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Introduction

This essay is the response to a practical problem. A neuroscience
research team from the Psychology Department for Development and
Socialization of the University of Padua, structuring its experiment re-
garding electroencephalography (EEG) signals on 6-months-old children
stated that each session had to be video recorded to be later revised in
order to manually classify if the recorded trial had to be considered
reliable or not, depending on whether the subject performed blinks or
saccades or both during the trial. This procedure is later resulted to
be time wasting and that it could potentially introduce some errors.
This work uses the recorded signal to classify each trial, basing the de-
ductions on Principal Components Analysis, the Receiving Operating

Characteristics curve and the Cross-Validation method.
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Chapter 1

Brief Overview on

Electroencephalography

Electroencephalography (EEG) is the recording of intrinsic electri-
cal activity in the brain, based on the propagation of electric impulses
along a nerve fibre when the neuron fires. EEG is typically analyzed in
frequency bands that correspond to different mental states, e.g. is the
alpha-frequency (8-13 Hz) associated with a relaxed mental state. By
recording small potential changes in the EEG signal immediately after
the presentation of a sensory stimulus it is possible to record specific
brain responses to specific sensory, cognitive and other mental events.
This method is called Event-Related Potentials (ERPs) and is one of
the classic methods for investigation of psychophysiological states and
information processing.( Bergen fMRI Group: ERP vs EEG)

This first chapter is to be considered an introduction to this disser-
tation. Indeed in the first paragraph are enlisted the advantages and
disadvantages of using Event-Related Potential techniques, related to
the comparison between ERPs and other behavioral and physiological
measures. In this last comparison are considered a few aspects sepa-
rately: invasiveness of the measures, spatial and temporal resolution of

the observed data and last but not least the costs related to each kind of
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measure. The second paragraph is where we consider the electrical side
of this technique: in here we explain how the electrodes register corti-
cal signal through the braincase. The third and last parafraph makes
a brief excursus through the most common recently used techniques of

automatic removal of artifacts from EEG data.

1.1 Advantages and disadvantages of the ERP

technique

1.1.1 Comparison with Behavioral Measures

When ERPs were first used to study issues in the domain of cog-
nitive neuroscience, they were primarily used as an alternative to mea-
surements of the speed and accuracy of motor responses in paradigms
with discrete stimuli and responses. In this context, ERPs have two dis-
tinct advantages. First, an overt response reflects the output of a large
number of individual cognitive processes, and variations in reaction time
(RT) and accuracy are difficult to attribute to variations in a specific
cognitive process. ERPs, in contrast, provide a continuous measure of
processing between a stimulus and a response, making it possible to
determine which stage or stages of processing are affected by a specific
experimental manipulation. Thus, ERPs are very useful for determining
which stage or stages of processing are influenced by a given experimen-
tal manipulation (for a detailed set of examples, see Luck, Woodman,
and Vogel 2000). A second advantage of ERPs over behavioral measures
is that they can provide an online measure of the processing of stimuli
even when there is no behavioral response.

ERP recordings also have some disadvantages compared to behav-
ioral measures. The most obvious disadvantage is that the functional
significance of an ERP component is virtually never as clear as the func-

tional significance of a behavioral response. In most cases, we do not
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know the specific biophysical events that underlie the production of a
given ERP response or the consequences of those events for informa-
tion processing. In contrast, when a computer records a button-press
response, we have a much clearer understanding of what that signal
means.

A second disadvantage of the ERP technique is that ERPs are so
small that it usually requires a large number of trials to measure them
accurately. In most behavioral experiments, a reaction time difference
can be observed with only about twenty to thirty trials per subject
in each condition, whereas ERP effects often require fifty, a hundred,
or even a thousand trials per subject in each condition. This places
significant limitations on the types of questions that ERP recordings

can realistically answer.

1.1.2 Comparison with Other Physiological Mea-

sures

The ERP technique (along with its magnetic counterpart, the event-
related magnetic field, or ERMF, technique) can be compared with sev-
eral other physiological recording techniques along four major dimen-
sions: invasiveness, spatial resolution, temporal resolution, and cost.
The other classes of techniques considered are microelectrode measures

(single-unit, multi-unit, and local field potential recordings) and hemo-
dynamic measures (PET and fMRI).

Invasiveness Microelectrode measures require inserting an electrode
into the brain and are therefore limited to nonhuman species (or, in
rare cases, human neurosurgery patients). The obvious disadvan-
tage of primate recordings is that human brains are different from
primate brains. The less obvious disadvantage is that a monkey typ-

ically requires months of training to be able to perform a task that
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a human can learn in five minutes, and once a monkey is trained,
it usually spends months performing the tasks while recordings are
made. Thus, monkeys are often highly overtrained and probably
perform tasks in a manner that is different from the prototypical
naive college sophomore. This can make it difficult to relate mon-
key results to the large corpus of human cognitive experiments. PET
experiments are also somewhat problematic in terms of invasiveness.
To avoid exposing subjects to excessive levels of radiation, each sub-
ject can be tested in only a small number of conditions. In contrast,
there is no fundamental restriction on the amount of ERP or fMRI

data that can be collected from a single subject.

Spatial and temporal resolution Many authors have noted that elec-
tromagnetic measures and hemodynamic measures have comple-
mentary patterns of spatial and temporal resolution, with high tem-
poral resolution and poor spatial resolution for electromagnetic mea-
sures and poor temporal resolution and high spatial resolution for
hemodynamic measures. ERPs have a temporal resolution of 1 ms
or better under optimal conditions, whereas hemodynamic measures
are limited to a resolution of several seconds by the sluggish nature
of the hemodynamic response. This is over a thousandfold differ-
ence, and it means that ERPs can easily address some questions
that PET and fMRI cannot hope to address. However, hemody-
namic measures have a spatial resolution in the millimeter range,
which electromagnetic measures cannot match (except, perhaps,
under certain unusual conditions). In fact, the spatial resolution
of the ERP technique is fundamentally undefined, because there are
infinitely many internal ERP generator configurations that can ex-
plain a given pattern of ERP data. Unlike PET and fMRI, it is not
currently possible to specify a margin of error for an ERP localiza-

tion claim (for the typical case, in which several sources are simul-
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taneously active). That is, with current techniques, it is impossible
to know whether a given localization estimate is within some spe-
cific number of millimeters from the actual generator source. It may
someday be possible to definitively localize ERPs, but at present the
spatial resolution of the ERP technique is simply undefined. The
fact that ERPs are not easily localized has a consequence that is not
often noted. Specifically, the voltage recorded at any given moment
from a single electrode reflects the summed contributions from many
different ERP generator sources, each of which reflects a different
neurocognitive process. This makes it extremely difficult to isolate
a single ERP component from the overall ERP waveform. This is
probably the single greatest shortcoming of the ERP technique, be-
cause if you can’t isolate an ERP component with confidence, it is

usually difficult to draw strong conclusions.

Cost ERPs are much less expensive than the other techniques listed so
far. It is possible to equip a good ERP lab for less than US $50,000
, and the disposable supplies required to test a single subject are
very inexpensive (US $1-3). A graduate student or an advanced
undergraduate can easily carry out the actual recordings, and the
costs related to storing and analyzing the data are minimal. These
costs have dropped a great deal over the past twenty years, largely
due to the decreased cost of computing equipment. FMRI is fairly
expensive, the major costs being personnel and amortization of the
machine. One session typically costs US $300-800. PET is exorbi-
tantly expensive, primarily due to the need for radioactive isotopes
with short half-lives and medical personnel. Single-unit recordings
are also fairly expensive due to the per diem costs of maintaining
the monkeys, the cost of the surgical and animal care facilities, an

physiological data from awake, behaving monkeys.
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1.2 Electricity

1.2.1 Volume Conduction

When a dipole is present in a conductive medium such as the brain,
current is conducted throughout that medium until it reaches the sur-
face. This is called volume conduction and is illustrated in part C in
figure 1.1. The voltage that will be present at any given point on the
surface of the scalp will depend on the position and orientation of the
generator dipole and also on the resistance and shape of the various
components of the head (most notably the brain, the skull, and the
scalp; the eye holes also have an influence, especially for ERP activity
generated in prefrontal cortex). Electricity does not just run directly
between the two poles of a dipole in a conductive medium, but instead
spreads out through the conductor. Consequently, ERPs spread out as
they travel through the brain. In addition, because electricity tends to
follow the path of least resistance, ERPs tend to spread laterally when
they encounter the high resistance of the skull. Together, these two
factors greatly blur the surface distribution of voltage, and an ERP gen-
erated in one part of the brain can lead to substantial voltages at quite
distant parts of the scalp. There are algorithms that can reduce this
blurring, either by estimating the flow of current or by deblurring the
voltage distribution to estimate the voltage distribution that is present
on the brain’s surface (Gevins et al. 1999; Pernier, Perrin, and Bertrand
1988). These algorithms can be very useful, of although you should re-
member that they only eliminate one source of blurring (the skull) and
do not indicate the actual generator location of the ERPs. Another im-
portant point is that electricity travels at nearly the speed of light. For
all practical purposes, the voltages recorded at the scalp reflect what is

happening in the brain at the same moment in time.
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Figure 1.1: (C) The summated dipoles from the individual neurons can
be approximated by a single equivalent current dipole, shown here as
an arrow. The position and orientation of this dipole determine the
distribution of positive and negative voltages recorded at the surtace of
the head. (D) Example of a current dipole with a magnetic field traveling
around it. (E) Example of the magnetic field generated by a dipole that
lies just inside the surface of the skull. If the dipole is roughly parallel
to the surface, the magnetic field can be recorded as it leaves and enters
the head; no field can be recorded if the dipole is oriented radially Luck
and Girelli 1998.
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1.2.2 Magnetic Fields

The blurring of voltage caused by the high resistance of the skull can
be largely circumvented by recording magnetic fields instead of electri-
cal potentials. As part D in figure 1.1 illustrates, an electrical dipole
is always surrounded by a magnetic field, and these fields summate in
the same manner as voltages. Thus, whenever an ERP is generated, a
magnetic field is also generated, running around the ERP dipole. More-
over, the skull is transparent to magnetism, and the magnetic fields
are not blurred by the skull, leading to much greater spatial resolution
than is possible with electrical potentials. The magnetic equivalent of
the EEG is called the magnetoencephalogram (MEG), and the mag-
netic equivalent of an ERP is an event-related magnetic field (ERMF).
As in part E in figure 1.1 illustrates, a dipole that is perpendicular to
the surface of the scalp will be accompanied by a magnetic field that
leaves the head on one side of the dipole and enters back again on the
other side. If you place a highly sensitive probe called a SQUID (Super-
Conducting Quantum Interference Device) next to the head, it is pos-
sible to measure the magnetic field as it leaves and reenters the head.
Because magnetic fields are not as smeared out as electrical potentials,
they can provide more precise localization. However, the combination
of ERP and ERMF recordings provides even better localization than
ERMF recordings alone. Unfortunately, magnetic recordings are very
expensive because supercooling is expensive and because an expensive
magnetically shielded recording chamber is necessary to attenuate the

Earth’s relatively large magnetic field.
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1.3 Automatic removal of artifacts from EEG

data: methods recently adopted

Eye movements and blink contamination are pervasive problems in
event-related potential (ERP) research. The electric potentials created
during saccades and blinks can be orders of magnitude larger than
the electroencephalogram (EEG) and can propagate across much of
the scalp, masking and distorting brain signals. Automated methods
are preferable because they eliminate the subjectivity associated with
nonautomated correction, are significantly more time and resource ef-
ficient, and can make it practical to use such applications during on-
line EEG monitoring for clinical and other uses. Blink artifacts are
attributed to alterations in conductance arising from contact of the eye-
lid with the cornea (Overton and Shagass 1969). An eyeblink can last
from 200 to 400ms and can have an electrical magnitude more than
10 times that of cortical signals. Eye movements called saccades gener-
ate another type of electric signal. The cornea of the eye is positively
charged relative to the retina, which amounts to having a steady retino-
corneal charge of between 0.4 and 1.0 mV that approximates a dipole
in both eyes. As the retino-corneal axis rotates during eye movements,
the orientation of this dipole in three-dimensional space also rotates,
resulting in changes in electric potential. The signals due to eye move-
ment propagate mainly through the shunt pathway provided by the eye
sockets. Decomposition methods identify individual signal components
in EEG data without reference to head or source propagation models, so
they are not subject to the general nonuniqueness of source localization
solutions and the poor spatial resolution afforded by EEG data, particu-
larly if sources are closely spaced (e.g., Achim, Richer, and Saint-Hilaire
1991), or to the fact that the distribution of the tissues in the head must
be known precisely to model this propagation accurately throughout the

head. Decomposition methods identify individual signal components in
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EEG data without reference to head or source propagation models, so
they are not subject to the above constraints. EEG component sep-
aration procedures using principal components analysis (PCA) and its
counterpart, singular value decomposition (SVD) were proposed by Berg
and Scherg 1991 and Sadasivan and Dutt 1996, among others.

By definition, PCA and SVD assume that the data components are
algebraically orthogonal, a condition that, in general, is hard to satisfy.
The actual algebraic relationship between source vectors is a function of
each source location, orientation, and to some degree the head conduc-
tance parameters.

Orientation of certain ocular generators (e.g., blinks) may even be
nearly aligned with orientation of frontal EEG generators. A more ad-
vanced method by Berg and Scherg 1994 that combines source modeling,
PCA, and artifact averaging provides an improvement on the individual
techniques above but requires a substantial amount of calibration data
and prior modeling of artifact production and event-related activities.
More recently, Vigario 1997, Jung et al. 2000, and a number of other
researchers have turned to indipendent component analysis (ICA) to
find components of EEG/EOG! data. ICA aims to project (decompose)
data onto statistically independent components utilizing higher-order
statistical measures, beyond the second-order statistics used by PCA.
These methods represent a subclass of the general group of blind source
separation (BSS) algorithms.?

In this essay the data are processed through a new combination of
those methods, in order to avoid the manual identification of the arti-

facts, as the current procedure applied so far to all EEG data suggests.

!Electrooculogram: A measurement of the electrical activity associated with eye movements as
recorded with the placement of small metal discs called electrodes applied to the skin near the

eyes. It is useful for monitoring eyeball movement in REM and non-REM sleep.
2 Joyce, Gorodnitsky, and Kutas 2004



Chapter 2
The Experiment

2.1 The Data

2.1.1 Participants

Twenty-four healthy, full-term 6-months-old infants (10 females, mean
age= 6 months and 7 days, range from 183 to 224 days) participated in
the study. All of them were considered for behavioral analysis, but only
13 out of the 24 infants (6 females, mean age= 6 months and 7 days,
range from 186 to 213 days) could be also considered for ERP analysis
(see inclusion criteria below). Three infants were additionally tested,
but not included in the final sample of participants because of fussiness
or excessive movement artifacts, resulting in no reliable performance.
Infants were tested if awake and in an alert state, and after parents gave
their informed consent. The experimental protocol was approved by the

Ethical Committee of the University of Padova.

2.1.2 Stimuli, apparatus and procedure

Testing took place in a dimly illuminated room. Infants were seated
on a parent’s lap approximately 60 ¢m from a 24 inch screen used for

stimulus presentation. As shown in figure 2.1, each trial began with an
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animated fixation point displayed at the center of the screen. As soon
as the infant looked at it, this was replaced by the visual-spatial cue, i.e.
a walker PLD randomly facing either to the right or to the left.! The
cue was shown for 1,200 ms and, after a variable delay (range from 300
to 500 ms), the target stimulus was displayed for 200 ms. The latter
consisted of the static image of a colored ball (1,75 ¢m in radius) and
could be randomly presented at a peripheral location ( 10 degrees of
visual angle from the center of the screen) either congruent (i.e., valid
coded by “VAL”) or incongruent (i.e. invalid coded by “INV”) with the
walking direction. Structuring trials this way, we can get four kind of

conditions to encode infants’ gaze behavior:

e INV - (L/R): the cue and the target aren’t congruent, if the cue is
facing to the right, the target is shown in the left side of the screen

and viceversa.

e VAL - (L/R): the cue and the target are congruent, so that the target
is shown in the same side the cue was facing to in the previous phase
of the trial.

Stimuli were presented in blocks of 16 trials, eight valid (four with
left- and four with right-sided targets) and eight invalid (four with left-
and four with right-sided targets). The animated fixation point varied
on each trial. Also the target stimulus varied, being randomly selected
among four possible types. In order to obtain as many trials as possible
from each infant, there was no restriction in number of blocks or trials
shown, i.e., they were played as long as the infant was not fussy. Specifi-
cally, the experimental session was terminated when infants looked away
from the screen during five consecutive trials. On average, about 40 tri-

als (range from 19 to 57) were presented to each infant, with no difference
between the number of valid (N = 19.8) and invalid (N = 20.2) trials,

1 Aaen-Stockdale et al. 2008, Troje 2008
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SEQUENCE OF EVENTS ON EACH TRIAL

Attention catcher

CUE
[videoclip 1,200 ms)

Blank (300-500 ms, random)

TARGET (200 ms)

Blank (1,200 ms)

Figure 2.1: Here is shown the stimuli structure

—1.3, p = .21. This also applied to the subgroup of 13 infants

included in the ERP analysis, who on average saw about 42 trials (range
from 26 to 53), with no difference between number of valid (N = 20.5)
and invalid (N = 21.4) trials, ¢(12) = —2, p = .07. The sequence and

timing of the stimuli were controlled by the computer, using E-Prime

2.0.
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Chapter 3

Theoretical Bases

This chapter introduces the arguments that are the bases of this
work. In paragraph 1 are presented eigenvalues and eigenvectors with
a base explanation. These elements are useful to apply Singular Value
Decomposition and Principal Components Analysis, presented in para-
graph 2: these techniques are usually used to manipulate data matrices.
Paragraph 3 provides the Receiving Operating Characteristics (ROC)

curve definition with the reason for we consider it in this work.

3.1 Eigenvalues and Eigenvectors

For each squared matrix A, might be found a scalar A and a vector

x such as
Az = Mz (3.1)

where A is called the eigenvalue of A and z is the eigenvector of A

associated to A. To solve the equation (3.1) we write
(A= X))z =0 (3.2)

If |[A=AI| # 0, (A—AI) is invertible and = 0 is the unique solution. To
exclude trivial solutions, then we impose |A — AI| = 0 in order to obtain
A values so that they can be replaced in (3.1) and in (3.2) to obtain the

19



20

3.#1

correspondent values of z. To have a solution for (3.2), it is necessary
that the A — A\l columns are linearly indipendent. In conclusion, A —
Al has to be singular (the determinant is null) so that exist z # 0
that is the solution to (3.1). The equation |A — M| = 0 is called
the characteristic equation. If A is a p X p matrix, the characteristic
equation has p solutions; i.e. A has p eigenvalues Aj,...,A,. The \;
values are not necessarily different from 0. The eigenvectors z,..., 2,
associated to A1,..., A, are defined by (3.2). It is important to note
that if we multiply both members of (3.1) for a k scalar (and using the

commutative property), we obtain
(A= X)kx=k0=0

So, if x is an eigenvector of A, also kx is an eigenvector. Generally, each
eigenvector is unique up to scalar values k £ 0. Note that in each case
that the direction indicated by the z vector is unique (multiplying for k,
the coordinates ratio remain constant) and so the solution is essentially
unique. For this reason, it’s common to define x a unit norm vector, i.e.

rr =1.

3.1.1 Some interesting results

e Despite the eigenvalues of a matrix A are not necessarily being all

real, this is guaranted if A is symmetric and real.

e Let A be a p X p matrix and G a p X p matrix with rank 7(G) = p.

A and G~ AG have the same eigenvalues.
e An A matrix with r(A) < p has at least a null eigenvalue.
e An idempotent matrix has only eigenvalues equal to 1 or 0

e — If M is semi positive definite, then \; > 0Vj =1,...,p

— If M is positive definite, then \; >0Vj=1,...,p
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e Eigenvectors associated to distinct eigenvalues are linearly indipen-
dent (if \; # Aj, zjx; = 0)

3.2 Singular Value Decomposition and Prin-

cipal Component Analysis

While processing the data, we used two different techniques:

e Singular Value Decomposition (SVD): this is a useful instrument to
find the principal components from the data matrix. In order to
analize in the best way the supplied data, also loadings and scores
are saved as results from this calculation. Thus, it is possible to

analize the loadings following the main purpose of this essay.

e Principal Components Analysis (PCA): this method is similar to
the previous one but it should be inserted in this context because
the results from this analysis can be a very helpful instrument to
provide some graphical representation of the data using the first and

the second principal components to define an appropriate biplot.

3.2.1 Singular Value Decomposition (SVD)

Singular Value Decomposition Theorem. Let M be a real or

complex n X p matrix. Then
M = UDT’

where U and I" are real or complex orthonormal n X n and p X p matrices
respectively so that U'U = UU’ = I,, and I'lI' = I'l" = I, D is a
rectangular diagonal matrix with k& = min(n,p) non-negative values

on the diagonal, also calld singular values. It is also known that this
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decomposition can be written as a sum between matrices:
k
M =UDI' =) " djuy)
j=1

with u; and v; vectors respectively from the U and I' matrices and d;
diagonal elements from the D matrix.
Lemma. Let C', a m x n matrix, be the maximum of
u'Cv

wi /{ww) (o)

— d;

where d; is the first singular value from the SVD and u and v are the first
vector from the U and I' matrices respectively. Moreover dy > - -+ > d,
(the following singular values from C') are the are the following maximum
obtained by pairs of (u,v) under the constraint of being orthogonal

vectors with the previous ones.

3.2.2 Some interesting elements

Theorem (of spectral decomposition). Let M be a real sym-

metric p X p matrix. So

A0 ol r,
M p
0 X ... 0]’
M =TAT" = [y, ....%)] ; =) )
« o o o« o o . DI / J_l
0 0 Ap | L

where A = diag{\;}; (A;, 7 = 1,...,p are the eigenvalues of M) and
[' = [v,...,7)] is an orthogonal matrix whose columns +; are the unit
norm eigenvectors related to the eigenvalues of the M matrix.

Here are presented some connection between the SVD and the pre-

vious theorem:

e Those two theorems provide the same results if and only if M is a
squared, symmetric and positive semi-definite matrix. In particular,
this implies U = D.
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e Lets compare the SVD results applied to the M matrix to those

obtained through the spectral decomposition theorem applied to
A= MM:

M'M = TD'U'UDT
—TDIDT (3.3)
= TAT.

This result has already been used to proof the previous Lemma

consequently:

— DD = D? = A ie. the diagonal elements of D (the singular
values of the M matrix) are equal to )\;/2, Vi =1,...,p (the

eigenvalues of the M matrix)

— I' is the same unit norm eigenvectors matrix in the spectral

decomposition theorem.

e The SVD function, using R, receives as input X as the matrix whose
SVD decomposition is to be computed (X can be a numeric or
complex matrix, logical matrices are coerced to numeric); nu is the
number of left singular vectors to be computed(this must between 0
and n = nrow(X)) and no is the number of right singular vectors
to be computed (that must be between 0 and p = ncol(X)). The

returned value is a list with the following components:
— d: a vector containing the singular values of X (i.e. the eigen-
values of X), of length min(n, p)

— u: present if nu > 0. It has dimensions n X nu and is UD, i.e.

the scores of the principal components

— v: a matrix whose columns contain the eigenvectors or loadings

of X, present if nv > 0. It has dimensions p X nwv.
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3.2.3 Principal Components Analysis (PCA)

! The usual procedure is as follows. Suppose X is a p-dimensional
vector with covariance matrix X or, as in this case, with its sample
counterpart S. The first principal component is a linear combination
g"' X, for some vector g which satisfies ¢’ ¢g = 1, which is chosen to
maximize the variance among all linear combinations. In other words,
we find ¢ to maximize g7 Sg subject to g'g = 1. If the solution is
g = g1 then ¢{ X is called the first principal component of X. If we
want to go beyond the the first PC, we then repeat the optimisation
in the space orthogonal to g;: find g, to maximize g Sgo such that
grgy =1, g¥ g, = 0. Then g X is the second principal component. The
process continues iteratively: suppose ¢1,...,gr_1 are given, for some
k < p, then find g; to maximize g,{Sgk subject to g%gk =1, g,{gj =0
forj=1,...,k—1. Then g,r‘:X is the k’th principal component. In the
origin we could go on to find all p PCs, though in practice it is unusual
to stop after selecting enough PCs to capture most of the variability in
the data.

Now we show how to calculate g1, ¢s,.... Let G be an orthogonal
matrix such that GTSG = D, where D is a diagonal matrix with diago-
nal entries ordered so that Ay > Ay > ... > A\, > 0. We can always find
such representation, because S is symmetric and non-negative definite.
Let g be the k’'th column of G. So g; is a norm-one eigenvector of S
with \; eigenvalue.

Claim: These g;’s are the solutions of the optimization problem de-
scribed above. Moreover, the principal components gf X, g7 X, ..., gg X
are incorrelated, and the sum of their variances is the sum of the vari-

ances of the individual components of X.

Proof of Claim. The eigenvectors {g,1 < k < p} form a complete

orthonormal basis in R?, so far any g € RP, there exist consistants

1 Smith 1999
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ci,...,Cpsuch that g = Sicrgr. Then

p

p p
g 9= aagia=>Y d

k=1 =1 k=1

p p
g"Sg=> "> cagl Sy
p p p
=Y > aagiah =) e
k=1

Since the {\;} are ordered, g7Sg < A\ Spci = )1, with equality if
¢y = -+ = ¢y, = 0. This proves that g, has the property of maximizing
g7 Sg subject to g'g = 1. It is the unique solution, up to changes of
sign, if A\; > A9, but we have not excluded the possibility that \; = Ao
in which case the solution is not unique.

To get the second PC, we focus on g = Sicrgr which are orthogonal
to g1, in other words, for which ¢; = 0. But then, an extension of
the same reasoning shows that g7 Sg < X\oSici = Ao, with equality if
c3 = ... = ¢, = 0. This proves that g, solves the equation for the second
PC, and is unique if \;y > Ay > A3. We proceed in similar fashion to
derive the third, fourth and subsequent PCs.

The PCs are orthogonal, because for k # I, g/ Sg1 = Nglg = 0
by orthogonality of the g;’s, and the k'th PC has variance gl Sg, =
)\lg;{gk = A;. Finally the sum of the variances of the PCs is S\, =
tr(D) = tr(S), which is the sum of the variances of the individual

components of X. ]

One difficulty associated with this is that the problem is not scale in-
variant — if the original data were lengths measured in inches and weights
measured in pounds, and if we then changed the scales of measurement
to centimetres and kilograms, the PCs and the corresponding A\;’s would
change. A way to avoid this difficulty is to rescale the problem prior to

computing the PCs, so that each component of X had either population
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variance or sample variance equal to 1. This is, of course, equivalent
to replacing S by the corresponding correlation matrix. Thus, an al-
ternative way of proceding is via the correlation matrix instead of the

covariance matrix.

3.3 Receiving Operating Characteristics curve

(ROC curve)

Classification is a statistical method used to build predicative models
to separate and classify new data points. The populations we want to
distinguish between are invalid trials manually defined and trials defined
invalid after the analysis. Considering the variable u, called feature,
we want to measure to assess whether a trial is effectively valid or not.
Finally, classification will make a decision function, as in this case, using
a logit regression based analysis, or similarly using a linear or quadratic
discriminant analysis or classification and regression trees. Last but not
least, it is necessary an evaluation of the goodness and to do so, in
this case it is dued to consider the ROC curve and the cross-validation
procedure.

The ROC curve is a valid instrument to measure, by a graphic rep-
resentation, the accuracy of the classification procedure. It’s based on
the relative error of classification related to a set of observations that
can or can not be the same set used to form the procedure. The ROC
curve is constitute in order to classify binary response.

The focus is on binary classification, we consider to classify in G
if P(Gs|x) > c. In the beginning, we consider the following confusing
matrix, where c¢ is fixed in the (0, 1) interval, and the threshold,that in
R represents each value we can use to recalculate different confusing
maftrices related to different values of sensitivity and specificity.

Note that, the growth of ¢ causes the decrease of nis(c), nos(c) and
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Expected Class
Gy G

Gi1 nn
Real Class Gl

n.o(c), but the arise of ni1(c), n21(c) and n.q(c). The row totals don’t
change according to ¢ because they don’t depend on the classification
rule adopted but exclusively on the sample composition.

From the previous cofusing matrix, it’s calculated the probability to
assign to GG a subject belonging to Gy, P(GQ\Gl), case that’s also called
false positive (FP) and defined by the following equation

alc) = 711;1(0)

and viceversa, the estimation of the probability to assign to G; a
subject belonging to Ga, P(G1|Gy), event also called false negative (FN)
and defined by the following equation

. ngl(C)

Blo) = "2

At this point, we can define two ways to measure the dependence

between dichotomous variables:

e Specificity: it’s defined as the probability to correctly classify a sub-
ject belonging to the GG class and one’s complement of the proba-

bility of false positive.

7111(0)
19 (C) + ni (C)

P(G1|G1) =1 —a(c) =

This value increases following the growth of ¢ (n12(c) decreases and

n11(c) increases)
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e Sensitivity: it’s defined as the probability to correctly classify a

subject belonging to the G5 class and equals the complementing

form of 5(c).

P(Ga|Ga) =1 = B(c) = n21(07;2i5222(c>

This value decreases following the growth of c.

The ROC curve then is the locus of points having as coordinates
a(c), 1 —B(c), contained in the square [0, 1] x [0, 1]. In other words, the
curve is the set of points PC(GQ|G2), PC(C?2|G1) and puts together the
probability to correctly predict G with the probability to uncorrectly
predict G, false positive.

Now we take advantage of this instrument to find the threshold re-
lated to the maximum value of the sum between sensitivity and speci-
ficity. We consider that threshold our cutting value to classify our data
as reliable or not in order to find outliers in our analysis without the
support of video-recorded trials or unreliability manually noted. Sim-
ilarly it is possible to consider as cutting value that point where the
probability to classity fake outliers is low, in order to keep the highest

number possible of reliable trials.

3.4 Cross-validation

As previously announced, the usual method to measure a classifica-
tion function quality consists in using part of the sample to estimate the
model and a restriction to evaluate the error. Operationally, given the
sample [y, X| composed by n units, some n; < n units are chosen to
build the classification rules and the rest no = n — ny are set aside to
evaluate the effectiveness of the rules, i.e. to measure the generalizability
of the procedure. The first units set is called training set and the second

test set. There is not a fixed rule to choose the dimension of each set,
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neither there is a unique way to choose the n; units but it is common to
define n; equal to the 90 — 95% of the sample extracting random units.
Refining this idea, it is also possible to repeat the procedure (divide the
sample, define the classification rule, count of the errors) obtaining that
the mean number of committed errors will be used to estimate general-
ization errors made by the classification rule applied. Alternatively, as
in this case, it is applicable the leave-one-out cross-validation method,
which consists in isolating one ¢ random unit, building the classification
rule on the remaining n — 1 units and comparing the criteria results
to the effective ¢ starting class; this procedure is repeated for each unit
in the sample. Increasing the rule complexity indefinitly decreases the
classification error on the initial class, but the generalizing error, the one
measured on the test set, decreases to a certain level and then increases
if the rule becomes more complex. The point is to try to identify the

right complexity level.
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Chapter 4

EEG Data Analysis

the first paragraph entirely explains the purpose of this essay i.e. the
procedure applied to detect outliers from data, the classification methods
to mark the trials as “unreliable”; throughout the paragraph an example,
conducted on a restriction of the dataset, is used to better clarify the
procedure adopted. In the second paragraph is described in detail each
step of the data processing, considering the data’s initial conditions,
describing the filtering procedure and parameters and how the principal
components analysis has been conducted. The third paragraph reports

some graphics and the modeling results.

4.1 Methods

In order to discuss the whole procedure in the best possible way, an
example using only a single subject partition of the dataset is going to
be necessary, but in the real case this procedure has been applied to all
the subjects included in the experiment.

Now, just the “INV-R” combination is chosen between the four kind
of trials and according to the figure 4.1 only the enlighten channels are
included: those channels were picked to better explain through signal

graphics where is to detect the unreliable trials due to an extraordinary

31
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line in the trace.l

HydroCel Geodesic Sensor Net
128 Channel Map

Version 1.0

For questions or additional assistance please refer to the EGI Sensor Net Technical Manual or contact us at:

Electrical Geodesics, Inc.

1600 Millrace Drive, Suite 307

Eugene, Oregon USA 97403

Phone: (541) 6877962  Fax: (541) 6877963

Email: support@egi.com or info@egi.com N-PRTLAM-4300.001

Figure 4.1: This is the channels map. Enlighten in green we can locate

the channels included in this example

Lets assume that the figure 4.2 is the representation of a “small”
3D data matrix, made by those five channels considering the second
dimension, the time code in the first dimension and the trials related to
the “INV-R” condition in the third one. Lets call X the matrix extracted
from a slice of the 3D matrix (slice having the time as the rows and the
trials as the columns), through the singular value decomposition it is

possible to rewrite X as
X =UDT"

! Wang et al. 2014
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where I is the eigenvectors matrix and each column ~; is a unit norm
vector containing the contributions of each channel to the first principal
component; in order to pusue our goal, only the first column is consid-
ered and possibly its eigenvalue. Collecting the first eigenvectors from
each slice analyses, a matrix of eigenvectors is built and is called G.

Now, having
G=[n-7- Yo

where? each column is the first eigenvector from the i-th channel, the
principal components analysis is applied on that G’ matrix, so that is

possible to consider

G = UacDgl'q

With these analysis results, it can be useful to have a graphic repre-
sentation. The figure 4.2 can be considered the graphic representation
of each slice of the X matrix.

These graphics are based on the manual classification, coloring in
blue the valid trials and in red the invalid ones. Considering this situa-
tion it is to be expected to have at least 6 unreliable trials basing that
count on channel 2 representation.

The next step is to compare the manual classification with the results
obtained from the previous analyses.

In figure 4.3 each point represents a trial and the label “  U” stands
for those trials manually identified as “unreliable”. The arrows are unit
norm vectors and do not indicate any particular correlation because of
the centering applied in the preprocessing phase. In an hypothetically
perfect situation, it is to be expected that higher scores of the supplied

data on the principal components may correspond to an outlier trial

2124 is the number of channel considered in this experiment. Usually EEG experiments consider
129 channels, but in this particular case data concern children in tender age (6-months-old) and
the lack of those channels information is dued to the exlusion of two sensors from positioning (those
usually positioned below the eyes) that the subjects could not stand and two channels because of

their null variance.
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Figure 4.2: Signal related to 5 channels extracted from ID 4 trials

represented in the biplot by dots far from the center of the axes. At this
point of the procedure, considering all the subjects became mandatory:
a logistic regression is estimated considering u the response variable
(assuming “1” if the trial has been manually defined “unreliable”, “0”
otherwise) and all the subjects, a distance (that will be later explained)
and the interation between them as the indipendent variables. That

kind of model can be useful under multiplex good points:

e it can be processed through the auc function in R to evaluate the area
under the curve (a value between 70% and 100% is a good result),
sensibility and specificity, and it is possible to define a threshold

useful to classify each trial;

e considering the residuals extracted from the fitted model, it is pos-
sible to run a leave-one-out cross validation to evaluate the classifi-

cation function, defining sensibility and specificity closer to reality.
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Figure 4.3: Biplot related to the “INV-R” condition of the ID 4 trials
obtained by using center=0verAll, scale=FALSE
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4.2 Procedure

4.2.1 Data initial conditions

In the first place, the EEG dataset was made three different sub-
jects: each directory contained a file for each trial the subject ended
with success.® This detail makes everything statistically more complex
because not disposing of the same number of trials for each subject
doesn’t make the sample perfectly comparable, but this isn’t exactly
this work purpose. Some researchers, examining the videos related to
each trial, kept track of the trial containing a blink or a saccade: those
trials were marked as “unreliable”. The purpose is to detect those tri-
als through data processing and to measure the probability we have to

classify correctly each trial.

4.2.2 Exploring data

Talking about tecnical issues in preprocessing, the first one we bumped
into manipulating data was how to keep trace of the characteristics of
each trial (type, number and reliability) absorbing these informations
from the file name. So we wrote a few lines of code, based on the code-
lines of each file in order to select and keep only the needed characters.
The following step was to built a 3D data matrix, one for each sub-
ject, containing in the first dimension each value recorded during the
experiment, in the second dimension a list of the 125 channels used to
record the brain electrical activity and in the third one we keep a label
to identify the trials.

3 Richards 2005. Testing was done only if the subjects maintained an alert, awake state during
the procedure (eyes open, no fussing or crying, responding to the protocol). If the infant became
fussy a short break was taken and the presentations were paused and then restarted. [...] The
session was continued as long as the infants were not fussy in order to obtain as many trials as

possible.
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4.2.3 Filtering

To smooth the signal, we decided to apply a Butterworth low-pass
filter. To ensure to this experiment to be replicable, we provide parame-
ters we used: we assigned n=3 to define the filter order, W=1/40 as critical
frequencies of the filter, considering that for digital filters, W must be
between 0 and 1 where 1 is the Nyquist frequency and type=‘‘low’’ to
require the low-pass filter. To apply this filter to our data, we use the R
function butter containing the function £i1tfilt in a double for cycle
to fiter data by trial and by channel, replacing the new filtered data in

the former 3D matrix structure.

4.3 Principal Components Analysis

In order to apply the Principal Components Analysis, the common
solution is to consider standardized data. Besides, lacking of a referring
model in EEG literature about what mean suits the best to center our
data and about the possibility to use scaled data or not, we act like each
configuration is equally good until proven otherwise. We decided to use

two kind of mean:

e over all: the mean is calculated by each channel for each trial and

then is subtracted from each channel in the original data.

e by trial: the mean is calculated by condition so we calculate four
“big” means, one for each INV-L, INV-R, VAL-L, VAL-R condi-
tion, and then each mean is subtracted from the channels by condi-
tion.(This is the default mean R uses to treat PCA but we used this
standard, splitting our sample into four groups to take advantage of
each condition). If center is TRUE then centering is done by subtract-
ing the column means (omitting NAs) of x from their corresponding

columns.
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Also the scale parameter can have the logic values TRUE/FALSE. If scale
is TRUE then scaling is done by dividing the (centered) columns of x by
their standard deviations if center is TRUE, and the root mean square
otherwise. In other words, considering the center parameter set as TRUE,
the analysis is based on covariance matrix with scale set as FALSE and
on correlation matrix otherwise.

This undefined situation about centering and scaling data lead us to
produce four versions of everything we had to estimate and classify.

With the scaled and centered data matrix, we produced an estimate
of the signal based on the mean by channel and by condition, without

principal components extraction.

4.4 Outliers Detection

After manipulating the signal according to our needs by centering
and scaling the dataset, the principal components are estracted and the
related loadings are used to graphically find the outliers (the analytical-
mathematical analysis of the issue will soon follow with the analysis of
the area under the ROC curve) . A simple example of a biplot can be
the following figure 4.4. According to the legend, it seems that in this
case manual and mathematical classification are equal regarding trials
“INV-R 12_U” and “INV-R 11 U” but they are in contrast about trials
“INV-R 10_U” and “INV-R 7__U” which are mathematically considered

“reliable”.

4.4.1 Area under the ROC curve

After the first principal components extraction, we apply the Singu-
lar Value Decomposition to our eigenvectors by condition and we use
these new results in a biplot to actually see the outlier trial(s). These

analyses were conducted by subject and is produced a biplot for each
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Figure 4.4: ID 10: biplot considering all the channels in the “INV-R”
condition. Coded with “1” are those trials manually labelled as “reliable”,
and with “2”7 are those trials manually labelled as “unreliable”. The

center=0verAll, scale=FALSE case of preprocessing is shown here.
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condition. During this analysis we keep memory of some distances, pre-

viously appointed, that will be useful later in the mathematical part:

e modldir: in this variable we save the product between the opposite
of the first score and the sign of the mean of the components of the

first loading as explained by the formula

124
—pcl$uli, 1] x sign (Z pcl$olj, 1])

j=1
where pc1$u indicates the scores of the SVD and pci1$v indicates
the eigenvectors matrix;

e mod1: in this variable we save the absolute value of the first score;

e mod2: in this variable we save the square root of the sum by rows
of the squared sum of the first and the second scores as explained

by the formula

n

S (pe1$ulj, 1] + pelSulj, 2)°

J=1

where pc1$u indicates the scores of the SVD and n is the number

of trials for that subject considering each condition.

We save these values also to represent a further graphic scenario by
using the boxplot as in figure 4.5.

The horizontal line that appears in each boxplot corresponds to the
estimated best cut according to each distance. The precise values are

the following.

4.4.2 Classification

In this phase we discuss the mathematical aspect of outliers detec-

tion, using the Receiving Operating Characteristics curve. For each
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of the previous saved distances, a logistic model regression is used to
estimate our probability to consider a trial unreliable when it is not.
As explained in the dedicated section, we handle the real data and the
estimated ones to calculate specificity and sensitivity related to each
possible threshold. This leads us to consider as the best cut the thresh-
old related to the maximum value of the sum between sensitivity and
specificity. This observation is consequent to the fact that we prefer a
model having area under the curve which tends to one, the closer to
one is the area, better is the model so we tend to consider acceptable
those models having area between 0.5 and 0.7 and good the other ones
having area over 0.7. The lack of a reference in the literature about
preprocessing configuration leads us to test this procedure four times:
the best results achieveable, in our opinion, are those obtained by using
center=0verAll, scale=FALSE.

Considering this configuration, we achieved the best value of area
under the curve (AUC) related to the mod2 model as shown in fig-
ure 4.6. There are also some numbers supporting this theory, as in
table 4.4.2 where there are reported all the values estimated in the pre-
vious paragraphs. There are also some new results about the sensibility
and the specificity evaluated by leave-one-out cross-validation, the cross-
validation error and relative error, everyone done for each distance. The
mod2 model has been considered the best also because of its low relative

error in cross-validation procedure.

model AUC best cut sens spec xsens xspec xerr relxerr

modldir 0.70 028 0.66 0.67 057 060 041 1.39
modl 0.75 028 0.63 0.76 055 073 032 1.09
mod2 0.75 044 049 089 046 0.86 0.26 0.88
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Conclusions

The work discussed in these pages is to be considered at its embryonic
stage. There are some good aspects to be considered but there are also

some improvements to be made. The pros are:

e this method is automatic, replicable and appliable to young subjects
or to those subject who can stand less electrodes than the number

stated by EEG standard protocols;

e through this method it is possible to consider “reliable” or not a trial
basing this classification on mathematical analysis, without wasting

time watching the video-recorded trials;

e if there are some errors in classification, they are certainly due to the
method and are not to be considered caused by manual mis-labelling

insertion.

The cons is that this method does not distinguish between the types

of artifact, a removed trial can be disturbed by anything.
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