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Sommario

Grazie al rapido avanzamento tecnologico avvenuto negli ultimi anni, i sistemi di

consegna via drone stanno diventando sempre più popolari. In questa tesi, proponi-

amo un metodo esatto e un metodo euristico per il problema del Flying Sidekick

Traveling Salesman Problem with Variable Drone Speeds Selection (FSTSP-VDS),

un’estensione del Flying Sidekick Traveling Salesman Problem (FSTSP) in cui un

veicolo tradizionale (e.g., un furgone) è assistito da un drone che può viaggiare a

velocità variabile con l’obiettivo di servire un insieme di clienti nel minore tempo

possibile. In particolare, ci concentriamo sul caso generico in cui il consumo ener-

getico del drone è carattererizzato da un modello non lineare rispetto alla velocità

e al peso trasportato. Mostriamo che, se la funzione che descrive il consumo di

energia per metro del drone è convessa, allora, i tempi di percorrenza minimi e

massimi del drone, possono essere calcolati utilizzando metodi standard di ot-

timizzazione convessa. Sotto questa ipotesi, proponiamo la prima formulazione di

Programmazione Lineare Intera Mista (PLIM) per il problema del FSTSP-VDS.

La formulazione che proponiamo ha il vantaggio di essere compatta (i.e., ha un

numero polinomiale di variabli e vincoli) e permette di risolvere all’ottimo instanze

fino a 25 clienti. Inoltre, presentiamo un algoritmo genetico per poter affrontare

istanze con un numero maggiore di clienti. La qualità dell’algoritmo genetico pro-

posto viene validato in due modi. Prima, lo compariamo con lo stato dell’arte per

il problema del FSTSP-VDS, ottenendo un miglioramento medio del 6%. Infine,

testiamo l’algoritmo genetico sul problema del Traveling Salesman Problem with

Drone (TSP-D), un problema analogo al FSTSP in cui la velocità del drone è

fissata, e mostriamo che il metodo sviluppato è il primo euristico capace di trovare

soluzioni ottime note per istanze con 39 clienti. In particolare, delle 227 instanze

valutate, 194 sono state risolte all’ottimo (85.5%), ottenendo un scarto medio

complessivo dello 0.30%.
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Abstract

Drone-assisted deliveries have gained popularity in the last few years thanks to the

recent technological advances. In this thesis, we propose an exact and heuristic

method for the Flying Sidekick Traveling Salesman Problem with Variable Drone

Speeds Selection (FSTSP-VDS), an extension of the Flying Sidekick Traveling

Salesman Problem (FSTSP) in which the standard vehicle (e.g., a truck) is com-

bined with a drone that can fly at variable speeds to deliver parcels to customers

with the objective to minimize the completion time. In particular, we focus on the

generic case in which the drone power consumption is modeled by a nonlinear func-

tion with respect to speed and weight. We show that if the drone energy-per-meter

function is convex (and this is true for the most popular drone power consumption

models in literature), then, the minimum and maximum feasible drone travel times

can be computed using a generic convex optimization solver. Under this assump-

tion, we present the first Mixed Integer Linear Programming (MILP) formulation

for the FSTSP-VDS. The formulation we present has the advantage to be compact

(i.e., it features a polynomial number of variables and constraints) and allows to

solve instances with up to 25 customers. Furthermore, we propose a genetic heuris-

tic method to tackle larger FSTSP-VDS instances. The quality of our heuristic

method is validated in two ways. First, we compared it with the current state of

the art FSTSP-VDS heuristic, obtaining an average improvement of 6%. Then,

we tested our heuristic on the Traveling Salesman Problem with Drone (TSP-D),

a nearly identical problem to the FSTSP in which the drone flying speed is fixed,

and show that our method is the first heuristic that can find known optimal solu-

tions of TSP-D instances with up to 39 customers. In particular, for a total of 227

TSP-D with known optimal solutions evaluated, the genetic algorithm was to able

to find the optimal solution for 194 instances (85.5%), with an average optimality

gap of only 0.30%.
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Chapter 1

Introduction

One of the most popular problem studied in combinatorial optimization is the

Traveling Salesman Problem (TSP). The TSP can be formulated as follows: given

n cities and the traveling cost to move from one city to another, the task is to

find the shortest path to visit each city and returning to the starting point. In

the symmetric version of the TSP, the cost of going from the node a to node b is

the same of going from node b to node a. Whereas, in the asymmetric TSP, this

is not true in general. Given an example with n cities, the number of possible

solutions for the asymmetric TSP is (n−1)! and (n−1)!/2 for the symmetric TSP.

Therefore, when n is large, an exhaustive search is not a computationally viable

approach. To give an idea, when n, the number of cities, is 65, there are about

1090 different solutions for the TSP. To put this number into prospective, just

think that 1090 is the estimated number of atoms in the observable universe [14].

An example of an optimal solution for an instance with 42 nodes of the symmetric

TSP is illustrated in Figure 1.1. The TSP arises naturally in an extremely wide

number of practical applications ranging from planning trips to mapping genes

and scheduling space-based telescopes [23]. Unfortunately, the TSP belongs to

the class of NP-hard problems, which means that no polynomial time algorithms

exist for this problem (assuming that P ̸= NP). However, to find the optimal

solution it is not necessary to compute the cost of every possible solution. In fact,

the TSP can be formulated as an integer linear programming problem, and solved

by using techniques such as branch-and-bound and branch-and-cut, which allow

to solve instances with thousands of nodes. Currently, the largest TSP instance

ever solved has 85,900 nodes and it was solved back in 2006 by Applegate et al.

[10] using the Concorde code [4], a program based on the branch-and-cut technique.

Over the past few years there has been a growing interest in delivery con-

figurations that include unmanned aerial vehicles (UAVs, or drones). For

example, different delivery companies such as UPS and Amazon started in the last
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Figure 1.1: Optimal tour of 42 cities in the USA. The problem was solved by
Dantzig, Fulkerson, and Johnson in 1954.

few years different projects that involve the use of drones with the aim at reducing

delivery times, gas emissions and improving customer satisfaction [24] [1]. For

these reasons, the research community began to study different routing problems

in which the standard vehicles are supported by one or more drones. The first

one of this kind was the Flying Sidekick Traveling Salesman Problem (FSTSP)

introduced in 2015 by Murray and Chu [6]. The FSTSP is a an extension of

the classical TSP in which the ground vehicle (e.g., a truck) is coupled with a

drone with the goal of serving a set of customers in the minimum time or cost. In

particular, the drone can be launched from the truck at a customer location or the

depot, serve a customer, and then return back to the truck at a different location,

with the constraint that if the drone arrives before the truck at the rendezvous

location, it cannot land and wait, but it must hover until the arrival of the truck.

An example of a solution for an instance of the FSTSP is shown in Figure 1.2.

One common assumption of most drone-aided routing problems as the FSTSP,

is that the drone endurance and flight range are constant and independent with

respect to speed and payload. This hypothesis leads to the logical conclusion that

increasing the drone flying speed up to the maximum allowable speed has only

beneficial effects. In reality however, just like for cars, when the drone flying speed

exceed a certain threshold, the drone power consumption grows approximately

quadratically with respect to speed due to the wind resistance. Therefore, when

dealing with more realistic drone power consumption models, reducing the drone

2
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Figure 1.2: Example of a FSTSP solution with 10 customers.

flying speed could allow to increase the flight range and serve more customers with

the drone, and this could reduce the overall time required to serve all customers.

To this extent, in 2020 Raj and Murray introduced the Flying Sidekick Traveling

Salesman Problem with Variable Drone Speeds (FSTSP-VDS) [7], a variant of

the FSTSP in which the drone power consumption is modeled as a non-linear

function, and in which the drone is allowed to fly from one location to another at

different speeds.

The focus of this thesis is to devise the first exact method for the FSTSP-

VDS, and a heuristic method to tackle larger instances of the FSTSP-VDS. We

believe that both from a theoretical and practical point of view it is important

to investigate simple truck-and-drone routing problems in which the drone

flying speed is not fixed with the prospect of accelerating the development of

efficient and practical solutions for real world applications. Our main scientific

contributions are as follows:

• We show that the most used drone power consumption models in literature

present a convex energy-per-distance function (the energy required to travel

one meter at a given speed). We then show that, if such property is satisfied,
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the minimum and maximum drone feasible travel times to traverse a generic

drone leg i ‧‧➡ j ‧‧➡ k (see Chapter 2 for the definition of drone leg) can be

computed by solving a convex optimization problem.

• We introduce the first MILP formulation for the FSTSP-VDS. The formula-

tion we present has the advantage to be compact (i.e., it features a polynomial

number of variables and constraints) and allows to solve instances with up

to 25 customers using the CPLEX commercial solver.

• We propose a cutting plane algorithm based on the MILP formulation above

that works without requiring the exact minimum and maximum drone travel

times for each drone leg in the problem, but instead, it requires only a lower

and upper bound of each one of these quantities. The algorithm works by

refining the minimum and maximum drone travel times only when is needed,

that is, only if the MILP returns one or more infeasible drone legs. In that

case, the minimum or maximum drone travel times of the infeasible drone

legs are refined, and the MILP restarted.

• We present a genetic algorithm to tackle larger instances of the FSTSP-VDS,

that can also be applied on single-drone single-truck problems in which the

drone speed is fixed such as the FSTSP and the TSP-D. The proposed ge-

netic algorithm allows to obtain a 6% average improvement over the current

state of the art FSTSP-VDS heuristic, and to find known optimal solutions

of TSP-D instances with up to 39 customers. In particular, for a total of

227 TSP-D instances with known optimal solutions evaluated, the genetic

algorithm was able to find 194 out of 227 optimal solutions (85.5%), with an

average optimality gap of only 0.30%.

The effectiveness of our heuristic relies on a one-to-many encoding such that

an individual maps many different solutions, and an efficient procedure to

retrieve the best solution encoded by an individual. In particular, let n the

instance size, we prove that, with the proposed encoding, an individual maps

Ω(2n) unique solutions. We then provide a simple dynamic programming

algorithm that allows to retrieve the best solution among all the ones rep-

resented by an individual in time Θ(n3), and a very effective approximated

variant that runs in time Θ(n).

The thesis is organized as follows. Chapter 2 gives a precise definition of the

FSTSP-VDS. Chapter 3 discusses the most relevant drone-aided routing optimiza-

tion works related to the FSTSP and the FSTSP-VDS. Chapter 4 introduces the

drone power consumption model used in this thesis, and provides crucial consid-

erations in order to solve the FSTSP-VDS efficiently. Chapter 5 provides the first
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exact method for the FSTSP-VDS. In particular, it is presented a compact Mixed

Integer Linear Programming (MILP) that allows to solve FSTSP-VDS instances

with up to 15 customers using commercial solver such as CPLEX or GuRoBi.

Chapter 6 introduces a genetic algorithm as metaheuristic method for the FSTSP-

VDS and for the FSTSP. Chapter 7 reports extensive computational results ob-

tained using the exact and heuristic approach on FSTSP-VDS instances and the

results obtained are compared with the ones of existing solutions. Then, the ge-

netic algorithm is tested on instances of the TSP-D to evaluate its effectiveness

against exact methods for the TSP-D. Chapter 8 draws some conclusions and

addresses future work.
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Chapter 2

Problem Definition

The Flying Sidekick Traveling Salesman Problem with Variable Drone Speeds

(FSTSP-VDS) can be formally described as follows. A complete directed graph

G = (V,A) is given. The vertex set V is defined as V = {0, 0′} ∪N , where both 0

and 0′ represent a single depot and N a set of customers to serve. To this extent

we will use the notation N0 = N ∪ {0} and N ′
0 = N ∪ {0′}. The arc set A is

defined as A = {(i, j)|i, j ∈ N : i ̸= j} ∪ {(0, j)|j ∈ N} ∪ {(i, 0′)|i ∈ N}. A single

truck, equipped with a single drone, is located at the depot. For each customer

i ∈ N , it is associated a parcel with a weight wi. Each customer i ∈ N must be

served exactly once, and it must be served either by the truck or by the drone.

Each drone can carry only one parcel at the time, therefore it can be used to serve

only one customer in each flight. The drone has a payload capacity of K kg, this

implies that if a parcel exceeds this weight it can only be delivered by the truck.

The drone can leave and return to the truck at customer locations or at the depot

only, but it cannot be launched and retrieved at the same node. While the drone

is serving a customer, the truck can be used in parallel with the drone to serve

other customers. The drone can traverse different arcs at different flying speeds,

but the flying speed must remain constant during the flight, and in any case, it

cannot be greater than vmax. The distance that the truck must cover to traverse

the arc (i, j) ∈ A is indicated with dTij, whereas the distance that the drone must

cover to traverse the same arc (i, j) is indicated with dDij .

This distinction is motivated by the fact that the truck and the drone travel on

different pathways, therefore, we typically have dTij ̸= dDij . The time for the truck

to traverse the arc (i, j) ∈ A is indicated with tTij. The minimum and maximum

feasible drone traveling times to takeoff from node i ∈ N0, deliver the parcel at

node j ∈ N , and landing at node k ∈ N ′
0, including potential hovering time over

the landing node k, are denoted respectively with tDijk and TD
ijk. If the drone arrives

before the truck at the rendezvous location, the drone cannot land and wait, but

it must hover above the rendezvous location until the truck arrives, consuming
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energy. Vice versa, if the truck arrives before the drone, the truck must wait the

drone. The drone has a fixed battery capacity of B Joules. The endurance of the

drone, expressed in seconds, is a function of the parcel weight and the drone speed.

The drone must return at the landing location or at the depot, before it runs out

of battery. Once returned to the truck, the drone’s battery is swapped with a fully

charged battery, without requiring additional time. The endurance of the truck

is assumed to be infinite. The time required to prepare the launch of the drone

from the truck and the time required to retrieve the drone and placing back into

the truck are constants and take respectively sL and sR seconds, and their sum,

is denoted with the constant µ = sL + sR. The time required to deliver a parcel,

once the vehicle is arrived at destination, it takes σT seconds for the truck, and

σD seconds for the drone. Without loss of generality, delivery times σT and σD are

included in the travel times. The drone cruise altitude is defined by the parameter

h.

The goal of the FSTSP-VDS is to find a tour with the minimum completion time

serving all customers either by the truck or by the drone and considering poten-

tial waiting times because of the synchronization between the truck and the drone.

Figure 2.1 illustrates a solution of a FSTSP instance with eight customers (the cir-

cles) and the depot, that is, nodes 0 and 0′ (the rectangle). The drone is launched

from the depot to serve customer 3, while the truck leaves the depot to serve cus-

tomer 1. After the drone has served customer 3, it travels to customer 1 to rejoin

the truck. Depending on the travel times tT01, t
D
03 and tD31 either the truck waits for

the drone (tT01 < tD03 + tD31) or the drone waits for the truck (tT01 > tD03 + tD31). Then,

the truck moves with the drone onboard towards customer 6. After that customer

6 has been served, the drone is launched from the truck to serve customer 7, while

the truck is serving customer 5. Then, the truck and the drone rejoins at customer

8. From customer 8, the drone is launched from the truck to serve customer 4,

while the truck serves customer 2. Then, the truck and the drone travel back to

the depot independently, without waiting for each other. The total completion

time t of this solution is computed as

t =max{tT01, tD03 + tD31}+ tT16 +max{tT67 + tT78, t
D
65 + tD58}+max{tT82 + tT20′ , t

D
84 + tD40′}

+ 3µ.

In the remainder of the thesis, we will use the following concepts borrowed

from the work of Roberti and Ruthmair [18]. A truck customer is a customer

visited by the truck alone. Similarly, a drone customer is a customer visited by

the drone alone. If instead the customer is served by the truck while the drone is

onboard (hence, not operational) we say it is a combined customer. In the case of

7
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Figure 2.1: Example of solution of a FSTSP instance with eight customers.

the solution of Figure 2.1 customers 2 and 7 are truck customers, 3,4 and 5 are

drone customers, and 1,6 and 8 are combined customers.

A truck arc (drone arc, respectively) is an arc traversed by the truck (drone,

respectively) alone. A combined arc is an arc traversed by the truck while the

drone is onboard. The solution of Figure 2.1 includes four truck arcs (i.e., (0, 1),

(6, 7), (8, 2) and (2, 0′) ), six drone arcs (i.e., (0, 3), (3, 1), (6, 5), (5, 8), (8, 4) and

(4, 0′) ), and one combined arc (i.e., (1, 6)).

A truck leg is a concatenation of truck arcs traversed by the truck alone in between

two consecutive combined customers. A drone leg is a concatenation of exactly two

consecutive drone arcs traversed by the drone alone in between two consecutive

combined customers. A combined leg is a concatenation of combined arcs traversed

by the truck and the drone together that consists of combined customers only.

The solution of Figure 2.1 includes three truck legs (i.e., 0 → 1, 6 → 7 → 8

and 8 → 2 → 0′), three drone legs (i.e., 0 ‧‧➡ 3 ‧‧➡ 1, 6 ‧‧➡ 5 ‧‧➡ 8 and

8 ‧‧➡ 4 ‧‧➡ 0′), and a single combined leg (i.e., 1⇒ 6).

An operation consists of a truck leg and a drone leg in between the same pair of

combined customers. The solution of Figure 2.1 consists of three operations: the

first one consisting of the truck leg 0 → 1 and the drone leg 0 ‧‧➡ 3 ‧‧➡ 1, the

second one consisting of the truck leg 6→ 7→ 8 and the drone leg 6 ‧‧➡ 5 ‧‧➡ 8,

and the third one consisting of the truck leg 8 → 2 → 0′ and the drone leg 8 ‧‧➡

4 ‧‧➡ 0′. Finally, notice that a FSTSP solution can be seen as a concatenation

of operations and combined legs. The power consumption model adopted in this

thesis is described in Chapter 4.
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Chapter 3

Literature Review

The number of works related to drone-aided routing optimization problems has

grown extremely fast over the last few years, for this reason, in this section we

mainly focus on works relevant to our problem, that is, works that do not impose

a fixed drone speed, and that model the drone energy consumption through a non-

linear model. The problem of combining a drone with a traditional ground vehicle

for parcel delivery was first formally defined by Murray and Chu in 2015 [6] with

the introduction of the FSTSP. The authors proposed a MILP formulation for the

FSTSP capable of solving instances with up to 10 customers. In that paper, the

authors also define the Parallel Drone Scheduling TSP (PDSTSP), a problem in

which multiple drones are launched from the depot to serve nearby customers,

independent of the truck delivery. For both problem, the authors devised greedy

construction heuristics. A Nearly identical problem to the FSTSP has been in-

troduced by Agatz et al. (2018) under the name TSP with Drone (TSP-D). The

main difference between the two is that in the TSP-D it is assumed that the drone

and the truck travel on the same pathways, but at different speeds, whereas, in

the FSTSP the truck and the drone travel on different pathways. The authors

proposed a MILP formulation that allows to solve to optimality instances with up

to 12 customers, and a heuristic algorithm based on a route first-cluster second

procedure. Roberti and Ruthmair (2021) [18] proposed a compact MILP for the

TSP-D and additional constraints for several variants of the problem. The authors

introduced dynamic programming recursions to model several TSP-D variants, and

exploited these recursions to devise an exact branch-and-price approach based on

a set partitioning formulation capable of solving to optimality instances with up

to 39 customers. Ha et al. (2020) [9] proposed a hybrid genetic algorithm for the

TSP-D based on the hybrid genetic framework of Vidal et al. [25] to either mini-

mize the total operational cost or minimize the completion time for the truck and

drone. Raj and Murray (2020) introduced the multiple Flying Sidekicks Traveling

Salesman Problem (mFSTSP) [13], an extension of the FSTSP in which instead of
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only one UAV, an heterogeneous fleet of UAVs is employed. The authors proposed

a MILP formulation which allows to solve to optimality instances with up to 8 cus-

tomers, and a three-phased heuristic. Poikonen and Golden (2020) [17] proposed a

variant of the mFSTSP, named k-Multi-visit Drone Routing Problem (k-MVDRP),

in which the truck acts only as a mobile depot and recharging platform for the

drones, the drones can deliver multiple parcels in a row, and the takeoff and landing

locations is a set of predefined locations that can differ from the customer ones.

The energy consumption is modeled by the non-linear model of Stolaroff et al.

[20]. A MILP formulation and a heuristic algorithm are proposed. Different drone

speeds have been tested using the non-linear energy consumption model of Stolaroff

et al. [20], and they concluded that the objective values are highly sensitive to

drone speed when a realistic power models is used. Tamke and Buscher (2021) [22]

introduced the Vehicle Routing Problem with Drones and Drone Speed Selection

(VRPD-DSS), a variant of the classical VRP, in which trucks are equipped with

multiple drones to minimize the overall operational cost. The drone speeds are not

fixed, but have to be selected from a discrete set, and the drone energy consump-

tion is characterized by the Stolaroff energy consumption model [20]. The energy

levels for each speed is computed in advance, and the dominated drone speeds are

eliminated in preprocessing. The authors proposed a MILP formulation that aims

at minimizing the operational costs consisting of fuel consumption costs of the

trucks, labor costs for the drivers, and energy costs of the drones. Dukkanci et al.

(2021) introduced the Energy Minimizing and Range Constrained Drone Delivery

Problem (ERDDP) [5] in which trucks are used exclusively as mobile depots for

the drones that are used to deliver parcels to customers, and drone speeds are

continuous decision variable. The set of potential parking locations for the trucks

is fixed and different from the the set of customer locations. The drone energy

consumption is defined by the non-linear model of Zeng et al [27]. The aim of

the ERDDP is to minimize the overall operational cost. The authors formulated

the problem as a second order cone programming problem that can be solved

using off-the-shelf optimization solvers. Raj and Murray (2020) introduced the

multiple Flying Sidekicks Traveling Salesman Problem with Variable Drone Speeds

(mFSTSP-VDS) [7], an extension of the mFSTSP in which drones are allowed to

fly at different speeds, selected from a continuous set. The non-linear model of Liu

et al. [11] was used as drone power consumption model. A three-phase heuristic

adapted from the solution for the mFSTSP has been proposed. Raj et. Al (2021)

[16] proposed an exact branch-and-price algorithm based on a set covering based

formulation for the PDSVRP. A modified version of the exact branch-and-price

algorithm has been also proposed as heuristic for the PDSVRP. Then, the au-

thors introduced the PDSVRP with Variable Drone Speeds (PDSVRP-VDS), an

10



extension of the PDSVRP that allows the drones to fly at different speeds as in

the mFSTSP-VDS. The authors employed the Liu et al. [11] model as non-linear

drone power consumption model, and since the PDSVRP does not require any

synchronization between the trucks and the drones, Raj et al., computed the opti-

mal drone speeds in advance, and added this information in the solution proposed

for the PDSVRP.

To the best of our knowledge, the only works for drone-aided routing problems that

adopt a non-linear drone energy consumption model and allow the drone speeds

to be selected from a continuous set are, the work of Raj and Murray (2020) [7] for

the FSTSP-VDS, the work of Raj et al., (2021) [16] for the PDSVRP-VDS, and

the work of Dukkanci et al., (2021) [5] for the ERDDP. The salient characteristics

of these three works can be found in Table 3.1. It can be noted that the ERDDP

Problem

Authors Energy function #Trucks #Drones
Truck deliver

parcels
Drone/Truck

sync
Takeoff and rendezvous

locations
Solution

Raj and Murray (2020) Liu et al. (2017) 1 many yes yes customer locations Heuristic

Raj et al. (2021) Liu et al. (2017) many many yes no depot Exact + Heuristic

Dukkanci et al. (2021) Zeng et al. (2019) many many no no parking locations Exact

Our study Liu et al. (2017) 1 1 yes yes customer locations Exact + Heuristic

Table 3.1: Related works in which drone speeds can be selected from a continuous
set, and the drone energy consumption is defined by a non-linear model.

of Dukkanci et al., [5] and the PDSVRP-VDS of Raj et al., [16] do not require

synchronization between trucks and drones, and for this reason, these models are

easier to model when dealing with variable drone speeds, since, in general, the op-

timal speeds could be computed in advance. However, when the problem requires

the synchronization between trucks and drones, as in the case of the FSTSP-VDS,

the problem becomes much harder, since, each possible truck leg is related to mul-

tiple non-linear optimization problems. Finally, the development of the genetic

algorithm was inspired by the work of Vidal et al. [25], a genetic based framework

that proved to be extremely effective for various classes of VRPs.
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Chapter 4

Drone Power Consumption

In this chapter, we define the drone power consumption model used in this thesis

and we make some considerations in order to tackle the FSTSP-VDS using Mixed

Integer Linear Programming (MILP). For comparison purposes, we used the same

power consumption model used by Raj and Murray [7], i.e., the power consumption

model of Liu et al. [11], a model that is specifically designed for small multi-

rotor unmanned aircraft systems. The model is defined by three functions that

characterize the drone power consumption during takeoff or landing (4.1), during

horizontal cruising (4.2), and during stationary hovering (4.3).

P tl
w (vtl) = k1(W + w)g

[︄
vtl
2

+

√︄(︂vtl
2

)︂2
+

(W + w)g

k2
2

]︄
+ c2 ((W + w) g)3/2 (4.1)

P c
w(v) = (c1 + c2)

[︂(︁
(W + w)g − c5 (v cosα)2

)︁2
+
(︁
c4v

2
)︁2]︂3/4

+ c4v3 (4.2)

P h(w) = (c1 + c2) ((W + w) g)3/2 (4.3)

The Liu et al. [11] drone power consumption and drone range functions with

respect to speed and parcel weight are illustrated in Figure 4.1 and Figure 4.2.

The coefficients k1, k2, c1, c2, c3, c4, c5 are the parameters of the power consump-

tion model of Liu et al. [11], and their values can be found in Table 4.1. The

other parameters W,w and α define the physical characteristics of the UAV. In

particular, W is the UAV frame weight, that is assumed to be 1.5 kg, w is the

UAV payload weight in kg, and α is the angle of attack of the drone, which is

assumed to be 10 degrees. The vertical ascending and descending speeds during

takeoff and landing are assumed to be constant and equal to 10 m/s2 and 5 m/s2

respectively. Finally, g is the gravitational acceleration (9.8 m/s2).
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Figure 4.1: Liu et al. [11] drone power consumption with respect to the drone
speed v, for different payload weights.
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Figure 4.2: Liu et al. [11] drone range in meters of a drone with a battery capacity
of 500 kJ with respect to the drone speed v, for different payload weights.
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Coefficient: k1 k2 c1 c2 c4 c5

Value: 0.8554 0.3051 2.8037 0.3177 0.0296 0.0279

Unit: -
√︁

kg/m
√︁

m/kg
√︁

m/kg kg/m N s/m

Table 4.1: Coefficient values for the power consumption model of Liu et al. [11]

4.1 Considerations

Let Epm
w (v) = (1/v)P c

w(v) be the energy-per-meter function, i.e., the energy that

the drone consumes to travel horizontally one meter at speed v m/s carrying a

payload of w kg. From empirical observations (Figure 4.3), we can note that, for

the power consumption model of Liu et al. [11], the energy-per-meter function

Epm
w (v) is convex. We can then prove the following proposition.
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Figure 4.3: Liu et al. [11] energy-per-meter function Epm
w (v) with respect to the

drone speed v, for a payload weight w of 1 kg.

Theorem 1. If the energy-per-meter function Epm
w (v) is convex in the interval

(0, vmax] for each w ∈ [0, K], then, for each drone leg i ‧‧➡ j ‧‧➡ k, each t̂ijk ∈
[tDijk, T

D
ijk] is a feasible drone traveling time.

Proof. Consider the following optimization problem:
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min
dDij
sij

+
dDjk
sjk

+ th (4.4)

Epm
w (sij)d

D
ij + Epm

0 (sjk)d
D
jk + thP

h(0) ≤ B (4.5)

th ≥ 0 (4.6)

sij, sjk ∈ (0, smax]. (4.7)

The objective function represents the drone travel time to traverse the arcs (i, j)

and (j, k) at speeds sij and sjk respectively, plus an hovering time over node k

defined by the decision variable th. Inequality (4.5) imposes that the drone energy

consumption to traverse the drone leg i ‧‧➡ j ‧‧➡ k at speeds sij and sjk plus

the energy required to hover for a time th seconds must not exceed the battery

capacity of B Joules. Both the objective function (4.4) and the left-hand side of

(4.5) are convex functions because they are sums of convex functions. Therefore,

the optimization problem above is convex and the optimal solution corresponds to

tDijk. Whereas, TD
ijk corresponds to the feasible solution with the maximum cost.

Since the feasible region of a convex optimization problem is convex too, each

t̂ijk ∈ [tijk, Tijk] corresponds to at least one feasible solution of this optimization

problem. ■

The convex optimization problem (4.4) - (4.7) returns the minimum drone

travel time for the drone leg i ‧‧➡ j ‧‧➡ k. Instead, to compute the maximum

drone travel time, this convex optimization problem cannot be used because in a

maximization setting (4.4) becomes concave. In the next section, we propose a

convex optimization problem to compute the maximum drone travel time and a

convex optimization problem to find the minimum energy consumption to traverse

a drone leg in a target travel time. The total energy consumed by the drone to

travel a distance of d meters in t seconds can be expressed as follows:

Ed(t) = dEpm
w (d/t) = d(t/d)P c

w(d/t) = tP c
w(d/t). (4.8)

The mapping f(x) = d/x is part of a larger group of functions called linear-

fractional functions, and one property of these functions is that they preserve

convexity [3]. Therefore, assuming Epm
w (t) convex, also Epm

w (d/t) and Ed(t) are

convex functions. With the considerations made above we can define a convex

optimization problem to compute the maximum drone travel time of a drone leg

(4.9) - (4.13), in which the speed variables sij, sjk are replaced with the time

variables tij, tjk, th that denote respectively the traveling time to cross the arc

(i, j), the traveling time to cross the arc (j, k) and the hovering time above the
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rendezvous location k.

min − tij − tjk − th (4.9)

Edij(tij) + Edjk(tjk) + thP
h(0) ≤ B (4.10)

tij ≥ dij/vmax (4.11)

tjk ≥ djk/vmax (4.12)

th ≥ 0 (4.13)

Now, suppose instead that we are given a target travel time T for the drone leg

i ‧‧➡ j ‧‧➡ k and we are asked to compute the minimum energy to achieve such

target time. The following convex optimization problem (4.14) - (4.17) can be

used to accomplish such task.

min Edij(tij) + Edjk(tjk) + (T − tij − tjk)P
h(0) (4.14)

tij + tjk ≤ T (4.15)

tij ≥ dij/vmax (4.16)

tjk ≥ djk/vmax (4.17)

Finally, the same approach discussed in this chapter can also be used for the

power consumption models of Stolaroff et al. (2020) [20] and Zeng et al. (2019)

[27], since both models present a convex energy-per-meter function [5], [20].
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Chapter 5

Exact Method

In chapter 4, we have shown that if the energy per distance unit is a convex

function, then, the region of feasible travel times of a drone leg is also convex.

Therefore, if we know the minimum and maximum travel times of the drone leg

i ‧‧➡ j ‧‧➡ k, denoted respectively as tDijk and TD
ijk, the interval of feasible travel

times is the interval [tDijk, T
D
ijk]. This result suggests to model the non-linear energy

constraint (4.5) by constraining the drone travel times of each drone leg to be in

the feasible range, instead of constraining the drone speeds.

5.1 Compact Formulation

In this section, we describe the formulation for the FSTSP-VDS, under the as-

sumption that the energy per distance unit is convex. The resulting formulation

has the quality to be compact (polynomial number of constraints and variables)

and can be solved with a generic MILP solver such as CPLEX or GuRoBi.

Let xT
ij ∈ {0, 1} be a binary variable equal to 1 if the truck traverses the arc

(i, j) ∈ A. Let xD
ij ∈ {0, 1} be a binary variable equal to 1 if the drone traverses

the arc (i, j) ∈ A (no matter if it is onboard the truck or airborne). Let yTi ∈ {0, 1}
be a binary variable equal to 1 if i ∈ N is a truck customer. Let yDi ∈ {0, 1} be
a binary variable equal to 1 if i ∈ N is a drone customer. Let yCi ∈ {0, 1} be a

binary variable equal to 1 if i ∈ N is a combined customer. Let zijk ∈ {0, 1} be a

binary variable equal to 1 if the drone traverses the drone leg i ‧‧➡ j ‧‧➡ k. Let

Ttl the amount of time equal to the sum of the time required to launch the drone

from the truck, and the time required to retrieve it. Finally, let ai ∈ R+ be the

arrival time at node i ∈ V of the truck if i is a truck customer, of the drone if i is

a drone customer, or of the latest vehicle if i is a combined customer.

Hence, a0′ + µ
∑︁

i∈N yDi is the quantity we want to minimize and it represents the

overall tour duration. We also assume that the drone battery capacity is finite and

equal to B Joules.
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min a0′ + µ
∑︂
i∈N

yDi (5.1)

s.t.
∑︂

(i,j)∈A

xT
ij =

∑︂
(j,i)∈A

xT
ji i ∈ N (5.2)

∑︂
(i,j)∈A

xT
ij = yTi + yCi i ∈ N (5.3)

∑︂
(0,j)∈A

xT
0j =

∑︂
(i,0′)∈A

xT
i0′ = 1 (5.4)

∑︂
(i,j)∈A

xD
ij =

∑︂
(j,i)∈A

xD
ji i ∈ N (5.5)

∑︂
(i,j)∈A

xD
ij = yDi + yCi i ∈ N (5.6)

∑︂
(0,j)∈A

xD
0j =

∑︂
(i,0′)∈A

xD
i0′ = 1 (5.7)

yTi + yDi + yCi = 1 i ∈ N (5.8)

ai + tTij ≤ aj +M(1− xT
ij) (i, j) ∈ A (5.9)

ai +min

{︄
dDij
vmax

, tTij

}︄
≤ aj +M(1− xD

ij ) (i, j) ∈ A (5.10)

xD
ij + xD

ji ≤ yCi + yCj i, j ∈ N : i < j (5.11)

ai +
∑︂
j∈N

(tDijk +M)zijk ≤ ak +M i ∈ N0, k ∈ N ′
0 (5.12)

ai +
∑︂
j∈N

(TD
ijk −M)zijk ≥ ak −M i ∈ N0, k ∈ N ′

0 (5.13)∑︂
i∈N0

∑︂
k∈N ′

0

zijk = yDj j ∈ N (5.14)

∑︂
k∈N0

zkij +
∑︂
k∈N ′

0

zijk ≤ xD
ij (i, j) ∈ A (5.15)

xT
ij, x

D
ij ∈ {0, 1} (i, j) ∈ A (5.16)

yTi , y
D
i , y

C
i ∈ {0, 1} i ∈ N (5.17)

zijk ∈ {0, 1} i ∈ N0, k ∈ N ′
0, j ∈ N (5.18)

ai ∈ R+ i ∈ N ∪ {0, 0′} (5.19)

The objective function (5.1) aims at minimizing the total tour duration to

serve all customers. Constraints (5.2) are flow conservation constraints for the

truck. Constraints (5.3) link the xT
ij variables with the variables yTi and yCi .

Constraints (5.4) ensure that the truck leaves and returns to the depot exactly

once. Constraints (5.5) - (5.7) are equivalent to constraints (5.2) - (5.4) but apply
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to the drone. Constraints (5.8) ensure that each customer is (visited at least once)

a drone customer, a truck customer, or a combined customer. Constraints (5.9)

act as subtour elimination constraints for the truck, and set the truck arrival time

at each node. Constraints (5.10) act as subtour elimination constraints for the

drone. Constraints (5.11) ensure that the arc (i, j) ∈ A is traversed by the drone

only if the customer i ∈ N or j ∈ N is served by truck, and this enforces the

drone to serve only one customer in each flight, or equivalently, it imposes that a

drone leg must consist of exactly two drone arcs. Constraints (5.12) and (5.13) set

the minimum and maximum drone travel times for each drone leg i ‧‧➡ j ‧‧➡ k,

with i ∈ N0, j ∈ N and k ∈ N ′
0. Constraints (5.14) link the variables zijk with

the variables yDj . Constraints (5.15) imposes that a drone leg can contain the

arc (i, j) ∈ A only if the arc (i, j) is traversed by the drone. Constraints (5.16) -

(5.19) model the range of the decision variables.

The correctness of constraints (5.12) and (5.13) is explained below. First

observe that, because of constraints (5.15), it is always true that∑︂
j∈N

zijk ≤ 1 ∀ i ∈ N0, k ∈ N ′
0. (5.20)

Therefore, ∀ i ∈ N0, k ∈ N ′
0 we have

∑︁
j∈N zijk ∈ {0, 1}. When there are no drone

legs that start from i and ends in k (
∑︁

j∈N zijk = 0) we have

ai ≤ ak +M (5.21)

that is equivalent to an inactive constraint because the value of the parameter M

in the right-hand side is defined as a very large number greater than any possible

arrival time (see Section 5.3 for more details).

Instead, when there is a drone leg that starts from i and ends in k, it means that

for some j ∈ N zijk = 1 and
∑︁

j zijk = zijk = 1. Therefore, we have

ai + tijk ≤ ak (5.22)

that is the desired constraint when the drone leg i ‧‧➡ j ‧‧➡ k is traversed by

the drone. The same reasoning can be used to verify the correctness of constraint

(5.13).

The advantage of using constraints (5.12) and (5.13) instead of the more
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intuitive constraints

ai + tDijk ≤ ak +M(1− zijk) ∀ i ∈ N0, j ∈ N, k ∈ N ′
0 (5.23)

ai + TD
ijk ≥ ak −M(1− zijk) ∀ i ∈ N0, j ∈ N, k ∈ N ′

0 (5.24)

is that, constraints (5.12) and (5.13) are Θ(n2) whereas, constraints (5.23) and

(5.24) are Θ(n3). It can also be proven that constraints (5.12) and (5.13) are

tighter than constraints (5.23) and (5.24).

5.2 Valid Inequalities

The computational time required to solve the formulation (5.1) - (5.19) can be

significantly reduced by adding the following constraints:

a0′ ≥
∑︂

(i,j)∈A

tTijx
T
ij (5.25)

a0′ ≥
∑︂
i∈N0

∑︂
j∈N

∑︂
k∈N ′

0

tDijkzijk (5.26)

that act as lower bounds for the overall tour duration a0′ . In particular, the

constraint (5.25) specifies that the overall completion time cannot be lower of the

sum of the truck travel times of the arcs traversed by the truck.

Analogously, constraint (5.25) specifies that the overall completion time cannot be

lower than the sum of the minimum drone travel times of the drone legs traversed

by the drone.

Another useful constraint to speed-up the computation is the following con-

straint. ∑︂
i∈N

yDi ≤ ⌈N/2⌉ (5.27)

Constraint (5.27) specifies that there cannot be more than ⌈N/2⌉ drone customers

since at most there can be one drone customer every two nodes.

5.3 Big-M Value

Constraints (5.9), (5.10), (5.12), (5.13), are also called big-M constraints because,

by exploiting an auxiliary parameter M (typically vary large, hence, big-M), they

implement a logical implication depending on the value that a specific binary
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decision variable assumes. In this setting, the M parameter is used to disable a

constraint if a binary decision variable is not triggered. In our case, we want to

“activate” constraints (5.9) only when xT
ij is set to one, constraints (5.10) only

when xD
ij is set to one, and constraints (5.12), (5.13), only when zijk is set to one.

For the sake of simplicity we define a unique M value valid for all four big-M

constraints in the formulation. Alternatively, a specific M value could be defined

for each big-M constraint. To provide the tightest possible formulation, we are

interested in finding the smallest M value that correctly satisfies the constraints

(5.9), (5.10), (5.11), (5.12), even when the decision variables xT
ij, x

D
ij , zijk are set to

zero. You can observe that constraints (5.13) requires the largest M value among

the four big-M constraints in the formulation.

In constraint (5.13), the value of M must be defined such that

M ≥ ai − aj ∀ i ∈ N0, j ∈ N ′
0 (5.28)

that is equivalent to

M ≥ max
i∈N0
j∈N ′

0

{ai − aj} = a0′ − a0 = a0′ (5.29)

Therefore, we can define the value of the parameter M as the cost of the optimal

TSP solution that corresponds to the FSTSP, since, a TSP solution corresponds

to a truck-only tour for the FSTSP-VDS. Alternatively, if the optimal solution

for the correspondent TSP is not available, the M parameter can be defined as

an upper bound of the optimal TSP solution cost. A possibility is to order the

arcs in ascending order with respect to their truck traveling cost, and define the

M parameter as the sum of the truck costs of the first (N+1) arcs. Notice that,

by defining the M parameter with these values, we actually cut some feasible

solutions, however, since we know that the optimal TSP solution corresponds to a

feasible FSTSP-VDS solution, and such solution is not cut off by this procedure,

then, the proposed M values are both valid.

5.4 Cutting Plane Approach

To find the quantities tDijk and TD
ijk it is required to solve the convex optimization

problems (4.4) - (4.7) and (4.9) - (4.13), and this must be repeated for each drone

leg in the problem. Since, it could not be always possible to compute the exact

minimum and maximum feasible time for all drone legs in the problem, we propose

a cutting plane approach based on the compact formulation introduced in (5.1)

that assumes that the minimum and maximum drone leg travel times tDijk and
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TD
ijk are not known in advance, but it is only known a lower and an upper bound

for both tDijk and TD
ijk. Let denote these quantities lijk, uijk, Lijk, Uijk, such that

lijk ≤ tDijk ≤ uijk and Lijk ≤ TD
ijk ≤ Uijk. Since, t

D
ijk is the minimum feasible drone

travel time to traverse the drone leg i ‧‧➡ j ‧‧➡ k, lijk and uijk are respectively

an infeasible and a feasible travel time. Analogously, since, TD
ijk is the maximum

feasible drone travel time to traverse the drone leg i ‧‧➡ j ‧‧➡ k, Lijk and Uijk are

respectively a feasible and an infeasible travel time.

Finally, it can be observed that:

[uijk, Lijk] ⊆ [tDijk, T
D
ijk] ⊆ [lijk, Uijk] (5.30)

Where [uijk, Lijk] represents the known feasible interval for the drone leg

i ‧‧➡ j ‧‧➡ k.

Given these assumptions, the proposed cutting plane algorithm can be de-

scribed as follows:

1. Solve the MILP (5.1) - (5.19) replacing constraints (5.12) and (5.13) with

the relaxed constraints (5.31) and (5.32).

ai +
∑︂
j∈N

(lijk +M)zijk ≤ ak +M i ∈ N0, k ∈ N ′
0 (5.31)

ai +
∑︂
j∈N

(Uijk −M)zijk ≥ ak −M i ∈ N0, k ∈ N ′
0 (5.32)

2. If all drone legs of the returned solution are feasible, the solution is optimal,

and therefore, the algorithm stops. Otherwise, for each drone leg i ‧‧➡ j ‧‧➡

k of the returned solution whose travel time is not in the known feasible

range [uijk, Lijk], proceed as follows.

If the travel time is less than uijk, refine the interval [lijk, uijk] and add the

following cut in the main LP.

ai + lijk ≤ ak +M(1− zijk) (5.33)

If instead, the travel time exceed Lijk, refine the interval [Lijk, Uijk] and add

the following cut in the main LP.

ai + Uijk ≥ ak +M(1− zijk) (5.34)

3. Resume the MILP and go to 2.
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Chapter 6

Genetic Algorithm

When exact algorithms are not sufficiently fast, the alternative is to rely on heuris-

tic algorithms that aim at providing near-optimal solutions in much shorter times

by sacrificing the optimality guarantee of exact algorithms.

In the last decades, a new family of algorithms called metaheuristic algorithms has

emerged, that, by combining basic heuristic methods in higher level frameworks

aim at exploring efficiently and effectively a solution space. The term metaheuristic

is the combination of two words of Greek derivation, meta and heuristic. Heuris-

tic derives from the verb heuriskein (ευρισκειν) which means “to find”, while the

prefix meta derives from the word µετα, which means “beyond, after”. A popular

definition of metaheuristic, introduced by Osman and Laporte [12] in 1996, is the

following:

A metaheuristic is formally defined as an iterative generation process

which guides a subordinate heuristic by combining intelligently different

concepts for exploring and exploiting the search space, learning strate-

gies are used to structure information in order to find efficiently near-

optimal solutions.

Example of classical metaheuristic algorithms are genetic algorithms [8], tabu

search [21], simulated annealing [19], variable neighborhood search [26], and ant

colony [2] optimization methods. Very often, metaheuristic techniques are based

on concepts borrowed from biological evolution, swarm behavior or from the laws

of physics. One of the central elements of metaheuristic methods is the balance

between the intensification and diversification phases. During the intensification

phase different local search procedures are applied with the aim of improving the

current best solution. On the contrary, during the diversification phase, new re-

gions of the solution space are explored with the aim to escape from local minimum

regions.

In this thesis, we propose a genetic algorithm as metaheuristic approach for the
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FSTSP-VDS. Genetic algorithms are population-based metaheuristic that are in-

spired by the Darwin’s theory of evolution. In the nineteenth century Charles Dar-

win proposed the “theory of evolution by natural selection”, often simply called

theory of evolution. In this theory, Darwin proposes that biological evolution oc-

curs because of a phenomenon called natural selection, that is, organisms with

traits favorable to the environments in which they live, are better equipped to

survive, reproduce, and therefore, to transmit these helpful traits to the next gen-

eration. On the other hand, those organisms that are less equipped, have less

probability to survive and then give birth to a lower expected number of children.

Hence, it is like applying a pressure on the population based on the fitness of the

individuals. The general scheme of a genetic algorithm is shown in Algorithm 1.

To devise our genetic algorithm, we took inspiration from the work of Vidal et

al. [25], a genetic algorithm that has proved to be extremely effective for differ-

ent classes of VRPs. From now on, we refer to the term fitness to indicate the

cost associated to an individual, and to the term offspring to indicate the new

individuals generated during the procedure.

Algorithm 1: Genetic Algorithm(η, γ, Pm, epochs)

Data:
η: population size
γ: number of offspring at each iteration
Pm: mutation probability
epochs: max number of iterations

1 Generate a random population of η individuals;
2 Evaluate the (biased) fitness of all individuals in the population;
3 while iterations < epochs do
4 for i = 1 to γ do
5 Select two parent individuals P1 and P2 according to their fitness;
6 Generate offspring C from P1 and P2 (crossover);
7 With probability Pm apply mutations to offspring C;
8 Educate offspring C (local search procedures);

9 Evaluate the (biased) fitness of all individuals in the population;
10 Replace γ individuals in the population with the new offspring;

11 return the best individual;

6.1 Solution Representation

We decided to represent an individual as a permutation of the sequence

(0, 1, 2, ..., N, 0′) with the first and last element fixed respectively to 0 and 0′.

Each individual then represents all the solutions that satisfy the following property:
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Property 1. ∀ i, j ∈ N0 ∪ N ′
0, if i and j are visited by the same vehicle and i is

visited before j, then, i must occur before j in the chromosome sequence.

An example of this encoding is illustrated in Figure 6.1, in which are shown

all the 12 solutions associated with the chromosome sequence (0, 1, 2, 3, 0′). Note

that, since the relationship of precedence between customers visited by the same

vehicle is determined by the chromosome sequence, there is a bijection between

the set of operations and the set of drone legs, that is, an operation is uniquely

determined by a drone leg, and of course, vice versa. The advantage of such

encoding relies on the fact that, as we will show in Section 6.2, we can retrieve

the best solution among all the solutions represented by a sequence that satisfy

Property 1 in time Θ(N3). In the following, when we refer to the solutions of

a (chromosome) sequence, we refer to the solutions that satisfy Property 1 with

respect to such sequence.

A lower bound on the number of solutions represented by a chromosome is given

by the following theorem.

Theorem 2. The number of solutions represented by a sequence seq of length n

that satisfy property 1 is Ω(2n).

Proof. First, observe that a sequence of length 6 encodes at least 32 unique

solutions. This number can be derived by counting how many new solutions

are generated by adding an extra node at the beginning or at the end of the

12 solutions represented by a sequence of length 5. In general, a FSTSP-VDS

solution can be seen as a concatenation of multiple partial FSTSP-VDS solu-

tions such that the last node of a solution is the starting node of the successive

one. Let assume for the sake of simplicity that n − 1 is a multiple of 5. Let

zi := seq[i ∗ 5, ..., i ∗ 5 + 5], i ∈ [0, (n − 1)/5 − 1]. Then, each zi is a subse-

quences of length 6 of the sequence seq and therefore, it encodes at least 32 par-

tial FSTSP-VDS solutions that begin from node seq[i ∗ 5] and terminate at node

seq[i ∗ 5+ 5]. Since the concatenation of partial solutions represented respectively

by the sequences z0, z1, ...z(n−1−5)/5 produce FSTSP-VDS solutions, the number of

solutions that satisfy property 1 encoded by a sequence seq of length n are at least

25
n−1
5 = 2n−1 = Ω(2n).

If n − 1 is not a multiple of 5, by applying the same reasoning, we obtain that

the minimum number of solutions is 25(⌊
n−1
5

⌋) + 1 > 25(
n−1
5

−1) + 1 = 2n2−6 + 1 =

Ω(2n). ■
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Figure 6.1: All the 12 solutions encoded by the sequence (0, 1, 2, 3, 0′).
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6.2 Method to retrieve the best solution from an

individual

In this section, we describe a dynamic programming algorithm, named

find best solution, that, given a chromosome sequence, it returns the solution with

the shortest completion time among all the solutions represented by the chromo-

some. The pseudo code of find best solution can be found at Algorithm 2. The

algorithm takes in input a sequence seq of n integer numbers, and a value µ, that

corresponds to the overall time, in seconds, required to launch and retrieve the

drone from the truck during an operation. The algorithm implements a dynamic

programming approach to evaluate all the solutions associated with the sequence

seq, while reusing some past computation. The algorithm can be described as

follows. Let T an array of arrival times such that, T [i], i ∈ [0, n−1], represents the

shortest arrival time at node seq[i] when seq[i] is visited by both the truck and the

drone. At the beginning, T [0...n − 1] is initialized as the arrival times related to

the truck-only solution. After that, starting from i = 0 to n− 2, for each feasible

drone leg seq[i] ‧‧➡ seq[j] ‧‧➡ seq[k] ∀ i < j < k, it is computed the time required

to perform the correspondent operation top, and if T [i] + top + µ < T [k], T [k] is

substituted with the improved arrival time just found. When the algorithm ter-

minates, T [n− 1] corresponds to the completion time of the best solution among

all the ones associated with the sequence seq.

Let m(i) denote the minimum time required to go from node seq[0] to node seq[i]

under the condition that node m(i) get visited by the both truck and the drone.

Then, it is easy to see that m(i) satisfies the following recurrence equation:

m(i) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if i = 0

tTseq[0]seq[1] if i = 1

min

{︃
m(i− 1) + tTseq[i−1]seq[i], mina<b<i

{︂
m(a) + tseqop (a, b, i)

}︂}︃
if i > 1

where tseqop (a, b, i) is the time required by the operation that involves the drone leg

seq[a] ‧‧➡ seq[b] ‧‧➡ seq[i], including launch and retrieval times.

Theorem 3. When Algorithm 2 terminates, it returns the minimum time of all

the solutions represented by the sequence seq.

Proof. Algorithm 2 evaluates m(i) bottom-up by storing m(i) in T [i]. Note that,

since the algorithm evaluate T [i] as i increases from 0 to n − 1, at iteration i all

sub-problems referenced by m(i) have been already computed. Therefore, at the
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end the algorithm returns T [n − 1] = m(i) which corresponds to the minimum

time of all the solutions represented by the sequence seq. ■

For each i ∈ [0, n − 2], the number of iterations performed in the inner

loop is exactly (n − 2 − i − 1 + 1)(n − 1 − i − 2 + 1) = (n − 2 − i)2. There-

fore, the total number of iterations of the nested loop is
∑︁n−2

i=0 (n − 2 − i)2 =

(n − 2)3/3 + (n − 2)2/2 + (n − 2)/6 = Θ(n3). Where in the last equality we

used the formula for the sum of the first (n − 2) squares. Therefore, since, the

initialization is Θ(n), and in each iteration of the nested loop there is a constant

number of instructions, the time complexity of Algorithm 2 is Θ(n3).

To retrieve the truck and drone routes of the best solution found, we make

use of three auxiliary arrays, move type, drone cust and takeoff node.

The value move type[k] encodes the type of move associated with the time stored

in T [k] that can be either a combined arc (move type = 0) or an operation

(move type = 1). If move type[k] = 0, then T [k] is equal to T [k−1]+ tTseq[k−1]seq[k].

If instead, move type[k] = 1, it means that T [k] has been obtained by an operation

that starts from seq[takeoff node[k]], whose drone customer is seq[drone cust[k]],

and ends in seq[k]. When move type[k] = 0, the values in seq[takeoff node[k]]

and seq[drone cust[k]] have no meaning.

The execution time of Algorithm 2 can be improved by observing that when

the takeoff node seq[i] and the drone customer seq[j] are fixed, the truck travel

time truck leg time required by the operation associated with the drone leg

seq[i] ‧‧➡ seq[j] ‧‧➡ seq[k] increases monotonically with respect to k. Then,

if truck leg time becomes larger than maxk{TD
seq[i]seq[j]seq[k]}, there cannot be

feasible operations for larger values of k, and therefore, we can terminate the

inner loop prematurely.

6.2.1 Linear Time Approximated Method

In this section we propose an approximated variant of Algorithm 2 that allows to

reduce the time complexity to Θ(n) where n is the sequence length. The idea to

couple the truck with a drone is to reduce the overall completion time by allowing

the drone to serve customers in parallel with the truck. The main constraint is

that the drone can only perform one serving per each flight. Therefore, when

the truck leg of an operation consists of multiple arcs, the maximum number of

customers served by the drone decreases, and this reduces the parallelism between

the truck and the drone. The maximum parallelism between the truck and the

drone is obtained in those solutions in which the truck legs do not consist of
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Algorithm 2: find best solution(seq, n, µ)

Data:
seq: chromosome sequence
n: chromosome length
µ: sum of launch and retrieval times

1 Let T [0...n− 1] a new array; //arrival times

2 Let truck only[0...n− 1] a new array; //truck-only arrival times

//Auxiliary arrays to backtrack the best solution

3 Let move type[0...n− 1] a new array; //0:combined arc|1:operation

4 Let drone cust[0...n− 1] a new array;
5 Let takeoff node[0...n− 1] a new array;
//Initialization

6 T [0]← 0.0;
7 truck only[0]← T [0];
8 for i = 0 to n− 2 do
9 T [i+ 1]← T [i] + tTseq[i]seq[j];

10 truck only[i+ 1]← T [i+ 1];
11 move type[i+ 1]← 0; //combined arc

//Dynamic Programming

12 for i = 0 to n− 2 do
13 if T [i] + tTseq[i]seq[i+1] < T [i+ 1] then

14 T [i+ 1]← T [i] + tTseq[i]seq[i+1];

15 move type[i+ 1]← 0; //combined arc

16 for j = i+ 1 to n− 2 do
17 truck leg time← truck only[j + 1]− truck only[i]− tTseq[j−1]seq[j] −

tTseq[j]seq[j+1] + tTseq[j−1]seq[j+1];

18 for k = j + 1 to n− 1 do
19 if k > j + 1 then
20 truck leg time← truck leg time+ tTseq[k−1]seq[k];

21 if truck leg time > TD
seq[i]seq[j]seq[k] then

22 continue; //infeasible operation

23 top ← tDseq[i]seq[j]seq[k]; //time required by the operation

24 if truck leg time > tDseq[i]seq[j]seq[k] then

25 top ← truck leg time;

26 if T [i] + top + µ < T [k] then
27 T [k]← T [i] + top + µ;

//store operation i ‧‧➡ j ‧‧➡ k
28 move type[k]← 1; //operation

29 drone cust[k]← j; //set drone customer index

30 takeoff node[k]← i; //set takeoff node index

31 return T [n− 1],move type, drone cust, takeoff node;
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Algorithm 3: retrieve truck drone routes(seq, n,move type, drone cust,
takeoff node)

Data:
seq: chromosome sequence
n: chromosome length
move type: array of move types
drone cust: array of drone customers indices
takeoff node: array of takeoff node indices

1 Let truck route[0...n− 1] a new array;
2 Let drone route[0...n− 1] a new array;
//Initialization

3 truck idx← n− 1;
4 drone idx← n− 1;
5 truck route[n− 1]← seq[n− 1];
6 drone route[n− 1]← seq[n− 1];
7 for k = n− 1 to 1 do
8 if move type[k] == 0 then
9 truck route[truck idx]← seq[k − 1];

10 drone route[drone idx]← seq[k − 1];
11 truck idx← truck idx− 1;
12 drone idx← drone idx− 1;

13 else
14 drone seq[drone idx]← seq[drone cust[k]];
15 drone seq[drone idx]← seq[takeoff node[k]];
16 drone idx← drone idx− 2;
17 i← k − 1;
18 while i > takeoff node[k] do
19 if i ̸= drone cust[k] then
20 truck seq[truck idx]← seq[i];
21 truck idx← truck idx− 1;

22 i← i− 1;

23 truck seq[truck idx]← seq[takeoff node[k]];
24 truck idx← truck idx− 1;
25 k ← takeoff node[k] + 1;

26 return truck seq[truck idx+ 1...n− 1], drone seq[drone idx+ 1...n− 1];
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multiple arcs. Even if the best solution may not be the one with the maximum

parallelism, solutions with low parallelism are typically associated with a high

completion time, since they tend to be structurally more similar to TSP solutions,

in which the truck is not assisted by a drone.

We then propose a simple modification of Algorithm 2 that allows to reduce the

time complexity to Θ(n) at the price of renouncing to explore solutions with low

parallelism. The modification consist of imposing a maximum constant offset (e.g.,

5) between the drone customer index j and the takeoff node index i, and between

the landing node index k and i. In this way, for each i ∈ [0, n − 1], a constant

number of instruction are executed, and the time complexity of the algorithm

becomes Θ(n).

6.3 Evaluation of Individuals

A typical problem of genetic algorithms is premature convergence, that happens

when the best individual in the population is far from optimality and the algorithm

does not improve anymore because all individuals in the population resemble to

each other in terms of genetic material. Therefore, one key element of genetic al-

gorithms is maintaining a diversified population along the entire evolution process

with the aim to avoid a premature convergence.

In population-based metaheuristic, a value representing the “quality” of the in-

dividual with respect to the entire population is assigned to each individual, and

usually it is expressed as a function of the individual fitness and one or more

penalty terms. This value is therefore called biased fitness, and it is used to guide

the “natural selection” during the evolution of the population. Inspired by the

work of Vidal et al. [25], we define the diversity contribution ∆(P ) for an individ-

ual P , as the average distance to its nclose neighbors in the population, represented

by the set Nclose(P ). The distance δ(P1, P2) between two individuals P1 and P2 is

defined as follows. Let truck succ(P ) and drone succ(P ) the arrays of successors

of, respectively, the truck and the drone routes of the best solution among all the

ones encoded by the individual P , such that, truck succ(P )[i] is the next node

visited after i in the the truck route, and drone succ(P )[i] is the next node visited

after i in the the drone route. Then, the distance δ(P1, P2) between two individu-

als P1 and P2 is defined as the Hamming distance between the array of successors

truck succ(P1) and truck succ(P2), plus the Hamming distance between the ar-

ray of successors drone succ(P1) and drone succ(P2). Analytically, the distance

δ(P1, P2) is computed according to Equation 6.1, where 1(x) is the indicator func-

tion, that returns 1 if the condition x is satisfied, and 0 otherwise. We assume that,

if node i is not visited by the truck or by the drone, then truck succ(P )[i] = −1
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and drone succ(P )[i] = −1 respectively.

δ(P1, P2) =
N∑︂
i=0

1(truck succ(P1)[i] ̸= truck succ(P2)[i])

+
N∑︂
i=0

1(drone succ(P1)[i] ̸= drone succ(P2)[i])

(6.1)

Therefore, the diversity contribution ∆(P ) of an individual P is computed accord-

ing to Equation 6.2.

∆(P ) =
∑︂

Pi∈Nclose(P )

δ(P, Pi) (6.2)

Let fit(P ) and dc(P ) be the positions of the individual P in the fitness ranking

and in the diversity contribution ranking in ascending and descending order re-

spectively, with respect to the entire population.

Then, we define the biased fitness BF (P ) of an individual P as follows:

BF (P ) = fit(P ) + λ dc(P ) (6.3)

where λ ∈ (0, 1] is a trade-off parameter used to control the relative importance

of the diversity contribution over the fitness contribution of an individual. The

biased fitness is thus a measure that balance the evolutionary pressure based on

the fitness of the individuals (elitism) with the genetic diversity of the population,

by penalizing individuals very “similar” to their neighbors and individuals with a

low fitness.

6.4 Parent Selection and Crossover

An important concept in genetics is genetic recombination, in which the genetic

material of different organisms is exchanged to generate offspring with combina-

tions of traits that differ from those found in both parents. This process, also

known as crossing over (or crossover), works by breaking and rejoining chromo-

some segments. In genetic algorithms, the biological crossover operation is sim-

ulated to generate a new individual by combining the genetic information of two

parent individuals. Various types of crossover have been proposed in literature.

In this thesis, we focus on the single point crossover. The idea of the single point

crossover, is to define a random crossover point c such that the resulting offspring
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Parent A 0 5 2 4 9 1 3 10 8 7 11 6 12 0’

Parent B 0 4 11 2 1 8 9 12 3 6 10 7 5 0’

Offspring 0 5 2 4 9 1 - 12 3 6 10 7 - 0’ R = {8, 11}
Repair 0 5 2 4 9 11 1 12 3 6 8 10 7 0’

Figure 6.2: Example of a single point crossover with a crossover point c = 6
between two individuals with a chromosome length n = 14. The resulting offspring
is the concatenation of the first c = 6 elements of parent A with the last n− c = 8
elements of parent B. During the copy of the elements of parent B, values that are
already present in the offspring sequence are discarded (values 9 and 5), in order to
avoid duplicates. After the combine phase, the values R = {8, 11} are not present
in the offspring sequence because they reside in the last n − c elements of parent
A, and in the first c elements of parent B. During the repair phase, the left over
values are added in the offspring chromosome.

is the concatenation of the first c elements of the first parent, with the last n− c

elements of the second parent, where n is the length of the two chromosomes. An

example of single point crossover can be found in Figure 6.2. However, with the

single point crossover, the elements that reside in the last n − c elements of the

first parent and in the first c elements of the second parent are not copied in the

offspring sequence, and duplicates can occur. Therefore, after the copying phase,

a repair phase is applied in order to have a valid chromosome at the end of the

crossover operation. The repair phase consists of removing the duplicates and

adding the left over elements in the offspring sequence. In this work we adopted

the following greedy repair phase. The left over elements are added in the off-

spring sequence one by one in the position that minimize the cost associated to

the sequence. The crossover algorithm employed in this thesis can be found in

Algorithm 4. Finally, parents are selected using a binary tournament procedure,

that twice randomly (with uniform probability) select two individuals from the

population, and returns the one with the best fitness.
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Algorithm 4: crossover(parentA, parentB, n, µ)

Data:
parentA: parent A chromosome sequence
parentB: parent B chromosome sequence
n: chromosomes length
µ: sum of launch and retrieval times

1 Let ind an empty sequence; //offspring chromosome

2 Let c a random number between 1 and n− 1;
//Add the first c elements of parentA

3 for i = 0 to c− 1 do
4 ind.add(parentA[i]);

//Add the last n− c elements of parentB
5 for i = c to n− 1 do
6 if parentB[i] /∈ new ind then
7 ind.add(parentB[i]);

//Repair: add the remaining elements

8 Let R the list of the remaining elements;
9 foreach v ∈ R do

10 min cost← +∞;
11 min seq ← NULL;
12 for i = 1 to ind.len− 2 do

//Add the value v in position i and compute the cost

associated to this sequence

13 seq ← (ind[0, · · · , i− 1], v, ind[i, · · · , ind.len− 1]);
14 cost← find best solution(seq, ind.len+ 1, µ);
15 if cost < min cost then
16 min seq ← seq;
17 min cost← cost;

18 ind← min seq;
19 R← R− v;

20 return ind,min cost;
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6.5 Education

When an offspring is generated, it undergoes an Education phase, which consists

of different local search procedures applied to the best solution associated with

the individual with the aim of improving the solution cost. Inspired by the work

of Vidal et al. [25] we did not devise any mutation operator. The local search

procedures devised for the education phase do the following operations.

• Optimize truck legs: for each truck leg with at most 3 truck customers,

optimize the order of the truck customers. For the truck legs with more than

3 truck customers, apply 2-opt moves with the greatest improvement, until

no improving moves are found.

• Reverse operations: for each operation, check if the solution cost decreases

by reversing the operation, and if it is the case, apply the inversion.

• Swap customers: for each operation, check if the solution cost can be

improved by swapping the takeoff node or the rendezvous node with one of

their neighbors. If so, apply the most improving substitution.

These local search procedures are applied one after the other until no improvement

is found.

6.6 Population Management

In the last sections we have presented a crossover operator that describe how two

individuals combine together to generate an offspring, an education operator that

describe the local search procedures an offspring undergoes when it is created,

and how parents are selected. The population management operator complements

these operators with the aim of propagating good and promising solutions while en-

hancing the diversity in the population. Our population management mechanism

consists of three components: initialization, diversification and survivor selection.

In the initialization phase, η individuals are randomly generated by assigning to

each of them a random chromosome sequence.

The diversification phase is activated when the genetic algorithm is not able to

improve the best solution for Itmax consecutive iterations. The aim of this stage

is to add new genetic material in the population in order to escape from the local

minimum in which the algorithm is currently stuck. In this phase, some individ-

uals are replaced with new random generated individuals. In particular, the η/10

individuals with the best biased fitness are replaced with probability 0.25, the 3η/4

individuals with the worst biased fitness are replaced with probability 1, while the
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remaining individuals are replaced with probability 0.75.

As anticipated in Section 6.3, one of the main challenges in population-based

metaheuristics is to avoid premature convergence. This problem is particularly

exacerbated, when, as in our case, the repair phase in the crossover operator and

the education operator are greedy procedures. The result, is a general tendency to

favor individuals with a high fitness at the expense of the diversity of the popula-

tion. For this purpose, the biased fitness measure has been defined with the aim of

preventing premature convergence by discarding individuals with a low diversity

contribution. Then, our survivor selection policy consists of replacing after each

iteration the γ individuals with the worst biased fitness in the population with the

offspring just generated.

Other than that, at every iteration we check if there are clones in the popula-

tion, that is, if there exist two individuals that share the same chromosome. If

two clones are found, we replace one of the two individual with a new randomly

generated individual or with a new offspring, with equal probability.
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Chapter 7

Computational Results

In this section, we discuss the computational results achieved by the exact solu-

tion method described in Chapter 5 and by the metaheuristic solution method

described in Chapter 6. In section 7.1 we describe the test instances used in the

computational experiments. In section 7.2 we compare the results achieved by the

proposed exact solution method and by the genetic algorithm with those achieved

by Raj and Murray (2020) [7] on single-drone FSTSP-VDS instances. In section

7.3 we compare the results achieved by the proposed genetic algorithm with those

achieved by the branch-and-price algorithm proposed by Roberti and Ruthmair

(2020) [18] on the TSP-D instances.

Both the exact solution method and the genetic algorithm have been imple-

mented in C. All experiments are conducted on the Blade computing cluster

of the University of Padova Department of Information Engineering, using a

configuration with 32 Intel Xeon threads and 128 GB of ram. The MILP for-

mulation of the exact solution method was solved with CPLEX 12.10. We

use the default parameters of CPLEX, except for CPXPARAM Parallel (set to

CPX PARALLEL OPPORTUNISTIC), CPX PARAM EPINT (set to 0 to de-

crease integrality tolerance), CPX PARAM EPRHS (set to 1e-9 to decrease feasi-

bility tolerance) and CPX PARAM EPGAP (set to 1e-5 to decrease relative MIP

gap tolerance). A time limit of one hour is imposed to solve each instance. All

computing times reported in this section are in seconds. Each instance is solved

10 times, both with the exact solution method and with the genetic algorithm,

and the average values are used to make comparisons between different methods.

When the exact solution method is used, each one of the 10 runs are solved by set-

ting a different value to the CPLEX parameter CPX PARAM RANDOMSEED.

The genetic algorithm parameters used in the experiments can be found in Table

7.1. To compute the best solution of an individual, it was used the approxi-

mated version of Algorithm 2 with a maximum offset between the takeoff node

and the rendezvous node equal to 5 (see Section 6.2.1 for more details). The
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NLopt nonlinear-optimization library [15] is used in preprocessing to solve the

convex optimization problems (4.4) - (4.7) and (4.9) - (4.13) in order to retrieve

the minimum and maximum drone leg travel times.

In the following, we denote with tavg the average solution times over 10 runs (in-

cluding preprocessing), with zavg the average solution costs over 10 runs, and with

zbest the best solution costs over 10 runs. When the genetic algorithm is tested, we

denote with τavg the average convergence time obtained over 10 runs, measured as

the time elapsed until the last improvement.

In the following experiments, the exact solution method and the genetic algo-

rithm proposed are denoted respectively as MILP and GA. The results obtained

on FSTSP-VDS instances are compared with the ones obtained by the construc-

tive heuristic (hereafter called CH) of Raj and Murray (2020) [7], available at

github.com/optimatorlab/mFSTSP-VDS. The results obtained on TSP-D in-

stances are compared with the ones obtained by the branch-and-price method

(hereafter called BP) of Roberti and Ruthmair (2021) [18], available at mario.

ruthmair.at/?page_id=226.

Table 7.1: Genetic algorithm parameters.

Parameter Value

η Population size 200

γ Number of offspring in a generation 40

nclose Number of close individuals considered for distance evaluation 5

λ Biased fitness trade-off parameter 0.9

Itmax Max #iterations without improvement 400

epochs Number of iterations 2000

7.1 Test instances

7.1.1 FSTSP-VDS instances

The FSTSP-VDS instances used in these experiments are the ones used by Raj

and Murray (2020)[7], available at github.com/optimatorlab/mFSTSP-VDS. The

test set consists of two sets with customer locations in the Seattle and Washington

area. The first set consists of 10 problems for each of four levels of the number

of customers (10, 25, 50, and 100) generated on a service area of 918.0 km2, for

a total of 40 problem instances. The second set consists of 10 problems, each

one with 50 customers, for each of four levels of service area (57.4, 229.5, 516.4,
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and 918.0 km2), for a total of 40 problems. In all instances, customer locations are

generated from a uniform distribution on the road network within the service area.

For each level of customers and for each level of service area, 5 instances featured

a centrally-located depot and 5 instances contained a depot at the periphery.

The drone battery capacity is equal to B = 500 kJ. The minimum and maximum

drone speeds are set respectively to 0.1 m/s and 40.0 m/s. The takeoff and landing

drone speeds are constants and set respectively to 10 m/s and 5 m/s. The cruise

altitude h is set to 50 meters. The maximum drone payload capacity is 5 lbs,

customers associated with a parcel weight that exceed this capacity must be served

by the truck. Truck and drone delivery times σT and σD are set to 30 and 60

seconds respectively. Drone launch and retrieval times, denoted respectively with

sL and sR, are set to 60 and 30 seconds respectively. The distance d between two

locations are computed using the Haversine distance formula as follows:

d = 2R arcsin

(︄√︄
sin2

(︃
θ2 − θ1

2

)︃
+ cos(θ1) cos(θ2) sin

2

(︃
φ2 − φ1

2

)︃)︄
(7.1)

where θ1, φ1 represent the latitude and longitude of the first location, θ2, φ2 the

latitude and longitude of the second location, and R = 6378100.0 denotes the

radius of the earth in meters. The Liu et al. [11] model is used to characterize the

drone power consumption with respect to speed and payload weight. The Liu et

al. [11] model parameters are defined in chapter 4.

By comparing our solution costs with the ones of Raj and Murray (2020) [7], we

found a discrepancy in the drone traveling times. In particular, by looking at their

code (available at github.com/optimatorlab/mFSTSP-VDS), we assessed that a

constant time of 0.5 seconds required to rotate the drone is added every time the

drone is launched. Even if this parameter is not described in their work [7], we

included it in order to produce comparable results.

7.1.2 TSP-D instances

The TSP-D instances used in these experiments are the ones used by Roberti

and Ruthmair (2021) [18], originally generated by Poikonen et al. [17] and avail-

able at mario.ruthmair.at/?page_id=226. In particular, the test set consists

of a total of 100 instances with 9, 19, 29 and 39 customers, 25 for each problem

size. The instances were created by randomly locating the depot and the cus-

tomers on a 50-by-50 grid using a uniform distribution on both axis. Given two

locations i and j and the corresponding x − y coordinates (xi, yi) and (xj, yj),

truck travel times are computed according to the Manhattan (taxicab) metric,

i.e., tTij = ⌊|xi− xj|+ |yi− jj|⌋, drone travel times are instead computed according
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to the Euclidean distance metric at a speed that is α times faster the truck, i.e.,

tDij = ⌊
√︁

(xi − xj)2 + (yi − jj)2/α⌋. Each instance is solved with α = 1, 2, 3, for a

total of 300 instances.

7.2 Computational results on single drone

FSTSP-VDS instances

In this section we compare the performances of the exact method (MILP) and of

the genetic algorithm (GA) we proposed in Chapter 5 and Chapter 6, against the

state-of-the-art heuristic of Raj and Murray (2020) [7] (CH). Due to the problem

complexity, the MILP approach was tested only on FSTSP-VDS instances with

10 and 25 customers. Table 7.2 summarizes the results achieved by the three

methods on the FSTSP-VDS instances for different instance sizes. The column

Opt indicates the number of instances solved to optimality. The column ∆TSP

indicate the average cost difference with respect to the optimal TSP solution costs.

Finally, column ∆CH denotes the average percentage solution cost difference of

the GA approach with respect to the CH approach.

Table 7.2: Computational results on the FSTS-VDS.

MILP CH GA

#cust #instances Opt tavg %∆TSP Opt t %∆TSP Opt tavg τavg %∆TSP %∆CH

10 10 10 1.65 -25.26 1 0.20 -20.31 10 53.76 0.80 -25.26 -6.10

25 10 1 3606.07 -24.04 0 2.83 -20.86 1 134.41 25.62 -25.80 -6.23

50 50 - - - - 28.09 -19.70 - 302.80 150.71 -24.00 -5.39

100 10 - - - - 454.70 -18.69 - 832.18 693.39 -24.51 -7.15

Overall 80 11 1 -19.78 11 -24.45 -5.81

Table 7.2 shows that all the FSTSP-VDS instances with 10 customers and one

instance with 25 customers are solved to optimality using the MILP approach.

Each one of these 11 instances are solved to optimality also by the GA approach,

whereas, the CH approach is only able to solve to optimality one instance. The

average improvement over the TSP optimal solutions costs is 19.78 % for the CH

approach, and 24.45 % for the GA approach. Table A.1 and Table A.2 show the

results obtained by the three methods on instances with 10 and 25 customers

respectively. The columns %GAPavg and %GAPmin indicate the average and min-

imum CPLEX gap over 10 runs. For all the FSTSP-VDS instances with 10 and

25 customers, the GA approach obtained the same solution cost at every run.

Even if only one instance with 25 customers is solved to optimality by the MILP
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approach, the average CPLEX gap %GAPavg is 12.13 %, allowing the MILP ap-

proach to obtain an average improvement of 24.04 % over the optimal TSP solution

costs, against the 19.78 % average improvement of the CH approach. Table A.3

and Table A.4 show the results obtained by the GA and the CH approaches on

instances with 50 and 100 customers respectively. Even if the CH approach is

about an order of magnitude faster than the GA approach on instances with up to

50 customers, and about two times faster on instances with 100 customers, in term

of solution costs, the GA approach is much better than the CH approach. In fact,

all solution costs of the CH approach have been improved by the GA approach,

with an average improvement of 5.81%, that grows up to to 7.15% on instances

with 100 customers. Finally, it interesting to note how the average improvement

over the optimal TSP solutions costs is close to 25% for all instance sizes tested.

7.2.1 Sensitivity analysis on optimal drone leg speeds

Computing the exact optimal drone speeds related to the minimum and maximum

drone travel times for each possible drone leg can be quite demanding when dealing

with large instances. Therefore, as alternative, we proposed a grid-search method

that, for each drone leg, computes the optimal drone speeds over a discretization

of the drone speed domain with a discretization step δ m/s.

To understand the solution cost deterioration of this approach, we tested the ge-

netic algorithm using the same methodology of section 7.2 but with a discretization

step δ = 0.5 m/s on the FSTSP-VDS instances with 10 customers. We refer to this

version of the genetic algorithm with discrete optimal speeds, as GAδ. The results

are summarized in Table 7.3. As expected, GA obtained better results than GAδ,

but only for 6 out of 10 instances, and in average, the difference is only 0.08%.

Therefore, this preliminary sensitivity analysis suggests that, when computing the

exact minimum and maximum drone travel times is not practical, a valid alterna-

tive is to discretize the drone speed domain, and computing the optimal drone leg

speeds (associated with the minimum and maximum drone leg travel times) using

simpler and less demanding approaches.
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Table 7.3: Comparison between continuous optimal and discrete optimal min/max
drone travel times on FSTSP-VDS instances with 10 customers. In this setting,
the discretization step of the drone speed domain is equal to δ = 0.5 m/s.

GAδ GA

Instance zavg zbest tavg τavg zavg zbest tavg τavg %∆zavg

20191230T145624016194 4758.73 4758.73 55.60 0.33 4754.38 4754.38 53.93 0.81 -0.09

20191230T145645377021 4694.12 4694.12 55.84 0.42 4687.37 4687.37 54.08 0.64 -0.14

20191230T145706863992 4339.44 4339.44 57.00 0.28 4339.44 4339.44 54.83 0.48 0.00

20191230T145728368390 5298.52 5298.52 55.03 0.68 5293.51 5293.51 52.86 0.97 -0.09

20191230T145749863540 5370.37 5370.37 56.55 0.38 5370.37 5370.37 54.27 0.51 0.00

20191230T145854314056 5996.43 5996.43 56.63 0.26 5996.43 5996.43 54.37 0.44 0.00

20191230T145916460302 3922.90 3922.90 54.54 0.33 3916.94 3916.94 52.85 0.61 -0.15

20191230T145938067895 6267.06 6267.06 55.22 0.35 6255.81 6255.81 53.57 0.47 -0.18

20191230T145959409904 4393.96 4393.96 54.73 0.27 4389.31 4389.31 52.95 0.36 -0.11

20191230T150020711011 4890.98 4890.98 55.42 1.29 4890.98 4890.98 53.94 2.68 0.00

Average -0.08
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7.3 Computational results on TSP-D instances

Table 7.4 reports the results achieved on the TSP-D by the BP approach and the

GA approach. The table summarizes the results for each instance size (#cust)

and for each value of α = 1, 2, 3.

Column #instances reports the number of instances evaluated (i.e., 25). The

column OPT reports the number of instances solved to optimality. Since the only

known optimal solution costs are the ones of the BP approach, the number of

optimal solutions found by the GA approach cannot be greater than the number

of optimal solutions found by the BP approach. Tables A.5, A.6, A.7 and A.8

report the detailed results achieved by the BP approach and the GA approach on

TSP-D instances with, respectively, 9, 19, 29 and 39 customers.

Table 7.4: Computational results on the TSP-D

BP GA

#cust α #instances t OPT tavg τavg OPT

9

1 25 0.3 25 47.8 1.6 25

2 25 0.3 25 38.9 0.1 25

3 25 0.3 25 38.3 0.2 25

19

1 25 47.4 25 111.3 1.2 14

2 25 20.7 25 90.5 2.6 24

3 25 17.6 25 85.9 4.3 25

29

1 25 1209.0 19 198.8 4.3 7

2 25 554.3 24 149.7 11.3 21

3 25 537.0 23 132.6 16.8 19

39

1 25 3219.7 1 261.1 19.8 0

2 25 2604.4 3 193.3 18.2 2

3 25 1414.2 7 189.2 36.8 7

All 300 227 194

Table 7.4 shows that GA can solve all 75 instances with 9 customers, 63 out of

75 instances with 19 customers, 47 out of 66 instances with 29 customers and 9 out

of 10 instances with 39 customers, that is, 194 out of 227 instances (85.5%). Table

7.4 shows also that the GA approach is much faster than the BP approach. In par-

ticular, for instances with 39 customers, the average convergence time τavg is two

orders of magnitude smaller than the average computing time of the BP approach.

Table 7.5 reports the percentage difference of the solutions costs obtained by the

GA approach relative to the BP approach. For a meaningful comparison, we only

considered the instances solved to optimality by the BP. Table 7.5 shows that, the

solutions obtained with the GA approach are on average only 0.30% higher than

the optimal solutions found by the BP approach.
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Table 7.5: Percentage differences of the GA approach solution times relative to
the BP approach.

α

#cust 1 2 3 avg

9 0.07 0.00 0.00 0.02

19 1.34 0.03 0.01 0.46

29 1.19 0.08 0.27 0.47

39 1.35 0.19 0.04 0.20

avg 0.85 0.04 0.08 0.30

It is also interesting to note that for α = 1 (the drone is slower), GA obtains

much worse results even for relatively small instances. From a preliminary anal-

ysis we found that this deterioration is caused by a too small value assigned to

the maximum offset parameter of the approximated version of Algorithm 2, that

determines the maximum length of an operation, and that was set to 5. In fact,

when α = 1 the drone is slower, and this imply longer operations on average.
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Chapter 8

Conclusions and Future Work

In this thesis, we studied the Flying Sidekick Traveling Salesman Problem with

Variable Drone Speeds (FSTSP-VDS), a variant of the FSTSP in which the drone

power consumption is modeled as a non-linear function with respect to speed and

parcel weight, and in which the drone can fly from one location to another at dif-

ferent speeds. We proposed a compact MILP formulation and a genetic algorithm.

Both solutions are based on the idea of computing in advance the minimum and

maximum feasible drone leg travel times in order to avoid to handle drone speeds

as decision variables. The resulting MILP formulation allows to easily solve to

optimality FSTSP-VDS instances with 10 customers, generally in few seconds or

even less. We have also been able to solve to optimality one instance with 25

customers, but solving these kind of instances require a considerable amount of

computing resources. For this purpose, we devised a genetic algorithm to tackle

larger FSTSP-VDS instances. The core idea of our heuristic solution relies on an

encoding scheme that allows to represent Ω(2n) solutions with a single sequence

(chromosome), and on an efficient procedure that in time Θ(n3) retrieves the best

solution among all the ones represented by the sequence. We also presented an

approximated variant of this retrieval method that runs in time Θ(n) instead of

Θ(n3) by limiting the maximum operation length, which was used for the experi-

ments.

The proposed genetic algorithm allows to obtain a 6% average improvement over

the current state of the art FSTSP-VDS heuristic. We also show that our genetic

algorithm is the first heuristic that allows to find known optimal solutions of TSP-

D instances with up to 39 customers. In particular, our genetic algorithm was

tested on 227 TSP-D instances with known optimal solutions and with a number

of customers ranging from 9 to 39, obtaining an average optimality gap of only

0.3% in a fraction of the time required by the state-of-the-art exact methods. We

also presented a cutting plane approach based on the proposed MILP formula-

tion that works without requiring the exact minimum and maximum drone travel
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times in advance, refining these quantities only when needed. However, the above

method was not tested in this work, and could be interesting to compare it with

the MILP approach. The experiments carried out on TSP-D instances show a loss

of performance when our genetic algorithm is tested with the slowest drone speed

configuration (α = 1). From a preliminary analysis we found that this degrada-

tion was caused by setting the maximum operation length equal to 5, a value that

turned out to be too small. In fact, if the drone speed is low, the operations will

tend to be longer. Therefore, it would be interesting to conduct a sensitivity anal-

ysis to understand how much the maximum operation length parameter affects the

performances under different scenarios.

Since computing optimal speeds could be too demanding when dealing with large

instances for real-world application, one could asks how much performance loss

you get by applying a discretization of the drone speed domain. A preliminary

analysis have been conducted in our thesis, showing that a discretization step of

0.5 m/s causes a loss inferior of 0.1%, but a more general sensitivity analysis should

be carried out.

Another topic of interest concerns the study and integration of a robust approach

in the genetic algorithm devised during the this thesis. The idea is to have a

population of feasible individuals and a population of infeasible ones, such that,

an individual is feasible if it satisfies the robustness requirements, and infeasible

otherwise. The aim of this approach is to explore the boundary of the feasible

region of the solution space, and therefore, it could be particularly suited in this

context. A similar approach has been devised for the deterministic Vehicle Routing

Problem with Time Windows (VRP-D) by Vidal et al. [25], whereas, to the best

of our knowledge, this simple approach has not yet been explored in the context of

robust optimization and could provide a valid robust approach for larger instances

of the FSTSP-VDS.
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Appendix A

Extended Results
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Table A.1: Extended results on the FSTS-VDS instances with 10 customers.

MILP CH GA

Instance TSP zavg zbest %GAPavg %GAPmin tavg %∆TSP z t %∆TSP zavg zbest tavg τavg %∆TSP

20191230T145624016194 6851.99 4754.38 4754.38 0.00 0.00 0.60 -30.61 5189.09 0.15 -24.27 4754.38 4754.38 53.93 0.81 -30.61

20191230T145645377021 6096.01 4687.37 4687.37 0.00 0.00 4.27 -23.11 5058.22 0.30 -17.02 4687.37 4687.37 54.08 0.64 -23.11

20191230T145706863992 5917.73 4339.44 4339.44 0.00 0.00 0.83 -26.67 4383.55 0.22 -25.93 4339.44 4339.44 54.83 0.48 -26.67

20191230T145728368390 7242.69 5293.51 5293.51 0.00 0.00 4.25 -26.91 5968.15 0.19 -17.60 5293.51 5293.51 52.86 0.97 -26.91

20191230T145749863540 6410.57 5370.37 5370.37 0.00 0.00 1.01 -16.23 5604.95 0.20 -12.57 5370.37 5370.37 54.27 0.51 -16.23

20191230T145854314056 7552.52 5996.43 5996.43 0.00 0.00 0.89 -20.60 6593.85 0.26 -12.69 5996.43 5996.43 54.37 0.44 -20.60

20191230T145916460302 5493.20 3916.94 3916.94 0.00 0.00 1.89 -28.69 4186.19 0.23 -23.79 3916.94 3916.94 52.85 0.61 -28.69

20191230T145938067895 8125.98 6255.81 6255.81 0.00 0.00 0.88 -23.01 6880.43 0.18 -15.33 6255.81 6255.81 53.57 0.47 -23.01

20191230T145959409904 6821.98 4389.31 4389.31 0.00 0.00 0.84 -35.66 4584.39 0.16 -32.80 4389.31 4389.31 52.95 0.36 -35.66

20191230T150020711011 6202.56 4890.98 4890.98 0.00 0.00 1.11 -21.15 4890.98 0.14 -21.15 4890.98 4890.98 53.94 2.68 -21.15

Average 0.00 0.00 1.65 -25.26 0.20 -20.31 53.76 0.80 -25.26
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Table A.2: Extended results on the FSTS-VDS instances with 25 customers.

Exact method CH GA

Instance TSP zavg zbest %GAPavg %GAPmin tavg %∆TSP z t %∆TSP zavg zbest tavg τavg %∆TSP

20191230T150126383669 11167.17 9005.35 8803.54 10.42 8.66 3610.30 -19.36 9468.35 2.17 -15.21 8774.42 8774.42 137.01 57.11 -21.43

20191230T150218531563 10390.13 8096.16 7952.84 -11.42 7.36 3609.41 -22.08 8313.86 2.87 -19.98 7938.85 7938.85 126.15 45.65 -23.59

20191230T150311834153 11081.93 8296.01 8267.76 9.20 7.19 3609.98 -25.14 8633.73 2.36 -22.09 8267.76 8267.76 131.19 40.37 -25.39

20191230T150403491108 12751.29 8703.58 8549.45 11.79 9.66 3612.34 -31.74 9211.20 2.22 -27.76 8527.94 8527.94 129.17 11.87 -33.12

20191230T150455119746 10737.63 7665.77 7540.49 8.42 6.43 3612.47 -28.61 8614.61 4.35 -19.77 7540.49 7540.49 149.72 15.49 -29.78

20191230T150732856144 10911.88 8851.22 8571.03 16.97 12.77 3612.28 -18.88 8962.70 2.73 -17.86 8485.77 8485.77 140.03 22.08 -22.23

20191230T150825180963 11201.48 7538.06 7429.48 15.75 13.69 3611.82 -32.70 7834.20 3.28 -30.06 7412.20 7412.20 139.72 14.37 -33.83

20191230T150917303441 10751.94 8609.39 8410.58 18.96 16.41 3613.00 -19.93 8921.36 3.68 -17.03 8248.81 8248.81 124.20 12.33 -23.28

20191230T151009384583 10830.13 8784.30 8762.32 0.83 0.00 3556.17 -18.89 8944.79 1.90 -17.41 8762.32 8762.32 137.87 27.72 -19.09

20191230T151101326987 10973.56 8439.17 8408.46 17.53 15.74 3612.93 -23.10 8618.62 2.71 -21.46 8096.49 8096.49 128.99 9.18 -26.22

Average 12.13 9.79 3606.07 -24.04 2.83 -20.86 134.41 25.62 -25.80
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Table A.3: Extended results on the FSTS-VDS instances with 50 customers.

CH GA

Instance TSP z t %∆TSP zavg zbest tavg τavg %∆TSP

20191118T122820306867 5837.51 5110.51 7.81 -12.45 5102.28 5097.62 356.00 117.95 -12.59

20191118T122949122725 5609.43 5173.91 36.08 -7.76 4868.72 4864.31 337.21 187.90 -13.20

20191118T123118221785 5704.43 4911.42 33.48 -13.90 4881.47 4870.75 352.03 153.59 -14.43

20191118T123246160894 5864.41 5077.31 34.63 -13.42 5048.48 5047.97 361.95 145.42 -13.91

20191118T123534617288 5907.47 5231.22 33.73 -11.45 5122.50 5116.02 362.26 240.56 -13.29

20191118T123824123933 6055.90 5526.22 25.04 -8.75 5443.72 5435.16 342.41 228.24 -10.11

20191118T123955510273 6152.89 5118.24 34.36 -16.82 5041.33 5037.97 322.06 172.40 -18.07

20191118T124124624402 6316.06 5495.97 26.69 -12.98 5447.75 5439.70 320.85 107.19 -13.75

20191118T124254325293 8223.48 6587.52 26.26 -19.89 6467.38 6456.69 312.10 179.08 -21.35

20191118T124427752580 8592.41 6604.07 36.62 -23.14 6318.03 6306.87 301.57 138.32 -26.47

20191118T124843195400 9537.48 6881.29 33.34 -27.85 6544.83 6502.85 295.97 175.18 -31.38

20191118T125015912865 8899.09 6830.77 29.88 -23.24 6603.57 6576.79 290.56 135.51 -25.80

20191118T125147711719 8588.44 6907.53 26.81 -19.57 6732.61 6732.61 358.88 155.41 -21.61

20191118T125441538212 9133.16 7512.22 34.55 -17.75 7103.27 7076.87 286.79 145.71 -22.23

20191118T125614299548 9366.60 7358.56 43.46 -21.44 6779.14 6687.14 341.46 188.39 -27.62

20191118T125747188478 14531.78 10643.55 24.34 -26.76 9307.43 9307.43 268.53 125.87 -35.95

20191118T125923266294 13289.57 10784.55 19.53 -18.85 10387.50 10387.50 269.29 119.29 -21.84

20191118T130058846733 12897.98 11163.37 30.46 -13.45 10666.97 10602.74 277.94 183.52 -17.30

20191118T130234948300 12625.44 10872.93 33.63 -13.88 9877.63 9847.68 269.01 149.23 -21.76

20191118T130410224030 13706.59 10775.24 20.00 -21.39 10278.63 10217.28 272.16 168.66 -25.01

20191118T130545047476 12662.39 9623.64 22.38 -24.00 9399.71 9337.92 283.60 150.27 -25.77

20191118T130850731760 12734.93 10486.45 34.78 -17.66 9383.57 9324.94 266.18 92.03 -26.32

20191118T131151763979 11894.31 10632.02 32.99 -10.61 9414.56 9387.22 256.24 102.70 -20.85

20191118T150546225143 15253.31 12867.87 28.69 -15.64 11151.18 11109.32 256.19 98.17 -26.89

20191118T150723196947 15958.80 12891.56 20.74 -19.22 12344.74 12323.72 340.93 252.61 -22.65

20191118T151307990474 15115.17 11877.41 23.69 -21.42 10804.19 10790.33 312.35 211.70 -28.52

20191118T151445730078 16934.47 12224.73 21.46 -27.81 11438.43 11421.88 306.89 113.60 -32.45

20191118T151744822171 15738.06 12411.80 23.20 -21.14 11895.01 11865.46 287.18 151.23 -24.42

20191118T151923741580 15223.77 12093.90 21.98 -20.56 11216.66 11168.75 290.86 124.03 -26.32

20191118T152913966760 6680.58 5323.70 29.70 -20.31 5203.64 5193.42 276.17 166.80 -22.11

20191118T153332147450 6305.60 5122.03 29.03 -18.77 5085.86 5080.79 369.44 111.15 -19.34

20191118T153929356548 9352.30 7218.63 28.66 -22.81 6794.03 6758.28 285.00 190.19 -27.35

20191118T154101395017 9257.12 7007.66 27.19 -24.30 6816.71 6782.98 313.23 147.84 -26.36

20191118T154538429291 9236.86 7061.48 34.10 -23.55 6833.79 6824.16 323.05 112.87 -26.02

20191118T155800923519 13460.15 10986.22 17.45 -18.38 10593.27 10472.86 297.51 176.53 -21.30

20191118T155936386731 14037.68 10687.31 31.86 -23.87 9613.68 9596.48 311.61 176.49 -31.52

20191118T160426829317 15453.26 11697.51 18.58 -24.30 11224.94 11156.01 304.99 147.42 -27.36

20191118T160726433090 16460.07 12968.73 28.63 -21.21 12181.81 12164.38 282.35 217.31 -25.99

20191118T160903638340 15657.85 12043.60 28.40 -23.08 11143.44 11129.11 302.85 137.51 -28.83

20191118T161041628422 16554.56 13001.24 25.51 -21.46 12173.16 12145.29 286.47 105.49 -26.47

20191230T151658283335 16563.57 12145.97 26.04 -26.67 11390.26 11367.70 292.03 156.66 -31.23

20191230T151843966978 17002.65 13830.03 26.05 -18.66 11973.30 11947.37 340.12 114.31 -29.58

20191230T152029684793 15477.33 13212.46 27.30 -14.63 12138.82 12043.87 274.32 155.23 -21.57

20191230T152216413583 14470.88 11634.35 19.68 -19.60 11017.45 10996.94 270.82 102.26 -23.86

20191230T152402488108 14885.45 12239.45 23.64 -17.78 11606.48 11590.11 274.54 161.11 -22.03

20191230T152549310182 15004.47 11824.93 62.79 -21.19 10830.29 10759.97 281.54 121.62 -27.82

20191230T152737169828 14670.67 11609.56 26.17 -20.87 11074.00 11072.46 279.79 126.60 -24.52

20191230T153406366529 16392.40 11865.23 19.08 -27.62 11253.33 11253.33 277.55 155.69 -31.35

20191230T153549168847 16376.98 12193.44 30.83 -25.55 11419.56 11394.65 314.02 116.17 -30.27

20191230T163954653903 16391.12 11896.50 23.40 -27.42 10947.43 10946.37 283.21 122.35 -33.21

Average -19.70 -24.00
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Table A.4: Extended results on the FSTS-VDS instances with 100 customers.

CH GA

Instance TSP z t %∆TSP zavg zbest tavg τavg %∆TSP

20191230T153733732593 24216.39 19742.67 585.57 -18.47 17778.94 17536.99 851.78 723.19 -26.58

20191230T154541035990 22984.40 18493.66 448.74 -19.54 17392.82 17296.59 846.62 769.35 -24.33

20191230T155255485975 23253.00 18747.73 380.01 -19.38 17990.98 17859.40 838.18 705.09 -22.63

20191230T160316717797 23420.32 19300.25 427.26 -17.59 17745.07 17640.08 840.32 650.58 -24.23

20191230T161653345275 23570.09 19408.47 532.63 -17.66 17501.17 17386.07 902.60 800.20 -25.75

20191230T162058887701 23836.02 19378.78 368.33 -18.70 18062.90 17925.70 869.33 682.36 -24.22

20191230T162504128235 23067.20 18218.28 518.52 -21.02 17233.59 17105.98 779.81 650.39 -25.29

20191230T164411574945 22553.21 18863.16 384.89 -16.36 17980.04 17884.25 796.40 646.61 -20.28

20191230T164814918251 24520.73 19462.68 439.15 -20.63 17772.70 17635.53 790.82 655.35 -27.52

20191230T165217106753 23934.78 19741.76 461.94 -17.52 18131.90 18036.76 805.93 650.76 -24.24

Average -18.69 -24.51

Table A.5: Extended results on the TSP-D with 9 customers.

BP GA

Instance TSP α z t zavg zbest tavg τavg %∆BP

10-1 177

1 149 0.18 149.00 149 49.69 0.13 0.00

2 141 0.97 141.00 141 40.07 0.13 0.00

3 113 0.38 113.00 113 37.48 0.08 0.00

10-2 175

1 138 0.67 138.00 138 47.43 0.09 0.00

2 111 0.21 111.00 111 37.85 0.19 0.00

3 109 0.55 109.00 109 38.58 0.13 0.00

10-3 179

1 151 0.53 151.00 151 48.03 0.07 0.00

2 110 0.1 110.00 110 37.69 0.06 0.00

3 98 0.11 98.00 98 41.01 0.06 0.00

10-4 178

1 138 0.2 138.00 138 47.29 0.10 0.00

2 113 0.25 113.00 113 36.61 0.12 0.00

3 94 0.22 94.00 94 38.45 0.11 0.00

10-5 156

1 136 0.2 136.20 136 48.14 13.47 0.15

2 114 0.35 114.00 114 39.41 0.18 0.00

3 85 0.18 85.00 85 39.05 0.12 0.00

10-6 180

1 140 0.25 140.00 140 47.55 0.08 0.00

2 118 0.66 118.00 118 38.23 0.16 0.00

3 113 0.39 113.00 113 38.89 0.07 0.00

10-7 159

1 109 0.17 110.20 109 46.91 3.23 1.10

2 87 0.19 87.00 87 36.54 0.09 0.00

3 79 0.19 79.00 79 38.79 0.24 0.00

10-8 139

1 101 0.32 101.00 101 45.86 0.06 0.00

2 80 0.3 80.00 80 38.54 0.10 0.00

3 66 0.17 66.00 66 39.40 0.12 0.00

10-9 189

1 152 0.13 152.00 152 48.60 0.10 0.00

2 142 0.21 142.00 142 39.43 0.17 0.00

3 139 0.34 139.00 139 39.87 0.12 0.00

10-10 177

1 118 0.27 118.00 118 45.97 0.11 0.00

2 85 0.64 85.00 85 37.51 0.12 0.00

3 67 0.38 67.00 67 35.39 0.12 0.00

Continued on next page
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Table A.5 – continued from previous page

BP GA

Instance TSP α z t zavg zbest tavg τavg %∆BP

10-11 172

1 142 0.31 142.00 142 48.40 0.10 0.00

2 106 0.13 106.00 106 39.58 0.11 0.00

3 81 0.17 81.00 81 36.79 0.11 0.00

10-12 188

1 138 0.22 138.00 138 46.21 0.09 0.00

2 107 0.19 107.00 107 37.72 0.13 0.00

3 74 0.2 74.00 74 37.26 0.13 0.00

10-13 175

1 114 0.16 114.00 114 48.30 7.14 0.00

2 90 0.29 90.00 90 41.58 0.11 0.00

3 82 0.56 82.00 82 38.84 0.82 0.00

10-14 163

1 115 0.24 115.60 115 48.34 15.01 0.52

2 90 0.19 90.00 90 40.86 0.16 0.00

3 87 0.21 87.00 87 37.92 0.11 0.00

10-15 199

1 145 0.24 145.00 145 47.48 0.07 0.00

2 121 0.21 121.00 121 39.06 0.11 0.00

3 97 0.39 97.00 97 36.33 0.12 0.00

10-16 174

1 136 0.48 136.00 136 47.12 0.09 0.00

2 103 0.19 103.00 103 38.13 0.08 0.00

3 84 0.26 84.00 84 36.20 0.09 0.00

10-17 201

1 141 0.14 141.00 141 46.67 0.09 0.00

2 108 0.6 108.00 108 40.11 0.12 0.00

3 92 0.41 92.00 92 37.58 0.21 0.00

10-18 166

1 127 0.36 127.00 127 47.85 0.08 0.00

2 101 0.16 101.00 101 39.49 0.19 0.00

3 100 0.3 100.00 100 37.53 0.22 0.00

10-19 177

1 139 0.2 139.00 139 48.76 0.09 0.00

2 129 0.34 129.00 129 40.20 0.17 0.00

3 118 0.53 118.00 118 38.19 0.09 0.00

10-20 155

1 128 0.16 128.00 128 49.20 0.09 0.00

2 114 0.3 114.00 114 38.82 0.08 0.00

3 105 0.13 105.00 105 37.14 0.13 0.00

10-21 133

1 96 0.62 96.00 96 48.23 0.08 0.00

2 71 0.19 71.00 71 39.24 0.14 0.00

3 67 0.19 67.00 67 37.69 0.08 0.00

10-22 153

1 121 0.69 121.00 121 47.30 0.10 0.00

2 86 0.24 86.00 86 38.68 0.11 0.00

3 67 0.22 67.00 67 37.19 0.15 0.00

10-23 182

1 165 0.5 165.00 165 50.10 0.09 0.00

2 129 0.19 129.00 129 38.36 0.06 0.00

3 121 0.53 121.00 121 40.28 0.09 0.00

10-24 168

1 126 0.69 126.00 126 46.46 0.08 0.00

2 94 0.29 94.00 94 37.94 0.25 0.00

3 81 0.19 81.00 81 40.01 0.18 0.00

10-25 169

1 136 0.2 136.00 136 49.05 0.10 0.00

2 131 0.77 131.00 131 39.81 0.08 0.00

3 125 0.19 125.00 125 41.15 0.10 0.00

Average 0.32 41.65 0.64 0.02
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Table A.6: Extended results on the TSP-D with 19 customers.

BP GA

Instance TSP α z t zavg zbest tavg τavg %∆BP

20-1 239

1 188 165.21 189.00 189 112.94 1.40 0.53

2 153 20.63 153.00 153 90.60 1.27 0.00

3 131 3.71 131.00 131 88.57 2.42 0.00

20-2 240

1 180 14.17 180.00 180 113.10 0.94 0.00

2 151 22.79 151.00 151 90.87 3.18 0.00

3 130 2.35 130.00 130 81.37 3.31 0.00

20-3 257

1 196 20.75 206.00 206 111.12 1.27 5.10

2 169 16.51 169.00 169 92.80 1.86 0.00

3 154 14.13 154.00 154 85.25 2.54 0.00

20-4 236

1 179 50.74 179.00 179 110.75 1.14 0.00

2 140 12.61 140.00 140 91.50 1.59 0.00

3 125 26.8 125.00 125 82.98 5.47 0.00

20-5 224

1 164 12.33 164.00 164 111.27 1.88 0.00

2 138 32.41 138.00 138 90.86 1.91 0.00

3 129 53.91 129.20 129 88.09 33.21 0.16

20-6 222

1 161 26.58 161.00 161 108.92 0.98 0.00

2 121 2.81 121.00 121 90.93 2.13 0.00

3 110 17.7 110.00 110 84.93 2.53 0.00

20-7 226

1 179 64.5 184.00 184 109.15 0.92 2.79

2 148 42.54 148.00 148 91.54 1.91 0.00

3 123 10.11 123.00 123 87.23 4.12 0.00

20-8 224

1 180 56.74 187.00 187 110.82 1.02 3.89

2 149 17.81 149.00 149 91.37 0.90 0.00

3 131 2.59 131.00 131 82.44 2.51 0.00

20-9 196

1 153 5.87 159.00 159 111.25 1.34 3.92

2 135 24.74 136.00 136 95.15 1.53 0.74

3 130 51.35 130.00 130 91.32 1.70 0.00

20-10 220

1 173 8.07 173.00 173 108.21 0.92 0.00

2 144 6.96 144.00 144 87.53 1.57 0.00

3 130 1.85 130.00 130 89.80 2.83 0.00

20-11 212

1 164 4.47 169.00 169 110.47 1.07 3.05

2 150 16.32 150.00 150 89.58 1.65 0.00

3 148 29.76 148.00 148 91.48 1.75 0.00

20-12 235

1 169 50.52 170.00 170 108.65 1.52 0.59

2 133 32.36 133.00 133 88.38 2.62 0.00

3 123 36.75 123.00 123 90.36 2.07 0.00

20-13 218

1 171 242.3 171.00 171 112.01 1.33 0.00

2 151 62.11 151.00 151 89.86 6.86 0.00

3 129 32.89 129.00 129 90.15 6.81 0.00

20-14 198

1 164 8.31 164.00 164 113.02 1.20 0.00

2 145 20.71 145.00 145 91.33 8.45 0.00

3 134 8.67 134.00 134 85.15 2.30 0.00

20-15 260

1 183 69.59 184.00 184 111.83 1.13 0.55

2 139 6.71 139.00 139 88.11 1.09 0.00

3 121 5.17 121.00 121 81.19 3.73 0.00

20-16 225

1 165 7.7 165.00 165 111.59 0.83 0.00

2 129 8.44 129.00 129 87.81 1.48 0.00

3 118 3.6 118.00 118 85.82 5.41 0.00

20-17 198

1 150 110.64 153.00 153 110.63 0.84 2.00

2 108 3.21 108.00 108 89.86 1.44 0.00

3 101 4.32 101.00 101 84.95 1.91 0.00

Continued on next page
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Table A.6 – continued from previous page

BP GA

Instance TSP α z t zavg zbest tavg τavg %∆BP

20-18 233

1 177 36.62 177.00 177 113.14 1.24 0.00

2 151 79.37 151.00 151 93.88 11.07 0.00

3 135 7.07 135.00 135 82.06 4.06 0.00

20-19 222

1 162 14.71 162.00 162 112.64 0.99 0.00

2 122 1.91 122.00 122 89.62 1.43 0.00

3 114 13.49 114.00 114 82.85 1.39 0.00

20-20 222

1 180 92.59 180.00 180 114.15 1.05 0.00

2 154 30.16 154.00 154 90.80 1.74 0.00

3 148 55.68 148.00 148 86.78 1.58 0.00

20-21 210

1 164 7.57 164.00 164 111.54 0.65 0.00

2 137 1.74 137.00 137 89.54 1.56 0.00

3 129 8.75 129.00 129 85.91 1.75 0.00

20-22 241

1 174 38.45 180.00 180 110.61 1.71 3.45

2 136 28.28 136.00 136 91.02 1.61 0.00

3 114 13.92 114.00 114 86.08 4.81 0.00

20-23 237

1 172 12.33 185.00 185 115.20 1.04 7.56

2 134 8.11 134.00 134 89.92 1.39 0.00

3 123 10.61 123.00 123 83.52 1.70 0.00

20-24 246

1 171 29.29 171.00 171 108.58 1.55 0.00

2 125 3.54 125.00 125 89.20 2.91 0.00

3 111 7.59 111.00 111 84.28 3.86 0.00

20-25 239

1 178 35.47 178.00 178 110.10 0.97 0.00

2 141 14.53 141.00 141 89.87 2.26 0.00

3 122 15.99 122.00 122 84.15 3.28 0.00

Average 28.55 95.87 2.69 0.46
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Table A.7: Extended results on the TSP-D with 29 customers.

BP GA

Instance TSP α z t zavg zbest tavg τavg %∆BP

30-1 257

1 - - - 205 198.45 5.02 -

2 164 469.12 164.00 164 155.45 11.52 0.00

3 139 30.51 140.00 140 128.70 11.28 0.72

30-2 286

1 209 3226.99 209.00 209 202.59 3.83 0.00

2 160 558.38 160.00 160 147.71 9.22 0.00

3 142 543.07 142.50 142 127.50 21.01 0.35

30-3 259

1 183 327.91 183.00 183 203.56 4.43 0.00

2 153 267.35 153.00 153 143.51 4.28 0.00

3 143 253.01 143.00 143 135.64 26.32 0.00

30-4 275

1 195 870.8 201.00 201 196.53 4.54 3.08

2 150 514.61 151.00 151 163.38 7.59 0.67

3 129 1348.43 129.00 129 138.70 12.23 0.00

30-5 246

1 186 347.47 188.00 188 202.42 3.99 1.08

2 161 659.56 162.00 162 162.48 11.64 0.62

3 144 26.94 144.00 144 145.74 4.65 0.00

30-6 263

1 186 225.18 189.00 189 193.44 2.67 1.61

2 156 434.72 156.00 156 147.46 4.27 0.00

3 146 578.81 146.60 146 132.75 33.69 0.41

30-7 252

1 182 1701.8 182.00 182 198.01 4.50 0.00

2 147 170.38 147.00 147 145.29 15.34 0.00

3 131 317.04 131.00 131 130.24 12.30 0.00

30-8 259

1 195 733.1 197.00 197 196.12 4.20 1.03

2 164 432.68 164.00 164 155.64 8.25 0.00

3 155 744.19 155.00 155 131.64 6.04 0.00

30-9 278

1 195 638.37 195.00 195 194.70 5.63 0.00

2 157 489.34 157.00 157 160.86 4.42 0.00

3 143 618.7 143.00 143 123.63 15.53 0.00

30-10 268

1 195 1143.05 198.00 198 198.64 4.50 1.54

2 159 1358.23 159.00 159 158.33 6.16 0.00

3 139 143.52 139.00 139 138.26 5.18 0.00

30-11 273

1 200 813.88 202 202 194.72 5.73 1.00

2 162 654.06 162.00 162 132.66 8.97 0.00

3 144 1611.14 144.00 144 136.22 36.11 0.00

30-12 287

1 210 988.27 210.00 210 197.11 5.90 0.00

2 160 51.76 160.00 160 148.68 5.20 0.00

3 150 228.25 150.80 150 137.45 24.29 0.53

30-13 275

1 200 449.49 201.00 201 200.68 3.98 0.50

2 157 124.14 157.00 157 142.01 19.52 0.00

3 147 1025.19 147.00 147 125.67 10.93 0.00

30-14 238

1 188 2371.3 190.00 190 198.79 4.31 1.06

2 160 906.98 160.00 160 155.15 20.33 0.00

3 148 372.68 149.00 149 142.50 10.33 0.68

30-15 237

1 185 1403.83 189.00 189 204.90 2.96 2.16

2 144 123.7 144.00 144 154.94 3.12 0.00

3 137 824.39 137.00 137 136.96 10.73 0.00

30-16 237

1 196 1072.32 196.00 196 199.78 4.09 0.00

2 156 378.4 156.00 156 145.18 6.72 0.00

3 143 445.01 146.00 146 125.26 6.83 2.10

30-17 264

1 196 1447.34 201.00 201 192.23 3.64 2.55

2 159 331.57 159.00 159 153.48 7.34 0.00

3 147 217.76 148.00 147 138.37 38.20 0.68
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Table A.7 – continued from previous page

BP GA

Instance TSP α z t zavg zbest tavg τavg %∆BP

30-18 273

1 - - 206.00 206 196.21 7.19 -

2 160 230.23 160.00 160 134.44 18.96 0.00

3 136 304.84 136.00 136 136.53 11.60 0.00

30-19 253

1 - - 196.00 196 204.24 5.73 -

2 165 1223.66 165.00 165 145.66 9.33 0.00

3 155 956.2 155.00 155 131.19 46.81 0.00

30-20 249

1 180 797.61 189.00 189 202.72 4.96 5.00

2 147 1235.24 148.00 148 160.81 8.46 0.68

3 - - 138.00 138 140.62 6.43 -

30-21 248

1 198 1657.66 202.00 202 205.98 5.02 2.02

2 164 2080.03 164.10 164 147.05 47.07 0.06

3 142 467.45 143.00 143 125.33 6.53 0.70

30-22 268

1 207 2754.53 207.00 207 193.96 3.47 0.00

2 173 271.54 173.00 173 123.92 8.37 0.00

3 162 882.23 162.00 162 124.74 10.11 0.00

30-23 253

1 - - 191.00 191 198.70 5.81 0.00

2 - - 151.00 151 149.50 9.13 -

3 - - 137.60 137 129.01 27.57 -

30-24 247

1 - - 183.00 183 200.24 8.28 -

2 146 276.59 146.00 146 155.66 17.78 0.00

3 132 288.58 132.00 132 127.63 9.15 0.00

30-25 268

1 - - 224.00 224 212.04 8.91 -

2 180 61.65 180.00 180 151.82 6.09 0.00

3 164 123.15 164.00 164 128.00 17.17 0.00

Average 736.76 157.83 11.20 0.47
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Table A.8: Extended results on the TSP-D with 39 customers

BP GA

Instance TSP α z t zavg zbest tavg τavg %∆BP

40-1 303

1 - - 226.00 226 265.33 14.94 -

2 - - 172.00 172 194.12 18.62 -

3 - - 154.30 154 190.32 46.45 -

40-2 291

1 - - 219.00 219 291.17 7.60 -

2 173 2967.32 174.00 174 181.99 14.72 0.58

3 152 819.28 152.00 152 190.80 16.22 0.00

40-3 293

1 - - 238.00 238 225.04 12.35 -

2 - - 192.00 192 204.97 75.58 -

3 - - 178.60 178 173.38 54.06 -

40-4 311

1 - - 232.00 232 275.14 12.38 -

2 - - 193.20 193 178.49 60.21 -

3 167 2033 167.00 167 190.88 30.66 0.00

40-5 317

1 - - 237.10 237 271.28 16.49 -

2 - - 188.00 188 193.04 17.20 -

3 - - 159.00 159 194.74 17.04 -

40-6 262

1 - - 186.30 186 244.08 43.67 -

2 - - 149.00 149 218.70 33.33 -

3 - - 140.00 140 203.26 16.16 -

40-7 301

1 - - 209.00 209 245.33 12.06 3.47

2 - - 162.10 162 181.04 30.22 -

3 - - 144.50 144 183.63 29.47 -

40-8 310

1 - - 239.00 239 315.87 151.29 -

2 - - 187.20 187 193.33 67.21 -

3 - - 168.40 168 203.31 77.20 -

40-9 311

1 223 3219.67 226.00 226 276.86 27.57 1.35

2 - - 183.00 183 196.67 52.54 -

3 - - 161.70 161 199.80 96.22 -

40-10 285

1 - - 215.00 215 250.70 9.61 -

2 - - 177.00 177 193.40 40.26 -

3 - - 166.50 166 187.45 72.42 -

40-11 289

1 - - 221.00 221 269.02 9.05 -

2 175 3197.27 175.00 175 209.90 10.99 0.00

3 159 1267.23 159.00 159 189.15 43.41 0.00

40-12 280

1 - - 210.00 210 263.22 7.58 -

2 - - 168.20 168 227.51 40.16 -

3 147 1715.02 147.00 147 202.78 30.44 0.00

40-13 305

1 - - 227.00 227 257.42 13.74 -

2 - - 179.00 179 196.44 26.37 -

3 - - 163.40 161 190.53 53.23 -

40-14 313

1 - - 233.00 233 273.81 16.28 -

2 - - 177.20 177 213.43 20.45 -

3 - - 159.00 159 191.07 25.98 -

40-15 304

1 - - 229.00 229 237.05 12.60 -

2 - - 174.00 174 188.83 14.53 -

3 - - 161.90 161 206.78 17.41 -

40-16 294

1 - - 217.00 217 274.40 65.08 -

2 - - 171.00 171 223.41 61.63 -

3 149 1075.51 149.00 149 178.80 22.39 0.00

40-17 322

1 - - 230.00 230 291.63 13.30 -

2 - - 180.00 180 171.12 16.49 -

3 - - 162.00 162 182.56 52.86 -
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Table A.8 – continued from previous page

BP GA

Instance TSP α z t zavg zbest tavg τavg %∆BP

40-18 313

1 - - 235.00 235 262.58 9.78 -

2 - - 185.00 185 172.41 16.55 -

3 - - 166.00 166 173.93 17.51 -

40-19 269

1 - - 196.00 196 268.35 8.96 -

2 - - 158.00 158 183.43 23.25 -

3 - - 140.90 140 186.91 29.59 -

40-20 282

1 - - 219.00 219 275.87 16.94 -

2 - - 180.00 180 191.31 19.04 -

3 160 790.17 160.00 160 182.15 39.84 0.00

40-21 301

1 - - 227.00 227 294.61 9.14 -

2 169 1648.75 169.00 169 187.99 28.83 0.00

3 154 2199.45 154.40 154 189.82 74.55 0.26

40-22 308

1 - - 247.00 247 262.20 21.92 -

2 - - 201.10 200 191.63 54.42 -

3 - - 178.20 178 192.60 48.53 -

40-23 324

1 - - 245.00 245 271.02 8.24 -

2 - - 193.00 193 209.67 48.75 -

3 - - 173.00 173 188.67 31.87 -

40-24 274

1 - - 206.00 206 289.84 10.09 -

2 - - 171.00 171 174.83 8.70 -

3 - - 158.60 158 194.19 69.39 -

40-25 309

1 - - 233.00 233 314.28 57.07 -

2 - - 180.20 180 189.88 49.14 -

3 - - 153.70 153 196.51 97.59 -

Average 2044.39 202.21 29.31 0.47
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