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Abstract 
Pinus nigra (black pine) is an ecologically important species in the Mediterranean Basin. 

Black pine plantations were established in the early 20th century to prevent soil erosion in 

mountain environments around Italy. The unmanaged pine stands tend to develop an understory 

of broadleaves, including Quercus ilex, Ostrya carpinifolia, Fraxinus ornus, Acer spp., and 

Quercus spp. As fire increases in frequency and severity in the Mediterranean Basin, these 

already endangered habitats are increasingly at risk. This study aims to investigate the role of 

biological legacies and topographic factors that affect the natural regrowth of woody vegetation 

following severe fire in montane Pinus nigra forests. Pinus nigra lacks fire-specific adaptations 

such as serotiny, resprouting, or a seed bank. This year-zero study of regeneration of woody 

vegetation will help highlight what topographic factors and material legacies best support 

regrowth immediately after fire and provides insight into the future makeup of the post-

disturbance community. Legacies and topography that regulate temperature extremes, soil 

moisture, and soil temperature created microsites that were conducive to increased regeneration 

density and greater performance of woody regeneration. Regenerative strategies—obligate 

reseeding, obligate resprouting, and facultative seeding—were analysed to determine which 

strategy was most successful in specific microclimatic conditions immediately after severe fire. 
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Introduction 
The abandonment of cropland and afforestation of montane areas left large areas of 

unmanaged black pine (Pinus nigra J.F. Arnold) forests in the Mediterranean Basin (Gil-Tena et 

al., 2016;Mercurio & Schirone, 2015) Black pine was planted to prevent soil erosion in mountain 

environments around Italy in the early 20th century (Mercurio & Schirone, 2015). These now 

unmanaged pine stands are developing an understory of broadleaves, including Quercus ilex L., 

Ostrya carpinifolia Scop., Fraxinus ornus L., Acer spp., and Quercus spp. (Mercurio & 

Schirone, 2015). As these areas become more prone to fire (Oliveira et al., 2018), the landscape 

will be subject to change. 

Black pine is considered mildly fire tolerant (Christopoulou et al., 2014) due to its 

relatively thick bark, but is vulnerable to high-severity fire due to its non-serotinous cones, lack 

of a canopy seed bank, and the timing of seed dispersal in the early spring just before fire season 

(Christopoulou et al., 2014; Gracia et al., 2002; Martín-Alcón & Coll, 2016; José Luis Ordóñez 

et al., 2006). The natural regeneration of plant species, including trees, following a disturbance 

can be facilitated by disturbance legacies. In general, there are two types of legacies following 

disturbance, material and informational legacies (Johnstone et al., 2016). The former are physical 

materials present after disturbances—fallen logs, snags, surviving vegetation, seeds, or other 

matter depending on the ecosystem and the characteristics of disturbance; the latter are species 

history traits such as serotiny, clonal propagation, or other adaptations to disturbance frequencies 

and types. The combination of these two legacies form ecological memory (Johnstone et al., 

2016). The material legacies following fire in artificial black pine stands are snags and 

deadwood, any surviving vegetation—unlikely after severe fire—and abiotic, non-flammable 

material such as rocks or mineral soil. Black pine does not generally have a seed bank following 

severe fire, as its cones are non-serotinous and disperse in early spring, just prior to fire season 

(Ordóñez et al., 2005; Ordóñez et al., 2006). The informational legacies in this case are the fire-

adapted resprouting species of the understory. Common species found post-fire include 

resprouting oaks (Baudena et al., 2020; Martín-Alcón & Coll, 2016; Retana et al., 2002) and 

shrub species in the genus Rubus, Crataegus, and Viburnum (Martín-Alcón & Coll, 2016; Retana 

et al., 2002).  

Microsites—created by material legacies and microtopographic elements—that can 

support woody regeneration can be determined by factors such as topography (Lucas-Borja et al., 

2011; Martín-Alcón & Coll, 2016; José Luis Ordóñez et al., 2006), soil moisture (Christopoulou 

et al., 2014; Ordónez et al., 2004), and the facilitating effect of shrubs and other forms of land 

cover such as coarse woody debris (Christopoulou et al., 2014; Gracia et al., 2002; Martín-Alcón 

& Coll, 2016; Ordónez et al., 2004). Black pine may perform best in mesic microhabitats (Gracia 

et al., 2002; Lucas-Borja et al., 2011) and under some degree of canopy or vegetative cover 

(Christopoulou et al., 2014; Gracia et al., 2002; Ordónez et al., 2004). These conditions may 

arise through material legacies after fire. Coarse woody debris, for example, can provide higher 

water content than adjacent soils, reduce inter-species competition, and provide physical cover 

(Johnson & Alan Yeakley, 2016). Vegetative cover can provide the necessary shade for black 

pine recruitment, reduce heat stress, lower temperature variation, and facilitate higher soil 

moisture (Christopoulou et al., 2014; Ordónez et al., 2004). 
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Forest succession assumes a disturbed site will likely return to the same pre-disturbance 

climax community—a pathway called autosuccession—in the event that the dominant tree or 

woody vegetation in the overstory has a viable reproductive strategy post fire (Arnan et al., 2007; 

Walker et al., 2013). Fire severity can be an explanatory variable with respect to regeneration 

patterns (Vasques et al., 2023). There are several common adaptations to fire in this region: 

obligate seeding, in which plants regenerate exclusively from a surviving seed bank; obligate 

resprouting, in which plants mainly regenerate after fire from still-living stumps or roots until 

they reach maturity and begin producing seeds in the absence of disturbance; and facultative 

seeding, in which the two previous strategies are combined immediately after fire (Vasques et 

al., 2023). High severity and frequent recurrence of fire can reduce the success of obligate 

resprouters, such as oaks, resulting in a “delayed” successional pathway that favours the 

regrowth of facultative seeder species (Vasques et al., 2023), although Marais et al. (2014) found 

that fire severity was not a reliable predictor of success of obligate resprouting species versus 

facultative regeneration.  

In the case of Pinus nigra, these stands have no reproductive strategy to ensure 

autosucession in the case of severe fire (Arnan et al., 2007; Martín-Alcón & Coll, 2016; Ordónez 

et al., 2004; Jose Luis Ordóñez et al., 2005). However, obligate resprouters and facultative 

seeders that establish earlier have been found to have better survivorship postfire (Marais et al., 

2014), suggesting the early successional community will be established relatively quickly post 

fire. Mediterranean pine forests are predicted to transition to open oak and shrub forests 

following fire (Gracia et al., 2002; Martín-Alcón & Coll, 2016; Retana et al., 2002), particularly 

as the climate warms and more arid conditions prevail (Baudena et al., 2020). Black pine forests 

in particular tend to transition to open shrubland after high mortality following fire (Retana et al., 

2002). One study found that the conversion to open shrubland or oak-dominated forest depends 

on land use prior to fire, with recently abandoned cropland changing mainly to shrub-dominated 

and long-abandoned cropland transitioning to oak-dominated forests after fire in black pine 

forests (Retana et al., 2002). With respect to woody vegetation, facultative seeders appear to 

have an early competitive advantage by combining both resprouting and regenerating from a 

seed bank (Keeley et al., 2006; Vasques et al., 2023).  

 The burnt areas in this study originated from two large wildfires that began in late July, 

2022, and quickly became some of the largest wildfires in Slovenia’s history (Korosec, 2022). 

The fires affected the eastern part of Friuli Venezia Guilia (proper Venezia Giulia, or Carso) 

region in Italy and the Karst area in Slovenia (Figure 1). The fire resulted from the combination 

of drought in these regions, along with a heat dome that resulted in a prolonged period with 

temperatures at or near 40° Celsius. Over 3,500 hectares burned in the first few days of the fire, 

sparking a multinational firefighting response (Korosec, 2022). The fire of interest started on the 

17th of July in Slovenia between Rence and Kostanjevica na Krasu and was followed by another 

fire that began in Italy on July 19th and started between Gorizia and Trieste.  

 This region features the Karst Plateau, which extends across the border from 

southwestern Slovenia to northeastern Italy. The Carso region is largely dominated by pine 

plantations, largely consisting of black pine (Stančič & Repe, 2018).  The plateau has a steep 
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western ridge known as the Karst Rim, thus cutting it off from the more mild, humid climate of 

the Adriatic. Karst is the German word for stone, and this plateau is characterized by the soft 

carbonate stone (Figure 2) that often forms depressions and expansive cave systems (Hajna, 

2003). Due to its highly permeable bedrock, high cover of pine plantations (P. nigra and P. 

sylvestris), and proximity to anthropogenic settlement and rail lines, this region is at a high risk 

for wildfire Drought conditions are frequent despite high precipitation levels due to a lack of 

retention in the carbonate bedrock. (Hajna, 2003; Stančič & Repe, 2018). 

 

Figure 1: Extent of the Carso Fire Complex, retrieved from severe-weather.eu. 

In this study, there were ninety-seven sample plots surveyed for woody vegetation 

regeneration nine months after the Carso fire, to determine the level and composition of 

regeneration in the first year after fire. Few studies have been conducted on the post-fire 

recovery in the Carso region, particularly on the year-zero dynamics. One study compared the 11 

month regeneration following a surface fire in the region to an older burn and unaffected areas 

(Stančič & Repe, 2018). Though they found that succession occurs rapidly, the shrub and field 

layers in the more recent site were significantly more sparse and less diverse, dominated by 

Fraxinus ornus, Quercus petraea, and Juniperus communis, as well as Prunus spinosa. As many 

Mediterranean shrub species prefer warm, dry, sunny areas, they also act as pioneer species and 

recolonize quickly following fire (Stančič & Repe, 2018). 
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Problem 
 Abandoned black pine plantations on the Karst Plateau are increasingly prone to severe 

wildfires (Oliveira et al., 2018). While studies have shown that these stands generally transition 

to open oak-shrub forests (Gracia et al., 2002; Martín-Alcón & Coll, 2016; Retana et al., 2002), 

there are relatively few studies on the immediate response post-fire (Stančič & Repe, 2018), 

especially with respect to material legacies left after disturbance. As black pine is poorly adapted 

to severe fire, these landscapes will change quickly, and the success of early successional and 

fire-adapted species may help reveal the future climax community. 

 

Hypotheses 
Early woody vegetation regeneration will be fostered by material legacies and topographic 

conditions that regulate temperature and soil moisture – coarse woody debris cover, understory 

cover, and rock/stone cover.  

Figure 2: Geological Map of Carso/Karst Plateau. Retrieved from Hajna, 2003. 
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Woody regeneration density and performance will be dominated by facultative seeders, as the 

use of both regeneration strategies—resprouting and seeding—will allow for the colonisation of 

beneficial microsites. 

 

Objectives 
 This study investigates regeneration following severe (crown) fire, aiming to determine 

the relationship of various material legacies and topographic factors on the density and 

performance of regeneration within the first year following fire. Analysis of performance of 

regeneration strategies will aid in the prediction of successional pathways after severe fire in 

black pine stands.  

 

Materials and Methods 

Surveying and Study Plot Measurements 
Patches of severe fire from the August 2022 fire along the Italian-Slovenian border were 

selected for sampling based on size, severity, and proximity to anthropogenic structures such as 

roads. Within these patches, ninety-seven circular sample plots with a 6m radius were surveyed 

(Figure 3). There were ninety-six high severity sites sampled, and one site was considered 

medium severity upon a revisit. The study area was part of the August 2022 Carso fire complex, 

which had burned over two weeks in August of the year prior to sampling. This survey allowed 

for the recording and analysis of regrowth within the first year following severe fire. 

Characteristics measured include the height, type (gamic/agamic), number of stems—in the case 

of agamic regeneration, and species of all regenerating woody vegetation. Material legacies were 

described through % estimations of groundcover—soil cover, rock cover, and non-woody 

vegetation cover; the latter was split into phanerophytes, chamaephytes, monocotyledons, and 

Figure 3: Sample Plots C1-C97 in Friuli Venezia Guilia (left) and Karst (right) regions. 
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dicotyledons—as well as estimates of coarse woody debris, including snags. The average length 

and modal diameter of coarse woody debris were recorded, along with the number of pieces, to 

allow for estimation of volume during statistical analysis. Site characteristics such as elevation, 

slope, and aspect were derived from digital terrain models (next section). Site locations were 

recorded using an EMILD Reach RS2—a precision GNSS unit. 

Remote Sensing 
 The topographic data were derived from two digital elevation models: one from the 

National Geoportal of Italy, which covered the Italian side of the border just north of Trieste, and 

the other from the Ministry of the Environment and Spatial Planning, Slovenian Environment 

Agency, which covered the rest of the sample plots on the Slovenian side of the Italian-Slovenian 

border. The sample plot centre points were imported into ArcGIS using recorded latitude and 

longitude from the precision GNSS unit. The geoprocessing toolbox allowed for the calculation 

of slope, aspect, and elevation directly from the digital terrain model. The Sample tool was used 

to collect the average value of slope, elevation, and aspect from underneath the study plots. 

These attributes were joined to the study plots shape layer. The attribute table was exported to a 

CSV file to later be imported into R for manipulation and analysis. 

Data Processing and Preparation 
Regeneration was reported in two ways: average height of regeneration at each site 

(performance) and the number of stems per hectare (ha) at each site (density). An attempt to find 

allometric equations to determine the volume (biomass) of regeneration was also carried out. 

There is a significant body of work in this area, including specific Mediterranean-native shrubs 

(Muukkonen, 2007; Usó et al., 1997), but they need dry masses or measures of diameter which 

were not collected due to the exceedingly small size of the regeneration being surveyed. The 

regeneration response was also split by post-fire regeneration strategy (see Table 1). The 

performance and density of regeneration for obligate resprouters, obligate seeders, and 

facultative seeders was derived from the species count and height at each plot. Species were 

sorted according to the USDA’s Fire Effects Information System Index of Species Information 

(USDA, n.d.). Where species-specific information could not be found, they were matched by 

genus.  

 Following the retrieval of topographic data from ArcGIS, the survey and topographic 

data were imported into R for preparation and analysis. The data entry software did not record 

sites with zero counts of regeneration, as no data were recorded for theses sites. The first step 

was to account for these “zero-value” sites. The plot-specific topographic data and stem counts 

were added to a data frame. From the total stem count, an average stem count per hectare was 

calculated by dividing the total number of stems by the plot size (113.1m2), and multiplied by 

10,000m2 to retrieve an average stem density for each sample plot. A separate data frame was 

compiled with the stem height for each species sampled in each plot. From this data frame, an 

average stem height for each plot was calculated and added to the plot data frame as the 

performance measure. These two response variables were initially broken down further to 

analyse the performance and density of conifers and broadleaves, but the between-plot 

homogeneity of regeneration prevented meaningful analysis of these groups.  
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Table 1: Study species listed by regeneration strategy. 

 

The independent variables were broken down into relevant classes to aid in data analysis 

and comprehension (See Figures 4-6). Aspect was reported in the ordinal directions; elevation 

was divided into four classes; and slope was divided into three classes (Figure 4). The vegetative 

ground cover variables, i.e., phanerophyte cover, chamephyte cover, dicotyledon cover, and 

monocotyledon cover, were combined into one “vegetative ground cover” class due to a high 

count of zero values and extremely low presence values owing to the short post-fire regeneration 

period. This vegetative ground cover class is reported as a presence or absence in each plot, 

applying a cover threshold (Figure 5). The non-living ground cover variables, i.e., mineral soil, 

rock, and leaf litter, were reported independently (Figure 6). All three cover types were classed 

into three respective categories. Deadwood volume was calculated using diameter and length of 

recorded snags and logs in each plot and categorized into four classes.  

Statistical Analysis 
 Due to the short post-fire regeneration period, the response data were extremely right 

skewed (Figure 8), meaning there was exceptionally low stem density, and the average stem 

height was low. To transform the data to a more normal distribution for better analysis, a Tukey 

transformation ladder was applied (Lane, 2023). Tukey’s transformation is defined as such (Eq. 

1):  

 

     𝑦 = {

𝑥𝜆  𝑖𝑓 𝜆 > 0 
log 𝑥  𝑖𝑓 𝜆 = 0

−(𝑥𝜆 ) 𝑖𝑓 𝜆 < 0

         (1) 

Regeneration Strategy Species 

Obligate Seeders Ailanthus altissima (Mill.) Swingle 

Pinus halepensis Mill. 

Pinus nigra J.F. Arnold 

Obligate Resprouters Quercus pubescens Willd. 

Quercus ilex L. 

Pistacia lentiscus L.  

Ostrya carpinifolia Scop. 

Fraxinus ornus L. 

Facultative Seeders Cotinus coggygria Scop.  

Crataegus monogyna Jacq. 

Prunus mahaleb L.  

Ligustrum vulgare L.  

Rosa spp. 

Rhamnus alaternus L.  

Rhamnus cathartica L. 

Robinia pseudoacacia L. 

Amorpha fruiticosa L.  
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 The lambdas in Eq. 1 were respectively calculated for density and performance using the 

gld package in R. Regarding performance, 𝜆 = 0.375 was applied, and 𝜆 = 0.35 was applied to 

the density data (Figures 9 and 10). However, upon testing for normality following this 

transformation and with a Shapiro-Wilk test, the transformation was unable to ensure normal 

distribution. Thus, the data were left in their original distribution and non-parametric statistical 

tests were used in analysis.  

  

Results 

Grouping of Independent Variables 
The independent variables were sorted into categorical classes to aid in data analysis and 

comprehension (Figures 4-6). Aspect was reported in the ordinal directions. Elevation was 

divided into four classes: Sea level (<100m), low (<408m) medium (<445m), and high(≥445m). 

These groups were determined by the bimodal elevation distribution, with a large gap between 

100 and 250m. The low/medium/high classes were derived by splitting the higher of the two 

peaks into thirds. Slope was divided into three classes: flat (<10%), moderate (<20%) and steep 

(≥20%) (Figure 4). 

The vegetative ground cover variables, i.e., phanerophyte cover, chamephyte cover, 

dicotyledon cover, and monocotyledon cover, were combined into one “vegetative ground 

cover” class due to a high count of zero values and extremely low presence values owing to the 

short regeneration period post-fire. The vegetative ground cover class was reported as a presence 

(cover ≥5%) or absence (cover < 5%) in each plot (Figure 5) These presence/absence classes 

were based on the 90th percentile of the vegetative cover class. 

Figure 4: Topographic variable classes for aspect, elevation, and slope. 
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The non-living ground cover variables, i.e., mineral soil, rock, and leaf litter, were 

reported independently (Figure 6). Mineral soil cover was classed into low (<35%), medium 

(<60%), and high (≥60%) classes. Rock cover was also classed into low (<35%), medium 

(<60%), and high (≥60%) classes. Leaf litter was classed into none (0%), low (<50%), and high 

(≥50%) classes. Deadwood (Figure 7) was sorted into three classes: Low (<2.3m3), medium 

(<3.9m3), and high (≥3.9m3). These classes were derived by splitting the data according to 33%, 

66%, and 100% percentiles.  

Figure 5: Site counts with vegetative cover over 5%. 

Figure 6: Non-living ground cover class distributions. 
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Regeneration Density and Performance 
 The Tukey transformation ladder applied to regeneration density (Figure 9) and 

regeneration performance (Figure 10) was intended to create a more normally distributed dataset 

to allow for the application of ANOVA and Tukey tests. The transformed regeneration density 

appears to be more normally distributed than the transformed performance when comparing the 

Q-Q plots in Figures 8 and 9, however both response variables showed resistance to 

transformation with Shapiro-Wilk tests yielding p-values of <0.00006 for the regeneration 

performance distribution and <0.008 for the stem density distribution. The data were left in their 

Figure 8: Woody regeneration density and performance histograms. 

Figure 7: Deadwood volume class distribution. 
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original distribution (Figure 8) and analysed with Kruskal-Wallis tests, followed by post-hoc 

Dunn tests if significance was determined. As shown in Table 2, not all topographic 

characteristics and legacies had an impact on woody regeneration density and/or performance. 

Of the topographic variables, slope and elevation showed difference in ranked means (p<0.001 in 

all cases) for both performance and density while the difference between ranked means of plot 

aspect was negligible (p>0.1 in both cases). In terms of material legacies, volume of deadwood 

influenced regeneration density (p<0.05), but not performance (p>0.09). Vegetative ground 

cover, leaf litter, and soil cover show significant effect (p<0.05 in all cases), indicating an effect 

on both performance and density of woody regeneration. The rocky cover class showed 

significance only with respect to the height of regeneration (p<0.01), but not with respect to 

density (p>0.7). 

Figure 10: Attempted Tukey transformation ladder results on average woody 

regeneration height. From left to right: Tested lambda values, transformed data 

histogram, and QQ plot comparing the transformed data to a Gaussian distribution. 

Figure 9: Attempted Tukey transformation ladder results on woody regeneration density. 

From left to right: Tested lambda values, transformed data histogram, and QQ plot 

comparing the transformed data to a Gaussian distribution.  
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Table 2: P-values from Kruskal-Wallis tests. 

 

 Given these results from the Kruskal-Wallis analysis, Dunn tests were applied to 

understand the effects of slope, elevation, vegetative cover, leaf litter cover, and soil cover on 

regeneration density and performance. Rocky cover was analysed only with respect to 

regeneration performance. See Table 3 for results of the Dunn tests. 

 In terms of slope, regeneration density showed a general decrease with increasing slope 

(Figure 11) between flat and moderate slopes (p<0.001), and flat and steep slopes (p<0.00002), 

but no significant difference was found between moderate and steep slopes (p>0.09).  

Regeneration performance had a similar relationship, but with a significant difference between 

performance between all slope categories; Flat and moderate slopes (p<0.0003), moderate and 

steep slopes (p<0.03), and flat and steep slopes (p<5x10-6).  

Legacy/Topographic 

Variable 

Kruskal-Wallis p-value 

(Density) 

Kruskal-Wallis p-value 

(Performance) 

Aspect 0.1596 0.1167 

Slope 7.161x10-6 1.222x10-7 

Elevation 3.401x10-8 2.133x10-13 

Deadwood Volume 0.00477 0.09048 

Vegetative Cover 0.001488 0.001521 

Leaf litter Cover 0.04337 4.489x10-5 

Rocky Cover 0.7392 0.009078 

Soil Cover 0.00377 7.596x10-7 

Figure 11: Woody regeneration density and performance response to slope. 
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Different elevations also showed a significant response, with the general trend of higher 

density and performance at lower elevation (Figure 12). All elevation bands showed significant 

differences in regeneration density except between the low elevation band and the medium 

elevation band (p>0.7). Similarly, most elevation bands showed significant differences in 

regeneration performance except the difference between low elevation plots and medium 

elevation plots (p>0.3), and between medium elevation plots and high elevation plots (p>0.06). 

 

 

Figure 12: Woody regeneration density and performance in response to elevation. 

a 
a 

b 

b 

Figure 13: Woody regeneration density and performance response to 

vegetative cover over 5%. 
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Vegetative cover (Figure 13) showed a significantly higher level of both woody 

regeneration density and performance with the presence of vegetative cover over 5% (p<2.2x10-

16). The other ground cover legacies did not show as strong a response; density and performance 

were lower with mineral soil cover (Figure 14) between low to medium cover (p<0.03 and 

Figure 16: Woody regeneration density response to deadwood volume and regeneration 

performance response to rocky cover. 

Figure 14: Woody regeneration density and performance response to soil cover. 

Figure 15: Woody regeneration density and performance response to leaf litter cover. 
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p<0.0025, respectively) and low to high cover (p<0.008 and p<1x10-6, respectively). Density 

showed no response between medium and high cover (p>0.4), but performance saw a statistically 

significant decrease (p<0.04). Both density and performance showed a positive relationship with 

leaf litter cover (Figure 15), but only between plots with no leaf litter cover and low leaf litter 

cover (p<0.05 and p<8.5x10-5, respectively). The comparison between low and high leaf litter 

cover had no significance for either response variable (p>0.09 in all cases). Rocky cover was 

only analysed with respect to regeneration performance (Figure 16) and a trend of greater 

performance only when comparing low and medium cover plots (p<0.012). Regeneration density 

had a negative relationship between plots with low to medium deadwood volume (p<0.033) and 

between low and high-volume plots (p<0.0058) (Figure 16).  
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Table 3: Dunn test p-values for regeneration density and performance by site characteristics. 

 

 

Site Characteristic Density p-value Performance p-value 

Slope   

Flat (≤10%) vs 

Moderate (≤20%) 

9.298988ex10-4 

 

2.133879x10-4 

Moderate vs steep 

(>20%) 

9.127611x10-2 2.810659x10-2 

Flat vs steep 4.605258x10-6 6.20514x10-8 

Elevation   

Sea(<100m) vs Low 

(<400m) 

6.318415x10-3 1.72287x10-5 

Low vs Medium 

(<437m) 

7.971470x10-1 3.421490x10-1 

Medium vs High 

(≥437m) 

9.311209x10-3 6.127371x10-2 

Sea vs Medium 4.897744x10-3 2.113461x10-7 

Sea vs High 5.334450x10-9 1.002497x10-13 

Low vs High 7.259223x10-3 5.000830x10-3 

Vegetative Cover   

Absent (≤5%) vs 

Present (>5%) 

<2.2x10-16 <2.2x10-16 

Rock Cover   

Low (<35%) vs. 

Medium (<60%) 

 8.2382295x10-1 

Medium vs High 

(≥60%) 

 1.183034x10-2 

Low vs High   7.682028x10-2 

Leaf litter Cover   

None (0%) vs Low 

(<50%) 

4.883884x10-2 8.454337x10-5 

Low vs High (≥50%) 6.7721736x10-1 1.605029x10-1 

None vs High 3.4205178x10-1 9.225847x10-2 

Soil Cover   

Low (<35%) vs 

Medium (<60%) 

2.6259528x10-2 2.471512x10-3 

Medium vs High 

(≥60%) 

4.37321543x10-1 3.150566x10-2 

Low vs High 8.232921x10-3 9.820951x10-7 

Deadwood Volume   

Low (<2.3m3) vs 

Medium (<3.9m3) 

3.2800210x10-2  

Medium vs High 

(≥3.9m3) 

5.04478976x10-1  

Low vs High 5.774887x10-3  
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Density and Performance of Regenerative Strategies 
 The three regenerative strategies—obligate seeder, obligate resprouter, and facultative 

seeder—were analysed separately. Observing the general shape of the data, facultative seeders 

are the most successful strategy immediately after severe fire (Figure 17), with the highest 

average density of 3359 stems per hectare. This is followed by obligate resprouters (Figure 18), 

with an average density of 2043 stems per hectare. Lastly, obligate seeders (Figure 19) had the 

lowest average density at 416.6 stems per hectare. Performance followed a slightly different 

trend, as resprouters averaged of 13.78cm in each plot, followed by facultative performance 

Figure 17: Facultative seeder density and performance histograms. 

Figure 18: Obligate resprouter density and performance histograms. 



20 

 

(11.19 cm on average), and lastly by obligate seeders with an average height of 0.7cm. Obligate 

seeders were present in only 8 of the 97 sites, and were excluded from the rest of the analysis. 

 As with the total regeneration density and performance data, these datasets were too right 

skewed to proceed with parametric statistical tests. Non-parametric Kruskal-Wallis tests and 

Dunn tests were conducted on the data to determine the relationship between each group and the 

topographic characteristics and material legacies. The results of the Kruskal-Wallis tests are in 

Table 4. There were few universal trends with respect to the relationship between site conditions 

and the density or performance of each group. All results from the subsequent Dunn tests can be 

found in Table 5. 

Table 4: Kruskal-Wallis Results for regenerative strategies. 

 Obligate Seeders Obligate Resprouters Facultative Seeders 

Site 

Condition 

Density Performance  Density Performance Density Performance 

Aspect 0.07385 0.07083 0.8325 0.6483 0.007256 0.009749 

Slope 0.06384 0.08052 4.075x10-4 1.179x10-5 0.01571 0.001051 

Elevation 0.00370 0.00439 7.234x10-5 1.179x10-10 7.68x10-5 1.887x10-7 

Deadwood 

Volume 

0.04013 0.04524 0.02479 0.05909 0.06114 0.06596 

Vegetative 

Cover 

0.1061 0.1061 0.2007 0.009242 0.002283 0.001397 

Leaf litter 

Cover 

0.8393 0.8518 0.02165 9.017x10-5 0.1418 0.04661 

Rocky 

Cover 

0.6876 0.6339 0.4642 0.1548 0.5711 0.03085 

Soil Cover 0.1861 0.2227 0.002519 7.963x10-7 0.2785 6.889x10-4 

Figure 19: Obligate Seeder density and performance histograms. 
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  The only constant significant relationship among all groups is the affect of elevation on 

density and performance (p<0.003 in all cases). Slope affects both density and performance of 

obligate resprouters as well as facultative seeders (p<0.02). Aspect had an effect only on the 

density and performance of facultative seeders (p<0.01). Deadwood volume affected the density 

and performance of obligate seeder (p<0.05) and the density of obligate resprouters (p<0.05) but 

had no effect on any other metric. Conversely, vegetative cover had no effect on obligate seeder 

density, performance, nor obligate resprouter density, but the relationship was significant for all 

other response variables (p<0.01). leaf litter cover was significant only for obligate resprouter 

density and performance, and facultative seeder performance (p<0.05). Rocky cover was 

unimportant across all metrics except for the performance of facultative seeders (p<0.035). 

Mineral soil cover affected both density and performance of obligate resprouters and the 

performance of facultative seeders (p<0.003). 

 Both obligate resprouters and facultative seeders tended to have lower density and shorter 

stems as the gradient became more extreme (Figures 20 & 21), though only when comparing flat 

and moderate or flat and steep gradients for obligate resprouters (p<0.005), density of facultative 

seeders on flat and steep gradients, and performance of facultative seeders between flat and 

Figure 20: Obligate resprouter density and performance response to slope. 

Figure 21: Facultative seeder density and performance response to slope. 
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moderate gradients or flat and steep gradients (p<0.015). Elevation showed a similar 

relationship, with higher elevations corresponding to lower density and performance of both 

obligate resprouters (Figure 22) and facultative seeders (Figure 23). Obligate resprouter density 

was significantly lower only between sea level and high elevations (p<0.001). Resprouter 

performance was significantly lower as elevation increased, except when comparing low and 

medium elevation (p>0.25), and medium and high elevation (p>0.1). Facultative seeder density 

was significantly different between low and high elevation (p<0.005) and sea level and high 

elevation (p<0.0001). Facultative seeder performance likewise decreased in response to higher 

elevation bands. Significantly shorter stems were found between sea and low elevation 

(p<0.015), between sea and high elevation (p<0.0001), and low and high elevation (p<0.015). 

Aspect only had and effect on facultative seeder regeneration (Figure 24). Density did not 

vary significantly between the ordinals, except for a difference between northwest-facing and 

Figure 22: Obligate resprouter density and performance response to elevation. 

Figure 23: Facultative seeder density and performance response to elevation. 
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both northeast and southeast-facing slopes (p<0.04). Performance followed the same trend as 

density with respect to plot orientation.  

 

Figure 24: Facultative seeder density and performance response to plot orientation. 

Facultative seeder density and performance increased significantly with respect to the 

presence vegetative cover (Figure 25). While vegetative cover had no influence on the density of 

obligate resprouters, their performance also benefitted from the presence of vegetative cover 

(Figure 26). Conversely, deadwood volume had no affect on obligate resprouter performance, 

but density was higher in plots with more deadwood present (Figure 26). 

 

Figure 25: Facultative seeder density and performance response to vegetative cover. 

a 

b 

a 

b 
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 Obligate resprouter density and performance were affected by leaf litter (Figure 27); there 

was a significant increase in density and greater performance between plots with no litter and 

low litter cover (p<0.035). There was a similar relationship between resprouter density and 

performance and soil cover (Figure 28). Plots with low soil cover had greater regeneration 

density and performance when compared to medium soil cover (p<0.001). This was also the case 

between plots with low and high soil cover (p<0.015).  

 

 

a 

b 

Figure 26: Obligate resprouter density response to deadwood and performance response to vegetative cover. 

Figure 27: Obligate resprouter density and performance response to leaf litter cover. 
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Facultative seeder species performance was affected significantly by groundcover 

variables (Figure 29), as density did not vary significantly with rocky cover, soil cover, or leaf 

litter cover. Performance was supported by higher rock cover, with a significant increase 

between plots with medium and elevated levels of rocky cover (p<0.035). An increase from no 

leaf litter to low cover also appears to benefit performance of facultative seeders (p<0.04). 

Facultative seeder performance followed the overarching trend of lower height averages with 

increased soil cover, particularly between low and medium plots (p<0.045) and low and high 

plots (p<0.001). 

 

Figure 29: Facultative seeder performance response to leaf litter, mineral soil, and rocky cover 

 

  

Figure 28: Obligate resprouter density and performance response to mineral soil cover. 
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Table 5: Dunn Test p-values for obligate resprouters and facultative seeders. 

 Obligate Resprouters Facultative Seeders 

Site Characteristic Density p-

value 

Performance 

p-value 

Density p-value Performance 

p-value 

Slope     

Flat (≤10%) vs 

Moderate (≤20%) 

0.00404190 0.0005293656 0.14263783 0.01190686 

Moderate vs Steep 

(>20%) 

0.30984749 0.1808298 0.18265251 0.0732737875 

Flat vs Steep 0.00039160 0.0000104132 0.01190686 0.0006383136 

Elevation     

Sea(<100m) vs Low 

(<400m) 

0.06257780 0.002703823 0.4686394205 0.01265242 

Low vs Medium 

(<437m) 

0.9451476 0.2895312 

 

0.3852952156 0.4210479 

Medium vs High 

(≥437m) 

0.7108308 0.1479339 

 

0.0592560107 0.08296782 

Sea vs Medium 0.06463313 3.135245x10-6 0.1277204084 0.00134678 

Sea vs High 0.0000183749 6.298430x10-11 0.0000495624 4.938242x10-8 

Low vs High 0.05338626 0.01210313 0.0041990984 0.01220826 

Aspect     

NW vs NE   0.035454739 0.016094018 

NE vs SE   0.579663870 0.976187391 

NW vs SE   0.005663837 0.009867295 

SW vs NE   0.588006164 0.546020269 

SW vs NW   0.266228150 0.161126634 

SW vs SE   0.264151131 0.660072330 

Vegetative Cover     

Absent (≤5%) vs 

Present (>5%) 

 <2.2x10-16 <2.2x10-16 <2.2x10-16 

Rock Cover     

Low (<35%) vs. 

Medium (<60%) 

   0.68287934 

Medium vs High 

(≥60%) 

   0.03274429 

Low vs High     0.21316554 

Leaf litter Cover     

None (0%) vs Low 

(<50%) 

0.03125017 0.000260086  0.03984115 

 

Low vs High (≥50%) 0.42855157 

 

0.285171712  0.23246403 

None vs High 0.38358561 0.057859560  0.81665098 

Soil Cover     
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Discussion 
 This study investigates the material legacies and topographic characteristics of severely 

burnt Pinus nigra stands, as well as the characteristics of woody regeneration within the first 

year after fire. The microsites created by these characteristics affect the density and performance 

of woody vegetation without anthropogenic intervention in the first year following disturbance. 

The simple survey methodology is flexible enough to be used in similar studies across a wide 

range of landscapes.  

Topographic factors can facilitate microclimatic conditions that foster or hinder natural 

regeneration. The bimodal shape of the elevation distribution corresponded with our sampling 

locations: the sea level plots were in the Monfalcone municipality in Italy. The higher elevation 

plots were in Slovenia. Increasing elevation shows a negative correlation with woody 

regeneration density and performance. This response corresponds with decreased species 

diversity explained by extending Rapports latitudinal rule to an elevation gradient (Stevens, 

1992). The harsher, more exposed elevations may contribute to conditions unsuitable for the 

early regeneration of woody vegetation. Slope also showed a similar response, with decreased 

density and performance corresponding to more extreme slope. Considering the geological 

characteristics of the Karst Plateau (Hajna, 2003), steeper slopes may correspond to reduced 

water retention (McCain & Grytnes, 2010), as any precipitation quickly flows downhill and 

drains through the carbonate bedrock. This is reflected in the significant difference between 

performance of regeneration in each slope category. There may be enough moisture for 

regeneration to establish on steep slopes, but the decreased performance on more extreme 

gradients is indicative of a limiting factor tied to slope. Surprisingly, plot aspect did not show a 

significant effect on neither density nor performance. Southern plots were expected to show 

greater density and performance due to warmer (Wani et al., 2023), wetter conditions facilitated 

by the Adriatic (McCain & Grytnes, 2010). However, the Karst Plateau is climactically separated 

from the Adriatic by its steep western ridge (Hajna, 2003), so it is possible that the only 

advantage of south-facing slopes is the increased solar exposure. It may be that the 

disadvantageous cooler temperatures on northern slopes are counterbalanced by overexposure to 

solar radiation on the southern slopes, creating two equally inhibiting factors. 

Low (<35%) vs 

Medium (<60%) 

0.00904806 

 

0.0001059587  0.044363053 

Medium vs High 

(≥60%) 

0.88677258 

 

0.2833171  0.112780882 

Low vs High 0.01195707 8.744295x10-6  0.000692405 

Deadwood Volume     

Low (<2.3m3) vs 

Medium (<3.9m3) 

0.17346319    

Medium vs High 

(≥3.9m3) 

0.35399880 

 

   

Low vs High 0.02239029    
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When considering topography overall, woody regeneration is fostered at lower elevation, 

with flatter slopes which can provide greater water retention and have potential for greater 

accumulation of organic matter. After a certain point the intensity of this gradient appears to 

wane, which follows the “unimodal hump” seen along elevational gradients with respect to 

species density and diversity (Dani et al., 2023). These conclusions are drawn from prevailing 

assumptions about the elevational gradient (Dani et al., 2023; McCain & Grytnes, 2010; Wani et 

al., 2023). Further research and modelling will better define the relationship among topographic 

variables, particularly with respect to aspect, which is considered as a key factor in vegetative 

diversity and performance (Wani et al., 2023).  

While topographic variables are important in creating predictable microclimatic 

conditions that effect regeneration density and performance, the material legacies remaining after 

fire create heterogeneity that can support or restrict regeneration (Johnstone et al., 2016). 

Vegetative cover corresponded with higher density and performance of woody vegetation 

regeneration. This is confirmed by other studies, which also found that greater herbaceous cover 

can reduce heat stress, increase soil moisture, and regulate variation in temperature 

(Christopoulou et al., 2014; Ordónez et al., 2004). This facilitation by the understory is 

particularly important in black pine forests, as the autosuccession pathway is unlikely due to 

black pine’s lack of adaptation to fire (Arnan et al., 2007; Martín-Alcón & Coll, 2016; Ordónez 

et al., 2004). Vegetative cover may increase water availability for resprouting woody vegetation 

(Arnan et al., 2007), particularly in the well-drained soils of the Karst Plateau. However, sites 

with significant vegetative cover within a year post-fire may be situated in microsites that 

support regrowth either because of topography or other material legacies. It is also possible that 

these areas experienced less severe ground fire than other survey patches. More research may be 

able to disentangle these effects.  

Non-living ground cover also creates conditions conducive to regeneration of woody 

vegetation. The only clear relationship came from the comparison between plots with no leaf 

litter cover and plots with low leaf litter cover. Plots with no cover showed no significant 

difference with plots with high cover. Plots with no leaf litter had lower regeneration density and 

reduced performance compared to the sites with less than 50% cover. Leaf litter regulates light 

availability, moisture, and temperature at the soil surface, reducing light and potentially 

intercepting precipitation. This can create microsites that reduce the probability of germination 

or establishment of regeneration (Flagler et al., 1991). Low levels of leaf litter may reduce the 

intensity of insolation, particularly on exposed forest floors post crown fire, but elevated levels 

may cross a facultative threshold and create suboptimal conditions for regeneration of woody 

vegetation. The strength of this relationship could be revealed through modelling and further 

research monitoring specific physical and chemical aspects of microsites associated with leaf 

litter cover. 

Rocky cover was another factor in the facilitation of woody regeneration performance but 

had no effect on regeneration density. The relationship between rocky cover and regeneration 

height is not particularly strong, only seeing a significant difference between plots with medium 

and high cover. Rocky cover facilitates greater performance, perhaps as it provides a minor 
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shelter from browsing and other small-scale disturbances. Stonier soils have a lower water 

capacity, potentially impacting regeneration performance. This does not explain the observed 

trend of higher regeneration and greater performance. Most sites had prominent levels of rock 

cover (Figure 6), paired with the severity of fire may explain the lack of regeneration and 

therefore the lack of significance with respect to regeneration density.  

Mineral soil cover is an interesting factor, as it the presence of bare soil can be 

considered as the absence of material legacies. The findings from this study support this 

conclusion, as both regeneration density and performance decreased significantly with increasing 

soil cover—except in the case of regeneration density from low to medium cover plots, which 

showed no significant relationship. As discussed before, the soils in this area are moisture limited 

due to the region’s geography. Mineral soil provides little temperature regulation at the surface, 

does little in the way of moisture retention, and is more susceptible to erosion, particularly on 

steeper slopes (López-Vicente et al., 2021). Erosion is a concern in this area and may have 

resulted in higher levels of mineral soil cover. The erosion at higher elevation bands may impact 

natural regeneration at lower bands by burying or dislodging resprouting stems. This relationship 

between mineral soil and reduced density and performance supports the hypothesis that material 

legacies post-fire are crucial factors in supporting the natural regeneration of woody vegetation, 

as they create conditions post-fire that regulate temperature and moisture and may play a role in 

reducing stress and damage from erosion.  

The types of woody regeneration present give some insight into potential successional 

pathways after a severe fire in black pine forests. Obligate seeders such as those listed in Table 1 

were present in less than 10% of the sample plots. Given the high severity of the fire and the lack 

of serotiny in the pre-disturbance community, this result emphasizes the need for this study; 

working to predict how severe fire will alter these unmanaged landscapes. These regeneration 

strategies are the informational legacies in these ecosystems and comprise the second aspect of 

ecological memory (Johnstone et al., 2016). As observed in other studies (Keeley et al., 2006; 

Vasques et al., 2023), facultative seeders appear to have an early successional advantage post-

fire in terms of regeneration density. Obligate resprouters showed the greatest average 

performance of regeneration, rather than facultative seeders. This may be due to inter-species 

competition, as resprouters have the ability to hinder the growth of nearby individuals when 

resources are limited (Sánchez-pinillos et al., 2018). Although facultative seeders may have the 

advantage in colonising optimal microsites, when they must compete with resprouting species 

the resprouters appear to be at an advantage. 

Both facultative seeders and obligate resprouters followed similar trends as overall 

density and performance with respect to material legacies and topography. Lower elevations, 

milder slopes, presence of vegetative cover, and leaf litter cover supported greater densities in 

both groups. The influence of site aspect was only important for facultative seeder density and 

performance. The northwest- and southwest-facing plots had the lowest densities and 

performance; the other ordinals were not significantly different. A significant difference was 

anticipated between the southern slopes and northern slopes (McCain & Grytnes, 2010), but the 

deciding factor appears to be an east/west division. The unique geography of the Karst Plateau 
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may have influenced this finding and more research into factors affecting insolation in the area is 

recommended. 

In general, the findings of this study support the hypothesis that material legacies and 

topography create conditions conducive to natural regeneration of woody vegetation, through the 

regulation of light availability, temperature, and soil moisture. One surprising result was the 

relationship between deadwood and regeneration density—including obligate resprouters—along 

with the lack of a relationship between deadwood and regeneration height. Many studies have 

found that downed woody debris is incredibly important in the establishment and performance of 

regeneration, particularly post-fire (López-Vicente et al., 2021; Mantero et al., 2023; Marcolin et 

al., 2019). This relationship is already under analysed in contemporary studies that focus on 

effects of salvage logging post-fire is studied in the Mediterranean (Mantero et al., 2023; 

Marcolin et al., 2019). This study provides a starting point for further modelling and 

investigation of early regeneration pathways following severe fire in non-fire adapted pine 

plantations. In further studies, survivorship and rate of growth could be considered as a long-

term study, as well as classification of material legacies into more specific classes (downed vs 

standing deadwood, for example).  

 These findings can help aid in the development of management decisions following 

severe fire. The importance of material legacies and the topography of affected areas is clear; 

land managers and decision makers should survey areas in question to determine which areas 

may support natural regeneration. Of course, the goals of regeneration must be kept in mind. 

black pine plantations are unlikely to recover as black pine stands, instead converting to 

shrubland or open-oak forests. As timber from black pine stands is not currently an important 

market for Italy, this conversion to oak forest or shrubland may not conflict with management 

goals for the Karst Plateau. The increased risk of erosion following severe fire (Walker et al., 

2013), particularly in Karst, should be considered. Reforestation and salvage logging are often 

destructive processes, resulting in further soil erosion and influencing biodiversity (López-

Vicente et al., 2021; Mantero et al., 2023), particularly in pine forests with no natural adaptation 

to fire (Mantero et al., 2023).  

 

Conclusions 
 The increasing risk of fire in unmanaged Pinus nigra plantations in the Mediterranean 

poses a significant issue in post-disturbance management. As these plantations have long been 

abandoned, one pathway for recovery lies in natural regeneration. This study explored the 

material legacies left after severe fire and their impact on determining the successional pathway 

given no anthropogenic intervention. Facultative seeders—mainly shrubs—dominate the early 

successional community but may be outcompeted by resprouting species such as oaks in the 

medium-long term. Material legacies and topographic characteristics that can regulate 

temperature and increase soil moisture supported both increased density and performance of 

woody regeneration, implicating a natural shift to the dominance of shrubs or resprouting oaks 

after severe burns. Depending on management goals, natural regeneration may be a viable option 
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for reforestation. Artificial reforestation may not be necessary, especially as these stands tend to 

no longer be used for timber production. However, erosion may reduce regeneration after severe 

fire and may require intervention. Salvage logging may seem opportune following large fires, but 

has been shown to reduce natural regeneration in other studies, especially in the short-term 

(López-Vicente et al., 2021; Mantero et al., 2023; Marcolin et al., 2019). The material legacies 

described here could be affected by heavy machinery, particularly vegetative and leaf litter 

cover, resulting in more disturbed soil cover, which is likely to reduce the density and 

performance of woody regeneration. 

 Further research in this area is required to determine the strength of the relationships 

described here, and long-term studies should be conducted to determine if early natural 

regeneration is in fact indicative of successional pathways following severe fire.  
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Appendix: R Script 
### Data analysis of Carso natural regeneration-2023. By Linus Shaw, edits by Flavio Taccaliti 
 
### Load libraries 
library(readxl) 

## Warning: package 'readxl' was built under R version 4.2.3 

library(tidyverse) 

## Warning: package 'tidyverse' was built under R version 4.2.3 

## Warning: package 'ggplot2' was built under R version 4.2.3 

## Warning: package 'tibble' was built under R version 4.2.3 

## Warning: package 'tidyr' was built under R version 4.2.3 

## Warning: package 'readr' was built under R version 4.2.3 

## Warning: package 'purrr' was built under R version 4.2.3 

## Warning: package 'dplyr' was built under R version 4.2.3 

## Warning: package 'stringr' was built under R version 4.2.3 

## Warning: package 'forcats' was built under R version 4.2.3 

## Warning: package 'lubridate' was built under R version 4.2.3 

## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ── 
## ✔ dplyr     1.1.2     ✔ readr     2.1.4 
## ✔ forcats   1.0.0     ✔ stringr   1.5.0 
## ✔ ggplot2   3.4.2     ✔ tibble    3.2.1 
## ✔ lubridate 1.9.2     ✔ tidyr     1.3.0 
## ✔ purrr     1.0.1      
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ── 
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## ✖ dplyr::filter() masks stats::filter() 
## ✖ dplyr::lag()    masks stats::lag() 
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to bec
ome errors 

library(berryFunctions) 

## Warning: package 'berryFunctions' was built under R version 4.2.3 

##  
## Attaching package: 'berryFunctions' 
##  
## The following object is masked from 'package:dplyr': 
##  
##     between 

library(rcompanion) 

## Warning: package 'rcompanion' was built under R version 4.2.3 

library(ggpubr) 

## Warning: package 'ggpubr' was built under R version 4.2.3 

library(FSA) 

## Warning: package 'FSA' was built under R version 4.2.3 

## Registered S3 methods overwritten by 'FSA': 
##   method       from 
##   confint.boot car  
##   hist.boot    car  
## ## FSA v0.9.5. See citation('FSA') if used in publication. 
## ## Run fishR() for related website and fishR('IFAR') for related book. 
##  
## Attaching package: 'FSA' 
##  
## The following object is masked from 'package:berryFunctions': 
##  
##     headtail 

library(agricolae) 

## Warning: package 'agricolae' was built under R version 4.2.3 

#### Case study-related variables 
#Plot size: radius in metres 
radius <- 6 
#Automatically calculates plot area in m2 
surfplot <- pi*radius^2 
#Taper constant to calculate volume of standing trees 
taper <- 0.5 
#In Carso study, all Pinus nigra snags 
 
################################################################################ 
### Data import and cleaning 
 
#Set directory and import data from csv files 
setwd("C:/Users/linus/OneDrive - University of New Brunswick/UniPD/Lingua&Thesis/Data") 
 
#Plots description 
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#CSV with plot-specific descriptions--topo, cover, etc. 
sites_df <- data.frame(read_excel("natreg_carso.xlsx", sheet="results")) %>% 
  select(ID, deadwood, pieces, type, length, diametre, branches_steres, 
         phane, chamae, cwd, rocks, soil, litter, dicot, monocot, 
         slope, aspect, elevation 
  ) 
 
#Regeneration 
 
#CSV with type and count of regeneration in each plot 
regen_frame <- data.frame(read_excel("natreg_carso.xlsx", sheet="data-group2-tree_repeat")) 
#Check loaded dataframe (comment if unnecessary) 
head(regen_frame) 

##   ID           species height gamic quantity estimate 
## 1 C1 Cotinus_coggygria     32    no       10      yes 
## 2 C1 Cotinus_coggygria     46    no        2       no 
## 3 C1 Cotinus_coggygria     33    no       10      yes 
## 4 C1 Cotinus_coggygria     40    no        5      yes 
## 5 C1 Cotinus_coggygria     32    no       12      yes 
## 6 C1 Cotinus_coggygria     75    no        5      yes 
##                                  PARENT_KEY 
## 1 uuid:ce46c242-4ea1-4bb4-8849-e2facecb1468 
## 2 uuid:ce46c242-4ea1-4bb4-8849-e2facecb1468 
## 3 uuid:ce46c242-4ea1-4bb4-8849-e2facecb1468 
## 4 uuid:ce46c242-4ea1-4bb4-8849-e2facecb1468 
## 5 uuid:ce46c242-4ea1-4bb4-8849-e2facecb1468 
## 6 uuid:ce46c242-4ea1-4bb4-8849-e2facecb1468 
##                                                        KEY 
## 1 uuid:ce46c242-4ea1-4bb4-8849-e2facecb1468/tree_repeat[1] 
## 2 uuid:ce46c242-4ea1-4bb4-8849-e2facecb1468/tree_repeat[2] 
## 3 uuid:ce46c242-4ea1-4bb4-8849-e2facecb1468/tree_repeat[3] 
## 4 uuid:ce46c242-4ea1-4bb4-8849-e2facecb1468/tree_repeat[4] 
## 5 uuid:ce46c242-4ea1-4bb4-8849-e2facecb1468/tree_repeat[5] 
## 6 uuid:ce46c242-4ea1-4bb4-8849-e2facecb1468/tree_repeat[6] 

#Deal with NA values in regen_frame -- gamic = 1 shoot 
for (i in 1:length(regen_frame$quantity)){ 
  if (is.na(regen_frame[i,5])){ 
    regen_frame[i, 5] <- 1 
  }  
  else 
  {} 
} 
 
#Select the useful variables of the regeneration dataframe 
regen_df <- regen_frame %>% select(ID, species, height, quantity) 
 
#list and number of site IDs 
site_num <- sites_df$ID 
nplots <- length(site_num) 
 
#Deal with no-count sites in regen_df 
z <- 1 
i <- 1 
while (z < length(site_num) & i < length(regen_df$ID)) { 
  #if there is a missing site, add a row and advance both counters by 1 
  if (site_num[z] < regen_df[i,1] & site_num[z+1] < regen_df[i,1]){ 
    z <- z+1 



37 

 

    regen_df <- insertRows(regen_df, i, new = 0) 
    regen_df[i,1] <- site_num[z] 
    regen_df[i, 2] <- NA 
    i <- i+1 
  } 
  #Advance to next site number in site_num 
  else if (site_num[z] != regen_df[i,1]){ 
    z <- z+1 
  } 
  #Advance to next observation in regen_df 
  else{ 
    i <- i+1 
  } 
} 
#list to get regen count (n) per site 
site_regen <- vector(mode='numeric', length=nplots) 
#counter variable for site_regen list 
y <- 1 
#cycle through individual entries and create a sum for each site 
for (x in  1:length(regen_df$ID)){ 
  if(regen_df[x,1] == site_num[[y]]){ 
    site_regen[[y]] <- site_regen[[y]]+regen_df[x,4] 
  } 
  else if (y < nplots) 
  { 
    y <- y+1 
    site_regen[[y]] <- site_regen[[y]]+regen_df[x,4] 
  } 
} 
#total count of regenerating veg in each site 
sites_df$regen_sum <- unlist(site_regen, use.names = FALSE) 
#get an average regeneration count (n/ha) for each site 
#divide by plot size to n/m2 then multiply by 10000 for n/ha, round to integer part 
sites_df$regen_ha <- as.integer((sites_df$regen_sum/surfplot)*10000) 
 
#find volume of deadwood 
volume <- vector(mode='numeric', length = nplots) 
for (i in 1:length(sites_df$ID)){ 
  #total volume of deadwood in m3 
  volume[i] <- 
    if(is.na(sites_df$type[i])){ 0 
      #zero volume if no deadwood present 
      }  
    else{ 
        ifelse(sites_df$type[i] == "log", 
               #logs calculated as cylinders, measured at median diameter 
               ((sites_df$length[i]*((sites_df$diametre[i]/200)^2)*pi))*sites_df$pieces[i], 
               #snags calculated with DBH and taper 
               ((sites_df$length[i]*((sites_df$diametre[i]/2)^2)*pi)/100)*sites_df$pieces[i]*t
aper 
              ) 
      } 
  } 
 
#attach volume to each plot 
sites_df$dead_volume_ha <- unlist(volume, use.names = FALSE) 
 
#get species counts per site 
#https://www.statology.org/pivot_wider-r/ 
totals_df<- pivot_wider(regen_df, names_from = 'ID', values_from = 'quantity',  
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                      values_fill = 0, values_fn = sum) 
species_df <- aggregate(totals_df[,3:ncol(totals_df)], by = list(totals_df$species), FUN = sum
) 
species_df <- species_df %>% rename(Species = Group.1) 
species_df$total <- rowSums(species_df[,2:(ncol(species_df)-1)]) 
#total number of plants per plot 
species_df <- species_df %>% bind_rows(summarise_all(., 
                                                     ~ if(is.numeric(.)) { 
                                                       sum(.) 
                                                       } else {"Plot_Total"}) 
                                       ) 
#add number of plants per plot to sites_df 
sites_df$tot_regen <- as.numeric(as.list(species_df[nrow(species_df),2:(ncol(species_df)-1)])) 
 
#repeat the previous process but with height instead of twig count 
temp_df<- pivot_wider(regen_df, names_from = 'ID', values_from = 'height',  
                       values_fill = NA, values_fn = mean) 
#get mean height for each species 
heights_df <- aggregate(temp_df[,3:ncol(temp_df)], by = list(temp_df$species), FUN = mean,  
                        na.rm = TRUE, na.action = NULL) 
heights_df <- heights_df %>% rename(Species = Group.1) 
#average height per species across all plots 
heights_df$average <- apply(heights_df[,2:(ncol(heights_df)-1)],1,mean, na.rm = TRUE, na.actio
n = NULL) 
#Average height of all regeneration in each plot, ignoring non-present(NA) species 
heights_df <- heights_df %>% bind_rows(summarise_all(., 
                                                     ~if(is.numeric(.)) { 
                                                       mean(., na.rm = TRUE, na.action = FALSE
) 
                                                       } else {"Plot_avg"}) 
                                       ) 
for(i in 2:length(heights_df[nrow(heights_df),])){ 
  if(is.na(heights_df[nrow(heights_df),i])){ 
    heights_df[nrow(heights_df),i] <- 0 
  } 
} 
#keep it nice and round at 2 decimals 
heights_df <- heights_df %>% mutate_if(is.numeric, round, digits = 2) 
#add average height per plot to sites_df 
sites_df$avg_height <- as.numeric(as.list(heights_df[nrow(heights_df),2:(ncol(heights_df)-1)])
) 
 
#Seeders, resrpouters, and facultative resprouters 
seeder_list <- c("Ailanthus_altissima", "Pinus_halepensis", "Pinus_nigra") 
resprout_list <- c("Quercus_pubescens", "Quercus_ilex", "Pistacia_lentiscus",  
                   "Ostrya_carpinifolia", "Fraxinus_ornus") 
fac_list <- c("Cotinus_coggygria", "Crataegus_monogyna", "Prunus_mahaleb",  
                      "Ligustrum_vulgare", "Rosa_sp", "Rhamnus_alaternus",  
                      "Rhamnus_cathartica", "Robinia_pseudoacacia",  
                      "Amorpha_fruiticosa") 
seeder.h <- vector(mode="numeric", length = nplots) 
seeder.n <- vector(mode="numeric", length = nplots) 
resprout.h <- vector(mode="numeric", length = nplots) 
resprout.n <- vector(mode="numeric", length = nplots) 
fac.h <- vector(mode="numeric", length = nplots) 
fac.n <- vector(mode="numeric", length = nplots) 
 
for (i in 2:(ncol(heights_df)-1)){ 
  seeder_tally <- 0 
  resprout_tally <- 0 
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  fac_tally <- 0 
  for(x in 1:(nrow(heights_df)-1)){ 
    if(!is.na(heights_df[x,i])){ 
    if((heights_df[x,1] %in% seeder_list)){ 
      seeder.h[i-1] <- seeder.h[i-1] + heights_df[x,i] 
      seeder.n[i-1] <- seeder.n[i-1] + species_df[x,i] 
      seeder_tally <- seeder_tally + 1 
    } 
    else if((heights_df[x,1] %in% resprout_list)){ 
      resprout.h[i-1] <- resprout.h[i-1] + heights_df[x,i] 
      resprout.n[i-1] <- resprout.n[i-1] + species_df[x,i] 
      resprout_tally <- resprout_tally + 1 
    } 
    else if((heights_df[x,1] %in% fac_list)){ 
      fac.h[i-1] <- fac.h[i-1] + heights_df[x,i] 
      fac.n[i-1] <- fac.n[i-1] + species_df[x,i] 
      fac_tally <- fac_tally + 1 
    } 
    } 
  } 
  seeder.n[i-1]<- as.integer((seeder.n[i-1]/surfplot)*10000) 
  resprout.n[i-1]<- as.integer((resprout.n[i-1]/surfplot)*10000) 
  fac.n[i-1]<- as.integer((fac.n[i-1]/surfplot)*10000) 
  seeder.h[i-1] <- round((seeder.h[i-1]/seeder_tally), digits = 2) 
  resprout.h[i-1] <- round((resprout.h[i-1]/resprout_tally), digits = 2) 
  fac.h[i-1] <- round((fac.h[i-1]/fac_tally), digits = 2) 
  if(is.na(seeder.h[i-1])){ 
    seeder.h[i-1] <- 0 
    } 
  if(is.na(resprout.h[i-1])){ 
    resprout.h[i-1] <- 0 
    } 
  if(is.na(fac.h[i-1])){ 
    fac.h[i-1] <- 0 
  } 
} 
sites_df$seeder_nha <- seeder.n 
sites_df$seeder_avgh <- seeder.h 
sites_df$resprout_nha <- resprout.n 
sites_df$resprout_avgh <- resprout.h 
sites_df$fac_nha <- fac.n 
sites_df$fac_avgh <- fac.h 
 
# check the dataset used for analyses 
head(sites_df) 

##   ID deadwood pieces type length diametre branches_steres phane chamae cwd 
## 1 C1      yes      3  log      5       15               0    45      5  10 
## 2 C2      yes      1  log      4       15               2    45     15  10 
## 3 C3      yes      2  log      6       16               1    75      0  10 
## 4 C4      yes      2  log      6       24               2    40     10   5 
## 5 C5      yes      3 snag      8       12               2     0      0   5 
## 6 C6      yes     11 snag     10       16               0     0      0   0 
##   rocks soil litter dicot monocot     slope   aspect elevation regen_sum 
## 1    10    0      0     0      30  9.644847 183.1099    31.018       194 
## 2     5    0      0     0      25  9.774885 174.6427    32.059       205 
## 3     5    0      0     0      10 10.201162 172.0026    37.471       147 
## 4    40    0      0     0       5 14.868460 188.7625    56.675       131 
## 5    25    0     70     0       0  1.957793 134.6838    19.341       174 
## 6    60   30     10     0       0  3.302792 142.9560    21.166       275 
##   regen_ha dead_volume_ha tot_regen avg_height seeder_nha seeder_avgh 
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## 1    17153     0.26507188       194      56.76          0        0.00 
## 2    18125     0.07068583       205      98.96          0        0.00 
## 3    12997     0.24127432       147     103.68        442       41.80 
## 4    11582     0.54286721       131     110.91          0        0.00 
## 5    15384    13.57168026       174      18.30      10521        4.39 
## 6    24315   110.58406141       275      28.01       4420        4.14 
##   resprout_nha resprout_avgh fac_nha fac_avgh 
## 1         1149         61.78   16003    51.74 
## 2         3625         96.88   14500   103.12 
## 3          442         48.50   12113   142.70 
## 4         2917        155.50    8665    66.32 
## 5          795         30.33    4067    34.07 
## 6         5747         57.34   14147    22.55 

# optional: remove temporary variables. Comment if you don't like the idea 
# rm(list=setdiff(ls(), c("volume", "sites_df", "nplots"))) 
 
 
#####Data transformation and distributions###################################### 
#try Tukey transformation ladder 
t_height <- transformTukey(sites_df$avg_height) 

##  
##     lambda      W Shapiro.p.value 
## 416  0.375 0.9287       5.479e-05 
##  
## if (lambda >  0){TRANS = x ^ lambda}  
## if (lambda == 0){TRANS = log(x)}  
## if (lambda <  0){TRANS = -1 * x ^ lambda} 

shapiro.test(t_height) 

##  
##  Shapiro-Wilk normality test 
##  
## data:  t_height 
## W = 0.92875, p-value = 5.479e-05 

t_dense <- transformTukey(sites_df$regen_ha) 

##  
##     lambda      W Shapiro.p.value 
## 415   0.35 0.9627        0.007472 
##  
## if (lambda >  0){TRANS = x ^ lambda}  
## if (lambda == 0){TRANS = log(x)}  
## if (lambda <  0){TRANS = -1 * x ^ lambda} 

shapiro.test(t_dense) 

##  
##  Shapiro-Wilk normality test 
##  
## data:  t_dense 
## W = 0.96272, p-value = 0.007472 

#put independent variables into classes 
                              ##SLOPE## 
#split into classes -- flat, moderate, steep 
slope_level <- vector(mode = 'character', length=nplots) 
for (i in 1:length(sites_df$slope)){ 
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  if (sites_df$slope[i] <= 10){ 
    slope_level[i] <- 'flat' 
  } 
  else if(sites_df$slope[i] <= 20){ 
    slope_level[i] <- 'moderate' 
  } 
  else{ 
    slope_level[i] <- 'steep' 
  } 
} 
sites_df$steepness <- factor(slope_level, levels=c("flat","moderate","steep")) 
 
                                      ##ASPECT## 
#split into Ordinals (NE/SE/SW/NW) 
ordinal <- vector(mode = 'character', length = nplots) 
for (i in 1:length(sites_df$aspect)){ 
  if(sites_df$aspect[i]<=90){ 
    ordinal[i] <- 'NE' 
  } 
  else if(sites_df$aspect[i]<=180){ 
    ordinal[i] <- 'SE' 
  } 
  else if(sites_df$aspect[i]<=270){ 
    ordinal[i] <- 'SW' 
  } 
  else{ 
    ordinal[i] <- 'NW' 
  } 
} 
 
sites_df$ordinals <- factor(ordinal, levels = c("NW","NE","SE","SW")) 
 
                                      ##DEADWOOD## 
#split into volume classes -- low, medium, high 
Qvol  <- quantile(volume, probs = c(1/3, 2/3)) 
for (i in 1:length(volume)){ 
    if(volume[i] <= Qvol[1]){ 
    volume[i] <- "Low" 
    } 
    else if(volume[i] <= Qvol[2]){ 
      volume[i] <- "Medium" 
    } 
    else if(volume[i] > Qvol[2]) 
    { 
      volume[i] <- "High" 
    } 
} 
sites_df$volume <- factor(volume, levels=c("Low","Medium","High")) 
 
                                      ##ELEVATION## 
#split into classes-- low/Monfalcone, low/Slovenia, mid/Slovenia, high/Slovenia 
elev_class <- vector(mode="character", length = nplots) 
hist(sites_df$elevation) 

slov_elev <- vector(mode="numeric") 
slov_i <-1 
for (i in 1:length(sites_df$elevation)){ 
  if(sites_df$elevation[i] > 200){ 
    slov_elev[slov_i] <- sites_df$elevation[i] 
    slov_i <- slov_i + 1 
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  } 
  } 
Qele <- quantile(slov_elev, probs = c(1/3, 2/3)) 
hist(slov_elev) 

for(i in 1:length(sites_df$elevation)){ 
  if(sites_df$elevation[i] < 200){ 
    elev_class[i] <- "Sea" 
  } 
  else if (sites_df$elevation[i] <= Qele[1]){ 
    elev_class[i] <- "Low" 
  } 
  else if (sites_df$elevation[i] <= Qele[2]){ 
    elev_class[i] <- "Medium" 
  } 
  else{ 
    elev_class[i] <- "High" 
  } 
} 
sites_df$elev_class <- factor(elev_class, levels=c("Sea", "Low", "Medium", "High")) 
 
                             ##PHANE/CHAMAE/DICOT/MONOCOT## 
#group all the plant cover classes together and into presence(>=5%)/absence(<5%) 
#does not include litter cover 
ground_cover <- vector(mode = 'character', length = nplots) 
for (i in 1:length(sites_df$phane)){ 
  ground_cover[i] <- sites_df$phane[i] + sites_df$chamae[i] + sites_df$dicot[i]  
  + sites_df$monocot[i] 
  if(ground_cover[i] < 5){ 
    ground_cover[i] <- "Absent" 
  } 
  else{ 
    ground_cover[i] <- "Present" 
  } 
} 
sites_df$ground<- ground_cover 
 
                                    ##ROCK COVER## 
#divide into classes -- low(1), mid(2), high(3) 
rock <- vector(mode = 'character', length = nplots) 
for (i in 1:length(rock)){ 
  if(sites_df$rocks[i] < 35){ 
    rock[i] <- "Low" 
  } 
  else if(sites_df$rocks[i] < 60){ 
    rock[i] <- "Medium" 
  } 
  else{ 
    rock[i] <- "High" 
  } 
} 
sites_df$rock_cover <- factor(rock, levels=c("Low","Medium","High")) 
 
                                   ##SOIL COVER## 
#split into classes -- low(1), medium(2), high(3) 
soils <- vector(mode='character', length = nplots) 
for(i in 1:length(soils)){ 
   if(sites_df$soil[i] < 35){ 
    soils[i] <- 'Low' 
  } 
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  else if(sites_df$soil[i] < 60){ 
    soils[i] <- 'Medium' 
  } 
  else{ 
    soils[i] <- 'High' 
  } 
} 
sites_df$soil_cover <- factor(soils, levels=c("Low","Medium","High")) 
 
                                   ##Litter(Detritus)## 
hist(sites_df$litter) 

lit <- vector(mode="character", length = nplots) 
for(i in 1:length(lit)){ 
  if (sites_df$litter[i] == 0){ 
    lit[i] <- "None" 
  } 
  else if(sites_df$litter[i] < 50){ 
    lit[i] <- "Low" 
  } 
  else{ 
    lit[i] <- "High" 
  } 
} 
sites_df$lit <- factor(lit, levels=c("None", "Low", "High")) 
 
sites_df <- sites_df %>% select(ID, regen_ha, avg_height, seeder_nha, seeder_avgh,  
                                resprout_nha, resprout_avgh, fac_nha, fac_avgh, steepness, 
                                ordinals, volume, elev_class, ground, rock_cover, 
                                soil_cover, lit) 
 
###OUTPUTS##################################################################### 
                        ##Independent variable plots:## 
ggplot(sites_df, aes(x= volume))+geom_bar()+ 
  scale_x_discrete(limits = c("Low", "Medium", "High"))+ 
  ggtitle("Deadwood Volume")+theme_bw()+ 
  theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank()) 

ggplot(sites_df, aes(x=ground)) + geom_bar()+ 
  ggtitle("Vegetative Cover")+ xlab("Vegetative Cover >5%")+theme_bw()+ 
  theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank()) 

ords <- ggplot(sites_df, aes(x = ordinals)) + geom_bar()+ 
  ggtitle("Site Orientation") + xlab("Ordinals")+theme_bw()+ 
  theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank()) 
elevs <- ggplot(sites_df, aes(x= elev_class)) + geom_bar() +  
  scale_x_discrete(limits = c("Sea", "Low",  
                              "Medium", "High"))+ 
  ggtitle("Elevation")+xlab("Elevation")+theme_bw()+ 
  theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank()) 
slopes <- ggplot(sites_df, aes(x=steepness)) + geom_bar()+ 
  scale_x_discrete(limits = c("flat", "moderate", "steep")) + ggtitle("Slope") + 
  xlab("Steepness")+theme_bw()+ 
  theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank()) 
ggarrange(ords, elevs, slopes, ncol=3, nrow=1) 

rocky <- ggplot(sites_df, aes(x = rock_cover))+geom_bar()+ 
  scale_x_discrete(limits = c("Low", "Medium", "High"))+ ggtitle("Rocky Cover")+ 
  xlab("Rocky Cover")+theme_bw()+ 
  theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank()) 
soily <- ggplot(sites_df, aes(x= soil_cover))+geom_bar()+ 
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  scale_x_discrete(limits = c("Low", "Medium", "High"))+ 
  ggtitle("Mineral Soil Cover")+xlab("Soil Cover")+theme_bw()+ 
  theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank()) 
litty<- ggplot(sites_df, aes(x = lit))+geom_bar()+  
  scale_x_discrete(limits = c("None", "Low", "High"))+ 
  ggtitle("Leaf Litter Cover")+ xlab("Litter Cover")+theme_bw()+ 
  theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank()) 
ggarrange(rocky, soily,litty, ncol=3, nrow=1) 

##Density Kruskals## 
##Slope## 
dense.slope <- aov(t_dense~steepness, data=sites_df) 
shapiro.test(dense.slope$residuals) 

##  
##  Shapiro-Wilk normality test 
##  
## data:  dense.slope$residuals 
## W = 0.98232, p-value = 0.2172 

dense.slope <- kruskal.test(regen_ha~steepness, data=sites_df) #this is better 
##Elevation## 
dense.elev <- aov(t_dense~elev_class, data=sites_df) 
shapiro.test(dense.elev$residuals) 

##  
##  Shapiro-Wilk normality test 
##  
## data:  dense.elev$residuals 
## W = 0.98417, p-value = 0.2956 

dense.elev <- kruskal.test(regen_ha~elev_class, data=sites_df) 
##Aspect## 
dense.asp <- aov(t_dense~ordinals, data=sites_df) 
shapiro.test(dense.asp$residuals) 

##  
##  Shapiro-Wilk normality test 
##  
## data:  dense.asp$residuals 
## W = 0.97705, p-value = 0.08707 

dense.asp <- kruskal.test(regen_ha~ordinals, data=sites_df) 
##Deadwood## 
dense.wood <- aov(t_dense~volume, data=sites_df) 
shapiro.test(dense.wood$residuals) 

##  
##  Shapiro-Wilk normality test 
##  
## data:  dense.wood$residuals 
## W = 0.97196, p-value = 0.0357 

dense.wood <- kruskal.test(regen_ha~volume, data=sites_df) 
##Veg cover## 
dense.veg <- aov(t_dense~ground, data=sites_df) 
shapiro.test(dense.veg$residuals) ##not normal, might need to do kruskal-wallis 

##  
##  Shapiro-Wilk normality test 
##  
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## data:  dense.veg$residuals 
## W = 0.95809, p-value = 0.003544 

dense.veg <- kruskal.test(regen_ha~ground, data=sites_df) 
##soils## 
dense.soil <- aov(regen_ha~soil_cover, data=sites_df) 
shapiro.test(dense.soil$residuals) 

##  
##  Shapiro-Wilk normality test 
##  
## data:  dense.soil$residuals 
## W = 0.74593, p-value = 1.163e-11 

dense.soil <- kruskal.test(regen_ha~soil_cover, data=sites_df) 
##rocks## 
dense.rocks <- aov(t_dense~rock_cover, data=sites_df) 
shapiro.test(dense.rocks$residuals) 

##  
##  Shapiro-Wilk normality test 
##  
## data:  dense.rocks$residuals 
## W = 0.97512, p-value = 0.06198 

dense.rocks <- kruskal.test(regen_ha~rock_cover, data=sites_df) 
##litter## 
dense.litter <- aov(t_dense~lit, data=sites_df) 
shapiro.test(dense.litter$residuals) #not normal, may need kruskal-wallis test 

##  
##  Shapiro-Wilk normality test 
##  
## data:  dense.litter$residuals 
## W = 0.97002, p-value = 0.02553 

dense.litter <- kruskal.test(regen_ha~lit, data=sites_df) 
                                 
                                ##Height Kruskals## 
##Slope## 
height.slope <- aov(t_height~steepness, data=sites_df) 
shapiro.test(height.slope$residuals) #not normal, use Kruskal 

##  
##  Shapiro-Wilk normality test 
##  
## data:  height.slope$residuals 
## W = 0.91318, p-value = 8.312e-06 

height.slope <- kruskal.test(avg_height~steepness, data=sites_df) 
##Elevation## 
height.elev <- aov(t_height~elev_class, data=sites_df) 
shapiro.test(height.elev$residuals) #not normal, use kruskal 

##  
##  Shapiro-Wilk normality test 
##  
## data:  height.elev$residuals 
## W = 0.97506, p-value = 0.06136 
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height.elev <- kruskal.test(avg_height~elev_class, data=sites_df) 
##Aspect## 
height.asp <- aov(t_height~ordinals, data=sites_df) 
shapiro.test(height.asp$residuals)#not normal, use kruskal 

##  
##  Shapiro-Wilk normality test 
##  
## data:  height.asp$residuals 
## W = 0.93849, p-value = 0.000198 

height.asp <- kruskal.test(avg_height~ordinals, data=sites_df) 
##Deadwood## 
height.wood <- aov(t_height~volume, data=sites_df) 
shapiro.test(height.wood$residuals)#not normal 

##  
##  Shapiro-Wilk normality test 
##  
## data:  height.wood$residuals 
## W = 0.95622, p-value = 0.002637 

height.wood <- kruskal.test(avg_height~volume, data=sites_df) 
##Veg cover## 
height.veg <- aov(t_height~ground, data=sites_df) 
shapiro.test(height.veg$residuals) ##not normal, use kruskal 

##  
##  Shapiro-Wilk normality test 
##  
## data:  height.veg$residuals 
## W = 0.93778, p-value = 0.0001797 

height.veg <- kruskal.test(avg_height~ground, data=sites_df) 
##soils## 
height.soil <- aov(t_height~soil_cover, data=sites_df) 
shapiro.test(height.soil$residuals) #not normal 

##  
##  Shapiro-Wilk normality test 
##  
## data:  height.soil$residuals 
## W = 0.97011, p-value = 0.02594 

height.soil <- kruskal.test(avg_height~soil_cover, data=sites_df) 
##rocks## 
height.rocks <- aov(t_height~rock_cover, data=sites_df) 
shapiro.test(height.rocks$residuals) #not normal 

##  
##  Shapiro-Wilk normality test 
##  
## data:  height.rocks$residuals 
## W = 0.93905, p-value = 0.0002138 

height.rocks <- kruskal.test(avg_height~rock_cover, data=sites_df) 
##litter## 
height.litter <- aov(t_height~lit, data=sites_df) 
shapiro.test(height.litter$residuals) #not normal, may need kruskal-wallis test 

##  
##  Shapiro-Wilk normality test 
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##  
## data:  height.litter$residuals 
## W = 0.89739, p-value = 1.462e-06 

height.litter <- kruskal.test(avg_height~lit, data=sites_df) 
 
                                ##Seeder Kruskals## 
#density 
seed.slope <- kruskal.test(seeder_nha~steepness, data=sites_df) #Slope 
seed.elev <- kruskal.test(seeder_nha~elev_class, data=sites_df) #elevation 
seed.asp <- kruskal.test(seeder_nha~ordinals, data=sites_df) #aspect 
seed.wood <- kruskal.test(seeder_nha~volume, data=sites_df) #deadwood 
seed.veg <- kruskal.test(seeder_nha~ground, data=sites_df) #veg cover 
seed.soil <- kruskal.test(seeder_nha~soil_cover, data=sites_df) #soil 
seed.rock <- kruskal.test(seeder_nha~rock_cover, data=sites_df) #rocks 
seed.lit <- kruskal.test(seeder_nha~lit, data=sites_df) #litter 
#height 
seed.h.slope <- kruskal.test(seeder_avgh~steepness, data=sites_df) #Slope 
seed.h.elev <- kruskal.test(seeder_avgh~elev_class, data=sites_df) #elevation 
seed.h.asp <- kruskal.test(seeder_avgh~ordinals, data=sites_df) #aspect 
seed.h.wood <- kruskal.test(seeder_avgh~volume, data=sites_df) #deadwood 
seed.h.veg <- kruskal.test(seeder_avgh~ground, data=sites_df) #veg cover 
seed.h.soil <- kruskal.test(seeder_avgh~soil_cover, data=sites_df) #soil 
seed.h.rock <- kruskal.test(seeder_avgh~rock_cover, data=sites_df) #rocks 
seed.h.lit <- kruskal.test(seeder_avgh~lit, data=sites_df) #litter 
 
                                ##Resprout kruskals## 
#density 
resprout.slope <- kruskal.test(resprout_nha~steepness, data=sites_df) #Slope 
resprout.elev <- kruskal.test(resprout_nha~elev_class, data=sites_df) #elevation 
resprout.asp <- kruskal.test(resprout_nha~ordinals, data=sites_df) #aspect 
resprout.wood <- kruskal.test(resprout_nha~volume, data=sites_df) #deadwood 
resprout.veg <- kruskal.test(resprout_nha~ground, data=sites_df) #veg cover 
resprout.soil <- kruskal.test(resprout_nha~soil_cover, data=sites_df) #soil 
resprout.rock <- kruskal.test(resprout_nha~rock_cover, data=sites_df) #rocks 
resprout.lit <- kruskal.test(resprout_nha~lit, data=sites_df) #litter 
#height 
resprout.h.slope <- kruskal.test(resprout_nha~steepness, data=sites_df) #Slope 
resprout.h.elev <- kruskal.test(resprout_nha~elev_class, data=sites_df) #elevation 
resprout.h.asp <- kruskal.test(resprout_nha~ordinals, data=sites_df) #aspect 
resprout.h.wood <- kruskal.test(resprout_nha~volume, data=sites_df) #deadwood 
resprout.h.veg <- kruskal.test(resprout_nha~ground, data=sites_df) #veg cover 
resprout.h.soil <- kruskal.test(resprout_nha~soil_cover, data=sites_df) #soil 
resprout.h.rock <- kruskal.test(resprout_nha~rock_cover, data=sites_df) #rocks 
resprout.h.lit <- kruskal.test(resprout_nha~lit, data=sites_df) #litter 
 
                                ##facultative Kruskals### 
#density 
fac.slope <- kruskal.test(fac_nha~steepness, data=sites_df) #Slope 
fac.elev <- kruskal.test(fac_nha~elev_class, data=sites_df) #elevation 
fac.asp <- kruskal.test(fac_nha~ordinals, data=sites_df) #aspect 
fac.wood <- kruskal.test(fac_nha~volume, data=sites_df) #deadwood 
fac.veg <- kruskal.test(fac_nha~ground, data=sites_df) #veg cover 
fac.soil <- kruskal.test(fac_nha~soil_cover, data=sites_df) #soil 
fac.rock <- kruskal.test(fac_nha~rock_cover, data=sites_df) #rocks 
fac.lit <- kruskal.test(fac_nha~lit, data=sites_df) #litter 
#height 
fac.h.slope <- kruskal.test(fac_avgh~steepness, data=sites_df) #Slope 
fac.h.elev <- kruskal.test(fac_avgh~elev_class, data=sites_df) #elevation 
fac.h.asp <- kruskal.test(fac_avgh~ordinals, data=sites_df) #aspect 
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fac.h.wood <- kruskal.test(fac_avgh~volume, data=sites_df) #deadwood 
fac.h.veg <- kruskal.test(fac_avgh~ground, data=sites_df) #veg cover 
fac.h.soil <- kruskal.test(fac_avgh~soil_cover, data=sites_df) #soil 
fac.h.rock <- kruskal.test(fac_avgh~rock_cover, data=sites_df) #rocks 
fac.h.lit <- kruskal.test(fac_avgh~lit, data=sites_df) #litter 
 
par(mfrow=c(1,2)) 
hist(sites_df$seeder_nha, main = "Obligate Seeder Density",  
     xlab = "Seeder Density (n/ha)", ylab="Site Count") 
hist(sites_df$seeder_avgh, main = "Obligate Seeder Performance",  
     xlab = "Seeder Performance (cm)", ylab="Site Count") 

par(mfrow=c(1,1)) 
summary(sites_df$seeder_nha) 

##    Min. 1st Qu. Median    Mean 3rd Qu.    Max.  
##     0.0     0.0     0.0   416.5     0.0 17330.0 

summary(sites_df$seeder_avgh) 

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
##  0.0000  0.0000  0.0000  0.7506  0.0000 41.8000 

par(mfrow=c(1,2)) 
hist(sites_df$fac_nha, main = "Facultative Seeder Density",  
     xlab = "Facultative Seeder Density (n/ha)", ylab="Site Count") 
hist(sites_df$fac_avgh, main = "Seeder Performance",  
     xlab = "Facultative Seeder Performance (cm)", ylab="Site Count") 

par(mfrow=c(1,1)) 
summary(sites_df$fac_nha) 

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
##       0       0     972    3359    3890   36605 

summary(sites_df$fac_avgh) 

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
##    0.00    0.00    6.00   11.19   10.22  142.70 

##Dunns## 
##veg categories for wilcox test 
veg.bin <- vector(mode='numeric', length=97) 
for(i in 1:length(sites_df$ground)){ 
  if(sites_df$ground[i] == "Absent"){ 
    veg.bin[i] <- 0 
  } 
  else{ 
    veg.bin[i] <- 1 
  } 
} 
                        ##Dunn tests -> CLD boxplots## 
              #Site totals first# 
#Slope 
slope.dunn <- dunnTest(regen_ha~steepness, data = sites_df, method='holm')$res 
slope.regen.cld <- cldList(P.adj~Comparison, data = slope.dunn) 
slope.h.dunn <- dunnTest(avg_height~steepness, data = sites_df,  
                         method='holm')$res 
clds <- cldList(P.adj~Comparison, data = slope.h.dunn) 
##add to the boxplot 
slope_meds <- sites_df %>% group_by(steepness) %>% dplyr::summarize( 
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  Median = median(regen_ha, na.rm = TRUE), quant =  
    quantile(regen_ha, probs = 0.75)) %>% arrange(desc(Median)) 
slope_meds$letter <- slope.regen.cld$MonoLetter 
d.slope <- ggplot(sites_df, aes(y= regen_ha, x= steepness))+geom_boxplot()+  
  scale_x_discrete(limits = c("flat", "moderate", "steep"))+ 
  ggtitle("Regeneration Density")+  
  labs(x="Slope", y="Regeneration Density (n/ha)")+ 
  theme_bw()+ theme(panel.grid.major = element_blank(), 
                    panel.grid.minor=element_blank())+ 
  geom_text(data=slope_meds, aes(label = letter, x = steepness, y = quant), 
            vjust = -1, hjust = -1) 
slope_meds <- sites_df %>% group_by(steepness) %>% dplyr::summarize( 
  Median = median(avg_height, na.rm = TRUE), quant =  
    quantile(avg_height, probs = 0.75)) %>% arrange(desc(Median)) 
slope_meds$letter <- clds$MonoLetter 
d.h.slope <- ggplot(sites_df, aes(y= avg_height, x= steepness))+geom_boxplot()+  
  scale_x_discrete(limits = c("flat", "moderate", "steep"))+ 
  ggtitle("Regeneration Performance")+  
  labs(x="Slope", y="Regeneration Performance (cm)")+ 
  theme_bw()+ theme(panel.grid.major = element_blank(),  
                    panel.grid.minor=element_blank())+ 
  geom_text(data=slope_meds, aes(label = letter, x = steepness, y = quant), 
            vjust = -1, hjust = -1) 
ggarrange(d.slope, d.h.slope, nrow=1, ncol=2) 

#elevation 
el.dunn <- dunnTest(regen_ha~elev_class, data = sites_df, method='holm')$res 
el.order <- c("Sea - Low", "Low - Medium", "Medium - High", "Sea - High",  
              "Low - High", "Sea - Medium") 
el.dunn$Comparison <- c("Low - High", "Medium - High", "Low - Medium",  
                        "Sea - High", "Sea - Low", "Sea - Medium") 
el.dunn$Comparison <- factor(el.dunn$Comparison, levels =  el.order) 
el.dunn<- el.dunn[order(el.dunn$Comparison),] 
cld1 <- cldList(P.adj~factor(Comparison, levels = c("Sea", "Low", "Medium",  
                                                    "High")) , data = el.dunn) 
el.h.dunn <- dunnTest(avg_height~elev_class, data = sites_df, method='holm')$res 
el.h.dunn$Comparison <- c("Low - High", "Medium - High", "Low - Medium",  
                          "Sea - High", "Sea - Low", "Sea - Medium") 
el.h.dunn$Comparison <- factor(el.h.dunn$Comparison, levels =  el.order) 
el.h.dunn<- el.h.dunn[order(el.h.dunn$Comparison),] 
cld2 <- cldList(P.adj~Comparison, data = el.h.dunn) 
##add to the boxplot 
meds <- sites_df %>% group_by(elev_class) %>% dplyr::summarize( 
  Median = median(regen_ha, na.rm = TRUE), quant =  
    quantile(regen_ha, probs = 0.75)) %>% arrange(desc(Median)) 
  meds$letter <- cld1$MonoLetter 
d.el <- ggplot(sites_df, aes(y= regen_ha, x= elev_class))+geom_boxplot()+  
scale_x_discrete(limits = c("Sea", "Low", "Medium", "High"))+ 
ggtitle("Regeneration Density")+  
labs(x="Elevation", y="Regeneration Density (n/ha)")+ 
theme_bw()+ theme(panel.grid.major = element_blank(),  
                  panel.grid.minor=element_blank())+ 
geom_text(data=meds, aes(label = letter, x = elev_class, y = quant), 
            vjust = -1, hjust = -0.5) 
meds <- sites_df %>% group_by(elev_class) %>% dplyr::summarize( 
  Median = median(avg_height, na.rm = TRUE),  
  quant = quantile(avg_height, probs = 0.75)) %>% arrange(desc(Median)) 
meds$letter <- cld2$MonoLetter 
d.h.el <- ggplot(sites_df, aes(y= avg_height, x= elev_class))+geom_boxplot()+  
  scale_x_discrete(limits = c("Sea", "Low", "Medium", "High"))+ 
  ggtitle("Regeneration Performance")+  
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  labs(x="Elevation", y="Regeneration Performance (cm)")+ 
  theme_bw()+ theme(panel.grid.major = element_blank(),  
                    panel.grid.minor=element_blank())+ 
  geom_text(data=meds, aes(label = letter, x = elev_class, y = quant), 
            vjust = -0.5, hjust = -0.5) 
ggarrange(d.el, d.h.el, nrow=1, ncol=2) 

#Veg Cover 
 
veg.dunn <- wilcox.test(veg.bin, sites_df$fac_nha, correct=FALSE, exact=FALSE) 
##add to the boxplot 
d.veg <- ggplot(sites_df, aes(y= regen_ha, x= ground))+geom_boxplot()+  
  scale_x_discrete(limits = c("Absent", "Present"))+ 
  ggtitle("Regeneration Density")+  
  labs(x="Vegetative Cover >5%", y="Regeneration Density (n/ha)")+ 
  theme_bw()+ theme(panel.grid.major = element_blank(),  
                    panel.grid.minor=element_blank()) 
d.h.veg <- ggplot(sites_df, aes(y= avg_height, x= ground))+geom_boxplot()+  
  scale_x_discrete(limits = c("Absent", "Present"))+ 
  ggtitle("Regeneration Performance")+  
  labs(x="Vegetative Cover >5%", y="Regeneration Performance (cm)")+ 
  theme_bw()+ theme(panel.grid.major = element_blank(),  
                    panel.grid.minor=element_blank()) 
ggarrange(d.veg, d.h.veg, nrow = 1, ncol = 2) 

#Soil Cover 
 
soil.dunn <- dunnTest(regen_ha~soil_cover, data = sites_df, method='holm')$res 
soil.order <- c("Low - High", "Medium - High", "Low - Medium") 
soil.dunn$Comparison <- c("Low - High", "Medium - High", "Low - Medium") 
soil.dunn$Comparison <- factor(soil.dunn$Comparison, levels =  soil.order) 
soil.dunn<- soil.dunn[order(soil.dunn$Comparison),] 
cld1 <- cldList(P.adj~Comparison, data = soil.dunn) 
soil.h.dunn <- dunnTest(avg_height~soil_cover, data = sites_df,  
                        method='holm')$res 
soil.h.dunn$Comparison <- c("Low - High", "Medium - High", "Low - Medium") 
soil.h.dunn$Comparison <- factor(soil.h.dunn$Comparison, levels =  soil.order) 
soil.h.dunn<- soil.h.dunn[order(soil.h.dunn$Comparison),] 
cld2 <- cldList(P.adj~Comparison, data = soil.h.dunn) 
##add to the boxplot 
meds <- sites_df %>% group_by(soil_cover) %>% dplyr::summarize( 
  Median = median(regen_ha, na.rm = TRUE),  
  quant = quantile(regen_ha, probs = 0.75)) %>% arrange(desc(Median)) 
meds$letter <- cld1$MonoLetter 
d.soil <- ggplot(sites_df, aes(y= regen_ha, x= soil_cover))+geom_boxplot()+  
  scale_x_discrete(limits = c("Low", "Medium", "High"))+ 
  ggtitle("Regeneration Density")+  
  labs(x="Mineral Soil Cover", y="Regeneration Density (n/ha)")+ 
  theme_bw()+ theme(panel.grid.major = element_blank(),  
                    panel.grid.minor=element_blank())+ 
  geom_text(data=meds, aes(label = letter, x = soil_cover, y = quant), 
            vjust = -1, hjust = -0.5) 
meds <- sites_df %>% group_by(soil_cover) %>% dplyr::summarize( 
  Median = median(avg_height, na.rm = TRUE),  
  quant = quantile(avg_height, probs = 0.75)) %>% arrange(desc(Median)) 
meds$letter <- cld2$MonoLetter 
d.h.soil <- ggplot(sites_df, aes(y= avg_height, x= soil_cover))+geom_boxplot()+  
  scale_x_discrete(limits = c("Low", "Medium", "High"))+ 
  ggtitle("Regeneration Performance")+  
  labs(x="Mineral Soil Cover", y="Regeneration Performance (cm)")+ 
  theme_bw()+ theme(panel.grid.major = element_blank(),  
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                    panel.grid.minor=element_blank())+ 
  geom_text(data=meds, aes(label = letter, x = soil_cover, y = quant), 
            vjust = -0.5, hjust = -0.5) 
ggarrange(d.soil, d.h.soil, nrow=1, ncol=2) 

#Litter 
lit.dunn <- dunnTest(regen_ha~lit, data = sites_df, method='holm')$res 
lit.order <- c("None - Low", "Low - High", "None - High") 
lit.dunn$Comparison <- c("Low - High", "None - High", "None - Low") 
lit.dunn$Comparison <- factor(lit.dunn$Comparison, levels =  lit.order) 
lit.dunn<- lit.dunn[order(lit.dunn$Comparison),] 
cld1 <- cldList(P.adj~Comparison , data = lit.dunn) 
lit.h.dunn <- dunnTest(avg_height~lit, data = sites_df, method='holm')$res 
lit.h.dunn$Comparison <- c("Low - High", "None - High", "None - Low") 
lit.h.dunn$Comparison <- factor(lit.h.dunn$Comparison, levels =  lit.order) 
lit.h.dunn<- lit.h.dunn[order(lit.h.dunn$Comparison),] 
cld2 <- cldList(P.adj~Comparison, data = lit.h.dunn) 
##add to the boxplot 
meds <- sites_df %>% group_by(lit) %>% dplyr::summarize( 
  Median = median(regen_ha, na.rm = TRUE),  
  quant = quantile(regen_ha, probs = 0.75)) 
meds$letter <- cld1$MonoLetter 
d.lit <- ggplot(sites_df, aes(y= regen_ha, x= lit))+geom_boxplot()+  
  scale_x_discrete(limits = c("None", "Low", "High"))+ 
  ggtitle("Regeneration Density")+  
  labs(x="Leaf Litter Cover", y="Regeneration Density (n/ha)")+ 
  theme_bw()+ theme(panel.grid.major = element_blank(),  
                    panel.grid.minor=element_blank())+ 
  geom_text(data=meds, aes(label = letter, x = lit, y = quant), 
            vjust = -1, hjust = -0.5) 
meds <- sites_df %>% group_by(lit) %>% dplyr::summarize( 
  Median = median(avg_height, na.rm = TRUE),  
  quant = quantile(avg_height, probs = 0.75)) 
meds$letter <- cld2$MonoLetter 
d.h.lit <- ggplot(sites_df, aes(y= avg_height, x= lit))+geom_boxplot()+  
  scale_x_discrete(limits = c("None", "Low", "High"))+ 
  ggtitle("Regeneration Performance")+  
  labs(x="Leaf Litter Cover", y="Regeneration Performance (cm)")+ 
  theme_bw()+ theme(panel.grid.major = element_blank(),  
                    panel.grid.minor=element_blank())+ 
  geom_text(data=meds, aes(label = letter, x = lit, y = quant), 
            vjust = -0.5, hjust = -0.5) 
ggarrange(d.lit, d.h.lit, nrow=1, ncol=2) 

#Deadwood(n/ha) and Rocks(h) 
vol.dunn <- dunnTest(regen_ha~volume, data = sites_df, method='holm')$res 
vol.order <- c("Low - High", "Medium - High", "Low - Medium") 
vol.dunn$Comparison <- c("Low - High", "Medium - High", "Low - Medium") 
vol.dunn$Comparison <- factor(vol.dunn$Comparison, levels =  vol.order) 
vol.dunn<- vol.dunn[order(vol.dunn$Comparison),] 
cld1 <- cldList(P.adj~Comparison , data = vol.dunn) 
rock.h.dunn <- dunnTest(avg_height~rock_cover, data = sites_df,  
                        method='holm')$res 
rock.h.dunn$Comparison <- c("Low - High", "Medium - High", "Low - Medium") 
rock.h.dunn$Comparison <- factor(rock.h.dunn$Comparison, levels =  vol.order) 
rock.h.dunn<- rock.h.dunn[order(rock.h.dunn$Comparison),] 
cld2 <- cldList(P.adj~Comparison, data = rock.h.dunn) 
##add to the boxplot 
meds <- sites_df %>% group_by(volume) %>% dplyr::summarize( 
  Median = median(regen_ha, na.rm = TRUE), 
  quant = quantile(regen_ha, probs = 0.75)) 
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meds$letter <- cld1$MonoLetter 
d.vol <- ggplot(sites_df, aes(y= regen_ha, x= volume))+geom_boxplot()+  
  scale_x_discrete(limits = c("Low", "Medium", "High"))+ 
  ggtitle("Regeneration Density")+  
  labs(x="Deadwood Volume", y="Regeneration Density (n/ha)")+ 
  theme_bw()+ theme(panel.grid.major = element_blank(),  
                    panel.grid.minor=element_blank())+ 
  geom_text(data=meds, aes(label = letter, x = volume, y = quant), 
            vjust = -1, hjust = -0.5) 
meds <- sites_df %>% group_by(rock_cover) %>% dplyr::summarize( 
  Median = median(avg_height, na.rm = TRUE),  
  quant = quantile(avg_height, probs = 0.75)) 
meds$letter <- cld2$MonoLetter 
d.h.rock <- ggplot(sites_df, aes(y= avg_height, x= rock_cover))+geom_boxplot()+  
  scale_x_discrete(limits = c("Low", "Medium", "High"))+ 
  ggtitle("Regeneration Performance")+  
  labs(x="Rocky Cover", y="Regeneration Performance (cm)")+ 
  theme_bw()+ theme(panel.grid.major = element_blank(),  
                    panel.grid.minor=element_blank())+ 
  geom_text(data=meds, aes(label = letter, x = rock_cover, y = quant), 
            vjust = -0.5, hjust = -0.5) 
ggarrange(d.vol, d.h.rock, nrow=1, ncol=2) 

#for the regen strategy groups 
#seeder elev 
seed.el.dunn <- dunnTest(seeder_nha~elev_class, data = sites_df,  
                         method='holm')$res 
seed.el.dunn$Comparison <- c("Low - High", "Medium - High", "Low - Medium",  
                             "Sea - High", "Sea - Low", "Sea - Medium") 
seed.el.dunn$Comparison <- factor(seed.el.dunn$Comparison, levels =  el.order) 
seed.el.dunn<- seed.el.dunn[order(seed.el.dunn$Comparison),] 
cld1 <- cldList(P.adj~Comparison , data = seed.el.dunn) 
seed.el.h <- dunnTest(seeder_avgh~elev_class, data = sites_df, method='holm')$res 
seed.el.h$Comparison <- c("Low - High", "Medium - High", "Low - Medium",  
                          "Sea - High", "Sea - Low", "Sea - Medium") 
seed.el.h$Comparison <- factor(seed.el.h$Comparison, levels =  el.order) 
seed.el.h<- seed.el.h[order(seed.el.h$Comparison),] 
cld2 <- cldList(P.adj~Comparison, data = seed.el.h) 
##add to the boxplot 
meds <- sites_df %>% group_by(elev_class) %>% dplyr::summarize( 
  Median = median(seeder_nha, na.rm = TRUE),  
  quant = quantile(seeder_nha, probs = 0.75)) 
meds$letter <- cld1$MonoLetter 
d.seed.el <- ggplot(sites_df, aes(y= seeder_nha, x= elev_class))+geom_boxplot()+  
  scale_x_discrete(limits = c("Sea", "Low", "Medium", "High"))+ 
  ggtitle("Obligate Seeder Density")+  
  labs(x="Elevation", y="Density (n/ha)")+ 
  theme_bw()+ theme(panel.grid.major = element_blank(),  
                    panel.grid.minor=element_blank())+ 
  geom_text(data=meds, aes(label = letter, x = elev_class, y = quant), 
            vjust = -1, hjust = -0.5) 
meds <- sites_df %>% group_by(elev_class) %>% dplyr::summarize( 
  Median = median(seeder_avgh, na.rm = TRUE),  
  quant = quantile(seeder_avgh, probs = 0.75)) 
meds$letter <- cld2$MonoLetter 
el.h.seed <- ggplot(sites_df, aes(y= seeder_avgh, x= elev_class))+geom_boxplot()+  
  scale_x_discrete(limits = c("Sea", "Low", "Medium", "High"))+ 
  ggtitle("Obligate Seeder Performance")+  
  labs(x="Elevation", y="Performance (cm)")+ 
  theme_bw()+ theme(panel.grid.major = element_blank(),  
                    panel.grid.minor=element_blank())+ 
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  geom_text(data=meds, aes(label = letter, x = elev_class, y = quant), 
            vjust = -0.5, hjust = -0.5) 
ggarrange(d.seed.el, el.h.seed, nrow=1, ncol=2) 

#Resprouters 
                                                  #slope 
sprout.slope.dunn <- dunnTest(resprout_nha~steepness, 
                              data = sites_df, method='holm')$res 
cld1 <- cldList(P.adj~Comparison, data = sprout.slope.dunn) 
sprout.slope.h.dunn <- dunnTest(resprout_avgh~steepness,  
                                data = sites_df, method='holm')$res 
cld2 <- cldList(P.adj~Comparison, data = sprout.slope.h.dunn) 
#boxplot 
meds <- sites_df %>% group_by(steepness) %>% dplyr::summarize( 
  Median = median(resprout_nha, na.rm = TRUE),  
  quant = quantile(resprout_nha, probs = 0.75)) 
meds$letter <- cld1$MonoLetter 
d.sprout.slope <- ggplot(sites_df, aes(y= resprout_nha, x= steepness))+ 
  geom_boxplot()+ scale_x_discrete(limits = c("flat", "moderate", "steep"))+ 
  ggtitle("Obligate Resprouter Density")+  
  labs(x="Slope", y="Density (n/ha)")+ 
  theme_bw()+ theme(panel.grid.major = element_blank(),  
                    panel.grid.minor=element_blank())+ 
  geom_text(data=meds, aes(label = letter, x = steepness, y = quant), 
            vjust = -1, hjust = -0.5) 
meds <- sites_df %>% group_by(steepness) %>% dplyr::summarize( 
  Median = median(resprout_avgh, na.rm = TRUE),  
  quant = quantile(resprout_avgh, probs = 0.75)) 
meds$letter <- cld2$MonoLetter 
slope.h.sprout <- ggplot(sites_df, aes(y= resprout_avgh, x= steepness))+ 
  geom_boxplot()+ scale_x_discrete(limits = c("flat", "moderate", "steep"))+ 
  ggtitle("Obligate Resprouter Performance")+ 
  labs(x="Slope", y="Performance (cm)")+ 
  theme_bw()+ theme(panel.grid.major = element_blank(),  
                    panel.grid.minor=element_blank())+ 
  geom_text(data=meds, aes(label = letter, x = steepness, y = quant), 
            vjust = -0.5, hjust = -0.5) 
ggarrange(d.sprout.slope, slope.h.sprout, nrow=1, ncol=2) 

#Elevation 
sprout.el.dunn <- dunnTest(resprout_nha~elev_class,  
                           data = sites_df, method='holm')$res 
sprout.el.dunn$Comparison <- c("Low - High", "Medium - High", "Low - Medium",  
                               "Sea - High", "Sea - Low", "Sea - Medium") 
sprout.el.dunn$Comparison <- factor(sprout.el.dunn$Comparison,  
                                    levels =  el.order) 
sprout.el.dunn<- sprout.el.dunn[order(sprout.el.dunn$Comparison),] 
cld1 <- cldList(P.adj~Comparison , data = sprout.el.dunn) 
sprout.el.h.dunn <- dunnTest(resprout_avgh~elev_class,  
                             data = sites_df, method='holm')$res 
sprout.el.h.dunn$Comparison <- c("Low - High", "Medium - High", "Low - Medium",  
                                 "Sea - High", "Sea - Low", "Sea - Medium") 
sprout.el.h.dunn$Comparison <- factor(sprout.el.h.dunn$Comparison, 
                                      levels =  el.order) 
sprout.el.h.dunn<- sprout.el.h.dunn[order(sprout.el.h.dunn$Comparison),] 
cld2 <- cldList(P.adj~Comparison, data = sprout.el.h.dunn) 
##add to the boxplot 
meds <- sites_df %>% group_by(elev_class) %>% dplyr::summarize(Median = median( 
  resprout_nha, na.rm = TRUE), quant = quantile(resprout_nha, probs = 0.75)) 
meds$letter <- cld1$MonoLetter 
sprout.d.el <- ggplot(sites_df, aes(y= resprout_nha, x= elev_class))+ 
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  geom_boxplot()+ scale_x_discrete(limits = c("Sea", "Low", "Medium", "High"))+ 
  ggtitle("Obligate Resprouter Density")+  
  labs(x="Elevation", y="Density (n/ha)")+ 
  theme_bw()+ theme(panel.grid.major = element_blank(),  
                    panel.grid.minor=element_blank())+ 
  geom_text(data=meds, aes(label = letter, x = elev_class, y = quant), 
            vjust = -1, hjust = -0.5) 
meds <- sites_df %>% group_by(elev_class) %>% dplyr::summarize(Median = median( 
  resprout_avgh, na.rm = TRUE), quant = quantile(resprout_avgh, probs = 0.75)) 
meds$letter <- cld2$MonoLetter 
sprout.h.el <- ggplot(sites_df, aes(y= resprout_avgh, x= elev_class))+ 
  geom_boxplot()+ scale_x_discrete(limits = c("Sea", "Low", "Medium", "High"))+ 
  ggtitle("Obligate Resprouter Performance")+  
  labs(x="Elevation", y="Performance (cm)")+ 
  theme_bw()+ theme(panel.grid.major = element_blank(),  
                    panel.grid.minor=element_blank())+ 
  geom_text(data=meds, aes(label = letter, x = elev_class, y = quant), 
            vjust = -0.5, hjust = -0.5) 
ggarrange(sprout.d.el, sprout.h.el, nrow=1, ncol=2) 

#deadwood (n/ha) and veg cover(h) 
sprout.vol.dunn <- dunnTest(resprout_nha~volume, data = sites_df, 
                            method='holm')$res 
vol.order <- c("Low - High", "Medium - High", "Low - Medium") 
sprout.vol.dunn$Comparison <- c("Low - High", "Medium - High", "Low - Medium") 
sprout.vol.dunn$Comparison <- factor(sprout.vol.dunn$Comparison,  
                                     levels =  vol.order) 
sprout.vol.dunn<- sprout.vol.dunn[order(sprout.vol.dunn$Comparison),] 
cld1 <- cldList(P.adj~Comparison , data = sprout.vol.dunn) 
##add to the boxplot 
meds <- sites_df %>% group_by(volume) %>% dplyr::summarize(Median = median( 
  resprout_nha, na.rm = TRUE), quant = quantile(resprout_nha, probs = 0.75)) 
meds$letter <- cld1$MonoLetter 
sprout.d.vol <- ggplot(sites_df, aes(y= resprout_nha, x= volume))+geom_boxplot()+  
  scale_x_discrete(limits = c("Low", "Medium", "High"))+ 
  ggtitle("Obligate Resprouter Density")+  
  labs(x="Deadwood Volume", y="Density (n/ha)")+ 
  theme_bw()+ theme(panel.grid.major = element_blank(), 
                    panel.grid.minor=element_blank())+ 
  geom_text(data=meds, aes(label = letter, x = volume, y = quant), 
            vjust = -1, hjust = -0.5) 
sprout.h.veg <- ggplot(sites_df, aes(y= resprout_avgh, x= ground))+geom_boxplot()+  
  scale_x_discrete(limits = c("Absent", "Present"))+ 
  ggtitle("Obligate Resprouter Performance")+  
  labs(x="Vegetation Cover >5%", y="Performance (cm)")+ 
  theme_bw()+ theme(panel.grid.major = element_blank(),  
                    panel.grid.minor=element_blank()) 
ggarrange(sprout.d.vol, sprout.h.veg, nrow=1, ncol=2) 

#litter 
sprout.lit.dunn <- dunnTest(resprout_nha~lit, data = sites_df, method='holm')$res 
sprout.lit.order <- c("None - Low", "Low - High", "None - High") 
sprout.lit.dunn$Comparison <- c("Low - High", "None - High", "None - Low") 
sprout.lit.dunn$Comparison <- factor(sprout.lit.dunn$Comparison,  
                                     levels =  lit.order) 
sprout.lit.dunn<- sprout.lit.dunn[order(sprout.lit.dunn$Comparison),] 
cld1 <- cldList(P.adj~Comparison , data = sprout.lit.dunn) 
sprout.lit.h.dunn <- dunnTest(resprout_avgh~lit, data = sites_df,  
                              method='holm')$res 
sprout.lit.h.dunn$Comparison <- c("Low - High", "None - High", "None - Low") 
sprout.lit.h.dunn$Comparison <- factor(sprout.lit.h.dunn$Comparison,  
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                                       levels =  lit.order) 
sprout.lit.h.dunn<- sprout.lit.h.dunn[order(sprout.lit.h.dunn$Comparison),] 
cld2 <- cldList(P.adj~Comparison, data = sprout.lit.h.dunn) 
##add to the boxplot 
meds <- sites_df %>% group_by(lit) %>% dplyr::summarize(Median = median( 
  resprout_nha, na.rm = TRUE), quant = quantile(resprout_nha, probs = 0.75)) 
meds$letter <- cld1$MonoLetter 
sprout.d.lit <- ggplot(sites_df, aes(y= resprout_nha, x= lit))+geom_boxplot()+  
  scale_x_discrete(limits = c("None", "Low", "High"))+ 
  ggtitle("Obligate Resprouter Density")+  
  labs(x="Leaf Litter Cover", y="Density (n/ha)")+ 
  theme_bw()+ theme(panel.grid.major = element_blank(),  
                    panel.grid.minor=element_blank())+ 
  geom_text(data=meds, aes(label = letter, x = lit, y = quant), 
            vjust = -1, hjust = -0.5) 
meds <- sites_df %>% group_by(lit) %>% dplyr::summarize(Median = median( 
  resprout_avgh, na.rm = TRUE), quant = quantile(resprout_avgh, probs = 0.75)) 
meds$letter <- cld2$MonoLetter 
sprout.h.lit <- ggplot(sites_df, aes(y= resprout_avgh, x= lit))+geom_boxplot()+  
  scale_x_discrete(limits = c("None", "Low", "High"))+ 
  ggtitle("Obligate Resprouter Performance")+  
  labs(x="Leaf Litter Cover", y="Performance (cm)")+ 
  theme_bw()+ theme(panel.grid.major = element_blank(),  
                    panel.grid.minor=element_blank())+ 
  geom_text(data=meds, aes(label = letter, x = lit, y = quant), 
            vjust = -0.5, hjust = -0.5) 
 
ggarrange(sprout.d.lit, sprout.h.lit, nrow=1, ncol=2) 

#soil 
sprout.soil.dunn <- dunnTest(resprout_nha~soil_cover, data = sites_df,  
                             method='holm')$res 
sprout.soil.order <- c("Low - High", "Medium - High", "Low - Medium") 
sprout.soil.dunn$Comparison <- c("Low - High", "Medium - High", "Low - Medium") 
sprout.soil.dunn$Comparison <- factor(sprout.soil.dunn$Comparison,  
                                      levels =  soil.order) 
sprout.soil.dunn<- sprout.soil.dunn[order(sprout.soil.dunn$Comparison),] 
cld1 <- cldList(P.adj~Comparison, data = sprout.soil.dunn) 
sprout.soil.h.dunn <- dunnTest(resprout_nha~soil_cover, data = sites_df,  
                               method='holm')$res 
sprout.soil.h.dunn$Comparison <- c("Low - High", "Medium - High",  
                                   "Low - Medium") 
sprout.soil.h.dunn$Comparison <- factor(sprout.soil.h.dunn$Comparison,  
                                        levels =  soil.order) 
sprout.soil.h.dunn<- sprout.soil.h.dunn[order(sprout.soil.h.dunn$Comparison),] 
cld2 <- cldList(P.adj~Comparison, data = sprout.soil.h.dunn) 
##add to the boxplot 
meds <- sites_df %>% group_by(soil_cover) %>% dplyr::summarize(Median = median( 
  resprout_nha, na.rm = TRUE), quant = quantile(resprout_nha, probs = 0.75)) 
meds$letter <- cld1$MonoLetter 
sprout.d.soil <- ggplot(sites_df, aes(y= resprout_nha, x= soil_cover))+ 
  geom_boxplot()+ scale_x_discrete(limits = c("Low", "Medium", "High"))+ 
  ggtitle("Obligate Resprouter Density")+  
  labs(x="Mineral Soil Cover", y="Density (n/ha)")+ 
  theme_bw()+ theme(panel.grid.major = element_blank(),  
                    panel.grid.minor=element_blank())+ 
  geom_text(data=meds, aes(label = letter, x = soil_cover, y = quant), 
            vjust = -1, hjust = -0.5) 
meds <- sites_df %>% group_by(soil_cover) %>% dplyr::summarize(Median = median( 
  resprout_nha, na.rm = TRUE), quant = quantile(resprout_nha, probs = 0.75)) 
meds$letter <- cld2$MonoLetter 
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sprout.h.soil <- ggplot(sites_df, aes(y= resprout_nha, x= soil_cover))+ 
  geom_boxplot()+ scale_x_discrete(limits = c("Low", "Medium", "High"))+ 
  ggtitle("Obligate Resprouter Performance")+  
  labs(x="Mineral Soil Cover", y="Performance (cm)")+ 
  theme_bw()+ theme(panel.grid.major = element_blank(), 
                    panel.grid.minor=element_blank())+ 
  geom_text(data=meds, aes(label = letter, x = soil_cover, y = quant), 
            vjust = -0.5, hjust = -0.5) 
ggarrange(sprout.d.soil, sprout.h.soil, nrow=1, ncol=2) 

##Faclutative Seeders 
fac.slope.dunn <- dunnTest(fac_nha~steepness, data = sites_df, method='holm')$res 
cld1 <- cldList(P.adj~Comparison, data = fac.slope.dunn) 
fac.slope.h.dunn <- dunnTest(fac_avgh~steepness, data = sites_df, method='holm')$res 
cld2 <- cldList(P.adj~Comparison, data = fac.slope.h.dunn) 
#boxplot 
meds <- sites_df %>% group_by(steepness) %>% dplyr::summarize(Median = median( 
  fac_nha, na.rm = TRUE), quant = quantile(fac_nha, probs = 0.75)) 
meds$letter <- cld1$MonoLetter 
d.fac.slope <- ggplot(sites_df, aes(y= fac_nha, x= steepness))+geom_boxplot()+  
  scale_x_discrete(limits = c("flat", "moderate", "steep"))+ 
  ggtitle("Facultative Seeder Density")+  
  labs(x="Slope", y="Density (n/ha)")+ 
  theme_bw()+ theme(panel.grid.major = element_blank(),  
                    panel.grid.minor=element_blank())+ 
  geom_text(data=meds, aes(label = letter, x = steepness, y = quant), 
            vjust = -1, hjust = -0.5) 
meds <- sites_df %>% group_by(steepness) %>% dplyr::summarize(Median = median( 
  fac_avgh, na.rm = TRUE), quant = quantile(fac_avgh, probs = 0.75)) 
meds$letter <- cld2$MonoLetter 
slope.h.fac <- ggplot(sites_df, aes(y= fac_avgh, x= steepness))+geom_boxplot()+  
  scale_x_discrete(limits = c("flat", "moderate", "steep"))+ 
  ggtitle("Facultative Seeder Performance")+ 
  labs(x="Slope", y="Performance (cm)")+ 
  theme_bw()+ theme(panel.grid.major = element_blank(),  
                    panel.grid.minor=element_blank())+ 
  geom_text(data=meds, aes(label = letter, x = steepness, y = quant), 
            vjust = -0.5, hjust = -0.5) 
ggarrange(d.fac.slope, slope.h.fac, nrow=1, ncol=2) 

#Elevation 
fac.el.dunn <- dunnTest(fac_nha~elev_class, data = sites_df, method='holm')$res 
fac.el.dunn$Comparison <- c("Low - High", "Medium - High", "Low - Medium",  
                            "Sea - High", "Sea - Low", "Sea - Medium") 
fac.el.dunn$Comparison <- factor(fac.el.dunn$Comparison, levels =  el.order) 
fac.el.dunn<- fac.el.dunn[order(fac.el.dunn$Comparison),] 
cld1 <- cldList(P.adj~Comparison , data = fac.el.dunn) 
fac.el.h.dunn <- dunnTest(fac_avgh~elev_class, data = sites_df, method='holm')$res 
fac.el.h.dunn$Comparison <- c("Low - High", "Medium - High", "Low - Medium",  
                              "Sea - High", "Sea - Low", "Sea - Medium") 
fac.el.h.dunn$Comparison <- factor(fac.el.h.dunn$Comparison, levels =  el.order) 
fac.el.h.dunn<- fac.el.h.dunn[order(fac.el.h.dunn$Comparison),] 
cld2 <- cldList(P.adj~Comparison, data = fac.el.h.dunn) 
##add to the boxplot 
meds <- sites_df %>% group_by(elev_class) %>% dplyr::summarize(Median = median( 
  fac_nha, na.rm = TRUE), quant = quantile(fac_nha, probs = 0.75)) 
meds$letter <- cld1$MonoLetter 
fac.d.el <- ggplot(sites_df, aes(y= fac_nha, x= elev_class))+geom_boxplot()+  
  scale_x_discrete(limits = c("Sea", "Low", "Medium", "High"))+ 
  ggtitle("Facultative Seeder Density")+  
  labs(x="Elevation", y="Density (n/ha)")+ 
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  theme_bw()+ theme(panel.grid.major = element_blank(),  
                    panel.grid.minor=element_blank())+ 
  geom_text(data=meds, aes(label = letter, x = elev_class, y = quant), 
            vjust = -1, hjust = -0.5) 
meds <- sites_df %>% group_by(elev_class) %>% dplyr::summarize(Median = median( 
  fac_avgh, na.rm = TRUE), quant = quantile(fac_avgh, probs = 0.75)) 
meds$letter <- cld2$MonoLetter 
fac.h.el <- ggplot(sites_df, aes(y= fac_avgh, x= elev_class))+geom_boxplot()+  
  scale_x_discrete(limits = c("Sea", "Low", "Medium", "High"))+ 
  ggtitle("Facultative Seeder Performance")+  
  labs(x="Elevation", y="Performance (cm)")+ 
  theme_bw()+ theme(panel.grid.major = element_blank(),  
                    panel.grid.minor=element_blank())+ 
  geom_text(data=meds, aes(label = letter, x = elev_class, y = quant), 
            vjust = -0.5, hjust = -0.5) 
ggarrange(fac.d.el, fac.h.el, nrow=1, ncol=2) 

#Aspect 
fac.asp.dunn <- dunnTest(fac_nha~ordinals, data = sites_df, method='holm')$res 
fac.asp.dunn$Comparison <- c("NW - NE", "NE - SE", "NW - SE", "SW - NE",  
                             "SW - NW", "SW - SE") 
cld1 <- cldList(P.adj~Comparison , data = fac.asp.dunn) 
fac.asp.h.dunn <- dunnTest(fac_avgh~ordinals, data = sites_df, method='holm')$res 
fac.asp.h.dunn$Comparison <- c("NW - NE", "NE - SE", "NW - SE", "SW - NE",  
                               "SW - NW", "SW - SE") 
cld2 <- cldList(P.adj~Comparison, data = fac.asp.h.dunn) 
##add to the boxplot 
meds <- sites_df %>% group_by(ordinals) %>% dplyr::summarize(Median = median( 
  fac_nha, na.rm = TRUE), quant = quantile(fac_nha, probs = 0.75)) 
asp.ord <- c("NW", "NE", "SE", "SW") 
cld1$Group <- factor(cld1$Group, levels = asp.ord) 
cld1 <- cld1[order(cld1$Group),] 
meds$letter <- cld1$MonoLetter 
fac.d.asp <- ggplot(sites_df, aes(y= fac_nha, x= ordinals))+geom_boxplot()+  
  scale_x_discrete(limits = c("NW", "NE", "SE", "SW"))+ 
  ggtitle("Facultative Seeder Density")+  
  labs(x="Plot Ordinal", y="Density (n/ha)")+ 
  theme_bw()+ theme(panel.grid.major = element_blank(), 
                    panel.grid.minor=element_blank())+ 
  geom_text(data=meds, aes(label = letter, x = ordinals, y = quant), 
            vjust = -1, hjust = -0.5) 
meds <- sites_df %>% group_by(ordinals) %>% dplyr::summarize(Median = median( 
  fac_avgh, na.rm = TRUE), quant = quantile(fac_avgh, probs = 0.75)) 
cld2$Group <- factor(cld2$Group, levels = asp.ord) 
cld2 <- cld2[order(cld2$Group),] 
meds$letter <- cld2$MonoLetter 
fac.h.asp <- ggplot(sites_df, aes(y= fac_avgh, x= ordinals))+geom_boxplot()+  
  scale_x_discrete(limits = c("NW", "NE", "SE", "SW"))+ 
  ggtitle("Facultative Seeder Performance")+  
  labs(x="Plot Ordinal", y="Performance (cm)")+ 
  theme_bw()+ theme(panel.grid.major = element_blank(),  
                    panel.grid.minor=element_blank())+ 
  geom_text(data=meds, aes(label = letter, x = ordinals, y = quant), 
            vjust = -0.5, hjust = -0.5) 
ggarrange(fac.d.asp, fac.h.asp, nrow=1, ncol=2) 

fac.veg.dunn <- wilcox.test(veg.bin, sites_df$fac_nha, correct=FALSE, exact=FALSE) 
fac.veg.h.dunn <- wilcox.test(veg.bin, sites_df$fac_avgh, correct=FALSE,  
                              exact=FALSE) 
fac.d.veg <- ggplot(sites_df, aes(y= fac_nha, x= ground))+geom_boxplot()+  
  scale_x_discrete(limits = c("Absent", "Present"))+ 
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  ggtitle("Facultative Seeder Density")+  
  labs(x="Vegetative Cover >5%", y="Desnity (n/ha)")+ 
  theme_bw()+ theme(panel.grid.major = element_blank(), 
                    panel.grid.minor=element_blank()) 
fac.h.veg <- ggplot(sites_df, aes(y= fac_avgh, x= ground))+geom_boxplot()+  
  scale_x_discrete(limits = c("Absent", "Present"))+ 
  ggtitle("Facultative Seeder Performance")+  
  labs(x="Vegetative Cover >5%", y="Performance (cm)")+ 
  theme_bw()+ theme(panel.grid.major = element_blank(),  
                    panel.grid.minor=element_blank()) 
ggarrange(fac.d.veg, fac.h.veg, ncol=2, nrow=1) 

##Fac rocks 
fac.rock.h.dunn <- dunnTest(fac_avgh~rock_cover, data = sites_df,  
                            method='holm')$res 
fac.rock.h.dunn$Comparison <- c("Low - High", "Medium - High", "Low - Medium") 
fac.rock.h.dunn$Comparison <- factor(fac.rock.h.dunn$Comparison,  
                                     levels =  vol.order) 
fac.rock.h.dunn<- fac.rock.h.dunn[order(fac.rock.h.dunn$Comparison),] 
cld1 <- cldList(P.adj~Comparison, data = fac.rock.h.dunn) 
meds <- sites_df %>% group_by(rock_cover) %>% dplyr::summarize(Median = median( 
  fac_avgh, na.rm = TRUE), quant = quantile(fac_avgh, probs = 0.75)) 
meds$letter <- cld1$MonoLetter 
fac.h.rock <- ggplot(sites_df, aes(y= fac_avgh, x= rock_cover))+geom_boxplot()+  
  scale_x_discrete(limits = c("Low", "Medium", "High"))+ 
  ggtitle("Facultative Seeder Performance")+  
  labs(x="Rocky Cover", y="Performance (cm)")+ 
  theme_bw()+ theme(panel.grid.major = element_blank(),  
                    panel.grid.minor=element_blank())+ 
  geom_text(data=meds, aes(label = letter, x = rock_cover, y = quant), 
            vjust = -0.5, hjust = -0.5) 
#soil 
fac.soil.h.dunn <- dunnTest(fac_avgh~soil_cover, data = sites_df, method='holm')$res 
fac.soil.h.dunn$Comparison <- c("Low - High", "Medium - High", "Low - Medium") 
fac.soil.h.dunn$Comparison <- factor(fac.soil.h.dunn$Comparison,  
                                     levels =  vol.order) 
fac.soil.h.dunn<- fac.soil.h.dunn[order(fac.soil.h.dunn$Comparison),] 
cld2 <- cldList(P.adj~Comparison, data = fac.soil.h.dunn) 
meds <- sites_df %>% group_by(soil_cover) %>% dplyr::summarize(Median = median( 
  fac_avgh, na.rm = TRUE), quant = quantile(fac_avgh, probs = 0.75)) 
meds$letter <- cld2$MonoLetter 
fac.h.soil <- ggplot(sites_df, aes(y= fac_avgh, x= soil_cover))+geom_boxplot()+  
  scale_x_discrete(limits = c("Low", "Medium", "High"))+ 
  ggtitle("Facultative Seeder Performance")+  
  labs(x="Mineral Soil Cover", y="Performance (cm)")+ 
  theme_bw()+ theme(panel.grid.major = element_blank(),  
                    panel.grid.minor=element_blank())+ 
  geom_text(data=meds, aes(label = letter, x = soil_cover, y = quant), 
            vjust = -0.5, hjust = -0.5) 
 
#litter 
fac.lit.h.dunn <- dunnTest(fac_avgh~lit, data = sites_df, method='holm')$res 
fac.lit.h.dunn$Comparison <- c("Low - High", "None - High", "None - Low") 
fac.lit.h.dunn$Comparison <- factor(fac.lit.h.dunn$Comparison,  
                                    levels =  lit.order) 
fac.lit.h.dunn<- fac.lit.h.dunn[order(fac.lit.h.dunn$Comparison),] 
cld3 <- cldList(P.adj~Comparison, data = fac.lit.h.dunn) 
meds <- sites_df %>% group_by(lit) %>% dplyr::summarize(Median = median( 
  fac_avgh, na.rm = TRUE), quant = quantile(fac_avgh, probs = 0.75)) 
meds$letter <- cld3$MonoLetter 
fac.h.lit <- ggplot(sites_df, aes(y= fac_avgh, x= lit))+geom_boxplot()+  
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  scale_x_discrete(limits = c("None", "Low", "High"))+ 
  ggtitle("Facultative Seeder Performance")+  
  labs(x="Leaf Litter Cover", y="Performance (cm)")+ 
  theme_bw()+ theme(panel.grid.major = element_blank(),  
                    panel.grid.minor=element_blank())+ 
  geom_text(data=meds, aes(label = letter, x = lit, y = quant), 
            vjust = -0.5, hjust = -0.5) 
ggarrange(fac.h.lit, fac.h.soil, fac.h.rock, nrow = 1, ncol = 3) 

 


