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Abstract

In the process industry, it is possible to encounter systems whose behaviour cannot be mapped
through a first principles (white-box) model. Hybrid models aim at integrating data-driven
(black-box) elements within white-box process models in order to fill the gap between the
white-model model predictions and the actual system response. The goal of this Thesis is to
propose and implement a hybrid modelling framework, and to assess its performance with
respect to a white-box model. The industrial process for the manufacturing of cumene is taken
into account as a case study. Under the assumption that it is not possible to model the separation
section following a white-box approach, a steady-state hybrid model of the plant is developed
and implemented in the gPROMS process simulator. In the hybrid model, the behaviour of the
train of distillation columns is entirely mapped with data-driven elements, while the rest of the
equipment is modelled via first principles. The set of steady-state operating points on which the
black-box elements are calibrated is derived by performing data reconciliation and steady-state
detection on a simulated plant historian. In particular, the identification of steady-state
conditions is carried out through a novel steady-state detection algorithm developed in this
Thesis. The performance of the hybrid model is tested against that of a fully first principle
model considering four steady-state operating points, which were not included in the black-box
training dataset. Results demonstrate the hybrid model capability to match the predictions of

the first principle model accurately.






Riassunto

Il lavoro di Tesi ¢ stato condotto presso 1'azienda Process Systems Enterprise a Londra, Regno

Unito, nell’ambito di un tirocinio della durata complessiva di sei mesi.

L’industria chimica fa ampio affidamento sui simulatori di processo per la progettazione,
I’ottimizzazione e il controllo operativo degli impianti. I simulatori di processo monitorano la
produttivita degli impianti sfruttando dei modelli matematici per descrivere il comportamento
delle singole unita di processo. Esistono tre principali categorie di modelli: 1 modelli
meccanicistici (o a principi primi), i modelli ibridi e 1 modelli a scatola nera. I modelli
meccanicistici si basano sui principi fondamentali della fisica e della chimica mentre i modelli
a scatola nera si affidano esclusivamente ai dati di processo con i quali vengono calibrati. [
modelli ibridi combinano al loro interno sia modelli a principi primi che modelli a scatola nera
con lo scopo di trarre il massimo vantaggio dai punti di forza di entrambi.

I modelli meccanicistici richiedono solitamente un ingente mole di lavoro per essere sviluppati
e sono computazionalmente onerosi da risolvere, in particolare in caso di applicazioni in tempo
reale. I modelli a scatola nera, al contrario, sono poco onerosi dal punto di vista computazionale,
ma non sono in grado di fornire previsioni affidabili al di fuori del range dei dati con la quale
sono stati calibrati. Per questo motivo, tipicamente, si preferisce descrivere il comportamento
delle unita di processo utilizzando dei modelli a principi primi.

Quando pero, all’interno di un impianto, vi sono apparecchiature il cui funzionamento non puo
essere descritto accuratamente tramite bilanci di massa, energia e quantita di moto, si deve
adottare una soluzione alternativa ai modelli a meccanicistici. Se sono disponibili dati di
processo, spesso 1’opzione migliore consiste nell’integrare, all’interno del modello
meccanicistico dell’impianto, delle correlazioni empiriche che descrivano il funzionamento
delle apparecchiature difficilmente modellabili attraverso i principi primi.

Lo scopo del seguente lavoro di Tesi ¢ dimostrare che i modelli a principi primi e i modelli a
scatola nera possono essere combinati con successo, generando un modello ibrido di processo
affidabile ed in grado di fornire previsioni accurate. Per portare a termine I’obbiettivo ¢ stato
preso in considerazione il processo industriale per la produzione di cumene. Ipotizzando di non
avere a disposizione un modello a principi primi capace di descrivere il comportamento delle
colonne di distillazione, ¢ stato sviluppato un modello ibrido dell’impianto. Lo sviluppo della
Tesi si ¢ articolato in cinque fasi.

Nella prima fase sono stati generati dei dati di processo virtuali utilizzando il simulatore di
processo gPROMS per rappresentare in modalitd dinamica un modello meccanicistico
dell’intero impianto. In seguito, il set di dati simulati ¢ stato corrotto con rumore € misurazioni

errate al fine di renderlo il piu possibile simile ad un vero storico d’impianto. Nella seconda



fase ¢ stato sviluppato un algoritmo per individuare, all’interno dello storico di impianto
virtuale, 1 punti operativi di stato stazionario. Nella terza fase, le misurazioni di portata e
frazioni molari relative alla sezione di separazione dell’impianto sono state riconciliate
imponendo il rispetto dei bilanci di conservazione della massa. Nella quarta fase sono state
generate delle correlazioni empiriche per descrivere il comportamento delle colonne di
distillazione. Infine, nell’ultima fase del progetto, le correlazioni empiriche sono state
combinate con i modelli a principi primi delle altre unita di processo, generando un modello
ibrido dell’impianto. Il modello ibrido ha dimostrato di avere le stesse capacita predittive del

modello meccanicistico dell'intero impianto.
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Notation

az = white noise sequence
A = total number of latent variables

AICc(S,B) = corrected Akaike information criteria

b, = regression coefficient of the #" latent variable

B = full set of basis functions of the ALAMO model

cov(X) = covariance matrix of X

eij = element of row i and column j of the residual matrix E

ex_var; = vector of the percentages of variance retained by each PC

ex_var;’, = normalized vector of the percentages of variance retained by each PC
E; = Activation energy of reaction i

E = residual matrix of X

f(x) = cost function

Fpi = overall molar flowrate of the distillate of the first distillation column
Fpq = overall molar flowrate of the residue of the first distillation column
Frq = overall molar flowrate of the feed of the first distillation column

Fp, = overall molar flowrate of the distillate of the second distillation column
Fr, = overall molar flowrate of the residue of the second distillation column
Fry = overall molar flowrate of the feed of the second distillation column
g(x) = set of constraints

HC1 = heat duty of the condenser of the first distillation column

HR1 = heat duty of the reboiler of the first distillation column

HC2 = heat duty of the condenser of the second distillation column

HR2 = heat duty of the reboiler of the second distillation column

I = number of samples of X

Ji = number of process variables of X

k = parameter used to modulate the noise amplitude

K; = pre-exponential factor of reaction i

= slope of the regression line that fits the trajectory of the process signal x,

m
M, = matrix of rank 1 of the " latent variable



Notation

Objfun

number of sampled values included in the data window
total number of training points employed to build the ALAMO model
objective function

loading of the a™ latent variable

i loading vector

composite steady-state index

loading of the matrix of rank 1 of the " latent variable
loading of the matrix of rank 1 of the R™ latent variable
pressure of the distillate of the first distillation column
pressure of the residue of the first distillation column
pressure of the feed of the first distillation column
pressure of the distillate of the second distillation column
pressure of the residue of the second distillation column
pressure of the feed of the second distillation column
loading matrix of X

loading matrix referring to the first a latent variables
loading vector of the a™ latent variable of Y

loading vector of the 7" latent variable of Y

predictive relevance

loading matrix of Y

reflux ratio of the first distillation column

reflux ratio of the second distillation column

rate of reaction i

universal gas constant

determination coefficient

boolean matrix storing the steadiness predictions for each PC

boolean time series storing the steadiness predictions for the whole process

subset of basis functions of the ALAMO model

cumene split fraction in the first distillation column
benzene split fraction in the first distillation column
cumene split fraction in the second distillation column

p-diisopropyllbenzene split fraction in the second distillation column



Notation

t = relative time running within the window

torit = critical value of the Student’s t-test

t, = score vector of the a™ latent variable of X

t; = i score vector of X

ty = uniform time grid

t, = score vector of the matrix of rank 1 of the 7" latent variable

tr = score vector of the matrix of rank 1 of the R™ latent variable

T = indicator for the complexity of the ALAMO model

Tpq = temperature of the distillate of the first distillation column

Try = temperature of the residue of the first distillation column

Trq = temperature of the feed of the first distillation column

Tp, = temperature of the distillate of the second distillation column

Tro = temperature of the residue of the second distillation column

T, = temperature of the feed of the second distillation column

Tr = threshold value for the assessment of the process steadiness

Tr, = first threshold value of the novel SSD algorithm

Tr, = second threshold value of the novel SSD algorithm

T = score matrix of X

u, = score vector of the a™ latent variable of Y

u, = score vector of the 7" latent variable of Y

U = score matrix of Y

v = minimum percentage of variance explained by the retained PCs

w, = weight of the " latent variable

w = matrix of the weights

x = degree of freedom

X; = process variable trajectory

Xi noised = noised process variable trajectory

Xip1 = component molar fractions in the distillate of the first distillation column
XiRr1 = component molar fractions in the residue of the first distillation column
XiF1 = component molar fractions in the feed of the first distillation column
Xip2 = component molar fractions in the distillate of the second distillation column
Xir2 = component molar fractions in the residue of the second distillation column



a = o>
[T

component molar fractions in the feed of the second distillation column

value of the variable calculated by the model in gPROMS
value of the variable measured by the sensor

set of input data used to develop the ALAMO model
noised process variable trajectory

element of row i and column j of the matrix X

average of the j variable

process signal

basis functions

process data matrix of dimensions (I X J)

projection of the matrix X onto the space of the latent variables
column of the matrix Y

matrix of the quality variables

matrix of n measured variables

set of responses used to develop the ALAMO model
model developed through ALAMO

transpose of the matrix or of the vector

significance level of the Student’s t-test
ALAMO model parameters

total number of sampling instants
eigenvalue of the covariance matrix X
a™ eigenvalue of the covariance matrix X

i eigenvalue of the covariance matrix X

intercept of the regression line that fits the trajectory of the process signal x;

standard deviation

standard deviation of the white noise shocks

standard deviation of the measured value estimated by the SSD algorithm

standard deviation of the j™ variable

ALAMO model goodness of fit



Notation

T = fraction of time within the window in which the process is deemed to be at

steady-state

Tp = process time constant
Acronyms

ANN = artificial neural network

BB = black-box

BDF = backward differentiation formulae
DAE = differential and algebraic equations
DCS = distributed control system

EM = empirical model

EMS = error maximization sampling

IMC = internal model control

I/0 = input-output

LDPE = low density polyethylene

MILP = mixed-integer linear problem

NILES = nonlinear iterative least squares
NIPALS = nonlinear iterative partial least squares
PC = principal component

PCA = principal component analysis

PLS = partial least squares

PRESS = predicted residual error sum of squares
VLE = vapor-liquid equilibria

RMSECV = root-mean-square error of cross validation
RSS = residual sum of squares

SSD = steady-state detection

TSS = total sum of squares

VLE = vapor-liquid equilibria

WB = white-box






Introduction

Nowadays the chemical industry relies extensively on process models for plant design, control
and performance assessment. Process models consist on a set of equations that allow to describe
how the output process variables are influenced by the inputs. The inputs commonly fall into
two categories: the variables that can be manipulated (for instance the operating conditions or
the design decisions) and the variables that cannot be changed arbitrarily (for instance the
market prices or the atmospheric conditions).
Process models are typically divided into three classes:

1. The first principles (or white-box) models;

2. The hybrid (or grey-box) models;

3. The data-driven (or black-box) models.
This classification is based on the extent of model reliability on process knowledge, input-
output (I/O) data structure or a combination of both.
White-box models rely strongly on process mechanism, providing a deep understanding of the
behaviour of the system which is under investigation. Through the first principles models,
furthermore, the effect of the inputs on the output process variables is analysed extensively
from the physical and chemical point of view. The black-box models, on the other hand, map
the process behaviour exploiting its I/O data structure. The white-box models can be developed
even before the start-up of the process and include extrapolation capabilities. The black-box
models, instead, despite ensuring a higher computational speed, can be built only after process
data are available and their performances are restricted to the range of data they have been
calibrated on. The grey-box (or hybrid) models combine the white-box and black-box
approaches with the objective to take advantages from the strength of both.
The aim of this Thesis is to demonstrate the potential of hybrid modelling. Taking into account
the industrial process for the production of cumene as a case study, a methodology for the
hybrid models development was proposed. What is expected is to prove that data-driven
elements can be successfully integrated within white-box process models to make up for the
presence of poorly understood systems whose behaviour cannot be mapped through first
principles.
The Thesis is organized as follows.
In the first Chapter, an overview of the mathematical and statistical background of the methods
adopted in this Thesis is provided. In particular, the principal component analysis, the partial
least squares regression and the ALAMO model building methodology are presented.
The second Chapter deals with the issue of the identification of steady-state operating points

within industrial plant historians. Firstly, the state-of-the art scientific literature concerning the
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approaches to the detection of the steady-state is reviewed. Then, the novel algorithm developed
in this Thesis is presented.

The third Chapter describes the industrial process that was taken under investigation (i.e. the
process for the production of cumene). The flowsheet and the control strategy are discussed and
the technique through which process data were collected is described.

Finally, in the fourth and last Chapter the hybrid model of the industrial plant for the production
of cumene is presented. Firstly, the procedure through which the grey-box model was developed
is reviewed. Then, the model implementation in the process simulator gPROMS is described.
At last, the results of the tests carried out to evaluate the model predictive capabilities are
discussed.

Some final remarks conclude the Thesis.



Chapter 1

Motivation and mathematical background

This Chapter overviews the fundamentals of hybrid modelling, addresses the objectives and the
motivations of the Thesis and presents the mathematical and statistical techniques that have
been adopted for the hybrid model development. First, a background on hybrid modelling is
given. Second, the possible structures of the hybrid models are described. Third, a literature
review of the hybrid model applications in the chemical industry is provided. Fourth, the
motivations and the objectives of the project are presented. Then, details about the multivariate
statistical techniques and about the model building methodology ALAMO are discussed and
presented. In particular, an insight on the principal component analysis and on the projection
on latent structures is provided. At last, a comprehensive description of the theory and the
algorithms behind the ALAMO model building approach is given.

1.1 Hybrid modelling

As can be seen in Figure 1.1, the process models are developed to describe the influence of the
input variables on the plant performances. Examples of output variables that are commonly
monitored and controlled are the product flowrate, the product purity and the total energy
consumption. The inputs, instead, commonly fall into two different categories. The first
category includes those variables that can be manipulated; for instance, the equipment sizes or
the operating conditions. The equipment sizes are specified before the start-up of the process
while the operating conditions are continuously reassigned throughout the entire life span of
the plant to compensate for the disturbances, to match the production goals and to meet the
safety and environmental regulations. The second inputs category includes those variables that
cannot be controlled; for instance, the atmospheric conditions or the prices of the raw materials.
Environmental inputs:

. External disturbances
u Commercial environment

{

Output variables:

Decisions: = Product purity
=  Design |:> PROCESS MODEL |:> =  Product flowrate
= Qperating conditions .

Figure 1.1. Schematic representation of a process model.
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The chemical industry relies on process modelling for many different purposes including
process design, optimization and control. Process models are commonly divided into three
categories:

1. The white-box (or first principles) models;

2. The hybrid (or grey box) models;

3. The black-box (or data-driven) models.
This classification is based on the extent of model reliability on process mechanism (or
knowledge), input-output (I/O) data inference, or/and a combination of both (Zendehboudi et
al., 2018). The white-box models describe the behaviour of the processes exploiting the science
and engineering laws that govern their mechanism while the black-box models rely entirely on
sets of experimental values. Therefore, the first principles models present extrapolation
capabilities while the reliability of the predictions of the black-box models is only ensured
within the range of data they have been trained on.
The white-box models describe the behaviour of the systems applying the fundamental laws of
conservation of the mass, energy and momentum. Therefore, since they rely only to a minor
extent on empirical data, they can be developed before the start-up of the process and can be
used to evaluate the pros and cons of different design solutions (Zendehboudi et al., 2018).
The prerequisite for the development of a white-box model is a deep understanding of process
mechanism. Hence, building a first principles model is a time and assets consuming task.
Furthermore, since they commonly employ a large number of equations, the first principles
models have a high computational burden, which makes them unsuitable for on-line
implementations. Differently from the white-box models, the data-driven models map the
behaviour of the process units through empirical correlations based on a set of experimental
observations. Therefore, their development requires only process data to be carried out. The
main advantage of the black-box models is their high computational speed while the most
important drawback is the limited extrapolation capability they show outside the region covered
by the experimental data used in their calibration (De Prada ef al., 2018). Since they do not
require a deep understanding of the underlying mechanism of the process, moreover, they are
usually very fast to develop.
As it can be seen in Figure 1.2, the grey-box (or hybrid) models combine the white-box and the
black-box approaches with the aim to compensate for the respective shortcomings. The hybrid
models are easier and faster to develop with respect to the first principles models and require
fewer experiments than the black-box models to be calibrated. When the white-box and the
black-box models are combined, the structure of the resulting hybrid model present an adaptive
nature, meaning that it can be re-trained whenever new process data are available. Furthermore,
the presence of the white-box sub-model ensures the physical significance of certain model
parameters and allows to take control decisions which are reasonable and in accordance with

the underlying process mechanism (Zendehboudi ef al., 2018).
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Process
—— Mechanism Data
) 4 L A l
White-Box Gray-Box Black-Box
*  Process mechanism is known *  Combmation(s) of WB and *  Input-output data inference
+  Laws of nature are applied BB models *  No need for process knowledge
+  Idealized by assumptions *  Takes the advantages of both *  Valid within the range of data
First principle models Hybrid models Data driven models

Figure 1.2 Schematic representation of the differences between the white-box, the grey-box
and the black-box models. From: Zendehboudi et al. (2018).

In the following section, first the possible structures of the hybrid models are discussed. Then,

the latest hybrid model applications in the chemical industry are reviewed.

1.1.1 Architecture of the hybrid models

The possible hybrid model architectures are summarized in Figure 1.3.
&—
B

B

)

(a
w
(b
o
(c
(d

&—{ v }—

)

Figure 1.3 Graphical representation of (a) the parallel hybrid model structure, (b) the serial
WB/BB hybrid model structure, (c) the serial BB/WB hybrid model structure and (d) the
parallel/serial mixed hybrid model structure.

)
)

The parallel hybrid model structure is employed when a comprehensive white-box model of the

process is available, but its predictions do not match the reality satisfactorily. In those cases,
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the black-box sub-model is exploited to fill the gaps existing between the hybrid model
predictions and the measured process outputs. In the petrochemical industry, for instance,
hybrid models with a parallel architecture are used to model the behaviour of the heat
exchangers that are heavily affected by fouling. In the scientific literature, indeed, there are
plenty of white-box models for the prediction of the heat exchangers overall heat transfer
coefficient. These white-box models, however, commonly fail to represent the reality when the
equipment start getting fouled. For this reason, a data-driven correlation is employed within
the parallel architecture to account specifically for the time dependent performance
degradation.

The second type of hybrid model architecture is the serial structure. The serial structure is
employed when it is not possible to model all the plant equipment via first principles. In those
cases, the behaviour of the poorly understood systems is mapped through a black-box model.
In the chemical industry, for instance, empirical correlations are often developed to model the
behaviour of the reactors within which reactions with an unknown mechanism occur. In
addition, the WB/BB serial structure can also be exploited when no empirical data are available
to calibrate the data-driven elements. In those cases, an accurate white-box model can generate
a suitable training dataset from simulation results (Zendehboudi et al., 2018).

The last type of hybrid model structure is the mixed serial/parallel architecture. As can be seen
in Figure 1.3, this structure is used when only a part (the sub-model WB2) of the white-box
process model (WB1) does not provide accurate predictions. In those cases, a data-driven
element is developed to compensate for the mismatch with reality caused by the poor predictive
capabilities of the sub-model WB2. The mixed structure, moreover, can be exploited to improve
the performance of a BB/WB serial architecture. In those cases, the sub-model WB2 is
introduced in parallel with the black-box sub-model to support the empirical correlations when

dealing with process data heavily corrupted by measurement noise.

1.1.1.1 Common black-box sub-models

Hereinafter, three common types of black-box sub-models that will be mentioned in the hybrid
model literature review are briefly overviewed. The first type of black-box models that is taken
into account in this section are the empirical models (EMs). The EMs consist on straightforward
empirical correlations that relate the value of some measured inputs to the value of some key
output variables. Once a training dataset is available, this kind of black-box models are easy
and fast to be developed. Unfortunately, however, they commonly suffer from bad extrapolation
capabilities. The second common type of black-box models are the artificial neural networks
(ANNs). The ANNs are the mathematical equivalent of the human biological neural system
(Zendehboudi et al., 2018). Due to their dynamic nature, flexibility and adaptivity, the ANNs
are particularly suitable for the description of non-linear complex systems. Finally, the last kind

of sub-models are the molecular dynamic simulations. The molecular dynamic simulations have
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implication in thermodynamics, nano and micro fluid mechanics and material science. On its
simplest form, the technique considers the molecules as rigid hard spheres interacting with each

other without having intermolecular flexibility (Zendehboudi et al., 2018).

1.1.2 Literature review

Hybrid modelling is widely employed in several areas of chemical and process engineering. In
this section, hybrid model implementations are reviewed considering the following application
fields (Zendehboudi et al., 2018):

e Chemical reaction engineering;

e Separation unit operations;

e Transport phenomena.
In the chemical reaction engineering area, the hybrid models are commonly employed to map
the behaviour of those reactors within which reactions with a poorly understood mechanism
occur. Xiong and Jutan (2002), for instance, developed and successfully implemented a hybrid
model based control strategy for an exothermic batch reactor. Employing a parallel architecture,
in particular, they first modelled the broad process behaviour with a white-box model. Then,
they implemented an ANN to patch the gaps between the model predictions and the reality.
Furthermore, the hybrid model developed by Xiong and Jutan (2002) proved to be able to
estimate the heat release within the reactor.
Later, Chen et al. (2004) developed a hybrid model for a continuous stirred reactor in which
the linear equations are solved within a first principles model while the nonlinearities are
modelled with a black-box approach. Their model, in addition, was successfully implemented
in an internal model control (IMC) scheme for an industrial reactive distillation column
employed by Solvay S.A. in the manufacturing process of the epichloroydrin.
For what concerns the separation processes, instead, Engell and Dadhe (2001) exploited hybrid
modelling to control the operation of a batch distillation column. In their hybrid model, in
particular, ANNs were integrated within a white-box equipment model to estimate the vapor-
liquid equilibria (VLE) relationships. The combination of the first principles and the black-box
models reduced the computational burden of the overall model, making it suitable for on-line
applications. Another application in the field of separation unit operations was proposed by
Safavi et al. (1999). The goal of their work was to simplify the first principle model of a
distillation column for the purpose of on-line optimization of the unit. They accomplished the
task integrating within the white-box model of the equipment (which solved the mass and
energy balances) a wavelet-based neural network for the estimation of the column separation
factor (Safavi et al., 1999).
In the transport phenomena domain, Mjalli and Al-Mfargi (2009) mapped the behaviour of a
fluidized catalytic bed reactor used to produce low density polyethylene (LDPE). In their

model, ANNs were employed to predict the heat and mass transfer coefficient. Finally, to
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conclude this literature review, Liu et al. (2007), proposed a hybrid atomistic-continuum
scheme to simulate micro and nano flows with heat transfer. In their model molecular dynamics
simulations were employed to model the regions where atomistic detail was crucial, while

classical fluid dynamics models were used in the remaining regions.

1.2 Motivation and objective of the project

In the chemical industry it is common to encounter processes that are not easy to model with a
white-box approach. For instance, there are still plenty of reactors for which a comprehensive
first principles model cannot be developed due to the complexity of the reactions mechanism.
Furthermore, sometimes even if a white-box model of a process unit exists, it may fail to
represent the reality when deviation from the ideal behaviour arises (i.e. the models for the
prediction of the overall heat transfer coefficient in heat exchangers heavily affected by
fouling). Lastly, there are some occasion in which the first principles model, despite providing
accurate predictions, involves a computational burden that is not compatible with on-line model
implementations. In all these cases hybrid modelling offers an effective solution to the problem
that ensure to retain, as far as possible, the physical significance of the model parameters. The
objectives of this thesis are to demonstrate the potential of hybrid modelling and to propose a
methodology for the hybrid model development. In order to meet these goals, the industrial
process for the manufacturing of cumene will be considered as a case study.

What is expected from the case study, in particular, is to be able to demonstrate that, if process
data are available, data-driven elements that map the behaviour of the distillation columns can
be integrated within the white-box model of the rest of the plant without compromising the

robustness and the reliability of the overall process model.

1.3 Multivariate statistical techniques

In the following sections, the background of the multivariate statistical techniques used in this
Thesis is overviewed. In particular, an insight is given on both the theory and the algorithms
behind the principal component analysis and the projection on latent structures. The principal
component analysis will be exploited in the project as a data dimensionality reduction technique
while the projection on latent structures will be used to build empirical correlations that model

the behaviour of those processes that cannot be mapped via first principles.

1.3.1 Principal component analysis

Principal component analysis (PCA) is a widely used statistical technique for unsupervised data
dimensionality reduction and feature extraction. In modern chemical plants huge volumes of

data are continuously acquired; PCA synthesizes efficiently the information stored in these
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heavy loads of noisy and correlated data identifying a few fictitious orthogonal variables which
capture the variability and the correlations of the original dataset. Performing a PCA, indeed,
allows to convert through an orthogonal transformation a set of observation of the (commonly
correlated) process variables into a set of values of uncorrelated variables named principal
components (PCs). The PCs are linear combination of the original variables that are able to
describe the main data trends (Wise and Gallagher, 1996). Wisely selecting the number of PC
to be taken into account, it is possible to reduce dramatically the dimensionality of the original
dataset while retaining most of its variance.

Under the hypothesis that the process data are collected into a matrix X of dimensions (I X J)
where [ is the number of samples and J the number of process variables, mathematically PCA
relies on an eigenvector decomposition of the covariance matrix of the process variables (Wise
and Gallagher, 1996):

XTX
X) = . 1.1
cov(X) T—1 (1.1)
PCA decomposes the rank R data matrix X into a sum of r rank 1 matrices:
X=M;+M, +M;+...+ M, +...+ My . (1.2)

The matrix M, can be represented as the outer product of two vectors t,. e p,-, therefore equation

(1.2) can be reformulated as follows:
X=tp; +t,p; +t3ps +...+t,pf +...+tzpg , (1.3)

where the vectors t; are and p; are known as scores and loadings, respectively. The scores
contain information on how the samples relate to each other while the loadings contain
information on how the variables relate to each other.

The loadings p; are the eigenvectors of the covariance matrix. For each p;, indeed:
cov(X)ps = AaPa (1.4)

where 4; is the eigenvalue associated with the eigenvector p;.

If the dataset X is not a full rank matrix (namely when the process variables are highly
correlated), it is possible to capture the vast majority of its variance trough a small number of
PCs.

Under the assumption that A PCs are taken into account, performing a PCA decomposes the

data matrix X as follows:

A
X=Ztap[{+E=TPT+E, (1.5)
a=1
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where E(I X J) is the residual matrix, T(I X A) is the score matrix and P(J X A) is the loading
matrix. PCA summarizes the valuable information of the original J-dimensional process
variables space projecting the original observations onto an A-dimensional latent subspace of
PCs. The number of PCs A must be less than or equal to the smaller dimension of X (4 <
min{/, J}). In most of the cases, however, since it is wanted to summarize the information of
the heavy load of input data with the lowest amount of latent variables, A << J.

Once performed the analysis, the t;/p; pairs are arranged in descending order according to the
associated eigenvalue A;. The magnitude of the eigenvalue 4;, is an indicator of the amount of
variance explained by the i PC.

In this context the variance is intended as the amount of information of the original dataset X.

Therefore, when the following approximation is carried out:
X =TPT, (1.6)

the residuals in matrix E represent the information (of the initial dataset X) that the model X is
not able to explain. If the number of PC to be taken into account is selected properly, however,
most of the relevant information is retained by the model leaving only measurements noise in
the residual matrix.

From a geometrical point of view, as it can be noticed in Figure 1.4, the loadings are the director
cosines of the PCs, while the scores are the coordinates of the data in the new system defined
by the latent variables.

6 e 4

\ X,
p=cos(8) 6 .

7 e ~ .
0, 3
py=cos(6,)
e 5
e 3

Figure 1.4. Geometrical interpretation of the scores and the loadings of the PCA method for
a dataset with I=8 observations of J=2 variables (x1 and x2). From: Facco (2009).
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The concept of PCA, moreover, can be further explained through Figure 1.5.

Second principal (PC2)
component

Figure 1.5. PC model of a three-dimensional dataset lying primarily in a single plane.

As it can be noticed in Figure 1.5, a three-dimensional dataset where the data lie primarily in a
plane can be efficiently described by a two PCs model. The first eigenvector or PC aligns with
the greatest variation in the data while the second PC represents the greatest amount of variation
that is orthogonal to the first PC.

The directions with the greatest variation in the data are found through a least squares

optimization of the residuals e; ;.

1.3.2 Partial least squares regression

Partial least squares (PLS) regression is a statistical multivariate method that relates the
information of two data matrices combining PCA and multiple linear regression. The main goal
of the PLS is to predict a set of response variables Y through a set of regressors X. However,
differently from a standard PCA (which decomposes a data matrix X with the aim to find the
components that best explain its variance), performing a PLS allows to find the direction of
greatest variation of the dataset X that best predicts Y.

Specifically, PLS regression searches for a set of latent vectors that perform a simultaneous
decomposition of X and Y with the constraint that these components explain as much as

possible of the covariance between X and Y.
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PLS derives its usefulness from its ability to analyse data with many, noisy, collinear, and even
incomplete variables in both X and Y (Wold et al., 2001).
The method consists of two outer relations and one inner relation. The outer relations are the

decompositions of the matrices X and Y:

A
x=ztapg+E=TPT+E

o=t , (1.7)
Y=Zuaq;{+F=UQT+F

a=1

where t, and u,, are the score vectors (in the score matrices T and U), p, and q,, are the loading
vectors (in the loading matrices P and Q) and E and F are the residual matrices.
The procedure implies to minimize the norm of the residual matrices ||E|| and ||F].

The inner relation among the scores of the matrices is:
u, = bgt, , (1.8)
where b, are the regression coefficients:

ugt,
tit,

b, = (1.9)
Since the PCs are calculated for the two blocks separately, however, this procedure exhibits
poor computational efficiency.

Hence, commonly, the parameters for the PLS models are estimated through a slightly modified
version of the NIPALS algorithm, which, as stated by Jackson (1991), was originally developed
by Wold with the name NILES. A detailed description of the modified version of the NIPALS

algorithm for the PLS model parameters estimation is given in the following section (§1.3.2.1).

1.3.2.1 Nonlinear iterative partial least squares algorithm (NIPALS)

The modified version of the NIPALS algorithm commonly employed for the PLS model
parameters estimation has been comprehensively described by Geladi and Kowalski (1986).
The adapted procedure, besides the scores and the loading of the matrices X and Y, calculates
also an additional set of vectors known as weights. The weights are employed as a mathematical
artifice to maintain orthogonal scores.
The algorithm consists on the following steps (Geladi and Kowalski 1986):

1. Select a column of the matrix Y as the starting estimate of uy (usually the column with

the greatest variance is chosen):

u =y, (1.10)
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2. Calculate at iteration r:
XTu,
W, = ———— (1.11)
" IXTu, |
t, = Xw, , (1.12)
T
urt,
= , (1.13)
T T |
u, =Yq, . (1.14)
3. Check for convergence by comparing t,. in equation (1.12) with t,_;; if they are
equal within a predefined tolerance, proceed.
4. Calculate the loadings:
XTt,
_ ' (1.15)
Pr = lere
5. Update the loadings, scores and weights:
T
p‘l" new
T _ )
Pr, = , (1.16)
B | S99
onew = tro1a ”pr,old” , (1.17)
Wi new = Wroid ”pr,old” , (1.18)
Compute the regression coefficients through equation (1.9).
Calculate the residuals:
E. =X, —tp], (1.19)
E. =Y, —bu,q;f, (1.20)

8. Repeat the procedure for every retained PC going back to step 1 after replacing X and

Y by E, and F,, respectively.
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1.3.3 Data collection and pretreatment

Black-box (or data-driven) models rely only on the I/O data structure to map the behaviour of
the process, therefore, they are only able to provide valid predictions within the range of the
data they have been trained on. For this reason, the model must be calibrated with the most
representative set of samples.

Once selected a dataset that properly characterize the process of interest, the input data have to
be pretreated. In this Thesis, the auto-scaling is adopted as data pre-treatment technique. The
auto-scaling mean-centers and scales to unit variance all the variables.

The mean centering consists on subtracting from every variable x; ; the respective mean X;.

The mean is calculated as follows:
Iy
sz%' j=1..], (1.21)

where x; ; is the element of X in row i and column j.
Once mean-centered, the data are auto-scaled dividing each measurement by the standard

deviation of the corresponding variable:

g = Z£=1(xi,lj _fj)z . (1.22)

The auto-scaling allows to deal with the differences in the magnitude of the variables that
present different unit of measurement and assign to all the variables the same weight.
Once preformed the auto-scaling on a matrix X, moreover, its covariance matrix becomes its

correlation matrix.

1.3.4 Selection of the PC subspace dimension

The selection of the latent variables subspace dimension (namely the number of PCs to be taken
into account) can be performed according to many different rationales.

One of the most straightforward techniques involves neglecting the PCs associated with an
eigenvalue smaller than a pre-defined threshold value.

As stated by Mufioz (2019), indeed, the eigenvalue of a PC can be roughly interpreted as the
number of variables (of the original dataset) that the component is representing. It is therefore
reasonable to neglect the PCs whose eigenvalue is smaller than 0.5 (namely those PCs that
represent less than half a variable of the original dataset).

Similarly to this first method, a second approach implies the selection of as many PCs as needed

to retain at least a certain amount of variance of the original dataset.
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Anyway, the most commonly employed technique to solve the problem of the choice of the
latent variables subspace dimension is the k-fold cross validation. The k-fold cross-validation
method consists on:
1. Randomly splitting the dataset X into £ subgroups of observations;
Building a reduced dataset deleting one of the subgroups;
Calibrating the model on the reduced dataset;
Evaluating the goodness-of-fit of the model on the deleted subgroup;
Iterating the procedure for all the subgroups;

A

Repeating the procedure changing the number of PCs.

The method is schematically represented in Figure 1.6.

Training data Test data

Figure 1.6. Schematic representation of the k-fold cross-validation with k=35.

The criterion used to assess the model goodness-of-fit in the fourth step relies on the analysis

of the RMSECV (acronym for root-mean-square error of cross validation):

PRESS
I )

RMSECV = (1.23)

As it can be seen in equation (1.23), the RMSECV is a function of the predicted residual error
sum of squares (PRESS), which is defined as follows:

PRESS = Z e?; . (1.24)

I
j=1i=1

where e; ; is the element of the residual matrix E in row i and column j.

Increasing the number of PCs that are taken into account in the model, a decrease of the

RMSECV is detected at first. Then, when the newly added PCs are only able to explain the noise
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of the measurements of the original dataset, the value of the RMSECV increases. Therefore, the
optimal number of PCs can be found in correspondence to the minimum of the RMSECV .

In this thesis, the straightforward approach based on the eigenvalues is used to determine the
latent variables subspace dimension when, inside the steady state detection algorithm, PCA is
exploited as a data dimensionality reduction technique (§2).

When instead empirical correlations are built through partial least squares regression (§4), the
cross-validation method is employed to ensure an effective minimization of the residuals, to

achieve the highest possible predictive capability and to avoid the overfitting.

1.3.5 Diagnostic metrics for the partial least square regression

Although the root-mean-square error of cross validation (RMSECV) remains the decisive
criterion for the choice of the number of PCs, the influence of the latent variables subspace
dimension on the PLS regression model performances has been further investigated through
two additional metrics: the determination coefficient R? and the predictive relevance Q2. The
determination coefficient R? allows to assess the capability of the model to represent the
original data and is defined as follows:

Yo iy —2,)° _ RSS

R? =1 =1
Y o (x - %) Tss

(1.25)

where X; ; is the element of the matrix that has been reconstructed through the model while RSS
and TSS are the residual sum of squares and the total sum of squares, respectively.
The metric Q2 provides an evaluation of the model predictive capability and is defined as

follows:

PRESS
2_1_ . 1.26
Q"= 1-—c (1.26)

The determination coefficient is bound between 0 and 1 while the predictive capability can
assume negative values. The Q2 is negative if, when used for predictions, the model performs
worst than the no-model estimate (namely the mean response of the training dataset).

When both metrics show a low value, the model is underfitting the training data. Underfitting
occurs when the model is too simple to capture the underlying data trend.

When the determination coefficient shows a high value (close to unity) but the predictive
relevance remains small the model not only captures the data trend, but begins to describe the
noise of the training dataset as well. This phenomenon is commonly referred to as ‘overfitting’.
The models that overfit the training data have a low bias (due to the increased degrees of
freedom of the model) and a high variance; therefore, their predictions can change dramatically

with minor changes on the training dataset (Wilson and Sahinidis, 2017).
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Lastly, if the metrics are both close to unity, the model performs well on both the training and
test data.

1.4 ALAMO

In the following section a detailed description of the theory and the algorithms behind the
ALAMO model building methodology is provided. Similarly to the partial least squares
regression, ALAMO will be exploited in this Thesis to develop empirical models of those

processes whose behaviour cannot be mapped through the first principles.

1.4.1 Background

Chemical process simulation software are widely employed both industrially and academically
for the design and test of single equipment and/or entire processes. However, as stated by Cozad
et al. (2014), despite these numerical models provide remarkable level of accuracy in their
predictive capabilities, the structure of the simulations can impose challenges when used in an
optimization setting.

The general optimization problem can be addressed as follows:

min f(x)
s.t. gx)<0 (1.27)
xX€EACR"

where f(x) is the cost function to be minimized with respect to the degrees of freedom x while
g(x) <0 is the set of constraints the degrees of freedom are required to satisfy. When the
functions f(x) and g(x) are not available in algebraic form but are obtained through an input
output black-box instead, the above optimization problem implies some challenges such as the
need of derivative information and costly function evaluations. To overcome these challenges
a significant effort has been made to generate highly accurate surrogate models of the functions
f(x) and/or g(x). Cozad et al. (2014), in particular, developed ALAMO (acronym for
Automatic Learning of Algebraic Models for Optimization), a model-building methodology
that identifies algebraic correlation from a set of measured or simulated data. Through the
learning software ALAMO, however, Cozad ef al. (2014) aimed not only to achieve remarkable
models accuracy but focused on the reduction of models complexity as well. The models built
with ALAMO, hence, aim to reduce the difficulty and improve the tractability of the
optimization procedure.

In the ALAMO approach firstly the surrogate models are developed through an integer
programming-based best subset technique that considers a large number of explicit

transformations of the original input variables. Then, if the number of points of the training
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dataset is not fixed (namely when new points can be added to the training dataset carrying out
further simulations) the model is improved through an iterative approach. The iterative
approach implies that the current surrogate models are tested against the simulation through an
adaptive sampling methodology. The adaptive sampling technique named by Cozad et al. ‘error
maximization sampling (EMS)’ finds areas in the problem space that maximize the model error.
Once the error has been calculated in the newly sampled points, if no areas of sufficient model
mismatch are found the algorithm terminates and the methodology has converged to the final
surrogate model. If instead the model is proved to be inconsistent above a specified tolerance,
the points identified by the EMS are added to the training set and the model is retrained.
Anyway, since in this work the algebraic correlations between input and output variables will
be developed starting from a training dataset with a fixed number of points, no further
information regarding the adaptive sampling technique will be given.

In the following section (§1.4.2) a detailed description of the model-building methodology will

be provided instead.

1.4.2 ALAMO model-building methodology

Given a set of N training points where each data points contains a set of input data x;; and a set
of responses z;, (wherei = 1,...,N,d € D and k € K), under the hypothesis that the analytical
form of the response surface is not known, it is wanted to generate a model for each response.
In order to develop models with sufficient complexity to achieve accurate predictions and
enough simplicity to ensure the tractability of the optimization, firstly a simple set of basis
functions and a constant term are defined (Cozad et al. 2015).

The basis functions X;(x) (with j € B) are non-linear transformations of the input variables.
The most employed functions are summarized in Table 1.1, where the value of the exponent o

is defined by the user.

Table 1.1. Commonly used basis functions.

Category Xj (x)
Polynomial (x)*
Multinomial ()%
deD’'eD
Exponential and logarithmic forms exp(xy)® log (xz)%

The resulting surrogate model is a linear combination of the non-linear basis functions:

200 = ) B @) (1.28)

jeB

where the values of the model parameters f; (namely the coefficients that multipy the basis

functions) can be estimated solving an ordinary least squares regression problem.
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Unfortunately, although the model developed starting from the expanded set of regressors will
typically experience a low error on the training set, it still may not contain an adequate
representation of the underlying process. As the number of regressors increases, indeed, the
model generally begins to overfit the training data.

In order to avoid the overfitting, the superfluous regressors must be removed from the model.
Model reduction techniques as the backward elimination are common method that allows to
reduce the number of terms in a model. However, although these methods are able to attenuate
the overfitting using only a subset of the original set of basis functions, they can easily miss
synergistic effects of groups of bases that may show poor fitting capabilities if taken into
account individually. For this reason, a best subset method is implemented to take into account
for all the possible combinations and to identify, through a measure of the model fitness that is
sensitive to overfitting, the best subset of basis.

The general best subset problem can be addressed as follows:

min (S, p)

1.29
s.tt. SC€B ( )

where @ (S, B) is the model goodness of fit for the regression coefficients  and the subset of
basis function S.
Solving the problem addressed in equation (1.29) allows to find a model that uses the best subset

of functions S to achieve the most effective bias-variance trade-off (Cozad et al., 2014):

2(x) = Z B;X;(x) (1.30)
jES

Starting from equation (1.29) Cozad et al. (2014) performed a series of reformulations that
simplified the solution of the problem.
The final version of the methodology and the main steps of the reformulation procedure will be
presented hereinafter while a more comprehensive and detailed description will be given in
appendix A.
The first simplification is achieved tracking which basis functions are active in the model
through a binary vector y defined as follows: whenever a basis function j € B is active in the
model (j € S), then y; = 1; otherwise y; = 0.
The vector y allows to reformulate equation (1.29) into a mixed-integer non linear problem and
to describe equation (1.30) over the full bases set B.

The next step implies decoupling the goodness-of-fit measure into two parts as follows:

in ®(6,7,y) = min {min[, 5, 1] + b7 (1)} (1.31)
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where ®1(T) is the model sizing part while ®,, 5(y, 8)|r refers to the selection of the basis
functions and the parameters (Cozad et al., 2014).

Hence, the best subset selection problem is posed as a nested minimization as follows:

min _ [®, 3y, B)Ir] + Pr(T)

Te(1,..,T4)
s. t. %n @, 5 (v, A7
s.t. zyl =T (132)
JeB
Bly; < B; <B*y; jE€B
y; € {0,1} jEB

The inner minimization concerns with the selection of the basis functions and of the parameters
while the outer minimization determines the complexity of the model.

The solution of the best subset selection problem is highly influenced by the choice of the model
fitness measure. A proper measure must properly reflect the accuracy of the model while
remaining sensitive to overfitting. Two common methods to assess the model fitness are cross-
validation and information criteria. Both these methods are sensitive to empirical error and
overfitting, but the cross-validation is not able to account directly for the model complexity.
For this reason and due to the large number of basis functions available, Cozad et al. (2014)
decided to use as goodness-of fit measure the corrected Akaike information criteria (Hurvich
and Tsai, 1993):

2|S171s1+ 1)

N-psi-1

2
N
1
i=1 jES
Starting from equation (1.32), at last, two more series of reformulation were performed to
improve the tractability and efficiency of the algorithm. Firstly, the finite solution space of the
outer minimization is parametrized with respect to T, which is an indicator for the complexity

of the model. Then the inner minimization is posed as the following mixed-integer linear
problem (Cozad et al., 2014):
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N
min z w;

i=1
s.t. w ZZi—Zﬁinj, i = 1, o, N

jeB

WiZZﬁinj—Zi, l=1,,N

jeB

Zyi =T (1.34)

jeB

—Uj(l—Yi)SZXij Zi—Zﬁinj <U(1-y), jE€EB

jEB jEB
Bly; < B; < BYy;, JEB
Yij € {0,1} jEB
B < B; < B}, jEB

The set of equations (1.34) is used to identify the best T-term subset of the original set of bases
B. Solving the equations with a small value of T and then increasing that value until the

information criterion worsens it is possible to efficiently solve the best subset problem finding
the most accurate low-complexity model.






Chapter 2

Steady-state detection

This chapter deals with the issue of the steady-state identification in industrial processes. The
reader is firstly provided with a brief review of the state-of-the art scientific literature regarding
steady-state detection algorithms and the approaches they exploit to tackle the problem.
Particular attention is devoted to the method proposed by Kelly and Hedengren (2013), which
is the technique the novel algorithm developed in this work aims to improve.

Finally, the reliability of the novel approach is evaluated analysing the results obtained applying

the steady-state detection algorithm to the cumene process case study.

2.1 Overview

With the increasing use of steady-state model based techniques in industrial continuous
processes, rigorous steady-state identification has become critical in a wide range of application
areas, such as process performance assessment, data reconciliation, soft sensor development,
process optimization, fault detection and process control (Jiang et al., 2003).

Process data employed for building black-box or hybrid steady-state models should only be
collected when the plant is actually operating steadily, otherwise erroneous parameter or entire
modeling failure can occur. Moreover, since applying a steady-state model to a non-stationary
process would not provide any meaningful results, attaining the steady-state, besides triggering
data collection, represents also the necessary condition that, once verified, allows for models
implementation. The term steady-state refers to a process operating around a stable point or
within a stationary region where the accumulation of material, energy and momentum is
statistically negligible (Kelly and Hedengren, 2013).

With the development of distributed control system (DCS) technologies, a huge amount of
process data (both steady and unsteady) can be collected and recorded for state identification.
When a process variable is measured, in particular, the output displayed by the sensor stands
for the true process value with additive noise and disturbance.

At steady-state, the true process values stay unchanged; therefore detecting windows in which
a process is operating in a state of steadiness would be trivial if the process signals were
noiseless. In this case, it would indeed be enough to state the constancy of the sensors output
signals to ensure that the plant is operating steadily. Unfortunately, process measurements are

inherently corrupted by several sources of error (such as instrument malfunction or
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miscalibration and/or process noise); hence, the sensors output signals keep changing even
when the process is operating at steady-state.

The steady-state detection methods must be able to recognize if the variation of the process
variables is due to a non-stationary drift or if it is only driven by noise fluctuations.
Misunderstanding the nature of the variations could lead either to Type I or Type II error. Type
I errors (false positives) arise when the algorithms trigger a ‘steady-state” when the process is
not at steady-state while type II errors (false negatives) consist on triggering a ‘not at steady-

state’ response when the process is actually at steady-state (Cao and Rhinehart, 1995).

2.1.1 Literature survey

In the past few decades, several steady-state detection methods have been proposed. According
to Wang et al. (2018), these approaches can be classified into three main categories: model-
based, statistical theory based and trend extraction based methods.

The model-based techniques detect process steady-state by analysing deeply the physical and
chemical background of the process. An example is the approach proposed by Prabhakar and
Kumar (2014) to assess the voltage stability margins, which is based on the P-Q-V curve and
Thevenin’s theorem. The quality of the state identification provided by the model-based
approaches depends highly on the accuracy of the process model. Accurate process models,
however, especially for complicated large-scale industrial plants, are very difficult and costly
to develop. Therefore, since the process state is reflected in the real time collected process data,
it is more reasonable to carry out SSD (acronym for steady-state detection) through data-driven
methods. The main strength of the data-driven methods is their versatility. Indeed, since these
approaches do not rely on process models, they are suitable to be applied to a broad spectrum
of different processes. The statistic based and the trend extraction based methods (namely the
second and third category of SSD approaches according to the classification of Wang et al.) are
both data-driven techniques. Among the statistical methods, Cao and Rhinehart (1995)
developed a computationally efficient approach based on the R-statistic. The R-statistic
evaluates the ratio of two variances measured on the same set of data by means of two different
techniques: the mean squared deviation and the mean of the squared difference of successive
data. The computational burden of the method is minimized employing conventional
exponentially weighted moving averages (namely a first order filter). More recently, Kelly and
Hedengren (2013) computed the probability of a process to be steady performing a Student-t
test. Since the novel steady-state detection method proposed in this work aims to improve Kelly
and Hedengren’s algorithm, a detailed description of their approach will be given in §2.1.2.
The statistical methods mostly provide steady-state evaluations on fixed time intervals, rather
than assessing the steadiness of the process state in each time point. Cao and Rhinehart’s
technique is an exception, but, as a consequence of the filtering procedure, it is affected by a

delay in the prediction. Furthermore, since the optimal detection parameters of each method
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depend on the characteristics of the signal (such as the noise variance), it is needed to re-tune
the algorithm parameters each time a new application is taken into account.

The last category of SSD methods according to Wang’s classification are the trend extraction
approaches. One of the most employed technique to carry out trend extraction is wavelet
transform. Jiang et al. (2003), for instance, proposed to assess the steadiness of the process
computing the value of the first and second order wavelet transform modulus. The
computational burden is commonly the main issue of the trend extraction based steady-state

detection methods.

2.1.2 Kelly and Hedengren’s method

In 2013, Kelly and Hedengren proposed a statistical approach based on a student t-test to tackle
the steady-state detection problem. The description of the algorithm assumptions and steps is
given in §2.1.2.1 and §2.1.2.2 as if only a single process signal x; was taken into account for
process steadiness assessment.

As a consequence of the growing development of distributed control system technologies,
however, the amount of measured process variables is commonly very large. Therefore, it is
essential for a steady-state detection algorithm to be able to deal with multiple process signals.
The approach Kelly and Hedengren followed to provide a unique prediction for the overall

process steadiness when more than one process signal is available is described in §2.1.2.3.

2.1.2.1 Algorithm assumptions

The first step of the algorithm consists on splitting the dataset that stores all the measurements
of the process signal x; through the definition of time windows.

Each time window is defined to include n sampled values of the process variable x;, which are
equally spaced in time. Therefore, the first fundamental assumption is that the measurements
collection is performed with a constant sampling frequency.

Once the dataset has been splitted, moreover, Kelly and Hedengren defined the value of the

process signal x; inside the window through the following equation:
Xe=mt+u+a;, (2.1)

where (Figure 2.1):
e m : slope of the regression line that fits the trajectory of the process signal x;;
e t : relative time running within the window;
e u : intercept of the regression line that fits the trajectory of the process signal x;;

e a, : white noise sequence.
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Figure 2.1. Process signal value x, as a function of the relative time t running within the
window.

The intercept of the regression line corresponds to the mean of the hypothetical stationary
process (namely the arithmetic average of the values of x; over the time window under the
condition that the slope m is null). The white noise sequence is assumed to have zero mean and

standard deviation a,,.

2.1.2.2 Algorithm steps

Given a dataset with all the measurements of a process variable x; and the value of the following

parameters:
e «a :significance level of the Student’s t-test;
e Tr: threshold value for the assessment of the process steadiness in the time window;
e n : number of sampled values included in the data window.
the following step need implementing:
1. Split the dataset collecting all the measurements in time windows with n sampled values
of x; each.
2. For each time window:
2.1 Fit with a linear model the trajectory of the process signal x, in order to obtain the
values of the slope and of the intercept of the regression line.

2.2 Compute the standard deviation of the white noise shocks as follows:
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n—2

1 n
O, = (x; —mt —u)? . (2.2)

2.3 Perform the following Student’s two-tailed t-test:

If |xt - .ul < terit O
Sety, =1.

(2.3)
Else:

Sety, =0 .

where t.,.;; 1s the critical t value of a two-tailed test with significance level a.
2.4 Compute the fraction of time T within the window in which the process is deemed

to be at steady-state through the following equation:

n
= Dt=1Yt . (2.4)
n

2.5 Assess the stability of the process signal in the time window through the comparison
of T with the threshold value T7:

Ift=>Tr:
The process signal is deemed to be at steady-state in the window.

(2.5)
Else :

The process signal is deemed not to be at steady-state in the window.

The practical meaning of the threshold value Tr can be clarified through the following brief
example: setting Tr equal to 0.99 means that in order to deem the signal to be steady at least

99% of the points included in the time window must be at steady-state.

2.1.2.3 Multiple process signals and time window length

As stated previously, the development of distributed control system (DCS) technologies
increased dramatically the amount of collected process data. Even if several process signals are
available for process state identification, the SSD algorithm must be able to provide a unique
assessment for the steadiness of the entire process. This comprehensive state prediction must
take into account for the steadiness of all the measured key process variables.

In order to deal with multivariate system, Kelly and Hedengren proposed to:
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1. Select among all the available process signals those referring to variables that have a
key influence on the overall process behaviour.
2. Reduce the significance level a of the Student’s t test through the Sidak inequality:

@ =1—(1—a)k . (2.6)

where k is the number of selected key variables.
3. Apply the algorithm (§2.1.2.2) to each key process signals employing a’ as the
significance level of the Student’s t test.
As an outcome of the third step, a steadiness prediction for each process signal is obtained.
However, no further indication on how to deal these predictions is provided. It is reasonable to
assume that Kelly and Hedengren decided to deem the process to be at steady-state in a certain
time window only if all the selected key signals are steady within that window.
Lastly, as regards the selection of the window size n, it is suggested to fulfill the following

inequalities:

3<® 5 .7)

S S0 .
where At is the sampling period and 7,, is the process time constant. The selection of the key
variables as well as the estimation of the process time constant require having prior process

expertise.

2.2 A new method for steady-state detection

In this work, a novel steady-state detection method is developed combining a modification of
Kelly and Hedengren’s t-test with one of the most accredited data dimensionality reduction
techniques: principal component analysis (PCA). The steady-state detection algorithm has been
coded in Python™ 3.7.3. The packages ‘numpy 1.16.2° and ‘pandas 0.24.2° have been
extensively used to deal with arrays and matrices while the package ‘scikit-learn 0.20.3" has
been exploited to perform PCA. Lastly, the module ‘stats”’ from the package ‘scipy 1.2.1” has

been used to compute the critical t value of a two-tailed test with significance level a.

2.2.1 Motivation

The design of the new algorithm is mainly styled after Kelly and Hedengren’s approach. The
reason why PCA has been exploited is the need of improving the management of multiple
process signals. Kelly and Hedengren proposed to deal with multivariate systems through
Sidak’s inequality (2.6). One of the assumptions of Sidak’s inequality, however, is that the k

process signals employed for steady-state detection refer to variables that are independent from
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each other. Unfortunately, in chemical plants dramatic correlations and redundancies arise
among process variables. The validity of equation (2.6) is therefore strongly questionable.
When taking into account complicated large-scale industrial applications, moreover, the
identification of the key process variable could be very difficult to carry out. The possibility of
exploiting PCA rather than Sidak’s inequality to deal with multiple process signals has been
suggested by Wang et al. (2018). Through PCA, it is possible to find low-dimensional
representations for high-dimensional observed data maintaining the main variance of the
original dataset. The low-dimensional representation is given by latent variables that are named
principal components (PCs). Since the variance of the original dataset is mostly retained by the
PCs, furthermore, the information that are needed to identify accurately the state of the process
(steady or unsteady) are kept in the latent variables subspace, while process noise is left in the
residuals. Carrying out steady-state detection on PCs rather than on process variables improve
therefore the accuracy and the efficiency of the prediction. In addition, beside the capture of the
main trends of the original dataset, PCA eliminates also the correlation between the process
variables.

Since commonly more than one PC is taken into account, it can be argued that the multivariate
system issue has not been tackled (because the problem of considering multiple process
variables has just been replaced by the problem of considering multiple latent variables).
Actually, differently from process variables (whose relative importance cannot be estimated
quantitatively), after PCA has been carried out, the relevance of each PC is assessed by the
percentage of variance of the original dataset that the latent variable is able to explain. It can be
therefore easily computed a composite SSD index (namely a steadiness prediction for the entire
process) weighting the prediction of each single PC through their relative importance.

The last motivation that required the development of a novel steady-state detection algorithm
concerns with the definition of the time window. Kelly and Hedengren proposed the
implementation of a static approach in which the algorithm detects the time window as a whole
to be in a steady or unsteady-state. In order to provide a steady-state prediction for each
sampling instant, however, a moving window would be needed. In Figure 2.2 the differences

between the two techniques are graphically displayed.
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Static window approach Sliding window approach
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Figure 2.2. Static window approach vs. sliding window approach.

When a sliding window is used, the degree of steadiness of each point included in the window
is exploited to assess if the variable (v, in the example) is at steady-state in the sampling instant
tx located in the middle of the sliding window. The time points located in the middle of the
sliding windows are highlighted in red in Figure 2.2. Since assessing the stability of the process
in each sampling instant is essential for online application, in the new SSD algorithm it has

been decided to implement the sliding window approach.

2.2.2 Data preprocessing

The presence of missing data and invalid measurements in industrial datasets is common and
unavoidable. The proposed steady-state detection algorithm is not able to handle incomplete
datasets. Hence, a Python™ function was coded to remove the missing values, which
commonly are designated as ‘NaN’ (acronym for Not a Number). The removal is carried out
on a row basis. That means that when one sensor (or more than one) experiences a fault and
displays a NaN in one sampling instant, the measurements of all the sensors taken at that time
point t;, are discarded.

In Figure 2.3, the NaN removal procedure carried out by the developed function is visually
summarized. As it can be seen, after the identification and the elimination of the corrupted rows
(namely the rows with at least one NaN), three different datasets are obtained. Those three
datasets are supplied individually to the steady-state detection algorithm. Otherwise, the

constraint of keeping constant the sampling frequency would not be fulfilled (merging the three
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matrices would generate a dataset in which for example the sampling instant 1505 is followed
by the time point 1520, while the constant sampling period is equal to 5).

Sampling Variable Variable | Variable Sampling Variable | Variable | Variable | Variable
Instant 1 3 4 Instant 1 2 3 4
0 0

0.4397 298.5 -3297 0.3134 0.4397 298.5 -3297 0.3134
5 0.4395 298.2 -3301 0.3135 5 0.4395 298.2 -3301 03135

s Dataset 1 =—— SSD algorithm

1500 0.4396 2923 -3300 0.3134 1500 0.4396 2983 -3300 0.3134
1505 0.4393 298.2 -3300 0.3130 1505 0.4393 298.2 -3300 0.3130
1510 0.4396 MNaN NaN 0.3136 —— -39 NeN——NeN——83136—
1515 0.4396 298.0 NaN 03133 —— I ———0-4306——298:0——NeN——0:3433—
1520 0.4394 298.1 -3301 0.3131 1520 0.4394 2981 -3301 0.3131
1525 0.4396 298.1 -3303 0.3140 1525 0.4396 298.1 -3303 0.3140

Pre-processing
b Dataset 2 == 55D algorithm

o Algorithm
3750 0.4400 298.0 -3289 0.3134 3750 0.4400 298.0 -3289 0.3134
3755 0.4397 298.3 -3301 0.3131 3755 0.4397 2983 -3301 0.3131
3760 NaN NaN NaN 0.3134 L L1 L L S
3765 0.4395 NaN NaN 0.3136 —— a3 ———NeN———NeN——03136—
3770 0.4397 297.9 NaN NaN —3 e ———457——257——NaN—— N —
3775 0.4396 298.5 -3299 03132 37s 04396 2985 -3299 03132
3780 0.4395 298.8 -3300 0.3134 3780 0.4395 298.8 -3300 0.3134
=——p Dataset 3 === 55D algorithm
4555 0.4396 298.5 -3299 0.3132 4555 0.4396 2985 -3299 0.3132
4560 0.4395 298.8 -3300 0.3134 4560 0.4395 298.8 -3300 0.3134

Figure 2.3. Invalid measurements removal procedure.

All the industrial datasets upon which the NaN removal procedure was carried out in this work
had a low percentage of missing data (< 5%). When more corrupted datasets are taken into
account, the removal approach could not be the best choice. Therefore, it is left as a future work

the development of a proper and efficient imputation method for missing values replacement.

2.2.3 Algorithm steps

The algorithm inputs and output are summarized graphically in Figure 2.4.

i

Variable Variable Variable Sk
1 2 . n

k 0 k 0.983 298.15 1013.2 k T
5 0.978 297.8 1015.3 T
Algorithm
10 + 0.981 2985 10178 — F
15 0.973 298.2 1011.0 F
.
8 0.988 298.7 1019.1
ty \ Vi Sk
Inputs Output

Figure 2.4. Algorithm inputs and output.
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Given:

e A time series {t,, Y,k =0,1,..,(0—1); i =0,1,...,(n — 1)} where t, denotes a
uniform measurement time grid and Yj; is a matrix of n measured variables
(0 is the total number of sampling instants that are taken into account);

e v : minimum percentage of variance of the original dataset explained by the retained
PCs
(0%-100%, default 95%);

e N:number of points included in the sliding window;

e « :significance level of the Student’s t-test (0%-100%, default 1%);

e T;: first threshold value (0-1, default 0.93);

e T,:second threshold value (0-1, default 0.93).

Determine:

e Boolean time series {s;, k = 0,1, ..., (0 — 1)} where if s;, = 1 the system is deemed to
be at steady-state at the sampling instant t;, while when s;, = 0 the system is considered
not at steady-state at the sampling instant t,. The algorithm inputs and output are
summarized graphically in Figure 2.4.

1. For every i, compute the mean Y, and the standard deviation g; over all data points 6.

2. Foreveryk,i, set:

Vi = yleiM . (2.8)

3. Apply PCA to the data matrix Y; to determine:

« The lowest number of PCs m that ensures that at least v% of the variance of the
original dataset is explained.

. The time series {ty,Xy;,k =0,1,..,(6 —1); j =0,1,..,(m — 1)} where X;;
is the matrix of the first m PCs.

« The vector {ex_varj, j=0,1,..,(m- 1)} that stores the percentage of variance
that each of the first m PC explains (when taken into account individually).

4. Forevery j, set:

ex_var;
ex_varj’ = —Z;-n: ox v]arj ) (2.9)
5. Foreveryq=20,1,2,3,..,(6—-1):

5.1. Set:
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N-1
k5=max<0, ——). (2.10)
2
. N-1 (2.11)
kf— m1n<q+T,0>
5.2. Set:
q=q+1. (2.12)

5.3. For every PC j:
5.3.1. Use the vectors {tk, k=ks,.. kf } and {xkj,k =kg, .. kf } to estimate
a linear model of the form:

5.3.2.  Compute the standard deviation of each de-trended PC over the sliding

window:
kg
1 2
= E vt — ). (2.14)
0j (kf _ ks + 1) ) y- (xk} Vilk ,u])

ks — kg + 1 is the number of time points included in the sliding window.
5.3.3.  Define the scalar =0 .
5.3.4. Calculate t.,;; using the function ‘stats.t.ppf ()’ imported from the
Python™ package ‘scipy ™

terie = stats. t.ppf (1 — 1/2 a,kf—kg) . (2.15)

terie 18 the critical value of the Student’s t-test.
5.3.5. Fork =k, ...,kf :
5.3.5.1. Perform the following two-tailed Student’s t-test:

If |xiy = [y +v; - (ti, — At)]| < terieo; -
(2.16)
Set SS=SS+1 .

where At is the constant sampling period.

5.3.6.  Assess the steadiness of the PC in the sampling instant g:
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If _ % o7
ke —ks+1 2.17)
Setp =p + ex_var; .
5.4. Assess the steadiness of the entire process in the sampling instant q:
Ifp>Ty:
Sets, =1 .
(2.18)
Else :
Sets, =0 .

2.2.4 Steps description

The first and the second steps perform the standardization of the data matrix columns removing
the mean and scaling to unit variance, while the third step carry out the PCA through the
function ‘PCA’ included in the Python™ package ‘scikit-learn’. The dimensionality reduction
is computed defining the parameter v: the minimum percentage of variance of the original
dataset that must be explained by the retained PCs. The parameter v has a dramatic influence
on the performance of the feature extraction approach. A proper selection of its value, indeed,
allows to hold the main data information in the PCs leaving only process noise in the residues.
In this work, an optimum value for v has been estimated analysing the eigenvalues related to
each PC.

As stated by Garcia-Muinoz (2019) the eigenvalue of a PC can be roughly interpreted as the
number of variables (of the original dataset) that the component is representing. It is therefore
reasonable to neglect the PCs whose eigenvalue is smaller than 0.5 (namely those PCs that
represent less than half a variable of the original dataset). Figure 2.5 graphically summarizes
through an example how the rule of thumb is applied to estimate the parameter v. As it can be
seen in the example, from the fifth PC on, the eigenvalues are smaller than 0.5. Therefore, only
the first four PCs should be kept. The values of v that allows keeping four PCs are those bound
between 91.0209 and 95.4848 % (the inequality bounds can be easily identified from the

column referring to the cumulated retained variance percentages).
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N Retained Cumulated retained
S A variance [%] variance [%]

1 12.9417 76.12763 76.12763
2 1.4199 8.35237 84.48

3 1.11195 6.5409 91.0209
4 0.75886 4.4639 95.4848
5 0.36685 2.15794 97.64274
6 0.20977 1.23391 98.87666
7 0.0967 0.56884 99.44549
8 0.04605 0.27088 99.71637
9 0.00911 0.05361 99.76998
10 0.00818 0.04811 99.81809
11 0.00707 0.04158 99.85967
12 0.0067 0.03941 99.89908
13 0.0054 0.03176 99.93085
14 0.00466 0.02743 99.95828
15 0.00393 0.02314 99.98142
16 0.00192 0.01129 90,9027
17 0.00124 0.0073 100

Figure 2.5. Procedure followed to determine the parameter v.

The fourth step calculates then the relative importance of each retained PC and concludes the
section of the algorithm that deals with the PCA. The weights calculated in step 4 will be
exploited in later steps to calculate a composite steady-state detection index and therefore to
assess the steadiness of the entire process.

From the fifth step on, the section of the algorithm that deals with the steady-state assessment
begins. Step 5, in particular, defines an iterator that runs across all the sampling instants, while
step 5.1 and 5.2 deal with the implementation of the sliding window. Step 5.3, then, defines an
iterator that runs across the PCs. After one PC is selected, its steadiness in the sliding window
is assessed through a procedure styled after Kelly and Hedengren’s approach (which has been
described in detail in §2.1.2.2). In step 5.3.5, the equation implemented to carry out the
Student’s t test in the novel approach (2.16) is slightly different from the original one proposed
by Kelly and Hedengren (2.3). The new expression reduces the computational burden of the
algorithm avoiding to define a new relative time (running within the window) whenever a new
time window is considered. Through equation (2.16), moreover, the code is enabled to deal
directly with datasets where the constant sampling period is different from one.

Once the statistical test has been computed for each sampling instant included in the sliding
window, in step 5.3.6 the steadiness of the PC in the time point g (located in the center of the
sliding window) is assessed checking if the fraction of points at steady-state within the sliding
window overcomes the threshold value T;. Still in step 5.3.6 a composite steady-state index p
is calculated to evaluate with a number bound between zero and one the steadiness of the entire

process (in the time point g). Since the computationally inexpensive way through which the
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index p is computed in the final version of the code (step 5.3.6) could be difficult to understand,
an extended derivation is provided in §2.2.4.1.
Finally, in the last step of the method, the steady-state composite index is compared with a

second threshold value T, obtaining the final algorithm output: the time series {sy, k =

L, (6 -1}

2.2.4.1 Derivation of the composite steady-state index p

Originally, in the new method, the calculation of the composite steady-state index p and of the
Boolean time series s, were carried out outside the loop that iterates across each sampling
instant. At the end of step 5, indeed, it was only computed a Boolean matrix
{Rkj k=0,1,..,(0 —1); j =0,1,...,(m — 1)} where the single element Tj Was set equal
to one whenever the PC j was deemed to be at steady-state in the sampling instant k and zero
otherwise. Differently from the latest algorithm version, moreover, the values of the composite
steady-state index p (one value for each sampling instant) were all calculated through a single
operation and stored in a dedicated vector pj. The single operation (which was present in the
older algorithm versions) that allowed to compute the vector py, as showed in Figure 2.6, is a

weighted average of the element of the matrix Ry;:

m-1

Ty Cex_varj . (2.19)
Jj=0

The weights ex_var; are the normalized percentages of explained variance computed in step 4.
Therefore, the composite steady-state detection index is merely an average of the predictions
of each PC weighted by their relative importance.

Finally, once carried out equation (2.19), the older algorithm versions computed the Boolean
time series Sy, testing if the value of each of the element of the vector p;, exceeded the threshold
value T,. The whole procedure followed to obtain s; and pj starting from the matrix Ry; is
summarized graphically in Figure 2.6.

J

PC, PC, PC; PCy n

0 1 0 1 0 75 0 0 0
k[ 5] £l 0 1 o |/ 0.12 k)l . k|| o | £l| o
10 0 0 0 1 0.08 10 T, =093 10 0
—_—_— _—
15 1 T i 1 0.04 P = Ryj - ex_var] 15 If pe > To: 15 1
K Set sy =1
20 1 L 1 1 ex_vary 20 Else: 20 1
Set 5, =0
25 il 1 0 1 25 25 0
ty R"‘l' Ly Pr ty Sk

Figure 2.6. Procedure followed to s and py, starting from Ry;.
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Although the definition of the composite steady-state index stays unchanged, in the final version
of the code, through step 5.3.6 and 5.4, the calculation of the Boolean time series s;, is computed
directly inside the loop that iterates across each sampling instant without explicitly defining the
matrix Ry ; and without collecting the values of the composite SS index in the vector py. This

allowed achieving a significant reduction of the algorithm running time.

2.2.5 Representative steady-state points collection

Once the algorithm has provided the user with the boolean time series that stores the steadiness
predictions for the whole system in each sampling instant, commonly a considerable amount of
steady-state points is achieved. In most of the cases, however, such as for data reconciliation,
not all the points are needed to carry out later analyses.

Therefore, in order to retrieve from the Boolean time series some representative steady-state
points, a Python™ function was developed to:

1. Identify the intervals of time in which the process is at steady-state for more than n’
consecutive time points;

2. Determine the sampling instant located in the middle of those steady-state windows;

3. Collect from the industrial dataset the measurements of all the process variables (both
the ones employed for steady-state detection and those that have not been exploited) in
that sampling instant.

The value of the parameter n’ depends on the sampling period and on the amount of steady-
state points that it is wanted to collect. The steps carried out by the function developed to collect
representative steady-state points are graphically summarized in Figure 2.7.
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Figure 2.7. Steady-state points collection procedure.
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Additional code lines were later added to the function in order to also:
1. For each steady-state point and for each variable;
1.1. Identify the steady window from which the measurement was collected;
1.2. Calculate the standard deviation of the measurements included in that steady
window.

The so computed standard deviations are intended to be accurate estimations of the
measurement noise affecting each collected steady-state point in the steady window from which
it was retrieved. The additional feature of the function is demonstrated in Figure 2.8 carrying
out graphically the calculation of the standard deviation of the first variable v; (for the first

collected steady-state point).
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Figure 2.8. Measurement’s noise estimation.

In Figure 2.8 the measurements of v; included in the steady-state window are enclosed in red

borders.

2.2.6 Algorithm performances assessment

Once the steadiness of the process has been assessed through the proposed steady-state
identification algorithm, the quality and precision of the detection can be evaluated comparing

the predicted running state with the trajectories of the PCs or of the process variables.
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In particular, three types of plots are provided to the user at the end of the detection routine:

1. The comparison of the trajectory of a single PC with the steadiness prediction;

2. A grouped comparison of the trajectories of all the retained PCs with the steadiness

prediction;
3. A comparison of the trajectory of a single process variable with the steady-state
prediction.

Hereinafter, an example of each type of graph is provided. The plots that will be presented, in
particular, are referred to the cumene process case study. In the cumene process case study, no
industrial datasets were employed for the development of the hybrid model, but digital process
signals were created simulating a dynamic flowsheet in gPROMS through an accurate first
principle model. The first principle model that was employed refers to the design proposed by
Luyben (2010) and was available inside the Process Systems Enterprise’s libraries.
Disturbances in the feed were employed to introduce transient states, while noises and invalid
measurements were added at a later date through Excel and Python™. Further information
regarding how the data have been generated, how transient states have been induced, how noise
and invalid measurements have been added to the dataset and a detailed description of the
process flowsheet are given in §3, the chapter which is dedicated to the industrial plant for the
production of cumene.
For a proper understanding of the plots, additional details regarding the dataset structure must
be provided. The digital plant historian collects the values of 83 different process variables
(temperatures, pressures, flowrates, compositions and heat duties). Each variable was virtually
measured 33050 different times with a constant sampling period of 120 seconds. The percentage
of invalid measurements was around 0.01%. Among the 83 available process signals, 17 were
exploited to carry out steady-state detection. The PCA was performed so as to keep at least 95%
of the variance of the original dataset. That involved the collection of four PCs. The values of

all the other algorithm parameters are reported in Table 2.1.

Table 2.1. Algorithm parameters.

window_length o T, T,
139 0.01 0.93 0.93

The plots reported hereinafter refers to a submatrix of the virtual plant historian collecting 3750
samples. The algorithm assessed the steadiness of the process in all the sampling instants with
a running time of 60 seconds (laptop Lenovo T450 with the processor Intel Core 17-5600U
vPro). In Figure 2.9, the trajectory of the first PC is displayed together with the predicted
running state. The steadiness forecasts are visualized in the lower part of the graph through a
histogram: whenever the process is deemed to be at steady-state between two consecutive
sampling instants a blue bar with height equal to 1 is displayed between those two time points.

Otherwise, no bars are plotted.
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As it can be seen from Figure 2.9, through visual inspection of the first PC trajectory it can be
stated that transient behavior arises roughly when the time over the sampling period is:

e  between 400 and 600;

e between 800 and 1000;

e  between 1200 and 1400;

e between 1600 and 1700;

e between 2100 and 2200;

e between 2500 and 2600;

e between 2800 and 3000;

e Dbetween 3300 and 3500.

Steadiness of the process and trajectory of principal component no. 1
which explains 64.62% of variance of the original dataset
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Figure 2.9. Trajectory of the first PC and steady-state predictions.

Since the algorithm prediction matches quite accurately the evaluation achieved through visual
inspection, it can be concluded that the novel method is able to handle efficiently heavy data
loads providing correct assessments of the steadiness of the overall process. Minor detection
issues can be however noticed. Indeed, although the method is able to detect almost
instantaneously when a disturbance enters the system (displaying promptly the ‘not at steady-
state’ condition), in the regions in which the transient is expiring (and the system is starting to

attain a new steady-state) it deems to be at steady-state intervals of times in which the effect of
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the disturbance has not completely vanished. This misprediction, however, do not pose any
issues because, as described in §2.2.5, the points selected to carry out further analyses are
picked from the middle of the steady intervals, where the reliability of the prediction is ensured.
In the second kind of plots the trajectories of all the retained PCs are simultaneously displayed
together with the steadiness assessments. Those kinds of graphs are particularly helpful when
the PCs show transient behaviours in different times. Analysing only the trajectory of a single
PC, indeed, one could find intervals of time in which, despite the trajectory of the PC is steady,
the whole system has been deemed to be not at steady-state. This commonly do not happen
because of an algorithm forecasting failure, but rather because another PC is experiencing
transient behaviours in that specific interval of time. Plotting all the trajectories of the PCs allow
the user to easily identify which PCs are bringing the whole system to unsteadiness in a given
sampling instant. In the reported example, however, the transient behaviours arise for all the
latent variables almost at the same time, hence the usefulness of the grouped visualization is
not highlighted.

Principal component no. 1 explains 64.62% of variance of the original dataset
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Figure 2.10. Trajectories of the retained PCs and steady-state predictions.

As for the first kind of plots, in any case, also through Figure 2.10 the reliability of the steadiness
assessment can be tested comparing the predictions expressed by the histogram with what it

can be stated by inspecting visually the trajectories.
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Lastly, in Figure 2.11 (an example of the third kind of plots), the trajectory of a process variable,

the molar flowrate of cumene (the desired product), is displayed together with the steady-state

predictions.
Steadiness of the process, trajectory of the variable Sink_material_gMLO003.inlet.F_molar
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Figure 2.11. Process variable trajectory, collected steady-state points and steadiness
predictions.

The most important feature of this type of graph consists on the presence of the red dots. The
red dots indicate the representative steady-state points collected (with the function explained in
§2.2.5) to carry out further analyses. The third type of plots are therefore essential for the user
in order to quickly verify if the points retrieved for later applications are affected by major

prediction issues or, as it is desired, truly belong to a steady window.
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Industrial process for the production of
cumene

This Chapter overviews the industrial process for the production of cumene and the
methodology through which the process data employed for the development of the hybrid
model of the plant have been collected. First, details regarding the kinetics of the reactions
involved in the process and the phase equilibrium are given. Then the flowsheet and the
plantwide control strategy are presented. Finally, the procedure through which the process data

are collected is described.

3.1 Reaction kinetics and phase equilibrium

Cumene (isopropylbenzene) is a colourless water-insoluble aromatic hydrocarbon used in the
manufacture of several chemicals including phenol and acetone (https://pubchem.ncbi.nlm.
nih.gov/compound/Cumene). The cumene manufacturing process involves the following two

reactions:

CoHy + CsHg = CoHyy (3.1)

CoHy, + C3Hg — C13Hyg . (3.2)

The main reaction is the Friedel-Crafts alkylation of benzene with propylene to produce cumene
(3.1) while the alkylation of cumene with propylene (3.2) is an undesired reaction that forms p-
diisopropylbenzene. The reactions are carried out in a high temperature, high pressure gas-
phase reactor in the presence of a solid catalyst.

The rates of reaction are expressed as follows:

_E

r]_ = Kle RTC66H6CC3H6 ) (3.3)
_E

TZ == Kze RT CCQH1ZCC3H5 ) (34)

Both reaction rates have unit of [kmol/(m*-s)]. The values of the activation energy E; and of the

pre-exponential factor K; are reported in Table 3.1.
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Table 3.1. Kinetic parameters. From: Luyben (2010).

Main reaction R1 Side reaction R2
Pre-exponential factor K; [m3/kmol - s] 2.8 x 107 2.32 x 10°
Activation energy E; [k] /kmol] 104174 146742

As can be noticed in Table 3.1, the activation energy of the undesired reaction is larger than the
one of the main reaction; therefore, low temperatures improves selectivity (Luyben, 2010).
The selectivity can be also enhanced keeping the amount of cumene and propylene low in the
reactive section. This can be achieved operating the plant with a large excess of benzene, but
in order to keep the process economically feasible, after the reactor, the excess must be properly
recovered and recycled.

As regards the thermodynamics, the normal boiling points of benzene, cumene and p-
diisopropylbenzene are 80.1, 152.4 and 209 °C, respectively. Therefore, under the assumption
that the separation of propane and propylene is uneconomical (Luyben, 2010), all the other

separations are fairly easily achievable through standard distillation.

3.2 Flowsheet

Figure 3.1 shows the optimized flowsheet of the industrial plant for the production of cumene
with the process operating conditions and the equipment sizes. As it can be noticed in the
flowsheet, the fresh streams of pure benzene and mixed C3 (propylene and propane) enter the
plant as liquids. The feed ‘Fresh C3° has a flowrate equal to 101.93 kmol/h while its
composition is 95% propylene and 5% propane on a molar basis. The fresh feed of pure
benzene, instead, is equal to 98.78 kmol/h (Luyben, 2010).

The liquid fresh feeds are mixed with a liquid recycle stream (the distillate of the first distillation
column C1) and together are sent to a vaporizer. The saturated gas exits the vaporizer at 210 °C
and 25 bar and then is pre-heated through two heat exchangers. The first heat exchanger, named
‘FEHE’, recovers heat from the stream exiting the reactor while the second heat exchanger
(HX1) raises the temperature of the gaseous stream entering the reactor up to 358°C.

The reactor is a tubular cooled reactor that generates high-pressure steam exploiting the heat
released by the exothermic reactions. The reactor is made of 1500 tubes with a length of 6
meters and filled with a solid catalyst. The coolant steam is assumed to enter the reactor with
the same temperature of the reactants mixture (358°C).

Once left the tubular reactor at 358.5°C, then, the mixture is cooled down to 279°C in the feed-
effluent heat exchanger (FEHE) and then it is sent to a condenser. In the condenser the
temperature is further decreased down to 90°C using cooling water. In the meanwhile, a valve

decreased the pressure of the stream from 25 to 1.75 bar (Luyben, 2010).
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After the condenser the two-phase stream is fed to a flash tank. The task of the flash operation
is to remove the propane which enters continuously the plant in the fresh C3 stream. Since
propane does not react, indeed, if not vented, it would accumulate in the plant.

The liquid exiting the flash drum is then fed to the first distillation column C1. The first
distillation column has 15 stages, an operating pressure of 1.75 bar and a reflux ratio equal to
0.44. Its distillate is mostly benzene (95.2% on a molar basis) and is recycled back to the reactor.
Since the target cumene purity is equal to 99.9% mol, the first distillation column must prevent
benzene from dropping out of the bottom. It is therefore required that the composition of
benzene in the residue is equal to 0.05% mol.

The residue of the first column is then fed into a second distillation column. The task of the
second distillation column is to attain a high purity cumene in the distillate (99.9% mol) and
minimize the loss of cumene in the bottoms.

Moreover, the second column has 20 stages and operates at a pressure equal to 1 bar and with
a reflux ratio of 0.63 (Luyben, 2010).

Fresh C3 S
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Figure 3.1. Optimized flowsheet for the cumene process production proposed by Luyben
(2010). From: Luyben (2010).
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3.2.1 Plantwide control strategy

The plantwide control structure is summarized in Figure 3.2. indicating in the flowsheet all the

controllers that are implemented in the plant.

Fresh C3 Reactor 358.5°C
Vaporizer v HX1 358°¢C [
oyl —g —
R v

g‘-.
<Y

D2
Total Cumene

| Benzene <

OF

Fresh Benzene

Gas Flash Tank

Figure 3.2. Plantwide control structure proposed by Luyben (2010). From: Luyben (2010).

Hereinafter the control loops are listed pointing out the manipulated and the controlled variables
(Luyben, 2010):
1. The flowrate of fresh C3 is controlled acting on the valve stem position;
2. The total benzene flowrate (the fresh benzene plus the recycled) is ratioed to the
flowrate of fresh C3;
3. The level in the vaporizer is controlled through its heat duty;
4. The reactor inlet temperature is controlled manipulating the heat duty of the heat
exchanger HX1;
5. The reactor outlet temperature is controlled manipulating the temperature of the coolant
steam;
6. The pressure of the stream with the reacted mixture is controlled acting on the stem of
the valve located after the FEHE heat exchanger;
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7. The temperature in the flash drum is controlled acting on the heat duty of the condenser
HX2;
The pressure in the flash drum is controlled acting on the flowrate of the vented gases;
The liquid level in the flash drum is controlled acting on the flowrate of the liquid
effluent;

10. The temperature in the 11" stage of the first distillation column is controlled
manipulating the reboiler heat duty;

11. The temperature in the 16 stage of the second distillation column is controlled
manipulating the reboiler heat duty;

12. The reboiler liquid level of both columns is controlled acting on the residues flowrates;

13. The condenser liquid level of both columns is controlled manipulating the distillates
flowrates;

14. Reflux flowrates of both distillation columns are ratioed to the column feed.

3.3 Data acquisition

Digital process signals were generated performing in gPROMS dynamic simulations of a
detailed first principles model of the cumene production plant. The first principles model that
was employed reproduces accurately the design and the control strategy proposed by Luyben
(2010) and was already available inside the Process Systems Enterprise’s libraries.

Once performed the simulations, in order to obtain a dataset, which is as similar as possible to
a real industrial dataset, it was decided to corrupt the virtual process signals provided by
gPROMS adding noise and invalid measurements. In the following sections it is firstly
described the how the dynamic simulations have been carried out and then the rationale through
which the noise and the invalid measurements have been added to the virtual process signals is

overviewed.

3.3.1 Dynamic simulation

The virtual set of process data have been generated in gPROMS simulating a first principles
model that, as it has been previously pointed out (§3.3), accurately reproduces the flowsheet
and the control strategy proposed by Luyben (2010).

Figure 3.3 shows the model of the industrial plant for the production of cumene implemented

in gPROMS simulation interface.
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Cumene plant
Process for the manufacture of cumene

Figure 3.3. First principles model of the industrial plant for the production of cumene
implemented in gPROMS.

In order to obtain information at different operating points, the dynamic simulations were
carried out introducing disturbances in the flowrate, temperature and composition of the fresh
C3 feed. After each disturbance enters the plant, the flowsheet is run without introducing
changes until a new steady-state operating point is attained.
The schedule of the dynamic simulations is listed hereinafter pointing out for each disturbance
the shape of the perturbation and the affected input variable:
1. The flowrate of the fresh C3 feed is increased or decreased by x% with respect to its
nominal value through a rampchange;
2. The temperature of the fresh C3 feed is raised to 45°C through a ramp change;
3. The temperature of the fresh C3 feed is decreased back to its nominal value (25°C)
through a ramp change;
4. The molar fraction of propylene in the fresh C3 feed is decreased to 0.90 through a
stepchange;
5. The molar fraction of propylene in the fresh C3 feed is raised to 0.92 through a

stepchange;
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6. The molar fraction of propylene in the fresh C3 feed is raised to 0.94 through a

stepchange;

7. The molar fraction of propylene in the fresh C3 feed is raised to 0.96 through a

stepchange;

8. The molar fraction of propylene in the fresh C3 feed is raised to 0.98 through a

stepchange.

where with concern to the x value in point 1, 9 different dynamic simulations were carried

varying the magnitude of the first disturbance. In the first simulation the flowrate was left

unchanged (x = 0). In the second set of six simulations the flowrate was increased by 4.5, 8,

10, 12, 15 and 17% with respect of its nominal value, respectively. Finally, in the last two

simulations, the flowrate was decreased respectively by 3 and 5% with respect to its nominal

value. The magnitude of all the perturbations (including the composition stepchanges and the

temperature ramp increases/decreases) have been selected arbitrarily with the purpose to stick

to what it could really happen in an industrial plant. The gPROMS interface through which the

schedule listed above has been implemented is reported in Figure 3.4.

I Flowrate_minus_three_percent (Flowrate_minus_three_percent.) [E=SEcn =
1875 FCEEDULE ~
1880 SEQUENCE
1881 SEQUENCE
1882 CONTINUE FOR 50000
1883 SEQUENCE
1884 WHILE Flowshest.FC_C3.target_value>10 Do
1885 SEQUENCE
1886 REARSSIGN
1887 Flowsheet.FC_C3.target_value := OLD{Flowshest.FC_C3.target_value) - 0.015;
1688 END
1889 CONTINUE FOR 1
1830 END
1891 END
1892 CONTINUE FOR 50000
1833 END
1834 END
1885 SEQUENCE
1826 WHILE Flowsheet.Fresh_C3.5P_H.T<318.15 DO
1887 SEQUENCE
1898 REASSIGN
1893 Flowsheet.Fresh C3.SP_H.T := OLD(Flowsheet.Fresh C3.SP_H.T) + 0.25;
1900 END
1901 CONTINUE FOR 1
1902 END
1903 END
1904 CONTINUE FOR 50000
1905 WHILE Flowsheet.Fresh C3.5P_H.T>298.15 DO
1806 SEQUENCE
1807 REASSTGN
1808 Flowsheet.Fresh C3.5P_H.T := OLD{(Flowsheet.Fresh_C3.SP_H.T)-0.25;
1808 END
1910 CONTINUE FOR 1
1911 END
1912 END
1913 CONTINUE FOR 50000
1914 REASSIGN
1915 Flowsheet.Fresh €3.SP_F w.molar fraction{"PROPYLENE"

1918 Flowsheet.Fresh €3.5P_F w.molar_fraction{"PROPENE")

1917

1918

1818 REASSIGN

1820 Flowshest.Fresh_C3.SE_F_w.molar_fraction("PROPYLENE") :=

1821 Flowshest.Fresh_C3.5P_F_w.molar_fraction("PROPENE")

1822 END

1923 CONTINUE FOR 50000

1924 REASSIGN

1925 Flowshest.Fresh C3.S5P_F w.molar_fraction("®

1928 Flowsheet.Fresh C3.SP_F_w.molar_fraction("?|

1927 END

1928 CONTINUE FOR 50000

1929 REASSIGN

1930 Flowsheet.Fresh C3.SP_F_w.molar_fraction("?|

1831 Flowshest.Fresh C3.5P F w.molar fraction("PROPANE"

1832 END

1833 CONTINUE FOR 50000

1834 REASSIGN

1935 Flowsheet.Fresh_C3.SP_F_w.molar_fraction("2|

1936 Flowsheet.Fresh C3.SP_F_w.molar_fraction("PROPENE"

1937 END

1938 CONTINUE FOR 50000

1939 END

1940 END v
< >

1879:1 |mms| |

Schedule Solution parameters gPROMS language Properties

Figure 3.4. Schedule of the gPROMS dynamic simulation in which the fresh C3 flowrate is

decreased by 3% (x = —3%).
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Furthermore, Figure 3.5 shows the effect of the disturbances on the purity of the cumene that

leaves as distillate the second distillation column.
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Figure 3.5. Cumene molar fraction as a function of time (x = —3%).

The dynamic simulations have been performed setting 120 seconds as reporting interval,
therefore each process variable is sampled every two minutes. Whenever a simulation is
finished, an execution output is displayed in the gPROMS interface. From the execution output
the user has access to the trajectories of all the variables that are taken into account by the
process simulator in the model.

Once all the dynamic simulations ended, from each execution output, a table collecting the
values of 83 process variables was exported and saved as a CSV file. The set of 83 process
variables includes: the reflux ratios of the distillation columns, the heat duties of the condensers
and the of the reboilers and the temperature, pressure, flowrate and composition of some
relevant streams. Examples of relevant streams are the fresh C3 feed, the distillates, the residues

and the feeds of the distillation columns and the reactor inlet and outlet.

3.3.2 Noise and invalid measurement addition

The data collected from the sensors installed in a real chemical plant are inherently corrupted
by measurement noise and missing/invalid readings (the latter usually caused by sensor
malfunctions or miscalibration). Therefore, once exported the virtual data from gPROMS, the
dataset was corrupted on purpose with these sources of error in order to accurately reproduce a

real industrial dataset.
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3.3.2.1 Invalid measurements

The addition of invalid measurements has been performed manually in excel, meaning that the
content of some (randomly selected) cells of the dataset have been deleted and substituted by
the string NaN (acronym for Not a Number).

The procedure is summarized in Figure 3.6 taking into account a generic dataset with 4

variables.

- R
0 04397 2985  -3297 03134 o 04397 2985 3297 03134 0 04397 2985 3297 03134
120 04395 2982 -3301 03135 120 04395 2982 3301 03135 120 04395 2982 3301 03135
9000 04396 2983  -3300 03134 9000 04396 2983 3300 03134 9000  0.43%6 2983  -3300 03134
9120 0.4393 298.2 -3300 0.3130 9120 0.4393 298.2  -3300 0.3130 9120 0.4393 NaN NaN 0.3130
9240 0.4396 298.2 -3300 0.3136 9240 0.4396 298.2 -m 0.3136 9240 0.4396 298.2 HEN 0.3136
9360 0.4396 298.0 -3300 0.3133 9360 0.4396 298.0 -3300 0.3133 9360 0.4396 298.0 -3300 0.3133
9480 0.4394 298.1 -3301 0.3131 9480 0.4394 298.1 -3301 0.3131 9480 0.4394 298.1 -3301 0.3131
9600 04396 2981 -3303 03140 9600  0.439%6  298.1 3303 0.3140 9600 04396  298.1 3303 03140
16120 04400 2980  -3289 03134 16120  0.4400  298.0 3289 0.3134 16120 04400  298.0  -3289 03134
16240 04397 2983  -3301 03131 16240 04397 2983 3301 03131 16240 04397 2983  -3301 03131
16360 04396 2985 -3302 03134 16360 | 04396 2985 | 3302 03134 16360 | NaN NaN NaN = 03134
16480 04395 2980  -3300 03136 16480 04395 ~ 2980  -3300  0.3136 16480 04395  NaN NaN = 03136
16600 0.4397 297.9 -3289 0.3134 16600 0.4397 2979 -3289 0.3134 16600 0.4397 297.9 mﬂ 0.3134
16720 0.4396 298.5 -3299 0.3132 16720 0.4396 298.5 -3299 0.3132 16720 0.43%6 298.5 -3299 0.3132
16840 04395  298.8 -3300 03134 16840 04395  298.8 3300 0.3134 16840 04395 2988  -3300  0.3134
499880 04396  298.5 -3299 03132 499880 04396  298.5 3299 0.3132 499880 0.4396  298.5 3299 03132
450000 04395 2988  -3300 03134 450000 0.4395  298.8 3300 0.3134 450000 0.4395 2988  -3300  0.3134

Figure 3.6. Invalid measurements addition procedure.

3.3.2.2 Measurement noise

In order to add automatically the noise to the whole virtual dataset, a Python™ function was
developed. Once given a dataset, the function corrupts each process signal with noise according

to the following rationale:

random(—1E6,+1E6)
1E6 '

Xi noisea = Xi + k[max(x;) — min(x;)] - (3.5
where x; is the noiseless virtual measurement, k is a parameter that allows to modulate the
amplitude of the fluctuations, max(x;) and min(x;) are respectively the highest and the lowest
values assumed by the process variable x; throughout the simulation and finally the term
random(—1E6,+1E6)/1E6 is a generator of random numbers with six decimal places and

bound between -1 and +1.
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In Figure 3.7 the noise addition procedure is overviewed through a graphical example.
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Figure 3.7. Comparison between the (a) noiseless virtual process signal and the (b) noised

signal generated by the Python™ function (k = 0.1).

200000

Different values of the parameter k have been exploited to generate datasets with different level
of noise. In particular, the values of k which have been used are 0.025, 0.1 and 0.25. Eventually,

the empirical correlations on which the hybrid model of the plant is based on will be developed

starting from the dataset noised with k = 0.1.

The other datasets will instead be used to analyse the effect of the noise of the training and

validation data on the empirical relations obtained through partial least squares regression.

Since the dataset corrupted with noise and invalid measurements is in every way similar to an

actual industrial datasets, the hybrid model generation procedure developed in this Thesis and

described in the next Chapter (§4) is indeed meant to be exploited when the hybrid models have

to be developed directly from actual plant data.
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Hybrid model

This Chapter overviews the procedure followed to develop a steady-state hybrid model of the
industrial plant for the production of cumene, discusses its implementation in the process
simulator gPROMS and evaluates its performances. Firstly, it is described how steady-state
operating points are retrieved from a plant historian through the SSD algorithm developed in
this Thesis. Then it is explained how data reconciliation has been carried out exploiting
gPROMS optimization tool and how the empirical correlations that constitutes the black-box
portion of the hybrid model have been obtained through PLS and ALAMO. Finally, the
implementation of the hybrid model in the process simulator gPROMS is discussed and the

tests carried out to assess the model predictive capabilities are reviewed.

4.1 Hybrid model development

In order to demonstrate the potential of hybrid modelling, as explained in §3, it was decided to
take into account the cumene manufacturing process, generate data in gPROMS with an
accurate first principles model and corrupt the virtual process signals with noise and invalid
measurements (to obtain a dataset as similar as possible to an actual plant historian). The
availability of a fast, robust and accurate first principle model, however, is in conflict with the
concept of hybrid modelling. Indeed, one of the most common scenario in which the grey-box
models are employed involves dealing with chemical plants (or single equipment) in which it
is not economically convenient, computationally fast enough or even not possible at all to fully
map the behaviour of the process through a first principles model. Therefore, once simulated
the historian in gPROMS, it was assumed that it was not possible to model with the first
principles the train of distillation columns. Hence, the task became firstly to develop empirical
correlations to model the behaviour of the separation section and then to integrate the data-
driven elements within the first principles model of the rest of the plant. The assumption is
summarized graphically in Figure 4.1 pointing out with green and red borders the section of the
plant that will be modelled with first principles and the equipment whose behaviour will be

mapped through data-driven elements, respectively.



54 Chapter 4

Grey-box model
White-box model

Black-box model

Stream_analyzer gMLOOT

Figure 4.1. Insight on the structure of the hybrid model of the industrial plant for the
production of cumene.

As can be noticed in Figure 4.1, from the combination of a white and a black-box model, a
hybrid model is generated.
Once available the historian of the chemical plant under investigation, the procedure followed
to develop the grey-box model consisted on the following steps:

1. Steady-state operating points identification;

2. Data reconciliation;

3. Data-driven element development.

Each point listed above will be discussed in detail in the following sections.

4.1.1 Steady-state operating points identification

Once concluded the data generation described in Chapter §3, a simulated plant historian
collecting 33050 observations of 82 key process variables was obtained. However, since the
target was to develop a steady-state model of the process, not all the data were useful and could
be used to generate the data-driven elements. Hence, firstly the windows of time in which the
plant was operating at steady-state were identified so that the data referring to transient states
could be easily discarded. Then, among all the samples collected when the plant was operating
steadily, only a single observation per each steady-state operating point was retained. Dealing
with big data, indeed, not necessarily imply dealing with a lot of meaningful information. In

particular, when more than one observation referring to the same steady-state operating point
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are included into the dataset used to calibrate a model, the ability of the model to capture the
behaviour of the process is not improved.

As described in chapter §2, the steady-state detection algorithm developed in this Thesis carry
out automatically both the identification of the steady-state windows and the selection of the
representative observations (one for each steady-state operating point). The selection of the
representative points was performed identifying and picking the observations located in the
middle of the steady-state intervals. This straightforward rationale ensures that all the samples
collected for further analysis truly refer to steady operations.

The algorithm processed entirely the historian with a running time of 595 seconds (laptop
Lenovo T450 with the processor Intel Core 17-5600U vPro) providing as outcome a dataset that
collects the values of the 82 key process variables in 72 different steady-state operating points.
Before proceeding with the next step of the hybrid model development procedure, a last check
was carried out analysing the set of diagnostic graphs described in §2. Again, no detection

1ssues were discovered.

4.1.2 Data reconciliation

Data reconciliation is a state-of-the art technique that targets to make raw plant data match
energy and mass balances minimizing the weighted squared error sum of the deviations between
measured and estimated values under equality or inequality constraints (Dempf and List, 1998).
Relying on the concept of redundancy (duplicated sensors or algebraic constraints) and on a
process model, the technique corrects the noisy and faulty measurements forcing the
observations to fulfil the first principles physical laws. Carrying out data reconciliation,
therefore, i) avoid the inclusion of corrupted data (outliers), ii) allows to detect sensors
systematic errors and, if needed, iii) serves as an estimator for variables that in the real plant
are not actually measured (Pitarch et al., 2017).

Within the framework of the hybrid model development, data reconciliation was carried out on
the section of the plant that had to be modelled with the data-driven elements. In the cumene
case study, therefore, it was performed on the separation section.

Since no white-box models were assumed to be available for the distillation columns, however,
a proper reconciliation in which the observations are forced to fulfil both the mass and energy
balances could not be performed. Instead, as can be noticed in Figure 4.2, a straightforward
mass balance model was developed (in gPROMS) substituting each distillation column with a
mass balance component splitter. Then, a simplified data reconciliation was performed forcing

the compositions and the molar flowrates to fulfil the mass conservation law.
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Figure 4.2. Mass balance model of the separation section employed to carry out data
reconciliation.

Differently from the molar flowrates and the compositions, the measurements of pressure and
temperature were not included in the analysis (namely were not reconciled) because in the mass
balance model shown in Figure 4.2, the energy balance is not taken into account.

The component splitters through which the separation section is described are predefined
gPROMS models that represent theoretical separation stages. The splitters, in particular,
redistribute each component that is present in their feed among the distillate and the residue
according to the value of the component split fraction. The component split fraction is the
fraction of the inlet flowrate of the component that leaves the splitter in the overhead stream.
Commonly the values of the split fractions of all the components involved in the separation are
entered by the user before running the simulation. In the cumene case study, however (besides
for the mitigation of the samples gross and random errors), data reconciliation was also
exploited as a tool to estimate the split fractions of benzene and cumene in the first distillation
column and the split fractions of cumene and p-diisopropylbenzene in the second distillation
column (in each of the 72 steady-state operating point). The other split fractions, instead, were

set, as summarized in Table 4.1, equal to constant values.

Table 4.1. Assumptions on the values of the split fractions in the mass balance model of the
separation section.

Component First distillation column Second distillation column
Propylene 1 1
Propane 1 1
Benzene Estimated 1
Cumene Estimated Estimated

P-diisopropylbenzene 0 Estimated
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From a mathematical point of view, data reconciliation is a constrained optimization of a NLP
(Nonlinear Programming Problem). In this Thesis, the technique was performed exploiting the
gPROMS optimization tool, which allows to minimize a user defined objective function varying
the values of specific decision variables.

The objective function that has been minimized is defined as follows:

. 24 xicalc _ ximeas
objgyn = Z — ) (4.1)
i=1 ‘
where:
e xf¢ : value of the variable calculated by the model in gPROMS;
o x/®%: value of the variable measured by the sensor;
* J; : standard deviation of the measured value estimated by the SSD algorithm (§2).

The 24 measurements that have been taken into account in the objective function are: the overall
molar flowrate and the component molar fractions of the feed and the distillate of the first
distillation column and the overall molar flowrate and the component molar fractions of the

distillate and the residue of the second distillation column.

5] Mass_balances_separation_section (Cumene plant_Data reconciliation) EE@

Variable | Type Allowable values | Select...

C1 — Split fractions ("Benzene",1) Time-invariant Continuous L]

C1 — Split fractions ("Cumene”, 1) Time-invariant Continuous Delete

C2 — Split fractions ("Cumene”,1) Time-invariant Continuous

C2 — Split fractions ("P-Diiscpropylbenzene”,1) Tirne-invariant Ceontinuous

54 004 — Component molar flowrates ("Benzene") Time-invariant Continuous

54 004 — Component molar flowrates ("Cumene") Time-invariant Continuous

SA_004 — Compone..molar flowrates ("P-Diiscpropylbenzene") Time-invariant Ceontinuous

54 004 — Component molar flowrates ("Propane”) Time-invariant Continuous [¥]

Decision: C1 — Split fractions ("Benzene”,1)

Type Allowable values
(® Time-invariant (® Continuous
Piecewise-constant () Binary (O Integer
Piecewise-linear (") Enumerated O Special Ordered Set 1
Unit
Bounds

Initial guess | 0.93
Fixed |

Lower bound (0.0

Upper bound | 1.0

General Decisions Constraints gPROMS language  Properties

Figure 4.3. gPROMS optimization interface for the selection of the decision variables.
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Furthermore, as can be seen in Figure 4.3, the minimization was carried out by varying the
values of the split fractions of benzene and cumene in the first splitter, the split fraction of
cumene and p-diisopropylbenzene in the second splitter and the molar flowrates of propane,
cumene, benzene and p-diisopropylbenzene in the feed of the first splitter. The molar flowrate
of propylene in the feed of the first splitter is not listed as a decision variable (namely those
variables whose value is allowed to change to minimize the objective function) because it was
a priori assumed constant and equal to zero. The choice to employ as decision variables the
component flowrates rather than the overall flowrate and the molar fractions is meant to ensure
that the sum of the component molar fractions is equal to one. The constraint, indeed, when the
optimization is carried out varying the molar fractions, is not always matched due to numerical

uncertainties.

[ Execution Output (Mass_balances_separation_section_Optimization) o [ (S

~

OPTIMISATION

Optimisation problem Mass_balances_separation_section
Final optimisation status Optimal
Objective function being minimised Flowsheet.Obj_fn

Objective function value 135611
Activity completed on 16 August 2019 - 16:06:53
Contents

= Time Invariant Controls

Time Invariant Controls

Final Value Initial Guess

C1 — Split fractions ("Benzene”, 1) 0.999509 0.950000
C1 — Split fractions ("Cumene”,1) 0.000363576|0.000100000
C2 — Split fractions ("Cumene”,1) 0.999915 0.990000
C2 — Split fractions ("P-Diisopropylbenzene”, 1) 0.00188868 0.0100000
SA_004 — Component molar flowrates ("Benzena™) [kmaol/h] 122.169 99.0000
SA_004 — Component molar flowrates ("Cumene”) [kmol/h] 104.623 82.0000
SA_004 — Component molar flowrates ("P-Diisopropylbenzene”) | [kmol/h] 65.00071 10.0000
SA_004 — Component molar flowrates ("Propaneg™) [kmol/h] 7.30666 5.80000
@ L
< >

Output Topology: Flowsheet Stream tables: Flowsheet Report Properties

Figure 4.4. Optimization execution output.
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In Figure 4.4 it is shown the execution output displayed by the process simulator once the
flowrates and the molar fractions of a single steady-state operating point were reconciled. In
the execution output the initial and final value of the decision variables and the final value of
the objective function are summarized. The final values of the decision variables allow to
minimize the deviations between the measured and the calculated process variables (while
ensuring the fulfilment of the mass balance).

The optimization was carried out for all the 72 different steady-state operating point obtaining
for each of them an estimate of the split fractions and a set of reconciled flowrates and molar

fractions that fulfil the mass balance.

4.1.3 Data-driven element development

The last step required to generate the hybrid model of the plant for the production of cumene
consisted on the development of a data-driven element to model the behaviour of the separation
section. Each distillation column, once again, was approximated with a mass balance
component splitter. This time, though, exploiting the outcomes of the steady-state detection and
of the data reconciliation, empirical correlations were generated with both the PLS regression
and the ALAMO model building methodology to predict the component split fractions. In the
following sections, firstly the general structure of the black-box models of the distillation
columns is described. Then the development of the empirical correlations through PLS and
ALAMO is overviewed.

4.1.3.1 Black-box model of the first distillation column

The first distillation column targets to separate the unreacted benzene and the traces of propane
and propylene that have not been vented off in the flash drum from the main product cumene
and the undesired p-diisopropylbenzene.
The variables that need predicting are:

e the overall molar flowrate of the distillate Fp;

e the component molar fractions in the distillate x; p;

e the overall molar flowrate of the residue Fg;

e the component molar fractions in the residue x; g;.
The process variables that, instead, are supposed to be known in advance (and therefore those
variables that can be fed as inputs to the data-driven element) are:

e the overall molar flowrate of the feed Fp4;

e the component molar fractions in the feed x; rq;

o the temperatures of the feed, the residue and the distillate: Trq, T, and Tpq;

o the pressures of the feed, the residue and the distillate: Ppq, Pg; and Ppq;

e the reflux ratio of the distillation column 7;;

o the heat duties of the condenser and of the reboiler: HC1 and HR1.
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The known and unknown variables are graphically summarized in the flowsheet reported in

Figure 4.5. The variables marked in red are those that have to be predicted.

[FDlvxi,DerDllPDl ]

HC1: Condenser heat duty
HR1: Reboiler heat duty
r1: Reflux ratio

Figure 4.5. Insight on the input and output variables of the black-box model of the first
distillation column.

As previously stated, the target of the column black-box model is to estimate the flowrate and
the composition of both the distillate D1 and the residue R1. Since the column was
approximated with a mass balance component splitter, however, under the assumption that the
feed flowrate and composition are known, the task could be accomplished by estimating the
component split fractions.

Therefore, data-driven correlations for the prediction of the split fractions of cumene and
benzene were developed through ALAMO and PLS regression exploiting the steady-state
operating points dataset generated by the SSD algorithm and partially treated (only the
flowrates and compositions) via data reconciliation.

The general formulation of the empirical correlations for the cumene and benzene split fraction

prediction are expressed as follows:

SFeyny,c1 = f( Tr1, Pr1, Fr1, Xip1, Toa, Ppay Tray Pre, HC, HRl'T'l) ) 4.2)

SFe Hgc1 = f( Tr1, Pp1, Fr1, Xip1, Tp1, Pp1y Tre, Pri, HCL HR1, 7'1) . (4.3)

The explicit formulas depend on the methodology used to develop the correlations (ALAMO

or PLS) and therefore are provided afterwards in the dedicated sections.
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The values of the split fractions of propane, propylene and p-diisopropylbenzene, differently
from those of cumene and benzene, were assumed a priori equal to constant values. The

assumed split fractions are summarized in Table 4.2.

Table 4.2. Assumptions on the values of the split fractions in the first distillation column.

Component Split fraction
Propylene 1
Propane 1
P-diisopropylbenzene 0

4.1.3.2 Black-box model of the second distillation column

The second distillation column targets to separate the main product cumene from the undesired
product. Similarly to the first distillation column the variables that it need predicting are:

e the overall molar flowrate of the distillate Fp,;

e the component molar fractions in the distillate x; p,;

e the overall molar flowrate of the residue Fg,;

e the component molar fractions in the residue x; ;.
Instead, the process variables whose value is assumed to be available are:

e the overall molar flowrate of the feed Fg;

the component molar fractions in the feed x; r;

the temperatures of the feed, the residue and the distillate: Ty, Tr, and Tp,;
e the pressures of the feed, the residue and the distillate: Pgp,, Py, and Pp,;

e the reflux ratio of the distillation column ;

o the heat duties of the condenser and of the reboiler: HC2 and HR2.

The process variables involved in the analysis are graphically visualized in Figure 4.6.

. [FDZ'xi,DZ-TDZrPDZ ]

R2

HC2: Condenser heat duty
HR2: Reboiler heat duty
r2: Reflux ratio

Figure 4.6. Insight on the input and output variables of the black-box model of the second
distillation column.
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In the second distillation column case, the data-driven correlations were developed to predict
the split fractions of cumene and p-diisopropyllbenzene. The general formulation of the

empirical correlations are:

SFCngz,CZ = f( Try, Pra, FFZin,FZJ Tp2, Ppz, Trzs Pro, HC2, HRZ,TZ) , (4.4)

SFC12H18,C2 = f( TFZ; PFZ! FFZin,FZJ TDZJ P]_)z, TRZJ PRZ: HCZ: HRZ; TZ) . (45)

The split fractions of propylene, propane and benzene, instead, as can be noticed in Table 4.3,

were assumed to be constant and equal to one.

Table 4.3. Assumptions on the values of the split fractions in the second distillation column.

Component Split fraction
Propylene 1
Propane 1
Benzene 1

4.1.3.3 Reqgressor matrices and response variables vectors

Since the regressors matrices and the response variables vectors through which the empirical
correlation were developed are independent from the model building methodology that is being
employed (either ALAMO or PLS regression), before discussing the outcomes of the model
building techniques, it is convenient to firstly present the data on which the data-driven element
were calibrated.

Table 4.4 reports an extract of the matrix of the regressors that have been exploited to predict

the split fraction of benzene and cumene in the first distillation column.

Table 4.4. Extract of the matrix of the regressors used to predict the split fractions in the
first distillation column. The unit of measure of temperature is [°C], the unit of measure of
pressure is [bar] and the unit of measure of the flowrates is [kmol/h]. The molar fractions,
instead, are dimensionless.

Index ™ PR S XEuart XGHoR  XCoHpF1  XeggHiFl ™ | ™ PR ri™  HC1™ HR1™
1 363.15 1781  203.1 0.03019 051669  0.43094  0.02218  337.50 1.829 45223 1925 0.440 -1498 1990
2 363.14 1781  203.0 0.03017 051659 043107  0.02217 33740 1.829 45222 1925 0440 -1499 1990
3 363.15 1781  203.0 0.03021 051652 043104  0.02224 33744 1.829 45223 1926 0440 -1498 1989
4 363.15 1780  198.8  0.02969  0.52963  0.42301  0.01767  338.56 1.829 451.84 1922 0430 -1485 1947
5 363.15  1.780 2005 0.02987  0.52402 042700  0.01912  338.04 1.829 451.96 1.923 0435 -1489 1965
6 363.15 1781 203.8  0.03023 0.51431 043202  0.02344 33722 1.829 45232 1927 0442 -1501 1999
7 363.15 1781 2054  0.03041 050993 043369  0.02596  336.85 1.829 45253 1928 0445 -1506 2016
8 363.15 1779 1969 0.03016 051706  0.43033  0.02246 33744 1.829 45210 1919 0440 -1453 1930
9 363.15  1.779  197.0  0.03018 0.51696 043031  0.02255 33741 1.829 45210 1919 0440 -1453 1929
10 363.15 1779 1969 0.03012  0.51695 043026  0.02267 33747 1.828 45211 1919 0440 -1453 1931
72 363.12 1,792 2369 0.03002 051922 042947  0.02129  337.67 1.831 453.06 1964 0438 -1752 2333
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Table 4.5, instead, reports an extract of the matrix of the regressors that have been exploited to

predict the split fraction of cumene and p-diisopropylbenzene in the second distillation column.

Table 4.5. Extract of the matrix of the regressors used to predict the split fractions in the
second distillation column. The unit of measure of temperature is [°C], the unit of measure
of pressure is [bar] and the unit of measure of the flowrates is [kmol/h]. The molar fractions,
instead, are dimensionless.

Index ™ PB F5 XRuor2  XeHpF2  XegHiF2 ot PR g | r2™  HC2™  HR2™
0 42954 1.072 920  0.00050  0.95055 0.04895  424.97 1.073 1769 1127 0.630  -1473 2743
1 42955 1.072 920  0.00050  0.95059 0.04891 42497 1073 1769 1127  0.630  -1475 2744
2 42956 1.072 920  0.00050  0.95045 0.04905  424.97 1.073 1769 1127  0.630  -1474 2750
3 42896  1.066  87.6  0.00048  0.95942 0.04010 42500 1.072 1770 1118  0.624  -1413 2344
4 42918 1.069  89.5  0.00049  0.95666 0.04285 42498 1.073 1770 1122 0.626  -1440 2498
5 42943 1071 912 0.00050  0.95278 0.04672 42497 1.073 1769 1126  0.629  -1463 2665
6 42967 1074 929  0.00050  0.94805 0.05145 42497 1.073 1769  1.129  0.632  -1486 2843
7 42996 1075 944  0.00051  0.94301 0.05648 42496 1.073 1768  1.132  0.635  -1504 3053
8 42939 1.067 892  0.00049  0.94992 0.04959 42499 1.072 1770 1121  0.630  -1430 2686
9 42941 1067 892  0.00049  0.94971 0.04980  424.99 1.072 1770  1.120  0.630  -1430 2684

72 430.88  1.104  110.8  0.00054  0.94534 0.05412 42495 1.075 1763 1172 0.634  -1772 3492

The measurements with the apex ‘R’ are those which have been reconciled while the
measurements with the apex ‘m’ are picked directly from the outcome of the steady-state
detection procedure (namely the dataset collecting the information of the 82 key process
variables in 72 different steady-state operating points).

Furthermore, Table 4.4 does not display the column referring to the molar fraction of propylene,
while Table 4.5 omits both the values of the molar fractions of propane and propylene. These
columns were removed from the matrices of the regressors because, as a consequence of the
assumptions taken while performing data reconciliation (the assumptions on the split fraction
and on the composition of the feed of the first distillation column), the molar fraction of
propylene in the feed of the first distillation column and the molar fractions of propane and
propylene in the feed of the second distillation column are constant and equal to zero in all the
72 steady-state operating points.

Table 4.6 reports an extract of the vectors collecting the values of the response variables: the
split fractions of cumene and benzene in the first distillation column and the split fractions of

cumene and p-diisopropylbenzene in the second distillation column.
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Table 4.6. Extract of the response variables vectors: the split fractions of (a) benzene and
(b) cumene in the first distillation column and the split fractions of (c) cumene and (d)
p-diisopropylbenzene in the second distillation column. The split fractions are dimensionless
[-]-
Index SF&y, 1 Index SF&yu, 1 Index SF&y , Index SFE,u.c2
1 0.9995607 1 0.0003988 1 0.9999623 1 0.0090037
2 0.9995611 2 0.0003999 2 0.9999625 2 0.0092133
3 0.9995604 3 0.0003989 3 0.9999625 3 0.0092347
4 0.9995983 4 0.0004566 4 0.9999747 4 0.0296009
5 0.9995830 5 0.0004312 5 0.9999701 5 0.0161727
6 0.9995693 6 0.0004095 6 0.9999650 6 0.0106362
7 0.9995555 7 0.0003905 7 0.9999596 7 0.0081569
8 0.9995407 8 0.0003701 8 0.9999536 8 0.0064097
9 0.9995662 9 0.0004013 9 0.9999683 9 0.0197420
10 0.9995658 10 0.0004007 10 0.9999682 10 0.0189934
72 0.9995143 72 0.0003627 72 0.9999158 72 0.0018817
(a) (b) () (d)

The values of the split fractions which are displayed in Table 4.6 are those that have been

estimated performing data reconciliation.

4.1.3.4 Data-driven element for the estimation of the benzene split fraction in the first

distillation column obtained via PLS regression

Once the data of Table 4.4 and the vector (a) of Table 4.6 were loaded in Python™, a PLS

regression along with a 5-fold cross validation were performed through the scikit-learn package.

The outcome of the analysis is summarized in Table 4.7.

Table 4.7. Performances of the data-driven model developed for the estimation of the

benzene split fraction.

Number of PC RMSECYV x10? Q? R?
1 4.0753 0.9799 0.9839
2 3.1615 0.9882 0.9903
3 2.8895 0.9903 0.9931
4 2.6408 0.9922 0.9940
5 2.4798 0.9932 0.9947
6 2.4406 0.9934 0.9953
7 2.4627 0.9933 0.9955
8 2.5411 0.9928 0.9957
9 2.5460 0.9928 0.9957
10 2.5747 0.9926 0.9957
11 2.6625 0.9921 0.9958
12 2.6719 0.9920 0.9958
13 2.6823 0.9920 0.9958
14 2.7334 0.9916 0.9958
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As can be noticed in Table 4.7, the model that achieve the lowest RMSECV and the highest
predictive relevance Q2 is the one which employs six PCs. The influence of the number of PCs

on the model predictive capabilities is graphically visualized in the validation curve reported in

Figure 4.7.
Validation curve
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Figure 4.7. Validation curve of the PLS regression model developed for the estimation of the
benzene split fraction in the first distillation column.

In Figure 4.7. the validation and the training score (Q? and R?, respectively) are plotted as a
function of the number of PCs taken into account in the model. As stated in §2.2.5, the most
effective model is achieved in correspondence of the maximum of the validation score. Indeed,
as can be noticed in Figure 4.7, despite the training score remains very close to unity, when
more than six PCs are taken into account in the model, the predictive relevance Q? start
decreasing and the model start overfitting the calibration data. Since performing cross
validation implies estimating the scores five different times (one for each fold), the calculated
metrics present a certain degree of uncertainty. Hence, a standard deviation band is shown
alongside the curves, quantifying the degree of uncertainty of each score. The standard

deviation (std) has been calculated as follows:

2
Z?’:1(ypredicted - YObse‘rved) (4.5)
N )

where N is the total number of observation (namely 72, the number of steady-state operating

points).
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Once the optimal latent variables subspace dimension has been determined, a learning curve
was plotted to investigate the relationship between the training set size and the metrics Q2 and

R? (namely the validation and training score, respectively).

Learning curve
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0.98
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0.88 T T T T T
10 20 30 40 50

Training examples

Figure 4.8. Learning curve of the PLS regression model for the estimation of the benzene
split fraction in the first distillation column.

The learning curve allows to assess the capability of the model to achieve an effective bias-
variance trade-off. Indeed, when the validation score is much smaller than the training score for
a given number of training examples, the model suffers from high variance and therefore is
prone to overfit the data. When instead both metrics converge to a score, which is much smaller
than one and does not improve with the addition of more training examples, the model suffers
from high bias and therefore tends to underfit the calibration dataset. Since the number of PCs
that lead to the most effective bias-variance trade-off has been already chosen according to the
RMSECV, the learning curve should instead be employed to assess how the model could benefit
from an increase of the size of the training set. A model would benefit from the addition of
more training examples when the gap between the validation and the training curve, despite
showing the tendency to decrease, is still noticeable in correspondence of the maximum number
of training instances.

In the case of the PLS regression model for the estimation of the benzene split fraction, as can
be noticed in Figure 4.8, the validation and the training curves converge rapidly to a point of
stability with a minimal gap between the two scores (both very close to one), therefore the

model would not benefit from the addition of more training examples.
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The empirical correlation for the split fraction prediction obtained through PLS regression is

defined as follows:

O‘ppffi

— _R
Fpy — F;’f) +1.23%10°6 (xchg,n xchS,n)

Tpy — T Ppy — P
SFeon,c1 = 0.999555953 — 2.88 x 1077 (%) +3.05%x 1077 (u)
T

O,R
XC3Hg,F1

— xR — xR
XCgHg,F1 xcsHé,m) 756 x10-6 (xcgylz,n ngle,Fl)

O,R O,R
CeHe, F1 CoHq2,F1

O, R Orm
XC12H1gF1 Tp1

PD1‘@>_305X10_6<TR1_m)

O—p[TJV; O-T}Z‘;fi

R Tm
—9.67 x 1077 (xc“”“"“ _ xc“”“*'“) —1.04x 106 (ﬂ) (4.6)

Pgy — P rl—rim
KR ’“) —4.64x107° <7)
o

O,qm

HC1—-HC1™ HR1 — HR1™
+187%x107|——— | -3.04 x 1078 — | ,

Opcim OHR1m

where T, B, FR, xR , 1™ HC1™, HR1™, Orm, Tpm, Opmn, TR, Opym, Opcym and o g m are
the averages and the standard deviations of the columns of the regressors matrix reported in
Table 4.4.

Finally, a graphical evaluation of the model predictive capabilities is provided in both Figure

4.9 and Figure 4.10.
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Figure 4.9. Observed and predicted values of the benzene split fraction in the first distillation
column as a function of the steady-state operating point.
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Figure 4.10. Predicted vs. observed values of the benzene split fraction in the first distillation
column.

In Figure 4.9 the predicted and observed split fractions are compared pointing out the steady-
state operating point they refer to, while in Figure 4.9 they are displayed ones against each other
together with the y = x line. Since all the points in Figure 4.10 are located near the y = x line,

the quality of the model predictions is ensured.

4.1.3.5 Data-driven element for the estimation of the cumene split fraction in the first
distillation column obtained via PLS regression

Similarly to §4.1.3.4, a PLS regression (along with a 5-fold cross validation) was carried out in
Python™ (through the scikit-learn package) taking into account the data of Table 4.4 and of
vector (b) of Table 4.6. The results of the analysis are reported in Table 4.8.

Table 4.8. Performance of the data-driven model developed for the estimation of the cumene
split fraction.

Number of PC RMSECYV x10? Q? R?
1 6.0028 0.9493 0.9732
2 2.2496 0.9941 0.9961
3 2.1498 0.9947 0.9966
4 2.0977 0.9947 0.9969
5 2.1076 0.9945 0.9971
6 1.9681 0.9951 0.9976
7 1.9820 0.9950 0.9978
8 2.0037 0.9950 0.9979
9 2.0329 0.9949 0.9980
10 2.0506 0.9950 0.9980
11 2.0153 0.9950 0.9980
12 2.0208 0.9950 0.9980
13 2.0294 0.9950 0.9980
14 2.0443 0.9949 0.9980
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As can be noticed from Table 4.8, the model with the lowest RMSECV and the highest Q2 is
the one that takes into account six PCs. The influence of the number of PCs on the model

predictive capabilities is graphically visualized in the validation curve reported in Figure 4.11.
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Figure 4.11. Validation curve of the PLS regression model for the estimation of the cumene
split fraction in the first distillation column.

Figure 4.11. displays the values of the Q2 and of the R? as a function of the number of PCs
employed in the model. Differently from the benzene split fraction case, the decrease of the Q2
experienced when more than six PCs are accounted is so small that the phenomenon of the
overfitting cannot be appreciated in the validation curve. This behaviour is likely due to the
fact that noise has been added artificially to the virtual dataset generated performing dynamic
simulations in gPROMS. As will be clarified in Appendix C, if the value of the parameter k
that modulates the amplitude of the fluctuations increases, the resulting models suffer more
from overfitting when the number of PCs is larger than the optimal one.

Once the optimal latent variables subspace dimension has been determined, a learning curve
was plotted to investigate the relationship between the training set size and the metrics Q2 and
R?. As can be noticed in Figure 4.12, similarly to the benzene split fraction case, the validation
and the training curves plateau rapidly to a point of stability with a tiny gap between the two
scores (both very close to one), therefore the model does not require the addition of more

training instances.
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Learning curve
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Figure 4.12. Learning curve of the PLS regression model developed for the estimation of the
cumene split fraction in the first distillation column.

The empirical correlation for the split fraction prediction obtained through PLS regression is

defined as follows:
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where T, P™, FR le],

are the averages and the standard deviations of the columns of the regressors matrix reported in
Table 4.4.

Tlm, HClm, HR].m, O-T]m, O-P}n’ O-F]','n, O-xgej, O'rlm, O'HClm al’ld O-Hle
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At last, a visual assessment of the model predictive capabilities is provided in Figure 4.13 and
Figure 4.14.
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Figure 4.13. Observed and predicted values of the cumene split fraction in the first
distillation column as a function of the steady-state operating point.
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Figure 4.14. Predicted vs. observed values of the cumene split fraction in the first distillation
column.

Since all the predicted/observed pairs lie close the y = x line, the model is able to provide
accurate estimations.
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4.1.3.6 Data-driven element for the estimation of the cumene split fraction in the
second distillation column obtained via PLS regression
Once loaded in Python™ the data stored in Table 4.5 and in vector (c) of Table 4.6, with the

help of the scikit-learn package, a PLS regression and a 5-fold cross validation were performed.

The results of the analysis are collected in Table 4.9.

Table 4.9. Performance of the data-driven model developed for the estimation of the cumene

split fraction.
Number of PC RMSECYV x10? Q? R’
1 3.1046 0.9765 0.9847
2 2.2297 0.9884 0.9920
3 1.4495 0.9952 0.9965
4 1.1809 0.9968 0.9977
5 1.1279 0.9971 0.9980
6 0.9320 0.9980 0.9986
7 0.9346 0.9981 0.9987
8 0.9488 0.9980 0.9988
9 0.9718 0.9979 0.9988
10 0.9723 0.9979 0.9988
11 0.9768 0.9979 0.9988
12 0.9765 0.9979 0.9988
13 0.9765 0.9979 0.9988

As can be noticed in Table 4.9, the model with the lowest RMSECV employs six PCs. The
model validation curve is reported in Figure 4.15.

Validation curve

1.000 ~

0.995 4

0.990

Score

0.985 +

0.980

0.975
—8— Training score
—8— Validation score

0.970 T T T T T T
2 4 6 8 10 12

Number of Components

Figure 4.15. Validation curve of the PLS regression model developed for the estimation of
the cumene split fraction in the second distillation column.

The overfitting arises when more than six PCs are taken into account, but, once again, as in the

previous case (§4.1.3.5), it can be barely noticed in Figure 4.15.
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The learning curve of the model is reported in figure 4.16.
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Figure 4.16. Learning curve of the PLS regression model developed for the estimation of the
cumene split fraction in the second distillation column.

As can be noticed in Figure 4.16, the validation and a training curves converge steeply to a
point of stability with a tiny gap between the two scores (both very close to one), therefore no
more training instances are needed to calibrate the model.

The empirical correlation for the split fraction prediction obtained through PLS regression is

defined as follows:
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where T, P™, FR le],

are the averages and the standard deviations of the columns of the regressors matrix reported in
Table 4.5.
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Finally, Figure 4.17 and Figure 4.18 provide a graphical evaluation of the model predictive

performances.
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Figure 4.17. Observed and predicted values of the cumene split fraction in the second
distillation column as a function of the steady-state operating point.
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Figure 4.18. Predicted vs. observed values of the cumene split fraction in the second
distillation column.

As in previous cases, since the trajectories in Figure 4.17 are very close to each other and all
the points in Figure 4.18 are located in the proximity of the y = x line, the quality of the model

predictions is guaranteed.
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4.1.3.7 Data-driven element for the estimation of the p-diisopropylbenzene split
fraction in the second distillation column obtained via PLS regression
After loading the data of Table 4.5 and of the vector (d) of Table 4.6 in Python™, a PLS

regression along with a 5-fold cross validation were carried out exploiting the scikit-learn

package.
The outcome of the study is summarized in Table 4.10.

Table 4.10. Performance of the data-driven model developed for the estimation of the
p-diisopropylbenzene split fraction.

Number of PC RMSECYV x10* Q? R’
1 3.7181 0.3824 0.5207
2 1.3493 0.8111 0.9350
3 0.5837 0.9771 0.9915
4 0.5818 0.9768 0.9917
5 0.5817 0.9764 0.9921
6 0.5655 0.9769 0.9926
7 0.5661 0.9771 0.9927
8 0.5672 0.9766 0.9928
9 0.5668 0.9767 0.9928
10 0.5695 0.9763 0.9928
11 0.5697 0.9763 0.9928
12 0.5696 0.9763 0.9928
13 0.5696 0.9763 0.9928

As can be noticed in Table 4.10, the model with the lowest RMSECV employs six PCs. Since
the order of magnitude of the RMSECV is remarkably greater than in previous cases, the split
fraction of p-diisopropylbenzene is by far the most difficult to model. The model validation

curve is reported in Figure 4.19.
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Figure 4.19. Validation curve of the PLS regression model developed for the estimation of
the p-diisopropylbenzene split fraction in the second distillation column.
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The learning curve of the model, instead, is reported in figure 4.20.
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Figure 4.20. Learning curve of the PLS regression model developed for the estimation of the
p-diisopropylbenzene split fraction in the second distillation column.

Despite the higher values of the RMSECV, similarly to the previous cases, the model would not
benefit from the addition of more training examples because, as can be noticed in Figure 4.20,
the validation and the training curves converge rapidly to a point of stability with a small gap
between the two scores. In this case, however, the scores are not as close to one, indicating once
again that the models calibrated with the information stored in Table 4.5 struggle the most when
predicting the p-diisopropylenbenzene split fraction.

The empirical correlation for the split fraction prediction obtained through PLS regression is
defined as follows:
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where T™, B™, ER, x&, r2™, HC2™, HR2™, Trm, Opm, Opm, O4R , Orgm, Opcam and oygom

are the averages and the standard deviations of the columns of the regressors matrix reported in

Table 4.5.

Finally, the model performances are visualized graphically in Figure 4.21 and Figure 4.22.
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Figure 4.21. Observed and predicted values of the p-diisopropylbenzene split fraction in the
second distillation column as a function of the steady-state operating point.
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Figure 4.22. Predicted vs. observed values of the p-diisopropylbenzene split fraction in the
second distillation column.
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As can be seen in Figure 4.21 and 4.22, the trajectories are not perfectly close to each other (in
particular in the last ten steady-state operating points) and the predicted/observed pairs do not
lie exactly on the y = x line as in benzene and cumene cases. Nonetheless, the empirical
correlation is able to capture the overall trend of the observed values with a good level of
accuracy and the predicted/observed pairs of Figure 4.22 do not depart excessively from the

y = x line. Therefore, the overall performance of the model is still satisfactory.

4.1.3.8 Data-driven elements built with the ALAMO model building methodology
Once the data stored in Table 4.4, Table 4.5 and Table 4.6 were loaded in Python™, the function

implementing the ALAMO model building methodology was recursively ran with the aim to

find the empirical correlations for the split fractions prediction. The ALAMO approach involves
at first the definition of a set of non-linear transformations of the input variables (§2.2.2). In
this Thesis, in particular, the set of basis functions consisted of polynomial and multinomial
terms (no exponential or logarithmic terms were employed instead). The values of exponents o

and o4, that have been taken into account are summarized in Table 4.11.

4.11. Values of the exponents of the polynomial and of the multinomial terms that have been

taken into account throughout the development of the empirical correlations.

o old
SFcongc1 +1 +1
SFeony,c1 +1,42 +1,+2
SFeohy,c2 +1 +1
SFeohy,c2 +1,+2,+3 +1,4+2,+3

Thus, for instance, when developing the data-driven element for the benzene split fraction
prediction (SF¢ p, c1) the ALAMO algorithm was forced to identify the best subset of bases
among a set of multinomial and polynomials with either exponent +1 or -1 (e.g. x;, x; 1, XiXj,
-1
Xj
correlation for the estimation of the p-diisopropylbenzene (SF¢,p,, c2), an extended starting

x]-_l). When the model building methodology was exploited to identify the empirical

basis functions set including also polynomials and multinomial with exponent +2 and +3
(namely x7, x7, x7x?, x7x) was employed.
The empirical correlations for the split fractions prediction built with the ALAMO approach

are defined as follows
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As can be noticed in the equations (4.10), (4.11), (4.12) and (4.13), the empirical correlations
developed with ALAMO usually employ a much smaller number of terms with respect to the
data-driven elements built with PLS (which consist on a linear regression exploiting all the
process variables stored in the regressors matrices).

The performances of the correlations for the prediction of the split fractions of benzene, cumene
and p-diisopropylbenzene are firstly assessed in Figure 4.23, 4.24, 4.25 and 4.26 comparing the
predicted and observed values along with the corresponding steady-state operating point. Then,
in Figure 4.27, 4.28, 4.29 and 4.30 the predicted and observed values of the benzene, cumene
and p-diisopropylbenzene split fractions are directly displayed ones against each other together

with the y = x line.
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Figure 4.23. Observed and predicted values of the benzene split fraction in the first
distillation column as a function of the steady-state operating point.
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Figure 4.24. Observed and predicted values of the cumene split fraction in the first
distillation column as a function of the steady-state operating point.
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Figure 4.25. Observed and predicted values of the cumene split fraction in the second
distillation column as a function of the steady-state operating point.
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Figure 4.26. Observed and predicted values of the p-diisopropylbenzene split fraction in the
second distillation column as a function of the steady-state operating point.
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Figure 4.27. Predicted vs. observed values of the benzene split fraction in the first distillation

column.
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Figure 4.28. Predicted vs. observed values of the cumene split fraction in the first distillation

column.
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Figure 4.28. Predicted vs. observed values of the cumene split fraction in the second
distillation column.
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Figure 4.30. Predicted vs. observed values of the p-diisopropylbenzene split fraction in the
second distillation column.
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As can be seen in Figure 4.23, 4.24 and 4.25, the trajectories of the predicted and observed
values are very close to each other in all the 72 steady-state operating points, therefore, with
what concerns the prediction of the cumene and benzene split fractions, the performances of
the empirical correlations developed with ALAMO are as satisfactory as those of the
correlations built with PLS regression.

However, note that since with respect the pairs obtained with the PLS model, the
predicted/observed pairs of Figure 4.30 lie consistently closer to the y = x line, the ALAMO
approach provides a more accurate data-driven element for the prediction of the p-

diisopropylbenzene split fraction.

4.1.3.9 Final remarks on the data-driven elements development

In the last step of the hybrid model generation procedure a set of data-driven elements were
developed to model the behaviour of the separation section. With both the ALAMO approach
and the PLS regression, in particular, empirical correlations were built to predict the values of
the split fractions of benzene and cumene in the first distillation column and the values of the
split fractions of cumene and p-diisopropylbenzene in the second distillation column. Despite
employing a lower number of inputs, the data-driven models built with the ALAMO
methodology proved to be able to provide predictions which are as accurate as (or in the case
of the split fraction of p-diisopropylbenzene even more accurate than) the predictions of the
models developed through PLS regression. Therefore, in the gPROMS implementation of the
hybrid model of the plant for the production of cumene, it was decided to exploit the empirical
correlations built with the ALAMO methodology.

4.2 Hybrid model implementation in gPROMS

Once have been developed the empirical correlations needed to model the behaviour of the
separation section, a steady-state hybrid model of the industrial plant for the production of
cumene was implemented in gPROMS combining the black-box model of the train of
distillation columns with the first principles models of the rest of the equipment. In the
following sections, firstly it is discussed how the empirical correlations were integrated in the
gPROMS model. Then, the tests which were carried out to assess the hybrid model predictive

capabilities are reviewed.
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4.2.1 Data based mass balance component splitter

In Figure 4.31 it is reported the graphical representation of the hybrid model as displayed in the
gPROMS interface.

Cumene plant
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Figure 4.31. Hybrid model of the plant for the production of cumene (gPROMS interface).

As can be noticed in Figure 4.31 and Figure 4.32, the separation section is modelled with two
data based mass balance component splitter. The gPROMS model ‘data based mass balance
component splitter’ is a particular type of component splitter that allows to define the split

fractions as a function of some input variables and parameters.
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Figure 4.32. Insight on the separation section of the hybrid model of the plant for the
production of cumene.
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In order to overview the functionalities of the data based model, the first component splitter

(named C1_hybrid in Figure 4.31) is

taken as an example.

' C5_specify002 (Component_splitter_mass_balance_data_based_gML)

Main
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Connections
Murnerics
Data-driven model (Configuration)
Data-driven model (Inputs)
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Data-driven model (Model quality)

Stream specification | All streams except one (Last stream)

COutlet specification | Split fractions

Specify split fractions for all streams apart from the last stream

Split fractions (O Uniform for entire array (@) Per element

cs — Outlet stream

PROPYLENE
PROPANE
BEMZENE
CUMENE
P-DIISOPROPYLBENZEME 0

cs — Componenks

Cancel Reset all

Figure 4.33. Main tab of the first data based component splitter.

In the ‘main’ tab of the model, as can be noticed in Figure 4.33, the user is required to specify

a priori the values of those split fraction which, instead of being estimated through an empirical

correlation, will remain constant throughout the simulation. Indeed, consistently with the

assumptions summarized in table 4.2, the values of the split fractions of propylene and propane

were set equal to 1 while the split fraction of p-diisopropylbenzene was set equal to zero.
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Figure 4.34. Input from stream tab of the first data based component splitter.
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The ‘input from streams’ tab points out those inputs that are calculated in the previous section
of the model, while the ‘parameters’ tab summarizes the process variables the user is required
to assign a value to. In the case of the first component splitter of the separation section, as can
be noticed in Figure 4.34 and 4.35, the model updates autonomously the values of the overall
molar flowrate and of the composition of the feed, while temperatures and pressures of feed,

distillate and residue as well as the reflux ratio must be specified by the user.

. CS_specify002 (Component_splitter_mass_balance_data_based_gML) x
Main Input seurce | From data based model
Advanced
. Input values Inlet Temperature col 1
Connections Inlet Pressure col 1 1.7808127
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CQutlet_2 Pressure col 1 1.9256616
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Data-driven model (Parameters)
Data-driven model (Qutputs)
Data-driven model (Outputs from streams)

Data-driven model (Model quality)

Cancel Reset all

Figure 4.35. Parameters tab of the first data based component splitter.

Finally, in the ‘output from stream’ tab, the variables estimated by the data-driven element are
indicated. The first component splitter, in particular, as can be seen in the bottom right of Figure

4.36, provides a prediction for the benzene and cumene split fractions.

. CS_specify002 (Component_splitter_mass_balance_data_based_gML) *
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Cancel Reset all

Figure 4.36. Outputs tab of the first data based component splitter.
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The equation of the empirical correlations employed for the split fraction prediction (equation
4.10 and 4.11) are not specified directly in the data based splitter but, as can be seen in Figure

4.37, are defined in an external custom model.

1 DataBasedModel_custom_calc_spec_data_based_gML (Cumene plant_Hybrid_model) EE‘E
1 prravETER ~
2 input_variables A5 ORDERED SET
3 output_variables LS ORDERED SET
4 use_warnings AS INTEGER DEFAULT 1
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6 no_constraints A5 INTEGER DEFAULT 0
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10 v A3 ARRAY {output_variables) OF no_type_gML
1l warning_status LS5 RARRAY (use_warnings) OF no_type gML
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Figure 4.37. Parameters tab of the first data based component splitter.

Once the correlations are defined, the external custom model is connected with the data based

mass balance component splitter in the ‘configuration’ tab.

4.2.2 Hybrid model performance assessment

Since an accurate and robust first principles model of the industrial plant for the production of
cumene was available (and was already implemented in gPROMS)), it was decided to assess the
predictive capabilities of the hybrid model testing its outcomes against the predictions of the
first principles model.

Hence, in order to collect information about some steady-state operating points that were not
employed to calibrate the data-driven element of the hybrid model, four new dynamic
simulations (of the first principles model) were carried out in gPROMS introducing
disturbances which are different from the ones listed in §4.1.3.3 In particular, in the first
simulation the flowrate of fresh C3 feed was decreased by 4% with respect to its nominal value
through a rampchange; in the second simulation the flowrate of fresh C3 feed was increased by
6% with respect to its nominal value through a rampchange; in the third simulation the molar
fraction of propylene in the fresh C3 feed was decreased to 0.93 through a stepchange; and
finally, in the fourth simulation, the flowrate of fresh C3 feed was increased by 9% with respect

to its nominal value through a rampchange and the molar fraction of propylene in fresh C3 feed
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was decreased to 0.93 through a stepchange. In all four dynamic simulations, after the last
disturbance, the flowsheet was allowed to run until a new steady-state was attained. Then, the
values of the process variables in the last sampling instant were saved for a posterior
comparison. In the meanwhile, the same steady-state operating points were simulated with the
hybrid model.

The reference variables that were taken into account for the prediction comparison are the five
component molar flowrates in the main product stream (namely the distillate of the second
distillation column). The values estimated by the first principles and by the hybrid models are
summarized in Table 4.11 and Table 4.12, respectively.

Table 4.11. First principles model predictions.

Steady-state Feanen2 Feangn2 Fegnen2 Feony, 2 Fe,oH.02
operating point [kmol/h] [kmol/h] [kmol/h] [kmol/h] [kmol/h]
1 6.57x102* 1.47x101 0.04352 83.7987 0.12936

2 1.16x10% 1.71x10M 0.04990 92.9856 0.02047

3 2.43x10% 1.48x101! 0.04457 86.2514 0.05249

4 0.0 1.81x101! 0.05226 95.9787 0.01645

Table 4.12. Hybrid model predictions.

Steady-state Feang 2 Feang 2 Feghg 2 Feony, 2 Fe oH.02
operating point [kmol/h] [kmol/h] [kmol/h] [kmol/h] [kmol/h]
1 0.0 0.0 0.04356 83.7988 0.13389

2 0.0 0.0 0.04989 92.9858 0.01987

3 0.0 0.0 0.04455 86.2511 0.05474

4 0.0 0.0 0.05224 95.9787 0.01566

As can be noticed in Table 4.12 and 4.13, the hybrid model estimations of the benzene and
cumene molar flowrates match almost perfectly with the values computed by the first principles
model. In the case of the p-diisopropylbenzene, instead, the molar flowrate calculated by the
hybrid model provides a satisfactory approximation of the value calculated by the first
principles model, but the prediction is not accurate as in the benzene and cumene cases.

The performances of the hybrid model were then further evaluated graphically in Figure 4.38,
4.39 and 4.40 generating some predicted vs. observed plots. Since the values calculated by the
first principles model are assumed to be the correct ones, in the plots they are considered as the

observed values, while the hybrid model estimations are considered as the predicted values.
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Figure 4.38. Predicted vs. observed benzene molar flowrate.
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Figure 4.39. Predicted vs. observed cumene molar flowrate.
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As can be noticed in Figure 4.38 and 4.39, since the predicted/observed pairs lie almost
perfectly on the y = x axis, the hybrid model is able to provide extremely accurate estimations
of the benzene and cumene molar flowrates. In the case of the p-diisopropylbenzene, the
predicted/observed pairs are still located close to the y = x line, indicating a satisfactory

predictive capability, but the accuracy of the estimation is not as remarkable as in the benzene
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Figure 4.40. Predicted vs. observed p-diisopropylbenzene molar flowrate.

and cumene case. The difference in the accuracy of the predictions falls back on the quality of

the empirical correlations developed for the split fractions prediction. As shown in §4.1.3.7 and
§4.1.3.8, the p-diisopropylbenzene split fraction proved to be the split fraction that the data-

driven model struggled the most to predict.






Conclusions

The aim of this Thesis was to demonstrate the potential of hybrid modelling. For this purpose,
the industrial process for the production of cumene was taken into account as a case study and,
under the assumption that the separation section could not be modelled through first principles,
a hybrid model of the plant was developed and implemented in gPROMS.

In order to reach these goals, the project was organized as follows.

First, a virtual plant historian was generated in gPROMS simulating in dynamic mode a detailed
first principles model of the process which was already available within the Process Systems
Enterprise libraries. Then, the historian was corrupted on purpose with noise and invalid
measurements in Excel and Python™ to make it as similar as possible to an actual industrial
process signals dataset.

Second, a steady-state detection algorithm was developed to identify, within the historian, the
steady-state operating points. The performances of the novel steady-state algorithm were
assessed through a series of diagnostic graphs. The outcome of the analysis proved that the
steadiness predictions of the algorithm match accurately the evaluations that can be achieved
inspecting visually the trajectory of the process signals.

Third, data reconciliation was performed on the separation section forcing the measurements
of flowrate and composition to fulfill the mass conservation laws. Data reconciliation was
carried out exploiting gPROMS optimization tool, which allows to minimize a user defined
objective function varying the values of specific decision variables.

Fourth, a black-box model of the separation section was developed exploiting both the partial
least squares regression and the ALAMO model building methodology. Empirical correlations
were generated to predict the values of the split fractions of benzene and cumene in the first
distillation column and the values of the split fractions of cumene and p-diisopropylbenzene in
the second distillation column. Despite employing a lower number of inputs, the data-driven
elements built with the ALAMO methodology proved to be able to provide predictions which
are at least as accurate as those of the models developed through partial least squares regression.
Therefore, it was decided to proceed with the hybrid model implementation in gPROMS
employing the data-driven elements built with the ALAMO methodology.

In the last step of the project the hybrid model was implemented in gPROMS. The data-driven
elements that map the behaviour of the separation section were integrated with the white-box
models of the other process units.

Once implemented in gPROMS, the predictive capabilities of the hybrid model were tested
against those of the first principles model considering four steady-state operating points which
were not included in the calibration set of the data-driven elements. The predictions of the

hybrid model matched accurately the values computed by the first principle model. Therefore,
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it was demonstrated that, when the behaviour of a system or an equipment within a process
cannot be easily described by the fundamental conservation laws, if process data are available,
data-driven elements can be developed specifically to model those poorly understood systems.
Then, those data-driven elements can be integrated within the white-box model of the rest of
the plant without compromising the robustness and the reliability of the overall process model.
The hybrid model development methodology described in this Thesis was successfully carried
out with a real industrial case study too, starting the analysis from an actual plant historian and
developing the black-box correlations for the process equipment whose behaviour could not be
described via first principles modelling. Although results cannot be disclosed due to
confidentiality reasons, the hybrid model proved to perform satisfactorily, thus confirming the
potential of the methodology.

Finally, future work will aim first to make the steady-state detection algorithm suitable for
online process steadiness evaluation. Second, it is wanted to allow the user to carry out hybrid
modelling entirely within the gPROMS platform. For this purpose, the ALAMO model building

methodology is currently being implemented inside the process simulator environment.
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Insight on ALAMO’s model-building
methodology

In this Appendix the steps of the procedure through which Cozad ef al. (2014) reformulated the

best subset selection problem are described in detail.

A.1 Reformulation of the best subset selection problem

Cozad et al. (2014) reformulated the general best subset problem described by equation (1.29)
in order to obtain a form that can be efficiently solved.

The first simplification is performed tracking which basis functions are active in the model
through a binary vector y defined as follows: whenever a basis function j € B is active in the
model (j € S), then y; = 1; otherwise y; = 0.

The vector y allows to reformulate equation (1.29) into a mixed-integer nonlinear problem as
follows:

min ®(y,B)
.68

s.t. y; €{0,1}. @A

Through the binary vector, moreover, equation (1.30) can be described over the full set of bases

B as follows:
200 = ) B A2)
jeB

The second step of the reformulation procedure implies replacing y;B; with the following big-

M constraints:
Bly;<B;y<B“y; JjE€B, (A.3)

where B! and B% are the lower and the upper bounds, respectively. Through this step the
complication linked with the integer bilinear terms is removed.

The third step of the reformulation consists on decoupling the goodness-of-fit measure into two
parts as follows:
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min ®(6,7,y) = min {min[®, 5, B)l:] + D71} | (Ad)

where ®(T) is the model sizing part while ®,, 5 (y, )| refers to the selection of the basis and
the parameters.
Once decoupled the goodness-of fit measure, the best subset selection problem is posed as a

nested minimization as follows:

min _ [®, 3y, B)Ir] + Pr(T)

Te(1,.., T4}
s. t. rjr/l,lﬁn ch,ﬁ(Y} .B)lT
s.t. :E::yi =T ([\.5)
jeB
Bly; < B; < By, jE€B
y; € {0,1} jEB,

where, as stated in §1.4.2, the inner minimization concerns with the selection of the basis
functions and of the parameters while the outer minimization determines the complexity of the
model.

The next step consists on the selection of the goodness-of-fit measure, Cozad et al. (2014)

decided to use the corrected Akaike information criteria (Hurvich and Tsai, 1993):

2
N

1

i=1 jESs

2|S1(S+ 1)
Vo=t (A9

Equation (A.6) is then manipulated in order to be posed as a nested minimization and to be
given in the form of (A.4).
Once the goodness-of-fit measure has been defined and implemented, then the solution space

of the outer minimization is parametrized with respect to T and the constraint:

Zyl:T JEB (A.7)

is included to highlight the fact that the solution of the inner minimization is carried out
increasing the value of T until a minimum is reached. Variable T is an indicator for the
complexity of the model.

The last steps of the reformulation procedure, finally, concerns with the inner minimization
problem. In order to pose the inner minimization as a mixed-integer linear problem (MILP)

firstly the nonlinear objective is replaced by the following L;-norm error:
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N
i=1

jeB

Then each instance of |w| in (A.8) is replaced by w' and the following constraints are added:

v

w
w (A9)

WI
WI

v

In order to retain the least square nature of the coefficients, moreover, the stationary condition
with respect to the parameter S is used as follows:

N

2
N
d .
J i=1

i=1 J€B Jj€B
Finally, the equation (A.10) is used as big-M constraints to define the basis coefficient:
U=y < ) Xy 7= ) By | S U=y (A1)
jEB j€B

After all the reformulations, the inner minimization can be expressed as the following mixed-
integer linear problem (MILP):

N
min Z w;

=1
s.t. Wi ZZL'—Z,B]'XU, = 1, ,N
JEB
WiZZﬁinj—Zi, l:].,,N
JjEB
Zyi =T (A.12)
JEB

—Uj(l—Yi)SZXij Zi_z:gjxij <U(l-y), JEB

jeB jEB
Bly; < B; < BYy;, jEB
Vij € {0,1} jEB
B < By < B}, jEB

As stated in (§1.4.2), solving the set of equations (A.12) with increasing values of T until the
Akaike information criteria worsens, it can be identified the most accurate low-complexity
model.
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Software tools

This appendix briefly overviews the software that have been used to generate the hybrid model.
At first an introduction on the Python™ programming language is provided and details on the
packages and on the tools that allowed to implement the multivariate statistical techniques and
the ALAMO methodology are given. Then, the programming language in which the steady state
detection algorithm (§2) has been coded is specified. Finally, an insight on the process simulator
gPROMS is given pointing out the tools of the software that have been exploited the most when
carrying out the project.

B.1 Python™

Python™ is an object-oriented, interactive, interpreted programming language that combines
remarkable power with an effective and clear syntax. It incorporates modules, high level
dynamic data types and classes. Furthermore, Python™ is extensible in C or C++ and has
interfaces to many system calls and libraries, as well as to various window systems

(https://www.python.org).

B.1.1 Scikit-learn package

Scikit-learn is a Python™ module that provides a wide range of state-of-the-art machine
learning algorithms for medium-scale supervised and unsupervised problems (Pedregosa et. al.,
2011). The Scikit-learn package presents an easy-to-use interface which is tightly integrated
with the Python™ language. The aim of the module, indeed, is to bring machine learning to
non-specialists using a general-purpose high-level language. Emphasis is therefore put on ease
of use, performance, documentation and API consistency. The PC analysis and the projection
on latent structures performed in this Thesis have been computed in Python™ using the

algorithms implemented in the Scikit-learn library.

B.1.2 ALAMO

The ALAMO approach to model building described in §1.4 has been implemented by Process
System Enterprise (PSE) in Python™. All the empirical correlations developed in this Thesis
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following the steps of the ALAMO algorithm, therefore, have been obtained through the

function provided by the company.

B.1.3 Steady-state detection algorithm

In this project, a steady-state detection algorithm has been developed from scratch in order to
identify, from the trajectories of the process variables, the windows of time in which the plant

is operating at steady-state. The detection algorithm has been coded in Python™,

B.2 gPROMS software®

The hybrid model developed in this Thesis has been implemented in the process simulator
gPROMS, which is a modelling software by Process Systems Enterprise (PSE).

The gPROMS platform provides equation-oriented modelling and optimisation framework
upon which the several PSE’s gPROMS products operate. In particular, it allows for
flowsheeting, powerful high-fidelity custom models construction, advanced parameter
estimation, model validation and both steady-state and dynamic model simulation

(https://www.psenterprise.com).

B.2.1 gPROMS ProcessBuilder

gPROMS ProcessBuilder is an advanced process simulation tool for model-based support of
key process design and operating decisions. Built on the gPROMS Platform, gPROMS
ProcessBuilder allows users to construct process flowsheets by dragging and dropping models,
for basic and advanced unit operations, from a palette of model libraries. The process flowsheet
can then be simulated or used in optimisation or model validation studies.

gPROMS can be used to optimise the steady-state and/or the dynamic behaviour of a continuous
or batch process. Both plant design and operational optimisation can be carried out. The form
of the objective function and the constraints can be quite general. Moreover, the optimisation
decision variables can be either functions of time (“‘controls”) or time-invariant quantities.

By default, gPROMS treats optimisation problems as dynamic ones, optimising the behaviour
of a system over a finite non-negative time horizon. However, in some cases, it is desired to
optimise a system at a single time point performing a so-called "point" optimisation. From the
mathematical point of view, this is equivalent to solving a purely algebraic problem in which a
generally nonlinear objective function is maximised or minimised subject to (generally)
nonlinear constraints by manipulating a set of optimisation decision variables that may be either
continuous or discrete. All the optimizations performed in this Thesis have been solved
exploiting the DAEBDF solver which is the standard mathematical solver used by default by
gPROMS to solve mixed sets of differential and algebraic equations (DAEs).
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The DAEBDF solver is based on variable time step, variable order Backward Differentiation
Formulae (BDF). The solver, in particular, adjust automatically each time step taken so that the

following criterion is satisfied:

nq

1 €;
S ) <1
Ng a+T|Zi|

i=1

where:

e 74 : number of differential variables in the problem;

e ¢; :solver estimate for the local error in the i differential variable;

e a :absolute error tolerance;

e 1 :relative error tolerance;

e z; :current value the i differential variable.
This means that the error €; incurred in a particular variable z; over a single time step is not
allowed to exceed an estimate of a + r|z;|.
The DAEBDF solver is designed to deal with large, sparse systems of equations in which
variable values are restricted to specified lower and upper bounds. Moreover, it can handle
situations in which some of the partial derivatives of the equations with respect to the variables

are available analytically while the rest must be approximated.
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The impact of measurement noise
amplitude on the data-driven element
predictive capabilities

In this Appendix it is discussed how different measurement noise amplitudes affect the
performances of the black-box model of the train of distillation columns developed through

PLS regression.

C.1 Outcome of the analysis

Once the virtual plant historian was generated performing in gPROMS dynamic simulations of
the detailed first principles process model, as previously stated in §3, noise and invalid
measurements were added on purpose in order to obtain a dataset which is as similar as possible
to a real industrial process variables dataset. The noise addition, in particular, was carried out
through a Python™ function that allowed to modulate the amplitude of the fluctuations by
changing the parameter k. Different values of the parameter k£ have been exploited to generate
datasets with different levels of noise (k= 0.025, 0.1 and 0.25). Then, after carrying out data
reconciliation, a PLS regression and 5-fold cross validation were performed with each of these
datasets in order to assess the effect of noise in the training and validation data on the predictive
capabilities of the separation section black-box model. The empirical correlation for the
prediction of the benzene split fraction in the first distillation column was taken into account as
a reference for the comparison. The outcome of the analysis is reported in Table C.1, C.2 and
C.3 and in Figure C.1, C.2 and C.3.
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Table C.1. Performances of the data-driven model developed for the estimation of the
benzene split fraction (with k = 0.025).

Number of PC RMSECYV x10? Q? R’
1 3.4028 0.9877 0.9891
2 1.5783 0.9971 0.9974
3 1.4541 0.9979 0.9982
4 09111 0.9990 0.9992
5 0.8900 0.9991 0.9992
6 0.7526 0.9993 0.9995
7 0.6703 0.9995 0.9996
8 0.6402 0.9995 0.9997
9 0.6213 0.9995 0.9997
10 0.6476 0.9994 0.9997
11 0.6370 0.9995 0.9997
12 0.6390 0.9995 0.9997
13 0.6600 0.9995 0.9997
14 0.6652 0.9994 0.9997

Table C.2. Performances of the data-driven model developed for the estimation of the
benzene split fraction (with k = 0.1).

Number of PC RMSECYV x10? Q? R?
1 4.0753 0.9799 0.9839
2 3.1615 0.9882 0.9903
3 2.8895 0.9903 0.9931
4 2.6408 0.9922 0.9940
5 2.4798 0.9932 0.9947
6 2.4406 0.9934 0.9953
7 2.4627 0.9933 0.9955
8 2.5411 0.9928 0.9957
9 2.5460 0.9928 0.9957
10 2.5747 0.9926 0.9957
11 2.6625 0.9921 0.9958
12 2.6719 0.9920 0.9958
13 2.6823 0.9920 0.9958
14 2.7334 0.9916 0.9958
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Table C.3. Performances of the data-driven model developed for the estimation of the

benzene split fraction (with k = 0.25).

Number of PC RMSECYV x10? Q? R?
1 4.7453 0.9666 0.9768
2 4.1472 0.9744 0.9828
3 4.2569 0.9742 0.9835
4 4.2788 0.9733 0.9842
5 4.3300 0.9707 0.9848
6 4.5321 0.9667 0.9855
7 4.4729 0.9672 0.9858
8 4.5408 0.9659 0.9862
9 4.5258 0.9639 0.9865
10 4.6242 0.9652 0.9868
11 4.6611 0.9655 0.9869
12 4.6912 0.9654 0.9869
13 4.7380 0.9645 0.9869
14 5.0122 0.9642 0.9873
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the benzene split fraction in the first distillation column (with 'k = 0.025).
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Figure C.2. Validation curve of the PLS regression model developed for the estimation of
the benzene split fraction in the first distillation column (with k = 0.1).
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Figure C.3. Validation curve of the PLS regression model developed for the estimation of
the benzene split fraction in the first distillation column (with k = 0.25).

As can be seen in Table C.1, C.2 and C.3, as the amplitude of the measurement noise of the
training dataset increases, the RMSECV increases and the predictive relevance Q2 decreases.
Therefore, as expected, the data-driven elements performances degrade with the increase of the
noise in the training data. As can be noticed in Figure C.1, C.2 and C.3, moreover, the increase
of the amplitude of the measurement noise leads to validation curves that decrease with a greater
slope when the number of PCs exceed the optimal one. Hence, the noisier the training dataset

is, the more the black-box model will be prone to overfit it.
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