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Sommario 

 
Recenti ricerche hanno dimostrato che la quantità di informazioni nel mondo 
raddoppia ogni 20 mesi. Questa crescita esponenziale di dati ha fatto emergere 
la necessità  di progettare e sviluppare algoritmi in grado di automatizzare il 
processo di analisi dei dati. Il data mining è la disciplina che studia le tecniche 
per estrarre informazioni dai dati. Il formato dei dati agli inizi era limitato a 
relazioni tra tabelle e transazioni dove ogni istanza era rappresentata da un 
insieme. Nel corso del tempo le ricerche iniziarono ad estendersi verso classi di 
dati strutturati quali sono i grafi.  Il data mining di grafi iniziò quindi a 
diventare sempre più popolare.  
Lo scopo principale degli algoritmi di data mining è la scoperta di pattern 
interessanti da un dataset. La definizione di cosa si intenda per interessante 
varia a seconda del contesto. Una comune assunzione è quella di considerare 
interessanti i pattern che si ripetono frequentemente nei dati. Le ricerche si 
sono focalizzate anche nell’estrarre delle sottostruttre che si ripetono 
periodicamente nel dataset.  
Il problema dell’estrazione di sottografi periodici, che è l’argomento di questa 
tesi, è una combinazione di entrambi questi aspetti e trova applicazioni in 
diversi domini applicativi. Infatti, questo problema si prefigge di scoprire 
interazioni periodiche frequenti tra i membri di una popolazione il cui 
comportamento viene studiato in un certo arco di tempo. Le interazioni tra i 
membri della popolazione sono rappresentate da archi E tra vertici V di un 
grafo. Una rete dinamica consiste in una serie di T timestep per ciascuno dei 
quali esiste un grafo che rappresenta le interazioni attive in quel dato istante. 
Questa tesi presenta ListMiner, un algoritmo per il problema dell’estrazione di 
sottografi periodici. La complessità computazionale di tale algoritmo è O((V+E) 

T2 ln (T /σ)), dove σ è il minimo numero di ripetizioni periodiche necessarie per 
riportare il sottografo estratto in output. Questa complessità propone un 
miglioramento di un fattore T rispetto all’unico algoritmo noto in letteratura, 
PSEMiner. Gli esperimenti condotti su dataset reali ed artificiali, hanno 
confermato l’analisi teorica dimostrando che ListMiner è più veloce nella  
pratica quando vengono analizzati dataset ad alta e media densità. 
É stato inoltre proposto un altro algoritmo per risolvere una variante del 
problema in cui la periodicità ha vincoli più restrittivi, come per le stringhe, 
permettendo che le istanze dei sottografi abbiano un limitato grado di 
variabilità. I risultati sperimentali ottenuti utilizzando due reti dinamiche reali 
dimostrano l’applicabilità del nostro approccio.  
Infine è stata effettuata un’analisi qualitativa dei sottografi estratti dai due 
algoritmi proposti. 
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Abstract 

Recent researches estimate that the amount of information in the world doubles 
every 20 months. The growth of datasets produced a consequent need to design 
and development of methodologies to be able to analyze such data through 
automated processes.  
Data mining is the discipline that studies techniques to extract useful 
information from data. The format of data in the beginning of the field were 
limited to relational tables and transactions where each instance is represented 
by one row in a table or one transaction, represented as a set. However, the 
studies within the last several years began to extend the classes of considered 
data to semi-structured or structured data such as graphs, making the graph 
based data mining popular. The main goal of data mining algorithms is the 
identification of interesting patterns in a dataset. The definition of what is 
interesting might vary depending on the contexts. However, a common 
assumption is that patterns that are particularly frequent must hold some 
valuable information. Moreover, in the last years, the data mining community 
showed increasing interest and research effort on mining patterns that repeat 
periodically.  
The Periodic subgraph mining problem, which is the subject of this thesis, is a 
combination of both these aspects, and finds its application in several domains. 
In fact, this problem aims at the discovery of frequent periodic interactions 
among the members of a population whose behavior was observed over time. 
The interactions among members of the population are modeled as edges E 
between vertexes V of a graph. The dynamic network consists of a series of T 
timesteps for each of which there is a corresponding graph that describes the set 
of active interactions. 
This thesis presents ListMiner, an algorithm for the basic Periodic subgraph 
mining problem. Its time complexity is O((V+E) T2 ln (T /σ)), where σ is the 
minimum number of periodic repetitions to report a candidate subgraph in 
output, showing an improvement of a factor T with respect to the state-of-the-
art PSEMiner. Experimental evaluation of the performances of the two 
algorithms, on both real world and artificial datasets, confirmed the theoretical 
analysis, and also showed ListMiner to be much faster in practice when high 
and medium density datasets are analyzed. 
Another algorithm is proposed to solve a slightly different problem, where the 
periodicity has stronger requirements, as in the string framework, and some 
disruption in the composition of the subgraphs is allowed. Experimental results 
on two real dynamic networks demonstrate the applicability of this approach.  
To conclude, the results of a qualitative analysis of the subgraphs that were 
extracted by the two proposed algorithms are reported and discussed. 
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1 Introduction 

Since early Eighties, the so called Digital Revolution has dramatically changed 
our life style taking advantage of major breakthroughs in all fields related to 
information and communication technology. 
From an engineering perspective, the way information is stored, retrieved, 
discovered, kept secure or shared, are subject of great research interests for both 
the Academy and the Industry. 
Recent researches estimate that the amount of information in the world doubles 
every 20 months [33]. The growth in the size of digital datasets naturally 
produced a compelling need for the design and development of methodologies 
to be able to analyze such data using automated processes.  
Data mining is the discipline that studies techniques to extract useful 
information from data. Several approaches can be used for fulfill the analysis, 
each of which might be more indicated than others depending on the data to 
mine. Among the most important techniques one can find neural networks, 
clustering, genetic algorithms, decision trees, and support vector machines.   
According to Washio e Takoda “the field of data mining has developed as a 

novel field of research with the purpose of checking remarkable research 

issues, and then creating real life applications” [38].  
It is then important to underline this strong connection to real life applications 
among which one can cite surveillance, fraud detection, marketing, and 
scientific discovery.  
While early data mining techniques were mainly relying on database tables, in 
the last years many studies have been devoted to different types of data, such as 
semi-structured data (HTML and XML), symbolic sequences, ordered trees and 
relations.      
The main goal of data mining algorithms is knowledge discovery. Knowledge 
discovery is based on the identification of interesting patterns in a dataset. The 
definition of what is interesting might vary depending on the contexts. 
However, a common assumption is that patterns that are particularly frequent 
must hold some valuable information.  For example, in Market Basket analysis 
[6], where the purpose is to study the purchase behavior of customers, the 
patterns of interest are defined by frequent itemsets that represent the basket of 
items that are usually bought. 
In the past few years researchers dealt especially with the need for mining 
structured data, and graphs are probably one of the best studied structure in the 
field of computer science and discrete mathematics, which helped graph based 
data mining to become so popular.     
The field of graph mining is very vast. Here follows an overview of the main 
techniques and of the most interesting problems that have been raised in this 
very interesting field. 
The first studies on graph mining dates back to the middle of the 1990s, when 
Cook and Holder (SUBDUE) [34] and Yoshida and Motoda (GBI) [35] proposed 
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some methods to discover concepts from graph representations of some 
structures. 
SUBDUE was based on searching, at each iteration, the best subgraph to 
compress an input graph G. The algorithm uses a bottom up approach, 
beginning with a subgraph S composed by a single vertex that grows 
incrementally by adding new nodes.  When the best subgraph is found, the 
subgraph is flushed in output and the next iteration starts using the G\S  as a 
new input. GBI (Graph based induction) was also based on the idea of deriving 
a minimal size graph, similarly to SUBDUE, by replacing each interesting 
subgraph with one vertex, thus compressing the graph at each iteration. At 
every step the algorithm finds a pair of connected vertexes to join in a single 
node. 
However, both these works used greedy search reporting in output solutions 
that could not be guaranteed to be optimal. 
In 1998, Dehaspe and Toivonen suggested the use of an Inductive Logic 
Programming (see below for a description of this method) based algorithm 
(WARMR) [36] that enabled a complete search for frequent subgraphs from 
graph data. The subsequent work of Nijssen and Kok in [21] proposed a more 
efficient algorithm for the same problem.  
In 2001, De Raedt and Kramer presented MolFea [37], an algorithm to find 
characteristic paths from a given graph. MolFea was based on a complete search 
of the paths in the input graph using a lattice structure. 
Inokuchi et al. [15] and Kuramochi et al. [16] studied the problem of finding 
subgraphs that are shared by a set of input graphs applying concept deriving 
from itemset datamining.  
Several other algorithms have been developed for the purpose of graph mining, 
and they can be classified in five categories: greedy search, inductive logic 
programming, inductive database, support vector machine and complete search 
and direct methods. 
Early days techniques were mostly based on greedy search [34][35], that falls in 
the Heuristic search and direct matching category. The algorithms that belong 
to this category can be further classified into two sub-categories depending on 
the order follow to analyze the elements: depth-first search (DFS), which is used 
because it can save memory consumption, and breath first search (BFS), which 
is used because is  less time consuming although it uses more memory.  
Inductive Logic Programming (ILP) [39] is based on formulating some 
hypotheses and then seeking the hypotheses to justify the observed fact. The 
main advantage of this method is the introduction of background knowledge to 
derive other knowledge represented by “first order predicate logic”.  
Inductive database [40] uses mining approaches to pre-generate inductive 
rules, relations or patterns. The results are stored in a database which is then 
queried by using a query language designed to express conditions to retrieve 
patterns from the database.  
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Support Vector Machines (SVM) [41] include a set of supervised learning 
methods that consists on classifying the data input in a multidimensional 
feature space.  
The last category is represented by Complete search and direct methods, that 
perform a complete level-wise search of the dataset. This approach is often used, 
for example, in market basket analysis. The most popular method of this 
category is the Apriori based Graph Mining (AGM) [15]. This algorithm starts 
from frequent graphs composed by a single vertex, and then it builds larger 
graphs in bottom up manner combining graphs of smaller sizes. 
In the last ten years, the data mining community showed increasing interest and 
research effort on the problem of Periodic pattern mining. This kind of analysis 
is of great interest in several domains [3][4][5], among which transactional 
datasets, daily traffic patterns, meteorological data, stock data, event logs, web 
logs, power consumptions.  
Therefore, mining periodic patterns is one of the most important tasks in data 
mining and knowledge discovery.  
Among the most interesting results on periodic pattern mining, Ozden et al. [7] 
analyzed the problem of discovering cyclic association rules that could display 
regular cyclic variation over time, while Bettini et al. [9] proposed an algorithm 
to discover temporal patterns in time sequences. 
Partial periodic pattern mining is another very interesting problem since it 
deals with approximation. After the seminal work of Han et al. [8] several others 
followed [15][20][29]. In particular, Yang et al. in [10] proposed an algorithm to 
mine all asynchronous periodic patterns, both in a sequence of events and in a 
temporal datasets with multiple eventsets.  
Another general model to mine partial periodic patterns is proposed by Huang 
and Chang in [11]. In their model, each valid pattern must have a maximum 
number of disruptions and must contain a minimum number of contiguous 
matches. SMCA [12] is a suite of four algorithms which enumerates complex 
patterns. 
Another topic of research in pattern mining is the introduction of a probabilistic 
model to assign a value for the degree of surprise of every occurrence of a 
pattern. In [14] Yang et al. proposed an algorithm, InfoMiner, to mine surprise 
patterns according to a new measure of surprise called information gain. 
Pattern mining problems arise also in the contexts of dynamic networks. 
Dynamic networks are a sequence of graphs that represent the change in time of 
the behavior of a fixed population. The members of the population are 
represented by vertexes. An interaction between two members at some 
particular time is indicated by the presence of an edge between the two vertexes 
in the corresponding graph. 
The population involved in mining dynamic networks can be of disparate 
nature: humans [22][23][24], animals [13], networked computers [22]. Social 
network [21] analysis is probably the most famous example of dynamic network 
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analysis. It is also worth mentioning that the concept of interaction depends on 
the application.  
Among the analysis that can be performed on dynamic network, finding 
periodicity is one for the most interesting. For example, periodic subgraphs can 
correspond to seasonal associations of animals that are of great interest in 
biological studies [19][13]. Another example of application is the discovery of 
human periodic behavior in order to understand how humans communicate 
using current technologies: computer networks [22], mails [23][24], phones 
[25], social networks[21].  
In this context Lahiri and Berger-Wolf in [1] [2] proposed a new mining 
problem to find predictable behaviors in dynamic social networks. To this 
purpose it is necessary to identify periodically recurring interaction patterns in 
networks that change over time. Their solution involved mining all periodic 
subgraphs that occur a minimum number of times. Here they tackled the notion 
of closed subgraph mining to lower the redundancy in the definition of a 
frequent pattern, a concept that has been widely exploit in frequent pattern 
mining [26]. For this purpose they followed Occam’s Razor principle of 
parsimony.  
The work of this thesis focuses on periodic mining in dynamic networks. The 
main contribution is the design and development of ListMiner, an online 
algorithm that improves the worst case time performances of the algorithm 
[1][2] by a factor proportional to the number of timesteps in the dynamic 
network.  
A further contribution is the development of an algorithm to extract subgraphs 
that are periodic in the same sense as periodic strings are defined [30]. 
Experiments confirmed the theoretical analysis and allowed also for qualitative 
analysis of the extracted periodic subgraphs. 

This thesis is organized as follows:  

• Chapter 2 presents the periodic minim problem in dynamic networks as 
defined in [1][2]. This section contains some preliminary definitions 
related to dynamic networks, as well as some graph theoretic properties. 

• Chapter 3 shows the proof contained in [1][2] that the problem is in the 
computational class P. The proof consists on deriving the upper bound on 
the maximum number of possible periodic subgraphs in the worst case. 
The chapter also contains a proof that in the case of “approximate” 
periodicity the number of patterns becomes exponential. 

• Chapter 4 describes the details of the Lahiri and Berger-Wolf’s algorithm, 
PSEMiner. 

• Chapter 5 presents ListMiner, the algorithm proposed in this thesis that 
reduces the worst case complexity by a linear factor in the number of 
timesteps of the dynamic network.  
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• Chapter 6 reports experimental results comparing and analyzing the 
performance of the two algorithms (PSEMiner and ListMiner) using real 
and artificial datasets. 

• Chapter 7 presents a new algorithm for string-like periodicity mining in 
dynamic networks. 
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2 Problem definition 

2.1 Preliminaries 

This chapter presents the periodic graph mining problem as defined by Lahiri 
and Berger-Wolf [1][2]. 
The purpose is to study periodic interactions between elements that belong to a 
population.  This can be modeled as a graph where the set of vertexes V ∈ N are 
the entities of population, and the set of edges E represents the interactions 
between elements. The key observation is that in this context vertexes are 
uniquely labeled (since they represent a specific member of the population).  
This is very important from a computational point of view because various hard 
graph problems such as maximum common subgraph and subgraph 
isomorphism are reduced to polynomial time [17][27]. 
 
Definition 2.1 For a graph G = (V, E) with unique vertex labels, the set 
representation R for G is formed by mapping each vertex and edge to a unique 
element in R, where R ⊆ N.  
 

Since each vertex is uniquely identified by its label, it follows that each edge is 
also uniquely identified by its endpoints. This allows each vertex and edge to be 
coded as a unique integer, even across different graphs over the same vertex set. 
 

 
Fig. 2.1 

 
The graph in figure 2.1 can be mapped in the following set representation R: 
{1,2,3,4,5,6} where, for example, 1 can be vertex A, 2 vertex B, 3 vertex C, 4 edge 
A-B, 5 edge A-C and 6 edge B-C.  
It can be trivially shown that two graphs (or timesteps) will result in the same 
set R if and only if they have identical vertex and edge sets. Given two graphs G1 
and G2, with unique vertex labels, testing whether G1 is a subgraph of G2 or vice 
versa is equivalent to check whether the corresponding set representations R1 
and R2 are subsets of each other. 
We observe that for a set of graphs with vertexes unique labels, finding the 
maximal common subgraph (MCS) is equivalent to calculate the maximal 
intersection of their set representations (see figure 2.2).  
For a set of graphs <G1, . . . , GT>, a vertex or an edge is part of the MCS if it is 
part of every Gt . As a result, the MCS always exists, is unique and well-defined, 
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but could possibly be the empty graph with no vertexes or edges. We use the 
intersection operator ∩ to denote the MCS of two or more graphs. 
 

 
Fig. 2.2: in this example G1 and G2 are encoded into two sets of integer R1 and R2. The example 
shows the calculation of the MCS using the set representation.  

 

Interactions are recorded over a period of time in which the population is 
observed. The time span is divided into T discrete timesteps of equal duration. 
These data constitutes a dynamic network. 
 
Definition 2.2 A dynamic network G=<G1,…,GT> is a time-series of graphs, 
where Gt=<Vt,Et>  is the graph of interactions Et observed at timestep t, among 
the set of uniquely labeled entities Vt⊆V.  
 

 
Fig. 2.3: an example of a dynamic network with 5 timesteps. 

 
 
Definition 2.3 Given a graph G=(Vg ⊆V, Eg ⊆V x V), G is periodic with period 
p, if G is a subgraph of <Gx, Gx+p,….,Gx+np>, where 0≤x≤T, 1≤n≤ ⌈(T-x)/p⌉. 
 
For example in Figure 2.3 the graph with vertexes B and D and edge B-D is 
periodic with period 1 because it occurs in timestep 1 and timestep 2. It is also 
periodic with period 3 because it occurs in timestep 1 and timestep 4. 
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Studying large populations, the number of periodic patterns could be very large. 
Moreover, graphs that appear few times are not significant for the context. For 
these reasons we are interested in patterns that appear at least a minimum 
number of times.  
 
Definition 2.4 For an arbitrary graph F=(Vf ⊆V,Ef ⊆V x V), its support set    
in G, S(F) is the set of timesteps where F is a subgraph of Gt (F ⊆ Gt).  F is a 
frequent subgraph of G if |S(F)|≥ σ, where 1≤σ≤T is a parameter defined by 
user. 
 
For example in Figure 2.3 if we set σ=3 then graph B-D is frequent because it 
occurs in 3 timesteps, but graph E-G is not frequent. 
An important property is the so called downward closure property: if a graph F 
is frequent, then all its subgraphs are also frequent. 
This property is exploited by several algorithms in pattern mining, such as, for 
example the well known Apriori algorithm[6]. 
Given a dynamic network, the number of subgraphs in it is exponential in the 
number of vertexes. So a straightforward enumeration and subsequent check for 
frequency and periodicity is not a feasible solution. The notion of closed 
frequent subgraphs is introduced to minimize the redundancy in the network. 
 
Definition 2.5 A graph F=(Vf ⊆V, Ef ⊆V x V) is a closed frequent subgraph if 
there is no other subgraph Y where F is a proper subgraph of Y that S(Y) = S(F). 
 
For example the graph A-B in Figure 2.3  is not closed because it is a subgraph 
of A-B-C that is a graph with the same support set. 
 
Definition 2.6 Given a dynamic network G and an arbitrary subgraph               
F = (V, E), a periodic support set of F in G, denoted SP = (i, p, s), is a maximal, 
ordered set of s timesteps starting at ti with every two consecutive timesteps 
differs of p positions. 
 SP = (i, p, s) = <ti , ti+p, . . . , ti+p(s−1)> is subject to the following constraints: 
 

1. Existence in G: F must exist at all timesteps in SP, i.e.,                        
∀t (t ∈ SP → F ⊆ Gt ); 
2. Minimum size: A periodic support set has to have at least two 
elements, i.e., |SP| = s ≥ 2; 
3. Temporal maximality: The support set cannot be extended in time 
to contain F and still be periodic. 
 

The phase offset of a periodic support set is defined as m = ti  mod p.            
Hence, 0 ≤ m < p. 
 



14 
 

A key difference in the definition of a support set for frequent pattern mining 
and periodic pattern mining is that a single graph F can have multiple periodic 
support sets to allow for multiple, disjoint, or overlapping periodic behavior. 
Hence the notion of periodic subgraph embeddings is introduced. 

2.2 Basic formulation 

Definition 2.7  Given a dynamic network G, a periodic subgraph embedding 

(PSE) is a pair <F, SP>, where F is an arbitrary graph that is closed over a 
periodic support set SP with |SP| ≥ σ. The following list summarizes the 
properties of a PSE: 

1. Minimum support: |SP| ≥ σ ≥ 2. 
2. Structural maximality: F is closed over SP, i.e., F is the MCS of SP. 
3. Temporal maximality: SP is temporally maximal for F, i.e. there   
are not other timesteps T where F ⊆T . 

 
These properties allow the development of efficient mining algorithms, and 
justify an independent treatment of the problem. Mining frequent closed 
subgraphs is an elegant solution to the redundancy of the general frequent 
pattern mining problem. 
 
Definition 2.8 Given a dynamic network G and a minimum support threshold 
σ≥2, the Periodic Subgraph Mining problem is to identify all frequent closed 
subgraphs in G. 
 

2.3 Parsimonious formulation 

There is the possibility that a periodic subgraph embedding carries information 
contained in other periodic subgraph embeddings. If a graph is periodic of 
period p, is also periodic of period 2p and for every multiple of p and depending 
on the threshold value, if they are frequent they will be put in output.  
For example in Figure 2.4 the graph A-B is periodic with periods 1, 2, 3, 4. To 
reduce the size of the output we want to eliminate PSEs with periods 2, 3, 4 
because they are redundant. 
 

A B

C

A B A B

D

A B

E

A B

F

Timestep 1 Timestep 2 Timestep 3 Timestep 4 Timestep 5

 
Fig. 2.4: the edge A-B is periodic in this network with period p = 1, 2, 3, 4. In a parsimonious 
representation of the output the PSE with periods p = 2, 3, 4 should not be reported. 

 

For this reason, the concept of subsumption is introduced. 
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Definition 2.9 For two periodic subgraphs F1 and F2 with respective periodic 
support sets SP1= (i1, p1, s1) and SP2 = (i2, p2, s2),  <F1, SP1> completely contains 
or subsumes <F2, SP2> if all of the following conditions hold: 
1. F2⊆F1 
2. ti2≥ ti1 
3. ti2+p2�(s2−1) ≤ ti1+p1�(s1−1) 

4. p2 = k � p1 for some integer k > 0  
5. ti,2 =ti,1 + l � p1 for some integer l ≥ 0 
 
Condition 1 ensures that no information is lost. Condition 2 and condition 3 
require that the support set of F2 is contained within the boundaries of support 
set of F1, although they could be of different phase offsets and not overlapping at 
all, or partially overlapping but of different periods. Condition 4 requires that p2 
is a multiple period of p1. Condition number 5 guarantees that the initial 
timestep of F2 is a timestep where F1 appears. This means that F1 and F2 have 
compatible offset which ensure that they overlap. 
 
Definition 2.10 A PSE that is not subsumed by any another PSE is a 
parsimonious periodic subgraph embedding (PPSE). 
 
Another condition can be added to the previous problem definition: 
 
Definition 2.11 Given a dynamic network G and a minimum support threshold 
σ ≥ 2, the Periodic Subgraph Mining problem is to list all parsimonious 
periodic subgraphs embeddings in G that satisfy the minimum support. 
 
Since real-world networks are unlikely to contain perfectly periodic patterns, 
[1][2] presented a definition of what constitutes ‘near’ periodicity. 
 
Definition 2.12 A noisy subgraph can exhibit a jitter in its period, that is, its 
period is near-constant. Given a jitter value of J ≥ 0, the periodic graph mining 
problem can be extended to account for noise as follows: SP (F) = <t : F ⊆ Gt>, 
and ∀ i : |ti+1 − ti − p| ≤ J. 
 
As it will be shown in chapter 3 the subgraph mining problem is in P. However, 
including jitter the size of the output could become exponential in the number 
of patterns, making the problem intractable.  
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3 Complexity of Mining Periodic Subgraph 

This chapter presents the proof (taken from [1][2]) that the problems under 
analysis, as they were stated in definition 2.8 and definition 2.11 are in P. 
Moreover,  a proof is proposed to show that allowing jitter, as explained in 
definition 2.12, the number of discovered patterns could become exponential in 
the number of timestep,  making this version of the problem intractable. 
To this purpose we want to highlight the importance of labeling the vertex with 
unique labels, allowing graphs to be modeled as set of integers. As a direct 
consequence, some NP-hard problems in graph mining become polynomial in 
this context [18]. 
Starting with a dynamic network G, we must build the worst case network. For 
this purpose the network must contain the maximum number of periodic 
subgraphs at minimum support σ=2. This upper bound is a polynomial function 
of the number of timesteps and the minimum support value.  
The proof leads to the conclusion that mining all closed PSEs can be done in 
polynomial time in the size of the input, proving that the mining (enumeration) 
problem is in the complexity class P, when the graphs have unique vertex labels. 
For the proof, the concept of projection of a discrete time sequence is 
introduced to count the maximum number of PSEs in this class of dynamic 
networks [28].   
 
Definition 3.1 Given a dynamic network G, a projection πp,m of G is a 
subsequence of graphs πp,m = <G1+m, G1+m+p, G1+m+2p, . . .>, where p is the period 

of the projection and 0 ≤ m < p is the phase offset. 
 
It should be clear from the definitions of periodicity and projection that any 
periodic support set at minimum support σ is embedded in at least σ 

consecutive positions of some projection πp,m. 
 
Proposition 3.2 Let F be the Maximum Common Subgraph (MCS) of any s≥σ 
consecutive positions of any projection πp,m. If F is not empty, then it is a 
periodic subgraph, and the s consecutive timesteps from πp,m are part of a PSE 
for F. 
 

Proof: if the MCS F of any s ≥ σ consecutive positions is not empty, this implies 
that F is maximal over a support set of at least σ periodic timesteps, which in 
turn might or might not be temporally maximal for F. However, in either case, 
the s timesteps are part of some valid periodic support set of size at least σ. This 
is a sufficient condition to satisfy Definition 2.7 (excluding temporal 
maximality), and thus F is a periodic subgraph.  
  □ 
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Corollary 3.3 In the worst case of the Periodic Subgraph Mining Problem, the 
MCS of every s ≥ σ consecutive positions of every projection is not empty and 
contains a unique PSE. 
 

Proof: we now show that this is attainable using an explicit construction. We 
place a different edge in each s ≥ σ consecutive positions of every projection to 
ensure that each edge is part of a unique PSE. Let e be an edge created in this 
way with support set SP in some πp,m. Considering only SP, we know that it is 
temporally maximal for the edge e because e does not exist in any other 
timesteps. 
Furthermore, the MCS of SP is non empty because it contains at least the edge e. 
Thus, each edge is part of a unique PSE whose support set is SP. Since a 
different edge was placed in every s ≥ σ consecutive positions of every 
projection, the number of PSEs is equal to the number of edges created. No 
additional PSEs can be created since every permissible support set, i.e., with 
support greater than σ, is already part of a unique PSE. Therefore, the described 
structure is a worst case instance for its size. 
   □ 
 
Example 

We now present an example of worst case. The example has T=5 timesteps, and 
threshold σ=2. We describe each graph with its integer mapping for ease of 
explanation. 
 
G1= <1, 6, 10, 13, 16, 17, 19, 23, 25, 27> 
G2= <1, 2, 6, 7, 10, 11, 13, 14, 16, 20, 22, 24, 26> 
G3= <2, 3, 6, 7, 8, 10, 11, 12, 13, 14, 16, 17, 18, 19> 
G4= <3, 4, 7, 8, 9, 10, 11, 12, 13, 14, 16, 20, 21, 22, 23> 
G5= <4, 5, 8, 9, 11, 12, 13, 14, 16, 18, 19, 24, 25> 
G6= <5, 9, 12, 14, 16, 21,22, 26, 27> 
 
In this dataset we can note that for every period p 1≤p≤5, for every sequence we 
have a different element, hence a different PSE. 
The next step is to explicitly calculate the upper bound on the number of PSEs 
in the worst-case network instance. From Corollary 3.3, we only need to count 
the number of s ≥ σ consecutive positions of every projection to derive this 
bound. In order to do this, we first state the bounds on several other 
parameters. 
 
Proposition 3.4 In a dynamic network with T timesteps, the maximum period 

of any periodic subgraph F with support at least σ is P = �(T-1)/(σ - 1)�. 
 

Proof: For a given period p, we can have F ⊆ G1. In the other T-1 timesteps,  for 
every periodic embedding we  have that F ⊆ Gj  in σ–1 consecutive timesteps 
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<T1+p,T1+2p,….,T1+p(σ – 1)>. The last index 1+p(σ – 1) is smaller or equal than T, 
because T is the index of the last timestep. From this inequality we derive    
p≤(T-1)/(σ−1).  

□ 
 

Proposition 3.5 In a dynamic network with T timesteps, the length of any 
projection is |πp,m| = ⌈(T − m)/p⌉. 
 

Proof: since πp,m = <G1+m, G1+m+p, G1+m+2p, . . .>, the projection starts after m 

elements, and so there are T-m timesteps remaining.  Since indexes of two 
following timesteps differ by p positions, we have that the number of elements 
in πp is  ⌈(T − m)/p⌉.  

□ 
 
Given the above expressions, an exact bound for the number of closed PSE can 
be obtained by construction [1].  
 
Theorem 3.6 In a dynamic network with T timesteps, there are at most         
O(T2 ln (T /σ) ) closed PSEs at minimum support σ. 
 

Proof: From Corollary 3.3, the maximum possible number of PSEs in a dynamic 
network at minimum support σ is equal to the number of s ≥ σ length windows 
over all possible projections of the network. For a given projection πp,m and 
value of s, the number of length-s windows over the projection is |πp,m|−s +1, 
where |πp,m| is the length of the projection as defined in Proposition 3.5. Thus, 
for a given value of s, the number of windows, of length s, over all projections 
can be obtained by substituting the expressions from Propositions 3.4 and 3.5:  

 
In the expression for the maximum period of a pattern from Proposition 3.4, the 
parameter σ was replaced by s since we only want projections which contain at 
least one length s window for any s. This constitutes the outer summation; the 
inner summation is over all possible phase offset values m for a given period p. 
Finally, the term inside the summation is the number of length s windows in 

any projection, where |πp,m| is equal to 
⌈
��⌉

  as proved in Proposition 3.5. 

 
This expression is next summed over all possible values of s, which run from σ 
to T, and the floor and ceiling expressions for an asymptotic closed form 
approximation are relaxed. 
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From the above formula, we obtain the expression:  

O( T2 ∑ �


(� ��)/(� – �)
�� ) 

 

where  ∑ �


(� ��)/(� – �)
��  is approximated by ln(

�
�). 

 

Hence, the number of closed PSEs at minimum support σ is    O(T2ln  ��) 

  □ 
 
 
Theorem 3.7 Periodic subgraph mining in dynamic networks is in P. 
 
Proof: suppose to have an algorithm that outputs the maximal common 
subgraph of every σ length window of every projection. Since the maximal 
common subgraph can be found in time O(V+E) [27], the algorithm runs in 

time O((V +E)T2 ln 
�
�), and it is guaranteed to output every closed periodic 

subgraph. Thus, the mining problem is in P, and the exact bound on the number 
of closed PSEs is given in summation form in Theorem 3.6. 
  □ 
 
An alternative proof of Theorem 3.6 was proposed in [2].  
 
Theorem 3.8 In a dynamic network with T timesteps, there are at most    
O(T2/ σ) closed periodic subgraphs at support exactly equal to σ. 
 

Proof:  For each projection πp,m the maximal common subgraph, of any σ 
consecutive timesteps, if not empty, can be a unique maximal periodic 
subgraph. Let s be the length of the projection. There are at most s− σ +1 
possible windows of size σ in any projection. For every of these windows in the 
worst case, there is a maximal periodic subgraphs that is also frequent. 
Summing this expression over all possible values of m and p, we obtain the 
following upper bound on the total number of possible maximal periodic 
subgraphs: 
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Solving this expression, we obtain that there are at most O(T2 / σ) closed PSEs 
at support σ.  
   □ 
 
Since we are interested in closed PSE at minimum support, to prove Theorem 
3.6 we have to sum  all closed PSEs for every support σ’≥ σ. 
 

 
 

Solving the previous expression we obtain O(T2ln �� ) closed PSEs at minimum 

support σ. 
 
As mentioned in chapter 2, to avoid redundancy a new formulation of the 
problem is proposed including the concept of parsimony.  
As explained in [1] a naïve algorithm to mine parsimonious subgraphs compares  

each of the O(T2ln �� ) closed PSEs at minimum support σ with all other PSE 

taking time O((V+E)( T2ln �� )2). 

These complexity bounds do not hold in case jitter is allowed (see definition 
2.12). In fact in this case the number of mined patterns could be exponential in 
the number of timesteps. Below I propose two possible proofs for this 
observation. 
 
Theorem 3.9: The number of PSE when jitter is allowed is exponential in the 
number of timesteps. 
 
Proof: let us consider a dynamic network <G0, … , GT>, and fix a period p. The 
following reasoning can be done: for every graph Gi, 0≤i≤T, the maximum 
common subgraph MCS(Gi,Gi+p), if not empty, is a periodic subgraph (in this 
case i represent the offset of a given projection).  
Allowing jitter j, for every timestep Gx, where i+p-j ≤ x ≤ i+p+j, the MCS Mx 
between Gi and Gx is a valid periodic subgraph. If every Gx has a different 
common edge with Gi, every MCS Mx is different from the others. So there are 
exactly 2j+1 different periodic subgraphs. Now, for each of these different 2j+1 
subgraphs the same reasoning can be repeated. 
In particular, for a single graph Mx, the MCS with every graph Gy, where x+p-

j≤y≤x+p+j, if not empty, is a valid periodic subgraph.  As previously described, 
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if every Gy has a different common edge with Mx, there are other 2j+1 different 
periodic subgraphs. This can be repeated for each previously identified graph 
Mx, thus obtaining (2j+1)2 different periodic subgraphs. 
For a given projection πp,i this process can be repeated for the maximum length 
of the projection πp,i that is ⌈T-i/p⌉. Therefore the number of patterns discovered 
could be (2j+1) ⌈T-i/p ⌉ for a fixed projection πp,i. 

□ 
 
The proof could be done also by induction in the number of elements in a given 
projection. The following proof describes the construction of the worst case for 
the projection π1,0. 
 

Base case: 

The proof starts from Gj+1. Following the previous considerations, for every 
graph  Gx, where 1 ≤ x ≤ 2j+2, the MCS Mx can be calculated with every graph 
Gy, where x+p-j ≤ y ≤ x+p+j having, in the worst case, 2j+1 different graphs. 
Repeating this procedure for every Gx, we have in total (2j+1)2 periodic graphs. 
 
Induction: 

Assuming the property true for t-1, there are (2j+1)t-1 different periodic graphs. 
Repeating the process described above, for each of the (2j+1)t-1 graphs, in the 
worst case, when all MCS are not empty and different from each other, further 
2j+1 periodic graphs are found. So, in total there are (2j+1)t different periodic 
subgraphs. 

□ 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



22 
 

The following figures present an example of what was explained above. 
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Fig. 3.1: an example of dynamic network in which, setting jitter j=1 and σ=2, the number of 

frequent and periodic pattern is exponential in the number of timesteps. 
 

Suppose we are looking for periodic patterns with period p=3 and σ=2, allowing 
jitter with j=1. Considering the offset i=1, both G1 and G2 are possible candidates 
to be the first timestep of a PSE with period 3 and offset 1. For brevity we 
consider only the case with G1 as first timestep. The next expected timestep is 4, 
since we want find periodic patterns with period 3. Allowing jitter also timesteps 
3 and 5 are possible candidates. The MCS G13 between G1 and G3 is equal to G3, 
the MCS G14 between G1 and G4 is equal to G4, and the MCS G15 between G1 and 
G5 is equal to G5. After timestep 4 the next expected timestep is timestep 7. 
Allowing jitter also timesteps 6 and 8 are possible candidates. Therefore, for 
each of the three periodic patterns (G13, G14, G15) the MCS between timesteps 6, 
7, and 8 is a periodic pattern that is different from the others. In total, with 
period 3, we have (2j+1)⌈(T-1)/p⌉-1=(3)2=9 periodic patterns.  With respect to the 
expression calculated in theorem 3.9, the exponent is decremented by one 
because, for brevity, we do not have considered the case with G2 as first 
timestep. Nevertheless, the number of patterns remains exponential in the 
number of timesteps. 
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The following figures list the 9 periodic patterns described above: 
 

 
Fig 3.2: all frequent and periodic patterns of projection π3,1 in figure 3.1 with σ=2 and j=1. 
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4 PSEMiner (Lahiri and Berger-Wolf’s algorithm) 

The main characteristic of the algorithm proposed in [1][2] is the use of a  data 
structure called pattern tree. This structure maintains all PSEs seen up to 
timestep t, and it also tracks subgraphs that might become periodic at some 
point in the future. 
At each timestep t, the graph Gt is red, and the pattern tree is updated with the 
new information, which could involve modifying, adding and deleting tree 
nodes. 
The most important parameter of the algorithm is the maximum period Pmax. 
When Pmax is restricted, the algorithm functions as an online algorithm, 
retaining in memory only the parts of the dataset that it requires to calculate 
periodicities. 
However, in many situations this information is not available or relevant, such 
as in streaming sensor data. In such cases, an unrestricted maximum period 
value must be set. The unrestricted period places a large computational burden 
on the algorithm, and requires that the entire dataset is retained in memory. 
 

4.1 Data structures 

The algorithm actually make use of five data structures: 
• Pattern tree. It maintains all PSEs seen up to timestep t, and also tracks 

subgraphs that might become periodic at some point in the future. The 
nodes of the pattern tree are called treenodes.  

• Treenode. Each treenode contains a different subgraph G and a list of 
descriptors (see below for a detail description), one for each PSE 
observed for subgraph G. There is a constraint that every treenode, 
except the root, must observe: all descendants of a treenode for a graph F 
are associated with proper subgraphs of F, but not all subgraphs of F are 
necessarily its descendants in the tree. 

• Subgraph hash map. It allows direct access to treenodes by associating 
subgraphs with their corresponding treenode. This can be done because a  

hashing function exists for graphs since the set representation R has a 
global ordering by virtue of R ⊂ N. 

• Descriptor. It is a representation of a periodic support set. Each 
descriptor is associated with a treenode and it defines a unique PSE. Each 
descriptor is a triplet (i,p,s) that stores the initial position of the observed 
PSE, the period and the number of steps for which the periodicity hold 
(support). The last element in the support set is the timestep tj=ti+p (s-1). 
The next expected timestep is te=tj + p. 
A descriptor, at timestep t,  is alive if te ≥ t. A descriptor that is not alive 
must be reported in output if it has enough support, and then discarded, 
since it cannot change state and return alive in the future. A descriptor 
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where ti = tj is a special case called an anchor descriptor, as it does not 
represent a periodic support set, but it could potentially become a PSE if 
the associated subgraph is observed at some future timestep. An anchor 
descriptor is always alive, unless Pmax is defined and t − ti > Pmax, in which 
case the anchor can never lead to a valid PSE with period at most Pmax, 
and is no longer needed.  

• The algorithm also uses a two-dimensional arrays to store periods and 
phase offsets of live descriptors. 

4.2 Description of the basic algorithm 

Initially an empty treenode is set at the root of the pattern tree. At each timestep 
t, with associated graph Gt, the treenode is traversed with a breadth-first visit. 
Only treenodes that can be modified by the newly acquired information are the 
ones that are actually traversed. This excludes every treenode with subgraph F 
for which the MCS(Gt,F) is empty, and all its descendant. The algorithm first 
searches in its hashtable if the node already exists in the pattern tree for Gt.  If it 
does not exist, a new node is created in a position that does not violate the 
subgraph constraint, or it is added as a new child of the root. 
An anchor descriptor for graph Gt is  then added to the corresponding treenode. 
During the breadth-first traversal of the tree, one of the following three 
conditions holds at each treenode N with graph F. Let C = F ∩Gt be the MCS of 
Gt and F, and consider each descriptor of the treenode. 

• Update descriptors: If F ⊆ Gt then F has appeared in its entirety at 
timestep t. Let te the next expected timestep. 

o If te=t then t is added to the support  to ensure temporal 
maximality; 

o If te<t then the expected timestep has already been processed.  If 
the support of D is greater than σ, then D is written in output and 
removed from the treenode. 

o If te>t then the expected timestep has not been processed yet, so 
nothing is done. 

o If D is an anchor descriptor  then timestep t can be considered as a 
second occurrence and the descriptor D is updated:  the period is 
set to p = t − ti and the phase offset to m = (ti −1) mod p. If N does 
not contain a living descriptor with the same period and phase 
offset, D is added as new descriptor to the list of descriptors at N. 

For every treenode N’ with graph F’ that is a child of N, since F ⊆ Gt 

and F’ ⊆ F for the property of treenodes, we have F’ ⊆ Gt. So the 
algorithm can update all descriptors of the subtree with root F 
without calculating the MCS, thus saving computational time. 

 
• Propagate descriptors: If C is not empty then a subgraph C of F 

occurs at timestep t. Using the subgraph hash map, the algorithm 
controls if a treenode for C exists, otherwise a treenode is created as a 
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child of N with subgraph F. The descriptors of N are copied in the new 
node, and timestep t is added to their support sets if the next expected 
timestep is t. If the treenode exists, then for each descriptor D, if the next 
expected timestep te=t, t is added to support set. Otherwise, if te<t,  D is 
written in output if its support is greater than, or equal to σ, and D is 
removed. If te>t no action is taken. 

• Dead subtree: If C is empty, then Gt and F have no common subgraph, 
and no descriptors at N are directly affected by the observation of Gt. 
Furthermore, no treenode that is a descendant of N will have any 
common subgraph with Gt either, since they are all subgraphs of F. The 
subtree rooted at N is therefore eliminated from the rest of the tree 
traversal. 

 

 
Fig 4.0 shows the pseudocode of the function to update the tree. 

 
Example 

 

Here we show an example of the algorithm using the dataset in figure 2.3 (that 
is reported again in figure 4.7) as input, and setting σ=2. 

Fig 4.7: the input dataset. 
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 We start with the first timestep creating a single node that contains the graph of 
the first timestep, and an anchor descriptor. 
 

R

(A,B),(A,C),(A,D),(B,C),(B,D),(C,D)

S={1};p=0

Timestep 1

1

 
Fig. 4.1: description of timestep 1 

 

We continue by processing the second timestep. First, node 2 is created, with an 
anchor descriptor for the graph contained in the second timestep. Then another 
node is created, which contains the MCS between the first two timesteps. 

R

(A,B),(A,C),(B,C),(B,D)

(A,B),(A,C),(A,D),(B,C),(B,D),(C,D)

S={1};p=0

S={1,2};p=1

(A,B),(A,C),(B,C),(B,D),(C,E),(D,E)

S={2};p=0

Timestep 2

1

2

3

 
Fig. 4.2: description of timestep 2 

 

In the next step of the algorithm a new node (node 2 of Figure 4.3) is created for 
the graph at timestep 3, holding an anchor descriptor starting at t=3. This node 
must be a child of node 1, since it is a subgraph of the graph in node 1. From 
node 1, node 2 inherits the descriptor starting at t=1, which can be extended 
both with period p=1, and with period p=2. Finally, the old node 2 (Figure 4.2) 
is deleted because its next expected time is t=3, but the subgraph does not 
appear in its entirety at this timestep. However, since its support equals the 
threshold, it must be reported in output before being discarded. 
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Fig 4.3: description of timestep 3 

 

Then node 5 (fig 4.4), with the MCS between node 1 in fig 4.3 and G4, is created, 
with the descriptor with period p=3 (timesteps 1 and 4). The descriptor of the 
node 2 in fig 4.3 that refers to period p=1 is no longer valid, so the subgraph is 
reported in output (its support is 3) and the descriptor is discarded. 
The MCS between node 2 in fig 4.3 and G4, leads to the creation of node 6, 
where only the vertex B occurs with period p=1. The MCS with node 3 in  fig 4.3 
gives again the subgraph with just the edge (B,D). Since this graph is already in 
the pattern tree the algorithm does not create a new node but only the 
descriptor with period 2 and support {2,4}. 

 
Fig 4.4: description of timestep 4  

 
The last timestep refers to figure 4.5. A new node with graph G5, and an anchor 
descriptor, is inserted as a child of the root. The MCS with node 1 in figure 4.4, 
gives the vertex A. The newly created node 6 in figure 4.5 will inherit a 
descriptor for a subgraph occurring at t=1 and t=5, therefore with period p=4. 
The MCS with node 2 in figure 4.4 gives a new node with vertexes A and E. 
Node 7 in figure 4.5 is therefore inserted as child of node 3 (figure 4.5) with the 
corresponding descriptor. 
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The MCS with node 3 in figure 4.4 is the edge (F,G). A new node 8 (figure 4.5) is 
created, with inherited descriptor for p=1. 
Apart from the anchor descriptor, the other descriptor of node 4 in figure 4.4 
must be flushed in output if frequent, and then deleted, because the graph at 
node 4 in fig 4.4 does not appear in its entirety. 
The MCS with node 5 in figure 4.4 is the empty set, however the next expected 
times for its descriptors are t=7 and t=6, so nothing happens. 
 The MCS with node 6 in figure 4.4 gives the empty set. Since its only descriptor 
is no longer valid, it must be reported in output because frequent, and then the 
node is discarded.  

 
Fig 4.5: description of timestep 5  

 
Finally, the tree is traversed and the frequent descriptors are flushed in output 
along with their subgraph. 
 

4.3 Extension to the basic algorithm 

4.3.1 Mining parsimonious PSEs. 

For mining parsimonious PSEs an indicator bit is added to each descriptor to 
indicate if the descriptor is subsumed. This bit is initially cleared when the 
descriptor is created. When a descriptor D that belongs to a treenode N  have to 
be put in output, the indicator bit is checked: if it is clear then D is compared to 
all other descriptor at N. If D is subsumed by another descriptor, it is not 
written to the output. If D subsumes some other descriptor D’, the subsumed bit 
for D’ is set to 1. If the support of D increases in the future, its subsumed bit is 
cleared. If the indicator bit is set, the descriptor is not written in output. 
 

4.3.2 Including smoothing 

Since real-world networks are unlikely to contain perfectly periodic patterns, 
Lahiri and Berger-Wolf [1][2] used smoothing as a mechanism for 
accommodating imperfect periodicity. Given a user-defined smoothing 
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parameter S ≥ 1, the dynamic network G=<G1,G2,…GT> is mapped in a new 
network G’, in which each element Gi’= Gi ∪ . . . ∪ Gi+S 

In addition, the following two conditions handle the removal of artifacts 
introduced by the smoothing process. 
 

1. The minimum period Pmin is set to S. 
2. PSEs of the same subgraph that share the same period, and that differ 
in their starting positions by at most S −1 timesteps, are merged together. 
In other words, only the PSE with the highest support is retained. This 
can be done as a post-processing step, or it can be incorporated into the 
mining algorithm itself.  
 

By introducing this smoothing mechanism, they allow a window of timesteps 
within which the order of events does not matter. No smoothing is performed at 
S = 1. 

4.3.3 Sorted descriptor list 

The list of descriptors can be sorted by the next expected timestep. So, for a 
given timestep t, only descriptors which are expected at or before t will be 
examined, cutting down the number of descriptors that need to be examined 
during each tree update. The added computational cost is that of having to sort 
the list of descriptors after each update. Since the number of descriptors per 
treenode is generally not very large, the computational overhead is minimal in 
practice. 

4.3.4 Lazy tree update 

Most of the running time is due to the computation of the intersection between 
graphs. Although the maximum common subgraph of two graphs is calculated 
in linear time in the number of vertexes and edges, the size of the graphs is such 
that this operation results in a relatively expensive computation. Thus, to 
improve the practical efficiency of the algorithm, it is possible to delay the 
computation of  intersections until it is absolutely necessary. In a treenode N an 
intersection at timestep t is absolutely necessary if there is a descriptor D in 
which the expected timestep is t. This variant of Lahiri and Berger-Wolf 
algorithm is shown in figure 4.6. 
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Fig 4.6: the algorithm for lazy tree update described in section 1.3.4 

4.3.5 Using a timeline 

The timeline is a mechanism that associates each future timestep with a list of 
treenodes that have at least one descriptor expected at that timestep. It can be 
dynamically updated at a not significant cost (constant or logarithmic) per 
treenode update, and stored in linear space in the number of treenodes. After 
the tree update for timestep t, all treenodes that are still associated with 
timestep t are guaranteed not to have been visited during the tree update, and 
have at least one descriptor which is no longer periodic. These treenodes can 
then be visited and the invalid descriptors can be removed. The time required is 
proportional to the number of descriptors to be removed. Thus, at the end of 
each tree update operation, the treenode only contains descriptors that are alive 
at the next timestep. This ensures that the pattern tree contains a minimal 
number of descriptors and treenodes at any given timestep. 
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4.4 Space and time complexity 

Let N the number of nodes in the treenode, Pmax the maximum period, and G be 
the number of frequent periodic subgraph. 
From corollary 3.3, the worst case is when we have the maximum number of 
periodic subgraph at minimum support σ=2. 
 
Space complexity: let N be the number of treenodes and G the number of 
descriptors in the tree. Every node of the tree has an associated graph of size 
O(V+E). Moreover the algorithm uses a two-dimensional array of size P2

max to 
store periods and phase offsets of live descriptors (Pmax offset for every of the 
Pmax period). The overall space complexity is therefore O((V+E)N+P2

max+G). 
From proposition 3.6, in the worst case we have O(T2 ln (T /σ) ) number of 
different periodic subgraphs. Since in the worst case we have that each 
descriptor corresponds to a unique PSE, and in every treenode there is only one 
descriptor, we have N=G=O(T2 ln (T /σ)). Since at most one descriptor is added 
per timestep, the asymptotic bound on the total number of nodes and 
descriptors does not change. 
In the worst case the space complexity is O((V+E+ P2

max) T2 ln (T /σ)), and if 
Pmax is unresctricted (Pmax=O(T/σ)) the total space complexity is                           
O((V+E) T2 ln (T /σ)+ T4 ln (T /σ)). 

 

Time complexity: For every timestep t the tree is completely traversed. Thus, 
time complexity of the algorithm involves traversing each descriptor in the tree 
once for each timestep, and calculating the MCS at each treenode. So the time 
complexity is O((V+E)T N). In the worst case the number of the nodes is equal 
to the number of PSEs that are O(T2 ln (T /σ)), so the time complexity in the 
worst case is O((V+E) T3 ln (T /σ)). 
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5 ListMiner 

This chapter presents the main contribution of the thesis: the design and 
development of ListMiner, an algorithm that improves the worst case time 
complexity of PSEMiner by a factor T.  
From the previous description in Chapter 4 it can be observed that at each 
timestep t PSEMiner must traverse every node of the pattern tree. At each node 
u the following operations occur: 
 1) the MCS between the graph under analysis Gt, and the graph described at 
node u is computed; 
2) the corresponding node v in the pattern tree is searched for;  
3) each descriptor at node v is then checked for consistency of periodicity in t 
(basically its next expected time must be equal to t).  If so, the descriptor is 
updated, otherwise either it is deleted or no action takes place. If no action is 
taken, the time consuming computation of the MCS was useless. This problem is 
due to the fact that, with this approach, at the time of the computation of the 
MCS it is not known if the resulting subgraph would be periodic or not.  
The key idea of the algorithm that I propose in this thesis is to calculate the MCS 
only when necessary. To this end I have been inspired by proposition 3.2 to 
consider only timesteps in which the graphs to intersect can contain a periodic 
subgraph. Consider a fixed period p, every timestep t belongs to a single 
projection πp,m,  where m=(t mod p). Therefore every projection can be 
considered separately, since graphs that belong to different projections cannot 
be periodic with the same period p. 
More precisely, for a fixed period p, the T timesteps are partitioned into p 
projections. For example, setting p=1, there is a single projection that contains 
all the timesteps. Setting p=2, there are two projections: π2,1=<G1,G3,G5,G7,…,> 

and π2,0=<G2,G4,G6,G8,….>, etc.   
Afterwards, for every projection, a list is created. This list contains the 
intersection between every possible sequence of consecutive graphs. For 
example if the projection is π2,1 the list is composed by {G1}, 
{G3},…,{G1∩G3},{G3∩G5},….,{G1∩G3∩G5} and so on. In this way every possible 
PSE is generated, as explained in proposition 3.2.  By iterating the process for 
all possible choices of period p, all PSE will be eventually found. 
In the following sections these concepts are formalized, and a detailed 
description of the algorithm is given. 

5.1 Preliminaries 

Definition 5.1: For a given projection πp,m=<G1’,G2’,…,Gx’>, where Gj
’= Gpj+m 

and x=⌈(T−m)/p⌉, we call run Si,j every subsequence of consecutive graphs from 
πp,m. For two fixed indexes i and j, 1≤i≤j≤x we have Si,j=< Gi’,…,Gj’>. 
  
Proposition 5.2: For a given period p, every timestep Gt belongs to a single 
projection πp,m where m=t mod p. 
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Proof: by definition, Gt ∈ πp,m if t=qp+m for some q. It is known that for every t 
∈ Z there is a unique remainder m ∈ N such that t=qp+m where p,q ∈ Z and 
p>0. Since m is unique, Gt belongs only to πp,m. 

         □ 
 
Proposition 5.3: For a given period p, there are exactly p projections. 
 
Proof: from the previous proposition the number of all possible values of 
remainders m is p. 

        □ 
 

It follows from proposition 3.2 that in a projection πp,m, the MCS of any s ≥ σ 
consecutive positions, if not empty, is a periodic subgraph, and the s consecutive 
timesteps are part of a PSE.  
Therefore the purpose of the algorithm is to consider, for every period p, every 
projection πp,m and computing the MCS M between all graphs of every run Si,j of 
length at least σ, and saving only subgraphs which are temporally maximal. 
 
Using the following property the MCS of every run can be calculated in time 
V+E. 
 
Property 5.4: Given a run of graphs <Gi, Gi+1,….,Gx> where 1≤i≤x≤t, the MCS 
of this run is:  

MCS of <Gi, Gi+1,….,Gx> = MCS of < MCS of < Gi, Gi+1,….,Gx-1>, Gx>. 
 

Proof: this property can be proved using the associative property of intersection 
between sets. Since from definition 2.1 every graph can be considered as a set of 
natural numbers, the intersection of <Gi, Gi+1,….,Gx> is equal to the intersection 
between < (Gi, Gi+1,….,Gx-1), Gx >.  
Using this theorem, the MCS of a given run Si,j, can be obtained calculating the 
MCS between Si,j-1 and the j-graph of run Si,j. The time needed for such 
intersection is V+E. 

         □ 
 

5.2 Data structures  

In order to mine all periodic, frequent subgraphs, the algorithm uses three 
primary data structures: lists, listnodes and a bidimensional array that contains 
every list. To mine only parsimonious subgraphs another data structure is 
necessary: a hash map.  
Every list is composed by some listnodes and it is associated to a specific 
projection πp,m. Every listnode describes a run Si,j of the projection and it is used 
to describe a single temporally maximal PSE. 
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5.2.1 List 

Every projection πp,m, where 1≤p≤Pmax , 0≤m<p, is associated to a specific list. 
Every node of the list contains the MCS between all graphs of a specific run in 
projection πp,m. Precisely, at timestep t, every list L contains in its listnodes in 
reverse order (St,t in the first node of the list and S1,t in the last node) the MCS of 
all runs Sx,t 1≤x≤t which graph is temporally maximal. Therefore, by 
construction, the list is subjected to a single constraint: each node N in the list 
has a graph that is properly contained in the graph of its predecessor. 
This property allows efficient traversal of every list by the mining algorithm, and 
also allows the list to be built and manipulated quickly.  

5.2.2 Listnode 

Given a list L for a single projection πp,m, every listnode describes a single PSE 
and it is composed by: 

• Start index: this is the index of the first timestep of the PSE; 
• End index: this is the index of the last timestep of the PSE; 
• Graph G: it is the graph that is associated to the PSE. This is the MCS 

between all graphs from timestep Tstart  to timestep  Tend  whose indexes  
differ by p (the graph is periodic with period p); 

• Support: it is the number of elements of the support set. It can be 
obtained in the following way: Support = (Tend - Tstart)/p, and is pre-
computed because it is used several times during the processing.  

This data structure is equivalent to the descriptor used in Berger Wolf ’s 
algorithm. 

5.2.3 Bidimensional array 

The bidimensional array A is used to store all lists. The list associated to the 
projection πp,m is stored at position A[m][p]. Using A allows to perform list 
lookup  in constant time.  

5.2.4 Subgraph hash map 

This data structure is used for mining parsimonious PSE only. It uses a graph as 
a key. For every key the associated object is a list of descriptors. Descriptor is a 
triple <p,s,e> where p is the period, s is the first timestep and e is the last 
timestep of the PSE. This information is added to the hash map when a listnode 
is flushed out of its list. 
Since two PSE could have the same graph, the object associated to every key is a 
list of descriptors. Before writing in output a PSE P with graph G, G is used as a 
key to access to the hash map. If it exists in the hash map, the corresponding list 
is traversed, and for every descriptor D the algorithm controls if D subsumes P. 
If so, P is subsumed, otherwise it is printed in output and its descriptor is added 
to the list. If it does not exist in the hash map then P is the first PSE with graph 
equal to G. This means that all other PSEs with graph equal to G will have a 
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period greater than the period of P. Therefore P can be safely printed in output 
because it cannot be subsumed.  
 

5.3 Parameters 

The algorithm is a single-pass, polynomial time and space algorithm for mining 
all closed PSE in a dynamic network. It does not require any parameters, but it 
optionally accepts the following: 

• Minimum support threshold σ ≥ 2 (default: 2). 
• Maximum period Pmax (default: unrestricted). 

 
The optional Pmax parameter limits the maximum period of mined patterns, thus 
reducing the number of projection to consider, with a consequent speed up of 
the algorithm. 
Minimum support threshold σ is a parameter that is used for mining frequent 
subgraphs (see definition 2.4). Its value depends on the context and on the 
dataset. By increasing σ the size of the output is reduced and the algorithm is 
faster.  
 

5.4 Description of the algorithm 

The algorithm starts creating a bidimensional array A that contains, in every 
cell, an empty list. Timesteps are red and stored in an array called input. 
For each timestep t the algorithm finds, for each period p, the list L stored in the 
bidimensional array in position A[p][m] where m=t mod p. 
To begin with, a new listnode N=(Gt,t,t,0) is added at the head of the list 
because it could be the first element of a future PSE. Thereafter, the function 
update is called. This function calculates the MCS between the graph in each 
listnode and Gt. Whenever a PSE of a subgraph node is detected, it is checked 
for subsumption, and eventually printed in output. 
When all timesteps have been elaborated, some listnodes could remain in the 
lists. This is because the next expected timestep for some graphs could be equal 
to or greater than T. Therefore the algorithm must further control if every PSE 
associated to these nodes is subsumed by another PSE previously calculated 
and, if it is not subsumed, it must report it in output. 
The algorithm is implemented using three functions: Miner is the main 
program; update is the function to update a single list; subsumed is a function 
to control if  a specific PSE  can be printed in output (the subgraph is frequent 
and not subsumed).  
This is the complete version that discovers all frequent periodic and 
parsimonious subgraphs. For mining all frequent and periodic graphs without 
subsumption, the function subsumed must not be called. In this case the 
algorithm only controls if the support of every subgraph is greater than, or equal 
to σ.  
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Algorithm Miner(input) 

 

Require: input is a vector that in position input [i] = Gi+1. We have T timesteps, from 0 
to T-1. Let L.begin() and L.end() be the first and the last element of the list, L.iterator() 
the element pointed by the iterator. 
1: A ← new matrix; 
2: H ← new subgraph hash map; 
3: for (t ← 0 to T-1) do 
4:      Gt ← input[t] 
5:     for (p←1 to min (t, Pmax)) do 
6:         phase ← t mod p 
7:        L←A[p][phase]  
8:        N= new ListNode(Gt,t,t, 0) 
9:        L.push_head(N) 
10:        update(L).  
11:      end for 
12:  end for 
13:  for  (i ← 0 to Pmax ) do  
14:    for (j ← 0 to i )  do 
15:       L←A[i][j];  
16:       iterator ← L.begin() 
17:    for iterator to L.end() do 
18:          Gx ← L.iterator() 
19:          if(!Subsumed (Gx,i)and Gx.support() ≥ σ) then 
20:     print Gx 
21:          endif 
22:      end for  
23:    end for 
24:  end for 

 
 

5.4.1 Update algorithm 

This section describes the update algorithm, which is the core of the mining 
process. For every timestep t all the lists associated to projections πp,m, where 
p≤min(t,Pmax) and m=t mod p, are updated with the new information contained 
in Gt.  The update process starts by adding a listnode for Gt at the head of the list 
L. This listnode is built as follows: the graph is set to Gt , start and end indexes 
are set to t because t is the first and the last index of  the run, and the support is 
set equal to 1. This accounts for the possibility that Gt in its entirety is the first 
occurrence of a (future) periodic subgraph. 
During the traversal of the list, one of the following three conditions holds at 
each listnode N with graph F. Let C = F ∩ Gt be the MCS of Gt and F. 
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• If F ⊆ Gt , i.e. F = C, then F has appeared in its entirety. Therefore the 
MCS is F, and the listnode is updated in the following way: 

o Graph is unchanged  
o Start index is unchanged. 
o End index is set to t because the last timestep where the MCS (C) 

occurs is t. 
o Support is incremented by one unit because there is another 

timestep (t) where C appears. 
Since all successors of a node N must have a graph Gd that is a subgraph 
of F, and F is subgraph of  Gt (Gd ⊆ F ⊆ Gt), then Gd  is a also subgraph of 
Gt. Therefore the algorithm updates all successors of node N in the same 
way without calculating the MCS, thus saving computational time. 

• If C = ∅, then Gt and F have no common subgraph. Furthermore, no 
listnode that is a successor of N will have any common subgraph with Gt 

either, since they are all subgraphs of F. N and all its successors are 
therefore eliminated from the rest of the list and, if they are frequent and 
not subsumed, they are flushed in output. 

• If C ≠ ∅ and F ⊈ Gt, then a subgraph C of F is present at timestep t. This 
happens, for example, when a formerly periodic subgraph F fractures 
into a smaller subgraph C that continues F ’s periodic behavior. 
In this case the algorithm first check if the listnode parameters describe a 
subgraph that is frequent and not subsumed. If it is so, it is printed in 
output. Then the algorithm updates the listnode N in the following way: 

o Graph is set to C. 
o Start index is unchanged. 
o End index is set to t because t is the last timestep where C 

appears. 
o Support is equal to support(N)+1. 

The next listnode in the list is then considered.  
 

Moreover, whenever the update involves not just the start/end indexes, but also 
the Graph variable, or whenever a new node is inserted, the new graph is 
compared with the one at the previous node. If they are equal, the previous node 
is deleted, since it would represent the same graph within a smaller periodic 
interval, therefore it would not respect the condition of temporal maximality 
(see definition 2.7). For example let us consider a dynamic network composed 
by a unique graph G that is repeated in every timestep. For every timestep the 
algorithm inserts a new listnode with graph equal to G. If the algorithm does not 
control if the new graph is equal to the one at the previous node then all 
listnodes of every list contain the same graph (G) but not all are temporally 
maximal (only the last node of every list is temporally maximal). 
The pseudocode of the update function is reported in the next page. 
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Algorithm Update(L) 

 

Require: L is a list of listnode. Let L.begin() and L.end() be the first and the last 
element of the list, L.iterator() the element pointed by the iterator, L.iterator().graph() 
the graph of the element pointed by the iterator and iterator.next() a function for 
forwarding the iterator. F and C are graphs, N is a node. 
1: Gt ← L.begin()  
2: iterator ← L.begin() 
3: iterator.next() //the first node is (Gt,t,t,0) therefore the update starts at the next node. 
4: while iterator ≤ L.end()  do 
5:    N ← L.iterator()                 // current node 
6:    F ← L.iterator().graph()    // current node graph 
7:    C ← Gt ∩ F 
8:     if (F ⊂  Gt) then 
9:           while iterator ≤ L.end()  do 
10:              N ← L.iterator()  
11:              N.update_end_index(t) // the end index of N is set equal to t     
12:              N.update_support(support(F)+1) // the support of N is incremented by one 
13:           end while 
14:     else if C = ∅ then  
15:                while iterator ≤ L.end()  do 
16:                    N ← L.iterator() 
17:                    if (!Subsumed (N.graph(),p) and N.support() ≥ σ ) then 
18:                       print N 
19:                    endif 
20:                    delete N 
21:                end while 
22:             else // case C != ∅ and C!=F   
23:                 if (!Subsumed (F,p) and N.support() ≥ σ ) then 
24:                       print N 
25:                 endif 
26:                 N.update_graph(C) //the graph of N is set to C 
27:                 N.update_end_index(t) // the end index of N is set equal to t     
28:                 N.update_support(support(N)+1) //the support of N is incremented by one 
29:                 if (N.graph()  is equal to the graph of the previous node) then 
30:                   delete the previous node 
31:                 endif 
32:                 iterator.next() 
33:        endif 
34:       endif 
35:  endfor 
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5.4.2 Subsumed algorithm 

This procedure controls if a given PSE, that is represented by a listnode, is 
subsumed by another PSE. In order to do this the algorithm uses a subgraph 
hash map H. 
For a given PSE P with graph F the procedure checks if a list associated to F 

exists in H. If not, then P is not subsumed because it is the first PSE with graph 
F. Therefore P is printed in output and stored in the hash map. Otherwise, for 
every descriptor of the list the algorithm verifies if there exists another 
descriptor that respects all the conditions given in definition 2.9. If there is, 
then P is subsumed and it is not printed in output, otherwise P is memorized in 
the hash map and flushed in output. 
 
The pseudocode of the function subsumed is presented below. 
 

 
Algorithm Subsumed(G,p) 

 

Require: G is a listnode, p the period,  H the subgraph hash map. H.search(G.graph()) 
is a function of  H that returns true if the graph of G is in H, otherwise it returns false. 
H.insert(graph, start,end, period) is a function that insert in H a graph with his relative 
period and support set. 
1: subsumed=false; 
2: if (H.search(G.graph())=false) then 
3:    if (G.support() ≥ σ) then 
4:      H.insert(G.graph, G.start(),G.end(),p)  
5:    endif 
6: else 
7:      for each descriptor D ∈ H.search(G.graph()) do 
8:         if (p mod D.period()=0 and G.start() ≥ D.start() and G.end() ≤ D.end()) then 
9:            subsumed=true 
10:            break 
11:        end if 
12:       end for each 
13:       if (subsumed=false and G.support() ≥ σ) then 
14:         H.insert(G.graph, G.start(),G.end(),p)  
15:       endif 
16:  endif     

 
 

5.4.3 Example 

Consider as input dataset the dynamic network in figure 2.3 that we report here 
for convenience. 
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Each column represents a single step of the algorithm. Each row is a single list 
that represents the elaboration of the specified projection. The algorithm in this 
example does not perform subsumption, the threshold σ is equal to 2 and Pmax is 
unrestricted. Listnodes are represented by grey boxes, S is the support and 
indexes near boxes are just used to reference in the text.  
In the next pages a figure shows an example step by step of the execution of 
ListMiner. 
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Fig 5.1 - A step by step example of computation. Each box represent a node. The edges in each 
box represent the current MCS. Single vertexes are not explicitly shown, unless they are the only 
components of an MCS. Each column represent a timestep, and each row a different List: πi,j is 
the list for period i and phase j. 
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It should be noted that at each timestep t (with the exception of the initial 
timestep 0), only the lists corresponding to a projection πi,j with period i (up to 
t) and phase j=t mod i are subject to update. Moreover, at each timestep t there 
will be the initialization of those lists for which i+j=t+1. The initialization simply 
consists in the insertion of a node with Graph=Gj, start=end=j, support=1. The 
algorithm also output single nodes that are periodic (when they are maximal). 
For ease of representation such subgraphs will be considered implicitly 
represented by the arcs involving them. They will be explicitly represented, by a 
box containing only the label of the vertex, only when they are the maximal 
periodic subgraph at that step. 
 

• Timestep 0: the first list π1,o is initialized to contain G0.  
• Timestep 1: after two steps only periodicity p=1 can occur, so π1,o is 

updated. The first step consists in the insertion of a new listnode (G1, 1, 1, 
1) at the head of the list. This is node 1 in the table. Then the following 
node is analyzed. The intersection between its graph (which is G0) and 
the current graph G1 is not empty (and different from G0), so case (3) of 
the procedure update applies. The support of the node is less than the 
threshold, so we can safely update the content to (MCS(G0,G1), 0, 1, 2). 
This node is called node 2 for future reference. 

•  Timestep 2: after three steps we can have periodicity 1 and 2 (starting in 
0). So the algorithm must:  

o Update π1,o. A node (G2,2,2,1) is inserted at the head of the list. 
Then the MCS between G2, and node 1 is computed. The result of 
the intersection is G2, hence condition (3) of the procedure update 
applies. Since node 1 has not enough support we just update it to 
(G2,1,2,2). Now, node 1 and its predecessor share the same graph, 
hence its predecessor is deleted. Then node 2 is considered. Its 
support set is 2, hence it should be reported in output (or put in 
the hashtable H for subsequent processing). 
Next, node 2 is similarly updated to hold (G2,0,2,3). Since node 2 
and its predecessor share the same graph its predecessor is 
deleted. Node 2 is relabeled to node 3 to avoid confusion in the 
further description of the processing. 

o Create list π2,o,  which also requires to be first initialized to hold 
(G0,0,0,1). Then the new node for G2, (G2,2,2,1), is inserted at the 
head of the list. The MCS between G2 and the following node 
(G0,0,0,1) is computed. The intersection is not empty, and not 
equal to G0, hence we are in case (3) of update. Node (G0,0,0,1) is 
not frequent, so it can be safely updated to (MCS(G0,G2), 0, 2, 2) 
and named node 4. 

• Timestep 3: the lists to consider at this step are π1,o, π2,1, π3,o. 

o Update π1,o . A node (G3,3,3,1) is inserted at the head of the list, 
and labeled with number 5. Then the MCS between G3, and node 3 
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is computed. The intersection contains no edges between different 
vertexes, however, vertex B is still present, so the MCS is not 
empty. Since node 3 has enough support it should be reported in 
output (or put in the hashtable H for subsequent processing). 
Then it is updated to contain ({B}, 0, 3, 4), and relabeled as node 
6. 

o List π2,1 is considered for the first time, and initialized to contain 
(G1,1,1,1). Node (G3,3,3,1) is then inserted at the head of the list. 
The processing continues computing the MCS(G1, G3). This is not 
empty and not equal to G1(condition (3) of update). Since the 
current node is not frequent, it is updated to (MCS(G1, G3),1,3,2), 
and labeled with number 7. 

o Similarly, list π3,0 is considered for the first time, and initialized to 
contain (G0,0,0,1). Node (G3,3,3,1) is then inserted at the head of 
the list. Then the MCS(G0, G3) is computed. This is not empty, and 
not equal to G0 (condition (3) of update). Since the current node is 
not frequent, it is updated to (MCS(G0, G3),1,3,2) and labeled it 
with number 8. 

• Timestep 4: the lists to consider at this step are π1,o, π2,0, π3,1, π4,0 . 
o Update π1,o . A node (G4,4,4,1) is inserted at the head of the list. 

Then the MCS between G4, and node 5 is computed. The result of 
the intersection is not empty, and not equal to the graph of node 5, 
so condition (3) of the update procedure holds. Since the node has 
not enough support, it can be safely updated to (MCS(G3, 
G4),3,4,2), and labeled node 9. 

o Update π2,o . A node (G4,4,4,1) is inserted at the head of the list. 
Then the MCS between G4, and node 4 is computed. The result of 
the intersection is the vertex A. Since the node has enough 
support, it should be reported in output (or put in the hashtable H 
for subsequent processing) before updating it. The result of the 
update ({A},0,4,2) is named node 10. 

o List π3,1, is considered for the first time, and initialized to contain 
(G1,0,0,1). Node (G4,4,4,1) is then inserted at the head of the list. 
The processing continues computing MCS(G1, G4), which is 
vertexes A and E. Since the current node is not frequent, it can be 
safely updated to ({A,E},1,4,2), and named node 11. 

o List π4,0, is considered for the first time, and initialized to contain 
(G0,0,0,1). Node (G4,4,4,1) is then inserted at the head of the list. 
The processing continues computing MCS(G0, G4), which is vertex 
A. Since the current node is not frequent, it can be safely updated 
to ({A},0,4,2) and named node 12. 

• The subgraphs that should be reported in output are those with labels 
2,3,4,6,7,8,9,10,11,12. If subsumption is checked then the nodes to report 
in output should be those with labels 2,3,6,7,8,9,10,11,12. 
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5.5 Correctness 

Every PSE is represented by a listnode. Let πp,m=<G1’,G2’,…,Gx’>, where Gj
’=Gpj+m 

1≤j≤x≤t, be a given projection. The algorithm uses a list to calculate the MCS of 
every possible run. For each element Gj of the projection, i≤j≤x-σ, the list is 
traversed: a new listnode with the graph Gj is inserted at the head of the list.  
After that every element L of the list is replaced by a new listnode N as explained 
in section 5.4.1. 
If the MCS between the node of the list and Gj is equal to the MCS that is stored 
at the previous node, the previous node is deleted because its support set is not 
temporally maximal (see property 3 of definition 2.7). Therefore all PSE flushed 
in output are temporally maximal. 
 
Here follows a series of theorems that prove the correctness of ListMiner. 
 

Theorem 5.5: Given a projection πp,m=<Gi, Gi+1,….,Gn> and the corresponding 
list L,  the algorithm calculates and stores in L, in reverse order, (Sn,n is the first 
node of the list and S1,n is the last node) the MCS of all runs Sx,n 1≤x≤n, for a 
fixed n. 
  

Proof: the proof is an induction on the number of elements n. 
 
Base: n=1.  
In this case the list is empty. The listnode (Gi,t,t,0) is added to the head of the 
list. This node contains the MCS for S1,1 which is the only possible run. 
 
Induction: suppose the property is true for n-1. 
Since the proposition is true for n-1 the list contains the MCS of all runs Sx,n-1 

1≤x≤n-1. For the next element Gn, the n-element of the projection is inserted at 
the head of the list. Therefore the MCS for run Sn,n is found. Afterwards, for 
every run Sx,n-1 1≤x≤n-1 that is represented by a single listnode with graph G, the 
algorithm replaces it with a new listnode with the MCS between G and Gn. 
Therefore, from theorem 5.4, in every node of the list there is the MCS of all 
runs Sx,n 1≤x≤n in reverse order. 

□ 
 
Theorem 5.6: The algorithm calculates the MCS of every possible run Sx,j 
1≤x≤j≤n that belongs to a given projection πp,m =<Gi, Gi+1,….,Gn> for all values 
of n. 
 
Proof: this can be proved using theorem 5.5. Since every element of the 
projections is processed, for every 1≤x≤n theorem 5.5 is valid. Therefore the 
MCS of every possible run Sx,j x≤i≤j≤n is calculated. 

□ 
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Theorem 5.7: The algorithm calculates all temporally maximal PSE. 
 

Proof: theorem 5.6  proves that the algorithm calculates the MCS of all possible 
runs of a given projection. If two consecutive runs have the same graph then the 
run with support set not temporally maximal is deleted. Therefore for a single 
period every temporally maximal PSE is found. By iterating this process for all 
the possible choices of period p, all PSE are calculated. 

□ 
 
Theorem 5.8: Let L be a list for a given projection πp,m. For every node N of 
the list with graph G, all successors have a graph G’ that is a proper subgraph of 
G. 
 
Proof: the proof is an induction on the number of timestep T. 
 
Base: T=1 

With only one element the proof is trivial because a single node has not 
successors. 
 
Induction: first we prove that for every node N of the list with graph G, all 
successors have a graph G’ that is a subgraph of G.  
Suppose that the property is true for T-1. Therefore for every listnode N of the 
list, at timestep  T-1, all successors have a graph that is a proper subgraph of 
graph of N. 
The algorithm at timestep T, for every period p, updates every list associated to 
projection πp,m where m= T mod p, inserting at the head of the list a new 
listnode with graph GT and substituting the graph Gj of each node with Gj ∩ GT. 
Since the first element of the list is GT and the graph of every node N is updated 
with Gj

’= Gj ∩ GT , where Gj  is the graph of the node N at the previous timestep, 
all successors of the first node have a graph Gj

’ ⊆GT.  
Now we prove the theorem for the other nodes of the list, from second to the 
last. For these nodes, before the update process, at timestep T-1,  every listnode 
with graph G, have all successors with graph G’ that is a subgraph of G for 
inductive hypothesis. The algorithm, for every node N, updates its graph G with 
(G ∩ GT). Since for every graph G’ that is a successor of N G’ is a subgraph of G 

for inductive hypothesis, then also (G’ ∩ GT)⊆(G ∩ GT). Therefore for all 
successors of a node N with graph G, G’ ⊆G. 
To complete the proof we have to prove that all successors of a node with graph 
G have a graph that is a proper subgraph of G. This is due by construction 
because the algorithm always controls if the graph in a node is equal to the 
graph of the previous node. If it is then the previous node is deleted. Therefore 
we cannot have two consecutive nodes with the same graph. 

□ 
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Theorem 5.9: Every listnode in each list represents a unique PSE.  
 
Proof: for a given period p, a single timestep Gt belongs to a single projection. 
For every different projection there is a different list. Therefore for every list, 
every node cannot represent a PSE which is equal to another node of another 
list because they belong to different projections. In the same list, from theorem 
5.6, we see that every node is the MCS of a given run, and so it cannot represent 
a PSE equal to another node of the same list. 

□ 
 

The subsumed function is correct because it fulfill all the conditions listed in 
definition 2.9.  
From theorem 5.8 and 5.9 every list is always in a consistent state. In theorem 
5.7 is proved that the algorithm calculates all temporally maximal PSE. 
Therefore the algorithm is correct.  

5.6 Description of the implementation 

The algorithm is implemented in C++.  
In the next section all the most important elements of the program are 
presented. 
• Graph: this class describes a graph. The graph is represented by a vector of 

integers in which entries edges and vertexes are mapped as integers (see 
definition 2.1). 

• ListNode: this class represents a PSE.  It contains the graph, the period, the 
start and end indexes, and the value of the support. 

• Subgraph hash map: the subgraph hash map was implemented using the 
Google dense_hash_map library optimized for speed over memory usage. 
Dense_hash_map (key,data,hash_function,equalkey) is a Unique Pair 
Associative Container that associates objects of type Key with objects of type 
Data. In this hash map two elements cannot have keys that compare equal 
using EqualKey. Dense_hash_map is different from other hash-map 
implementations for its speed and for the ability to save and restore contents 
to disk. On the other hand, this hash-map implementation can significantly 
use  more space than other hash-map implementations. We use a class 
Graph as key, a class Descriptor as data, an implementation of Daniel J. 
Bernstein's hash_djb2 function as hash function, and we create a function 
that compares two graphs returning true if the two graphs are equal and 
false otherwise. 

• Descriptor: it is the object stored in the list contained in the hash map. It 
describes a PSE that is flushed in output and therefore it has period, support, 
start and end indexes. 

• Hash_djb2 function: djb2 is the algorithm which was first reported by 
Dan Bernstein many years ago in comp.lang.c. The function is the following: 
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unsigned long hash(unsigned char *str) 
(const vector<int> s) const 

unsigned long hash = 5381; 

for  c ← 0 to  s.size() 

hash = ((hash << 5) + hash) + s.at(c); 

return hash; 

• MCS: for every timestep Gt we have to calculate the MCS between elements 
of some lists. For every list L, every node N of the list with graph G has all 
successors with graphs G’ that are  proper subgraphs of G. Therefore when at 
timestep t we have to update a single list calculating the MCS between every 
node and Gt, instead of using Gt every time, we can use the MCS computed at 
the previous node, thus saving some comparisons. 

5.7 Time and space complexity 

Time complexity: from proposition 5.3, there are exactly p projections for a 
given period p. Now from proposition 3.5 the length of every projection is 
|πp,m|= ⌈(T − m)/p⌉. 
Since the algorithm creates a new listnode for every element of the projection 
the maximum number of listnode is the length of the projection. 
For every timestep t and for every list, in the worst case the algorithm calculates 
the MCS for every node of the list and Gt. 

Therefore the number of MCS is: 
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The summations are: for every period p, for every projection with period p the 
algorithm creates a list. The number of elements in the list is increased by one at 
every step. Therefore, also the number of MCS to calculate is increased by one at 
every step, from 0 to the maximum length of the projection.  
The solution of the first summation is O(T2/p2). Solving the second summation 
we have O(T2/p2)p that is O(T2/p).  

The last summation is: O(T2 ∑ 1\) �!"��  ) that is  O(T2 ln (Pmax)). 

Since the MCS can be computed in O(V+E) time, the total complexity of the 
basic algorithm (without subsumption) is O((V+E) T2 ln (Pmax). 

Since Pmax is unrestricted in the worst case, its maximum value is O(T/σ). 
Therefore the complexity time in the worst case is O((V+E) T2 ln (T /σ) that is 
smaller by a factor T than PSEMiner [1][2]. 
It should be observed that only in the worst case the innermost summation is 
completely calculated because the number of elements could be less than the 
upper bound for three reasons:  

• If the MCS between Gt and the graph F at node N is empty, then node N 
is (eventually) printed, and deleted. Since the followers of N all have a 
graph that is a subset of F, their intersection with Gt is also empty, and no 
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MCS computation is needed. The nodes are (eventually) printed, and 
deleted;  

• if two consecutives nodes of a list have the same graph, then the node 
with support set that is not temporally maximal is deleted; 

• the MCS between Gt and the graph F at node N is equal to F. Since the 
graphs of the following nodes in the list are all subsets of F, the MCS will 
be equal to those graphs as well, without need to be calculated. 

 
Space complexity: for every period p there are p projections with O(T/p) 
elements. Therefore the number of listnodes for every period is O(T ). 
Every listnode contains an associated graph. Therefore the total space 
complexity is O(Pmax(V+E)T). In the worst case  Pmax is unresctricted 
(Pmax=O(T/σ)), so the space complexity is O((V+E)T2/σ). 
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6 Experimental evaluation 

In this section the performances and the behavior of  ListMiner are compared 
with those of PSEMiner.  Two real-world dynamic social networks are used for 
the evaluation. Artificial datasets are also created to better understand the 
characteristics of every algorithm, highlighting differences, weak and strong 
points. 
Both algorithms are implemented in C++.  The experiments were run on a dual-
core Intel Core(TM)2 duo T7300  2.0 GHz, 2 GB of RAM, running Linux 
Ubuntu. Both algorithms use the google sparsehash library, that therefore be 
installed in the system. 
In all the experiments, the reported computation time is the sum of the user 
(computation) and kernel (I/O, etc.) CPU time. Memory usage is the maximum 
resident set size reported by the Linux proc filesystem.   

6.1 Datasets description 

Here follow a detailed description of the datasets used in the experiments. Table 
6.1 summarizes their parameters (number of timesteps, number of vertexes, and 
the maximum tested period).   

6.1.1 Real data 

Dynamic networks were collected from two sources, covering a range of human 
interaction dynamics.  
Enron e-mails. The Enron e-mail corpus is a publicly available database of e-
mails sent by and to employees of the now defunct Enron corporation. 
Timestamps, senders and lists of recipients were extracted from message 
headers for each e-mail on file. The quantization timestep is a day, with a 
directed (unweighted) interaction present if at least one  e-mail was sent 
between two individuals on a particular day. 
Reality mining. Cellphones with proximity tracking technology were 
distributed to 100 students at the Massachusetts Institute of Technology over 
the course of an academic year. The timestep quantization was chosen to be 4 h. 

6.1.2 Artificial data 

Artificial data are used to better understand the performances of the algorithms. 
The aim of this set of experiments was to understand why and when an 
algorithm outperforms the other. The following datasets were created using a 
java program based on the function Java.util.random(). 
Worst case: this dataset contains 150 timesteps and represents the worst case 
described in proposition 3.3. In this dataset the maximum number of periodic 
patterns is generated. Therefore in this dataset the MCS of any s ≥ σ consecutive 
positions of any projection πp,m is a different PSE.  To do this a different edge is 
inserted in every of the s ≥ σ consecutive positions of any projection πp,m.  
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Maximal case: this dataset contains 800 timesteps and represents the case 
described in theorem 3.8: for every s =σ =2  consecutive positions of every 
projection there is a different PSE. The difference from the worst case is that 
only in sequences of s=σ=2 consecutive positions of every projection there is a 
different PSE. Differently, in worst case, every sequence of s ≥ σ=2 consecutive 
graphs of every projection is a PSE.  
Experiment 1.1: this is a dataset with 800 timesteps. For every timestep, a 
random graph with 15 different elements from edges and vertexes is created. 
The graph is mapped into a sequence of 15 different random numbers from 0 to 
300. 
Experiment 1.2: this is a dataset with 800 timesteps. For every timestep, a 
random graph with 15 different elements from edges and vertexes is created. 
The graph is mapped into a sequence of 15 different random numbers from 0 to 
50. 
Experiment 1.3: this is a dataset with 800 timesteps. For every timestep, a 
random graph with 15 different elements from edges and vertexes is created. 
The graph is mapped into a sequence of 15 different random numbers from 0 to 
3000. 
Experiment 2.1: this is a dataset with 2000 timesteps. For every timestep, a 
random graph with 15 different elements from edges and vertexes is created. 
The graph is mapped into a sequence of 15 different random numbers from 0 to 
300. 
Experiment 2.2: this is a dataset with 2000 timesteps. For every timestep, a 
random graph with 15 different elements from edges and vertexes is created. 
The graph is mapped into a sequence of 15 different random numbers from 0 to 
50. 
Experiment 2.3: this is a dataset with 2000 timesteps. For every timestep, a 
random graph with 15 different elements from edges and vertexes is created. 
The graph is mapped into a sequence of 15 different random numbers from 0 to 
3000. 
 

Dataset Timestep Vertexes Pmax 

Enron 2588 82614 40 

Reality mining 2940 100 40 

Maximal case 800 140802 50 

Worst case 150 65486 unrestricted 

Experiment 1.1 800 300 30 

Experiment 1.2 800 50 30 

Experiment 1.3 800 3000 30 

Experiment 2.1 2000 300 50 

Experiment 2.2 2000 50  50 

Experiment 2.3 2000 3000 50 
Table 6.1: parameters of the datasets.The number of vertexes is the total size of the population.  



52 
 

 
The choice of the parameters for the artificial networks was specifically thought 
so to have networks with low density (experiments 1.3 and 2.3), medium density 
(esperiments 1.1 and 2.1), and high density (experiments 1.2 and 2.2) of periodic 
patterns. As the experiments in the next subsection will show, pattern density is 
a parameter that has a high influence on the performances of the algorithms. 

6.2 Experimental Time Analysis 

This section shows the analysis of the comparison of execution times between 
ListMiner and PSEMiner.  
Table 6.2 reports the execution times of two experiments (parameters: σ=3, 
unrestricted Pmax) without subsumption (All patterns) and with subsumption 
(Parsimonious). 
 

 ListMiner PSEMiner 

Dataset All patterns  Parsimonious All patterns Parsimonious 

Enron 21 s 25 s 0,8 s 1 s 

Reality mining 32 s 114 s 720 s 864 s 

Maximal case 26,4 s 28,5 s 465 s 472 s 

Experiment 1.1 3,4 s 4,7 s 7,4 s 8,5 s 

Experiment 1.2 6,6 s 6,8 s 29,2 s 30,9 s 

Experiment 1.3 3,0 s 3,2 s 0,8 s 0,7 s 

Experiment 2.1 21,1 s 22, 5 s 200 s 206 s 

Experiment 2.2 39, 5 s 530 s 712 s 800 s 

Experiment 2.3 16, 3 s 16,8 s 7,5 s 7,2 s 

Table 6.2: execution times of the two algorithms, the proposed ListMiner, and the state-of-the-
art PSEMiner,  with (Parsimonus) and without (All patterns) subsumption for support threshold 

σ=3 and Pmax unrestricted. 
 

As showed in Table 6.2, ListMiner is faster than PSEMiner in all the 
experiments, with exception of Enron, experiment1.3 and experiment2.3.  This 
is due to the different density of the dataset under analysis, as explained below. 
The Reality mining dataset has a high density of periodic patterns (the number 
of vertexes is low (100) and the number of timesteps is high (2940)). Similarly, 
in the datasets of experiment1.2 and experiment2.2, where every graph is 
composed by a sequence of 15 casual numbers from 0 to 50, the probability that 
the MCS between two graphs is not empty is high. As a consequence, the density 
of periodic patterns is also high.  
In this high-density context PSEMiner is much slower than ListMiner. In 
particular, the comparison between the results of experiment1.2 and 
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experiment2.2, tell us that the higher the number of timesteps, the bigger is the 
difference of the time performances in favor of  ListMiner.  
The decrease of speedup in experiment2.2, when the control of subsumption is 
included (18x for all patterns, and 1,5x including subsumption), is due to the 
large computational time need to check subsumption. The complexity time of 
the subsumed() function, that verifies if a specific PSE is subsumed, is the same 
for both algorithms. Since in experiment2.2 there is a high number of periodic 
patterns, the subsumption function takes most of the execution time. In this 
case, the time complexity for checking subsumption prevails on the time to mine 
all PSE. Hence, the difference of execution time between PSEMiner and 
ListMiner is relatively small. 
Although the theoretical bound of the time complexity of ListMiner is better 
than that of PSEMiner, in Enron dataset, experiment1.3, and experiment2.3 
PSEMiner is faster.  
These are datasets that have a common property: the density of periodic 
patterns is low.  
In fact, the two artificial datasets have been created to highlight the behavior of 
the two algorithms when the number and density of periodic patterns are low by 
choosing 15 random vertexes among 3000 at each timestep. Since the number 
of vertexes is very high, the probability that the MCS between two graphs is not 
empty is low. This is confirmed observing the number of mined patterns in table 
6.3 (when σ=3), and in table 6.4 (when σ=2). As a conclusion, low-density 
experimental settings favor PSEMiner.  
 

Dataset Subsumption 
No 

subsumption 

Pattern 

Theoretical 

bound 

Enron 84017 84056 47992640 

Reality mining 102669 102745 63037927 

Maximal case 87780 1* 3575039 

Experiment 1.1 5292 5292 3575039 

Experiment 1.2 95677 95687 3575039 

Experiment 1.3 53 53 3575039 

Experiment 2.1 33231 33231 26009160 

Experiment 2.2 595162 595172 26009160 

Experiment 2.3 393 393 26009160 

Table 6.3 shows the number of patterns mined with and without subsumption, and the 
theoretical upper bound on the number of patterns for σ=3. (*) maximal case is a dataset that is 
built in the following way: every timestep contains the vertex “1”. Now, as described in theorem 
3.8: for every s = σ =2 consecutive positions of every projection there is a different vertex and 
thus a different PSEs. So the only graph that appears more than 3 times is the graph with only 
vertex “1”.  
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Dataset Subsumption 
No 

subsumption 

Pattern 

Theoretical 

bound 

Enron 125088 125428 45276939 

Reality mining 630798 629496 59533249 

Maximal case 372001 372001 2139075 

Experiment 1.1 167937 167910 2139075 

Experiment 1.2 400935 400624 2139075 

Experiment 1.3 23071 23063 2139075 

Experiment 2.1 1051439 1051378 27631021 

Experiment 2.2 2502547 2501844 27631021 

Experiment 2.3 144420 144436 27631021 

Table 6.4: shows the number of patterns mined with and without subsumption, and the 
theoretical upper bound on the number of patterns for σ=2. 

 
The datasets of experiment1.1 and experiment2.1 are composed by a sequence of 
graphs where, at each timestep, 15 random vertexes from 0 to 300 were selected 
as active. Therefore, the probability that the MCS between two graphs is not 
empty is in between that of the previous experiments. 
In this medium-density contexts,  ListMiner runs faster than PSEMiner, but the 
speed-up is lower (2x and 10x vs 4x and 18x) than in experiment1.2 and 
experiment2.2. This is due to the smaller number of patterns to mine. 
These results can be explained from the analysis of theoretical time complexity. 
The upper bound of PSEMiner is O((V+E)T N) where N is the number of nodes 
in the pattern tree. Table 6.5 shows the number of nodes and descriptors 
created by PSEMiner during the elaboration. The complexity time of PSEMiner 
strongly depends on the number of nodes in the pattern tree.  In fact, observing 
Table 6.5, it can be noticed that in datasets where PSEMiner have a low ratio 
(with respect to the maximum) of treenodes,  it is faster than ListMiner. A node 
remains in the tree until it has at least one descriptor D such that next(D)≤ Pmax  

and next(D)≥ t, where t is the timestep that we are processing. PSEMiner 
creates a node in the tree when the MCS between two graphs is a new subgraph 
in the pattern tree. Therefore N is higher when in the dataset there are a lot of 
different periodic subgraphs. For these reasons the higher the density of 
periodic patterns, the higher is the number of nodes in the tree, and the worst 
are the performances of PSEMiner. 
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Dataset Number of 

nodes 

Number of 

descriptors 

Nodes 

Theoretical 

bound 

 % number of 

nodes  

Enron 24583 41095 45276939 0,05% 

Reality 
mining 

87780 277613 59533249 0,1% 

Maximal case 160153 213084 2139075 7,4% 

Experiment 
1.1 

17135 85245 2139075 0,8% 

Experiment 
1.2 

84350 192461 2139075 0,4% 

Experiment 
1.3 

3408 11518 2139075 0,16% 

Experiment 
2.1 

61480 532315 27631021 0,22% 

Experiment 
2.2 

347616 1199625 27631021 1,26% 

Experiment 
2.3 

7355 72373 27631021 0,03% 

Table 6.5: reports the number of nodes and descriptors of PSEMiner when Pmax is unrestricted 
and σ=3.  

 
In particular, analyzing the maximal case the value of N is O(T2/σ), and the 
value of Pmax, when it is unrestricted, is O(T/σ). Therefore the time complexity of 
PSEMiner becomes O((V+E) T3/σ). On the other hand, ListMiner has a time 
complexity which is O((V+E)T2 ln(T/σ)). This explains why ListMiner is faster 
than PSEMiner. 
From the characteristics of datasets it is known that in Enron, in experiment1.3 
and in experiment2.3 the density of periodic patterns is low. Since the number 
of nodes in the pattern tree depends on the density of periodic patterns, the 
complexity of PSEMiner is much lower than the upper bound. In fact, it is 
O((V+E) T N) with N<< O(T2 ln (T/ σ)). The complexity time of ListMiner is not 
strongly influenced by the number of the periodic patterns. In this low-density 
case, the time complexities are: O((V+E)TN)<O((V+E)T2ln(T/σ))  since 
N<<O(T2 ln (T/ σ)). For this reason the execution time of PSEMiner is lower 
than that of ListMiner. 
On the contrary, in Reality mining, experiment2.2, and experiment3.2 the 
density of periodic patterns is very high. Consequently, also the number of 
nodes in the pattern tree is high. The complexity time of PSEMiner is 
O((V+E)TN) with N near to the upper bound O(T2 ln (T/ σ). Hence, in a high-

density setting the time complexities become: 
O((V+E)T N) > O((V+E) T2 ln (T/ σ))  since N ≈ O(T2 ln (T/ σ)). 

 

In the worst case PSEMiner ends in 587 s and ListMiner ends in 216 s as showed 
in table 6.6.  Therefore, as expected from theoretical analysis, the experiments 
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confirm that ListMiner is actually more efficient than PSEMiner in the worst 
case hypothesis.  
 

 Execution 

time 

Number of nodes Number of 

descriptors 

PSEMiner 587 s 10508 11026 

ListMiner 216 s / / 

Table 6.6: execution time of the two algorithms in the worst case with Pmax unrestricted and 
σ=2. For PSEMiner also the number of nodes and the descriptors are reported.  
 

We conclude by observing that in the typical online analysis scenario with a 
restricted Pmax, ListMiner takes few seconds to execute and uses less than 15 MB 
of memory in all cases as we can see in table 6.7. 
 

Dataset Time Memory 

Enron 1,8 s 340 KB 

Reality mining 2,8 s 1,1 MB 

Maximal case 6 s 256 KB 

Experiment 1.1 0,8 s 604 KB 

Experiment 1.2 1 s 2,8 MB 

Experiment 1.3 0,5 s 472 KB 

Experiment 2.1 1,1 s 14,7 MB 

Experiment 2.2 7 s 2,3 MB 

Experiment 2.3 0,9 s 10,8 MB 

Table 6.7: reports the execution time and the memory usage of ListMiner with σ=3, with 
subsumption, and with restricted Pmax.(see table 6.1) . 

 

6.3 Experimental Space Analysis 

This section presents the analysis of the memory requirements of ListMiner and 
PSEMiner. Table 6.8 shows the results for the comparison of the memory usage 
of the algorithms with Pmax unrestricted, and σ=3. 
ListMiner uses less memory than PSEMiner in experiment1.1, experiment1.2, 
experiment2.1, and experiment2.2. In experiment1.3 and in experiment2.3 the 
memory used by ListMiner is slightly higher, but approximately of the same 
order. In the other datasets ListMiner uses more memory than PSEMiner.  
This behavior can be justified by theoretical analysis of the space complexity. 
The space complexity of PSEMiner is ((V+E)N+ P2

max + G) where N is the 
number of nodes in the tree, G is the number of descriptor, and V, E are the 
number of vertexes and edges, respectively. The space complexity of ListMiner 
is always ((V+E) T2/σ). Since the most part of the memory is used to store 
graphs, the dominant term of the space complexity expression in PSEMiner is 
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(V+E)N. Therefore, when the number of treenodes is low, the space complexity 
of PSEMiner is lower than the space complexity of ListMiner. 
 

Dataset ListMiner PSEMiner 

Enron 1 GB 150 MB 

Reality mining 353,6 MB 157 MB 

Maximal case 503,6 MB 200 MB 

Worst case 790 MB 400 MB 

Experiment 1.1 12,7 MB 35 MB 

Experiment 1.2 19,6 MB 94 MB 

Experiment 1.3 10,3 MB 6 MB 

Experiment 2.1 78,4 MB 298 MB 

Experiment 2.2 118 MB 881 MB 

Experiment 2.3 63,8 MB 52 M 

Table 6.8: reports the memory usage of the two algorithms with σ=3 and Pmax unrestricted. 

6.4 Mined Patterns Analysis 

This section reports the analysis of the patterns mined by the algorithms. The 
analysis was performed in two directions: 1) number of periodic patterns vs 
support; 2) number of periodic patterns vs period.  
 

6.4.1 Periodic Pattern distribution and Support values  

 
Figures from 6.9 to 6.14 in the next page show, for each experiment on an 
artificial dataset, the distribution of the number of patterns (y-axis) with respect 
to a given support (x-axis).  
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Fig 6.9: Experiment 1.1 

(T=800,V=300,Pmax unrestriced) 

 

Fig 6.10: Experiment 2.1 
(T=2000,V=300,Pmax unrestriced) 

 
 
 

  
Fig 6.11: Experiment 1.2 

(T=800,V=50,Pmax unrestriced) 
 

Fig 6.12: Experiment 2.2 
(T=2000,V=50,Pmax unrestriced) 
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Fig 6.13: Experiment 1.3 

(T=800,V=3000,Pmax unrestricted 

 
Fig 6.14: Experiment 2.3 

(T=2000,V=3000,Pmax unrestricted) 
 
 

 

  

Experiments showed that the highest number of periodic patterns, and the 
highest values of support occurs on high-density periodic patterns frameworks 
(experiments  1.1 and 2.1 in Fig.6.11 and 6.12, respectively).  This is expected 
since the probability of vertexes to occur at some timestep is higher than in the 
other cases. 
Fig. 6.13 and 6.14 shows the results for low-density experiment1.3 and 
experiment2.3. Here the values of support are limited to 3, 4 and 5. This is 
because the number of vertexes is high, and therefore the probability of a 
particular subgraph to be periodic for a long time is low.  
Fig. 6.9 and 6.10 show the experiment for the medium-density setting. In these 
datasets the number of patterns is smaller than in the datasets with high density 
(experiment1.2 and experiment2.2), but bigger than low density datasets 
(experiment1.1 and experiment2.1).  Moreover, the behavior with 800 timesteps 
is more similar to the low-density case, while with 2000 timesteps the figures 
looks much more the high-density context but the number of patterns is 
different. This depends on the higher number of periodic patterns of 
experiment2.1. In fact the higher the number of timesteps, the higher is the 
probability to have a high number of different values of support.  
Figure 6.15 shows a comparison between the two real datasets, Enron and 
Reality Mining. It can be seen that Reality presents a behavior that is more 
periodic than Enron (number of periodic patterns is higher at all supports).  
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Fig 6.15: Reality(T=2940,V=100, Pmax unrestriced),Enron(T=2588,V=82614, Pmax unrestriced) 

 
The experiments from Fig. 6.16 to 6.22 shows the distribution of patterns for 
each possible period, when Pmax is unrestricted and σ=3. 
 
Figures 6.16 and 6.17 show the distribution for experiment1.2 and 
experiment2.2. Experiments confirmed that these are the datasets with the 
highest number and density of periodic patterns, as expected.  
 

 

 
Fig 6.16: Experiment 1.2(T=800,V=50,Pmax unrestriced) 
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Fig 6.17: Experiment 2.2(T=2000,V=50,Pmax unrestriced) 

 
 

On the contrary, experiment1.3 and experiment2.3 are the datasets with the 
lowest number and density of periodic patterns (see figures 6.18, 6.19).  
 

 
Fig 6.18: Experiment 1.3(T=800,V=3000,Pmax unrestriced) 

 

 
Fig 6.19: Experiment 2.3(T=2000,V=3000,Pmax unrestriced) 
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Finally, experiments1.1 and exxperiments2.1 (see figures 6.20 and 6.21) showed 
to have a distribution of periodic patterns that is in between. 

 
 

 
Fig 6.20: Experiment 1.1(T=800,V=300,Pmax unrestriced) 

 

 
Fig 6.21: Experiment 2.1(T=2000,V=300,Pmax unrestriced) 
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Figures 6.22 and 6.23 show the results for the two real datasets. Enron appears 
to be less periodic than Reality, in fact both the number of periodic patterns, 
and the number of different periods is lower. The density of periodic patterns in 
Reality is higher. 

 

 
Fig 6.22: Reality(T=2940,V=100, Pmax unrestriced) 

 

 
Fig 6.23: Enron(T=2588,V=82614, Pmax unrestriced) 

 
 

Figure 6.24 in the next page shows global periodicities in real networks when 
Pmax is restricted. It can be observed that Enron and Reality datasets have strong 
daily and weekly periodicities, as might be expected from human interactions 
despite the fact that the interactions occur through different mechanisms in 
each dataset, e-mail in the Enron dataset, and physical proximity in the Reality 
mining dataset. In fact in figure 6.23 we can observe that we have two peaks for 
p=1 and p=7 for the Enron dataset. In Reality, where the quantization time is 4 
hours, we can note that there are peaks for every multiple of p=6 (one day). In 
p=42 (one week) there is an high number of periodic patterns that confirms the 
weekly periodicity. 
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Fig 6.24:Global periodicity for restricted maximal periods in real dynamic networks. Reality 
Pmax=42, Enron Pmax=42,σ=3. 
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7 Period mining 

7.1 Problem definition 

In this chapter a different mining problem is discussed. Let us  model a dynamic 
network as a string in which each symbol corresponds to a subgraph. What was 
called a period in previous chapters, in this framework is called a cadence, while 
the concept of period requires further constrains. This chapter presents an 
algorithm to mine periodic (as in the string framework) patterns in dynamic 
networks. Since perfect periodicity is rare in this context, some imperfections 
between instances of  subgraphs will be allowed. Here follows some related 
definitions taken from [30].  
 
Definition 7.1: Integers t1<t2<t3,<…,<tn are a cadence for word x1x2x3…xr if 
xt1= xt2=…= xtn. In this case n is called the order of the cadence. 
 
It can be seen that what was called a period in the previous chapters is indeed a 
type of cadence. Let S be a finite subset of the alphabet, a cadence of type S is a 
cadence of the form αS +β (i.e., an arithmetic cadence with common difference 
α when α,β>0). 
 
In this framework a period is defined as follows: 
 
Definition 7.2: A string z has a period w if z is a prefix of wk for some integer 
k. Alternatively a string w is a period of a string z if z = wlv and v is a possibly 
empty prefix of w.  
 
Often, when this does not cause confusion, we will use the word “period” also to 
refer to the length or size |w| of a period w of z. 
 
Definition 7.3: A non-empty string w is a border of a string z if z starts and 
ends with an occurrence of w, i.e. z=uw and z=wv for some possibly empty 
strings u and v. 
 
Clearly a string is always a period (resp. border) of itself. This period (resp. 
border) is called trivial period (resp. border). It is immediate to see that two 
consecutive occurrences of a word may overlap only if their distance equals one 
of the periods of w. A string can have several periods, and corresponding 
borders. The smallest (resp. longest border) period is the period (resp. the 
border) of the string. 
 
Definition 7.4: A sliding window of length s for a dynamic network G is a 
sequence of s consecutives timesteps Gx, Gx+1,…., Gx+s-1. 
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When considering datasets based on real interactions within a population, it is 
unlikely that subgraphs repeat themselves exactly, and periodically, for a long 
time. Therefore, some relaxation is needed, and the concept of distance between 
two graphs is used to account for the presence of such variability. 
 
Definition 7.5: Given two graphs G1=(V1,E1) and G2=(V2,E2), the distance 

between G1 and G2 is the cardinality of the set composed by all vertexes and 
edges of G1 and G2 that are not in the MCS between G1 and G2. 
Since by definition 2.1 the set representation for every graph is formed mapping 
each vertex and edge to a unique integer, d(G1,G2)=|(V1∪V2)-(V1∩V2)|+|(E1∪E2)-
|E1∩E2)|. 

 

A new parameter dmax is introduced in the problem to represent the maximum 
allowed distance between two graphs. The problem becomes: 
 
Definition 7.6: Given a dynamic network G and the maximum distance dmax 

between two graphs, for every possible window Gx, Gx+1,…., Gx+s-1 1≤x≤T-s, of 
length s, we want to calculate the period p of the graphs inside the window 
allowing some imperfections. Precisely, the distance d(Gi, Gi+p) must be less 
than dmax for every x≤i≤s-p. 

 

7.2 Complexity of periods mining 

In this section the problem is shown to belong to the complexity class P and it is 
therefore tractable. 
 
Theorem 7.7: The periods mining problem is in P. 
 
Proof: since a dynamic network can be considered like a string  of subgraphs, 
the problem is reduced to find the period of a given string. It is obvious that in a 
dynamic network with T timesteps there are T-s+1 windows of length s. To find 
the period of a given string with length s, the maximum number of comparison 
is O(s2). Since the distance between two graphs can be found in O(V+E) (we 
have to calculate the union and intersections between edges and vertexes of the 
graphs), the cost of a single comparison is O(V+E). Therefore the total time 
complexity is O((V+E)Ts2). 

□ 
 

7.3 Description of the algorithm 

For every fixed size window, the algorithm calculates the period by finding the 
maximum border of graphs in the window. The trivial border is not considered. 
The algorithm starts controlling if the “string” in the window matches, against 
left shifts of i position of itself 1≤i≤s-1. Two graphs match if their distance is less 
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than or equal to dmax. This problem can be easily reduced to find the maximum 
border of a given string, which is a well known problem. To solve this problem 
the algorithm implemented to calculate the failure function of the KMP 
algorithm [31] is adapted. The failure function calculates, for all prefixes of the 
string, the longest prefix that is also a suffix. Therefore, the algorithm, for every 
window, calculates the longest border of the window. The key difference 
between the failure function and the proposed algorithm is that, for the 
problem at hand, the concept of match between symbols is substituted by the 
distance between two graphs being below a given threshold. Here follow the 
pseudocode of the algorithm. 

 
Algorithm Period(input) 

 

Require: input is a vector that in position input[i] = Gi+1. We have T timesteps. 
Let window be the length of the window. 
1: for  (i ← 0 to T-1-s ) do  
2:       Gnew= input [i]…..input[i+window-1] 
3:       maxborder= FailureFunction (Gnew) 
4:      print all graphs from input[i] to input[i+maxborder] 
5:  end for 

 
 

 
Algorithm FailureFunction(Gnew) 

 

Require: Gnew is a sequence of graph length windows; dmax is the maximum distance 
between two graphs, distance(G1,G2) is a procedure that calculates the distance between 
two graphs as explained in definition 8.5 and f(i), 0 ≤ i ≤ s, contains the values of the 
failure function. 
1:  i ← 0 
2:  j ← 0 
3:  while i < window do 
4:      if (distance (Gnew[i], Gnew[ j]) ≤  dmax) then 
5:         f (i)  ←  j+1 
6:         i ← i+1     
7:         j ← j+1 
8:      else if (j>0) then 
9:             j ← f (j-1) 
10:            else 
11:               f (i) ← 0 
12:               i ← i+1 
13:            end if 
14:      end if  
15:   end while 
16: return f (window-1) 
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7.3.1 Correctness 

The only difference between the algorithm to compute the period of a graph 
sequences and the period of a string is that the former uses the distance 
operation between graphs rather than the comparison between symbols of an 
alphabet. Hence, the correctness of the algorithm follows from the correctness 
of the algorithm in [31].  

7.3.2 Space and time complexity 

 
Space complexity: the algorithm is implemented in place. Other data 
structures are not necessary, therefore the space complexity is O(T). 

 

Time complexity: the maximum border of the window is calculated for each 
of the T-s+1 windows of the dynamic network. The distance between two graphs 
can be calculated in O(V+E). The maximum border can be found in O(s) [31] 
where s is the length of the window. Therefore the total time complexity is 
O((V+E)T s) . 
 

7.4 Experimental evaluation 

 
To evaluate the performances of the algorithm the two real-world dynamic 
social networks, Enron and Reality, were analyzed. The description of these 
datasets is in section 6.1.1. The algorithm is implemented in C++. The 
experiments were run on a dual-core Intel Core(TM)2 duo T7300  2.0 GHz, with 
2 GB of RAM, running Linux Ubuntu.  In all cases, time computation is reported 
as the sum of the user (computation) and kernel (I/O, etc.) CPU time. Memory 
usage is the maximum resident set size reported by the Linux proc filesystem.  
The algorithm was tested for several lengths of the window and the values of the 
maximum distance dmax. 
 

7.4.1 Running time and space occupation 

 
Tables 7.1, 7.2 and 7.3 show the execution time and the memory usage of the 
algorithm for windows of length 8, 31, 62 days. The parameter dmax is set equal 
to 10. 
 
s=8: 

Dataset Time Memory usage 

Enron 0,8s 14,6MB 
Reality 1,1s 17,1 MB 

Table 7.1: execution time when the length of the window is 8 and the maximum distance is 10. 
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s=31 
Dataset Time Memory usage 

Enron 1,8s 14,6MB 
Reality 2,2s 17,1 MB 

Table 7.2: execution time when the length of the window is 31 and the maximum distance is 10. 
 

s=62 
Dataset Time Memory usage 

Enron 3,5s 14,6MB 
Reality 3,8s 17,1 MB 

Table 7.3: execution time when the length of the window is 62 and the maximum distance is 10. 

 
The tables above show that the algorithm takes few seconds (maximum 3,8 s 
when s=62) to execute and uses less than 18 MB of memory in all cases. As 
expected, increasing the size of the window the execution time increases. The 
space occupation is not affected by the size of the window because only the 
dataset is stored in the memory.  The execution time and the memory usage in 
Enron are higher than Reality because Reality has more timesteps.  
 

7.4.2 Patterns and periods distributions 

This subsection reports just the experimental results. Global analysis and 
observations will be reported in the next subsection. 
 

Enron 

Figure 7.4 shows the number of subgraphs for a given period value (x-axis) 
mined when s=8 for the three values of dmax. 
 

 
Fig 7.4: the number of subgraphs for every period value when the length of the window is 8 and 
the value of the distance is 0, 10, 30.  
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Figure 7.5 shows the number of subgraphs for a given period value (x-axis) 
mined when s=31 for the three values of d. 

 
Fig 7.5: the number of subgraphs for every period value when the length of the window is 31 and 
the value of the distance is 0, 10, 30 

 

Figure 7.6 shows the number of subgraphs for a given period value (x-axis) 
mined when s=62 for the three values of dmax. 

 
Fig 7.6: the number of subgraphs for every period value when the length of the window is 62 and 
the value of the distance is 0,10,30 
 

 

Reality 

 

For Reality mining the timestep quantization was set to one day, not 4 h like in 
section 6 for a more significant analysis. Therefore the number of the timesteps 
is 368. 
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Figure 7.7 shows the number of subgraphs for a given period value (x-axis) 
mined when s=8 for the three values of dmax. 

 
Fig 7.7: the number of subgraphs for every period value when the length of the window is 8 and 
the value of the distance is 0, 10, 30 
 
Figure  7.8 shows the number of subgraphs for a given period value (x-axis) 
mined when s=31 for the three values of d. 

 
Fig 7.8: the number of subgraphs for every period value when the length of the window is 31 and 
the value of the distance is 0,10,30 
 

Figure 7.9 shows the number of subgraphs for a given period value (x-axis) 
mined when s=62 for the three values of dmax 
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Fig 7.9: the number of subgraphs for every period value when the length of the window is 62 and 
the value of the distance is 0,10,30 
 

7.4.3 Analysis of results 

Analyzing all figures in section 7.4.2 it can be seen that the majority of 
subgraphs periodicity is equal to 1 (in every figure there is a peak in p=1). This 
means that there is an high number of subgraphs that are repeated in s 
consecutive timesteps. Therefore the Enron and Reality mining datasets show 
strong daily behavior, as might be expected by human interactions. The 
experiments also show that the number of subgraphs for a given period 
increases when the maximum distance is higher, as expected because some 
mismatches between subgraph instances are allowed. Another observation that 
emerges from the analysis is that in Enron dataset the number of periods is 
similar to the Reality although this last dataset has less timesteps. This means 
that Reality dataset has more regularities than Enron, which was also confirmed 
by the analysis in Section 6.4.  The number of non trivial periods is low in 
Enron. This is due to the fact that this dataset represents interactions between a 
very large number of individuals. Every timestep has a graph with a lot of 
vertexes and edges, therefore it is difficult to have long periods. This can be 
understood thinking of the relationships that people have in a company, where 
every person communicates for short periods of time with a small group of 
colleagues. In Reality  there are more no trivial periods in proportion the total 
number of the timesteps. This is due to the fact that students usually have 
friendly relationships that are more durable than work relationships. Another 
aspect that can be noticed is that, except for period 1, the other periods are near 
to the trivial period. This means that people either have stable relationships or 
have relationships after lots of days, for example two weeks or one month.   



73 
 

7.5 From data to knowledge 

In this section I want to turn the attention to some qualitatively interesting 
aspects of the subgraphs that were extracted. Analyzing the output of Enron and 
Reality datasets, the first interesting observation is that there are some similar 
patterns that are repeated periodically. This means that humans are divided in 
groups where they interact among each other. Small patterns (4-12 individuals), 
that represent a small group, have high supports. Large patterns (30-40 
individuals), that represent a large group, have  low values of support. This fact 
can be explained referring to real life where humans have stable and durable 
interactions with few people, for example friends or family. Individuals have 
intimate relationships toward what sociologists call reference groups. Reference 
groups are groups which people refer to when evaluating their [own] qualities, 
circumstances, attitudes, values and behaviors [32]. This can be observed 
because periodic entities of the dataset occur in similar patterns that represent 
the reference groups. Groups  are not disjointed but they have some common 
entities just like in real life.  
Observing the patterns extracted it can be observed how groups change during 
the time. We can see that we do not have large changes. This is noted in the 
output of ListMiner because there are patterns, that partially overlap, that are 
similar. These similar patterns represent the interactions between individuals of 
the same group. There are also some groups that disappear especially in Reality 
dataset. There could be different reasons that justify this phenomenon, for 
example, they might represent that leave their groups when complete their 
university career. 
Another interesting result shows that people have daily and weekly interactions. 
Especially in Enron, weekly emails seem to be particularly popular in a 
corporate enviroment. This can be observed in figure 6.24 observing the high 
number of patterns for the period equal to 7. 
The last observation is that, in Reality and Enron datasets, there are some 
patterns that are cliques. In Enron dataset there are also some hierarchical 
interactions. This is somewhat expected because in large companies individuals 
have hierarchical structures. On the contrary, in Reality dataset the interactions 
between students are typically peer-to-peer and so we do not have hierarchical 
patterns. 
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8 Conclusion 

The main contribution of this thesis is the design and development of 
ListMiner, an efficient algorithm for solving the Periodic subgraph mining 

problem in dynamic networks. This problem was introduced by Lahiri and 
Berger-Wolf [1][2] to discover frequent periodic interactions among the 
members of a population whose behavior was observed over time. Lahiri 
and Berger-Wolf also proposed and developed an algorithm for this 
problem, called PSEMiner. The time complexity of ListMiner is       
O((V+E) T2 ln(T /σ)), where V is the size of the population under analysis, 
E is the set of interactions among its members, T is the number of 
observations (timesteps) and σ is the minimum number of periodic 
repetitions that a subgraph must show to be reported in output. Listminer 
improves the worst case time complexity of PSEMiner by a factor T.  
There are several variants of the periodic subgraph problem that can be 
studied. Most of these variants belong to the P complexity class. However, 
when jitter is allowed, this is no longer true. In fact, the problem of mining 
closed periodic subgraphs at minimum support σ, allowing jitter, was 
proved to be intractable because the number of patterns is exponential in 
the number of timesteps in the worst case.  
Another contribution of this thesis is an algorithm to solve a slightly 
different problem in which the periodicity is defined as in the string 
contexts. This definition is stronger than the one in [1][2] (which in this 
framework is actually defined as cadency). Since real-world networks are 
unlikely to be “fully” periodic, some limited disruption in the composition 
of instances of the mined subgraphs was allowed. Experiments showed 
that the algorithm was capable of extracting meaningful patterns from real 
world networks.  
Theoretical analysis of the proposed solutions was followed and supported 
by experimental validation. The performances and the behavior of  
ListMiner and PSEMiner were compared using two real-world dynamic 
social networks and several artificial datasets. The experiments showed 
that the performances of the algorithms are somewhat affected by the 
composition of the input dataset. Precisely, in datasets with high density of 
patterns, PSEMiner is much slower than ListMiner. Contrarily in a low-
density context PSEMiner is faster than ListMiner. However, experiments 
on a worst case dataset confirm that ListMiner is actually more efficient 
than PSEMiner in this case, as expected from the theoretical analysis.  
Moreover, in real scenarios, where the maximum period Pmax is restricted, 
ListMiner took few seconds to execute and uses less than 15 MB of 
memory. ListMiner efficiently mines all periodic patterns, and it is a 
concrete alternative to PSEMiner for frequent subgraph mining. 
Finally, a qualitative analysis of the mined patterns was done to 
understand the periodicities of the interactions between college students 
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and corporate executives. The experiments show the daily and weekly 
behavior of interactions among people. Moreover, the mined patterns 
reflected the characteristics of the interactions between the elements of the 
population under analysis. In particular, the patterns characterizing 
interactions between college students showed a peer-to-peer trend, while 
and those of between corporate individuals were mostly hierarchical. 
Studying the Periodic subgraph mining problem, along with some of its 
variants that were the subject of this thesis, can be seen as initial steps into 
the uncovering of interesting relationships in dynamic network analysis. In 
fact, there is a number of interesting directions that can be the subject of 
future research. Among these, for example, particularly fascinating 
appears to be the introduction of the concept of noise to discover noisy 
subgraphs and the introduction of a probabilistic background model to 
assign a degree of surprise to the occurrence of each candidate pattern in a 
dynamic network. 
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