum, based

on the competency of the student.

• Finally, they point out some important usability features designers should

keep in mind: consistency in block color, sentence structure, etc. Default

parameters to avoid problems due to uninitialized blocks. Testing early and

testing often in front of end users.

4.2.2 Augmentation of data collection: eye tracking

One of the most interesting concepts studied by our research group is the possi-

bility of separating the planning and execution phases of an exercise solution to

better understand usersŠ problem solving processes.

However, while the boundaries we set for the planning phase (cfr. Section

2.4.1) are a Ąrst step towards this distinction, it is not straightforward to under-

stand what this phase actually includes. In particular, one source of "noise" in the

planning phase time intervals we collect could be caused by unfamiliarity with the

interface, meaning that a portion of the planning time interval is actually spent

exploring the interface and understanding its different components.

Indeed, Arfé et. al, in [3], discuss how their subjectsŠ planning times decreased

after having received training in coding activities: this result was unexpected

because part of the training is dedicated to teaching to stop and think (i.e. plan)

before acting. The authors hypothesize that this could be caused by the increased

familiarity with the interface, meaning that the planning times collected after the

training more closely approximate usersŠ actual planning times.

To conĄrm this hypothesis we would need to understand where exactly the

users focus their attention on the exercise interface: the technique of eye-tracking
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attitudes towards coding (this is interesting as it is an attempt to understand

if attitudes, which are commonly self-reported, can be measured, or correlated,

with quantitative data). In particular, they use the following gaze measures: (1)

fixation duration, i.e. how much time a subject spends inspecting a particular

piece of information (usually associated with difficulties in understanding it);

(2) saccade amplitude, i.e. the spatial distance covered when changing focus

between different areas of the screen; (3) change in saccade direction which, when

wider than a certain threshold, can indicate confusion or failed veriĄcation of a

particular hypothesis. The authors correlate these measures with (self-reported)

attitude indicators (perceived learning, intention to code and excitement for the

activity) and report interesting results e.g. lower Ąxation duration for increased

perceived learning.

Finally, in [80], the authors use eye-tracking and qualitative data to study

gender differences in coding activities. The setup of the study is similar to the

two previously mentioned works (children aged 8-17 participating in coding and

robotics workshops while wearing eye-tracking glasses). The authors report no

signiĄcant difference in the RLG and gaze measures for the different genders. On

the other hand, the qualitative data shows some differences, for example:

• Only girls reported initial doubts about the coding activities (i.e. not look-

ing forward to it, thinking itŠs not for them, etc.); however every subject

reported satisfaction and increased conĄdence at the end of the study.

• "Leader" Ągures emerged only in mixed teams (with the role taken by boys

who already knew about coding); girl-only teams reported an equal distri-

bution of roles.

Moreover, the authors observed different approaches during the workshops:

females distributed roles and responsibilities, started by designing and planning

their games and paid more attention to the paper tutorial provided by the in-

structors. Males tended to jump straight in the Scratch interface to try things

out. The difference between the qualitative and quantitative results collected by

the authors in this work is interesting: it could suggest the role that societal

norms and "implicit constraints" play in opening and closing (Ągurative) doors

for children based on their gender.

To sum up, eye-tracking can be an interesting technique to augment LA with

different goals. A webcam-based eye-tracking library which would be interesting
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Monica Bulger, in [82], approaches this concept critically and draws impor-

tant distinctions on the meanings included in the buzzword personalized learning.

In particular, she distinguishes between resposive learning, i.e. personalized in-

terfaces to "static" material (more akin to an interactive textbook) and adaptive

learning, i.e. systems able to evolve in response to studentsŠ changing goals and

needs (which pursue the ideal of a digital personal tutor). The main difference

between the two is that in responsive learning the content does not change in re-

sponse to the students (instead, it is recommended just like products and movies

are recommended in platforms like Amazon and NetĆix). The author also states

the importance of clearly deĄning the goals of these systems (with an implicit

critique of data for dataŠs sake, akin to some considerations presented in Section

1.5.3).

The most important goal we see for the use of adaptive/responsive learning

techniques is keeping the students in a state of flow (cfr. [83]). By focusing

our attention on the speciĄc context discussed in this thesis, i.e. puzzle-like pro-

gramming activities with block based programming languages, we can imagine an

adaptive system which keeps track of studentsŠ proĄciency with different Com-

putational Thinking concepts (e.g. loops, conditionals) and generates or presents

exercises tailored to the resulting needs.

Few researchers are leading the work in the subject of adaptivity: one of

them is Tomáš Effenberger (who dedicated to the concept his MasterŠs [84] and

doctoral [85] thesis). This author describes a seminal adaptive learning algo-

rithm for block-based programming in [47]; this work describes a programming

environment (called RoboMission22) similar to Code.orgŠs "mazes": each exer-

cise consists of a grid-based map through which the user must guide a spaceship

while collecting some diamonds. Users control the spaceship with a block-based

programming language based on Google Blockly. The platform controls usersŠ

trajectories through the exercises with a learning algorithm:

• Exercises are divided in sets based on their difficulty: users must reach a

certain level of mastery in a particular difficulty level before being able to

proceed to the next.

• Users can reach the "mastery level threshold" for a speciĄc set if they present

a Ćawless solution to one of the exercises. Otherwise the mastery level is

calculated in order to enable the users to proceed to the next level when they

22https://en.robomise.cz/
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present successful (albeit only "adequate") solutions for all the exercises in

the current set.

• In order to determine the quality of usersŠ solution, the platform collects de-

tailed data like: time necessary to program the solution, number of updates

to the program, number of attempts, etc.

This algorithm shows the importance of discriminating usersŠ solutions be-

yond the binary categories of "success" and "failure": this is further discussed by

Effenberger and Pelánek in [69]. In this work the authors critique both the bi-

nary performance model (it does not give enough information) and the machine

learning approach of collecting large amounts of raw data and feeding them to

a model (difficult to reuse in different contexts). They instead propose an aug-

mentation of the discrete performance categories to: failure, poor performance,

good performance, excellent performance. These categories should be tailored to

give information useful to change the learning trajectory: e.g. an exercise solved

with poor performance is probably presenting a task too difficult for the user, an

exercise solved with excellent performance is probably too easy, etc. To assign

exercise solutions to these categories the authors consider: the time necessary to

solve them, the number of edits and the number of executions (note: exercises in

RoboMission have a maximum number of blocks so the program length metric

cannot be used). To give an example: an exercise solution which only required one

execution (one attempt) can be classiĄed as excellent, a solution which required

up to 5 executions as good, and so on.

Another researcher interested in the Ąeld of adaptive/responsive learning is

Benjamin Clement (cfr. his doctoral thesis [86]). For example, in [71], the author

describes an approach to choose activities based on the expected learning gain,

based on Multi-Armed Bandit:

• The algorithm is built upon a set of skills to acquire (e.g. sum of integers,

subtraction of integers, sum of decimals, etc.) and a set of exercises and

activities.

• The instructors sort the activities in a "canonical trajectory" which is the

initial trajectory for every student.

• The student model receives a reward for completing an exercise: this changes

over time (e.g. after having successfully completed an exercise multiple

times it becomes null).
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• The algorithm chooses the activities to propose to the students based on

their expected reward (it is parameterized in order to decide the explo-

ration/exploitation ratio).

Another interesting work by Kanellopoulou et. al ([48]) discusses the pos-

sibility of automatically determining the difficulty of maze-based programming

challenges, with the long-term goal of automatically generating exercises at a

speciĄc level of difficulty. This is one of the possible future expansions of Co.Thi.

2.0 (cfr. Section 2.7).

To conclude, one interesting approach to adaptive/responsive learning which

is not overly examined in the literature is that of distributed learning (cfr. Lydia

CasanovaŠs MasterŠs thesis, which discusses it in the context of CT [87]). In

particular, there is some potential in the technique of spaced repetition (cfr. [88]):

• In its traditional form, spaced repetition consists of dividing a piece of knowl-

edge in a series of questions and answers (combined in flashcards) which are

proposed to students with a frequency determined by how easily they can

recall the relative information.

• Classic tools, like Anki23, require users to manually signal the difficulty they

had in answering a particular question (e.g. an easy question will be seen

again in a month, a difficult question in a day, etc.).

• By using LA techniques in the context of block based programming activ-

ities we could automate this process: an exercise solved quickly, with the

optimal number of code blocks, amounts to an excellent solution (the same

exercise can be seen again in a long time); an exercise solved with some

difficulties should be proposed again in a shorter period of time.

• This mechanism can also be applied to concepts: we do not need to propose

time and again the same exercises; instead, we can pull exercises from sets

(or generate them) based on category: e.g. we could frequently propose

exercises based on loops to users who have difficulty in understanding them.

23https://apps.ankiweb.net/
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Test exercises

This Appendix shows pictures of the exercises we used for the tests described in

Chapter 3. For each exercise we show the problem visualization (i.e. the "maze"

or turtle graphics drawing to complete), the toolbox (i.e. the blocks available to

solve the problem) and an ideal solution. For debugging exercises we also show

the default solution presented by Code.org.

A.1 First grade exercises

Figures A.1, A.2, A.3 and A.4 show the test exercises for Ąrst grade students.

These exercises are designed to be usable by pre-literate users and use icons to

visually show the function of each block.

A.2 Fourth grade exercises

Figures A.5, A.6, A.7 and A.8 show the test exercises for fourth grade students.

These exercises leave out icons and use more complex blocks which require users

to do some relative spatial reasoning (e.g. "turn left", "turn right").
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Figure A.1: Test exercise 1 for first grade: sequences

Figure A.2: Test exercise 2 for first grade: sequences and debugging

Figure A.3: Test exercise 3 for first grade: sequences (turtle graphics)
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Figure A.4: Test exercise 4 for first grade: loops

Figure A.5: Test exercise 1 for fourth grade: sequences

Figure A.6: Test exercise 2 for fourth grade: loops
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Figure A.7: Test exercise 3 for fourth grade: sequences and debugging

Figure A.8: Test exercise 4 for fourth grade: conditionals
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