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“The greatest challenge to any thinker is stating the problem in a way
thatwill allow a solution”
—Bertrand Russell
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Abstract

Businesses that rely heavily on machinery encounter a significant obstacle in effectively man-
aging equipment repairs while optimizing technician efficiency. The unpredictable nature of
repair requests and potential miscommunications can lead to a strain on technical teams, re-
sulting in delayed repairs and decreased production. This thesis proposes a novel solution to
this problem: the development of a specialized chatbot powered by Large Language Models
(LLMs) that is designed to assist both technicians and general employees with equipment trou-
bleshooting.

The chatbot empowers employees to attempt straightforward repairs independently, reducing
unnecessary escalations to technicians and allowing them to prioritize critical issues. We ex-
amine the evolution of LLMs, focusing onMistral and Llama2, and how they can be adapted
through fine-tuning. Techniques such as quantization and LoRA are explored for their po-
tential to streamline deployment on less powerful hardware. Successful fine-tuning on a single
A100 GPU demonstrates the feasibility of adapting these models to a specialized domain—in
this case, equipment troubleshooting. This research demonstrates the potential of LLMs to
enhance operational efficiency in manufacturing and other equipment-intensive industries.
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1
Introduction

1.1 Research Goal and Scope

This dissertation investigates the application of Large Language Models (LLMs) to optimize
equipment repair workflows within manufacturing environments. The core challenge lies in
balancing efficient repair processes with maximizing technician productivity. Fluctuating re-
pair request volumes and miscommunication around issue severity hinder current systems,
leading to production delays and inefficient technician utilization.

To address these shortcomings, we propose the development of a chatbot powered by LLMs.
This chatbot aims to:

• Empower employees to independently resolve minor issues. Reserve technicians’ exper-
tise for critical repairs.

• By streamlining the repair process, this approach seeks to minimize equipment down-
time and maximize technician efficiency.

The research focuses on the evolution of LLMs, particularly the 7B parameter models Mis-
tral and Llama2. We explore techniques for creating synthetic datasets and fine-tuning these
models for specific domains. Additionally, we investigate hardware optimization strategies like
quantization and LoRA to enable cost-effective deployments.
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The dissertation culminates in the successful fine-tuning of both LLMs on a single A100GPU.
This demonstrates the feasibility of creating domain-specific chatbots, exemplified by a chatbot
designed to assist users with machinery troubleshooting.

1.2 Thesis Structure

The thesis is organized as follows:

• Chapter 2 discusses the development of sequence-to-sequence models, leading up to
transformers, along with the metrics used for their evaluation.

• Chapter 3 delves into Large Language Models.

• Chapter 4 explores the fine-tuning of Large LanguageModels, including necessary steps
for their implementation.

• Chapter 5 presents the outcomes obtained.

• Chapter 6 concludes the thesis and discusses potential future work.
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2
Background

The advent of machine learning and its application within natural language processing (NLP)
has marked a new epoch in the way we enable machines to understand, interpret, and gen-
erate human language. At the heart of this transformative journey are sequence-to-sequence
(Seq2Seq) models, which have significantly contributed to the advancements in the field of
NLP by enabling a more nuanced and context-aware processing of language. This chapter be-
gins by exploring the evolution of Seq2Seq models, laying the groundwork for understanding
their pivotal role in the development of more complex architectures and applications in lan-
guage processing.

2.1 Sequence to SequenceModels

Sequence-to-sequence (seq2seq)models are a key framework in deep learning designed to trans-
form sequences of data from one form into another, a process central to various applications in
natural language processing (NLP) such as translating between languages, summarizing texts,
recognizing speech, and powering chatbots. At the heart of these models are twomain compo-
nents: the encoder and the decoder, whichwork together to understand and recreate sequences
as illustrated in Figure 2.1.

3



Figure 2.1: Encoder‐decoder sequence to sequence model

Encoder
The encoder is composed of a series of recurrent units (utilizing LSTM or GRU cells for en-
hanced performance), with each unit processing a single element of the input sequence. It gath-
ers and forwards information specific to that element. In the context of a question-answering
task, the input sequence comprises all the words in the question, with each word denoted as
x_i, where i indicates the word’s position. [1]

The computation of hidden states h_i follows a straightforward formula typical of a standard
recurrent neural network. This process involves applying designated weights to both the pre-
ceding hidden state h_(t-1) and the current input vector x_t.

ht = f
(
W(hh)ht−1 +W(hx)xt

)
(2.1)

The encoder vector is the culminating hidden state generated by the encoder segment of the
model, derived using the formula (2.1). Its purpose is to distill and convey the collective infor-
mation of all input components, thereby aiding the decoder in generating precise predictions.
This vector serves as the initial hidden state for the decoder segment of the model.
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Decoder

The decoder consists of numerous recurrent units organized in a stack, with each unit tasked
with predicting an output yt at each time step t. Each unit receives a hidden state from its
predecessor and not only generates an output but also passes on a new hidden state to the next
unit.

In tasks like question-answering, the sequence produced by the decoder represents the answer,
with each word denoted as yi, where i corresponds to the position of the word within the se-
quence. Each hidden state hi is computed as follows, with the process described by equation
(2.2).

ht = f
(
W(hh)ht−1

)
(2.2)

This process simply involves using the immediate previous hidden state to determine the sub-
sequent one.

The output yt at a given time step t is ascertained through the equation (2.3).

yt = softmax
(
WSht

)
(2.3)

Here, the current hidden state is employed alongside a specific weightWS to compute the out-
puts. A softmax function (2.3) then converts these into a probability distribution, which assists
in pinpointing the final output, such as a word in the context of a question-answering scenario.

The aforementioned attributes of the sequence-to-sequence architecture closely align with the
principles of Transformer models, which are especially renowned for their proficiency in man-
aging sequences of varying lengths. Unlike traditional sequence processing architectures that
rely on sequential data processing, Transformers utilize self-attentionmechanisms. This allows
them to weigh the importance of different parts of the input data without the constraint of
sequential order, thus enabling parallel processing of data points and significantly improving
efficiency.
In the next section, we’ll explore the Transformer architecture in detail and see how it’s chang-
ing the game in handling sequences of data.
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2.1.1 Transformers

Transformers have revolutionized the landscape of natural language processing (NLP) and be-
yond, through a unique architecture that emphasizes parallel processing and efficiency. This
chapter delves into the foundational aspects of Transformers, elucidating the intricate mecha-
nisms andmathematical formulations that enable their unprecedented performance in various
tasks.

The Principle of Attention
At the heart of the Transformer architecture lies the concept of attention—a mechanism that
models dependencies without regard to their distance in the input or output sequences. The
essence of attention within Transformers is quantified by the self-attentionmechanism, which
allows each position in a sequence to consider every other position in a weighted manner [2].
The self-attention for a single head is mathematically expressed in equation (2.4).

Attention(Q,K,V) = softmax
(
QKT
√
dk

)
V (2.4)

Here, Q, K, and V represent the queries, keys, and values, respectively—components derived
from the input data. The term

√
dk is a scaling factor intended to stabilize gradients during

training, where dk denotes the dimensionality of the keys and queries.

Expanding the Field of View: Multi-Head Attention
Transformers extend the concept of attention through multi-head attention, facilitating the
model’s ability to focus on different positions simultaneously. This is pivotal for understand-
ing the varied and complex dependencies in data. Equation (2.5) formalizes the multi-head
attention mechanism.

MultiHead(Q,K,V) = Concat(head1, . . . , headh)WO (2.5)

where each head, denoted as headi, captures various dimensions of the input sequence, as illus-
trated in equation (2.6).

headi = Attention(QWQ
i ,KWK

i ,VWV
i ) (2.6)

In this formulation,WQ
i ,WK

i , andWV
i are projection matrices specific to each head, enabling

themodel to diversify its focus across different dimensions of the input data. The concatenated
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outputs are then linearly transformed byWO, integrating the insights from each head.

Sequential Processing without Sequences: Positional Encoding
Given the Transformer’s reliance on parallel processing, it eschews traditional sequential data
processing methods (e.g., recurrence). To imbue the model with the notion of sequence order,
positional encodings are introduced:

PE(pos,2i) = sin
( pos
100002i/dmodel

)
(2.7)

PE(pos,2i+1) = cos
( pos
100002i/dmodel

)
(2.8)

Equations (2.7) and (2.8) ensure that each position in the input sequence is uniquely iden-
tifiable, allowing the model to leverage the order of elements without direct sequence-based
processing.

The Architecture: Encoders and Decoders
The Transformer model adopts an encoder-decoder structure, where both components are
comprised of multiple layers that contain the described attention mechanisms and additional
neural network elements.

• The Encoder

Each encoder layer is a compositionof twoprimary sub-layers: amulti-head self-attention
mechanism and a position-wise fully connected feed-forward network. The incorpora-
tion of positional encodings in the input enables the encoder to respect the sequence’s
order. The position-wise feed-forward network applies linear transformations to each
position separately and identically, as described in equation (2.9).

FFN(x) = max(0, xW1 + b1)W2 + b2 (2.9)

This layer acts on each position independently, further processing the information ag-
gregated through attention.

• The Decoder

Mirroring the encoder, the decoder integrates an additional sub-layer for each decoding
layer, which performs multi-head attention over the encoder’s output. This structure
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ensures a directed focus on relevant parts of the input sequence, crucial for tasks such as
translation.

Enhancing Flow: Residual Connections and Normalization
To facilitate deeper architectures, each sub-layer in the encoder and decoder incorporates resid-
ual connections followed by layer normalization. This design choice is vital for mitigating the
vanishing gradient problem in deep networks, ensuring stable training and effective informa-
tion flow. Figure 2.2 presents the comprehensive architecture of the Transformer model as
originally depicted in the seminal paper “Attention Is All You Need.”

Figure 2.2: The Transformer ‐ model architecture

2.2 End to EndModels

End-to-end models in machine learning are systems designed to handle a task from its begin-
ning to its conclusionwithminimal to no intermediate steps or processing. This approach con-
trasts with more traditional models that might involve multiple stages, each requiring specific
handling, processing, or feature engineering. End-to-end models, especially in the domain of
natural language processing (NLP), have revolutionized how machines understand, interpret,
and generate human language by directly mapping raw input data to desired output.
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2.2.1 GPT

The advent ofGenerative Pre-trainedTransformer (GPT)models hasmarked a significantmile-
stone in the field ofNatural Language Processing (NLP). Developed byOpenAI, GPTmodels
are based on the transformer architecture[2], which revolutionized the way machines under-
stand human language. The core principle behind GPT is the utilization of a large-scale trans-
former network pre-trained on a diverse corpus of text, which is then fine-tuned for specific
tasks. This section explores the evolution of GPTmodels, their architecture, and their applica-
tions in various domains.

Evolution of GPTModels
The evolution of Generative Pre-trained Transformer (GPT) models marks a significant ad-
vancement in natural language processing technologies. The journey began with GPT-1, in-
troduced in 2018, where OpenAI showcased the potential of transformer-basedmodels to per-
form a wide array of NLP tasks with groundbreaking efficiency and coherence in text genera-
tion. The initial model leveraged the transformer architecture [2], applying it in a novel way
to pre-train a language model on a diverse corpus of text before fine-tuning it on specific tasks.
This approach allowed GPT-1 to achieve impressive results across various benchmarks, setting
the stage for future developments in the field [3].

Building on this foundation, GPT-2was released in 2019, introducing amodel with 1.5 billion
parameters, trained on an even more extensive dataset. This iteration significantly improved
the model’s text generation capabilities, demonstrating a remarkable ability to generate coher-
ent and contextually relevant text over extended passages. GPT-2’s performance highlighted its
potential not just in generating text but also in tasks like translation, question-answering, and
summarization without task-specific training. Its ability to adapt to a wide range of tasks with
minimal fine-tuning exemplified a leap towards more general AI systems [4].

In 2020, GPT-3 expanded themodel’s parameters to an unprecedented 175 billion, further en-
hancing the depth and context-awareness of its output. GPT-3 introduced few-shot learning,
where the model could generate accurate responses with minimal input examples. This capa-
bility demonstrated a significant leap in AI’s ability to understand and generate human-like
text, bridging the gap between human and machine understanding of language. The scale of
GPT-3 and its sophisticated few-shot learning capabilities opened new possibilities for natural
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language-based applications, setting a new benchmark for what is achievable in the domain of
generative AI models [5].

ChatGPT-4, while building upon the foundations laid by its predecessors, introduced refine-
ments in accuracy, nuance, and contextual awareness. Although specific details of ChatGPT-
4’s architecture and training have not been disclosed in this summary, it represents the contin-
ued trajectory of innovation and improvement in the field of generative AImodels. By enhanc-
ing themodel’s interaction capabilities, ChatGPT-4 offersmore sophisticated and contextually
aware conversational agents, further pushing the boundaries of what AI can achieve in under-
standing and generating human-like text.

GPT Architecture
At the heart of GPT models lies the transformer architecture which was explored thoroughly
in the transformers section, designed to handle sequential data while capturing the contextual
relationships within it.

While the original transformer model [2] consists of both encoder and decoder blocks, GPT
models adopt a decoder-only architecture as illustrated in Figure 2.3. This means they utilize
multiple layers of transformer decoder blocks, each containing masked self-attention and fully
connected neural network layers. The “masked” aspect of the self-attention prevents themodel
from looking ahead to future tokens in the input sequence, ensuring that the prediction for
eachword only depends on the knownprecedingwords. This architecture is particularly suited
for tasks that involve generating text, such as language modeling and text completion.[3]

Applications of GPTModels
GPT models have found applications across a broad spectrum of domains, showcasing their
versatility and effectiveness. Some of the notable applications include:

• Content Creation: GPTmodels are widely used in generating articles, stories, and cre-
ative content, significantly reducing the time and effort required for content creation.

• LanguageTranslation: Despite beingprimarily designed forEnglish,GPTmodels have
shown promising results in translating languages, making global communication more
accessible.

• Customer Service: Automated customer service and support chatbots poweredbyGPT
can provide responses that are contextually relevant, improving customer experience.

10



Figure 2.3: The GPT ‐ model architecture

• Educational Tools: GPT models are employed in educational software, offering tutor-
ing, generating practice questions, and providing explanations in various subjects.

2.3 EvaluationMetric

Evaluation metrics play a crucial role in the development and benchmarking of language mod-
els, especially in specialized tasks like causal languagemodeling (LM) for text generation. These
metrics provide a quantitative way to assess the quality of generated text compared to a refer-
ence or set of references. One widely used metric in evaluating text generation tasks, including
summarization, is the ROUGE score.

In the causal LM task for text generation which is our case, the model generates text based on
a given context, aiming to predict the next word or sequence of words that follows logically
or semantically. Evaluation metrics for this task generally fall into two categories: automatic
metrics and human evaluation.

11



Automatic metrics
Automaticmetrics are algorithms that compare the generated text against oneormore reference
texts to quantify similarity, coherence, relevance, or other desirable attributes. These include:

• Lexical similaritymetricsLexical similaritymetrics likeBLEU,ROUGE, andMETEOR,
whichmeasure overlap in terms of words or n-grams between the generated text and ref-
erence texts.

• Semantic similarity metrics like BERTScore or Sentence-BERT, which leverage pre-
trained language models to assess the semantic closeness of generated text to reference
texts.

• Other metrics might include perplexity (a measure of how well a probability model
predicts a sample), diversity metrics (to evaluate the variety in the generated text), and
domain-specific metrics tailored to particular aspects of the generated content.

Human evaluation:
It involves human judges assessing the generated text based on criteria like fluency, coherence,
relevance, and creativity. Though more subjective and resource-intensive, human evaluations
can capture nuances that automatic metrics might miss.

2.3.1 Rouge Score

ROUGE, which stands for Recall-OrientedUnderstudy for Gisting Evaluation, is a set of met-
rics designed to evaluate the quality of summaries by comparing them to one ormore reference
summaries. ROUGE is particularly useful in tasks like summarization but is also applicable to
any text generation task where comparison to a reference is meaningful.[6] The core idea is to
measure the overlap between the generated text and the reference texts to assess how well the
important aspects have been captured. Key variants include:

• ROUGE-N:Measures the overlap of N-grams between the generated text and the refer-
ence texts. ROUGE-1 andROUGE-2 are themost common, focusing on unigrams and
bigrams, respectively. It evaluates the precision (the fraction ofN-grams in the generated
summary that are also in the reference summary), recall (the fraction of N-grams in the
reference summary that are also in the generated summary), and F1 score (a harmonic
mean of precision and recall).

12



• ROUGE-L:Focuses on the longest common subsequence (LCS) between the generated
text and reference texts. It is useful for evaluating sentence-level structure similarity and
does not require fixed-length N-grams. It also calculates precision, recall, and F1 score,
taking into account the longest shared sequences.

These ROUGE variants provides a different lens through which to evaluate the text, offering
insights into aspects like the precision of word choice, the fluency and structure of sentences,
and the ability to maintain relevant content. For causal LLM tasks, where the understanding
and generation of logically coherent and contextually relevant text are paramount, a combina-
tion of these ROUGE scores can offer a comprehensive evaluation of model performance.
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3
Large Language Models (LLM)

In the evolving landscape of artificial intelligence (AI) and natural language processing (NLP),
Large Language Models (LLMs) have emerged as pivotal elements, showcasing profound ca-
pabilities in understanding, generating, and interacting with human language. These models,
through their extensive training on diverse and voluminous datasets, have developed an ability
to process and produce text in manners closely mirroring human linguistic behavior.

LLMs stand out due to their considerable scale, both in terms of the data they are trained on
and their architectural complexity. This scale is notmerely amatter of size but is central to their
ability to discern and replicate nuanced language patterns and contexts. The pre-training and
fine-tuning process that these models undergo equips them with a versatile skill set, enabling
them to adapt their learned knowledge to specific tasks or domains with remarkable efficiency.

Moreover, LLMs are recognized for their generative capabilities, where they can produce coher-
ent and contextually relevant text based on given prompts. This feature is particularly valuable
for applications ranging from automated content creation to sophisticated conversational in-
terfaces. Their adaptability across languages and domains further broadens their applicability,
making them invaluable assets across various fields and industries.

This chapter provides an overview of two distinguished 7B parameter open-source models,
Llama2 andMistral.

15



3.1 LLama2-MetaAI

The advent of Llama2 by Meta AI marks a significant milestone in the field of artificial intel-
ligence, specifically in the development of Large Language Models (LLMs). Through a com-
prehensive pretraining and fine-tuning process, Llama2 emerges as a robust, versatile model
capable of performing a wide array of tasks, from chat applications to complex reasoning. This
section explains the development processes behind Llama2, emphasizing its pretraining strat-
egy, fine-tuning methodologies, and the paramount importance of safety measures.

3.1.1 Pretraining Llama2

The foundation of Llama2’s capabilities is laid during its pretraining phase, a rigorous process
aimed at enhancing the model’s performance and scalability. As depicted in Figure 3.1, the
pretraining of Llama2 leverages publicly available online sources, forming a diverse and rich
dataset. This initial stage is crucial for acquiring a broad knowledge base and understanding
natural language intricacies.[7]

Figure 3.1: Training of LLama2‐Chat

3.1.2 Data Enhancement andModel Architecture

Significant strides in data processing and architectural improvements distinguish Llama2 from
its predecessors. Figure 3.2outlines the comparative attributes ofLlama2 againstLlama1, show-
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casing advancements in parameters, context length, and the adoption of Grouped-Query At-
tention (GQA) for improved inference scalability. Specifically, Llama2’s architecture incorpo-
rates up to 70 billion parameters and extends the context length to 4,000 tokens, facilitating a
deeper understanding of complex queries.

Training Data Params Context
Length

GQA Tokens LR

Llama 1 See Touvron et al.
(2023)

7B 2k ✗ 1.0T 3.0 × 10−4

13B 2k ✗ 1.0T 3.0 × 10−4

33B 2k ✗ 1.4T 1.5 × 10−4

65B 2k ✗ 1.4T 1.5 × 10−4

Llama 2 A new mix of publicly
available online data

7B 4k ✗ 2.0T 3.0 × 10−4

13B 4k ✗ 2.0T 3.0 × 10−4

34B 4k ✓ 2.0T 1.5 × 10−4

70B 4k ✓ 2.0T 1.5 × 10−4

Figure 3.2: LLama2 Family of Models

3.1.3 Training Details

The training process of Llama2, illustrated in Figure 3.3, highlights the model’s loss reduc-
tion over time, indicating effective learning and adaptation. The model employs the AdamW
optimizer and a sophisticated learning rate schedule, contributing to its robust performance
across various benchmarks. The transition from Llama1 to Llama2 involves substantial en-
hancements, including a 40% increase in the pretraining corpus and the integration ofGQA, as
detailed in Figure 3.2. Thesemethodological refinements are pivotal in optimizing themodel’s
capability to process and generate natural language.

Fine-tuning Llama 2:
Beyond pretraining, Llama2 undergoes fine-tuning to tailor its capabilities for specific applica-
tions, notably in dialogue systems through Llama2-Chat. This phase encompasses Supervised
Fine-Tuning (SFT) and Reinforcement Learning with Human Feedback (RLHF), methods
that align the model’s outputs with human preferences and instructions.

3.1.4 Supervised Fine-Tuning (SFT)

The SFT process benefits significantly from high-quality, annotated data, enabling Llama2-
Chat to excel in dialogue-based tasks. The emphasis on diverse and accurate annotations en-
sures the model’s responses are both relevant and safe, adhering to predefined guidelines.
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Figure 3.3: Training Loss for LLama2 Models

3.1.5 Reinforcement LearningwithHuman Feedback (RLHF)

RLHFfurther refinesLlama2-Chat’s performance, utilizinghuman feedback to guide themodel
towards generating more preferred responses. This iterative process, coupled with advanced
techniques like Proximal Policy Optimization (PPO), solidifies Llama2-Chat’s alignment with
human expectations, enhancing its helpfulness and safety in interactive applications.

Safety Measures
Ensuring the safety of LLM outputs is paramount. Llama2 integrates comprehensive safety
protocols throughout its development stages, from pretraining data selection to fine-tuning
processes. The model undergoes extensive safety evaluations to mitigate potential risks and
biases, ensuring its deployment is both responsible and secure.

3.2 Mistral-MistralAI

Mistral 7B represents a breakthrough in the landscape of Large Language Models (LLMs),
designed with an emphasis on both performance and efficiency. This model introduces an
innovative use of Grouped-Query Attention (GQA) and Sliding Window Attention (SWA)
mechanisms. GQA enhances the model’s inference speed, while SWA enables the handling of
sequences of varying lengths more efficiently, thereby reducing overall inference costs.[8]
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In comparative evaluations,Mistral 7B demonstrates its superiority by outperforming the lead-
ing open-source 13-billion-parameter model, Llama2, across a broad spectrum of benchmarks.
Furthermore, it surpasses the capabilities of the previously best-released 34-billion-parameter
model, Llama1, particularly in tasks demandinghigh levels of reasoning,mathematical problem-
solving, and code generation.

An additional variant of Mistral 7B, known as Mistral 7B — Instruct, has been fine-tuned
specifically for instruction-following tasks using datasets readily available through theHugging
Face repository. This specialized version of Mistral 7B achieves remarkable performance, ex-
ceeding that of the Llama2 13B—chatmodel in both human-evaluated and automated bench-
marks. This demonstrates Mistral 7B’s versatility and its advanced capacity for understanding
and executing task-specific instructions.

3.2.1 Architecture

Mistral 7B introduces significant architectural innovations that enhance its performance and
efficiency, setting it apart from previous language models. At the heart of these advancements
lie two principal mechanisms: Sliding Window Attention (SWA) and Grouped-Query Atten-
tion (GQA). These are complemented by a strategic implementation of a rolling buffer cache
and further enhanced by sophisticated methods such as pre-fill and chunking. These elements
aremeticulously designed to optimize processing speed, memory usage, and themodel’s ability
to manage long sequences effectively. The upcoming segments provide a detailed examination
of these components.

• Sliding Window Attention (SWA)
At the heart of Mistral 7B’s architectural advancements lies the Sliding Window At-
tention mechanism. Unlike traditional (vanilla) attention mechanisms that often scale
quadraticallywith the sequence length, SWA limits each token’s attention span to a fixed
window size (W), thereby reducing computational complexity. This approach exploits
the stacked layers of a transformer, allowing each token to attend not just to its imme-
diate neighbors but also to tokens beyond the immediate window, through recursive
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attention across layers. As a result, information can propagate through the model ef-
ficiently, enabling the processing of longer sequences at a reduced computational cost.
Figure 3.4 depicts the contrast between Vanilla Attention and Sliding Window Atten-
tion mechanisms.

Figure 3.4: Comparative Visualization of Attention Mechanisms

The implementation of SWA in Mistral 7B achieves a theoretical attention span of ap-
proximately 131K tokens for a sequence length of 16K and a window size of W=4096.
This innovative approach yields a 2x speed improvement over baseline models without
SWA, highlighting its efficacy in enhancing processing speed while maintaining model
quality.

• Grouped-Query Attention (GQA)
Grouped-QueryAttention further accelerates inferenceby reducing thememory require-
ments duringdecoding. Thismechanismallows for larger batch sizes andhigher through-
put, which is crucial for real-time applications. By grouping queries, GQA minimizes
the redundancy in attention calculations, significantly speeding up the inference process
without a loss in performance. ThismakesMistral 7Bparticularly suited for applications
requiring fast response times. Figure 3.5 illustrates the structural differences between
Multi-Head and Grouped-Query attention mechanisms.

• Rolling Buffer Cache
To optimize memory usage, Mistral 7B employs a rolling buffer cache for its fixed at-
tention span. This cache, with a size equal to the window (W), stores keys and values
for each timestep in a position determined by the timestep modulo W. As the model
progresses through a sequence, older values are overwritten by newer ones once the po-
sition exceeds W, keeping the cache size constant. This ingenious caching strategy re-
duces memory usage by up to 8x compared to traditional methods, without degrading
model quality. Figure 3.6 visualizes the progressive functioning of the rolling buffer
cache mechanism.
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Figure 3.5: Multi‐Head vs. Grouped‐Query Attention Structures

Figure 3.6: Rolling Buffer Cache Mechanism

• Pre-fill and Chunking Techniques
In addition to these core architectural features,Mistral 7B incorporates pre-fill and chunk-
ing techniques to further enhance its efficiency. By pre-filling the attention cache with
known prompts and chunking large prompts into smaller pieces, the model can com-
pute attention more effectively. This strategy reduces memory usage during sequence
generation, enabling the model to handle large prompts with greater efficiency. Figure
3.7 shows the pre-fill and chunking mechanism as described in the Mistral paper, seg-
menting the processing of tokens into past, cache, and current stages

Figure 3.7: Depiction of Pre‐fill and Chunking
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These architectural innovations collectively empower Mistral 7B to deliver exceptional perfor-
mance and efficiency. By addressing key limitations of previous models related to processing
speed, memory usage, and the handling of long sequences, Mistral 7B sets a new benchmark
for large language model design.

3.2.2 Results

The evaluation of the Mistral 7B model presents a comprehensive comparison against the ex-
isting benchmarks set by Llama 2 (13B) and Llama 1 (34B), as visualized in Figure 3.8 of the
Mistral paper. Mistral 7B has been subjected to an extensive range of NLP tasks to scrutinize
its performance thoroughly, with the detailed outcomes documented in table 3.1. The bench-
marks cover a spectrum of tasks which include:

• CommonsenseReasoning (0-shot) as evaluatedbyHellaswag,Winogrande, PIQA,SIQA,

• OpenbookQA, ARC-Easy, ARC-Challenge, and CommonsenseQA.

• World Knowledge (5-shot), assessed through NaturalQuestions and TriviaQA.

• Reading Comprehension (0-shot) gauged by BoolQ and QuAC.

• Mathematical problem solving observed throughGSM8K (8-shot) andMATH(4-shot).

• Code-related tasks examined by Humaneval (0-shot) andMBPP (3-shot).

Model Modality MMLU HellaSwag WinoG PIQA Arc-e Arc-c NQ TriviaQA HumanEval MBPP MATH GSM8K
LLaMA2 7B Pretrained 44.4% 77.1% 69.5% 77.9% 68.7% 43.2% 24.7% 63.8% 11.6% 26.1% 3.9% 16.0%
LLaMA2 13B Pretrained 55.6% 80.7% 72.9% 80.8% 75.2% 48.8% 29.0% 69.6% 18.9% 35.4% 6.0% 34.3%
Code-Llama 7B Finetuned 36.9% 62.9% 62.3% 72.8% 59.4% 34.5% 11.0% 34.9% 31.1% 52.5% 5.2% 20.8%
Mistral 7B Pretrained 60.1% 81.3% 75.3% 83.0% 80.0% 55.5% 28.8% 69.9% 30.5% 47.5% 13.1% 52.2%

Table 3.1: Performance Metrics of Mistral 7B Compared to Llama Models

In these benchmarks, illustrated in Figure 3.8, Mistral 7B’s performance was stellar, outshin-
ing Llama2 (13B) across all metrics and surpassing Llama1 (34B) on most of the benchmarks,
especially in areas requiring strong reasoning,mathematical prowess, and code generation capa-
bilities. Specifically, in mathematics and code-related benchmarks, as detailed in table 3.1, Mis-
tral 7B showcased superior performance, asserting its adeptness in handling complex problem-
solving tasks.
Furthermore, Mistral 7B was evaluated on popular aggregated results, such as MMLU, BBH,
andAGI Eval, where it continued to demonstrate its robust capabilities. The performance leap
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Figure 3.8: Evaluation of Mistral 7B Against Various Llama Models Across a Broad Spectrum of Benchmarks

of Mistral 7B indicates that it achieves what could be expected from a model more than three
times its size when assessed for reasoning comprehension and STEM reasoning, particularly
in theMMLU benchmark. However, in Knowledge benchmarks, Mistral 7B achieved a lower
compression rate, which the authors suggest is likely due to its limited parameter count impact-
ing the model’s capacity to store knowledge.

These results provide concrete evidence ofMistral 7B’s exceptional performance, proving it to
be a formidable contender in the realm of LLMs. The findings from these evaluations solidify
the claim that Mistral 7B has successfully integrated efficiency with high performance, setting
a new benchmark for future developments in language models.
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4
Fine Tuning Large Language Models

4.1 Problem Statement

Businesses reliant on machinery and tools face a critical challenge in balancing efficient equip-
ment repair with maximizing technician productivity. While a skilled technical team is crucial
for addressing equipment malfunctions and maintaining seamless production flow, managing
the influx of repair requests can be problematic.

This inefficiency stems from two key issues:

• Fluctuating Demand: The volume of repair requests can vary significantly, making it
difficult for technical teams to consistently meet demand. This can lead to backlogs and
delays, ultimately impacting production schedules.

• Miscommunication and Inappropriate Requests: In some cases, human error or lack
of clarity in reporting issues can lead to misunderstandings about the severity of prob-
lems. Additionally, minor malfunctions that employees could potentially resolve them-
selves might be unnecessarily escalated to the technical team. This diverts technicians’
attention away from critical repairs and creates unnecessary wait times for employees
with legitimate repair needs.

The consequence of this imbalanced system is a reduction in overall operational efficiency.
Valuable technician time is wasted addressing minor issues, while more critical repairs expe-
rience delays.
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4.2 Data Preparation

To address these challenges, we propose an innovative solution: the development of a chatbot
designed to assist technicians using LLMs. This digital assistant aims to empower employees
to solve straightforward problems on their own, reserving technicians’ time for emergencies or
more complex issues that cannot be easily resolved. This approach seeks to streamline the repair
process, reducing downtime and ensuring that technicians can focus on the most urgent and
challenging tasks. Consequently, to develop the assistant chatbot using Large Language Mod-
els (LLMs), the initial step involves sourcing a dataset for fine-tuning the LLM. The dataset
provided by the company encompasses a comprehensive record spanning almost 10 years, de-
tailing themaintenance ofmachines and tools. To utilize this dataset effectively, the first crucial
step is to undertake data preprocessing.

4.2.1 Data Preprocessing

Data preprocessing serves as the foundational process for cleansing and organizing raw data
into a structured format suitable for fine-tuning. This stage encompasses a series of methodi-
cal steps designed to enhance the quality and efficiency of the data before fine-tuning. Since
the dataset was originally in Italian, our first step was converting the entire dataset to English
through automated translation. After that, we moved on to cleaning the data, which involved
removing any duplicates and outliers. Next, we addressed the missing values by getting rid
of any records or features that were incomplete. Following this, we dropped the features that
were not very important for our situation and kept only the key features. After completing
these steps, We concluded with a cleaned dataset comprising close to 6,000 entries, totaling ap-
proximately 1,300,000words. Themain features included the ticket title, type ofmachine, the
condition it was found in, the work performed on it, and the hours it took to resolve the issue.

4.2.2 Synthetic Dataset

To fine-tune the LLM, we need a dataset consisting of prompt and answer pairs for each row.
Here, the prompt is a question asked by the user, and the answer is what the assistant chatbot
would reply with, addressing the issue mentioned in the prompt. Our existing dataset was not
initially set up this way, so we tackled this challenge by employing prompt engineering through
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ChatGPT-4 to generate synthetic data suited to our needs. To achieve this, we tested over 100
prompts and identified the 4 best versions to use in ChatGPT-4. We then selected 20 random
records from our dataset and applied each of the four chosen prompts to them separately, gen-
erating a total of 80 samples. We evaluated these samples to determine the best prompt, focus-
ing on criteria such as minimal hallucination, relevance, and conciseness in comparison to the
original dataset. Figure 4.1 is the most effective prompt we have obtained to date.

Figure 4.1: The Optimal Prompt Achieved for Generating Synthetic Data

4.2.3 Data Generation

To create the synthetic dataset, we utilized Python to access the ChatGPT-4 API. This allowed
us to input the necessary features of each row to generate a corresponding prompt and its re-
lated answer. As a result, our final dataset comprises nearly 6,000 rows of prompt and answer
pairs.

4.2.4 Data split

To ensure the prompts and answers have a similar length distribution, we first counted all the
characters in both the prompt and the answer for each row and added a new column named
“combined-length”. After that, we arranged the entire dataset based on the lengths of these
inputs. Following this organization, we used scikit-learn to randomly divide the dataset into
three separate sets: training, validation, and test sets. The ultimate structure of the dataset,
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along with the histogram and box plot for the combined length, are illustrated in Figures 4.2
and 4.3, respectively.:

Figure 4.2: Dataset structure

(a) Histogram

(b) Box Plot

Figure 4.3: Histogram and Box Plot Representation of Generated Data Lengths

28



4.3 Fine Tuning Llama2

Fine-tuningLarge LanguageModels (LLMs) constitutes a criticalmethodology in the enhance-
ment of pre-trainedmodels for specialized applications, including the development of assistant
chatbots for technical support. This process involves adapting a general-purpose LLM, which
has been pre-trained on extensive corpora of text, to perform specific tasks with higher preci-
sion, such as providing users with guidance on troubleshooting machinery.

The fine-tuning approach leverages the broad foundational knowledge acquired by the LLM
during its initial training phase, applying it to a more narrowly defined problem space. By in-
troducing a dataset relevant to the specific task - in this case, machine repair and maintenance -
the model is re-trained to adjust its parameters in a way that optimizes its performance for this
application. This involves exposing the model to a variety of queries and issues commonly en-
countered by users in the context of machinery malfunction, alongside appropriate responses
or solutions.

Upon successful fine-tuning, the LLM can be deployed as an assistant chatbot, offering an in-
teractive platform for users to receive targeted advice on diagnosing and rectifying issues with
their equipment. This application of LLMs bridges the gap between the vast, generalized un-
derstanding inherent in these models and the specific, practical knowledge required for effec-
tive machine maintenance support.

Here are the required steps for fine tuning the LLM:

Model Quantization: Simplifying Large Language Model Deployment
Prior to the fine-tuning of any Large Language Model (LLM), it is imperative to address the
challenges posed by the substantial size and computational demands of these models. The es-
calating complexity and parameter count of LLMs necessitate solutions that mitigate storage
and computational intensity without significantly compromising information fidelity. An ef-
fective strategy identified to address these challenges is model quantization, a process aimed
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at optimizing the storage and computational efficiency of neural networks, including LLMs,
through precision modification of model weights.

Quantization is a process that involves the conversion of continuous, infinite values into a con-
strained set of discrete, finite values. Within the domain of LLMs, this process specifically
entails the transition of model weights from higher precision data types to those of lower pre-
cision. This adjustment is crucial for managing the expansive data structures, known as Ten-
sors, that underpinneural networks. Tensors, which aremulti-dimensionalmatrices populated
with numerical values, are traditionally stored in high-precision formats such as 32-bit (single
precision) or 64-bit (double precision) floating-point numbers. Although high precision is
synonymous with enhanced accuracy and stability in model training, it is also associated with
increased computational expense and hardware requirements. The premise of adopting lower
precision is founded on the observation that the full range of 64-bit floating-point representa-
tion is not always necessary for maintaining optimal neural network performance. Figure 4.4
is an illustration of the bfloat16 numerical format, by Google[9]:

Figure 4.4: The bfloat16 numerical format | Google

Through the reduction of the bit requirement for each weight, quantization significantly di-
minishes the overall size of the model. A typical example of this reduction involves the conver-
sion of weights from 16-bit floating-point (FP16) to 4-bit integer (INT4) formats, facilitating
the use of less expensive hardware and enhancing operational speed. However, this reduction
in weight precision may impact the overall quality of the LLM to some extent. Research indi-
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cates that the extent of this impact is contingent upon the quantization techniques employed,
with larger models exhibiting a higher resilience to precision changes. Consequently, for mod-
els with parameters exceeding approximately 70 billion, a 4-bit representation is often deemed
an optimal compromise between performance and efficiency, while smaller models might ben-
efit more from 6 or 8-bit representations.
Here, we delve into the quantization techniques themselves.

Quantization Techniques:
The methodology for implementing model quantization can be categorized into two distinct
approaches:

• Post-Training Quantization (PTQ): This approach involves the conversion of an al-
ready trained model’s weights to a lower precision without necessitating further train-
ing. Although PTQ is relatively straightforward and easy to implement, it may result in
a slight degradation of model performance due to the loss of precision in weight values.

• Quantization-Aware Training (QAT): In contrast to PTQ,QAT integrates the weight
conversionprocesswithin the trainingphase, often yielding superiormodel performance
albeit at a higher computational cost. A prominent technique within QAT is QloRA
[10].

Building upon these foundational techniques, we witness advancements in the field.
Advancements in Model Quantization:

The field of model quantization has witnessed the emergence of several state-of-the-art meth-
ods, including [11]:

• GPTQ : Primarily focused on GPU execution, this method includes variants such as
AutoGPTQ, ExLlama, and GPTQ-for-LLaMa.

• NF4: Integrated within the bitsandbytes library and closely aligned with the Hugging
Face transformers library, NF4 is predominantly utilized in conjunction with QLoRA
methods for fine-tuning models in 4-bit precision.

• GGML: AC library that interfaces with the llama.cpp library, featuring a unique binary
format for LLMs that supports rapid loading and ease of readability. Its recent adoption
of the GGUF format enhances future extensibility and compatibility.

31



For the project at hand, the NF4 method was selected due to its efficacy in balancing perfor-
mance with model size and speed. The NormalFloat (NF) data type, an improvement upon
the Quantile Quantization technique, along with Double-Quantization (DQ), enables higher
compression rates while preserving performance integrity. Notably, the integration of bitsand-
bytes, incorporating insights from the QLoRA paper, demonstrates minimal performance re-
duction with 4-bit quantization during both inference and training phases of LLMs. In Table
4.1 below, you will find the parameters for model quantization and the values we have estab-
lished for this process.

Parameters Value
load_in_4bit True
bnb_4bit_quant_type “nf4”
bnb_4bit_use_double_quant True
bnb_4bit_compute_dtype bfloat16

Table 4.1: Quantization Parameters

LoRA: Low-Rank Adaptation of Large Language Models:

Following the exploration of quantization as a means to reduce model size and computational
demands, we now turn our attention to another innovative approach aimed at addressing the
challenges inherent in the finetuning of colossal models such as GPT-3, which boasts 175 bil-
lion parameters. This approach, known as Low-Rank Adaptation (LoRA), offers a comple-
mentary strategy to quantization by targeting the model’s parameter efficiency directly, rather
than its numeric precision.

Low-Rank Adaptation emerges as a response to the limitations of traditional finetuning meth-
ods, which require updating the entirety of a pre-trained model’s parameters for task-specific
adaptation. Inspired by insights into the low intrinsic dimensionality of over-parametrized
models, LoRA proposes a novel method of model adaptation that significantly reduces the
number of actively updated parameters, thus easing the computational and storage burdens
associated with deploying large-scale NLPmodels.
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Figure 4.5: forward pass using low‐rank decomposition.

Figure 4.5 illustrates the core concept behindLoRA, demonstrating how it applies to the dense
layers of neural networks, particularly within Transformer models. By adopting a low-rank
parametrizedupdatemechanism,LoRAeffectivelymaintains themodel’s original performance
while drastically lowering the parameter count required for adaptation. [12]

The Mechanism of Low-Rank Adaptation
LoRA’s strategy involves the ingenious representationof updates to a pre-trainedweightmatrix
W0 ∈ Rd×k through the multiplication of two lower-rank matrices B ∈ Rd×r and A ∈ Rr×k.
By constraining these updates to a low-rank format,W0+ΔW = W0+BA, LoRA encapsu-
lates essential changes during the adaptation phase with a fraction of the computational over-
head of traditional methods, creating a synergistic relationship with quantization techniques
that further enhance model efficiency.

Advantages of Low-Rank Adaptation
The adoptionofLoRAoffers several compelling benefits, especiallywhen considered alongside
quantization:

• Complementary Efficiency:

While quantization reduces the size and increases the speed of models by lowering the
precision of calculations, LoRA reduces the number of parameters that need to be up-
dated and stored, offering a dual pathway to efficiency.
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• Dynamic Adaptation:
LoRAfacilitates the swift customizationofmodels tonew taskswithminimal parameter
updates, a feature that complements the static benefits of quantization by introducing
dynamic efficiency in model deployment.

• Enhanced Model Deployment:
The combinationofquantization andLoRAenablesmore versatile and resource-efficient
deployment ofNLPmodels, making state-of-the-art performancemore accessible across
varied computational environments.

Applying LoRA in the Context of Transformers:
LoRA’s application is particularly impactful within the Transformer architecture, where it can
be used to adapt specific weight matrices involved in the model’s attention mechanism. This
targeted adaptation allows for the preservation or enhancement of model performance with
minimal additional parameters, presenting a perfect complement to the reduction in numeric
precision achieved through quantization.

Hyper parameters:

Parameters Value
lora_rank 16
lora_alpha 8
lora_dropout 0.1
target_modules “q_proj”, “k_proj”, “v_proj”, “o_proj”, “lm_head”
task_type “CAUSAL_LM”

Table 4.2: LoRA Configuration Parameters for Llama2

For Integrating LoRA into our model, we used the LoraConfig class from the PEFT (Param-
eter Efficiency for Fine-Tuning) library by Hugging Face. Table 4.2 presents the parameters
utilized to configure LoRa and the optimal values identified through evaluating different com-
binations based on their impact on training loss convergence. Below, a concise overview of
each parameter is provided.

34



Hyperparameters of LoraConfig:

• lora_rank: This parameter specifies the rank of the low-rank matrices A and B used
in LoRA’s adaptation mechanism. A lower rank r means fewer parameters to update
during the adaptation process, which can lead to faster training and less memory usage.
For instance, r = 16 indicates that both A and Bmatrices in the LoRA adaptation will
have a rank of 16. This is a crucial hyperparameter as it directly influences the model’s
balance between adaptability and computational efficiency.

• lora_alpha: The lora_alpha parameter is a scaling factor applied to the low-rank up-
dates during the adaptation process. Essentially, it controls the magnitude of the up-
dates applied to the pre-trainedweightmatrices, thus influencing howmuch the adapted
model deviates from its pre-trained state. A higher lora_alpha value would allow for
larger updates, which could be beneficial for adapting to tasks that are significantly dif-
ferent from the pre-training tasks. lora_alpha = 8 can be a moderate scale for updates.

• lora_dropout: This parameter indicates the dropout rate applied to the LoRAupdates.
Dropout is a regularization technique used to prevent overfitting by randomly setting
a fraction of the input units to 0 at each update during training. lora_dropout = 0.1
means that 10% of the elements in the LoRA updates will be randomly zeroed out, in-
troducing regularization to the adaptation process.

• bias: The bias parameter specifies how biases should be handled during the LoRA adap-
tation. The bias="none"indicates that biases are not adapted as part of the LoRA pro-
cess. This decision might be based on the desire to keep the adaptation process focused
on theweightmatrices, potentially simplifying the adaptation and reducing the number
of parameters that need to be tuned.

• target_modules: This is a list of model components that will be adapted using LoRA.
The components typically correspond to parts of the model’s architecture involved in
specific computational tasks, such as projecting input features (q_proj, k_proj, v_proj,
o_proj) and generating output predictions (lm_head). By targeting these modules, the
adaptation focuses on the most relevant aspects of the model for the given task, poten-
tially improving performance on downstream tasks without the need to adapt the entire
model.

• task_type: Specifies the typeof task forwhich themodel is being adapted. The"CAUSAL_LM"
indicates that the adaptation is intended for a causal language modeling task, where the
goal is to predict the next token in a sequence given its predecessors. This information
can be used to optimize the adaptation process for the specific characteristics and re-
quirements of the task at hand.
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Figure 4.6 and 4.7 illustrate the structure of the Llama 2 model prior to and following the ap-
plication of the LoRA configuration respectively.

LlamaForCausalLM( 
  (model): LlamaModel( 

  (embed_tokens): Embedding(32000, 4096) 
  (layers): ModuleList( 

  (0-31): 32 x LlamaDecoderLayer( 
  (self_attn): LlamaAttention( 

  (q_proj): Linear4bit(in_features=4096, out_features=4096, bias=False) 
  (k_proj): Linear4bit(in_features=4096, out_features=4096, bias=False) 
  (v_proj): Linear4bit(in_features=4096, out_features=4096, bias=False) 
  (o_proj): Linear4bit(in_features=4096, out_features=4096, bias=False) 
  (rotary_emb): LlamaRotaryEmbedding() ) 

  (mlp): LlamaMLP( 
  (gate_proj): Linear4bit(in_features=4096, out_features=11008, bias=False) 
  (up_proj): Linear4bit(in_features=4096, out_features=11008, bias=False) 
  (down_proj): Linear4bit(in_features=11008, out_features=4096, bias=False) 
  (act_fn): SiLU() ) 

  (input_layernorm): LlamaRMSNorm() 
  (post_attention_layernorm): LlamaRMSNorm() 

  ) 
  ) 
  (norm): LlamaRMSNorm() 

  ) 
  (lm_head): Linear(in_features=4096, out_features=32000, bias=False)   
)

Figure 4.6: Llama2 structure prior to the application of LoRA
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PeftModelForCausalLM(
  (base_model): LoraModel(
    (model): PeftModelForCausalLM(
      (base_model): LoraModel(
        (model): LlamaForCausalLM(
          (model): LlamaModel(
            (embed_tokens): Embedding(32000, 4096)
            (layers): ModuleList(
              (0-31): 32 x LlamaDecoderLayer(
                (self_attn): LlamaAttention(
                  (q_proj): lora.Linear4bit(
                    (base_layer): Linear4bit(in_features=4096, out_features=4096, bias=False)
                    (lora_dropout): ModuleDict(
                      (default): Dropout(p=0.1, inplace=False)
                    )
                    (lora_A): ModuleDict(
                      (default): Linear(in_features=4096, out_features=16, bias=False)
                    )
                    (lora_B): ModuleDict(
                      (default): Linear(in_features=16, out_features=4096, bias=False)
                    )
                    (lora_embedding_A): ParameterDict()
                    (lora_embedding_B): ParameterDict()
                  )
                  (k_proj): lora.Linear4bit(
                    (base_layer): Linear4bit(in_features=4096, out_features=4096, bias=False)
                    (lora_dropout): ModuleDict(
                      (default): Dropout(p=0.1, inplace=False)
                    )
                    (lora_A): ModuleDict(
                      (default): Linear(in_features=4096, out_features=16, bias=False)
                    )
                    (lora_B): ModuleDict(
                      (default): Linear(in_features=16, out_features=4096, bias=False)
                    )
                    (lora_embedding_A): ParameterDict()
                    (lora_embedding_B): ParameterDict()
                  )
                  (v_proj): lora.Linear4bit(
                    (base_layer): Linear4bit(in_features=4096, out_features=4096, bias=False)
                    (lora_dropout): ModuleDict(
                      (default): Dropout(p=0.1, inplace=False)
                    )
                    (lora_A): ModuleDict(
                      (default): Linear(in_features=4096, out_features=16, bias=False)
                    )
                    (lora_B): ModuleDict(
                      (default): Linear(in_features=16, out_features=4096, bias=False)
                    )
                    (lora_embedding_A): ParameterDict()
                    (lora_embedding_B): ParameterDict()
                  )
                  (o_proj): lora.Linear4bit(
                    (base_layer): Linear4bit(in_features=4096, out_features=4096, bias=False)
                    (lora_dropout): ModuleDict(
                      (default): Dropout(p=0.1, inplace=False)
                    )
                    (lora_A): ModuleDict(
                      (default): Linear(in_features=4096, out_features=16, bias=False)
                    )
                    (lora_B): ModuleDict(
                      (default): Linear(in_features=16, out_features=4096, bias=False)
                    )
                    (lora_embedding_A): ParameterDict()
                    (lora_embedding_B): ParameterDict()
                  )
                  (rotary_emb): LlamaRotaryEmbedding()
                )
                (mlp): LlamaMLP(
                  (gate_proj): Linear4bit(in_features=4096, out_features=11008, bias=False)
                  (up_proj): Linear4bit(in_features=4096, out_features=11008, bias=False)
                  (down_proj): Linear4bit(in_features=11008, out_features=4096, bias=False)
                  (act_fn): SiLU()
                )
                (input_layernorm): LlamaRMSNorm()
                (post_attention_layernorm): LlamaRMSNorm()
              )
            )
            (norm): LlamaRMSNorm()
          )
          (lm_head): lora.Linear(
            (base_layer): Linear(in_features=4096, out_features=32000, bias=False)
            (lora_dropout): ModuleDict(
              (default): Dropout(p=0.1, inplace=False)
            )
            (lora_A): ModuleDict(
              (default): Linear(in_features=4096, out_features=16, bias=False)
            )
            (lora_B): ModuleDict(
              (default): Linear(in_features=16, out_features=32000, bias=False)
            )
            (lora_embedding_A): ParameterDict()
            (lora_embedding_B): ParameterDict()
          )
        )
      )
    )
  )
)

Figure 4.7: Llama2 structure after the application of LoRA
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Having implemented the LoRA configuration, we now proceed to the fine-tuning phase of
the model. For this purpose, we employ the SFT (Supervised Fine-Tuning) library provided
by Hugging Face.

TrainingArguments Hyperparameters:
The TrainingArguments class in Hugging Face’s Transformers library provides various set-
tings that control the training process.

Parameters Value
batch_size 18
optim “paged_adamw_32bit”
epochs 7
learning_rate 3e-5
evaluation_strategy “steps”
warmup_steps 300
lr_schedular_type “cosine”
bf16 True

Table 4.3: SFT Trainer HyperParameters for Llama2

Table 4.3 displays the main parameters employed in training and the values determined by
assessing different combinations for their effect on training loss convergence. A short explana-
tion of each parameter is provided below:

• output_dir: Specifies the directory where the training outputs (like the model check-
points) should be saved.

• overwrite_output_dir: If set to True, the output directory will be overwritten if it
already exists. This is useful for rerunning experiments without needing to manually
clear the directory.

• report_to: Determines where to report the training progress. Setting it to “tensor-
board” enables TensorBoard logging.

• per_device_train_batch_size: The batch size per device during training. Adjusting
this parameter can impact memory usage and training speed.
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• optim: Specifies the optimizer used for training. Different optimizers can affect the
training dynamics and model performance.

• num_train_epochs: The total number of training epochs. This defines how many
times the training loop will iterate over the entire dataset.

• save_steps: Determines how often to save a model checkpoint. A lower number results
in more frequent saves.

• learning_rate: The initial learning rate for the optimizer. This is a key hyperparameter
for controlling the training process’s speed and convergence.

• evaluation_strategy: Configureswhen themodel shouldbe evaluatedon the validation
set. Options include strategies like “epoch” or “steps”.

• eval_steps: If the evaluation strategy is set to “steps”, this parameter defines how often
evaluation should occur.

• logging_dir: Specifies the directory where the logs should be saved. This is important
for monitoring the training process.

• logging_steps: Determines how often to log training information. More frequent log-
ging provides more granular insights into the training process.

• do_eval: If set to True, evaluation will be performed at the end of each epoch or as
defined by the evaluation strategy.

• do_train: If set to True, the model will be trained. Usually set to True by default.

• warmup_steps: The number of steps for the warm-up phase. During warm-up, the
learning rate gradually increases to the initial learning rate, which can help improve
model training stability.

• save_strategy: Determines howmodel checkpoints should be saved. Similar to the eval-
uation strategy, it can be set based on epochs or steps.

• lr_scheduler_type: Defines the learning rate scheduler. The scheduler adjusts the learn-
ing rate during training according to the selected strategy.

• bf16: If set to True, training will utilize bfloat16 precision, reducingmemory usage and
potentially speeding up training on supported hardware.

• weight_decay: This adds a weight decay regularization to the optimizer, helping to pre-
vent overfitting by penalizing large weights.
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Implementation procedure flow:

Figure 4.8 depicts the entire flow of implementation.
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Figure 4.8: Implementation flow chart

• Start

• Quantization: Apply quantization to reduce the model size and potentially increase
inference speed without significantly sacrificing accuracy.

• Apply LoRA: Implement Low-Rank Adaptation (LoRA) to modify specific layers of
the model, allowing for efficient fine-tuning with minimal parameter updates.

• Set Fine-Tuning Parameters: Define hyperparameters for the fine-tuning process, such
as learning rate, batch size, and number of epochs.

• Load Dataset: Prepare and load the dataset used for training and validation.
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• Fine-Tuning Loop Start: Begin the iterative fine-tuning process.

• Forward Pass: Input data through the quantized and LoRA-modifiedmodel to obtain
predictions.

• Calculate Loss: Compute the loss by comparing the model’s predictions to the true
labels.

• Backpropagation: Update the model’s parameters based on the loss, adjusting only the
parameters affected by LoRA.

• Validation: Periodically evaluate the model on a validation dataset to monitor its per-
formance.

• Check for Convergence: Determine if the model has met the criteria for convergence
(e.g., no improvement in validation loss).

• End Fine-Tuning Loop: Repeat steps 6 to 8 until the model converges or reaches the
maximum number of epochs.

• Final Model: Conclude with the final, fine-tuned model ready for deployment or fur-
ther evaluation.

• End

4.4 Fine TuningMistral 7B

Our approach to fine-tuning Mistral mirrored the process employed for Llama2. The model
architectures before and after fine-tuning are presented in separate figures 4.9 and 4.10. We
achieved optimal performance by leveraging hyperparameter values detailed in dedicated tables
4.4 and 4.5 for LoRA configuration and training arguments, respectively. The following chap-
ter will explore the fine-tuning results for each model in more detail.
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MistralForCausalLM(
  (model): MistralModel(
    (embed_tokens): Embedding(32000, 4096)
    (layers): ModuleList(
      (0-31): 32 x MistralDecoderLayer(
        (self_attn): MistralAttention(
          (q_proj): Linear4bit(in_features=4096, out_features=4096, bias=False)
          (k_proj): Linear4bit(in_features=4096, out_features=1024, bias=False)
          (v_proj): Linear4bit(in_features=4096, out_features=1024, bias=False)
          (o_proj): Linear4bit(in_features=4096, out_features=4096, bias=False)
          (rotary_emb): MistralRotaryEmbedding()
        )
        (mlp): MistralMLP(
          (gate_proj): Linear4bit(in_features=4096, out_features=14336, bias=False)
          (up_proj): Linear4bit(in_features=4096, out_features=14336, bias=False)
          (down_proj): Linear4bit(in_features=14336, out_features=4096, bias=False)
          (act_fn): SiLU()
        )
        (input_layernorm): MistralRMSNorm()
        (post_attention_layernorm): MistralRMSNorm()
      )
    )
    (norm): MistralRMSNorm()
  )
  (lm_head): Linear(in_features=4096, out_features=32000, bias=False)
)

Figure 4.9: Mistral structure prior to the application of LoRA

Parameters Value
lora_rank 16
lora_alpha 8
lora_dropout 0.1
target_modules “q_proj”, “k_proj”, “v_proj”, “o_proj”, “lm_head”
task_type “CAUSAL_LM”

Table 4.4: LoRA Configuration Parameters for Mistral 7B

Parameters Value
batch_size 18
optim “paged_adamw_32bit”
epochs 7
learning_rate 3.5e-5
evaluation_strategy “steps”
warmup_steps 250
lr_schedular_type “cosine”
bf16 True

Table 4.5: SFT Trainer HyperParameters for Mistral 7B
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PeftModelForCausalLM(
  (base_model): LoraModel(
    (model): MistralForCausalLM(
      (model): MistralModel(
        (embed_tokens): Embedding(32000, 4096)
        (layers): ModuleList(
          (0-31): 32 x MistralDecoderLayer(
            (self_attn): MistralAttention(
              (q_proj): lora.Linear4bit(
                (base_layer): Linear4bit(in_features=4096, out_features=4096, 
bias=False)
                (lora_dropout): ModuleDict(
                  (default): Dropout(p=0.1, inplace=False)
                )
                (lora_A): ModuleDict(
                  (default): Linear(in_features=4096, out_features=16, bias=False)
                )
                (lora_B): ModuleDict(
                  (default): Linear(in_features=16, out_features=4096, bias=False)
                )
                (lora_embedding_A): ParameterDict()
                (lora_embedding_B): ParameterDict()
              )
              (k_proj): lora.Linear4bit(
                (base_layer): Linear4bit(in_features=4096, out_features=1024, 
bias=False)
                (lora_dropout): ModuleDict(
                  (default): Dropout(p=0.1, inplace=False)
                )
                (lora_A): ModuleDict(
                  (default): Linear(in_features=4096, out_features=16, bias=False)
                )
                (lora_B): ModuleDict(
                  (default): Linear(in_features=16, out_features=1024, bias=False)
                )
                (lora_embedding_A): ParameterDict()
                (lora_embedding_B): ParameterDict()
              )
              (v_proj): lora.Linear4bit(
                (base_layer): Linear4bit(in_features=4096, out_features=1024, 
bias=False)
                (lora_dropout): ModuleDict(
                  (default): Dropout(p=0.1, inplace=False)
                )
                (lora_A): ModuleDict(
                  (default): Linear(in_features=4096, out_features=16, bias=False)
                )
                (lora_B): ModuleDict(
                  (default): Linear(in_features=16, out_features=1024, bias=False)
                )
                (lora_embedding_A): ParameterDict()
                (lora_embedding_B): ParameterDict()
              )
              (o_proj): lora.Linear4bit(
                (base_layer): Linear4bit(in_features=4096, out_features=4096, 
bias=False)
                (lora_dropout): ModuleDict(
                  (default): Dropout(p=0.1, inplace=False)
                )
                (lora_A): ModuleDict(
                  (default): Linear(in_features=4096, out_features=16, bias=False)
                )
                (lora_B): ModuleDict(
                  (default): Linear(in_features=16, out_features=4096, bias=False)
                )
                (lora_embedding_A): ParameterDict()
                (lora_embedding_B): ParameterDict()
              )
              (rotary_emb): MistralRotaryEmbedding()
            )
            (mlp): MistralMLP(
              (gate_proj): Linear4bit(in_features=4096, out_features=14336, bias=False)
              (up_proj): Linear4bit(in_features=4096, out_features=14336, bias=False)
              (down_proj): Linear4bit(in_features=14336, out_features=4096, 
bias=False)
              (act_fn): SiLU()
            )
            (input_layernorm): MistralRMSNorm()
            (post_attention_layernorm): MistralRMSNorm()
          )
        )
        (norm): MistralRMSNorm()
      )
      (lm_head): lora.Linear(
        (base_layer): Linear(in_features=4096, out_features=32000, bias=False)
        (lora_dropout): ModuleDict(
          (default): Dropout(p=0.1, inplace=False)
        )
        (lora_A): ModuleDict(
          (default): Linear(in_features=4096, out_features=16, bias=False)
        )
        (lora_B): ModuleDict(
          (default): Linear(in_features=16, out_features=32000, bias=False)
        )
        (lora_embedding_A): ParameterDict()
        (lora_embedding_B): ParameterDict()
      )
    )
  )
)

Figure 4.10: Mistral structure after the application of LoRA
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5
Results

In this section, we explore the outcomes of the fine-tuning effort, carried out with an identical
dataset on two Large Language Models (LLMs) each with 7B parameters.

Our attention was centered on fine-tuning Llama2 7B andMistral 7B models. Initially, we ex-
amined the trend of fine-tuning to ensure its effectiveness. Subsequently, we conducted various
analyses on the data obtained pre and post fine-tuning, employing methods known as quanti-
tative and qualitative analysis. These methods are further explored in detail in the following
sections.

5.1 Fine-Tuning Performance Evaluation

Evaluating the success of the fine-tuning procedure necessitates a thoroughobservation of both
training and evaluation losses throughout the training period. Through detailed analysis of the
patterns in learning,we can identify signs of either over-fitting,where themodel learns the train-
ing data too well to generalize effectively to new data, or under-fitting, where the model fails
to learn the underlying patterns of the training data adequately. By closely monitoring these
metrics, we gain valuable insights into the model’s learning efficiency and can make informed
decisions about adjustments needed to optimize the fine-tuning process.
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5.1.1 Evaluation of LLama2 7B Fine-Tuning

Figure 5.1 is related to llama2 train and validation loss, This figure illustrates the trajectory
of training and evaluation losses over time during the fine-tuning. Initially, both losses start
relatively high, with the training loss slightly higher than the evaluation loss. As the number
of steps increases, both losses exhibit a steep decline, indicating rapid learning. Eventually, the
losses plateau and closely align, demonstrating that the model has reached a stable state with
minimized over-fitting, as evidenced by the evaluation loss closely tracking the training loss.
This convergence suggests that themodel has been effectively fine-tuned to the dataset without
significant divergence between training and validation performance.
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Figure 5.1: Train‐eval loss for Llama2 7B.

5.1.2 Evaluation ofMistral 7B Fine-Tuning

Figure 5.2 displays the training and evaluation losses that were recorded during the fine-tuning
of the Mistral 7B model, which shows Both training and evaluation losses commence at high
values but exhibit a sharp decrease as training progresses, which is a positive indicator of the
model’s ability to learn from the data. The training loss consistently remains slightly below
the evaluation loss, maintaining a narrow gap throughout the process. This pattern suggests a
good generalization without significant over-fitting. As the steps increase, both lines begin to
level off, approaching a stable minimum loss. This convergence at a low level of loss indicates
the model has been successfully fine-tuned and is generalizing well to unseen data.
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Figure 5.2: Train‐eval loss for mistral

5.1.3 Comparative Analysis of Fine-Tuning Effects

Having confirmed the efficiency of the fine-tuning, it is now appropriate to evaluate its perfor-
mance on actual data. To achieve this, we select a randomprompt alongwith its corresponding
response fromour test set—adataset that remaineduntouchedduring the fine-tuning phase, as
illustrated in Figure 5.3. For a more comprehensive analysis of the fine-tuning’s impact on the
models, we segment our comparison into two distinct phases: before and after the fine-tuning
process.

Prompt: I am encountering the issue of tape 1 being blocked on my labeler machine. 
How can I fix this? 

Answer: The problem you're facing, tape 1 being blocked in your labeler machine, can 
be resolved by rebooting the machine. Follow the steps below to rectify this issue:

1. Turn off the labeler machine.
2. Unplug the machine from the power source.
3. Wait for about 5 minutes before plugging it back in. This waiting period allows the 
machine to reset itself which may clear the blockage in tape 1.
4. Turn the labeler machine back on.

Please note, this entire process should take around 20 minutes. After performing these 
steps, your labeler machine should be functioning as normal. If you're still experiencing 
issues after this process, the problem might be more severe and require technical 
assistance for repair or component replacement.

Figure 5.3: Reference Prompt and Answer
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Performance Analysis Before Fine-Tuning:
We employed the reference prompt as input to the languagemodels (Mistral and Llama2) prior
to fine-tuning, in order to produce related responses. The outcomes are displayed in Figures
5.4 and 5.5, corresponding to Llama2 andMistral, respectively.

If your labeler machine is equipped with a tape cutter, it is possible that the tape is not 
feeding through the tape cutter properly. To check this, first make sure that the tape 
cutter is properly positioned. If the tape is not feeding properly, check to see if the 
tape is being held in place by the tape clamp. If the tape is not being held in place by 
the tape clamp, adjust the tape clamp so that it is holding the tape in place. If the tape 
is being held in place by the tape clamp, check to see if the tape is being held in place 
by the tape guide. If the tape is not being held in place by the tape guide, adjust the 
tape guide so that it is holding the tape in place. If the tape is being held in place by 
the tape guide, check to see if the tape is being held in place by the tape holder. If the 
tape is not being held in place by the tape holder, adjust the tape holder so that it is 
holding the tape in place. If the tape is being held in place by the tape holder, check to 
see if the tape is being held in place by the tape clamp. If the tape is not being held in 
place by the tape clamp, adjust the tape clamp so that it is holding the tape in place. If 
the tape is being held in place by the tape clamp, check to see if the tape is being 
held in place by the tape guide. If the tape is not being held in place by the tape guide, 
adjust the tape guide so that it is holding the tape in place. If the tape is being held in 
place by the tape guide, check to see if the tape is being held in place by the tape 
holder. If the tape is not being held in place by the tape holder, adjust the tape holder 
so that it is holding the tape in place. If the tape is being held in place by the tape 
holder, check to see if the tape is being held in place by the tape cutter. If the tape is 
not being held in place by the tape cutter, adjust the t

Figure 5.4: response of llama2 7B base model to the sample prompt.

Figure 5.4 illustrates that the response generated by the basic LLama2model is incomplete and
lacks relevance to the given prompt. Additionally, it fails to maintain the instructive format
observed in the reference answer and exhibits excessive repetition.

Figure 5.5 demonstrates that the basic version of Mistral outperformed the LLama2 model
prior to the application of fine-tuning. Despite this improvement, it still falls short of expecta-
tions as it failed to adhere to the instructive format of the reference answer. Additionally, the
model began to produce unrelated content (hallucinate) and once again did not conclude the
answer appropriately, leaving it incomplete.
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I have had a couple of different scenarios that I would like to share. Let’s consider each 
one separately.

Scenario 1:
Tape 1 can’t be blocked because I can’t reach the button at the top of each labeler in 
my production or storage locations.

You can block tape 1 (or tape 2 for that matter) by blocking the tape’s first row of dots 
(or second row, etc.) in a column. As a result, the column will not have any dots in it and 
therefore will not spin when running. You don’t need to block the whole column and 
therefore the tape won’t spin, but you must make sure that there is one row’s worth of 
dots in each column. Then you can reach a button on the machine and block the whole 
row.

Scenario 2:
I’m trying to make a tape to use on a machine, and when I try to make a new tape, the 
machine doesn’t work as well when I use a different tape because I can’t reach enough 
buttons. I only have 2 rows and a row of tapes. Is there a solution to this problem?

You can block the third row of dots and all of the buttons below on the tape’s first row 
and block all three rows of dots to block the tape. So you can make any tape and it will 
work fine.

You may also want to block a number of buttons on a single board if that still isn’t 
working. Then just get a board with a column and a row of buttons that you block. If the 
tape you have is not compatible with the machine you use, you have to block the whole 
row of buttons on that board. Just remember, that only one row in a column can block 
tape 1. So if you don’t have tape 1 you probably don’t need that entire column.

If you have this problem a lot of your production machines you can get them outfitted 
with the proper boards. They are made by a company called RSI. These boards are 
designed in such a way, that a certain number of dots will be on the labeler.

For example, if you need to block a tape that is currently on the machine, you will get 
the block that is required (which is the third row for example

Figure 5.5: response of Mistral 7B base model to the sample prompt.
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Performance Analysis After Fine-Tuning:

Nonetheless, post fine-tuning, notable improvementswere observed. Bothmodels successfully
delivered conclusive answers, aligned with the instructive format of the reference answer, and
produced responses that were significantly more relevant to the given prompt without any rep-
etition. The enhanced answers, post fine-tuning, are depicted in Figures 5.6 for Llama 2 and
5.7 for Mistral, respectively.

The issue of tape 1 being blocked on your labeler machine is likely due to a blockage in 
the tape path. To resolve this, you need to follow these steps:

1. Switch off the labeler machine and unplug it from the power source to ensure safety.
2. Open the machine cover and locate the tape path. You should see a small metal rod 
that runs through the tape.
3. Use a screwdriver to carefully unscrew the rod.
4. Once removed, inspect the tape path for any blockages. If there are any, carefully 
remove them.
5. After cleaning, screw the metal rod back into place.
6. Close the machine cover and plug the labeler back into the power source.
7. Run a test print to ensure the problem has been resolved.

This process should take about 20 minutes to complete, depending on the complexity of 
the blockage. Remember to always follow safety protocols when dealing with machinery.

Figure 5.6: Post‐Fine‐Tuning Response of Llama2 to the initial Prompt

To resolve the issue of tape 1 being blocked in your Labeler machine, follow the steps 
below:

1. Secure: First, ensure that your Labeler machine is turned off and appropriately secured. 
Working on an energized machine can be dangerous.

2. Inspection: Next, inspect the machine for any obvious obstructions or damaged parts 
which could be causing the issue.

3. Clearance: Clean the area around and behind the tape path to make sure no debris or 
foreign particles are obstructing the tape path.

4. Examination: Examine the tape and its guide path to locate the exact cause of the 
blockage.

5. Adjustment: Adjust the tension of the tape line and check the alignment of the path. 
Tightness or misalignment of the tape can also cause blockage.

6. Tension: Check the tension of the tape being used. If it's too tight, it could apply more 
pressure on the machine's mechanisms, causing a blockage.

7. Test: Finally, test the machine to see if the blockage is rectified.

The duration to resolve this issue is approximately 20 minutes. Make sure to wear 
appropriate personal protective equipment and adhere to the user's manual guidelines 
while cleaning and adjusting the Labeler machine to ensure safe working.

Figure 5.7: Post‐Fine‐Tuning Response of Mistral to the initial Prompt
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5.2 Quantitative Analysis

We conducted a comparison of the outcomes produced before and after the process of fine-
tuning, revealing a significant enhancement in the quality of generated responses. To ensure
a comprehensive and impartial assessment, it’s necessary to replicate this procedure across the
entire dataset within our test set—inputting the data into both the original and fine-tuned
models for comparison. This endeavor, however, can become labor-intensive and may not be
feasible for larger datasets. An alternative approach involves the use of quantitative metrics,
specifically ROUGE, which is detailed in section 2.3.1.

5.2.1 Analysis Using ROUGE Score

Llama2 7B
The comparative analysis of the ROUGE scores before and after fine-tuning llama2 7Bmodel
reveals a substantial improvement in the model’s performance. In the pre-fine-tuning graph as
illustrated in Figure 5.8a, the ROUGE-1, ROUGE-2, and ROUGE-L scores are relatively low,
reflecting a modest ability to replicate unigrams, bigrams, and maintain sentence structure in
comparison to reference answer.

However, thepost-fine-tuning graphdepicted inFigure 5.8bpresents significantlyhigher scores
across these metrics. The ROUGE-1 score, indicating unigram overlap, shows the most pro-
nounced increase, suggesting a greatly improved vocabulary match with the references. The
ROUGE-2 score also rises, implying better handling of two-word phrases and a deeper under-
standing of language patterns. The increase in the ROUGE-L score confirms that the fine-
tuned model generates answers with improved sentence structure and coherence. These en-
hanced scores demonstrate that fine-tuning has effectively augmented themodel’s capability to
produce answers that aremore closely alignedwith the expected answers, capturing the essence
of the source material with greater accuracy.
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(a) Pre‐Fine‐Tuning ROUGE Scores for Llama2 (b) Post‐Fine‐Tuning ROUGE Scores for Llama2

Figure 5.8: Evaluation Metrics for Textual Comparison: ROUGE Scores of the Llama2

Mistral 7B
When looking at the ROUGE scores before and after the fine-tuning of Mistral 7B, it’s clear
there’s been a significant upgrade in how well the model is performing. Initially, as seen in
Figure 5.9a, the scores for ROUGE-1, ROUGE-2, and ROUGE-L weren’t very high. This
meant that themodel was only somewhat successful in reflecting themost commonwords and
phrases from the reference answers. After we fine-tuned the model, shown in Figure 5.9b, we
saw a noticeable jump in all these scores. The single-word overlap, captured by the ROUGE-
1 score, had the most obvious improvement. This means that the model’s vocabulary usage
is now much closer to what we see in the reference answer. There was also an uptick in the
ROUGE-2 score, which tells us that the model is getting better at putting words together in
pairs, indicating a deeper grasp of language patterns. Lastly, the higherROUGE-L scoremeans
the model is producing answers with structures that make more sense and flow better. All in
all, these improvements confirm that the fine-tuning has truly made the model better at giving
answers that more accurately reflect what’s expected.

(a) Pre‐Fine‐Tuning ROUGE Scores for Mistral (b) Post‐Fine‐Tuning ROUGE Scores for Mistral

Figure 5.9: Evaluation Metrics for Textual Comparison: ROUGE Scores of the Mistral
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5.3 Qualitative Analysis

To delve deeper into the nuances of model performance, we introduced a qualitative aspect to
our analysis. The aim was to go beyond mere numbers and actually understand the quality of
responses generated by the models.

For this, we conducted a blind evaluation using a subset of our test data. Fifty prompt-answer
pairs were randomly selected, and only the prompts were presented to the fine-tuned models.
We then utilized ChatGPT-4 to compare the generated responses from both models with the
corresponding reference answers. Importantly, the prompts provided to ChatGPT-4 did not
contain any model identifiers to mitigate potential bias in its evaluation. The specific prompt
format is illustrated in Figure 5.10, and the evaluation results are summarized in Table 5.1.

The analysis revealed comparable performance between the two fine-tuned models. Llama2
achieved a slight edge, generating superior responses in 54% (27 samples) of the evaluations,
while Mistral performed better in 46% (23 samples). It is noteworthy that while theoretical
considerations suggested Mistral’s potential superiority, the empirical results in this specific
use case demonstrated Llama2’s marginally better performance.

Prompt:

As a proficient prompt engineer, craft a prompt using only the details outlined in points 1 
and 2. The goal is to create a concise and precise request that mimics a user seeking 
guidance from a tech-assistant chat-bot. Exclude any greetings or expressions of gratitude 
in the prompt.

1.Problem statement: []

2.Machine Type: []

Then, As an expert technician, leverage the details specified in points A, B, and C to craft a 
thorough solution for the issue at hand. Offer precise instructions on resolving the problem, 
excluding any greetings or expressions of gratitude.

A. Cause of problem: []

B. Solution: []

C. The duration required to resolve the problem in hours: []

Figure 5.10: Prompt Used for Comparative Analysis with ChatGPT‐4
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Model_name Result
Llama2 7B 54%
Mistral 7B 46%

Table 5.1: Performance Comparison of Mistral and Llama2 on 50 Test Samples
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6
Conclusion and Future Work

In this dissertation, we explored the evolution from sequence-to-sequence models to the devel-
opment of Large LanguageModels (LLMs), focusing specifically on the prominent 7B LLMs:
Mistral and Llama2. We delved into their detailed examination, highlighting how thesemodels
can be adapted to specific domains through fine-tuning techniques.

Additionally, we discussed strategies like quantization andLoRA,which enable the use ofmin-
imal hardware resources at reduced costs. Our fine-tuning efforts were successfully conducted
on a single A100GPU, demonstrating that bothmodels could be finely tuned for a specialized
domain. This was exemplified by the creation of a chatbot designed to assist users in trou-
bleshooting issues with their machinery, offering a faster and more straightforward solution.

The significance of high-quality data in the fine-tuning process cannot be overstated, as it re-
mains a pivotal aspect with room for improvement in howwe generate and curate high-quality
datasets for specificobjectives. Furthermore, exploring various combinationsofhyper-parameters
for fine-tuning, such as different configurations of targetmodules for applying LoRA, presents
an opportunity for enhancing model performance. The slight superiority of Llama2 overMis-
tral, despiteMistral being themore robustmodel, suggests thatMistral’s extensive pre-training
on a broader dataset might have contributed to its resistance to adaptation with the limited
dataset we possessed.
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This hypothesis opens the door for future investigations, where testing different models with
larger and more refined datasets for fine-tuning could validate this theory.

Looking ahead, ourworkunderscores the endless possibilities for refining and advancingLLMs
within specific domains. Future research could extend beyond the scope of this dissertation, ex-
ploring innovative methods for data curation and model optimization. Additionally, the com-
parative analysis of LLMs under varying conditions of data richness and domain specificity
offers a fertile ground for further exploration. As technology andmethodologies evolve, so too
will our ability to tailor LLMs more effectively to meet the nuanced needs of users and indus-
tries, paving the way for groundbreaking applications that enhance efficiency, understanding,
and interaction in myriad contexts.
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