

UNIVERSITA DEGLI STUDI DI
PADOVA

Corso di laurea Magistrale in Ingegneria Informatica

Periodic subgraph mining in
dynamic networks

Laureando: Barbares Manuel.

Matricola: 604065.

Relatore: Apostolico Alberto.

Correlatore: Pizzi Cinzia.

Data: 07/12/2010.

2

Sommario

Recenti ricerche hanno dimostrato che la quantità di informazioni nel mondo
raddoppia ogni 20 mesi. Questa crescita esponenziale di dati ha fatto emergere
la necessità di progettare e sviluppare algoritmi in grado di automatizzare il
processo di analisi dei dati. Il data mining è la disciplina che studia le tecniche
per estrarre informazioni dai dati. Il formato dei dati agli inizi era limitato a
relazioni tra tabelle e transazioni dove ogni istanza era rappresentata da un
insieme. Nel corso del tempo le ricerche iniziarono ad estendersi verso classi di
dati strutturati quali sono i grafi. Il data mining di grafi iniziò quindi a
diventare sempre più popolare.
Lo scopo principale degli algoritmi di data mining è la scoperta di pattern
interessanti da un dataset. La definizione di cosa si intenda per interessante
varia a seconda del contesto. Una comune assunzione è quella di considerare
interessanti i pattern che si ripetono frequentemente nei dati. Le ricerche si
sono focalizzate anche nell’estrarre delle sottostruttre che si ripetono
periodicamente nel dataset.
Il problema dell’estrazione di sottografi periodici, che è l’argomento di questa
tesi, è una combinazione di entrambi questi aspetti e trova applicazioni in
diversi domini applicativi. Infatti, questo problema si prefigge di scoprire
interazioni periodiche frequenti tra i membri di una popolazione il cui
comportamento viene studiato in un certo arco di tempo. Le interazioni tra i
membri della popolazione sono rappresentate da archi E tra vertici V di un
grafo. Una rete dinamica consiste in una serie di T timestep per ciascuno dei
quali esiste un grafo che rappresenta le interazioni attive in quel dato istante.
Questa tesi presenta ListMiner, un algoritmo per il problema dell’estrazione di
sottografi periodici. La complessità computazionale di tale algoritmo è O((V+E)

T2 ln (T /σ)), dove σ è il minimo numero di ripetizioni periodiche necessarie per
riportare il sottografo estratto in output. Questa complessità propone un
miglioramento di un fattore T rispetto all’unico algoritmo noto in letteratura,
PSEMiner. Gli esperimenti condotti su dataset reali ed artificiali, hanno
confermato l’analisi teorica dimostrando che ListMiner è più veloce nella
pratica quando vengono analizzati dataset ad alta e media densità.
É stato inoltre proposto un altro algoritmo per risolvere una variante del
problema in cui la periodicità ha vincoli più restrittivi, come per le stringhe,
permettendo che le istanze dei sottografi abbiano un limitato grado di
variabilità. I risultati sperimentali ottenuti utilizzando due reti dinamiche reali
dimostrano l’applicabilità del nostro approccio.
Infine è stata effettuata un’analisi qualitativa dei sottografi estratti dai due
algoritmi proposti.

3

Abstract

Recent researches estimate that the amount of information in the world doubles
every 20 months. The growth of datasets produced a consequent need to design
and development of methodologies to be able to analyze such data through
automated processes.
Data mining is the discipline that studies techniques to extract useful
information from data. The format of data in the beginning of the field were
limited to relational tables and transactions where each instance is represented
by one row in a table or one transaction, represented as a set. However, the
studies within the last several years began to extend the classes of considered
data to semi-structured or structured data such as graphs, making the graph
based data mining popular. The main goal of data mining algorithms is the
identification of interesting patterns in a dataset. The definition of what is
interesting might vary depending on the contexts. However, a common
assumption is that patterns that are particularly frequent must hold some
valuable information. Moreover, in the last years, the data mining community
showed increasing interest and research effort on mining patterns that repeat
periodically.
The Periodic subgraph mining problem, which is the subject of this thesis, is a
combination of both these aspects, and finds its application in several domains.
In fact, this problem aims at the discovery of frequent periodic interactions
among the members of a population whose behavior was observed over time.
The interactions among members of the population are modeled as edges E
between vertexes V of a graph. The dynamic network consists of a series of T
timesteps for each of which there is a corresponding graph that describes the set
of active interactions.
This thesis presents ListMiner, an algorithm for the basic Periodic subgraph
mining problem. Its time complexity is O((V+E) T2 ln (T /σ)), where σ is the
minimum number of periodic repetitions to report a candidate subgraph in
output, showing an improvement of a factor T with respect to the state-of-the-
art PSEMiner. Experimental evaluation of the performances of the two
algorithms, on both real world and artificial datasets, confirmed the theoretical
analysis, and also showed ListMiner to be much faster in practice when high
and medium density datasets are analyzed.
Another algorithm is proposed to solve a slightly different problem, where the
periodicity has stronger requirements, as in the string framework, and some
disruption in the composition of the subgraphs is allowed. Experimental results
on two real dynamic networks demonstrate the applicability of this approach.
To conclude, the results of a qualitative analysis of the subgraphs that were
extracted by the two proposed algorithms are reported and discussed.

4

Index

Sommario ... 2

Abstract .. 3

Index ... 4

1 Introduction .. 6

2 Problem definition ... 11

2.1 Preliminaries .. 11

2.2 Basic formulation.. 14

2.3 Parsimonious formulation ... 14

3 Complexity of Mining Periodic Subgraph .. 16

4 PSEMiner (Lahiri and Berger-Wolf’s algorithm) ... 24

4.1 Data structures ... 24

4.2 Description of the basic algorithm ... 25

4.3 Extension to the basic algorithm .. 29

4.3.1 Mining parsimonious PSEs. .. 29

4.3.2 Including smoothing .. 29

4.3.3 Sorted descriptor list ..30

4.3.4 Lazy tree update ...30

4.3.5 Using a timeline ... 31

4.4 Space and time complexity ... 32

5 ListMiner ... 33

5.1 Preliminaries ... 33

5.2 Data structures ... 34

5.2.1 List .. 35

5.2.2 Listnode .. 35

5.2.3 Bidimensional array ... 35

5.2.4 Subgraph hash map ... 35

5.3 Parameters .. 36

5.4 Description of the algorithm .. 36

5.4.1 Update algorithm ... 37

5.4.2 Subsumed algorithm ... 40

5.4.3 Example... 40

5.5 Correctness ... 45

5.6 Description of the implementation .. 47

5.7 Time and space complexity .. 48

5

6 Experimental evaluation ... 50

6.1 Datasets description ... 50

6.1.1 Real data ... 50

6.1.2 Artificial data.. 50

6.2 Experimental Time Analysis .. 52

6.3 Experimental Space Analysis ... 56

6.4 Mined Patterns Analysis ... 57

6.4.1 Periodic Pattern distribution and Support values 57

7 Period mining ... 65

7.1 Problem definition .. 65

7.2 Complexity of periods mining .. 66

7.3 Description of the algorithm .. 66

7.3.1 Correctness ... 68

7.3.2 Space and time complexity .. 68

7.4 Experimental evaluation .. 68

7.4.1 Running time and space occupation ... 68

7.4.2 Patterns and periods distributions .. 69

7.4.3 Analysis of results .. 72

7.5 From data to knowledge ... 73

8 Conclusion ... 74

9 Acknowledgements ... 76

10 References ... 77

6

1 Introduction

Since early Eighties, the so called Digital Revolution has dramatically changed
our life style taking advantage of major breakthroughs in all fields related to
information and communication technology.
From an engineering perspective, the way information is stored, retrieved,
discovered, kept secure or shared, are subject of great research interests for both
the Academy and the Industry.
Recent researches estimate that the amount of information in the world doubles
every 20 months [33]. The growth in the size of digital datasets naturally
produced a compelling need for the design and development of methodologies
to be able to analyze such data using automated processes.
Data mining is the discipline that studies techniques to extract useful
information from data. Several approaches can be used for fulfill the analysis,
each of which might be more indicated than others depending on the data to
mine. Among the most important techniques one can find neural networks,
clustering, genetic algorithms, decision trees, and support vector machines.
According to Washio e Takoda “the field of data mining has developed as a

novel field of research with the purpose of checking remarkable research

issues, and then creating real life applications” [38].
It is then important to underline this strong connection to real life applications
among which one can cite surveillance, fraud detection, marketing, and
scientific discovery.
While early data mining techniques were mainly relying on database tables, in
the last years many studies have been devoted to different types of data, such as
semi-structured data (HTML and XML), symbolic sequences, ordered trees and
relations.
The main goal of data mining algorithms is knowledge discovery. Knowledge
discovery is based on the identification of interesting patterns in a dataset. The
definition of what is interesting might vary depending on the contexts.
However, a common assumption is that patterns that are particularly frequent
must hold some valuable information. For example, in Market Basket analysis
[6], where the purpose is to study the purchase behavior of customers, the
patterns of interest are defined by frequent itemsets that represent the basket of
items that are usually bought.
In the past few years researchers dealt especially with the need for mining
structured data, and graphs are probably one of the best studied structure in the
field of computer science and discrete mathematics, which helped graph based
data mining to become so popular.
The field of graph mining is very vast. Here follows an overview of the main
techniques and of the most interesting problems that have been raised in this
very interesting field.
The first studies on graph mining dates back to the middle of the 1990s, when
Cook and Holder (SUBDUE) [34] and Yoshida and Motoda (GBI) [35] proposed

7

some methods to discover concepts from graph representations of some
structures.
SUBDUE was based on searching, at each iteration, the best subgraph to
compress an input graph G. The algorithm uses a bottom up approach,
beginning with a subgraph S composed by a single vertex that grows
incrementally by adding new nodes. When the best subgraph is found, the
subgraph is flushed in output and the next iteration starts using the G\S as a
new input. GBI (Graph based induction) was also based on the idea of deriving
a minimal size graph, similarly to SUBDUE, by replacing each interesting
subgraph with one vertex, thus compressing the graph at each iteration. At
every step the algorithm finds a pair of connected vertexes to join in a single
node.
However, both these works used greedy search reporting in output solutions
that could not be guaranteed to be optimal.
In 1998, Dehaspe and Toivonen suggested the use of an Inductive Logic
Programming (see below for a description of this method) based algorithm
(WARMR) [36] that enabled a complete search for frequent subgraphs from
graph data. The subsequent work of Nijssen and Kok in [21] proposed a more
efficient algorithm for the same problem.
In 2001, De Raedt and Kramer presented MolFea [37], an algorithm to find
characteristic paths from a given graph. MolFea was based on a complete search
of the paths in the input graph using a lattice structure.
Inokuchi et al. [15] and Kuramochi et al. [16] studied the problem of finding
subgraphs that are shared by a set of input graphs applying concept deriving
from itemset datamining.
Several other algorithms have been developed for the purpose of graph mining,
and they can be classified in five categories: greedy search, inductive logic
programming, inductive database, support vector machine and complete search
and direct methods.
Early days techniques were mostly based on greedy search [34][35], that falls in
the Heuristic search and direct matching category. The algorithms that belong
to this category can be further classified into two sub-categories depending on
the order follow to analyze the elements: depth-first search (DFS), which is used
because it can save memory consumption, and breath first search (BFS), which
is used because is less time consuming although it uses more memory.
Inductive Logic Programming (ILP) [39] is based on formulating some
hypotheses and then seeking the hypotheses to justify the observed fact. The
main advantage of this method is the introduction of background knowledge to
derive other knowledge represented by “first order predicate logic”.
Inductive database [40] uses mining approaches to pre-generate inductive
rules, relations or patterns. The results are stored in a database which is then
queried by using a query language designed to express conditions to retrieve
patterns from the database.

8

Support Vector Machines (SVM) [41] include a set of supervised learning
methods that consists on classifying the data input in a multidimensional
feature space.
The last category is represented by Complete search and direct methods, that
perform a complete level-wise search of the dataset. This approach is often used,
for example, in market basket analysis. The most popular method of this
category is the Apriori based Graph Mining (AGM) [15]. This algorithm starts
from frequent graphs composed by a single vertex, and then it builds larger
graphs in bottom up manner combining graphs of smaller sizes.
In the last ten years, the data mining community showed increasing interest and
research effort on the problem of Periodic pattern mining. This kind of analysis
is of great interest in several domains [3][4][5], among which transactional
datasets, daily traffic patterns, meteorological data, stock data, event logs, web
logs, power consumptions.
Therefore, mining periodic patterns is one of the most important tasks in data
mining and knowledge discovery.
Among the most interesting results on periodic pattern mining, Ozden et al. [7]
analyzed the problem of discovering cyclic association rules that could display
regular cyclic variation over time, while Bettini et al. [9] proposed an algorithm
to discover temporal patterns in time sequences.
Partial periodic pattern mining is another very interesting problem since it
deals with approximation. After the seminal work of Han et al. [8] several others
followed [15][20][29]. In particular, Yang et al. in [10] proposed an algorithm to
mine all asynchronous periodic patterns, both in a sequence of events and in a
temporal datasets with multiple eventsets.
Another general model to mine partial periodic patterns is proposed by Huang
and Chang in [11]. In their model, each valid pattern must have a maximum
number of disruptions and must contain a minimum number of contiguous
matches. SMCA [12] is a suite of four algorithms which enumerates complex
patterns.
Another topic of research in pattern mining is the introduction of a probabilistic
model to assign a value for the degree of surprise of every occurrence of a
pattern. In [14] Yang et al. proposed an algorithm, InfoMiner, to mine surprise
patterns according to a new measure of surprise called information gain.
Pattern mining problems arise also in the contexts of dynamic networks.
Dynamic networks are a sequence of graphs that represent the change in time of
the behavior of a fixed population. The members of the population are
represented by vertexes. An interaction between two members at some
particular time is indicated by the presence of an edge between the two vertexes
in the corresponding graph.
The population involved in mining dynamic networks can be of disparate
nature: humans [22][23][24], animals [13], networked computers [22]. Social
network [21] analysis is probably the most famous example of dynamic network

9

analysis. It is also worth mentioning that the concept of interaction depends on
the application.
Among the analysis that can be performed on dynamic network, finding
periodicity is one for the most interesting. For example, periodic subgraphs can
correspond to seasonal associations of animals that are of great interest in
biological studies [19][13]. Another example of application is the discovery of
human periodic behavior in order to understand how humans communicate
using current technologies: computer networks [22], mails [23][24], phones
[25], social networks[21].
In this context Lahiri and Berger-Wolf in [1] [2] proposed a new mining
problem to find predictable behaviors in dynamic social networks. To this
purpose it is necessary to identify periodically recurring interaction patterns in
networks that change over time. Their solution involved mining all periodic
subgraphs that occur a minimum number of times. Here they tackled the notion
of closed subgraph mining to lower the redundancy in the definition of a
frequent pattern, a concept that has been widely exploit in frequent pattern
mining [26]. For this purpose they followed Occam’s Razor principle of
parsimony.
The work of this thesis focuses on periodic mining in dynamic networks. The
main contribution is the design and development of ListMiner, an online
algorithm that improves the worst case time performances of the algorithm
[1][2] by a factor proportional to the number of timesteps in the dynamic
network.
A further contribution is the development of an algorithm to extract subgraphs
that are periodic in the same sense as periodic strings are defined [30].
Experiments confirmed the theoretical analysis and allowed also for qualitative
analysis of the extracted periodic subgraphs.

This thesis is organized as follows:

• Chapter 2 presents the periodic minim problem in dynamic networks as
defined in [1][2]. This section contains some preliminary definitions
related to dynamic networks, as well as some graph theoretic properties.

• Chapter 3 shows the proof contained in [1][2] that the problem is in the
computational class P. The proof consists on deriving the upper bound on
the maximum number of possible periodic subgraphs in the worst case.
The chapter also contains a proof that in the case of “approximate”
periodicity the number of patterns becomes exponential.

• Chapter 4 describes the details of the Lahiri and Berger-Wolf’s algorithm,
PSEMiner.

• Chapter 5 presents ListMiner, the algorithm proposed in this thesis that
reduces the worst case complexity by a linear factor in the number of
timesteps of the dynamic network.

10

• Chapter 6 reports experimental results comparing and analyzing the
performance of the two algorithms (PSEMiner and ListMiner) using real
and artificial datasets.

• Chapter 7 presents a new algorithm for string-like periodicity mining in
dynamic networks.

11

2 Problem definition

2.1 Preliminaries

This chapter presents the periodic graph mining problem as defined by Lahiri
and Berger-Wolf [1][2].
The purpose is to study periodic interactions between elements that belong to a
population. This can be modeled as a graph where the set of vertexes V ∈ N are
the entities of population, and the set of edges E represents the interactions
between elements. The key observation is that in this context vertexes are
uniquely labeled (since they represent a specific member of the population).
This is very important from a computational point of view because various hard
graph problems such as maximum common subgraph and subgraph
isomorphism are reduced to polynomial time [17][27].

Definition 2.1 For a graph G = (V, E) with unique vertex labels, the set
representation R for G is formed by mapping each vertex and edge to a unique
element in R, where R ⊆ N.

Since each vertex is uniquely identified by its label, it follows that each edge is
also uniquely identified by its endpoints. This allows each vertex and edge to be
coded as a unique integer, even across different graphs over the same vertex set.

Fig. 2.1

The graph in figure 2.1 can be mapped in the following set representation R:
{1,2,3,4,5,6} where, for example, 1 can be vertex A, 2 vertex B, 3 vertex C, 4 edge
A-B, 5 edge A-C and 6 edge B-C.
It can be trivially shown that two graphs (or timesteps) will result in the same
set R if and only if they have identical vertex and edge sets. Given two graphs G1
and G2, with unique vertex labels, testing whether G1 is a subgraph of G2 or vice
versa is equivalent to check whether the corresponding set representations R1
and R2 are subsets of each other.
We observe that for a set of graphs with vertexes unique labels, finding the
maximal common subgraph (MCS) is equivalent to calculate the maximal
intersection of their set representations (see figure 2.2).
For a set of graphs <G1, . . . , GT>, a vertex or an edge is part of the MCS if it is
part of every Gt . As a result, the MCS always exists, is unique and well-defined,

12

but could possibly be the empty graph with no vertexes or edges. We use the
intersection operator ∩ to denote the MCS of two or more graphs.

Fig. 2.2: in this example G1 and G2 are encoded into two sets of integer R1 and R2. The example
shows the calculation of the MCS using the set representation.

Interactions are recorded over a period of time in which the population is
observed. The time span is divided into T discrete timesteps of equal duration.
These data constitutes a dynamic network.

Definition 2.2 A dynamic network G=<G1,…,GT> is a time-series of graphs,
where Gt=<Vt,Et> is the graph of interactions Et observed at timestep t, among
the set of uniquely labeled entities Vt⊆V.

Fig. 2.3: an example of a dynamic network with 5 timesteps.

Definition 2.3 Given a graph G=(Vg ⊆V, Eg ⊆V x V), G is periodic with period
p, if G is a subgraph of <Gx, Gx+p,….,Gx+np>, where 0≤x≤T, 1≤n≤ ⌈(T-x)/p⌉.

For example in Figure 2.3 the graph with vertexes B and D and edge B-D is
periodic with period 1 because it occurs in timestep 1 and timestep 2. It is also
periodic with period 3 because it occurs in timestep 1 and timestep 4.

13

Studying large populations, the number of periodic patterns could be very large.
Moreover, graphs that appear few times are not significant for the context. For
these reasons we are interested in patterns that appear at least a minimum
number of times.

Definition 2.4 For an arbitrary graph F=(Vf ⊆V,Ef ⊆V x V), its support set
in G, S(F) is the set of timesteps where F is a subgraph of Gt (F ⊆ Gt). F is a
frequent subgraph of G if |S(F)|≥ σ, where 1≤σ≤T is a parameter defined by
user.

For example in Figure 2.3 if we set σ=3 then graph B-D is frequent because it
occurs in 3 timesteps, but graph E-G is not frequent.
An important property is the so called downward closure property: if a graph F
is frequent, then all its subgraphs are also frequent.
This property is exploited by several algorithms in pattern mining, such as, for
example the well known Apriori algorithm[6].
Given a dynamic network, the number of subgraphs in it is exponential in the
number of vertexes. So a straightforward enumeration and subsequent check for
frequency and periodicity is not a feasible solution. The notion of closed
frequent subgraphs is introduced to minimize the redundancy in the network.

Definition 2.5 A graph F=(Vf ⊆V, Ef ⊆V x V) is a closed frequent subgraph if
there is no other subgraph Y where F is a proper subgraph of Y that S(Y) = S(F).

For example the graph A-B in Figure 2.3 is not closed because it is a subgraph
of A-B-C that is a graph with the same support set.

Definition 2.6 Given a dynamic network G and an arbitrary subgraph
F = (V, E), a periodic support set of F in G, denoted SP = (i, p, s), is a maximal,
ordered set of s timesteps starting at ti with every two consecutive timesteps
differs of p positions.
 SP = (i, p, s) = <ti , ti+p, . . . , ti+p(s−1)> is subject to the following constraints:

1. Existence in G: F must exist at all timesteps in SP, i.e.,
∀t (t ∈ SP → F ⊆ Gt);
2. Minimum size: A periodic support set has to have at least two
elements, i.e., |SP| = s ≥ 2;
3. Temporal maximality: The support set cannot be extended in time
to contain F and still be periodic.

The phase offset of a periodic support set is defined as m = ti mod p.
Hence, 0 ≤ m < p.

14

A key difference in the definition of a support set for frequent pattern mining
and periodic pattern mining is that a single graph F can have multiple periodic
support sets to allow for multiple, disjoint, or overlapping periodic behavior.
Hence the notion of periodic subgraph embeddings is introduced.

2.2 Basic formulation

Definition 2.7 Given a dynamic network G, a periodic subgraph embedding

(PSE) is a pair <F, SP>, where F is an arbitrary graph that is closed over a
periodic support set SP with |SP| ≥ σ. The following list summarizes the
properties of a PSE:

1. Minimum support: |SP| ≥ σ ≥ 2.
2. Structural maximality: F is closed over SP, i.e., F is the MCS of SP.
3. Temporal maximality: SP is temporally maximal for F, i.e. there
are not other timesteps T where F ⊆T .

These properties allow the development of efficient mining algorithms, and
justify an independent treatment of the problem. Mining frequent closed
subgraphs is an elegant solution to the redundancy of the general frequent
pattern mining problem.

Definition 2.8 Given a dynamic network G and a minimum support threshold
σ≥2, the Periodic Subgraph Mining problem is to identify all frequent closed
subgraphs in G.

2.3 Parsimonious formulation

There is the possibility that a periodic subgraph embedding carries information
contained in other periodic subgraph embeddings. If a graph is periodic of
period p, is also periodic of period 2p and for every multiple of p and depending
on the threshold value, if they are frequent they will be put in output.
For example in Figure 2.4 the graph A-B is periodic with periods 1, 2, 3, 4. To
reduce the size of the output we want to eliminate PSEs with periods 2, 3, 4
because they are redundant.

A B

C

A B A B

D

A B

E

A B

F

Timestep 1 Timestep 2 Timestep 3 Timestep 4 Timestep 5

Fig. 2.4: the edge A-B is periodic in this network with period p = 1, 2, 3, 4. In a parsimonious
representation of the output the PSE with periods p = 2, 3, 4 should not be reported.

For this reason, the concept of subsumption is introduced.

15

Definition 2.9 For two periodic subgraphs F1 and F2 with respective periodic
support sets SP1= (i1, p1, s1) and SP2 = (i2, p2, s2), <F1, SP1> completely contains
or subsumes <F2, SP2> if all of the following conditions hold:
1. F2⊆F1
2. ti2≥ ti1
3. ti2+p2�(s2−1) ≤ ti1+p1�(s1−1)

4. p2 = k � p1 for some integer k > 0
5. ti,2 =ti,1 + l � p1 for some integer l ≥ 0

Condition 1 ensures that no information is lost. Condition 2 and condition 3
require that the support set of F2 is contained within the boundaries of support
set of F1, although they could be of different phase offsets and not overlapping at
all, or partially overlapping but of different periods. Condition 4 requires that p2
is a multiple period of p1. Condition number 5 guarantees that the initial
timestep of F2 is a timestep where F1 appears. This means that F1 and F2 have
compatible offset which ensure that they overlap.

Definition 2.10 A PSE that is not subsumed by any another PSE is a
parsimonious periodic subgraph embedding (PPSE).

Another condition can be added to the previous problem definition:

Definition 2.11 Given a dynamic network G and a minimum support threshold
σ ≥ 2, the Periodic Subgraph Mining problem is to list all parsimonious
periodic subgraphs embeddings in G that satisfy the minimum support.

Since real-world networks are unlikely to contain perfectly periodic patterns,
[1][2] presented a definition of what constitutes ‘near’ periodicity.

Definition 2.12 A noisy subgraph can exhibit a jitter in its period, that is, its
period is near-constant. Given a jitter value of J ≥ 0, the periodic graph mining
problem can be extended to account for noise as follows: SP (F) = <t : F ⊆ Gt>,
and ∀ i : |ti+1 − ti − p| ≤ J.

As it will be shown in chapter 3 the subgraph mining problem is in P. However,
including jitter the size of the output could become exponential in the number
of patterns, making the problem intractable.

16

3 Complexity of Mining Periodic Subgraph

This chapter presents the proof (taken from [1][2]) that the problems under
analysis, as they were stated in definition 2.8 and definition 2.11 are in P.
Moreover, a proof is proposed to show that allowing jitter, as explained in
definition 2.12, the number of discovered patterns could become exponential in
the number of timestep, making this version of the problem intractable.
To this purpose we want to highlight the importance of labeling the vertex with
unique labels, allowing graphs to be modeled as set of integers. As a direct
consequence, some NP-hard problems in graph mining become polynomial in
this context [18].
Starting with a dynamic network G, we must build the worst case network. For
this purpose the network must contain the maximum number of periodic
subgraphs at minimum support σ=2. This upper bound is a polynomial function
of the number of timesteps and the minimum support value.
The proof leads to the conclusion that mining all closed PSEs can be done in
polynomial time in the size of the input, proving that the mining (enumeration)
problem is in the complexity class P, when the graphs have unique vertex labels.
For the proof, the concept of projection of a discrete time sequence is
introduced to count the maximum number of PSEs in this class of dynamic
networks [28].

Definition 3.1 Given a dynamic network G, a projection πp,m of G is a
subsequence of graphs πp,m = <G1+m, G1+m+p, G1+m+2p, . . .>, where p is the period

of the projection and 0 ≤ m < p is the phase offset.

It should be clear from the definitions of periodicity and projection that any
periodic support set at minimum support σ is embedded in at least σ

consecutive positions of some projection πp,m.

Proposition 3.2 Let F be the Maximum Common Subgraph (MCS) of any s≥σ
consecutive positions of any projection πp,m. If F is not empty, then it is a
periodic subgraph, and the s consecutive timesteps from πp,m are part of a PSE
for F.

Proof: if the MCS F of any s ≥ σ consecutive positions is not empty, this implies
that F is maximal over a support set of at least σ periodic timesteps, which in
turn might or might not be temporally maximal for F. However, in either case,
the s timesteps are part of some valid periodic support set of size at least σ. This
is a sufficient condition to satisfy Definition 2.7 (excluding temporal
maximality), and thus F is a periodic subgraph.
 □

17

Corollary 3.3 In the worst case of the Periodic Subgraph Mining Problem, the
MCS of every s ≥ σ consecutive positions of every projection is not empty and
contains a unique PSE.

Proof: we now show that this is attainable using an explicit construction. We
place a different edge in each s ≥ σ consecutive positions of every projection to
ensure that each edge is part of a unique PSE. Let e be an edge created in this
way with support set SP in some πp,m. Considering only SP, we know that it is
temporally maximal for the edge e because e does not exist in any other
timesteps.
Furthermore, the MCS of SP is non empty because it contains at least the edge e.
Thus, each edge is part of a unique PSE whose support set is SP. Since a
different edge was placed in every s ≥ σ consecutive positions of every
projection, the number of PSEs is equal to the number of edges created. No
additional PSEs can be created since every permissible support set, i.e., with
support greater than σ, is already part of a unique PSE. Therefore, the described
structure is a worst case instance for its size.
 □

Example

We now present an example of worst case. The example has T=5 timesteps, and
threshold σ=2. We describe each graph with its integer mapping for ease of
explanation.

G1= <1, 6, 10, 13, 16, 17, 19, 23, 25, 27>
G2= <1, 2, 6, 7, 10, 11, 13, 14, 16, 20, 22, 24, 26>
G3= <2, 3, 6, 7, 8, 10, 11, 12, 13, 14, 16, 17, 18, 19>
G4= <3, 4, 7, 8, 9, 10, 11, 12, 13, 14, 16, 20, 21, 22, 23>
G5= <4, 5, 8, 9, 11, 12, 13, 14, 16, 18, 19, 24, 25>
G6= <5, 9, 12, 14, 16, 21,22, 26, 27>

In this dataset we can note that for every period p 1≤p≤5, for every sequence we
have a different element, hence a different PSE.
The next step is to explicitly calculate the upper bound on the number of PSEs
in the worst-case network instance. From Corollary 3.3, we only need to count
the number of s ≥ σ consecutive positions of every projection to derive this
bound. In order to do this, we first state the bounds on several other
parameters.

Proposition 3.4 In a dynamic network with T timesteps, the maximum period

of any periodic subgraph F with support at least σ is P = �(T-1)/(σ - 1)�.

Proof: For a given period p, we can have F ⊆ G1. In the other T-1 timesteps, for
every periodic embedding we have that F ⊆ Gj in σ–1 consecutive timesteps

18

<T1+p,T1+2p,….,T1+p(σ – 1)>. The last index 1+p(σ – 1) is smaller or equal than T,
because T is the index of the last timestep. From this inequality we derive
p≤(T-1)/(σ−1).

□

Proposition 3.5 In a dynamic network with T timesteps, the length of any
projection is |πp,m| = ⌈(T − m)/p⌉.

Proof: since πp,m = <G1+m, G1+m+p, G1+m+2p, . . .>, the projection starts after m

elements, and so there are T-m timesteps remaining. Since indexes of two
following timesteps differ by p positions, we have that the number of elements
in πp is ⌈(T − m)/p⌉.

□

Given the above expressions, an exact bound for the number of closed PSE can
be obtained by construction [1].

Theorem 3.6 In a dynamic network with T timesteps, there are at most
O(T2 ln (T /σ)) closed PSEs at minimum support σ.

Proof: From Corollary 3.3, the maximum possible number of PSEs in a dynamic
network at minimum support σ is equal to the number of s ≥ σ length windows
over all possible projections of the network. For a given projection πp,m and
value of s, the number of length-s windows over the projection is |πp,m|−s +1,
where |πp,m| is the length of the projection as defined in Proposition 3.5. Thus,
for a given value of s, the number of windows, of length s, over all projections
can be obtained by substituting the expressions from Propositions 3.4 and 3.5:

In the expression for the maximum period of a pattern from Proposition 3.4, the
parameter σ was replaced by s since we only want projections which contain at
least one length s window for any s. This constitutes the outer summation; the
inner summation is over all possible phase offset values m for a given period p.
Finally, the term inside the summation is the number of length s windows in

any projection, where |πp,m| is equal to
⌈
��⌉

 as proved in Proposition 3.5.

This expression is next summed over all possible values of s, which run from σ
to T, and the floor and ceiling expressions for an asymptotic closed form
approximation are relaxed.

19

From the above formula, we obtain the expression:

O(T2 ∑ �

(� ��)/(� – �)
��)

where ∑ �

(� ��)/(� – �)
�� is approximated by ln(

�
�).

Hence, the number of closed PSEs at minimum support σ is O(T2ln ��)

 □

Theorem 3.7 Periodic subgraph mining in dynamic networks is in P.

Proof: suppose to have an algorithm that outputs the maximal common
subgraph of every σ length window of every projection. Since the maximal
common subgraph can be found in time O(V+E) [27], the algorithm runs in

time O((V +E)T2 ln
�
�), and it is guaranteed to output every closed periodic

subgraph. Thus, the mining problem is in P, and the exact bound on the number
of closed PSEs is given in summation form in Theorem 3.6.
 □

An alternative proof of Theorem 3.6 was proposed in [2].

Theorem 3.8 In a dynamic network with T timesteps, there are at most
O(T2/ σ) closed periodic subgraphs at support exactly equal to σ.

Proof: For each projection πp,m the maximal common subgraph, of any σ
consecutive timesteps, if not empty, can be a unique maximal periodic
subgraph. Let s be the length of the projection. There are at most s− σ +1
possible windows of size σ in any projection. For every of these windows in the
worst case, there is a maximal periodic subgraphs that is also frequent.
Summing this expression over all possible values of m and p, we obtain the
following upper bound on the total number of possible maximal periodic
subgraphs:

20

Solving this expression, we obtain that there are at most O(T2 / σ) closed PSEs
at support σ.
 □

Since we are interested in closed PSE at minimum support, to prove Theorem
3.6 we have to sum all closed PSEs for every support σ’≥ σ.

Solving the previous expression we obtain O(T2ln ��) closed PSEs at minimum

support σ.

As mentioned in chapter 2, to avoid redundancy a new formulation of the
problem is proposed including the concept of parsimony.
As explained in [1] a naïve algorithm to mine parsimonious subgraphs compares

each of the O(T2ln ��) closed PSEs at minimum support σ with all other PSE

taking time O((V+E)(T2ln ��)2).

These complexity bounds do not hold in case jitter is allowed (see definition
2.12). In fact in this case the number of mined patterns could be exponential in
the number of timesteps. Below I propose two possible proofs for this
observation.

Theorem 3.9: The number of PSE when jitter is allowed is exponential in the
number of timesteps.

Proof: let us consider a dynamic network <G0, … , GT>, and fix a period p. The
following reasoning can be done: for every graph Gi, 0≤i≤T, the maximum
common subgraph MCS(Gi,Gi+p), if not empty, is a periodic subgraph (in this
case i represent the offset of a given projection).
Allowing jitter j, for every timestep Gx, where i+p-j ≤ x ≤ i+p+j, the MCS Mx
between Gi and Gx is a valid periodic subgraph. If every Gx has a different
common edge with Gi, every MCS Mx is different from the others. So there are
exactly 2j+1 different periodic subgraphs. Now, for each of these different 2j+1
subgraphs the same reasoning can be repeated.
In particular, for a single graph Mx, the MCS with every graph Gy, where x+p-

j≤y≤x+p+j, if not empty, is a valid periodic subgraph. As previously described,

21

if every Gy has a different common edge with Mx, there are other 2j+1 different
periodic subgraphs. This can be repeated for each previously identified graph
Mx, thus obtaining (2j+1)2 different periodic subgraphs.
For a given projection πp,i this process can be repeated for the maximum length
of the projection πp,i that is ⌈T-i/p⌉. Therefore the number of patterns discovered
could be (2j+1) ⌈T-i/p ⌉ for a fixed projection πp,i.

□

The proof could be done also by induction in the number of elements in a given
projection. The following proof describes the construction of the worst case for
the projection π1,0.

Base case:

The proof starts from Gj+1. Following the previous considerations, for every
graph Gx, where 1 ≤ x ≤ 2j+2, the MCS Mx can be calculated with every graph
Gy, where x+p-j ≤ y ≤ x+p+j having, in the worst case, 2j+1 different graphs.
Repeating this procedure for every Gx, we have in total (2j+1)2 periodic graphs.

Induction:

Assuming the property true for t-1, there are (2j+1)t-1 different periodic graphs.
Repeating the process described above, for each of the (2j+1)t-1 graphs, in the
worst case, when all MCS are not empty and different from each other, further
2j+1 periodic graphs are found. So, in total there are (2j+1)t different periodic
subgraphs.

□

22

The following figures present an example of what was explained above.

A

D

H

E

A B

F E

G

A C

I H

L

A D

N M

O

Timestep 5Timestep 3 Timestep 4

C

BO

N

M

L

I F

G

Timestep 1 Timestep 2

A

M

C

B

I

E

D

A

N

C

B

F

L

D

A

O

C

B

G

H

D

Timestep 6 Timestep 7 Timestep 8

Fig. 3.1: an example of dynamic network in which, setting jitter j=1 and σ=2, the number of

frequent and periodic pattern is exponential in the number of timesteps.

Suppose we are looking for periodic patterns with period p=3 and σ=2, allowing
jitter with j=1. Considering the offset i=1, both G1 and G2 are possible candidates
to be the first timestep of a PSE with period 3 and offset 1. For brevity we
consider only the case with G1 as first timestep. The next expected timestep is 4,
since we want find periodic patterns with period 3. Allowing jitter also timesteps
3 and 5 are possible candidates. The MCS G13 between G1 and G3 is equal to G3,
the MCS G14 between G1 and G4 is equal to G4, and the MCS G15 between G1 and
G5 is equal to G5. After timestep 4 the next expected timestep is timestep 7.
Allowing jitter also timesteps 6 and 8 are possible candidates. Therefore, for
each of the three periodic patterns (G13, G14, G15) the MCS between timesteps 6,
7, and 8 is a periodic pattern that is different from the others. In total, with
period 3, we have (2j+1)⌈(T-1)/p⌉-1=(3)2=9 periodic patterns. With respect to the
expression calculated in theorem 3.9, the exponent is decremented by one
because, for brevity, we do not have considered the case with G2 as first
timestep. Nevertheless, the number of patterns remains exponential in the
number of timesteps.

23

The following figures list the 9 periodic patterns described above:

Fig 3.2: all frequent and periodic patterns of projection π3,1 in figure 3.1 with σ=2 and j=1.

24

4 PSEMiner (Lahiri and Berger-Wolf’s algorithm)

The main characteristic of the algorithm proposed in [1][2] is the use of a data
structure called pattern tree. This structure maintains all PSEs seen up to
timestep t, and it also tracks subgraphs that might become periodic at some
point in the future.
At each timestep t, the graph Gt is red, and the pattern tree is updated with the
new information, which could involve modifying, adding and deleting tree
nodes.
The most important parameter of the algorithm is the maximum period Pmax.
When Pmax is restricted, the algorithm functions as an online algorithm,
retaining in memory only the parts of the dataset that it requires to calculate
periodicities.
However, in many situations this information is not available or relevant, such
as in streaming sensor data. In such cases, an unrestricted maximum period
value must be set. The unrestricted period places a large computational burden
on the algorithm, and requires that the entire dataset is retained in memory.

4.1 Data structures

The algorithm actually make use of five data structures:
• Pattern tree. It maintains all PSEs seen up to timestep t, and also tracks

subgraphs that might become periodic at some point in the future. The
nodes of the pattern tree are called treenodes.

• Treenode. Each treenode contains a different subgraph G and a list of
descriptors (see below for a detail description), one for each PSE
observed for subgraph G. There is a constraint that every treenode,
except the root, must observe: all descendants of a treenode for a graph F
are associated with proper subgraphs of F, but not all subgraphs of F are
necessarily its descendants in the tree.

• Subgraph hash map. It allows direct access to treenodes by associating
subgraphs with their corresponding treenode. This can be done because a

hashing function exists for graphs since the set representation R has a
global ordering by virtue of R ⊂ N.

• Descriptor. It is a representation of a periodic support set. Each
descriptor is associated with a treenode and it defines a unique PSE. Each
descriptor is a triplet (i,p,s) that stores the initial position of the observed
PSE, the period and the number of steps for which the periodicity hold
(support). The last element in the support set is the timestep tj=ti+p (s-1).
The next expected timestep is te=tj + p.
A descriptor, at timestep t, is alive if te ≥ t. A descriptor that is not alive
must be reported in output if it has enough support, and then discarded,
since it cannot change state and return alive in the future. A descriptor

25

where ti = tj is a special case called an anchor descriptor, as it does not
represent a periodic support set, but it could potentially become a PSE if
the associated subgraph is observed at some future timestep. An anchor
descriptor is always alive, unless Pmax is defined and t − ti > Pmax, in which
case the anchor can never lead to a valid PSE with period at most Pmax,
and is no longer needed.

• The algorithm also uses a two-dimensional arrays to store periods and
phase offsets of live descriptors.

4.2 Description of the basic algorithm

Initially an empty treenode is set at the root of the pattern tree. At each timestep
t, with associated graph Gt, the treenode is traversed with a breadth-first visit.
Only treenodes that can be modified by the newly acquired information are the
ones that are actually traversed. This excludes every treenode with subgraph F
for which the MCS(Gt,F) is empty, and all its descendant. The algorithm first
searches in its hashtable if the node already exists in the pattern tree for Gt. If it
does not exist, a new node is created in a position that does not violate the
subgraph constraint, or it is added as a new child of the root.
An anchor descriptor for graph Gt is then added to the corresponding treenode.
During the breadth-first traversal of the tree, one of the following three
conditions holds at each treenode N with graph F. Let C = F ∩Gt be the MCS of
Gt and F, and consider each descriptor of the treenode.

• Update descriptors: If F ⊆ Gt then F has appeared in its entirety at
timestep t. Let te the next expected timestep.

o If te=t then t is added to the support to ensure temporal
maximality;

o If te<t then the expected timestep has already been processed. If
the support of D is greater than σ, then D is written in output and
removed from the treenode.

o If te>t then the expected timestep has not been processed yet, so
nothing is done.

o If D is an anchor descriptor then timestep t can be considered as a
second occurrence and the descriptor D is updated: the period is
set to p = t − ti and the phase offset to m = (ti −1) mod p. If N does
not contain a living descriptor with the same period and phase
offset, D is added as new descriptor to the list of descriptors at N.

For every treenode N’ with graph F’ that is a child of N, since F ⊆ Gt

and F’ ⊆ F for the property of treenodes, we have F’ ⊆ Gt. So the
algorithm can update all descriptors of the subtree with root F
without calculating the MCS, thus saving computational time.

• Propagate descriptors: If C is not empty then a subgraph C of F

occurs at timestep t. Using the subgraph hash map, the algorithm
controls if a treenode for C exists, otherwise a treenode is created as a

26

child of N with subgraph F. The descriptors of N are copied in the new
node, and timestep t is added to their support sets if the next expected
timestep is t. If the treenode exists, then for each descriptor D, if the next
expected timestep te=t, t is added to support set. Otherwise, if te<t, D is
written in output if its support is greater than, or equal to σ, and D is
removed. If te>t no action is taken.

• Dead subtree: If C is empty, then Gt and F have no common subgraph,
and no descriptors at N are directly affected by the observation of Gt.
Furthermore, no treenode that is a descendant of N will have any
common subgraph with Gt either, since they are all subgraphs of F. The
subtree rooted at N is therefore eliminated from the rest of the tree
traversal.

Fig 4.0 shows the pseudocode of the function to update the tree.

Example

Here we show an example of the algorithm using the dataset in figure 2.3 (that
is reported again in figure 4.7) as input, and setting σ=2.

Fig 4.7: the input dataset.

27

 We start with the first timestep creating a single node that contains the graph of
the first timestep, and an anchor descriptor.

R

(A,B),(A,C),(A,D),(B,C),(B,D),(C,D)

S={1};p=0

Timestep 1

1

Fig. 4.1: description of timestep 1

We continue by processing the second timestep. First, node 2 is created, with an
anchor descriptor for the graph contained in the second timestep. Then another
node is created, which contains the MCS between the first two timesteps.

R

(A,B),(A,C),(B,C),(B,D)

(A,B),(A,C),(A,D),(B,C),(B,D),(C,D)

S={1};p=0

S={1,2};p=1

(A,B),(A,C),(B,C),(B,D),(C,E),(D,E)

S={2};p=0

Timestep 2

1

2

3

Fig. 4.2: description of timestep 2

In the next step of the algorithm a new node (node 2 of Figure 4.3) is created for
the graph at timestep 3, holding an anchor descriptor starting at t=3. This node
must be a child of node 1, since it is a subgraph of the graph in node 1. From
node 1, node 2 inherits the descriptor starting at t=1, which can be extended
both with period p=1, and with period p=2. Finally, the old node 2 (Figure 4.2)
is deleted because its next expected time is t=3, but the subgraph does not
appear in its entirety at this timestep. However, since its support equals the
threshold, it must be reported in output before being discarded.

28

Fig 4.3: description of timestep 3

Then node 5 (fig 4.4), with the MCS between node 1 in fig 4.3 and G4, is created,
with the descriptor with period p=3 (timesteps 1 and 4). The descriptor of the
node 2 in fig 4.3 that refers to period p=1 is no longer valid, so the subgraph is
reported in output (its support is 3) and the descriptor is discarded.
The MCS between node 2 in fig 4.3 and G4, leads to the creation of node 6,
where only the vertex B occurs with period p=1. The MCS with node 3 in fig 4.3
gives again the subgraph with just the edge (B,D). Since this graph is already in
the pattern tree the algorithm does not create a new node but only the
descriptor with period 2 and support {2,4}.

Fig 4.4: description of timestep 4

The last timestep refers to figure 4.5. A new node with graph G5, and an anchor
descriptor, is inserted as a child of the root. The MCS with node 1 in figure 4.4,
gives the vertex A. The newly created node 6 in figure 4.5 will inherit a
descriptor for a subgraph occurring at t=1 and t=5, therefore with period p=4.
The MCS with node 2 in figure 4.4 gives a new node with vertexes A and E.
Node 7 in figure 4.5 is therefore inserted as child of node 3 (figure 4.5) with the
corresponding descriptor.

29

The MCS with node 3 in figure 4.4 is the edge (F,G). A new node 8 (figure 4.5) is
created, with inherited descriptor for p=1.
Apart from the anchor descriptor, the other descriptor of node 4 in figure 4.4
must be flushed in output if frequent, and then deleted, because the graph at
node 4 in fig 4.4 does not appear in its entirety.
The MCS with node 5 in figure 4.4 is the empty set, however the next expected
times for its descriptors are t=7 and t=6, so nothing happens.
 The MCS with node 6 in figure 4.4 gives the empty set. Since its only descriptor
is no longer valid, it must be reported in output because frequent, and then the
node is discarded.

Fig 4.5: description of timestep 5

Finally, the tree is traversed and the frequent descriptors are flushed in output
along with their subgraph.

4.3 Extension to the basic algorithm

4.3.1 Mining parsimonious PSEs.

For mining parsimonious PSEs an indicator bit is added to each descriptor to
indicate if the descriptor is subsumed. This bit is initially cleared when the
descriptor is created. When a descriptor D that belongs to a treenode N have to
be put in output, the indicator bit is checked: if it is clear then D is compared to
all other descriptor at N. If D is subsumed by another descriptor, it is not
written to the output. If D subsumes some other descriptor D’, the subsumed bit
for D’ is set to 1. If the support of D increases in the future, its subsumed bit is
cleared. If the indicator bit is set, the descriptor is not written in output.

4.3.2 Including smoothing

Since real-world networks are unlikely to contain perfectly periodic patterns,
Lahiri and Berger-Wolf [1][2] used smoothing as a mechanism for
accommodating imperfect periodicity. Given a user-defined smoothing

30

parameter S ≥ 1, the dynamic network G=<G1,G2,…GT> is mapped in a new
network G’, in which each element Gi’= Gi ∪ . . . ∪ Gi+S

In addition, the following two conditions handle the removal of artifacts
introduced by the smoothing process.

1. The minimum period Pmin is set to S.
2. PSEs of the same subgraph that share the same period, and that differ
in their starting positions by at most S −1 timesteps, are merged together.
In other words, only the PSE with the highest support is retained. This
can be done as a post-processing step, or it can be incorporated into the
mining algorithm itself.

By introducing this smoothing mechanism, they allow a window of timesteps
within which the order of events does not matter. No smoothing is performed at
S = 1.

4.3.3 Sorted descriptor list

The list of descriptors can be sorted by the next expected timestep. So, for a
given timestep t, only descriptors which are expected at or before t will be
examined, cutting down the number of descriptors that need to be examined
during each tree update. The added computational cost is that of having to sort
the list of descriptors after each update. Since the number of descriptors per
treenode is generally not very large, the computational overhead is minimal in
practice.

4.3.4 Lazy tree update

Most of the running time is due to the computation of the intersection between
graphs. Although the maximum common subgraph of two graphs is calculated
in linear time in the number of vertexes and edges, the size of the graphs is such
that this operation results in a relatively expensive computation. Thus, to
improve the practical efficiency of the algorithm, it is possible to delay the
computation of intersections until it is absolutely necessary. In a treenode N an
intersection at timestep t is absolutely necessary if there is a descriptor D in
which the expected timestep is t. This variant of Lahiri and Berger-Wolf
algorithm is shown in figure 4.6.

31

Fig 4.6: the algorithm for lazy tree update described in section 1.3.4

4.3.5 Using a timeline

The timeline is a mechanism that associates each future timestep with a list of
treenodes that have at least one descriptor expected at that timestep. It can be
dynamically updated at a not significant cost (constant or logarithmic) per
treenode update, and stored in linear space in the number of treenodes. After
the tree update for timestep t, all treenodes that are still associated with
timestep t are guaranteed not to have been visited during the tree update, and
have at least one descriptor which is no longer periodic. These treenodes can
then be visited and the invalid descriptors can be removed. The time required is
proportional to the number of descriptors to be removed. Thus, at the end of
each tree update operation, the treenode only contains descriptors that are alive
at the next timestep. This ensures that the pattern tree contains a minimal
number of descriptors and treenodes at any given timestep.

32

4.4 Space and time complexity

Let N the number of nodes in the treenode, Pmax the maximum period, and G be
the number of frequent periodic subgraph.
From corollary 3.3, the worst case is when we have the maximum number of
periodic subgraph at minimum support σ=2.

Space complexity: let N be the number of treenodes and G the number of
descriptors in the tree. Every node of the tree has an associated graph of size
O(V+E). Moreover the algorithm uses a two-dimensional array of size P2

max to
store periods and phase offsets of live descriptors (Pmax offset for every of the
Pmax period). The overall space complexity is therefore O((V+E)N+P2

max+G).
From proposition 3.6, in the worst case we have O(T2 ln (T /σ)) number of
different periodic subgraphs. Since in the worst case we have that each
descriptor corresponds to a unique PSE, and in every treenode there is only one
descriptor, we have N=G=O(T2 ln (T /σ)). Since at most one descriptor is added
per timestep, the asymptotic bound on the total number of nodes and
descriptors does not change.
In the worst case the space complexity is O((V+E+ P2

max) T2 ln (T /σ)), and if
Pmax is unresctricted (Pmax=O(T/σ)) the total space complexity is
O((V+E) T2 ln (T /σ)+ T4 ln (T /σ)).

Time complexity: For every timestep t the tree is completely traversed. Thus,
time complexity of the algorithm involves traversing each descriptor in the tree
once for each timestep, and calculating the MCS at each treenode. So the time
complexity is O((V+E)T N). In the worst case the number of the nodes is equal
to the number of PSEs that are O(T2 ln (T /σ)), so the time complexity in the
worst case is O((V+E) T3 ln (T /σ)).

33

5 ListMiner

This chapter presents the main contribution of the thesis: the design and
development of ListMiner, an algorithm that improves the worst case time
complexity of PSEMiner by a factor T.
From the previous description in Chapter 4 it can be observed that at each
timestep t PSEMiner must traverse every node of the pattern tree. At each node
u the following operations occur:
 1) the MCS between the graph under analysis Gt, and the graph described at
node u is computed;
2) the corresponding node v in the pattern tree is searched for;
3) each descriptor at node v is then checked for consistency of periodicity in t
(basically its next expected time must be equal to t). If so, the descriptor is
updated, otherwise either it is deleted or no action takes place. If no action is
taken, the time consuming computation of the MCS was useless. This problem is
due to the fact that, with this approach, at the time of the computation of the
MCS it is not known if the resulting subgraph would be periodic or not.
The key idea of the algorithm that I propose in this thesis is to calculate the MCS
only when necessary. To this end I have been inspired by proposition 3.2 to
consider only timesteps in which the graphs to intersect can contain a periodic
subgraph. Consider a fixed period p, every timestep t belongs to a single
projection πp,m, where m=(t mod p). Therefore every projection can be
considered separately, since graphs that belong to different projections cannot
be periodic with the same period p.
More precisely, for a fixed period p, the T timesteps are partitioned into p
projections. For example, setting p=1, there is a single projection that contains
all the timesteps. Setting p=2, there are two projections: π2,1=<G1,G3,G5,G7,…,>

and π2,0=<G2,G4,G6,G8,….>, etc.
Afterwards, for every projection, a list is created. This list contains the
intersection between every possible sequence of consecutive graphs. For
example if the projection is π2,1 the list is composed by {G1},
{G3},…,{G1∩G3},{G3∩G5},….,{G1∩G3∩G5} and so on. In this way every possible
PSE is generated, as explained in proposition 3.2. By iterating the process for
all possible choices of period p, all PSE will be eventually found.
In the following sections these concepts are formalized, and a detailed
description of the algorithm is given.

5.1 Preliminaries

Definition 5.1: For a given projection πp,m=<G1’,G2’,…,Gx’>, where Gj
’= Gpj+m

and x=⌈(T−m)/p⌉, we call run Si,j every subsequence of consecutive graphs from
πp,m. For two fixed indexes i and j, 1≤i≤j≤x we have Si,j=< Gi’,…,Gj’>.

Proposition 5.2: For a given period p, every timestep Gt belongs to a single
projection πp,m where m=t mod p.

34

Proof: by definition, Gt ∈ πp,m if t=qp+m for some q. It is known that for every t
∈ Z there is a unique remainder m ∈ N such that t=qp+m where p,q ∈ Z and
p>0. Since m is unique, Gt belongs only to πp,m.

 □

Proposition 5.3: For a given period p, there are exactly p projections.

Proof: from the previous proposition the number of all possible values of
remainders m is p.

 □

It follows from proposition 3.2 that in a projection πp,m, the MCS of any s ≥ σ
consecutive positions, if not empty, is a periodic subgraph, and the s consecutive
timesteps are part of a PSE.
Therefore the purpose of the algorithm is to consider, for every period p, every
projection πp,m and computing the MCS M between all graphs of every run Si,j of
length at least σ, and saving only subgraphs which are temporally maximal.

Using the following property the MCS of every run can be calculated in time
V+E.

Property 5.4: Given a run of graphs <Gi, Gi+1,….,Gx> where 1≤i≤x≤t, the MCS
of this run is:

MCS of <Gi, Gi+1,….,Gx> = MCS of < MCS of < Gi, Gi+1,….,Gx-1>, Gx>.

Proof: this property can be proved using the associative property of intersection
between sets. Since from definition 2.1 every graph can be considered as a set of
natural numbers, the intersection of <Gi, Gi+1,….,Gx> is equal to the intersection
between < (Gi, Gi+1,….,Gx-1), Gx >.
Using this theorem, the MCS of a given run Si,j, can be obtained calculating the
MCS between Si,j-1 and the j-graph of run Si,j. The time needed for such
intersection is V+E.

 □

5.2 Data structures

In order to mine all periodic, frequent subgraphs, the algorithm uses three
primary data structures: lists, listnodes and a bidimensional array that contains
every list. To mine only parsimonious subgraphs another data structure is
necessary: a hash map.
Every list is composed by some listnodes and it is associated to a specific
projection πp,m. Every listnode describes a run Si,j of the projection and it is used
to describe a single temporally maximal PSE.

35

5.2.1 List

Every projection πp,m, where 1≤p≤Pmax , 0≤m<p, is associated to a specific list.
Every node of the list contains the MCS between all graphs of a specific run in
projection πp,m. Precisely, at timestep t, every list L contains in its listnodes in
reverse order (St,t in the first node of the list and S1,t in the last node) the MCS of
all runs Sx,t 1≤x≤t which graph is temporally maximal. Therefore, by
construction, the list is subjected to a single constraint: each node N in the list
has a graph that is properly contained in the graph of its predecessor.
This property allows efficient traversal of every list by the mining algorithm, and
also allows the list to be built and manipulated quickly.

5.2.2 Listnode

Given a list L for a single projection πp,m, every listnode describes a single PSE
and it is composed by:

• Start index: this is the index of the first timestep of the PSE;
• End index: this is the index of the last timestep of the PSE;
• Graph G: it is the graph that is associated to the PSE. This is the MCS

between all graphs from timestep Tstart to timestep Tend whose indexes
differ by p (the graph is periodic with period p);

• Support: it is the number of elements of the support set. It can be
obtained in the following way: Support = (Tend - Tstart)/p, and is pre-
computed because it is used several times during the processing.

This data structure is equivalent to the descriptor used in Berger Wolf ’s
algorithm.

5.2.3 Bidimensional array

The bidimensional array A is used to store all lists. The list associated to the
projection πp,m is stored at position A[m][p]. Using A allows to perform list
lookup in constant time.

5.2.4 Subgraph hash map

This data structure is used for mining parsimonious PSE only. It uses a graph as
a key. For every key the associated object is a list of descriptors. Descriptor is a
triple <p,s,e> where p is the period, s is the first timestep and e is the last
timestep of the PSE. This information is added to the hash map when a listnode
is flushed out of its list.
Since two PSE could have the same graph, the object associated to every key is a
list of descriptors. Before writing in output a PSE P with graph G, G is used as a
key to access to the hash map. If it exists in the hash map, the corresponding list
is traversed, and for every descriptor D the algorithm controls if D subsumes P.
If so, P is subsumed, otherwise it is printed in output and its descriptor is added
to the list. If it does not exist in the hash map then P is the first PSE with graph
equal to G. This means that all other PSEs with graph equal to G will have a

36

period greater than the period of P. Therefore P can be safely printed in output
because it cannot be subsumed.

5.3 Parameters

The algorithm is a single-pass, polynomial time and space algorithm for mining
all closed PSE in a dynamic network. It does not require any parameters, but it
optionally accepts the following:

• Minimum support threshold σ ≥ 2 (default: 2).
• Maximum period Pmax (default: unrestricted).

The optional Pmax parameter limits the maximum period of mined patterns, thus
reducing the number of projection to consider, with a consequent speed up of
the algorithm.
Minimum support threshold σ is a parameter that is used for mining frequent
subgraphs (see definition 2.4). Its value depends on the context and on the
dataset. By increasing σ the size of the output is reduced and the algorithm is
faster.

5.4 Description of the algorithm

The algorithm starts creating a bidimensional array A that contains, in every
cell, an empty list. Timesteps are red and stored in an array called input.
For each timestep t the algorithm finds, for each period p, the list L stored in the
bidimensional array in position A[p][m] where m=t mod p.
To begin with, a new listnode N=(Gt,t,t,0) is added at the head of the list
because it could be the first element of a future PSE. Thereafter, the function
update is called. This function calculates the MCS between the graph in each
listnode and Gt. Whenever a PSE of a subgraph node is detected, it is checked
for subsumption, and eventually printed in output.
When all timesteps have been elaborated, some listnodes could remain in the
lists. This is because the next expected timestep for some graphs could be equal
to or greater than T. Therefore the algorithm must further control if every PSE
associated to these nodes is subsumed by another PSE previously calculated
and, if it is not subsumed, it must report it in output.
The algorithm is implemented using three functions: Miner is the main
program; update is the function to update a single list; subsumed is a function
to control if a specific PSE can be printed in output (the subgraph is frequent
and not subsumed).
This is the complete version that discovers all frequent periodic and
parsimonious subgraphs. For mining all frequent and periodic graphs without
subsumption, the function subsumed must not be called. In this case the
algorithm only controls if the support of every subgraph is greater than, or equal
to σ.

37

Algorithm Miner(input)

Require: input is a vector that in position input [i] = Gi+1. We have T timesteps, from 0
to T-1. Let L.begin() and L.end() be the first and the last element of the list, L.iterator()
the element pointed by the iterator.
1: A ← new matrix;
2: H ← new subgraph hash map;
3: for (t ← 0 to T-1) do
4: Gt ← input[t]
5: for (p←1 to min (t, Pmax)) do
6: phase ← t mod p
7: L←A[p][phase]
8: N= new ListNode(Gt,t,t, 0)
9: L.push_head(N)
10: update(L).
11: end for
12: end for
13: for (i ← 0 to Pmax) do
14: for (j ← 0 to i) do
15: L←A[i][j];
16: iterator ← L.begin()
17: for iterator to L.end() do
18: Gx ← L.iterator()
19: if(!Subsumed (Gx,i)and Gx.support() ≥ σ) then
20: print Gx
21: endif
22: end for
23: end for
24: end for

5.4.1 Update algorithm

This section describes the update algorithm, which is the core of the mining
process. For every timestep t all the lists associated to projections πp,m, where
p≤min(t,Pmax) and m=t mod p, are updated with the new information contained
in Gt. The update process starts by adding a listnode for Gt at the head of the list
L. This listnode is built as follows: the graph is set to Gt , start and end indexes
are set to t because t is the first and the last index of the run, and the support is
set equal to 1. This accounts for the possibility that Gt in its entirety is the first
occurrence of a (future) periodic subgraph.
During the traversal of the list, one of the following three conditions holds at
each listnode N with graph F. Let C = F ∩ Gt be the MCS of Gt and F.

38

• If F ⊆ Gt , i.e. F = C, then F has appeared in its entirety. Therefore the
MCS is F, and the listnode is updated in the following way:

o Graph is unchanged
o Start index is unchanged.
o End index is set to t because the last timestep where the MCS (C)

occurs is t.
o Support is incremented by one unit because there is another

timestep (t) where C appears.
Since all successors of a node N must have a graph Gd that is a subgraph
of F, and F is subgraph of Gt (Gd ⊆ F ⊆ Gt), then Gd is a also subgraph of
Gt. Therefore the algorithm updates all successors of node N in the same
way without calculating the MCS, thus saving computational time.

• If C = ∅, then Gt and F have no common subgraph. Furthermore, no
listnode that is a successor of N will have any common subgraph with Gt

either, since they are all subgraphs of F. N and all its successors are
therefore eliminated from the rest of the list and, if they are frequent and
not subsumed, they are flushed in output.

• If C ≠ ∅ and F ⊈ Gt, then a subgraph C of F is present at timestep t. This
happens, for example, when a formerly periodic subgraph F fractures
into a smaller subgraph C that continues F ’s periodic behavior.
In this case the algorithm first check if the listnode parameters describe a
subgraph that is frequent and not subsumed. If it is so, it is printed in
output. Then the algorithm updates the listnode N in the following way:

o Graph is set to C.
o Start index is unchanged.
o End index is set to t because t is the last timestep where C

appears.
o Support is equal to support(N)+1.

The next listnode in the list is then considered.

Moreover, whenever the update involves not just the start/end indexes, but also
the Graph variable, or whenever a new node is inserted, the new graph is
compared with the one at the previous node. If they are equal, the previous node
is deleted, since it would represent the same graph within a smaller periodic
interval, therefore it would not respect the condition of temporal maximality
(see definition 2.7). For example let us consider a dynamic network composed
by a unique graph G that is repeated in every timestep. For every timestep the
algorithm inserts a new listnode with graph equal to G. If the algorithm does not
control if the new graph is equal to the one at the previous node then all
listnodes of every list contain the same graph (G) but not all are temporally
maximal (only the last node of every list is temporally maximal).
The pseudocode of the update function is reported in the next page.

39

Algorithm Update(L)

Require: L is a list of listnode. Let L.begin() and L.end() be the first and the last
element of the list, L.iterator() the element pointed by the iterator, L.iterator().graph()
the graph of the element pointed by the iterator and iterator.next() a function for
forwarding the iterator. F and C are graphs, N is a node.
1: Gt ← L.begin()
2: iterator ← L.begin()
3: iterator.next() //the first node is (Gt,t,t,0) therefore the update starts at the next node.
4: while iterator ≤ L.end() do
5: N ← L.iterator() // current node
6: F ← L.iterator().graph() // current node graph
7: C ← Gt ∩ F
8: if (F ⊂ Gt) then
9: while iterator ≤ L.end() do
10: N ← L.iterator()
11: N.update_end_index(t) // the end index of N is set equal to t
12: N.update_support(support(F)+1) // the support of N is incremented by one
13: end while
14: else if C = ∅ then
15: while iterator ≤ L.end() do
16: N ← L.iterator()
17: if (!Subsumed (N.graph(),p) and N.support() ≥ σ) then
18: print N
19: endif
20: delete N
21: end while
22: else // case C != ∅ and C!=F
23: if (!Subsumed (F,p) and N.support() ≥ σ) then
24: print N
25: endif
26: N.update_graph(C) //the graph of N is set to C
27: N.update_end_index(t) // the end index of N is set equal to t
28: N.update_support(support(N)+1) //the support of N is incremented by one
29: if (N.graph() is equal to the graph of the previous node) then
30: delete the previous node
31: endif
32: iterator.next()
33: endif
34: endif
35: endfor

40

5.4.2 Subsumed algorithm

This procedure controls if a given PSE, that is represented by a listnode, is
subsumed by another PSE. In order to do this the algorithm uses a subgraph
hash map H.
For a given PSE P with graph F the procedure checks if a list associated to F

exists in H. If not, then P is not subsumed because it is the first PSE with graph
F. Therefore P is printed in output and stored in the hash map. Otherwise, for
every descriptor of the list the algorithm verifies if there exists another
descriptor that respects all the conditions given in definition 2.9. If there is,
then P is subsumed and it is not printed in output, otherwise P is memorized in
the hash map and flushed in output.

The pseudocode of the function subsumed is presented below.

Algorithm Subsumed(G,p)

Require: G is a listnode, p the period, H the subgraph hash map. H.search(G.graph())
is a function of H that returns true if the graph of G is in H, otherwise it returns false.
H.insert(graph, start,end, period) is a function that insert in H a graph with his relative
period and support set.
1: subsumed=false;
2: if (H.search(G.graph())=false) then
3: if (G.support() ≥ σ) then
4: H.insert(G.graph, G.start(),G.end(),p)
5: endif
6: else
7: for each descriptor D ∈ H.search(G.graph()) do
8: if (p mod D.period()=0 and G.start() ≥ D.start() and G.end() ≤ D.end()) then
9: subsumed=true
10: break
11: end if
12: end for each
13: if (subsumed=false and G.support() ≥ σ) then
14: H.insert(G.graph, G.start(),G.end(),p)
15: endif
16: endif

5.4.3 Example

Consider as input dataset the dynamic network in figure 2.3 that we report here
for convenience.

41

Each column represents a single step of the algorithm. Each row is a single list
that represents the elaboration of the specified projection. The algorithm in this
example does not perform subsumption, the threshold σ is equal to 2 and Pmax is
unrestricted. Listnodes are represented by grey boxes, S is the support and
indexes near boxes are just used to reference in the text.
In the next pages a figure shows an example step by step of the execution of
ListMiner.

42

Fig 5.1 - A step by step example of computation. Each box represent a node. The edges in each
box represent the current MCS. Single vertexes are not explicitly shown, unless they are the only
components of an MCS. Each column represent a timestep, and each row a different List: πi,j is
the list for period i and phase j.

43

It should be noted that at each timestep t (with the exception of the initial
timestep 0), only the lists corresponding to a projection πi,j with period i (up to
t) and phase j=t mod i are subject to update. Moreover, at each timestep t there
will be the initialization of those lists for which i+j=t+1. The initialization simply
consists in the insertion of a node with Graph=Gj, start=end=j, support=1. The
algorithm also output single nodes that are periodic (when they are maximal).
For ease of representation such subgraphs will be considered implicitly
represented by the arcs involving them. They will be explicitly represented, by a
box containing only the label of the vertex, only when they are the maximal
periodic subgraph at that step.

• Timestep 0: the first list π1,o is initialized to contain G0.
• Timestep 1: after two steps only periodicity p=1 can occur, so π1,o is

updated. The first step consists in the insertion of a new listnode (G1, 1, 1,
1) at the head of the list. This is node 1 in the table. Then the following
node is analyzed. The intersection between its graph (which is G0) and
the current graph G1 is not empty (and different from G0), so case (3) of
the procedure update applies. The support of the node is less than the
threshold, so we can safely update the content to (MCS(G0,G1), 0, 1, 2).
This node is called node 2 for future reference.

• Timestep 2: after three steps we can have periodicity 1 and 2 (starting in
0). So the algorithm must:

o Update π1,o. A node (G2,2,2,1) is inserted at the head of the list.
Then the MCS between G2, and node 1 is computed. The result of
the intersection is G2, hence condition (3) of the procedure update
applies. Since node 1 has not enough support we just update it to
(G2,1,2,2). Now, node 1 and its predecessor share the same graph,
hence its predecessor is deleted. Then node 2 is considered. Its
support set is 2, hence it should be reported in output (or put in
the hashtable H for subsequent processing).
Next, node 2 is similarly updated to hold (G2,0,2,3). Since node 2
and its predecessor share the same graph its predecessor is
deleted. Node 2 is relabeled to node 3 to avoid confusion in the
further description of the processing.

o Create list π2,o, which also requires to be first initialized to hold
(G0,0,0,1). Then the new node for G2, (G2,2,2,1), is inserted at the
head of the list. The MCS between G2 and the following node
(G0,0,0,1) is computed. The intersection is not empty, and not
equal to G0, hence we are in case (3) of update. Node (G0,0,0,1) is
not frequent, so it can be safely updated to (MCS(G0,G2), 0, 2, 2)
and named node 4.

• Timestep 3: the lists to consider at this step are π1,o, π2,1, π3,o.

o Update π1,o . A node (G3,3,3,1) is inserted at the head of the list,
and labeled with number 5. Then the MCS between G3, and node 3

44

is computed. The intersection contains no edges between different
vertexes, however, vertex B is still present, so the MCS is not
empty. Since node 3 has enough support it should be reported in
output (or put in the hashtable H for subsequent processing).
Then it is updated to contain ({B}, 0, 3, 4), and relabeled as node
6.

o List π2,1 is considered for the first time, and initialized to contain
(G1,1,1,1). Node (G3,3,3,1) is then inserted at the head of the list.
The processing continues computing the MCS(G1, G3). This is not
empty and not equal to G1(condition (3) of update). Since the
current node is not frequent, it is updated to (MCS(G1, G3),1,3,2),
and labeled with number 7.

o Similarly, list π3,0 is considered for the first time, and initialized to
contain (G0,0,0,1). Node (G3,3,3,1) is then inserted at the head of
the list. Then the MCS(G0, G3) is computed. This is not empty, and
not equal to G0 (condition (3) of update). Since the current node is
not frequent, it is updated to (MCS(G0, G3),1,3,2) and labeled it
with number 8.

• Timestep 4: the lists to consider at this step are π1,o, π2,0, π3,1, π4,0 .
o Update π1,o . A node (G4,4,4,1) is inserted at the head of the list.

Then the MCS between G4, and node 5 is computed. The result of
the intersection is not empty, and not equal to the graph of node 5,
so condition (3) of the update procedure holds. Since the node has
not enough support, it can be safely updated to (MCS(G3,
G4),3,4,2), and labeled node 9.

o Update π2,o . A node (G4,4,4,1) is inserted at the head of the list.
Then the MCS between G4, and node 4 is computed. The result of
the intersection is the vertex A. Since the node has enough
support, it should be reported in output (or put in the hashtable H
for subsequent processing) before updating it. The result of the
update ({A},0,4,2) is named node 10.

o List π3,1, is considered for the first time, and initialized to contain
(G1,0,0,1). Node (G4,4,4,1) is then inserted at the head of the list.
The processing continues computing MCS(G1, G4), which is
vertexes A and E. Since the current node is not frequent, it can be
safely updated to ({A,E},1,4,2), and named node 11.

o List π4,0, is considered for the first time, and initialized to contain
(G0,0,0,1). Node (G4,4,4,1) is then inserted at the head of the list.
The processing continues computing MCS(G0, G4), which is vertex
A. Since the current node is not frequent, it can be safely updated
to ({A},0,4,2) and named node 12.

• The subgraphs that should be reported in output are those with labels
2,3,4,6,7,8,9,10,11,12. If subsumption is checked then the nodes to report
in output should be those with labels 2,3,6,7,8,9,10,11,12.

45

5.5 Correctness

Every PSE is represented by a listnode. Let πp,m=<G1’,G2’,…,Gx’>, where Gj
’=Gpj+m

1≤j≤x≤t, be a given projection. The algorithm uses a list to calculate the MCS of
every possible run. For each element Gj of the projection, i≤j≤x-σ, the list is
traversed: a new listnode with the graph Gj is inserted at the head of the list.
After that every element L of the list is replaced by a new listnode N as explained
in section 5.4.1.
If the MCS between the node of the list and Gj is equal to the MCS that is stored
at the previous node, the previous node is deleted because its support set is not
temporally maximal (see property 3 of definition 2.7). Therefore all PSE flushed
in output are temporally maximal.

Here follows a series of theorems that prove the correctness of ListMiner.

Theorem 5.5: Given a projection πp,m=<Gi, Gi+1,….,Gn> and the corresponding
list L, the algorithm calculates and stores in L, in reverse order, (Sn,n is the first
node of the list and S1,n is the last node) the MCS of all runs Sx,n 1≤x≤n, for a
fixed n.

Proof: the proof is an induction on the number of elements n.

Base: n=1.
In this case the list is empty. The listnode (Gi,t,t,0) is added to the head of the
list. This node contains the MCS for S1,1 which is the only possible run.

Induction: suppose the property is true for n-1.
Since the proposition is true for n-1 the list contains the MCS of all runs Sx,n-1

1≤x≤n-1. For the next element Gn, the n-element of the projection is inserted at
the head of the list. Therefore the MCS for run Sn,n is found. Afterwards, for
every run Sx,n-1 1≤x≤n-1 that is represented by a single listnode with graph G, the
algorithm replaces it with a new listnode with the MCS between G and Gn.
Therefore, from theorem 5.4, in every node of the list there is the MCS of all
runs Sx,n 1≤x≤n in reverse order.

□

Theorem 5.6: The algorithm calculates the MCS of every possible run Sx,j
1≤x≤j≤n that belongs to a given projection πp,m =<Gi, Gi+1,….,Gn> for all values
of n.

Proof: this can be proved using theorem 5.5. Since every element of the
projections is processed, for every 1≤x≤n theorem 5.5 is valid. Therefore the
MCS of every possible run Sx,j x≤i≤j≤n is calculated.

□

46

Theorem 5.7: The algorithm calculates all temporally maximal PSE.

Proof: theorem 5.6 proves that the algorithm calculates the MCS of all possible
runs of a given projection. If two consecutive runs have the same graph then the
run with support set not temporally maximal is deleted. Therefore for a single
period every temporally maximal PSE is found. By iterating this process for all
the possible choices of period p, all PSE are calculated.

□

Theorem 5.8: Let L be a list for a given projection πp,m. For every node N of
the list with graph G, all successors have a graph G’ that is a proper subgraph of
G.

Proof: the proof is an induction on the number of timestep T.

Base: T=1

With only one element the proof is trivial because a single node has not
successors.

Induction: first we prove that for every node N of the list with graph G, all
successors have a graph G’ that is a subgraph of G.
Suppose that the property is true for T-1. Therefore for every listnode N of the
list, at timestep T-1, all successors have a graph that is a proper subgraph of
graph of N.
The algorithm at timestep T, for every period p, updates every list associated to
projection πp,m where m= T mod p, inserting at the head of the list a new
listnode with graph GT and substituting the graph Gj of each node with Gj ∩ GT.
Since the first element of the list is GT and the graph of every node N is updated
with Gj

’= Gj ∩ GT , where Gj is the graph of the node N at the previous timestep,
all successors of the first node have a graph Gj

’ ⊆GT.
Now we prove the theorem for the other nodes of the list, from second to the
last. For these nodes, before the update process, at timestep T-1, every listnode
with graph G, have all successors with graph G’ that is a subgraph of G for
inductive hypothesis. The algorithm, for every node N, updates its graph G with
(G ∩ GT). Since for every graph G’ that is a successor of N G’ is a subgraph of G

for inductive hypothesis, then also (G’ ∩ GT)⊆(G ∩ GT). Therefore for all
successors of a node N with graph G, G’ ⊆G.
To complete the proof we have to prove that all successors of a node with graph
G have a graph that is a proper subgraph of G. This is due by construction
because the algorithm always controls if the graph in a node is equal to the
graph of the previous node. If it is then the previous node is deleted. Therefore
we cannot have two consecutive nodes with the same graph.

□

47

Theorem 5.9: Every listnode in each list represents a unique PSE.

Proof: for a given period p, a single timestep Gt belongs to a single projection.
For every different projection there is a different list. Therefore for every list,
every node cannot represent a PSE which is equal to another node of another
list because they belong to different projections. In the same list, from theorem
5.6, we see that every node is the MCS of a given run, and so it cannot represent
a PSE equal to another node of the same list.

□

The subsumed function is correct because it fulfill all the conditions listed in
definition 2.9.
From theorem 5.8 and 5.9 every list is always in a consistent state. In theorem
5.7 is proved that the algorithm calculates all temporally maximal PSE.
Therefore the algorithm is correct.

5.6 Description of the implementation

The algorithm is implemented in C++.
In the next section all the most important elements of the program are
presented.
• Graph: this class describes a graph. The graph is represented by a vector of

integers in which entries edges and vertexes are mapped as integers (see
definition 2.1).

• ListNode: this class represents a PSE. It contains the graph, the period, the
start and end indexes, and the value of the support.

• Subgraph hash map: the subgraph hash map was implemented using the
Google dense_hash_map library optimized for speed over memory usage.
Dense_hash_map (key,data,hash_function,equalkey) is a Unique Pair
Associative Container that associates objects of type Key with objects of type
Data. In this hash map two elements cannot have keys that compare equal
using EqualKey. Dense_hash_map is different from other hash-map
implementations for its speed and for the ability to save and restore contents
to disk. On the other hand, this hash-map implementation can significantly
use more space than other hash-map implementations. We use a class
Graph as key, a class Descriptor as data, an implementation of Daniel J.
Bernstein's hash_djb2 function as hash function, and we create a function
that compares two graphs returning true if the two graphs are equal and
false otherwise.

• Descriptor: it is the object stored in the list contained in the hash map. It
describes a PSE that is flushed in output and therefore it has period, support,
start and end indexes.

• Hash_djb2 function: djb2 is the algorithm which was first reported by
Dan Bernstein many years ago in comp.lang.c. The function is the following:

48

unsigned long hash(unsigned char *str)
(const vector<int> s) const

unsigned long hash = 5381;

for c ← 0 to s.size()

hash = ((hash << 5) + hash) + s.at(c);

return hash;

• MCS: for every timestep Gt we have to calculate the MCS between elements
of some lists. For every list L, every node N of the list with graph G has all
successors with graphs G’ that are proper subgraphs of G. Therefore when at
timestep t we have to update a single list calculating the MCS between every
node and Gt, instead of using Gt every time, we can use the MCS computed at
the previous node, thus saving some comparisons.

5.7 Time and space complexity

Time complexity: from proposition 5.3, there are exactly p projections for a
given period p. Now from proposition 3.5 the length of every projection is
|πp,m|= ⌈(T − m)/p⌉.
Since the algorithm creates a new listnode for every element of the projection
the maximum number of listnode is the length of the projection.
For every timestep t and for every list, in the worst case the algorithm calculates
the MCS for every node of the list and Gt.

Therefore the number of MCS is:

�
 �!"

��
�

#�$
� %

⌈(� � #)/⌉

&�$

The summations are: for every period p, for every projection with period p the
algorithm creates a list. The number of elements in the list is increased by one at
every step. Therefore, also the number of MCS to calculate is increased by one at
every step, from 0 to the maximum length of the projection.
The solution of the first summation is O(T2/p2). Solving the second summation
we have O(T2/p2)p that is O(T2/p).

The last summation is: O(T2 ∑ 1\) �!"��) that is O(T2 ln (Pmax)).

Since the MCS can be computed in O(V+E) time, the total complexity of the
basic algorithm (without subsumption) is O((V+E) T2 ln (Pmax).

Since Pmax is unrestricted in the worst case, its maximum value is O(T/σ).
Therefore the complexity time in the worst case is O((V+E) T2 ln (T /σ) that is
smaller by a factor T than PSEMiner [1][2].
It should be observed that only in the worst case the innermost summation is
completely calculated because the number of elements could be less than the
upper bound for three reasons:

• If the MCS between Gt and the graph F at node N is empty, then node N
is (eventually) printed, and deleted. Since the followers of N all have a
graph that is a subset of F, their intersection with Gt is also empty, and no

49

MCS computation is needed. The nodes are (eventually) printed, and
deleted;

• if two consecutives nodes of a list have the same graph, then the node
with support set that is not temporally maximal is deleted;

• the MCS between Gt and the graph F at node N is equal to F. Since the
graphs of the following nodes in the list are all subsets of F, the MCS will
be equal to those graphs as well, without need to be calculated.

Space complexity: for every period p there are p projections with O(T/p)
elements. Therefore the number of listnodes for every period is O(T).
Every listnode contains an associated graph. Therefore the total space
complexity is O(Pmax(V+E)T). In the worst case Pmax is unresctricted
(Pmax=O(T/σ)), so the space complexity is O((V+E)T2/σ).

50

6 Experimental evaluation

In this section the performances and the behavior of ListMiner are compared
with those of PSEMiner. Two real-world dynamic social networks are used for
the evaluation. Artificial datasets are also created to better understand the
characteristics of every algorithm, highlighting differences, weak and strong
points.
Both algorithms are implemented in C++. The experiments were run on a dual-
core Intel Core(TM)2 duo T7300 2.0 GHz, 2 GB of RAM, running Linux
Ubuntu. Both algorithms use the google sparsehash library, that therefore be
installed in the system.
In all the experiments, the reported computation time is the sum of the user
(computation) and kernel (I/O, etc.) CPU time. Memory usage is the maximum
resident set size reported by the Linux proc filesystem.

6.1 Datasets description

Here follow a detailed description of the datasets used in the experiments. Table
6.1 summarizes their parameters (number of timesteps, number of vertexes, and
the maximum tested period).

6.1.1 Real data

Dynamic networks were collected from two sources, covering a range of human
interaction dynamics.
Enron e-mails. The Enron e-mail corpus is a publicly available database of e-
mails sent by and to employees of the now defunct Enron corporation.
Timestamps, senders and lists of recipients were extracted from message
headers for each e-mail on file. The quantization timestep is a day, with a
directed (unweighted) interaction present if at least one e-mail was sent
between two individuals on a particular day.
Reality mining. Cellphones with proximity tracking technology were
distributed to 100 students at the Massachusetts Institute of Technology over
the course of an academic year. The timestep quantization was chosen to be 4 h.

6.1.2 Artificial data

Artificial data are used to better understand the performances of the algorithms.
The aim of this set of experiments was to understand why and when an
algorithm outperforms the other. The following datasets were created using a
java program based on the function Java.util.random().
Worst case: this dataset contains 150 timesteps and represents the worst case
described in proposition 3.3. In this dataset the maximum number of periodic
patterns is generated. Therefore in this dataset the MCS of any s ≥ σ consecutive
positions of any projection πp,m is a different PSE. To do this a different edge is
inserted in every of the s ≥ σ consecutive positions of any projection πp,m.

51

Maximal case: this dataset contains 800 timesteps and represents the case
described in theorem 3.8: for every s =σ =2 consecutive positions of every
projection there is a different PSE. The difference from the worst case is that
only in sequences of s=σ=2 consecutive positions of every projection there is a
different PSE. Differently, in worst case, every sequence of s ≥ σ=2 consecutive
graphs of every projection is a PSE.
Experiment 1.1: this is a dataset with 800 timesteps. For every timestep, a
random graph with 15 different elements from edges and vertexes is created.
The graph is mapped into a sequence of 15 different random numbers from 0 to
300.
Experiment 1.2: this is a dataset with 800 timesteps. For every timestep, a
random graph with 15 different elements from edges and vertexes is created.
The graph is mapped into a sequence of 15 different random numbers from 0 to
50.
Experiment 1.3: this is a dataset with 800 timesteps. For every timestep, a
random graph with 15 different elements from edges and vertexes is created.
The graph is mapped into a sequence of 15 different random numbers from 0 to
3000.
Experiment 2.1: this is a dataset with 2000 timesteps. For every timestep, a
random graph with 15 different elements from edges and vertexes is created.
The graph is mapped into a sequence of 15 different random numbers from 0 to
300.
Experiment 2.2: this is a dataset with 2000 timesteps. For every timestep, a
random graph with 15 different elements from edges and vertexes is created.
The graph is mapped into a sequence of 15 different random numbers from 0 to
50.
Experiment 2.3: this is a dataset with 2000 timesteps. For every timestep, a
random graph with 15 different elements from edges and vertexes is created.
The graph is mapped into a sequence of 15 different random numbers from 0 to
3000.

Dataset Timestep Vertexes Pmax

Enron 2588 82614 40

Reality mining 2940 100 40

Maximal case 800 140802 50

Worst case 150 65486 unrestricted

Experiment 1.1 800 300 30

Experiment 1.2 800 50 30

Experiment 1.3 800 3000 30

Experiment 2.1 2000 300 50

Experiment 2.2 2000 50 50

Experiment 2.3 2000 3000 50
Table 6.1: parameters of the datasets.The number of vertexes is the total size of the population.

52

The choice of the parameters for the artificial networks was specifically thought
so to have networks with low density (experiments 1.3 and 2.3), medium density
(esperiments 1.1 and 2.1), and high density (experiments 1.2 and 2.2) of periodic
patterns. As the experiments in the next subsection will show, pattern density is
a parameter that has a high influence on the performances of the algorithms.

6.2 Experimental Time Analysis

This section shows the analysis of the comparison of execution times between
ListMiner and PSEMiner.
Table 6.2 reports the execution times of two experiments (parameters: σ=3,
unrestricted Pmax) without subsumption (All patterns) and with subsumption
(Parsimonious).

 ListMiner PSEMiner

Dataset All patterns Parsimonious All patterns Parsimonious

Enron 21 s 25 s 0,8 s 1 s

Reality mining 32 s 114 s 720 s 864 s

Maximal case 26,4 s 28,5 s 465 s 472 s

Experiment 1.1 3,4 s 4,7 s 7,4 s 8,5 s

Experiment 1.2 6,6 s 6,8 s 29,2 s 30,9 s

Experiment 1.3 3,0 s 3,2 s 0,8 s 0,7 s

Experiment 2.1 21,1 s 22, 5 s 200 s 206 s

Experiment 2.2 39, 5 s 530 s 712 s 800 s

Experiment 2.3 16, 3 s 16,8 s 7,5 s 7,2 s

Table 6.2: execution times of the two algorithms, the proposed ListMiner, and the state-of-the-
art PSEMiner, with (Parsimonus) and without (All patterns) subsumption for support threshold

σ=3 and Pmax unrestricted.

As showed in Table 6.2, ListMiner is faster than PSEMiner in all the
experiments, with exception of Enron, experiment1.3 and experiment2.3. This
is due to the different density of the dataset under analysis, as explained below.
The Reality mining dataset has a high density of periodic patterns (the number
of vertexes is low (100) and the number of timesteps is high (2940)). Similarly,
in the datasets of experiment1.2 and experiment2.2, where every graph is
composed by a sequence of 15 casual numbers from 0 to 50, the probability that
the MCS between two graphs is not empty is high. As a consequence, the density
of periodic patterns is also high.
In this high-density context PSEMiner is much slower than ListMiner. In
particular, the comparison between the results of experiment1.2 and

53

experiment2.2, tell us that the higher the number of timesteps, the bigger is the
difference of the time performances in favor of ListMiner.
The decrease of speedup in experiment2.2, when the control of subsumption is
included (18x for all patterns, and 1,5x including subsumption), is due to the
large computational time need to check subsumption. The complexity time of
the subsumed() function, that verifies if a specific PSE is subsumed, is the same
for both algorithms. Since in experiment2.2 there is a high number of periodic
patterns, the subsumption function takes most of the execution time. In this
case, the time complexity for checking subsumption prevails on the time to mine
all PSE. Hence, the difference of execution time between PSEMiner and
ListMiner is relatively small.
Although the theoretical bound of the time complexity of ListMiner is better
than that of PSEMiner, in Enron dataset, experiment1.3, and experiment2.3
PSEMiner is faster.
These are datasets that have a common property: the density of periodic
patterns is low.
In fact, the two artificial datasets have been created to highlight the behavior of
the two algorithms when the number and density of periodic patterns are low by
choosing 15 random vertexes among 3000 at each timestep. Since the number
of vertexes is very high, the probability that the MCS between two graphs is not
empty is low. This is confirmed observing the number of mined patterns in table
6.3 (when σ=3), and in table 6.4 (when σ=2). As a conclusion, low-density
experimental settings favor PSEMiner.

Dataset Subsumption
No

subsumption

Pattern

Theoretical

bound

Enron 84017 84056 47992640

Reality mining 102669 102745 63037927

Maximal case 87780 1* 3575039

Experiment 1.1 5292 5292 3575039

Experiment 1.2 95677 95687 3575039

Experiment 1.3 53 53 3575039

Experiment 2.1 33231 33231 26009160

Experiment 2.2 595162 595172 26009160

Experiment 2.3 393 393 26009160

Table 6.3 shows the number of patterns mined with and without subsumption, and the
theoretical upper bound on the number of patterns for σ=3. (*) maximal case is a dataset that is
built in the following way: every timestep contains the vertex “1”. Now, as described in theorem
3.8: for every s = σ =2 consecutive positions of every projection there is a different vertex and
thus a different PSEs. So the only graph that appears more than 3 times is the graph with only
vertex “1”.

54

Dataset Subsumption
No

subsumption

Pattern

Theoretical

bound

Enron 125088 125428 45276939

Reality mining 630798 629496 59533249

Maximal case 372001 372001 2139075

Experiment 1.1 167937 167910 2139075

Experiment 1.2 400935 400624 2139075

Experiment 1.3 23071 23063 2139075

Experiment 2.1 1051439 1051378 27631021

Experiment 2.2 2502547 2501844 27631021

Experiment 2.3 144420 144436 27631021

Table 6.4: shows the number of patterns mined with and without subsumption, and the
theoretical upper bound on the number of patterns for σ=2.

The datasets of experiment1.1 and experiment2.1 are composed by a sequence of
graphs where, at each timestep, 15 random vertexes from 0 to 300 were selected
as active. Therefore, the probability that the MCS between two graphs is not
empty is in between that of the previous experiments.
In this medium-density contexts, ListMiner runs faster than PSEMiner, but the
speed-up is lower (2x and 10x vs 4x and 18x) than in experiment1.2 and
experiment2.2. This is due to the smaller number of patterns to mine.
These results can be explained from the analysis of theoretical time complexity.
The upper bound of PSEMiner is O((V+E)T N) where N is the number of nodes
in the pattern tree. Table 6.5 shows the number of nodes and descriptors
created by PSEMiner during the elaboration. The complexity time of PSEMiner
strongly depends on the number of nodes in the pattern tree. In fact, observing
Table 6.5, it can be noticed that in datasets where PSEMiner have a low ratio
(with respect to the maximum) of treenodes, it is faster than ListMiner. A node
remains in the tree until it has at least one descriptor D such that next(D)≤ Pmax

and next(D)≥ t, where t is the timestep that we are processing. PSEMiner
creates a node in the tree when the MCS between two graphs is a new subgraph
in the pattern tree. Therefore N is higher when in the dataset there are a lot of
different periodic subgraphs. For these reasons the higher the density of
periodic patterns, the higher is the number of nodes in the tree, and the worst
are the performances of PSEMiner.

55

Dataset Number of

nodes

Number of

descriptors

Nodes

Theoretical

bound

 % number of

nodes

Enron 24583 41095 45276939 0,05%

Reality
mining

87780 277613 59533249 0,1%

Maximal case 160153 213084 2139075 7,4%

Experiment
1.1

17135 85245 2139075 0,8%

Experiment
1.2

84350 192461 2139075 0,4%

Experiment
1.3

3408 11518 2139075 0,16%

Experiment
2.1

61480 532315 27631021 0,22%

Experiment
2.2

347616 1199625 27631021 1,26%

Experiment
2.3

7355 72373 27631021 0,03%

Table 6.5: reports the number of nodes and descriptors of PSEMiner when Pmax is unrestricted
and σ=3.

In particular, analyzing the maximal case the value of N is O(T2/σ), and the
value of Pmax, when it is unrestricted, is O(T/σ). Therefore the time complexity of
PSEMiner becomes O((V+E) T3/σ). On the other hand, ListMiner has a time
complexity which is O((V+E)T2 ln(T/σ)). This explains why ListMiner is faster
than PSEMiner.
From the characteristics of datasets it is known that in Enron, in experiment1.3
and in experiment2.3 the density of periodic patterns is low. Since the number
of nodes in the pattern tree depends on the density of periodic patterns, the
complexity of PSEMiner is much lower than the upper bound. In fact, it is
O((V+E) T N) with N<< O(T2 ln (T/ σ)). The complexity time of ListMiner is not
strongly influenced by the number of the periodic patterns. In this low-density
case, the time complexities are: O((V+E)TN)<O((V+E)T2ln(T/σ)) since
N<<O(T2 ln (T/ σ)). For this reason the execution time of PSEMiner is lower
than that of ListMiner.
On the contrary, in Reality mining, experiment2.2, and experiment3.2 the
density of periodic patterns is very high. Consequently, also the number of
nodes in the pattern tree is high. The complexity time of PSEMiner is
O((V+E)TN) with N near to the upper bound O(T2 ln (T/ σ). Hence, in a high-

density setting the time complexities become:
O((V+E)T N) > O((V+E) T2 ln (T/ σ)) since N ≈ O(T2 ln (T/ σ)).

In the worst case PSEMiner ends in 587 s and ListMiner ends in 216 s as showed
in table 6.6. Therefore, as expected from theoretical analysis, the experiments

56

confirm that ListMiner is actually more efficient than PSEMiner in the worst
case hypothesis.

 Execution

time

Number of nodes Number of

descriptors

PSEMiner 587 s 10508 11026

ListMiner 216 s / /

Table 6.6: execution time of the two algorithms in the worst case with Pmax unrestricted and
σ=2. For PSEMiner also the number of nodes and the descriptors are reported.

We conclude by observing that in the typical online analysis scenario with a
restricted Pmax, ListMiner takes few seconds to execute and uses less than 15 MB
of memory in all cases as we can see in table 6.7.

Dataset Time Memory

Enron 1,8 s 340 KB

Reality mining 2,8 s 1,1 MB

Maximal case 6 s 256 KB

Experiment 1.1 0,8 s 604 KB

Experiment 1.2 1 s 2,8 MB

Experiment 1.3 0,5 s 472 KB

Experiment 2.1 1,1 s 14,7 MB

Experiment 2.2 7 s 2,3 MB

Experiment 2.3 0,9 s 10,8 MB

Table 6.7: reports the execution time and the memory usage of ListMiner with σ=3, with
subsumption, and with restricted Pmax.(see table 6.1) .

6.3 Experimental Space Analysis

This section presents the analysis of the memory requirements of ListMiner and
PSEMiner. Table 6.8 shows the results for the comparison of the memory usage
of the algorithms with Pmax unrestricted, and σ=3.
ListMiner uses less memory than PSEMiner in experiment1.1, experiment1.2,
experiment2.1, and experiment2.2. In experiment1.3 and in experiment2.3 the
memory used by ListMiner is slightly higher, but approximately of the same
order. In the other datasets ListMiner uses more memory than PSEMiner.
This behavior can be justified by theoretical analysis of the space complexity.
The space complexity of PSEMiner is ((V+E)N+ P2

max + G) where N is the
number of nodes in the tree, G is the number of descriptor, and V, E are the
number of vertexes and edges, respectively. The space complexity of ListMiner
is always ((V+E) T2/σ). Since the most part of the memory is used to store
graphs, the dominant term of the space complexity expression in PSEMiner is

57

(V+E)N. Therefore, when the number of treenodes is low, the space complexity
of PSEMiner is lower than the space complexity of ListMiner.

Dataset ListMiner PSEMiner

Enron 1 GB 150 MB

Reality mining 353,6 MB 157 MB

Maximal case 503,6 MB 200 MB

Worst case 790 MB 400 MB

Experiment 1.1 12,7 MB 35 MB

Experiment 1.2 19,6 MB 94 MB

Experiment 1.3 10,3 MB 6 MB

Experiment 2.1 78,4 MB 298 MB

Experiment 2.2 118 MB 881 MB

Experiment 2.3 63,8 MB 52 M

Table 6.8: reports the memory usage of the two algorithms with σ=3 and Pmax unrestricted.

6.4 Mined Patterns Analysis

This section reports the analysis of the patterns mined by the algorithms. The
analysis was performed in two directions: 1) number of periodic patterns vs
support; 2) number of periodic patterns vs period.

6.4.1 Periodic Pattern distribution and Support values

Figures from 6.9 to 6.14 in the next page show, for each experiment on an
artificial dataset, the distribution of the number of patterns (y-axis) with respect
to a given support (x-axis).

58

Fig 6.9: Experiment 1.1

(T=800,V=300,Pmax unrestriced)

Fig 6.10: Experiment 2.1
(T=2000,V=300,Pmax unrestriced)

Fig 6.11: Experiment 1.2

(T=800,V=50,Pmax unrestriced)

Fig 6.12: Experiment 2.2
(T=2000,V=50,Pmax unrestriced)

59

Fig 6.13: Experiment 1.3

(T=800,V=3000,Pmax unrestricted

Fig 6.14: Experiment 2.3

(T=2000,V=3000,Pmax unrestricted)

Experiments showed that the highest number of periodic patterns, and the
highest values of support occurs on high-density periodic patterns frameworks
(experiments 1.1 and 2.1 in Fig.6.11 and 6.12, respectively). This is expected
since the probability of vertexes to occur at some timestep is higher than in the
other cases.
Fig. 6.13 and 6.14 shows the results for low-density experiment1.3 and
experiment2.3. Here the values of support are limited to 3, 4 and 5. This is
because the number of vertexes is high, and therefore the probability of a
particular subgraph to be periodic for a long time is low.
Fig. 6.9 and 6.10 show the experiment for the medium-density setting. In these
datasets the number of patterns is smaller than in the datasets with high density
(experiment1.2 and experiment2.2), but bigger than low density datasets
(experiment1.1 and experiment2.1). Moreover, the behavior with 800 timesteps
is more similar to the low-density case, while with 2000 timesteps the figures
looks much more the high-density context but the number of patterns is
different. This depends on the higher number of periodic patterns of
experiment2.1. In fact the higher the number of timesteps, the higher is the
probability to have a high number of different values of support.
Figure 6.15 shows a comparison between the two real datasets, Enron and
Reality Mining. It can be seen that Reality presents a behavior that is more
periodic than Enron (number of periodic patterns is higher at all supports).

60

Fig 6.15: Reality(T=2940,V=100, Pmax unrestriced),Enron(T=2588,V=82614, Pmax unrestriced)

The experiments from Fig. 6.16 to 6.22 shows the distribution of patterns for
each possible period, when Pmax is unrestricted and σ=3.

Figures 6.16 and 6.17 show the distribution for experiment1.2 and
experiment2.2. Experiments confirmed that these are the datasets with the
highest number and density of periodic patterns, as expected.

Fig 6.16: Experiment 1.2(T=800,V=50,Pmax unrestriced)

61

Fig 6.17: Experiment 2.2(T=2000,V=50,Pmax unrestriced)

On the contrary, experiment1.3 and experiment2.3 are the datasets with the
lowest number and density of periodic patterns (see figures 6.18, 6.19).

Fig 6.18: Experiment 1.3(T=800,V=3000,Pmax unrestriced)

Fig 6.19: Experiment 2.3(T=2000,V=3000,Pmax unrestriced)

62

Finally, experiments1.1 and exxperiments2.1 (see figures 6.20 and 6.21) showed
to have a distribution of periodic patterns that is in between.

Fig 6.20: Experiment 1.1(T=800,V=300,Pmax unrestriced)

Fig 6.21: Experiment 2.1(T=2000,V=300,Pmax unrestriced)

63

Figures 6.22 and 6.23 show the results for the two real datasets. Enron appears
to be less periodic than Reality, in fact both the number of periodic patterns,
and the number of different periods is lower. The density of periodic patterns in
Reality is higher.

Fig 6.22: Reality(T=2940,V=100, Pmax unrestriced)

Fig 6.23: Enron(T=2588,V=82614, Pmax unrestriced)

Figure 6.24 in the next page shows global periodicities in real networks when
Pmax is restricted. It can be observed that Enron and Reality datasets have strong
daily and weekly periodicities, as might be expected from human interactions
despite the fact that the interactions occur through different mechanisms in
each dataset, e-mail in the Enron dataset, and physical proximity in the Reality
mining dataset. In fact in figure 6.23 we can observe that we have two peaks for
p=1 and p=7 for the Enron dataset. In Reality, where the quantization time is 4
hours, we can note that there are peaks for every multiple of p=6 (one day). In
p=42 (one week) there is an high number of periodic patterns that confirms the
weekly periodicity.

64

Fig 6.24:Global periodicity for restricted maximal periods in real dynamic networks. Reality
Pmax=42, Enron Pmax=42,σ=3.

65

7 Period mining

7.1 Problem definition

In this chapter a different mining problem is discussed. Let us model a dynamic
network as a string in which each symbol corresponds to a subgraph. What was
called a period in previous chapters, in this framework is called a cadence, while
the concept of period requires further constrains. This chapter presents an
algorithm to mine periodic (as in the string framework) patterns in dynamic
networks. Since perfect periodicity is rare in this context, some imperfections
between instances of subgraphs will be allowed. Here follows some related
definitions taken from [30].

Definition 7.1: Integers t1<t2<t3,<…,<tn are a cadence for word x1x2x3…xr if
xt1= xt2=…= xtn. In this case n is called the order of the cadence.

It can be seen that what was called a period in the previous chapters is indeed a
type of cadence. Let S be a finite subset of the alphabet, a cadence of type S is a
cadence of the form αS +β (i.e., an arithmetic cadence with common difference
α when α,β>0).

In this framework a period is defined as follows:

Definition 7.2: A string z has a period w if z is a prefix of wk for some integer
k. Alternatively a string w is a period of a string z if z = wlv and v is a possibly
empty prefix of w.

Often, when this does not cause confusion, we will use the word “period” also to
refer to the length or size |w| of a period w of z.

Definition 7.3: A non-empty string w is a border of a string z if z starts and
ends with an occurrence of w, i.e. z=uw and z=wv for some possibly empty
strings u and v.

Clearly a string is always a period (resp. border) of itself. This period (resp.
border) is called trivial period (resp. border). It is immediate to see that two
consecutive occurrences of a word may overlap only if their distance equals one
of the periods of w. A string can have several periods, and corresponding
borders. The smallest (resp. longest border) period is the period (resp. the
border) of the string.

Definition 7.4: A sliding window of length s for a dynamic network G is a
sequence of s consecutives timesteps Gx, Gx+1,…., Gx+s-1.

66

When considering datasets based on real interactions within a population, it is
unlikely that subgraphs repeat themselves exactly, and periodically, for a long
time. Therefore, some relaxation is needed, and the concept of distance between
two graphs is used to account for the presence of such variability.

Definition 7.5: Given two graphs G1=(V1,E1) and G2=(V2,E2), the distance

between G1 and G2 is the cardinality of the set composed by all vertexes and
edges of G1 and G2 that are not in the MCS between G1 and G2.
Since by definition 2.1 the set representation for every graph is formed mapping
each vertex and edge to a unique integer, d(G1,G2)=|(V1∪V2)-(V1∩V2)|+|(E1∪E2)-
|E1∩E2)|.

A new parameter dmax is introduced in the problem to represent the maximum
allowed distance between two graphs. The problem becomes:

Definition 7.6: Given a dynamic network G and the maximum distance dmax

between two graphs, for every possible window Gx, Gx+1,…., Gx+s-1 1≤x≤T-s, of
length s, we want to calculate the period p of the graphs inside the window
allowing some imperfections. Precisely, the distance d(Gi, Gi+p) must be less
than dmax for every x≤i≤s-p.

7.2 Complexity of periods mining

In this section the problem is shown to belong to the complexity class P and it is
therefore tractable.

Theorem 7.7: The periods mining problem is in P.

Proof: since a dynamic network can be considered like a string of subgraphs,
the problem is reduced to find the period of a given string. It is obvious that in a
dynamic network with T timesteps there are T-s+1 windows of length s. To find
the period of a given string with length s, the maximum number of comparison
is O(s2). Since the distance between two graphs can be found in O(V+E) (we
have to calculate the union and intersections between edges and vertexes of the
graphs), the cost of a single comparison is O(V+E). Therefore the total time
complexity is O((V+E)Ts2).

□

7.3 Description of the algorithm

For every fixed size window, the algorithm calculates the period by finding the
maximum border of graphs in the window. The trivial border is not considered.
The algorithm starts controlling if the “string” in the window matches, against
left shifts of i position of itself 1≤i≤s-1. Two graphs match if their distance is less

67

than or equal to dmax. This problem can be easily reduced to find the maximum
border of a given string, which is a well known problem. To solve this problem
the algorithm implemented to calculate the failure function of the KMP
algorithm [31] is adapted. The failure function calculates, for all prefixes of the
string, the longest prefix that is also a suffix. Therefore, the algorithm, for every
window, calculates the longest border of the window. The key difference
between the failure function and the proposed algorithm is that, for the
problem at hand, the concept of match between symbols is substituted by the
distance between two graphs being below a given threshold. Here follow the
pseudocode of the algorithm.

Algorithm Period(input)

Require: input is a vector that in position input[i] = Gi+1. We have T timesteps.
Let window be the length of the window.
1: for (i ← 0 to T-1-s) do
2: Gnew= input [i]…..input[i+window-1]
3: maxborder= FailureFunction (Gnew)
4: print all graphs from input[i] to input[i+maxborder]
5: end for

Algorithm FailureFunction(Gnew)

Require: Gnew is a sequence of graph length windows; dmax is the maximum distance
between two graphs, distance(G1,G2) is a procedure that calculates the distance between
two graphs as explained in definition 8.5 and f(i), 0 ≤ i ≤ s, contains the values of the
failure function.
1: i ← 0
2: j ← 0
3: while i < window do
4: if (distance (Gnew[i], Gnew[j]) ≤ dmax) then
5: f (i) ← j+1
6: i ← i+1
7: j ← j+1
8: else if (j>0) then
9: j ← f (j-1)
10: else
11: f (i) ← 0
12: i ← i+1
13: end if
14: end if
15: end while
16: return f (window-1)

68

7.3.1 Correctness

The only difference between the algorithm to compute the period of a graph
sequences and the period of a string is that the former uses the distance
operation between graphs rather than the comparison between symbols of an
alphabet. Hence, the correctness of the algorithm follows from the correctness
of the algorithm in [31].

7.3.2 Space and time complexity

Space complexity: the algorithm is implemented in place. Other data
structures are not necessary, therefore the space complexity is O(T).

Time complexity: the maximum border of the window is calculated for each
of the T-s+1 windows of the dynamic network. The distance between two graphs
can be calculated in O(V+E). The maximum border can be found in O(s) [31]
where s is the length of the window. Therefore the total time complexity is
O((V+E)T s) .

7.4 Experimental evaluation

To evaluate the performances of the algorithm the two real-world dynamic
social networks, Enron and Reality, were analyzed. The description of these
datasets is in section 6.1.1. The algorithm is implemented in C++. The
experiments were run on a dual-core Intel Core(TM)2 duo T7300 2.0 GHz, with
2 GB of RAM, running Linux Ubuntu. In all cases, time computation is reported
as the sum of the user (computation) and kernel (I/O, etc.) CPU time. Memory
usage is the maximum resident set size reported by the Linux proc filesystem.
The algorithm was tested for several lengths of the window and the values of the
maximum distance dmax.

7.4.1 Running time and space occupation

Tables 7.1, 7.2 and 7.3 show the execution time and the memory usage of the
algorithm for windows of length 8, 31, 62 days. The parameter dmax is set equal
to 10.

s=8:

Dataset Time Memory usage

Enron 0,8s 14,6MB
Reality 1,1s 17,1 MB

Table 7.1: execution time when the length of the window is 8 and the maximum distance is 10.

69

s=31
Dataset Time Memory usage

Enron 1,8s 14,6MB
Reality 2,2s 17,1 MB

Table 7.2: execution time when the length of the window is 31 and the maximum distance is 10.

s=62
Dataset Time Memory usage

Enron 3,5s 14,6MB
Reality 3,8s 17,1 MB

Table 7.3: execution time when the length of the window is 62 and the maximum distance is 10.

The tables above show that the algorithm takes few seconds (maximum 3,8 s
when s=62) to execute and uses less than 18 MB of memory in all cases. As
expected, increasing the size of the window the execution time increases. The
space occupation is not affected by the size of the window because only the
dataset is stored in the memory. The execution time and the memory usage in
Enron are higher than Reality because Reality has more timesteps.

7.4.2 Patterns and periods distributions

This subsection reports just the experimental results. Global analysis and
observations will be reported in the next subsection.

Enron

Figure 7.4 shows the number of subgraphs for a given period value (x-axis)
mined when s=8 for the three values of dmax.

Fig 7.4: the number of subgraphs for every period value when the length of the window is 8 and
the value of the distance is 0, 10, 30.

70

Figure 7.5 shows the number of subgraphs for a given period value (x-axis)
mined when s=31 for the three values of d.

Fig 7.5: the number of subgraphs for every period value when the length of the window is 31 and
the value of the distance is 0, 10, 30

Figure 7.6 shows the number of subgraphs for a given period value (x-axis)
mined when s=62 for the three values of dmax.

Fig 7.6: the number of subgraphs for every period value when the length of the window is 62 and
the value of the distance is 0,10,30

Reality

For Reality mining the timestep quantization was set to one day, not 4 h like in
section 6 for a more significant analysis. Therefore the number of the timesteps
is 368.

71

Figure 7.7 shows the number of subgraphs for a given period value (x-axis)
mined when s=8 for the three values of dmax.

Fig 7.7: the number of subgraphs for every period value when the length of the window is 8 and
the value of the distance is 0, 10, 30

Figure 7.8 shows the number of subgraphs for a given period value (x-axis)
mined when s=31 for the three values of d.

Fig 7.8: the number of subgraphs for every period value when the length of the window is 31 and
the value of the distance is 0,10,30

Figure 7.9 shows the number of subgraphs for a given period value (x-axis)
mined when s=62 for the three values of dmax

72

Fig 7.9: the number of subgraphs for every period value when the length of the window is 62 and
the value of the distance is 0,10,30

7.4.3 Analysis of results

Analyzing all figures in section 7.4.2 it can be seen that the majority of
subgraphs periodicity is equal to 1 (in every figure there is a peak in p=1). This
means that there is an high number of subgraphs that are repeated in s
consecutive timesteps. Therefore the Enron and Reality mining datasets show
strong daily behavior, as might be expected by human interactions. The
experiments also show that the number of subgraphs for a given period
increases when the maximum distance is higher, as expected because some
mismatches between subgraph instances are allowed. Another observation that
emerges from the analysis is that in Enron dataset the number of periods is
similar to the Reality although this last dataset has less timesteps. This means
that Reality dataset has more regularities than Enron, which was also confirmed
by the analysis in Section 6.4. The number of non trivial periods is low in
Enron. This is due to the fact that this dataset represents interactions between a
very large number of individuals. Every timestep has a graph with a lot of
vertexes and edges, therefore it is difficult to have long periods. This can be
understood thinking of the relationships that people have in a company, where
every person communicates for short periods of time with a small group of
colleagues. In Reality there are more no trivial periods in proportion the total
number of the timesteps. This is due to the fact that students usually have
friendly relationships that are more durable than work relationships. Another
aspect that can be noticed is that, except for period 1, the other periods are near
to the trivial period. This means that people either have stable relationships or
have relationships after lots of days, for example two weeks or one month.

73

7.5 From data to knowledge

In this section I want to turn the attention to some qualitatively interesting
aspects of the subgraphs that were extracted. Analyzing the output of Enron and
Reality datasets, the first interesting observation is that there are some similar
patterns that are repeated periodically. This means that humans are divided in
groups where they interact among each other. Small patterns (4-12 individuals),
that represent a small group, have high supports. Large patterns (30-40
individuals), that represent a large group, have low values of support. This fact
can be explained referring to real life where humans have stable and durable
interactions with few people, for example friends or family. Individuals have
intimate relationships toward what sociologists call reference groups. Reference
groups are groups which people refer to when evaluating their [own] qualities,
circumstances, attitudes, values and behaviors [32]. This can be observed
because periodic entities of the dataset occur in similar patterns that represent
the reference groups. Groups are not disjointed but they have some common
entities just like in real life.
Observing the patterns extracted it can be observed how groups change during
the time. We can see that we do not have large changes. This is noted in the
output of ListMiner because there are patterns, that partially overlap, that are
similar. These similar patterns represent the interactions between individuals of
the same group. There are also some groups that disappear especially in Reality
dataset. There could be different reasons that justify this phenomenon, for
example, they might represent that leave their groups when complete their
university career.
Another interesting result shows that people have daily and weekly interactions.
Especially in Enron, weekly emails seem to be particularly popular in a
corporate enviroment. This can be observed in figure 6.24 observing the high
number of patterns for the period equal to 7.
The last observation is that, in Reality and Enron datasets, there are some
patterns that are cliques. In Enron dataset there are also some hierarchical
interactions. This is somewhat expected because in large companies individuals
have hierarchical structures. On the contrary, in Reality dataset the interactions
between students are typically peer-to-peer and so we do not have hierarchical
patterns.

74

8 Conclusion

The main contribution of this thesis is the design and development of
ListMiner, an efficient algorithm for solving the Periodic subgraph mining

problem in dynamic networks. This problem was introduced by Lahiri and
Berger-Wolf [1][2] to discover frequent periodic interactions among the
members of a population whose behavior was observed over time. Lahiri
and Berger-Wolf also proposed and developed an algorithm for this
problem, called PSEMiner. The time complexity of ListMiner is
O((V+E) T2 ln(T /σ)), where V is the size of the population under analysis,
E is the set of interactions among its members, T is the number of
observations (timesteps) and σ is the minimum number of periodic
repetitions that a subgraph must show to be reported in output. Listminer
improves the worst case time complexity of PSEMiner by a factor T.
There are several variants of the periodic subgraph problem that can be
studied. Most of these variants belong to the P complexity class. However,
when jitter is allowed, this is no longer true. In fact, the problem of mining
closed periodic subgraphs at minimum support σ, allowing jitter, was
proved to be intractable because the number of patterns is exponential in
the number of timesteps in the worst case.
Another contribution of this thesis is an algorithm to solve a slightly
different problem in which the periodicity is defined as in the string
contexts. This definition is stronger than the one in [1][2] (which in this
framework is actually defined as cadency). Since real-world networks are
unlikely to be “fully” periodic, some limited disruption in the composition
of instances of the mined subgraphs was allowed. Experiments showed
that the algorithm was capable of extracting meaningful patterns from real
world networks.
Theoretical analysis of the proposed solutions was followed and supported
by experimental validation. The performances and the behavior of
ListMiner and PSEMiner were compared using two real-world dynamic
social networks and several artificial datasets. The experiments showed
that the performances of the algorithms are somewhat affected by the
composition of the input dataset. Precisely, in datasets with high density of
patterns, PSEMiner is much slower than ListMiner. Contrarily in a low-
density context PSEMiner is faster than ListMiner. However, experiments
on a worst case dataset confirm that ListMiner is actually more efficient
than PSEMiner in this case, as expected from the theoretical analysis.
Moreover, in real scenarios, where the maximum period Pmax is restricted,
ListMiner took few seconds to execute and uses less than 15 MB of
memory. ListMiner efficiently mines all periodic patterns, and it is a
concrete alternative to PSEMiner for frequent subgraph mining.
Finally, a qualitative analysis of the mined patterns was done to
understand the periodicities of the interactions between college students

75

and corporate executives. The experiments show the daily and weekly
behavior of interactions among people. Moreover, the mined patterns
reflected the characteristics of the interactions between the elements of the
population under analysis. In particular, the patterns characterizing
interactions between college students showed a peer-to-peer trend, while
and those of between corporate individuals were mostly hierarchical.
Studying the Periodic subgraph mining problem, along with some of its
variants that were the subject of this thesis, can be seen as initial steps into
the uncovering of interesting relationships in dynamic network analysis. In
fact, there is a number of interesting directions that can be the subject of
future research. Among these, for example, particularly fascinating
appears to be the introduction of the concept of noise to discover noisy
subgraphs and the introduction of a probabilistic background model to
assign a degree of surprise to the occurrence of each candidate pattern in a
dynamic network.

76

9 Acknowledgements

I am very grateful to my supervisors Alberto Apostolico and Cinzia Pizzi for their
guidance, especially Dr. Cinzia Pizzi for the help to write this document, and
encouragement throughout this thesis.
I am thankful to Tania Berger-Wolf and Mayank Lahiri for sharing their
datasets and their software PSEMiner.
Finally I would to express my grateful to my family, to my girlfriend Giulia and
to all my friends for their support.

77

10 References

[1] M. Lahiri and T.Y. Berger-Wolf. Periodic subgraph mining in dynamic
networks. Knowledge and Information Systems, Volume 24, Issue 3 (2010), p.
467.
[2] M. Lahiri and T.Y. Berger-Wolf. Mining Periodic Behavior in Dynamic Social
Networks. Proc. of the 8th IEEE International Conference on Data Mining
(ICDM 2008), Pisa, Italy. December 2008.
[3] K.-Y. Huang and C.-H. Chang: Mining Periodic Patterns in Sequence Data,
In the Proceedings of the 6th International Conference on Data Warehousing
and Knowledge Discovery (DaWaK04), Zaragoza, Spain, 2004. LNCS 3181 (SCI
expanded), pp. 401-410.
[4] Minghua Zhang, Ben Kao, David W. Cheung, Kevin Y. Yip. Mining periodic
patterns with gap requirement from sequences. ACM Transactions on
Knowledge Discovery from Data (TKDD) Volume 1 , 2007. ISSN:1556-4681.
[5] David Lo, Siau-Cheng Khoo and Chao Liu. Efficient Mining of Iterative
Patterns for Software Specification Discovery. In proceedings of the 13th
SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD'07). San Jose, California. Aug 12-15, 2007.
[6] R. Agrawal and R. Srikant. Fast Algorithms for Mining Association Rules in
Large Databases. In Proc. of the 20th Intl. Conf. on Very Large Data Bases, pg.
487–499, 1994.
[7] B. Ozden, S. Ramaswamy, and A. Silberschatz. Cyclic association rules. In
Proceedings of the 14th International Conference on Data Engineering,
(ICDE'98), pages 412-421, 1998.
[8] J. Han, G. Dong, and Y. Yin. Efficient mining partial periodic patterns in
time series database. In Proceedings of the 15th International Conference on
Data Engineering, (ICDE'99), pages 106-115, 1999.
[9] C. Bettini, X. S.Wang, S. Jajodia, and Jia-Ling Lin. Discovering frequent
event patterns with multiple granularities in time sequences. IEEE Transaction
on Knowledge and Data Engineering, 10(2), 222-237, 1998.
[10] J. Yang, W. Wang, and P.S. Yu. Mining asynchronous periodic patterns in
time series data. IEEE Transaction on Knowledge and Data Engineering,
15(3):613-628, 2003.
[11] K.Y. Huang and C.H. Chang. Asynchronous periodic patterns mining in
temporal databases. In Proceedings of the IASTED International Conference on
Databases and Applications (DBA'04), pages 43-48, 2004.
[12] Huang K-Y, Chang C-H (2005) SMCA: a general model for mining
asynchronous periodic patterns in temporal databases. IEEE Trans Knowledge
Data Eng 17(6):774–785
 [13] I. R. Fischhoff, S. R. Sundaresan, J. Cordingley, H. M. Larkin, M.-J. Sellier,
and D. I. Rubenstein. Social relationships and reproductive state influence
leadership roles in movements of plains zebra, Equus burchellii. Animal
Behaviour, 73(5):825–831, May 2007.

78

[14] Jiong Yang, Wei Wang, Philip S. Yu: Infominer: mining surprising periodic
patterns. KDD 2001: 395-400.
[15] Inokuchi A, Washio T, Motoda H (2000) An apriori-based algorithm for
mining frequent substructures from graph data. In: Proceedings of the 4th
European conference on principles of data mining and knowledge discovery, pp
13–23.
[16] Kuramochi M, Karypis G (2001) Frequent subgraph discovery. In:
Proceedings of the 2001 IEEE international conference on data mining, pp 313–
320.
[17] Boros E, Gurvich V, Khachiyan L, Makino K (2002) On the complexity of
generating maximal frequent and minimal infrequent sets. In: Proceedings of
the 19th annual symposium on theoretical aspects of Computer Science
(London, UK, 2002). Springer-Verlag, pp 133–141.
[18] Yang G (2004) The complexity of mining maximal frequent itemsets and
maximal frequent patterns. In: Proceedings of the tenth ACM SIGKDD
international conference on knowledge discovery and data mining (New York,
NY, 2004). ACM, pp 344–353
[19] P. Juang, H. Oki, Y. Wang, M. Martonosi, L. S. Peh, and D. Rubenstein.
Energy-efficient computing for wildlife tracking: design tradeoffs and early
experiences with ZebraNet. ACM SIGPLAN Notices, 37(10):96–107, 2002.
[20] Juang P, Oki H, Wang Y, Martonosi M, Peh LS, Rubenstein DI (2002)
Energy-efficient computing for wildlife tracking: design tradeoffs and early
experiences with ZebraNet. ACM SIGPLAN Notices 37(10):96–107.
[21] Wasserman S, Faust K (1994) Social network analysis: methods and
applications. Cambridge University Press, Cambridge.
[22] Faloutsos M, Faloutsos P, Faloutsos C (1999) On power-law relationships
of the internet topology. In: Proceedings of the conference on applications,
technologies, architectures, and protocols for computer communication (New
York, NY, 1999). ACM, pp 251–262.
[23] Chapanond A, KrishnamoorthyMS, Yener B (2005) Graph theoretic and
spectral analysis of Enron email data. Comput Math Organ Theory 11(3):265–
281.
[24] Diesner J, Carley KM (2005) Exploration of communication networks from
the Enron Email corpus. In: Proceedings of the 2005 SIAM workshop on link
analysis, counterterrorism and security, pp 3–14.
[25] Nanavati AA, Gurumurthy S, Das G, Chakraborty D, Dasgupta K,
Mukherjea S, Joshi A (2006) On the structural properties of massive telecom
call graphs: findings and implications. In: Proceedings of the 15th ACM
international conference on Information and knowledge management (New
York, NY, USA,2006). ACM, pp 435–444.
[26] 18. Han J, Cheng H, Xin D, Yan X (2007) Frequent pattern mining: current
status and future directions. Data Min Knowl Discov 15(1):55–86.

79

[27] Dickinson PJ, Bunke H, Dadej A, Kraetzl M (2003) On graphs with unique
node labels, vol 2726 of Lecture Notes in Computer Science. Springer, Berlin, pp
409–437.
[28] Elfeky MG, ArefWG, Elmagarmid AK (2005) Periodicity detection in time
series databases. IEEE Trans Knowl Data Eng 17(7):875–887.
[29] Ma S, Hellerstein JL (2001) Mining partially periodic event patterns with
unknown periods. In: Proceedings of the 17th international conference on data
engineering (Washington, DC, USA, 2001). IEEE Computer Society, pp 205–
214.
[30] A. Apostolico and M. Crochemore String Pattern Matching for a Deluge
Survival Kit, Handbook of Massive Data Sets, J. Abello et al, Eds. Kluver Acad.
Publishers, Kluver Acad. Publishers, pp. 151--194 2002.
[31] Donald E. Knuth, James H. Morris and Vaughan R. Pratt, Fast Pattern
Matching in Strings, SIAM Journal on Computing, 6(2):323-350, 1977.
[32] Thompson, William; Joseph Hickey (2005). Society in Focus. Boston, MA:
Pearson. ISBN 0-205-41365-X.
[33] William J. Frawley, Gregory Piatetsky-Shapiro, Christopher J. Matheus:
Knowledge Discovery in Databases: An Overview. AI Magazine 13(3): 57-70
1992.
[34] J. Cook and L. Holder. Substructure discovery using minimum description
length and background knowledge. J. Artificial Intel. Research, 1:231-255, 1994.
[35] K. Yoshida, H. Motoda, and N. Indurkhya. Graph based induction as a
unified learning framework. J. of Applied Intel., 4:297-328, 1994.
[36] L. Dehaspe and H. Toivonen. Discovery of frequent datalog patterns. Data
Mining and Knowledge Discovery, 3(1):7-36, 1999.
[37] L. De Raedt and S. Kramer. The levelwise version space algorithm and its
application to molecular fragment finding. In IJCAI'01: Seventeenth
International Joint Conference on Artificial Intelligence, volume 2, pages853-
859, 2001.
[38] Takashi Washio and Hiroshi Motoda. State of the Art of Graph-based Data
Mining, ACM SIGKDD Explorations Newsletter pages: 59–68, 2003.
[39] S. Muggleton and L. De Raedt. Inductive logic programming: Theory and
methods. J. Logic Programming, 19(20):629-679, 1994.
[40] T. Imielinski and H. Mannila. A database perspective on knowledge
discovery. Communications of the ACM, 39(11):58-64, 1996.
[41] V. Vapnik. The Nature of Statistical Learning Theory. Springer Verlag, New
York, 1995.

