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Abstract (IT)

I metodi di rilevamento microbiologico tradizionali utilizzati nelle industrie lattiero-

casearie per rilevare le spore richiedono molto tempo e sono limitati in termini di

efficienza e sensibilità. Secondo la produzione fermentativa di acido butirrico, durante

la fermentazione vengono prodotti anche anidride carbonica e idrogeno come sotto-

prodotti. È stato proposto un sensore multigas basato sulla spettroscopia Raman

per la misurazione della concentrazione di CO2 e H2 nello spazio di testa delle fiale,

poiché la presenza di questi gas indica la contaminazione da batteri. Lo strumento

proposto sarà dotato di un caricatore per la misura automatizzata di più provette e di

un motore passo-passo che permette la rotazione della singola provetta. L’obiettivo

di questa tesi è quello di sviluppare il software dello strumento che controlla la ro-

tazione della provetta, che serve a trovare posizioni in cui lo spettro acquisito non

sia degradato da fluorescenza e altri artefatti legati a difetti del vetro. Attraverso

l’elaborazione di immagini e algoritmi di machine learning, viene proposta una possi-

bile soluzione (sviluppata con fiale contenenti aria) per il controllo automatico della

rotazione della provetta per massimizzare la precisione di misura.
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Abastract (EN)

Traditional microbiological detection methods used in dairy industries to detect

spores are time consuming and limited in efficiency and sensitivity. According to

the fermentative butyric acid production, carbon dioxide and hydrogen are also pro-

duced as byproducts during fermentation. A multi-gas sensor based on Raman spec-

troscopy has been proposed for the measurement of CO2 and H2 concentration in the

vials headspace, as the presence of these gases indicates contamination by bacteria.

The proposed instrument will be equipped with a loader for the automated measure-

ment of several test tubes and a stepper motor that allows the single tube to rotate.

This thesis aims to develop the instrument’s software that controls the rotation of

the test tube, which is done to find positions in which the acquired spectrum is not

degraded by fluorescence and other artefacts related to glass defects. Through im-

age processing and machine learning algorithms, a possible solution (developed with

vials containing air) is proposed for the automatic control of the test tube rotation

to maximise measurement accuracy.
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Chapter 1

Introduction

1.1 Project overview

Despite the advances in the dairy industry, the contamination of milk (and therefore

its derivatives) by clostridia remains both a public health and an economic prob-

lem. Current microbiological investigation techniques are costly both in terms of

money and time (usually a few days). Furthermore, given the growing demand for

raw milk, the dairy industry has the problem of not being able to analyze all the

milk samples for the reasons mentioned above, but this market will represent an ever

greater opportunity. Also hard and semi hard cheeses, such as Grana Padano and

Parmigiano Reggiano suffer late-blowing defect cause by Clostridium tyrobutyricum

that is resistant to whole-cheese manufacturing [4].

During the fermentation of butyric acid, carbon dioxide and hydrogen are also pro-

duced. [5]. If the gases in question are kept in an airtight container, they can be

analyzed and therefore indicate whether or not contamination has occurred. Ab-

sorption laser spectroscopy would represent an excellent solution but unfortunately,

hydrogen is difficult to be detected with this technique.

Headspace Raman spectroscopy offers a non-invasive, low-cost and very fast measure-

ment (in the order of seconds). Raman spectroscopy is based on Raman scattering,

which is the phenomenon that occurs when the light scattered by a molecule has a

1



different frequency from the light incident on it (usually generated by a laser). The

shift in frequency contains information on the vibrational states of the molecule and

therefore by measuring the shift it is possible to determine the presence or not of a

molecule in the sample under examination. The measuring process can be carried

out automatically, enabling measurement on a large number of samples and frequent

sampling during the incubation period [1]. Furthermore, the samples do not require

special procedures before analysis and it could be in principle applied even with other

samples, for example, blood. This thesis aims to develop the software to control the

rotation of a vial of a Raman spectrometer capable of measuring (mainly, for this

application) CO2 and H2 in the headspace of test tubes and be able to discriminate

between tubes containing clostridia contaminated milk samples, those contaminated

with other bacteria and those not contaminated. Since Raman spectroscopy pro-

vides information on multiple gases (H2, O2, N2, CO2), the instrument in its final

stage could be applied in other fields, such as in the health sector.

1.2 Milk spoilage

Milk, as a complex natural food matrix, is one of the most important dietary prod-

ucts, which contains nearly all the nutrients necessary to sustain life [7], in addition

to the main milk sugar lactose, it also contains proteins (caseins, whey proteins, and

minor proteins), essential amino acids, fats, minerals, and vitamins. However, milk

is not only highly nutritious for humans, but also an excellent growth substrate for

microorganisms [6].

Most frequently microorganisms found in milk can be divided into two groups:

• Pathogenic microorganisms, (e.g., Escherichia coli, staphylococcus, strepto-

cocci) cause food poisoning and disease in man and should not be present in

the milk.

• Spoilage microorganisms are the cause of the deterioration of food in a state

where it is unsuitable for human consumption [13].
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Contamination of food has a double negative effect, one economic due to the deterio-

ration of food, one on public health. Microbial spoilage of food is an important issue

in terms of economic loss and an estimated loss of almost 33% of the total food sup-

ply has been attributed to it [12]. Regarding public health, according to the WHO

(World Health Organization) 2015 report, every year as many as 600 million people

in the world fall ill after consuming contaminated food, of these, 420,000 people die

[11].

In spite of quality control, pasteurization and Ultra-High Temperature (UHT) treat-

ments, numerous outbreaks of foodborne illnesses due to the consumption of con-

taminated/spoiled dairy products were reported [14].

The dairy industry is in need of a fast, sensitive and cost effective technology

for the detection of foodborne pathogens that could successfully address the tasks

appointed by legislative bodies [10]. The industry’s demand for new technologies is

primarily motivated by financial considerations in relation to milk farming, quality

control and production accuracy management, such as efficient use of resources and

increased safety. Furthermore, the consumption of raw milk is constantly growing

and would represent a market opportunity but the main problem is that in these

conditions raw milk cannot be certified safe within its life cycle: raw milk is a highly

perishable food whilst pathogen analyzes are time consuming. As consequence, the

microbial analysis of raw milk is merely retrospective, it has statistical value but

cannot prevent a disease outbreak. The milk processing industry also requires tools

for the rapid detection of clostridia in milk, as these can bubble the cheese even

when the cheese is already maturing, causing a large loss of product. In addition,

the available methods are excessively expensive to apply to the certification of every

raw milk consignment [13].

The main problem with the tests that look for bacterial contamination in milk is

that they are time consuming, they also take several days to obtain confirmation

and require trained personnel who can interpret the results.
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1.3 Gas detection for biological survey

The correlation between gas production and bacterial infection is already used in

some protocols for contamination detection. The sample is grown in a paraffin-

capped vial and the swelling of the cap is used as an indication of the presence of

bacteria. The main problem is that this procedure is not specific to the different

types of bacteria, it takes about a week and is also difficult to repeat [1].

In this scenario, Raman spectroscopy could represent a very effective solution since

it is a multigas analysis, as shown in Figure (1.1).

From the identification of the gases produced by the bacteria, the classes of possible

infectants can be distinguished:

1. clostridia, produce CO2 and H2. They are anaerobes spore-forming. This class

contains both pathogenic species such as C. botulinum, C. tetani and altering

species, such as C. tyrobutyricum and C. sporogenes.

2. Others, produce only CO2. They are aerobic spore-forming. Also in this case

the class contains both pathogenic spores, for example, Bacillus cereus and B.

thuringiensis, and alterants, for example B. licheniformis, B. pumilus.

In principle, the analysis of hydrogen would be enough as an indicator to distinguish

the two cases, so a specific spectroscopy technique for that gas could be used, such

as absorption spectroscopy, but hydrogen is particularly difficult to measure with

this technique. Furthermore, the use of a spectroscopic procedure would make the

analysis more repeatable and reliable than checking for swelling of the paraffin cap.
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1.4 Scope of this thesis

The advantages of using Raman spectroscopy in this context are many: it is fast,

inexpensive, it does not require sample preparation and it can provide information

about many gases at the same time. This technique has not yet been used on the

main samples contained in the vials, one of the main reasons is that the glass impu-

rities cause fluorescence, which can sometimes overwhelm the Raman signal.

Actually, the situation is even more complicated, other sources can disrupt the mea-

surement such as multiple reflections or dirt on the vial’s surface.

Figure(1.1) shows a typical ”good” image acquired by the instrument when the milk

is infected by clostridia as there are both peaks related to carbon dioxide and to

hydrogen. Each image row represents a spectrum: the intensity of the Raman scat-

tering as a function of the pixels (related to a frequency).

Figure 1.1: Typical good image of milk infected by clostridia
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The so-called spectral lines are specific to each gas and represent a kind of fin-

gerprint since the shift in frequency (or in pixels in this case) with respect to that of

the laser is unique for each gas, so it is possible to associate a certain pixel position

with a gas. The presence of gas can lead to the appearance of one or more spectral

lines, the larger the intensity of a spectral line, the larger the concentration of that

specific molecule in the vial; the intensity inequality of different spectral lines related

to the same gas is caused by the different probability of that scattering process, more

details are provided in the next chapter.

In particular, impurities in the test tube cause a lot of scattering, which is concen-

trated in the upper and lower part of the acquired image. The amount of scattered

light is impossible to predict, as the light passes through the glass both in and out of

the test tube and at each passage the direction of the scattering is random. Instead,

what can be done is to try to rotate the tube until it is found in a position in which

the scattered light does not corrupt the measurement too much.

Figure 1.2: Typical bad image
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Figure (1.2) shows a typical bad image of the same vial rotated to another po-

sition when a good part of the image is saturated with diffused light, in this case

it is not possible to obtain useful information and it is necessary to rotate the vial.

It must be said that in some cases it is possible to obtain an image in which even

more than 90 % of the pixels are saturated, between the two conditions, a low sat-

urated image and a completely saturated image, there are intermediate conditions

that could be used.

The aim of the thesis is to develop an algorithm that controls the rotation of the test

tube in order to acquire images only in the positions not saturated by diffused light.

The approach is to find an internal standard (a parameter) that indicates how good

an image is, or at least that can discriminate one from the other. The algorithm

must satisfy the following conditions:

1. The quantifier of ”goodness” or the discriminator, must be created from a single

measurement as it will be shown in the Sec(4), for some vials there could also

be 90% of the positions to be discarded, so acquire multiple images to then

decide whether performing the rotation would slow down the analysis of the

samples too much.

2. The quantifier of ”goodness” or the discriminator cannot be created on the

basis of the measured gas concentrations as these vary from sample to sample

and over time.

3. The algorithm must be fast enough to be executed in real time, for this appli-

cation, this means an execution time of the order of one second.

As will be presented in the course of the thesis, an approach inspired by image

segmentation will prove useful, but machine learning will prove to be very efficient

for this task.
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To conclude the introduction, the structure of the thesis is presented below.

• Chapter two: Raman spectroscopy theory.

The phenomenon of Raman scattering is presented: firstly according to the

classical electromagnetic theory and then there is a brief recap of main quantum

theory ideas at the basis of Raman scattering.

• Chapter three: Experimental setup

This chapter describes the instrument with its components and how they are

positioned to optimize the acquired image.

• Chapter four: Data acquisition and analysis.

This chapter contains the description of the data taken and the related data

analysis. Here it is addressed the main problem of this thesis: finding an

algorithm that discriminates ”good” images from those saturated by diffused

light. In particular, the problem of finding an internal standard to define a

”good” image is faced, and finally an algorithm capable of correctly classifying

the images is proposed.

• Chapter five: Conclusions.

This chapter contains the summary of this thesis work with the main results

achieved and future developments.
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Chapter 2

Raman spectroscopy theory

2.1 Basic concepts

When light interacts with matter, the first can be absorbed, diffused or pass through

the second. If the energy of an incident photon equals the difference between two

energy levels of a molecule, the photon is absorbed and the molecule is promoted

into an excited state. This type of light-matter interaction is exploited in absorp-

tion spectroscopy, which quantifies the amount of absorption at each wavelength to

characterize a molecule indeed the absorption as a function of the wavelength creates

an absorption profile, called, spectra, that is unique for each molecule. Absorption

spectroscopy is very widely used for its reliability, low cost and accuracy. Since the

absorption is known at each wavelength, if the test substance is known, what is typ-

ically done, is to use a source at a specific wavelength at which there is a strong

absorption. By measuring the transmittance through the sample it is possible to

determine the amount of that molecule in that sample. This implies using a spe-

cific source for each molecule to avoid cross-talking between molecule’s absorption

therefore is not so recommended when the goal is to measure multiple gasses simul-

taneously.

Also light diffusion by matter is exploited in several spectroscopy techniques, one of

these is the so called Raman spectroscopy, which has the great advantage of analyz-
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ing many types of molecules with the same source. In Raman spectroscopy, chemical

characterization is performed by measuring the frequency shift of the scattered light

with respect to that of the source, which provides information on the vibrational

states of the molecules that make up the sample and allows their identification.

In a scattering process, the light interacts with the molecule and distorts the cloud

of electrons around the nuclei, to form a short-lived state called a virtual state,

that is not stable, so the photons are re-radiated; in other words, the molecule acts

as an antenna. Most scattered photons have the same frequency as incident light

since elastic scattering predominates, in this case, it is called Rayleigh scattering

and their photons do not provide interesting information to characterize molecules

in the sample. However, a small fraction of photons, one every 106 − 108 scattering

process, has a different frequency shift, this is because during the interaction a nu-

clear movement is induced, so a part of the energy is transferred from the incident

photon to the molecule or from the molecule to the scattered photon. It is precisely

the non-elastically scattered photons that carry the information on the vibrational

states of the molecule. The very low probability of Raman scattering requires that

the intensity of the incident light be very high, for this reason, a laser is used as a

light source [16].

2.2 Raman scattering classical theory

When a molecule is subject to a varying electrical field E(t), an electrical dipole

moment p(t) is induced:

p(t) = α · E0 cos(2πν0t) (2.1)

Where α is the polarizability of the molecule, that depends on the shape and the

dimensions of the chemical bonds. The induced dipole moment oscillates with the

same frequency of the incident electric field. More precisely, the polarizability is not

always parallel to the incident electric field, since α is a tensor dependent on the

10



normal coordinate Q of the molecule:

α = α0 +
∑︂
k

(︃
∂α

∂Qk

)︃
·Qk +

1

2

∑︂
k,l

(︃
∂2α

∂Qk ∂Ql

)︃
·Qk ·Ql + ... (2.2)

The polarizability at equilibrium is α0. Qk and Ql are the normal coordinates that

correspond with the kth and lth normal vibration, corresponding to vibrational fre-

quencies νk and νl . If we consider only the first term, so there are no cross-term,

the equation becomes:

αν = α0 + α′
ν ·Qν (2.3)

Where α′
ν is the derivative of the polarisability tensor to the normal coordinate Qν .

As a first approximation, the normal coordinate Qν oscillates as predicted by the

harmonic oscillator model, hence it follows the law:

Qν = Qν0 · cos(2πννt+ ϕν) (2.4)

With Qν0 the amplitude of the normal vibration and ϕν a phase term. The expression

of the polarizability becomes:

αν = α0 + α′
ν ·Qν0 · cos(2πννt+ ϕν) (2.5)

Now, is possible to write the induced dipole moment considering the series develop-

ment of the polarizability term:

p(t) = α0 · E0cos(2πν0t) + α′
ν ·Qν0 · cos(2πννt+ ϕν) · E0cos(2πν0t) (2.6)

Using:

cos(α)cos(β) =
1

2
[cos(α + β) + cos(α− β)] (2.7)

11



We get:

p(t) =α0 · E0cos(2πν0t) +
1

2
α′
ν ·Qν0 · E0 · cos[2π(ν0 + νν)t+ ϕν ]+

+
1

2
α′
ν ·Qν0 · E0 · cos[2π(ν0 − νν)t+ ϕν ]

(2.8)

The expression (2.8) is easier to interpret if it is divided in three term as:

p(t) = p(ν0) + p(ν0 + νν) + p(ν0 − νν) (2.9)

The first term has the same frequency of the incident electric field and represents

elastic scattering, which is the well know Rayleigh scattering term; the second and

third terms have a different frequency from that of the incident light, thus represent-

ing inelastic scattering, they are called respectively Anti-Stokes and Stokes scattering

contributions.

To summarize, the varying electric field induces a varying dipole moment, and the

movement of charges in the molecule causes a periodic variation of the distances

between its components and this leads to a vibration that can be sustained only

at certain quantized frequencies. Since the polarizability depends on the shape and

dimensions of chemical bonds, the vibration of the molecule arouses a small amount

of the induced dipole moment to oscillate with frequencies different to the one of the

electric field.

The idea of Raman spectroscopy is to exploit the Stokes and Anti-Stokes terms to

obtain information about the chemical species in the sample because they are related

to vibrational states of molecules. A strong beam is focused on the sample and the

inelastic scattering is analysed as a function of the wavelength, this creates a Raman

spectrum which is a unique fingerprint of chemical compounds.
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2.3 Raman scattering quantum theory

The classical treatment used can be extended to the quantum one and this is nec-

essary, for example, because the classical theory predicts the same intensity for the

Stokes and Anti-Stokes scattering, but this is not true. Let’s introduce the main

steps to find the selection rules.

A molecule need to have, at least transiently, a dipole moment of frequency ν to emit

or absorb a photon of the same frequency, in other words, a transition is allowed only

if the accompanying charge redistribution is dipolar [9].

The expected value of a transient dipole moment is express as:

µif =

∫︂
ψ∗
i µ̂ ψf dτ (2.10)

With µ̂ the dipole moment operator, dτ is indicates that the integral is done over

all space, ψi and ψf are respectively the initial and final state of the transition. It’s

clear that allowed transitions are the ones for which µif ̸= 0.

Expanding in Taylor series the dipole moment operator:

µ̂ = µ̂0 +
dµ̂

dx

⃓⃓⃓⃓
x=xeq

· x (2.11)

And substituing 2.11 in 2.10 we obtain:

µif =

∫︂
ψ∗
i µ̂ ψf +

dµ̂

dx

⃓⃓⃓⃓
x=xeq

· ψ∗
i µ̂ ψf dτ (2.12)

Since we are considering vibrational states, the first term is zero because ψi are eigen-

functions of the quantum harmonic oscillator so they are orthonormal to each other

and µ̂0 is a constant term, this is valid in the hypothesis that only the vibrational

state of the molecule changes, sometimes formally expressed as |ψ⟩ = |ψvibr⟩.
In analogy with what is valid for the classical treatment:

dµ̂

dx

⃓⃓⃓⃓
x=xeq

= E · dα̂
dx

⃓⃓⃓⃓
x=xeq

(2.13)
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That provides the first selection rule, that is dα̂
dx

̸= 0.

The derivation from the integral term to the related selection rule is quite tough and

requires advanced quantum theory knowledge, so only the final result is reported.

The selections rules of Raman spectroscopy are:⎧⎪⎨⎪⎩
dα̂
dx

̸= 0

∆n = ±1
(2.14)

With the quantum number n that is related to the vibrational energy state:

En =

(︃
n+

1

2

)︃
hν (2.15)

As expected the second selection rule predicts the two types of scattering:

• ∆n = −1 =⇒ anti-Stokes, the scattering wavelength is smaller than the input

one.

• ∆n = 1 =⇒ Stokes, the scattering wavelength is larger than the input one.

Since the anti-Stokes scattering requires a molecule in an already excited state is

less probable than the Stokes scattering. The ratio between the two is controlled by

the temperature, in according to Boltzmann statistics:

IStokes
Ianti−Stokes

=

(︃
ν − ν1
ν + ν1

)︃4

· e
hν1
kT (2.16)

Eq(2.16) shows as the ratio between the two Raman scattering components can

be used to determine the temperature of the sample.

Since the Stokes scattering is more intense and for the final application purpose the

temperature is not required, the instrument measures only this scattering component.
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Figure 2.1: Jablonski diagram of Raman scattering

15



2.4 Raman spectrum

A Raman spectrum is represented by the intensity of the Raman scattered light

as a function of a wave number (k = 2π/λ) express in cm−1, as per tradition in

spectroscopy or in pixel. Figure 2.2 shows the Raman spectrum of air.

Figure 2.2: Example of a Raman spectrum

2.4.1 Raman intensity

The intensity of a Raman spectrum depends on the entire optical path from the laser

to the camera, i.e. on both the sample and the instrument. The prediction of this

value is almost impossible but considering a simple oscillating dipole (Sec 2.3) it’s

possible to understand its dependence by some parameters:

Iraman ∝ ν4 · p20 · sin2(θ) (2.17)

Where ν is the wavenumber of the incident light and p20 is the amplitude of the

oscillating induced dipole moment. Clearly the strong dependence on the wavenum-
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ber could suggest using a source with a small wavelength but this cause a lot of

interference due to fluorescence, so in practice, this is not always a smart strategy.

Clearly, the intensity of Raman scattering also depends on the density of the an-

alyzed medium since it is a light-matter interaction phenomenon, if the matter is

rarefied the probability of interaction is lower, for this reason, Raman spectroscopy

is particularly difficult to use for gas analysis. By the same principle, if in the sample

there is a concentration of one molecule more than others, its Raman signal will be

greater, as can be seen from the Figure (2.2), where it is noted that nitrogen in

the air is about four times greater than oxygen (the integral of the peak must be

considered and not only the maximum value).

2.4.2 Raman bandwidth

The Raman bandwidth is due to several factors, even if most spectrometers are not

able to resolve small contributions and the result is only the sum of many effects

[19]. First of all, there is a natural broadening, that affects every spectroscopy

spectrum that is the one predicted by Heisenberg’s uncertainty principle, but its

value is very small ∼ 10−8 cm−1. Gasses are affected by Doppler’s effect that cause

a broadening of the signal of ∼ 10−3 cm−1 at 300K. Another source of broadening

is the different chemical environments of molecules present in the sample, which

modifies chemical strengths. Different isotopes produce different Raman shifts and

this is another source of broadening. The truth is that spectral broadening is mainly

due to experimental configuration. The most important parameters are the groove

density of the diffractive element, the size of the aperture, the size of pixels of the

detector and the focal length of the spectrometer.

2.4.3 Sources of interference

Raman spectra are affected a lot by fluorescence interference. Fluorescence is a phe-

nomenon that occurs when a molecule is excited by a laser and reaches an excited

electronic state, then the molecule decays into a lower state by a radiationless tran-

sition and then it may emit and in the end, reach the ground state. If the last
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transition is a radiation transition then the light emitted has a lower frequency than

the one of the laser. To avoid fluorescence, in principle it is possible to use a laser

with a lower frequency that therefore is not able to excite molecules, but the Raman

scattering is proportional to the fourth power of the frequency (Eq 2.17) hence it is

not a good choice. To avoid fluorescence is possible to use a pulsed laser since Raman

scattering (trs ∼ 10−12/10−13 s) is faster than fluorescence (tfl ∼ 10−7/10−9 s), but

the signal is collected by a camera whose minimum exposure time is in the order of

tens of microseconds [3], this possibility will be investigated in future developments.

Raman spectra are not only influenced by fluorescence but also by multiple reflec-

tions, for example, as can be seen in the region between 80-120 pixels in Figure (2.2).

That signal is not due to any gas but to a reflection inside the spectrometer.
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Chapter 3

Experimental setup

3.1 Design and components

The experimental setup is typical of Raman spectroscopy with a Czerny-Turner

spectrometer, if not for the presence of a stepper motor that allows the vial to

rotate on itself.

Figure 3.1: Instrument scheme
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Figure 3.2: Spectrometer scheme

The light exits from the laser source (S1), passes through a focusing lens (L1)

and then meets the vial, positioned at the focal distance. The 90-degree scattered

light is firstly collected by two achromatic triplets (L2 and L3), then passes through

a slit (A1), an objective lens (O2) and a filter that eliminates the laser component

(F1), reaches a reflective diffraction grating (DG1) and finally is focused on the

CMOS camera (C1). The rotation of the test tube is set in motion by a stepper

motor, connected to a driver controlled through Arduino. As it can be seen, the is a

shutter in front of the focusing lens (A2), because during future translations between

different vials, the spot of the laser must be blocked to avoid the test tube holder

catching fire or being damaged. The blue dashed line presented in Figure (3.1) is

the direction over witch vials must be moved, this is very important because the vial

must be very close to the aperture of the spectrometer to not lose too much Raman

scattered light but it must leave enough space for the loader to move. It is also

possible to notice two traps (T1 and T2) which are used to block the light and both

avoid reflections and allow to operate on the optical bench in safety. In principle is

possible to use a second spectrometer instead of the light trap T2, but this would
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produce a larger and more expensive instrument and more difficulties in the design

of the vial rotation system.

Figure(3.3) shows the instrument seen from above.

Figure 3.3: Experimental setup of the instrument
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Figure 3.4: The spectrometer

Figure (3.4) shows the spectrometer with its coupling optic. It is a custom-made

lens-based Czerny-Turner spectrometer (as it works in reflection), having a horizontal

input slit. The spectrometer is the part of the instrument that separates and collects

the different spectral components of the scattered Raman light creating an image,

whose rows are the Raman spectra. This component is enclosed by a structure so as

to let the light enter only through the slit, without disturbing the measurement and

to protect it from dust. The inclination of the grating is such that the spectral lines

of the first order of diffraction are focused on the camera. The micrometric screw

that can be seen adjusts the opening of the slit at the entrance to the spectrometer,

the adjustment of this parameter will be described later in this chapter. The camera

is connected via USB to a PC.

Figure (3.5) shows the structure of the tube holder used and how the stepper motor

is in contact with the tube to make it turn. The tube holder design is custom made

to allow the laser beam to enter and exit but without letting in too much ambient

light. In addition, there must be windows to allow diffused Raman light to exit from
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the test tube holder. There is also a window on the side without the spectrometer

so that the diffused light does not undergo multiple reflections on the vial.

Figure 3.5: Tube holder

Given that the diameter of the test tube (d1) is 30 mm, that of the pulley (d2) is

96 mm and the minimum angle of the stepper motor is αmin = 0.9◦, it is possible to

calculate the maximum number of positions that the test tube can assume:

N =
360

αmin · (d2d1 )
− 1 = 124 (3.1)

This value is valid only as a theoretical estimation since sometimes there is a slip

between the pulley and the test tube, this leads to non-rotation and therefore the

number of different positions obtainable cannot be estimated. It is also important

to remember that the beam is focused before reaching the test tube so that a very

small spot is obtained, it is unthinkable to reach the same position by making a

rotation in one direction and one in the opposite direction. In addition, the rotation

also induces small titling of the tube, which makes the positioning of the laser focus

even more random. For these reasons it has been chosen to induce a rotation of 50

steps = 45 degrees at each time, sure that this does not make the acquisition pattern
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periodic. The angle of the induced rotation is not determinant for the instrument

performance, but it has to be larger enough to ensure a rotation even if there is a

small slipping effect.

The stepper motor is attached to a structure that has been designed ad hoc for

this instrument with the software Fusion360 [2] and then printed with a 3D printer.

Figure 3.6: Rod

The two buttonholes are useful to allow the inclination of the plate to which the

stepper motor is attached, in this way is avoided that the vial, during the rotation,

escapes from the tube holder. The other holes are instead used to hook the spring

to keep the structure pushed against the test tube. The system has been designed

so that the thrust due to the advancement of the tubes causes the arm to rotate,

which then pushes back against the tube. As it can be noticed, in the upper part of

the cylinder there is a hollow, and another one is present also in the lower part of

the same (not visible in Figure (3.6)), these two parts are designed to accommodate

two ball bearings. Since the structure must rotate and withstand the weight of the

stepper motor, the use of ball bearings is ideal for this application.
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Source

Code Name Wavelength [nm] Power [mW]

S1 LASEVER LSR532H-2W+LSR-PS-FA 532 2

Lenses

Code Name Focal length [mm] Aperture [”]

L1 THORLABS LA1131-YAG 50 1

L2 THORLABS TRH127-020-A-ML 20 0.5

L3 THORLABS TRH254-040-A-ML 40 1

Spectrometer objectives

Code Name Focal length [mm] Aperture

O1 EDMUND 86-614 50 f/2.0

O1 EDMUND 85-355 25 f/1.4

Diffraction grating

Code Name Blaze wavelength [mm] Groove density [N/mm]

DG1 EDMUND 43-005 500 1200

Filter

Code Name Cut-on wavelength [mm] Aperture diameter[mm]

F1 THORLABS FELH0550 550 25

Camera

Code Name Resolution [MP] Fps

C1 BASLER acA1920-40um 2.3 41

Test tube

Code Name Diameter [mm] Material

V1 30 Pyrex Boro 3.3

Table 3.1: Table of components
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3.2 Geometry optimization

3.2.1 Vial - spectrometer distance optimization

When positioning the spectrometer, it is necessary to pay attention to the compro-

mise between the need to have an intense signal and being able to maintain a distance

between the spectrometer (and its coupling optics) and the test tube such as to allow

the analysis in a series of these. On the one hand, a spectrometer (and its coupling

optics) very close to the vial captures a lot of signals, but will not leave enough space

for the vials to move, on the other hand, a spectrometer too far from the vial will lose

a lot of useful signals. The two degrees of freedom, on which is possible to act, are

the distance between the spectrometer and the laser focus (where the centre of the

test tube is located) and the distance between the aperture of the spectrometer and

the coupling optics placed in front of the spectrometer. The first parameter controls

the amount of light entering the spectrometer and the second controls the width of

the spectral lines. It goes without saying that having a narrow spectral line results

in a more intense signal peak and a lower error in determining its wavelength.

To optimize the components positioning, a Matlab code has been created that ana-

lyzes the acquired image in real time and, focusing on the oxygen spectral line, pro-

vides various information. Given an acquisition, the spectrum is created by averaging

a number of lines compatible with that generated by the optimization of the window

(Sec. 4.2.1), that algorithm cannot be applied since only one image is analyzed and

real time spectral processing is needed. The interesting part of the spectrum is the

region around the oxygen line. The baseline is subtracted by interpolating with a

third degree polynomial only where there is no peak and an oxygen-related peak

without baseline is obtained. The peak has been then interpolated with a spline

function, increasing the number of points by a factor 5, to facilitate the subsequent

Gaussian fit. The standard deviation and the value of the integral are extracted from

the Gaussian fit (whose values are not real since a resize has been performed, but

in any case, they are indicative of the signal size and width). An example of the

program output is shown in Figure (3.7).
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Figure 3.7: Geometry optimization

The laser focus distance - spectrometer and spectrometer distance - coupling optics

were then varied in such a way as to maximize the integral and minimize the sigma

of the fitting Gaussian. It is important to note that since the baseline is subtracted

from the polynomial fit, the maximization of the integral is not affected by the diffuse

light. The fact that the spectrum value is shifted in intensity and does not start from

zero is due to the non-subtraction of the dark, this is not a problem since all images

have this systematic shift. Negative intensities are due to baseline subtraction and

spline interpolation.

3.2.2 Aperture’s width optimization

Similar to what has been done previously, the opening of the slit in front of the

spectrometer has been optimized. A small aperture lets in little light and implies

having to use a longer exposure time, on the other hand, a large aperture lets in much

more light but also diffused light. In this case, the important thing is not the total

amount of light since it includes even diffuse light, but having the larger difference

between signal and noise light. To do this, similarly to what has been done before,
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a code has been written whose output is the difference between the oxygen peak

and the intensity of the lines distant three pixels from the peak and the difference

between the oxygen peak and the intensity when there is no signal. As can be seen

from Figure (3.8), the aperture has been opened to reach an intense signal but not

too much to let in the diffused light, in this case the two parameters described above

will both be high and almost equal. The peak of around 380 pixels corresponds to

the laser so it should not be considered.

Figure 3.8: Aperture optimization

As in the previous case, the fact that the intensity where there is no signal is

different from zero is due to the non-subtraction of the dark, but this is a constant

value for each acquisition of the data socket so it does not affect the optimization in

question.
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Chapter 4

Data acquisition and analysis

4.1 Image acquisition

The acquisition process is performed by the CMOS camera and requires the laser

turned on and stabilized. The acquisition time used is usually one second, with a

gain of 24 dB, to make this process faster, in fact several rotations are required for

each test tube before finding a good position.

Note: Spectral lines might be shifted across different images due to a different in-

strumental configuration, however, data analysis has been performed with groups of

images originating from the same acquisition procedure with the same experimental

setup.

4.1.1 Dark subtraction

The acquisition of an image with the laser turned off is called ”dark”. In principle,

the resulting image should have all the pixels at zero intensity, but this does not

happen for several reasons. Some detector’s pixels might be saturated and might

remain in this condition for all acquisitions, this is due for example to defects in the

manufacture or degradation of the detector. The purpose of the dark measurement is

to remove (ideally all) the light that is not part of the signal but that comes from the
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environment or always saturated pixels. The analysis of the dark also allows you to

check if there are intensity patterns that could be due, for example, to a non-optimal

experimental setup.

The dark was acquired at the beginning and end of each data take, from which the

average dark state is calculated, to compensate for the possible appearance of satu-

rated pixels not due to the signal. Each image was then analyzed by first subtracting

the average dark.

4.1.2 Noise

The total noise that affects the spectrum is given by three contributions:

σ =
√︂
σ2
s + σ2

i + σ2
p (4.1)

The first term σ2
s , is the shot noise, it cannot be avoided and is given by:

σs =
√
S (4.2)

With S that indicates the signal intensity. Since the relative error decreases as one

over the square of the intensity, is recommended to achieve the greatest intensity

possible. Given that the intensity is proportional to the integration time, it would

suggest using a very long integration time, but this is not useful because most of the

noise is due to the background noise[19], moreover the application of the instrument

requires fast measurements, so it is not good strategy. It’s important to remember

that the total intensity is given by Raman scattering, fluorescence, ambient light

and multiple reflections, all these components bring a certain amount of shot noise,

therefore all of these which are unwanted cause an increase in the non useful signal

(for example ”fake” peaks in the spectrum) and also the increase of the total noise.

The baseline subtraction can eliminate the contribution to the intensity, but cannot

eliminate its noise, this leads to a decrease in the signal to noise ratio since the first

becomes smaller and the second remains the same.

The term σ2
i refers to the instrumental noise, in particular, the dark signal is impor-
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tant. The dark current is generated many electron-hole pairs are generated even if

there is no photon captured by the camera, this effect could be mitigated using a

cooled camera.

The term σ2
p refers to the signal processing, due to the error in the conversion of an

analogue value to a digital one.
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4.2 SNR as a quantifier of a position’s goodness

As anticipated in Sec(1.4), the goal of this thesis is to find an algorithm that dis-

criminates between images submerged by diffused light and useful ones. From the

good images then, the Raman spectrum provides information regarding the gases

present in the sample, to discriminate between non-infected samples, those infected

with clostridia and those infected with bacilli.

The algorithm must satisfy the following conditions:

1. The quantifier of ”goodness” or the discriminator, must be created from a

single measurement, in fact, as it will be shown in the Sec(4), for some vials

there could also be 90% of the positions to be discarded, so acquire multiple

images to then decide whether performing the rotation would slow down the

analysis of the samples too much.

2. The quantifier of ”goodness” or the discriminator cannot be created on the

basis of the measured gas concentrations as these varies from sample to sample

and over time.

3. The algorithm must be fast enough to be executed in real time, therefore with

an execution time of the order of one second.

4. The classification cannot be based only on the presence or absence of the spec-

tral line as we are interested in how the concentration of the gas varies over

time to determine if the milk is infected or not.

As previously shown, the image acquired by the camera strongly depends on the

position in which the vial is located, even a small rotation involves the complete

saturation of the detector.

It has been decided to investigate the use of the signal to noise ratio as a quantifier of

the goodness of the measurement position, considering the integral of a peak linked

to a certain gas as a signal and the standard deviation of the relative integrals as

noise. Measurements made in a ”good” position are therefore expected to have a

high SNR (Signal to Noise Ratio) and vice versa. Since the Raman spectrum of
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which the integral of a gas is calculated strongly depends on the number of lines

used to create it, the question arises as to how many lines should be used to create

a spectrum, this issue will be addressed in the next section.

The basic idea is to associate a signal-to-noise ratio to each position and then

associate this value to a parameter (later described) that can be calculated from a

single measurement. After correlating the parameter from the single image with the

signal ratio of a position, it is possible, for example by using a threshold, to obtain

a way to discriminate between saturated and unsaturated images.
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4.2.1 Window optimization

Every time an image is acquired, the Raman spectrum is created from the average

of several rows of the image, this allows to reduce the noise, but it remains therefore

of fundamental importance to know how many rows must be used for this operation.

Using all the rows of the image is not a good choice because, as shown above, the

scattered light is mainly concentrated in the upper and lower part of the image (and

usually its intensity is greater than that of the interesting signal). On the other

hand, using only a small amount of rows to create a spectrum involves a lot of noise.

To calculate the optimal window for the creation of the spectrum, a code has been

developed that optimizes the window in order to maximize the signal-to-noise ratio

of the integral associated with a peak of the desired gas. After acquiring repeated

measurements, an optimal window can be associated with each gas and each position

of the vial. If the interest is aimed at several gases at the same time, the window to

be used is smaller of those of the individual gases. It has been decided to optimize

the SNR for the oxygen line because the spectral lines related to carbon dioxide and

to hydrogen are closer to it than to nitrogen (Figure 1.1).

The algorithm is based on maximizing the signal-to-noise ratio relative to the inten-

sity of a peak associated with the oxygen line and requires repeated measurements

at a fixed position, it is therefore not designed to be used in the final application

during the real time analysis, but it is useful to tune the algorithm that chooses,

from the parameter of a single image, whether a position is to be considered good

or not. Indeed, the algorithm that discriminates the good positions, must lead to

the position whose signal-to-noise ratio is greater than a certain threshold or at least

greater than that of all the positions discarded.

To make the underlying idea of the algorithm clearer, a simplified flowchart of the

algorithm is presented in the following Figure (4.1).

To develop this algorithm, twenty-five repeat images of the vial were acquired in one

hundred different positions. The tested vial contains air.
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Figure 4.1: Window optimization flowchart
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The window optimization algorithm takes as input a set of repeated measure-

ments at a fixed position and returns the best window and the spectrum generated

by it. The dark must already be subtracted from the images.

Once the set of twenty-five images is loaded, its average image is created, this reduces

the noise and it is used to search the oxygen spectral line. The user defines a range

of columns within which the oxygen line is present, this range must be specified only

the first time as it remains fixed until the experimental setup is changed. Within the

range, the sum of the intensities of the pixels along the columns is calculated, the

maximum will be found in the column corresponding to the oxygen line. In principle,

the line could occupy several columns bu,t generally, it occupies two or three pixels,

however, this operation does not require particular precision for how the algorithm

was conceived. Figure (4.2) shows the acquired image and how the nitrogen spectral

line is found at the 299 pixel position.

Figure 4.2: Search for the spectral line
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Once the reference column has been found, the intensity profile along that column

is analyzed, as shown in Figure (4.3).

Figure 4.3: Oxygen line intensity profile

Largest peaks are relative to the scattered light, but as can be seen, in the central

region there is a relatively high intensity, which is due to the gas signal. To choose

which line to use as a reference, the zone in which the intensity is greater than the

30% of the maximum intensity along the line has been searched, and the average

line (rounded to the nearest integer) has been calculated from that range. Once this

operation has been done, a line is available from which to start searching for the

window to be optimized.

For how the algorithm has been designed in its subsequent phases, performances are

almost independent of the choice of the initial line as long as it is in the central band

of the image, for this reason, more sophisticated systems have not been developed

for its identification. In the beginning, it could be also have chosen to use the mid-

spectrum row as a reference, but in case of big setup changes this would no longer

be valid, but in this way, the algorithm provides some flexibility.

The fact that there is no very large peak in the central region of Figure (4.3) is due
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to the curvature of the spectral line, so it is visible on the column profile shifted one

pixel above or below the one used here. This is not a problem as the reference line

is placed in the center of this area.

Now, known the reference row, the real optimization can begin.

Given the vial in a fixed position, for each repeated image j of the set, many spectra

are created using i rows below or above the reference row, in this way it obtained a

spectrum for each i, with i that goes from 1 to the end of the region with the signal.

For example, with i = 1 only two rows are used to create a spectrum, the reference

one and the one above or below it; with i = 2, 3 rows are used and so on. In practice,

for each i from 1 to M a spectrum is created for each of the twenty-five repeated

images acquired with the vial in the fixed position with a number i+ 1 of rows.

From each of the twenty five spectra (function of i), the goal is the evaluation of the

integral of the oxygen’s peak. First of all, it is needed to subtract the baseline, to do

this a fit with a third-order polynomial is performed, but this fit should exclude the

oxygen peak, to do so the standard deviation was calculated on a region to the left

and right of the oxygen peak and the average of these two values is used as a thresh-

old for the noise that should be exceeded to consider the intensity as a useful signal

and this part of the spectrum has been excluded from the fit. Then, the baseline has

been subtracted. It is important to notice that the number of noise-reference to be

overcome to consider the useful signal is a tricky parameter, if it is too low then a lot

of noise is included in the integral’s calculus, if it is too high then a lot of interesting

signals is excluded from the integral’s calculus. The area of the useful signal to be

integrated has been made started from the maximum of the peak to exclude possible

regions whose noise is particularly high, as shown in Figure(4.4).

Since the number of pixels is quantized, in order to be more sensible with the

thresholding, the signal, after the baseline subtraction, has been interpolated. As it

can be seen from Figure(4.4), the spline-interpolation enables achieving a good result

without losing too much signal between the pixel above and below the threshold and

therefore a better evaluation of the integral.

Note: since the number of points has been increased with the interpolation, the
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Figure 4.4: Integral of oxygen peak

value of the integral is not ”real”, but it will be compared only with other values

obtained with the same procedure therefore it is consistent. The presence of negative

intensities in Figure(4.4) is due to the baseline subtraction. The difference in signal

strength between the images (4.3) and (4.4) is due to the subtraction of the baseline.

Once the integral is calculated for each i number of rows below and above the

reference row, it can be compared with the same obtained from the other twenty

five images. The result is the mean value of the integral over twenty five images,

as a function of i. It is evaluated then the SNR as a function of i and the aim is

the maximisation of this quantity, both for i above and below the reference row, as

shown in Figure(4.5).

The final result is an asymmetrical window whose size leads to a maximisation of the

SNR of the oxygen’s peak that is evaluated at the end over the optimized window.
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Figure 4.5: Window optimization

As it can be seen from the figure above the mean value of the integral is almost

constant along the entire window, this is interesting because confirms that the signal

is uniform along that direction (for small aperture angles). The average value drops

only to the last values, this is because the light is cut off by the slit. The standard

deviation of the integrals clearly decreases as a function of the number of rows as

expected.

As can be clearly seen from the µ/σ ratio graphs, this procedure leads to a maximum

that can be used to select the range of the optimal window, however, the algorithm

is not so stable in the sense that there are maxima whose ratio is similar to that of

the maximum peak but with a very different number of rows used, this problem is

addressed in the next part.
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Multiple maxima window optimization

The µ/σ ratio sometimes has multiple maxima, this is particularly dangerous when

the two (or more) maxima vary little in the value of µ/σ but a lot in the number

of lines. In some cases, there is a maximum precisely in correspondence of the

appearance of diffused light since this contribution increases the value of the integral,

while the std is monotonous decreasing. To make the algorithm more robust, the

values of µ/σ have been evaluated within more than 95% of the maximum value and

the average value in the range of smaller pixels has been taken as the definitive value.

In practise, in practice, the window does not widen if there is no gain in the / ratio

of at least 5% with respect to the maximum value, so if you can reduce the window

by losing little relative SNR, this is done. Figure (4.6) shows a typical example of a

situation solved thanks to this strategy.

Figure 4.6: Window optimization with many local maxima

To have a further verification, in the best condition, that is the one without the

test tube, it can be noted that the optimal window is particularly extended, given
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the lack (or in any case small quantity) of diffused light, shown in Figure (4.7), it is

evident that the optimal window is much longer in this ideal case and also the SNR

obtained is larger than in the previous case.

Figure 4.7: Window optimization without the vial

The idea of discriminating between good or bad positions based on the optimal

window width is not the best as:

1. The final goal is not to have a large window, but a good spectrum, if an image

with only a few lines is obtained but which produces a spectrum with a high

signal-to-noise ratio, it makes no sense that this is eliminated.

2. The window optimization algorithm requires repeated measurements, which

slows down the analysis process.

The window optimization algorithm is not trivial, in summary, a spectrum is

created by averaging every possible number of lines above and below a reference line,

then the integral of the oxygen peak is calculated for all images acquired in a fixed
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position and then the window that optimizes the µ/σ ratio is chosen.

To conclude, from a set of repeated acquisitions with the test tube at a fixed

position it is possible to evaluate the best window from which to generate the spec-

trum, this procedure then leads to the estimation of an SNR for this specific position,

which will be used to test the position selection algorithms. For each of the hundred

positions, a signal to noise ratio has been associated as a goodness qualifier.

Figure 4.8: Distribution of the µ/σ ratio

Figure(4.8) shows the probability density function of the ratio µ/σ of the oxygen’s

peak integral, from the spectrum obtained using the best window for each position.

As can be noted, there is no clear distinction between two regions, which can be

classified as good and bad, on the contrary, the distribution appears to be random.
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4.3 Parameter from a single image

Now, the SNR for each position is known, but since it is calculated from repeated

measurements, it should be correlated to some parameter computable from a single

measurement.

The aim is to find an algorithm that given only one image can produce a quantity

that is proportional to the SNR for that position, or, at least, discriminate images

with high SNR from that with a lower one. When choosing the discriminant param-

eter (for example the number of pixels over a threshold), care must be taken to avoid

overfitting, in the sense that the algorithm might produce a parameter that works

well only for the set of measurements acquired, but when it is tested on new data

fails.

When the diffuse light is too much the whole image is saturated, for example as

in Figure(1.2), it is not possible to apply the window optimization algorithm and a

value of µ/σ equal to 0.1 has been associated with that position. This value is not

real but is useful to test if the algorithm can predict very bad images.

It is important to specify that the final objective of the instrument has to discrim-

inate the tubes containing infected milk from the non-infected ones, to do this, a

precise estimate of the quantity of gas is not necessary, as it is sufficient to verify

the increase in the presence or absence of CO2 and/or H2. For this reason, it is

not of fundamental importance to be able to obtain positions with a very high noise

signal, but a compromise must be found between the number of rotations required

(and therefore the measurement time) and obtaining positions that give repeatable

results.
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4.3.1 First parameter: % of pixels above a threshold

The first simple algorithm tested involves the calculation of the percentage of pixels

above a certain threshold. To make the method not dependent on the integration

time, the threshold has been set as the half of maximum value of the image intensity.

Furthermore, to make the calculus independent of the spectral lines, so it considers

only diffuse light, the region with spectral lines has been zeroed. Since a vial con-

taining air was measured throughout the analysis of this parameter, only the lines

in the nitrogen and oxygen region have been masked.

Figure 4.9: Percentage pixel above threshold algorithm

As can be seen from Figure (4.9), the algorithm can qualitatively identify the

areas where diffused light is present. The algorithm is based on the assumption that

the scattered light is in the greater half of the intensities and that an image with a

low percentage of pixels corrupted by the scattered light implies a good spectrum

(high µ/σ ratio).
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To verify that a good spectrum corresponds to a low percentage of pixels above

the threshold, the ratio µ/σ for the oxygen’s peak, has been plotted as a function of

the percentage of pixels above the threshold, as shown in Figure (4.10).

Figure 4.10: Above threshold test

The graph shows how although low SNR values can occur even for low percent-

ages of pixels above the threshold, the algorithm shows the trend: at low percentages

of pixels above the threshold it generally shows higher SNR values (the fit doesn’t

consider ”fake” SNR equal to 0.1). Moreover, it can be seen how particularly high

SNR values do not correspond to values of percentages greater than 50 (indicatively).

Advantages of this parameter:

• It is very fast and suitable for real-time applications.

• It captures the region with the largest noise.

• It is easy to interpret, easy to understand.
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Disadvantages of this parameter:

• It does not capture the intensity’s distribution of the noise, the output is the

same if the intensity of the noise is just above the threshold or completely

saturates the detector.

• It does not consider the spatial location of the scattered light, if it were all in

a region where there are no spectral lines it would not be a problem, if instead

it is located close to spectral lines, this makes the recognition of gasses more

complicated.

• The threshold is simply a max operation, that is very sensitive to hot pixels

and saturation.

The implementation in the case of real time analysis can be of two types:

1. A threshold is chosen from Figure (4.10) to ensure a high SNR and measure-

ments are acquired by rotating the vial, until N acquisitions are obtained with

a percentage of pixels within the threshold. Is is possible to set N equal to one

2. M images are acquired and the N images with the lowest percentage of pixels

due to diffused light are kept.

To solve some cons of this algorithm, another approach has been developed, which

is presented in the next section.
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4.3.2 Second parameter: first PCA component

PCA applied to images

Principal component analysis (PCA) is a widely used technique for dimensionality

reduction, it is also exploited to perform a preprocessing of data before it is given

as input to artificial intelligence algorithms. As for images, PCA has also been used

for facial detection and image classification in general [18].

The idea is that given a dataset of M points having N parameters, exists a reference

system such that along one direction (principal component) there will be the greatest

variance of the data, and along the second direction there will be the second largest

variance and so on. This implies that if there is little variability along the latter di-

rections, these directions are less useful than the former for distinguishing/separating

data. Therefore it is not necessary to work with data in space RN but it is enough to

focus in the first p components, so M points in the space Rp will be obtained (with

p << N).

PCA is the linear transformation that allows you to rotate the space from the original

reference system to the one described above. The directions along which to project

the data are called principal components and correspond to the eigenvectors of the

covariance matrix.

Figure 4.11: 2D Example of principal components
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Figure (4.11) shows a case in which there are many points belonging to the two-

dimensional space, the arrows instead show the two principal components. It is

evident that most of the variability of the data develops along the direction of the

first eigenvector, while in the orthogonal direction, the second component, there is

less variability. The interesting thing is that generally only a few main components

are needed to capture the variability of the data, so the reduction of dimensionality

is very effective.

In the case of images, they are transformed into vectors by flattening them. The

number of parameters corresponds to the number of pixels, so it can even be of the

order of millions, in the specific case of this thesis it is generally around tens of

thousands, this is the dimensionality of the space where each image is represented

as a vector. It is important to note that the eigenvectors can be expressed as lin-

ear combinations of components in the original space, therefore the transformation

is obtained with a matrix product, in the case of images the eigenvectors instead

correspond to ”eigen-images”.

Figure (4.12) shows how the PCA is used for face recognition, from a R2500 space it

is obtained a R2 space after applying the PCA. It can be noticed that groups of close

points correspond to the same face, this means that only two coefficients are enough

to distinguish each face from the other.

Figure 4.12: PCA for face recognition
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Coefficients in the two-dimensional plane correspond to the coordinates along the

two main components. Actually, the example just reported is a very simplified case

as the faces are very similar to each other, but it shows the potential of the technique.

To better understand the role of self-images (or eigen-images) just think that a

vector in the original space can be decomposed as a linear combination of principal

components vectors, the same applies to the original image can be decomposed as a

linear combination of these, as shown in Figure (4.13).

Figure 4.13: Autoimage decomposition [17]

Clearly, the approach is very simple and deep learning algorithms are currently

used for face recognition, however, this procedure has been tested with the images

acquired by the spectrometer.

Regarding this thesis, the objective is clearly not to classify the faces but to exploit

the PCA to identify which are the areas in which the diffused light is concentrated

more: given that the acquisitions are made with the same compositions of gasses

(air), what characterizes one position from another is precisely the diffused light.

It is expected, for what has been said above, that the first autoimage corresponds

precisely to the area in which the diffused light varies the most.

The intensity of spectral lines vary slightly between different positions with respect to

the diffused light zone, this phenomenon is particularly useful with PCA because this

implies that the first self-image does not consider the spectral lines for the variability

between the different positions, but only the zone of diffused light. Despite this, the

intensity of the spectral lines varies a little even if not much and therefore the regions

where the spectral lines are present have been zeroed as done for the algorithm that

considers the percentage of pixels above the threshold.
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PCA calculus

1. Creation of the M × N matrix A, with M equal to the number of different

positions, and N the number of parameters (pixel), that has been reduced only

to the useful part, to make the computation faster. The vector of length N is

obtained by flattening the matrix of the acquisition.

2. Centering of data, so subtract the average evaluated through columns, in this

way each parameter becomes centred to zero.

3. The p× p covariance matrix C is defined as:

C =
ATA

M − 1
(4.3)

that is symmetric so it can be diagonalized as:

C = V LV T (4.4)

with V a matrix of eigenvectors and L a diagonal matrix whose eigenvalues are

λi.

4. It’s possibile to apply the singular value decomposition (SVD) to the matrix

A, such that:

A = USV T (4.5)

with U a unitary matrix, S a diagonal matrix of values si

5. Combining 4.6 with 4.4 the result is:

C =
V SUTUSV T

M − 1
= V

S2

M − 1
V T (4.6)

This means that vectors V are the principal directions and the singular values

si are related to eigenvalues of C through λi =
s2i

M−1
. Projections of the original

data along the principals component are called scores and are obtained in the

columns of XV or US.
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In practice, instead of evaluating the eigendecomposition of C, the same informa-

tion can be obtained by evaluating the singular value decomposition of the original

data X. The calculus of the PCA via SVD is faster than the eigendecomposition’s

algorithm because in this case, the number of variables exceeds the number of ob-

servations [8].

PCA for position selection

Similarly to what has been done previously, the aim is to find a parameter from a

single image that can then be correlated to the signal-to-noise ratio. To resume,

applying the PCA is possible to recognize regions where the variability of the scat-

tered light is high. Since the first self-image contains the region where there is the

largest variability, the component of the acquisition along that direction determines

a parameter related to the amount of light scattered in that region.

It is interesting to note that the PCA indicates the areas of variability and not those

saturated by diffused light, this is very functional because always saturated regions,

both for good and bad positions, are weighed less than those with high variability

and in fact, they cannot be used to discriminate the position.

To construct the PCA, many measures are needed, in order to avoid overfitting,

which in this case would result in a wrong construction of the self-images, which

would present areas of high intensity where indeed, for large numbers, the variability

would not be so high. The same measurements used for the analysis of Sec(4.3.1)

have been used to construct the PCA matrix, also to be able to compare this proce-

dure with the one that exploits the percentage of pixels above a threshold: twenty

five repeated acquisitions of a hundred of different positions.

In the case under examination, the first component contains within itself 86% of the

variability, instead, to describe more than 95% of the variability, the first three com-

ponents are needed. The first three self-images are presented below, in Fig (4.14),

spectral lines generally result in a lower variability as expected, but to make the

procedure more resistant to possible shifts or defects in the experimental setup, they

have been zeroed.
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Figure 4.14: First three eigen-images

It should be noted that the first self-image clearly shows the area where the dif-

fused light is usually found, verifiable by checking from the single acquisitions. As for

the other components, previous considerations are valid, but is difficult to interpret

their meaning.

To verify the correlation between the two variables, the signal to noise ratio of each

position has been plotted as a function of its first principal component, the result is

presented in the next figure.

Similar conclusions to what has been said for the previous parameter apply, a

negative value of the first principal component does not necessarily ensure a high

SNR, but a very high value of the same component certainly does not lead to a high

SNR value.
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Figure 4.15: First PCA component test

Although the parameter cannot be correlated with the signal to noise ratio, the

usage of PCA components has several advantages:

• Once the PCA rotation matrix is built, the calculation of the components for

a new image is immediate and can be done in real time.

• The method is independent of internal thresholds, as was the case for the

previously chosen parameter (% of pixels above a threshold).

• First principal component has a precise physical meaning. It captures the

essence of the problem, finding regions where the scattered light is concentrated

in order to discriminate the positions. Saturated areas common to all images

have no weight.
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4.4 Manual labeling

Given that the parameters found above have a physical sense but cannot be correlated

with the signal to noise ratio, it is fair to ask whether the latter is really a parameter

that indicated the goodness of the measure. Indeed, it should be considered that the

presence of constant light in the signal increases the signal-to-noise ratio, but this

does not correspond to a real improvement in the measurement conditions.

For this reason, another type of parameter has been investigated that can estimate

the goodness of the position.

Since in the feasibility study of the instrument good positions were manually es-

tablished by an operator [1], for each position of the hundred acquired, a label has

been assigned manually, discriminating between good (label=1) and bad (label=0).

Manual labels have been plotted as a function of the two parameters extracted from

a single image, i.e. % of the pixel above a threshold and first PCA component, the

result is shown in Figure (4.16).

Figure 4.16: Manual labeling test
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Thresholds have been set equal to the minimum value of the parameter for which

over that value there are bad images, this is because it is reasonable not to want to

exchange bad images as good, while the opposite is more tolerated. In both cases,

there is a clear separation of the good images from the bad ones. The performances

in the two cases are equivalent: with such a choice of thresholds, which is for sure not

noise resistant (but is useful for testing the idea) about 12% of the good images are

lost. This method is subjective, the assignment of labels manually done by a different

person would probably lead to different results, but the idea remains valid that the

parameters capture the problem and that good/bad labeling instead of a quantitative

type could be useful. Furthermore, the positions on which the analysis was made

are only one hundred, a very small sample. The defects mentioned above have been

solved by creating automatic labeling of the images and testing the approach on a

thousand images.
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4.5 Automatic labeling

It is important to remember that the final output of the instrument is milk infect-

ed/not infected, based on the presence or not of the hydrogen. A possible approach

is to manually assign a label good/bad to each image and then use a binary classifier.

This procedure has been tried, but there is a lot of hysteresis on the labeling: after

a lot of bad images is ”easier” to assign a label ”good” if an image is not so bad

and vice-versa. Moreover, the manual labeling requires a lot of time and its difficult

to keep the same criteria all over the procedure. Finally, the manual procedure is

conditioned by the person who carries it out. To overcome all these problems, a new

parameter has been proposed to characterize the goodness of a position.

Figure (4.17) shows how the acquired image and its spectrum change between a

good and a bad image.

Figure 4.17: Good and bad position comparison
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The previous figure clearly shows as diffuse light disrupts the spectrum and in

particular the region where there are the spectral lines that is the most important.

This fact implies that a ”good” image is characterized by a low signal intensity be-

tween the peaks of nitrogen and that of oxygen.

For this reason, the ratio between the nitrogen peak and the average intensity be-

tween the two peaks (nitrogen and oxygen) has been proposed as a goodness param-

eter.

it is important to remember that the label thus defined cannot be calculated by the

final software, as the gas concentrations are unknown and there may be favourable

positions for the measurement but there is no oxygen inside the sample because it is

exhausted by the bacteria’s respiration, or if the pressure becomes very high, some

of the nitrogen may escape from the test tube, as can be seen in Figure(1.1), that

shows the acquired image of a sample infected by clostridia and there is no nitrogen.

Remains the problem of determining which threshold to use to distinguish good

from bad images. Firstly, manual labeling has been used to find a first reference

value, which remains purely qualitative, with this method a threshold equal to 1.6

has been found. To make the selection of the quantitative threshold, the standard

deviation of the nitrogen’s peak integral of the images classified as good according to

the selected threshold has been analyzed. In practice, once a threshold is set, its value

leads to a certain quantity of images classified as good and a spectrum is built from

good images, once the baseline has been subtracted, the integral of the nitrogen’s

peak has been calculated. Depending on the threshold there will be more or less

good images and this will vary the standard deviation of the integrals computed

from spectra created from good images. All calculations for this optimization are

based on the window optimization algorithm Sec(4.2.1).

To make the selection of the threshold more valid from a statistical point of view

and to more consistently test the correlation between label and parameters from the

single image, a thousand different images have been acquired.

The following figure shows the result obtained.
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Figure 4.18: Ratio optimization for autolabeling

The trend is the expected one, with a larger and larger threshold there is less

and less diffuse light in the image and therefore less and less images are classified as

good, this leads to a smaller dispersion of the integral of the nitrogen peak produced

by these good images. The threshold must not be too tight otherwise the majority

of the images would be discarded, the human manual labeling suggests a ratio of

1.6 so the final threshold has been set equal to 1.99, this value is larger than the

human one, hence, for sure, the worst images are classified as bad. With a larger

threshold, there is not a sharp decrease in the dispersion and with less and less good

images the values loses significance. With this selected threshold the 67.8% of the

images is classified as good. The goal is now to test if the previous parameters can

discriminate between good and bad images.
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Regarding the percentage of pixels above a threshold, the result is presented in

the next figure:

Figure 4.19: Percentage parameter vs autolabeling

Let’s describe better the procedure: images whose ratio between the nitrogen

peak and the mean intensity between nitrogen and oxygen peaks larger than 1.99

are classified as good. The label is compared then as a function of the percentage of

pixels above half of the maximum intensity of the acquired image. The final algo-

rithm uses a threshold, for the percentage parameter, set at the minimum percentage

above which bad images start to appear, minus the five percent of the range swept

by bad images. Basically, the threshold has been set in such a way to guarantee

some tolerance with respect to noise.

The performance of this algorithm for the position classification is very poor, only

the 1.03% of the good images is classified as good, and so the overall percentage of

good images according to this procedure is 0.7% while the expected value is 67.8%.
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The same has been done to check if the first PCA component is enough to classify

images correctly, in this case, the result is:

Figure 4.20: First PCA component vs autolabeling

The performance is better than the previous attempt, but not completely satis-

factory. Only the 58.55% of the good images is classified as good, and so the overall

percentage of good images according to this procedure is 39.7% while the expected

value is 67.8%.
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4.6 Machine learning approach: binary classifier

Summarizing what has been discovered so far:

• The SNR ratio is not a good parameter for characterizing the goodness of a

measurement position.

• An internal standard has been defined to define a measurement position as good

from a single measurement: when the ratio between nitrogen’s peak and average

intensity between nitrogen and oxygen peak is greater than 1.99. However, this

method can be applied when there is only air in the vial.

• Both the percentage of pixels above a threshold and the first coordinate of the

PCA are not enough to classify the images correctly.

Since now we have principal components of the image set and their label (valid only

for air), the idea is to build a binary classifier that can work even with unknown gas

concentrations.

The components of PCA arise from images with masked gas lines (even for hydrogen

and carbon dioxide), so they are already independent of the contents of the tube.

The label, on the other hand, is exactly what must be predicted, but, after hav-

ing trained a classifier in this case, where both principal components and labels are

known, it is possible to obtain a classifier that works in the most general case. The

input is given by the first p components of the PCA of an image and the output is

good/bad position for that acquisition.

One of the main problems when using a machine learning approach is having enough

data available. Unfortunately, the acquisition of measurement takes about three

seconds, even if the integration time is one second, but the camera-Matlab inter-

face and the rotation of the tube slow down the process. In addition, the number

of vials available is reduced to eighteen and these must be carefully cleaned before

measurement, requiring additional time. The importance of using different vials will

be described in the section below.
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4.6.1 The importance of using different vials

As already mentioned, one of the main problems of machine learning is avoiding

overfitting. To check if the approach was correct, a Neural Network (NN) was created

using a thousand measurements taken from one vial and then it was tested on a

dataset created with a different vial. The training vial has about 70% good images,

as shown in Figure (4.18). The number of good positions predicted by the NN for the

second vial was zero, but from the labeling rule, the percentage value of good images

was actually 5%, therefore the NN was not completely wrong, even if all the good

images are lost. This difference in the percentage of good positions (according to

the autolabeling rule described above) between different vials is due to the different

impurities presence in the vials’ glass as they have all been cleaned with isopropyl

alcohol before the measurement. In practice, what happened was having trained the

NN with a particularly performing vial and having tested the net on a vial very rich

in impurities.

This phenomenon implies that to avoid overfitting it is fundamental to train the

model with as many vials as possible, this does not change so much the regions

where the diffused light is found, but drastically changes the probability distribution

of the two labels with which the neural network is trained.

To further investigate this fact, three hundred images of ten different vials were

acquired, and the (labeling) percentage of good images varies greatly from vial to

vial, as shown in the next Figure(4.21). Moreover this phenomenon makes impossible

to determine a priori an estimate of how many rotations are necessary to find a good

size, and so of the time required to process a vial; for vial number one, four out of

five positions are fine, for vial number five one in ten is fine.
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Figure 4.21: Different vials comparison

4.6.2 Data preparation

Given the need to use different vials to train machine learning models, a single image

was acquired, in three hundred different positions, for eighteen vials, for a total of

5400 images. Each vial has been cleaned with isopropyl alcohol before the measure-

ment. For each image, a 0/1 label has been associated with the procedure described

in Sec(4.5), with the threshold optimized at 1.99. It is remembered that the assign-

ment of the label is valid only with the vials containing air, but since the input of

the model, the first components of the PCA, does not depend on the spectral lines,

as the were masked, the trained model is independent of the contents of the tube.

The data were divided into training and test sets, since is delicate to make predic-

tions on new vials, the data relating to the first twelve vials made up the training

set, and the remaining test set. From the analysis of the PCA made on the test set,

it appears that the first seven main components are needed to have more than 95%

of the data variability.

The training dataset is therefore composed of three hundred vectors, for twelve dif-
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ferent vials, with eight components, the first seven being the coordinates along the

first seven principal components, the octave being the label. Since the task con-

cerns classification, the 0-1 loss function has been used. In principle, another type

of loss function could be used, to make a false negative more important than a false

positive, but as will be presented later, even this simple loss function leads to good

performances.

Figure 4.22: Training data scatter plot

Figure (4.22) shows the distribution of the data along the two first principal

components, as can be seen, the bad positions prevail and the two regions are quite

separate. Unfortunately, there is no wide margin between the two areas.

It can also be noted that most of the positions are considered bad by the labeling rule,

overall, using the whole dataset made of eighteen vials, about 24% of the positions

are considered as good. This leads to an estimate that it takes about four rotations to

find a good position, therefore a time of about ten seconds, clearly this time depends

very much on the vial as shown above in Figure (4.21).

65



4.6.3 Model selection

Several binary classifiers have been trained and tested with Matlab, as can be seen

from Figure(4.23), the performances are all very good. Although the accuracy of the

linear Support Vector Machine (SVM) is the same as that of the neural network, it

was chosen to use this second model as the false negative rate is lower in this case,

as shown in Table(4.1). Having a low false negative rate is important especially in

cases where the vial has few good positions, so discarding a few good ones implies

a faster analysis speed. However, this results in a higher false positive rate, but as

will be shown later, these false positives are actually acceptable.

Figure 4.23: Training data scatter plot

Model False positive rate [%] False negative [%]

Linear SVM 0.1 5.9

Narrow Neural Network 0.2 1.7

Table 4.1: Selection model
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4.6.4 Neural network model

The artificial neural network (NN) is a computational model inspired by the struc-

ture of the brain in humans. In a very simplified model, the brain is made up of

a large number of basic computing devices linked together. Through a complex

communication system between neurons, the brain is able to perform very complex

calculations. NNs are based on this paradigm. [15]

An NN is structured in layers, each layer is composed of several neurons, the first

layer is the input layer, the last layer is the output layer, and the layers between

these two are called hidden layers.

Figure 4.24: NN model [15]

A fully connected NN is a NN such that each neuron of a layer is connected to

each neuron of the previous layer. The simplest NN is the feedforward, in which

information is transmitted only in one direction.
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From a mathematical point of view, a NN is modelled as a graph G = {N,E}
whose nodes are neurons N and whose edges E represent the connections between

them and a weight function over the edges w : E → R.
The output of each neuron is given by the output of the previous neurons, weighted

by the connection, and, once a bias is added, a non-linear function σ is applied.

Indicating con w
(t)
j the weights from all neurons of layer t− 1 to the neuron j of the

layer t, and with o(t−1) all outputs of neurons in layer t − 1, the output of the j-th

neuron in layer t is:

otj = σ
(︂
⟨wt

j, o
(t−1)⟩

)︂
(4.7)

The σ is called the activation function, it is a scalar non-linear function, one of

the most used is the ReLu function, defined as:

σ(a) = max{0, a} (4.8)

Several activation functions can be used, but ReLu is very fast and it is less expensive

than other functions for example tanh or sigmoid.

Once a vector xi ∈ Rd is given as input, with d equal to the number of neurons

in the input layer, through the propagation described above an output yi ∈ Y = Rk

is produced, which can be scalar or a vector.

The aim of a neural network is to create a model that can best predict the output

given by a certain input, formally, the minimization of empirical risk, defined as:

Ls(h) =
1

m

m∑︂
i=1

l(h, (xi, yi)) (4.9)

With m the size of the training set (set of data used to train the network) and

with l the loss function and h the hypothesis, so the model created, which depends

on all the parameters of the network, G, the weights h, σ.

The network is optimized by varying the weights between neurons in order to obtain

the lowest possible error between the correct label and the one predicted by the
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network. The loss function l measures how much the two values are different. The

0-1 loss function:

l0−1(h, (x, y)) =

⎧⎨⎩0 if h(x) = y

1 if h(x) ̸= y
(4.10)

is used for classification task. L2 or squared loss function instead, is used for regres-

sion:

lsq(h, (x, y)) = (h(x)− y)2 (4.11)

One of the main problems of neural network training is overfitting - creating a model

that only works for training data, but when new data is used, predictions are much

more wrong. To limit overfitting there are several strategies, one often used is to

minimize, in addition to empirical risk, also a term called regularization, in practice,

it is minimized:

Ls(h) =
1

m

(︄
m∑︂
i=1

l(h, (xi, yi)) + λ
∑︂
i,j,t

(wt
ij)

2

)︄
(4.12)

With wt
ij the weight between neuron i of layer t-1 and j of layer t, λ controls the

amount of the regularization. The idea is that even minimizing the value of the

weights avoids creating some that are too large and the final output depends too

much on those connections.

Without going into the details of the optimization algorithm, called the backpropa-

gation algorithm, the main steps to train the net are:

1. Weight initialization at random or with more smart strategies, for example

Glorot inizializer.

2. Evaluation of the empirical loss

3. Evaluation of the gradient of the loss

4. Updating of the weights.

5. Iteration of steps 2-3-4 until a minima of the empirical risk is reached.
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The computationally most expensive step is the evaluation of the gradient, which to

be done requires processing all the training sets at each iteration, for this reason, the

well-known Stochastic Gradient Descent algorithm is often used, which in addition to

being faster also has a certain resistance against the local minima from which it can

come out. The field of optimization is vast and there are many efficient algorithms

for network optimization such as adaptive learning rate or others.

To conclude the section, it is recalled that parameters such as the number of neurons

or the amount of regularization are called hyperparameters. For the optimization

of the hyperparameters what is usually done is to divide the training set into two

parts, for example, 70% -30% called training and validation set. In practice, the

hyperparameters are varied, training the network with the training set, and then an

error is estimated on new data, not used for training, using the validation set. The

hyperparameters leading to the minor validation set are chosen. The estimation of

the error of the definitive network must be made on completely new data since it

will be in this condition that it will then have to work. There are two possibilities:

get new data or divide the data you have into three parts, training, validation and

test set.
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4.7 Final position selection algorithm

The final algorithm consists of the application of the rotation matrix created by the

PCA and the use of a neural network for binary classification; this section describes

the details of the NN’s hyperparameter optimization and the performance of the final

algorithm.

4.7.1 Neural network optimization

The model has been trained and tested in Matlab which allows the possibility to

optimize two hyperparameters: the number of neurons and the amount of regular-

ization.

Figure 4.25: Hyperparameter tuning

Figure(4.25) shows how the optimization of hyperparameter has been done. The

grid is regular and the error is the misclassified rate in decimal, calculated from a

5-fold validation set. The best model is the one with 9 neurons and a regularization

strength λ = 3.3 · 10−4, therefore the number of total edges is 64.

It has been chosen not to use networks with multiple hidden layers to prevent the
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model from becoming too complicated, as will be shown later, already two input

components capture the essence of the problem, even if not completely therefore also

a relatively simple model with only one middle layer will be satisfactory.

The error on the validation set is 1.3%.

4.7.2 Neural network performances

The model has been tested on the six new vials, not used in the training phase, the

error on the test set was equal to 0.34%. The next figure shows the confusion matrix

of the test set:

Figure 4.26: Confusion chart of the test set

As it can be seen, the performances are very good, in particular, the false positive

rate is very low and this is particularly important since it would be a more serious

mistake to mistake a bad position for good, rather than the other way around.

The percentage of good images expected and that predicted by the neural net-

work for the whole set of eighteen tubes is shown below, it should be remembered
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that only the first twelve are used for training, and the others were used for the test.

It should be noted that the input of the classifier, that is the first seven main compo-

nents given an image, is calculated through the rotation matrix of the PCA created

by the first twelve vials, so the test reflects what the final algorithm will have to

do, that calculates the principal components and then give them as input to the

classifier.

Figure 4.27: Good positions expected vs predicted

It can be noted that the fifteenth vial does not present good positions, this is

interesting because it had not happened up to that moment and would involve an

infinite loop of rotations if analyzed, this involves having to put a limit on the

number of rotations, and in case, discard the vial without being able to obtain any

useful information about the milk inside. The degree of agreement between the

expected and expected values is very good, the deviation is at most a few percentage

points. The performances are good, but it remains to be understood how serious the

mistakes made are, that is, the positions that are classified incorrectly. Are there

fully saturated images that are classified as good or vice versa?
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It should be remembered that a position is classified as good if the ratio between

the nitrogen peak and the average intensity between nitrogen and oxygen peak is

greater than 1.99. To check how wrong the badly classified positions were, the ratio

of the nitrogen peak to the average nitrogen peak to oxygen intensity of these posi-

tions was plotted, the result is shown in the next figure.

Figure 4.28: Misclassified positions

Figure(4.28) shows as the ratio between nitrogen and oxygen peak of the misclas-

sified position is very close to the threshold. This means the error is not so serious,

it would be severe if a position whose ratio is 1.4 was classified as good or with a

ratio of 3 was classified as bad.

Overall, it can be said that the classifier distinguishes well the good positions from

the bad ones in over 99% of the cases, moreover, in the few cases where the error

is wrong, it is of little importance given that the ratio between nitrogen peak and

average intensity between the nitrogen peak and the oxygen peak it is close to 1.99,

that is the threshold chosen to discriminate the positions.
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As the test set showed good classifier performance, the definitive neural network was

eventually trained using all eighteen vials.

4.7.3 Proposed algorithm for the position selection

To conclude, the flow diagram of the proposed algorithm to find the good positions

in which to carry out the measurement is shown in Figure(4.29).

The proposed algorithm complies with all the conditions required by the instru-

ment:

1. Discriminates positions at which the image is saturated from places where it is

not.

2. It does not depend on the gases concentrations as PCA rotation matrix have

those lines masked.

3. It can be used in a real-time application since it requires a simply flattening

of a vector, a matrix multiplication and a propagation through a very simple

neural network.
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Figure 4.29: Flowchart of the position selection algorithm
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Chapter 5

Conclusions

The identification of clostridia in milk from the analysis of gases in the vial’s headspace

by Raman spectroscopy is very promising, in terms of time, cost and repeatability

of the test. The main problem of this technique is the interference due to the flu-

orescence that spoils the measurement, even completely saturating the acquisition,

but fortunately, changing the measurement position can improve the situation until

an acquired image is almost devoid of light generated by fluorescence. The aim of

the thesis is to automate the rotation of the test tube in order to obtain only images

that are not too compromised by diffused light.

First of all, a support rod for the stepper motor that rotates the test tube was ini-

tially designed. Next, it was verified whether the signal-to-noise ratio of the oxygen

peak integral can be used as a quantifier of the goodness of the measurement posi-

tion. However, this procedure requires multiple measurements, so it is not applicable

to the final algorithm because it would slow down the analysis of samples too much.

The idea was to find a parameter that can be calculated from the single acquisition

and to correlate it to the SNR, so that, after applying an optimal threshold, it is

possible to measure only the first and guarantee a high value of the second, without

having to carry out repeated measurements. Two calculable parameters from a single

measurement have been proposed: the percentage of pixels that have an intensity in

the upper half of the intensity range and the the coordinate along the first princi-
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pal component. The correlation between the two parameters just described and the

signal to noise ratio was tested, but it was not satisfactory. The SNR of the oxygen

peak integral proved not to be expressive of the goodness of the measure.

After that, a binary label (good / bad) was manually assigned to each position and

it has been compared with the previously described parameters from a single image,

which shows that they are effective in indicating the goodness of a measurement

position. As there is a lot of hysteresis in manual label assignment, as well as being

slow, it was decided to make the labeling procedure automatic. A role has been

created to automatically associate a good / bad label with each image: if the ratio

between the nitrogen peak and the average intensity between nitrogen and oxygen

peak is greater than 1.99, the position has to be considered good, otherwise it has

to be considered bad. This labeling rule is valid for samples containing only air, and

cannot be used in the final application since the gas concentrations are unknown,

but it is useful to get a label for each image.

A neural network binary classifier has been created that takes in input the coordi-

nates along the first seven principal components of an acquired image and returns the

good / bad label in output. Since the spectral lines were masked in the calculation of

the PCA rotation matrix, from a single image, seven coordinates are obtained, which

are independent of the gas concentration and therefore depend only on the diffused

light in the image. The training set consists of eighteen vials and three hundred

different positions for each vial.

The final algorithm proposed discriminates the good or bad positions with an accu-

racy greater than 98% and the few wrong positions have a ratio between nitrogen

peak and average intensity between nitrogen and oxygen very close to the threshold

value of 1.99, therefore the algorithm is very satisfactory.

From the hardware point of view, the instrument is still in an initial phase, it will be

necessary to make a thermostat to keep the temperature of the milk at 37 degrees

to help the growth of bacteria. Furthermore, a translator will have to be realized to

automate the serial analysis of vials. Moreover, a software-controllable shutter must

be created in order to block the laser beam when the translator changes the vial
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under analysis, to prevent it from catching fire. The use of a pulsed laser in coupling

with the camera will be investigated, to keep the integration time in the order of

nanoseconds and avoid part or all of the fluorescence, but this could imply problems

that arise from non-linear optical effects of the glass, given the use of a very high

intensity laser beam.

From the software point of view, on the other hand, the PCA will have to be re-

calculated as the use of the translator will cause the vials to position themselves in

a slightly different way and this causes a different distribution of the diffused light

in the acquired image. It is also conceivable to construct a rotation matrix from

the PCA for each position of the vial holder. Moreover, the use of different vials

is essential to obtain a training set more faithful to what will then be the proper

distribution of good/bad positions and the creation of a more reliable neural net-

work binary classifier. In addition, all the moving parts of the instrument, shutter,

translator, and stepper motor must be controlled at the same time.

Finally, the presence of milk in the vial could result in the appearance of drops of

condensation on the vial’ surface, this may require a slower rotation of the vial and

an increase in the number of rotations necessary for the each vial to find an useful

acquiring position, resulting in a new tuning of the proposed algorithm.
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