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Abstract

The accurate estimation of gaze depth is crucial for enhancing the functionality of
eye-tracking systems, particularly in applications requiring precise three-dimensional
gaze localization. This thesis presents a comprehensive approach to real-time gaze
depth estimation using Tobii Pro Glasses 3, leveraging machine learning algorithms and
precise pupil detection methods. The study begins with a theoretical overview of eye
vergence and pupil detection techniques, followed by the development of a regression
model trained to estimate gaze depth from the pupil positions. The experimental setup
includes real-time video decoding and the analysis of pupil positions to validate the
model’s performance.

This research contributes to the field of gaze tracking by providing a robust frame-
work for real-time depth estimation, highlighting the importance of precise pupil
detection and positional calibration. Future work will focus on refining the model for
broader applications and exploring additional features to enhance the accuracy and
applicability of gaze depth estimation systems.
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Chapter 1

Introduction

1.1 Thesis Overview

In recent years, gaze estimation has emerged as a crucial technology in various fields
such as human-computer interaction, virtual reality, and assistive technologies. The
ability to accurately determine where a person is looking has numerous applications,
ranging from enhancing user interfaces to enabling more natural interactions in virtual
environments [10]. Traditional gaze estimation techniques typically focus on determin-
ing the point of gaze on a two-dimensional screen. However, as 3D technologies and
virtual environments become more prevalent, there is a growing need to extend gaze
estimation into three dimensions. One key aspect of 3D gaze estimation is determining
the depth at which a person is looking, which involves measuring the vergence of the
eyes. Vergence refers to the simultaneous movement of both eyes in opposite directions
to obtain or maintain single binocular vision. Accurate vergence measurement can
provide valuable information about the depth of the gaze, which is essential for appli-
cations such as immersive virtual reality systems, advanced driver assistance systems,
and robotic control interfaces.

The primary objective of this thesis is to develop a method for estimating gaze
depth using images captured by Tobii Pro Glasses 3 ©. These glasses are equipped
with high-resolution cameras that can provide detailed pictures of the eyes, enabling
precise measurement of pupils’ position. From these, and by leveraging the vergence
angle, the objective is to derive the depth of gaze from these measurements, thereby
extending the capabilities of gaze tracking into three dimensions.

This project is part of a larger initiative focused on developing a robotized wheelchair
for individuals with disabilities. The research on gaze depth estimation can be applied
to control the wheelchair using only the user’s eye movements, captured by the Tobii
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Pro Glasses 3. This application has the potential to significantly enhance the mobility
and independence of individuals with severe physical impairments, enabling them to
navigate their environment through intuitive and natural gaze-based interactions.

1.1.1 Methodology

This section outlines the methodology employed to estimate gaze depth. The process
involves several key steps: capturing images, detecting pupil positions, and using these
positions to train a regression model for gaze depth estimation. Tobii Pro Glasses 3 are
utilized to capture high-resolution images of the eyes. These glasses are equipped with
high-accuracy cameras that can record detailed eye movements in naturalistic settings,
making them ideal for vergence measurement. The images obtained from the glasses
serve as the primary data source for the subsequent analysis. A robust pupil detection
algorithm has been developed to accurately locate the pupils in the captured images.
This algorithm processes each image to identify the exact positions of the pupils. The
detection process involves several steps, including image preprocessing, edge detection,
and contour analysis to ensure precise localization of the pupils. The detected pupil
positions are then used to train a regression model. This model transforms the detected
pupil positions into an estimated gaze depth. Various regression techniques were
explored, and the model was trained on a comprehensive dataset to ensure its accuracy
and generalizability. The training process involved splitting the dataset into training
and validation sets, optimizing the model parameters, and evaluating its performance
using standard metrics such as mean squared error.

The implemented methodology was tested in controlled experiments to evaluate its
performance. The primary objective was to improve upon the built-in depth estimation
provided by the Tobii Pro Glasses 3. The estimated gaze depths from the proposed
method were compared against ground truth measurements. The results demonstrated
that the proposed approach was more precise and reliable than the built-in estimation,
validating the effectiveness of the pupil detection algorithm and the regression model.

Eye Tracking Hardware

For this project, we utilized the Tobii Pro Glasses 3, a state-of-the-art wearable eye
tracker designed for real-world data collection. The key features are presented here [38]:
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• Scene camera: The built-in scene camera boasts a 106° field of view, capturing
a comprehensive perspective of the surrounding environment. This feature is
crucial for contextualizing the eye tracking data

• Eye tracking cameras: The glasses integrate four miniature eye cameras,
into scratch-resistant lenses, ensuring high-performance eye tracking without
obstructing the wearer’s field of view. These cameras provide a video with a
resolution of 1024x256 px and a framerate of 50fps.

• Infrared illuminators: A total of sixteen infrared lights illuminate the eyes to
assist the eye tracking sensors.

• Eye tracking technique: From corneal reflection, dark pupil detection, and
stereo geometry, a patented 3D eye model is obtained, ensuring accurate gaze
data with a sampling frequency of 100 Hz and high precision. The samples
contain complete eye tracking information, including 2D gaze, 3D gaze, gaze
origin, gaze direction, and pupil diameter.

• Inertial Measurement Unit: Tobii Pro Glasses 3 has an IMU sensor that can
measure acceleration, rotation, and magnetic field. The accelerometer measures
the acceleration along three axes in the head unit coordinate system. The
gyroscope measures rotation around three axes (XYZ) at a frequency of 100Hz,
while the magnetometer measures the strength of the surrounding magnetic field
with a frequency of 10Hz.

• Microphone: An integrated microphone records environmental sounds, provid-
ing additional context for behavioral analysis
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Fig. 1.1 Frontal view of the Tobii Pro Glasses 3

1.2 Structure of the Thesis

The remainder of this thesis is structured as follows: Chapter 2 provides a comprehensive
theoretical overview of vergence in human eyes, including the physiological basis and
significance of vergence movements. This chapter also explores various pupil detection
algorithms, examining their principles, implementations, and effectiveness. Chapter
3 focuses on the development of the machine learning regression model used for gaze
depth estimation. It covers the selection of features, model training, and validation
processes, along with a discussion of the performance metrics used to evaluate the
model. Chapter 4 details the real-time video decoding process, describing the techniques
employed to achieve efficient and accurate decoding. This chapter also presents the
experimental setup used to test the gaze depth estimation method, and it includes
an analysis of the results. Additionally, the estimation of the roll angle of the glasses
is discussed, highlighting the methods used for its calculation and its possible use.
Finally, Chapter 5 concludes the thesis by summarizing the key contributions and
findings, offering a reflection on the implications of the work, and providing suggestions
for future research directions to further advance the field.



Chapter 2

Gaze Depth Estimation Using Eye
Vergence

2.1 The Human Eyes and 3D Vision

The human eyes are nested in two bony cavities called orbits. Using six extraocular
muscles, the eyes perform various rotational movements. The orbits also contain con-
nective tissues, smooth muscles, nerves, blood vessels, and other visual structures [26].
Investigations into the anthropometry of the human eye have found that the radius of
the eye globe is approximately 24 mm, with no significant difference in globe dimensions
across a wide age range [3]. The component responsible for sharp central vision, known
as foveal vision, is the retinal fovea. This small central pit in the macula lutea of the
retina is where the visual axis passes through the center of the fovea and the center
of the pupil. For clear acute vision, the image of the object must be held steadily on
the central, foveal region of the retina, which imposes a two-fold limitation problem:
maintaining the steadiness of the object and ensuring the correct distance from the
fovea.
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Fig. 2.1 Horizontal section of the right human eye seen from above [22].

In video-based eye tracking, 3D gaze estimation aims to determine the gaze vector
in the real world based on the estimated center of the pupil within the captured eye
image. This process necessitates the extraction of depth information from the visual
data [24].

The human brain uses several sources of information for 3D vision and reconstruction,
including both monocular and binocular cues. Monocular cues, such as occlusion,
provide depth information from a single eye, while binocular disparity, which arises
from the slight differences in the images seen by each eye, plays a critical role in depth
perception [18]. Additionally, the brain integrates input from three oculomotor systems
to perceive depth: accommodation, miosis, and vergence [28].

Depth perception relies on these cues to create a coherent sense of space and
distance. Accommodation is the process by which the vertebrate eye adjusts its optical
power to maintain a clear image or focus on an object as its distance from the eye
varies [7]. This adjustment involves changing the shape of the lens within the eye,
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which is controlled by the ciliary muscles. Accommodation helps provide a continuous
and clear image of objects at different distances.

Miosis refers to the constriction of the pupil, which adjusts the amount of light
entering the eye [23]. This process is primarily influenced by the brightness of the
environment, but it also contributes to depth perception by improving the depth of
field—the range of distances within which objects appear in focus. Smaller pupils
increase the depth of field, allowing the eye to better perceive depth.

Vergence involves the simultaneous movement of both eyes in opposite directions
to maintain single binocular vision. To focus on nearby objects, our eyes turn inward
in a coordinated movement called convergence. Conversely, when shifting focus to
distant objects, the eyes rotate outward in a process known as divergence. Therefore,
when focusing on an object binocularly, the eye vergence angle (EVA) is the angle
between the visual axes of both eyes [14]. Generally, a closer object requires a larger
EVA, indicating the eyes are turning more inwards to converge. Conversely, focusing
on distant objects results in a smaller EVA [2]. As the distance of the object becomes
significantly larger than the space between the pupils (interpupillary distance), the
EVA approaches zero. At this point, the lines of sight for both eyes are virtually
parallel (see Fig.2.2).

Fig. 2.2 The two-eye vergence depth cue. The vergence angle varies with the distance
of the object from the eyes. Public Domain Image, source: Christopher S. Baird

By integrating these mechanisms, the human visual system can effectively interpret
and construct a three-dimensional representation of the surrounding environment. The



8 Gaze Depth Estimation Using Eye Vergence

interplay between accommodation, miosis, and vergence allows for a dynamic and
adaptable perception of depth, essential for tasks ranging from basic navigation to
complex manipulations in three-dimensional space. Understanding these processes is
fundamental for developing advanced gaze estimation technologies, which can leverage
the principles of human vision to enhance artificial systems in fields such as robotics
and assistive technologies.

Estimating the 3D position of the gaze fixation point is a complex task that begins
with detecting the pupils’ positions. The primary challenge arises from the fact that
the pupil rotates on a sphere, representing an approximation of the eyeball. The exact
center of this sphere is difficult to define and varies significantly depending on the
positioning of the glasses and the individual user’s anatomy. Additionally, even if we
accurately determine the eyeball’s center, the center of the eye’s rotation and the visual
axis typically do not align [13], further complicating the estimation process. This
misalignment adds another layer of difficulty to achieving precise 3D gaze estimation.

For the design of a 3D eye-tracking system, measuring accommodation requires
perfectly controlled conditions and complex equipment, such as ultrasound biomi-
croscopy. This approach is not suitable for prolonged continuous use. Miosis, while
easily measurable, is highly sensitive to ambient light conditions. Therefore, among
the three sources of information from the oculomotor system, vergence is the most
practical for estimating the gaze position or Point of Regard (PoR). In video-based 3D
eye-tracking systems, vergence is the only signal that is both robust and straightforward
to measure [24].

Existing techniques for 3D gaze estimation fall into two primary categories: methods
based on geometrical models of the eye, and methods based on interpolation, which
directly map eye position to PoR. Interpolation methods often include regression
models to predict PoR from eye position data, utilizing both linear and non-linear
regression techniques to accurately estimate gaze direction.

Observation Distance and Vergence Angle

To gain a deeper understanding of the problem, we first need to calculate the theoretical
vergence angle as a function of distance. The key parameters in this calculation include
the positions of the eyes and the point of fixation in front of them. A ray is traced from
each eye towards this point, and for our theoretical framework, we assume that the
point of fixation is directly ahead, positioned centrally between both eyes. To analyze
the relationship between eye vergence and distance, we define z as the object distance,
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θ as the vergence angle, and d as the interpupillary distance (IPD). The vergence angle
θ can be calculated using the following formula:

θ = 2arctan

(
d

2z

)
(2.1)

Given the symmetrical positioning of the eyes and the fixation point directly ahead,
the vergence angle can be derived using basic trigonometry. The eyes and the fixation
point form an isosceles triangle where the base is d and the height is z. The vergence
angle is the angle at which the lines of sight from the eyes intersect at the fixation
point. To visualize the relationship between, we can plot θ as a function of z using the
previous formula. We’ll use the population mean interpupillary distance (IPD) of 63
mm [9] for our calculations.
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Fig. 2.3 Exponential Relationship Between Vergence Angle and Object Distance. This
figure shows how the vergence angle of the eyes increases exponentially as the object
distance decreases.

Moreover, because the vergence angle is determined by the distance to the eyes,
considering any point on a hypothetical sphere centered around the eyes would yield
similar results. This is due to the symmetrical nature of the sphere where every point at
the same distance from the eyes would require the same vergence angle for fixation. This
theoretical understanding is crucial for accurately modeling and predicting vergence
behavior in various applications, such as in the design of eye-tracking systems and in
studying visual perception dynamics.
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Interpupillary Distance

Another key factor in human binocular vision that varies with object depth is inter-
pupillary distance (IPD). This refers to the distance measured between the centers of
the pupils in each eye [9]. Changes in the depth of a verged object can significantly
impact the interpupillary distance [16]. Specifically, when the eyes focus on a nearby
object, the IPD value decreases, while focusing on a distant object results in a larger
IPD [2]. There is substantial evidence indicating that infrared eye-tracking technology
is sufficiently reliable for detecting these small changes in IPD [19].

2.2 Problem Statement

In modern assistive technologies, particularly those aimed at enhancing the mobility of
individuals with disabilities, accurate and reliable eye-tracking systems are essential.
These systems enable hands-free control of devices, such as robotized wheelchairs,
through eye movements. One critical component of such systems is the ability to
accurately estimate gaze depth, which is derived from the vergence of the eyes. However,
current eye-tracking solutions, such as those provided by the Tobii Pro Glasses 3,
often fall short in precision when estimating gaze depth, especially in dynamic and
uncontrolled environments.

The challenge lies in extracting accurate gaze depth from the images captured
by the Tobii Pro Glasses 3. This process involves leveraging the vergence angle and
interpupillary distance (IPD) to make precise depth estimations. The initial step in
this approach is to develop a robust procedure for detecting pupils in the eye images.
Accurate pupil detection is fundamental as it directly influences the subsequent steps
of extracting the IPD.

Once the pupil positions are accurately detected, the next step involves training a
regression model. This model is designed to transform the detected pupil positions
into accurate predictions of gaze depth. The effectiveness of this model depends on its
ability to learn from the training data and generalize to new, unseen data. Given the
variability in eye movements and the dynamic nature of real-world environments, this
presents a significant challenge.

Additionally, the discrepancy between accommodation and vergence in stereo display
systems can lead to inaccuracies in depth perception, contributing to user discomfort
and reduced precision in gaze estimation. While infrared eye-tracking technology shows
potential for measuring small changes in IPD and vergence, there is still a need for a
more robust and practical solution for real-time depth estimation.
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Therefore, this thesis aims to address these challenges by developing a method to
accurately estimate gaze depth using the vergence information obtained from Tobii
Pro Glasses 3. By improving the built-in depth estimation capabilities, this research
seeks to enhance the reliability and precision of eye-controlled assistive technologies,
thereby improving the quality of life for individuals with disabilities through more
effective and user-friendly robotized wheelchairs.

2.3 Pupil Detection

In the process of estimating gaze depth from eye images, the first crucial step is
accurately detecting the pupils. The glasses capture four frames containing the eyes,
each illuminated to highlight the pupils for more precise detection. The accuracy of
pupil detection is essential, as it directly impacts the subsequent steps in the estimation
of gaze depth. Below is a sample image obtained with the Tobii Pro Glasses 3, showing
the four frames containing the eyes. This image serves as the input for the pupil
detection process, which identifies and tracks the position of the pupils across the
frames.

Fig. 2.4 Example of a frame obtained by the four internal cameras mounted on the
Tobii Pro 3 Glasses.

2.3.1 First Experimental Setup

The experimental setup involved positioning a target, consisting of a small card with a
distinctive bullseye pattern, in front of a long table spanning a length of about 4 meters.
The primary objective was to capture videos of the target at varying distances, ranging
from 50cm to 350cm, with intervals of 25cm between each distance. This provided a
dataset of 13 videos in total. To ensure precision in distance measurements, a tape
measure was securely positioned to the table. This allowed for accurate determination
of the distances between the target and the observer.
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In the first experiment, all targets were aligned directly in front of the observer’s eyes.
While efforts were made to maintain this alignment consistently across all distance
settings, it’s important to note that a high degree of precision in alignment was not
strictly necessary. The key focus of the experiment was on capturing the variation
of the distance between the observer’s pupils as the target was moved further away,
rather than achieving absolute precision in alignment. Therefore, there was a certain
level of tolerance allowed regarding the alignment of the targets, as long as the general
positioning in front of the observer’s eyes was maintained. This approach ensured
that the experiment could proceed smoothly without overly stringent requirements for
alignment precision. In the same way, the position of the observer’s head was fixed
throughout the experiment. This ensured that the perspective from which the videos
were captured remained constant, and so facilitating analysis and comparison across
different distance settings.
Each video clip was recorded for 10 seconds, striking a balance between collecting
sufficient data and maintaining the observer’s focus on the target. Particular attention
was paid to ensuring that the gaze was constantly focused on the target, as any
distraction would have led to inconsistencies in the following analysis.

Pupil Detection Procedures

Three distinct procedures were designed to analyze the extracted frames and identify
the precise coordinates (x, y) of the pupils in each image. The goal was to develop
robust and accurate methods capable of reliably detecting pupil positions across a
variety of conditions.

2.3.2 Pupil Detection Using Binarization

The first approach for pupil detection requires the binarization of the source image and
for this reason, it will be called the binarization method. Binarization is a fundamental
image processing operation that converts a grayscale image into a binary image, where
each pixel is either fully black (0) or fully white (255). This binarization method was
implemented in Python [39] using the open-source computer vision library OpenCV [1].
The steps of this first procedure are presented below:

1. Pre-processing of the image: In order to reduce the possibilities of false
detections, it’s necessary to prepare the image. Firstly a median blur filter is
applied to reduce the size of the reflections of the infrared lights (see figure 3.8).
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After that, the erosion function is applied to further suppress reflections: it
removes brighter pixels (potential reflections) on the blurred image, effectively
emphasizing darker, underlying features. Morphological erosion removes floating
pixels and thin lines so that only substantive objects remain. Remaining lines
appear thinner and shapes appear smaller [36].

2. Binarization: The purpose of binarization in this context is to segment the
image into regions of interest based on their intensity values, in particular, the
goal is to separate the pupil from the rest of the eye. After some trial and error
tuning, the best results were obtained by applying a threshold value of 220:
pixels with intensity values greater than or equal to this threshold are considered
part of the foreground (pupil) and are assigned a value of 255, while pixels with
intensity values below this threshold are considered part of the background and
are assigned a value of 0 (see Fig 2.6a).

3. Contours extraction: Contours extraction is a process used to detect and rep-
resent the boundaries of objects in an image. In this case, the cv2.findContours()
function is used to extract contours from the binary image (see figure 2.6b).

4. Enclosing circles evaluation: After extracting all the contours detected in
the image, the code iterates through each of them. For each contour, the
minimum enclosing circle is computed using cv2.minEnclosingCircle(). This
function provides a good estimation of the pupil since it is a fairly circular object.

Now, as the structure of the image was known beforehand, we could take advantage
of this information and estimate that the pupil is positioned close to the middle
point of the image. In order to favor those contours that are closer to the
above-said point, the distances between the center of the enclosing circles and
a predefined center are computed. Additionally, to avoid false detections, only
circles with a radius in the range between 8 and 20 are considered. Finally for
every iteration, if the contour satisfies these conditions and is closer to the center
than any previously encountered contour, the final_cnt variable is updated to
store this contour.

5. Pupil coordinates: From the best contour selected, the center and radius of
the enclosing circle are saved, and a variable indicating that the pupil extraction
was successful is set to true. Then two circles are drawn on the original image:
one representing the pupil with a red border and the other representing its center
with a green border (see Fig 2.12).
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If the attempt to find the enclosing circle fails (e.g., due to an empty contour),
an exception is thrown and a message indicating that the pupil was not detected
is printed, so that the frame can be discarded.

1 def detect_pupil (self):
2 #Pre - processing
3 blurred_img = cv2. medianBlur (self._img , 5)
4 gray_img = cv2. cvtColor ( blurred_img , cv2. COLOR_BGR2GRAY )
5 kernel = cv2. getStructuringElement (cv2. MORPH_ELLIPSE , (3,

3))
6 eroded_img = cv2.erode(gray_img ,kernel , iterations = 1)
7

8 # Binarization
9 ret , thresholded_img = cv2. threshold (eroded_img ,220 ,255 , cv2.

THRESH_BINARY_INV )
10

11 # Contours extraction
12 contours , hierarchy = cv2. findContours ( thresholded_img , cv2

.RETR_LIST , cv2. CHAIN_APPROX_NONE )
13

14 # Select the best contour ( closest to center )
15 flag = 5000
16 final_cnt = None
17 for contorno in contours :
18 (x,y),radius = cv2. minEnclosingCircle ( contorno )
19 distance = abs(self. _center [0]-x)+abs(self. _center [1]-y

)
20 # Update the best contour
21 if distance < flag and radius <20 and radius >8:
22 final_cnt = contorno
23 flag = distance
24

25 try:
26 (x,y),radius = cv2. minEnclosingCircle ( final_cnt )
27 pupil_center = (int(x),int(y))
28 radius = int( radius )
29

30 #Draw the circles representing the pupil and its center
31 cv2. circle (self._img ,center ,radius ,(0 ,0 ,255) ,2)
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32 cv2. circle (self._img ,center ,2 ,(0 ,255 ,0) ,2)
33

34 # Saving the pupil center coordinates
35 self. _pupil = ( pupil_center [0], pupil_center [1], radius )
36 self. detected = True
37

38 except cv2.error as e:
39 print(’Pupil not detected ’)

Listing 2.1 Python code for the binary method pupil extraction

(a) The binarization method works on one
image at a time

(b) Filtering of the image using median
blur

Fig. 2.5 Intermediate steps of the pupil detection process
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(a) Output of the binarization using a fixed
threshold

(b) The contours found are highlighted In
green

Fig. 2.6 Intermediate steps of the pupil detection process

Fig. 2.7 Final result: the detected pupil (red) and its center (green)

Results

Using Python and OpenCV, we processed the video dataset. On average, 57 frames
were extracted from each of the 13 clips, resulting in a total of 744 images. The
binarization method effectively filtered out frames where eyes were entirely closed due
to blinking. However, limitations emerged in handling partially closed eyelids and
corrupted frames (see figure 2.8), leading to occasional false detections. After the
manual removal of these false positives from the dataset, only 590 frames remained.
From this point onwards, just these clean frames were used to test the pupil detection
processes. This strategy successfully extracted pupil coordinates from each of these
refined frames, resulting in a total of 2,360 (4 pairs per image * 590 images) data
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points stored in a table. It’s worth noting that this technique can achieve a single-pixel
precision in detecting the pupil center.

Fig. 2.8 Example of corrupted frame

2.3.3 Pupil Detection Using Hough Transform

The second approach for pupil detection involves the Hough transform to localize circles
in the image. Introduced in 1962 by Paul Hough, the primary motivation behind its
invention was to provide a robust and efficient means of detecting lines in noisy or
cluttered images without relying on explicit segmentation or thresholding techniques.
Let (xi, yi) denote a point in the xy-plane and consider the general equation of a straight
line in slope-intercept form: yi = axi +b. Infinitely many lines pass through (xi, yi), but
they all satisfy the equation yi = axi + b for varying values of a and b. However, writing
this equation as b = −xia + yi and considering the ab-plane (also called parameter
space) yields the equation of a single line for a fixed point (xi, yi). Furthermore, a
second point (xj, yj) also has a single line in parameter space associated with it, which
intersects the line associated with (xi, yi) at some point (a′, b′) in parameter space,
where a′ is the slope and b′ the intercept of the line containing both (xi, yi) and (xj, yj)
in the xy-plane (we are assuming, of course, that the lines are not parallel). In fact, all
points on this line have lines in parameter space that intersect at (a′, b′). In principle,
the parameter space lines corresponding to all points (xk, yk) in the xy-plane could be
plotted, and the principal lines in that plane could be found by identifying points in
parameter space where large numbers of parameter-space lines intersect. However, a
difficulty with this approach is that a, (the slope of a line) approaches infinity as the line
approaches the vertical direction. One way around this difficulty is to use the normal
representation of a line: xcos(θ) + ysin(θ) = ρ. The computational attractiveness of
the Hough transform arises from subdividing the ρθ parameter space into so-called
accumulator cells [11]. Each cell in the accumulator corresponds to a specific slope
and intercept pair. As the algorithm scans through the image, it accumulates votes in
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the corresponding cells of the accumulator for every edge point that could potentially
lie on a line defined by those parameters. By accumulating votes in the accumulator
cells, the algorithm identifies peaks in the accumulator space, indicating the presence
of shapes in the image.

Although the focus thus far has been on straight lines, the Hough transform is
applicable to any function of the form g(v, c) = 0, where v is a vector of coordinates
and c is a vector of coefficients. For example, points lying on the circle

(x − c1)2 + (y − c2)2 = c2
3 (2.2)

can be detected by using the basic approach just discussed [11]. By analyzing the
accumulator array generated from this transformation, the algorithm can efficiently
identify circular patterns present in the image, which in this context, correspond to
pupils.

The steps of this second procedure, also implemented in Python with the OpenCV
library, are presented here.

1. Pre-processing of the image: As previously done, median blur filter is applied
to the grayscale image. This filter reduces noise in the image while preserving
edges, which can improve the accuracy of subsequent edge detection.

2. Canny Edges Extraction: The Canny edge detection algorithm is applied
using the function cv2.Canny(). This algorithm detects edges in the image by
looking for areas of high gradient magnitude (see figure 2.9). The parameters 50
and 100 specify the lower and upper thresholds for edge detection. Pixels with
gradient magnitudes below the lower threshold are discarded as non-edges, while
those above the upper threshold are considered strong edges. Pixels with gradient
magnitudes between the two thresholds are considered weak edges unless they
are connected to strong edges.

3. Detection of Hough Circles: The Hough Circle Transform algorithm is used
to detect circular shapes in the edge-detected image. This method is particularly
suitable for detecting circles, even in the presence of noise or incomplete edges.
The parameters passed to cv2.HoughCircles() had to be tuned manually, but the
final result is heavily influenced by the edges detected in the previous step.

4. Processing Detected Circles: If circles are detected in the image, the code
proceeds to process the detected circles. For each detected circle, a green dot is
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drawn at its center and a red circle is drawn around it with the detected radius.
These, as in the binary method, serve as visual indicators of the detected pupil.
It’s important to underline that this procedure shows all the circles that are
detected in the image, and for this reason it was crucial to tune the parameters
to make it sensitive to the pupil only, and so avoiding false positives.

1 def detect_pupil (self):
2

3 #Pre - processing
4 gray = cv2. cvtColor (self._img , cv2. COLOR_BGR2GRAY )
5 gray = cv2. medianBlur (gray , 7)
6

7 #Canny edges extraction
8 edges = cv2.Canny(gray ,50 ,100)
9

10 # Detection of the Hough Circles
11 circles = cv2. HoughCircles (edges , cv2. HOUGH_GRADIENT , 1,

150,
12 param1 =100 , param2 =15,
13 minRadius =5, maxRadius =15)
14

15 if circles is not None:
16 circles = np. uint16 (np. around ( circles )) #This converts

the coordinates and radii of the detected circles to
integers .

17 for i in circles [0, :]:
18 center = (i[0], i[1])
19 radius = i[2]
20

21 #Draw the circles representing the pupil and its
center

22 cv2. circle (self._img , center , 2, (0, 0, 255) , 2)
23 cv2. circle (self._img , center , radius , (0, 255, 0),

1)
24

25 # Saving the pupil center coordinates
26 self. _pupil = ( center [0], center [1], radius )
27 self. detected = True
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Listing 2.2 Python code for the Hough method pupil extraction

Fig. 2.9 Output of the Canny edge detector

Fig. 2.10 Final result: the detected pupil (red) and its center (green)

Results

While this method successfully identified the presence of pupils in the frames, it
encountered limitations in precisely determining the center coordinates of these pupils.
These coordinates exhibited inconsistencies between consecutive frames, even though
minimal to no movement was expected. This unexpected behavior could be attributed
to small variations between frames in the edges detected by the Canny edge detection
algorithm. These variations in edge detection can significantly impact the estimated
center of the pupil. The Circular Hough Transform (CHT), which relies on edge points
to identify circles, can be misled by these slight edge discrepancies. As a result, the
estimated center of the pupil, based on the CHT output, can shift by several pixels
between consecutive frames, even when the actual pupil position remains relatively
unchanged. Consequently, the dataset obtained from this second approach had to be
discarded due to the inconsistencies and unreliability of the results.
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2.3.4 Pupil Detection Using MATLAB Primitives

The third and last method for pupil detection was done using MATLAB. This method
revolves around the imfindcircles function, which uses a Circular Hough Transform
(CHT) based algorithm for finding circles in images. In the CHT process, candidate
pixels that have high gradients are identified and permitted to contribute "votes" to
an accumulator array. These candidate pixels employ a predetermined voting pattern,
often forming a complete circle of fixed radius around them. The votes cast by candidate
pixels aligned with an image circle tend to accumulate at the bin in the accumulator
array corresponding to the circle’s center (see figure 2.11). Consequently, estimating
the centers of these circles involves identifying peaks within the accumulator array. The
width of the voting interval, between points cmin and cmax in the figure, is determined
by the radius range defined by rmin and rmax [34].

.
Fig. 2.11 Figure 1a shows an example of a candidate pixel lying on an actual circle
(solid circle) and the classical CHT voting pattern (dashed circles) for the candidate
pixel. Figure 1b shows an example of the candidate pixels (solid dots) lying on an
actual circle (solid circle), and their voting patterns (dashed circles) which coincide at
the center of the actual circle [34]

The actual steps of this third approach for pupil detection are presented below.
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1. Pre-processing of the image: As usual, a Gaussian filter is applied to remove
noise from the image. Following that, a disk-shaped structuring element for
morphological operations is created. Morphological opening is useful for removing
small objects and thin lines from an image while preserving the shape and size of
larger objects in the image [36]. In this case, it enhances the pupil and filters
infrared light reflections.

2. Circle detection: To detect the pupils in the image, the function imfindcircles
is used. It returns the center coordinates and radii of the detected circles, along
with a metric that indicates the strength of the detection. The parameters are
tuned to avoid false positive detection, but even in the case of more circles found,
the pupil is detected with the most "confidence".

3. Handling detected circles: As the function stores the centers of all the detected
circles in the image, it is crucial to select the right circle (the one corresponding to
the pupil). The function also returns a column vector, called metric, containing
the magnitudes of the accumulator array peaks for each circle (in descending
order). So when more than one circle is detected, the center coordinates of the
pupil are always stored in the first row of the returned array. In any case, the
coordinates values were also double-checked manually to avoid mistakes.

1 I = I0 (: ,1+ rows*i:rows *(i+1)); % cut the image to work with 1
eye at a time

2

3 %Pre processing
4 H1 = fspecial (" gaussian ",5, 5/3);
5 IF = imfilter (I,H1);
6

7 SE1 = fspecial (" disk ",5) > 0; % pupil enhancement & Infra -red
light reflexions filtering

8 PE = imopen (IF ,SE1);
9

10 %Pupil detection
11 [centers ,radii , metric ] = imfindcircles (PE ,[8 16], "

ObjectPolarity ", "dark", " Sensitivity ", 0.92);
12 h = viscircles (centers ,radii , ’LineWidth ’ ,1); % circles

visualization
13

14 if size(centers , 1) == 1 %If 1 circle is detected
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15 centri (j ,1+(i*2)) = centers (1);
16 centri (j ,2+(i*2)) = centers (2);
17

18 elseif size(centers , 1) > 1 %If more than 1 circle is detected
19

20 centri (j ,1+(i*2)) = centers (1 ,1);
21 centri (j ,2+(i*2)) = centers (1 ,2);

Listing 2.3 Sample MATLAB code

Fig. 2.12 Example of pupil detection using imfindcircles. In the last eye 2 circles are
found, one centered in (123.14,112.32) and the other (150.74,111.75). As stated before,
the correct one will have a higher value in its corresponding metric, which are 0.29
and 0.12.

Results

Since the method aimed to extract pupil coordinates from all four images in a frame, a
single undetected pupil led to discarding the entire frame. Consequently, in the matrix
containing the pupil center coordinates, all rows where at least one pupil center value
was missing (represented by zero) were removed from the matrix.
The process demonstrated impressive strengths. It achieved high precision, which means
that it only identified actual pupils and no false positives were present. Furthermore,
it exhibited sub-pixel precision, indicating its capability of locating pupil centers with
exceptional accuracy. However, these strengths were overshadowed by a high rate of
missed detections. This limitation resulted in the removal of a significant portion of the
frames. Despite processing an initial set of 590 frames, the method only successfully
identified the pupil centers in 315 of them. This substantial loss of data due to missed
detections ultimately led to the abandonment of this method.
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2.4 More Results on Pupil Detection

Initial testing of the pupil detection procedure involved using a binarization method
on images obtained from the Tobii Pro Glasses 3. This approach worked adequately
under controlled conditions; however, it required manual adjustment of the threshold
value based on varying light conditions and gaze directions, which proved to be tedious
and impractical for real-time applications.

The binarization method encountered significant challenges when there was low
contrast between the iris and the pupil, such as in individuals with dark eyes. This
issue led to unreliable pupil detection.

(a) (b)

Fig. 2.13 Even by manually adjusting the threshold value, static thresholding fails
to detect the pupil due to light reflections and low contrast (2.13a). Using adaptive
thresholding we are able to correctly detect the pupil in a wider range of conditions
(2.13b).Eye images from [21].

To address this problem, static thresholding was replaced by an adaptive thresh-
olding function, which dynamically adjusts the threshold value for different regions of
the image, making it more robust to changes in lighting and iris-pupil contrast. This
method significantly improved the accuracy and reliability of pupil detection across a
wider range of conditions and eye colors (see Fig2.14).



2.4 More Results on Pupil Detection 25

Fig. 2.14 Results of pupil detection using adaptive thresholding on different iris colors.
Eye images from [21].





Chapter 3

Regression Model for Depth
Estimation

The objective of the following part is to develop a regression model capable of estimating
gaze depth using pupil position data. The experiment utilized the datasets containing
pupil coordinates and corresponding gaze depths previously collected. MATLAB’s
(version R2024a) regression learner app was employed to create, train, and evaluate
various models.

3.1 Machine Learning Theory

In the field of machine learning, algorithms are designed to mimic human learning by
extracting knowledge directly from data. Unlike traditional programming methods
that rely on predefined models, machine learning utilizes computational techniques to
uncover patterns and relationships within the data itself. This allows the algorithms
to continuously improve their performance as the volume of available training data
increases. In particular, machine learning uses two types of techniques: supervised
learning (such as classification and regression), which trains a model on known input
and output data so that it can predict future outputs, and unsupervised learning (such
as clustering), which finds hidden patterns or intrinsic structures in input data [35].
Supervised learning requires learning a mapping between a set of input variables X
and an output variable Y and applying this mapping to predict the outputs for unseen
data. Supervised learning is the most important methodology in machine learning and
it also has a central importance in the processing of multimedia data [8].
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Regression in Supervised Learning

Regression is a powerful technique within supervised learning that focuses on predicting
continuous outputs [25]. Unlike classification, which deals with assigning data points
to discrete categories, regression aims to establish a mathematical relationship between
input features (X) and a continuous output variable (Y). This relationship can then
be used to estimate the value of Y for new, unseen data points. There are various
regression algorithms, each with its own strengths and weaknesses.

3.1.1 Introduction to Machine Learning

Starting with some terminology, we can define:

• Domain set: This is the set of objects that we may wish to label [32]. It is
typically denoted by the letter X and can be visualized as a multidimensional
space where each dimension corresponds to a specific input feature. In our case,
X corresponds to the 8-dimensional space of possible pupil coordinates.

• Label set: The label set, also known as the output space, represents the collection
of all possible output values that a machine learning model can predict. It is
typically denoted by the letter Y and can be discrete (categorical) or continuous
(numerical) depending on the type of learning task (classification or regression).
In our case, Y corresponds to all the possible gaze depth values.

• Training set: The training set is a subset of the entire dataset used to train a
machine learning model. It is defined as D : {(xi, yi), i = 1, ..., m}xi ∈ X, yi ∈ Y .
It consists of labeled examples, meaning each data point in the training set
includes both the input features (X ) and the corresponding desired output values
(Y).

• Learning Algorithm: The learner is requested to output a prediction rule,
h : X → Y. This function is also called a predictor or a hypothesis and can be
used to predict the label of new domain points. We use the notation A(S) to
denote the hypothesis that a learning algorithm, A, returns upon receiving the
training sequence S, so A(S) → h ∈ H, where H is the hypothesis class [32].

• Error function: The error function, also known as the loss function, is a
mathematical measure that quantifies the difference between the model’s predicted
outputs and the actual labels in the training data. Given z = (x, y) and the
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loss function l(h, z), it measures how good is the function h to describe the
data point z, namely h(x) ≃ y. The learning algorithm aims to minimize this
error function by iteratively adjusting the model’s internal parameters during
the training process. A common error function for regression problems is the
mean squared error (MSE).

True Risk and Empirical Risk

The true risk, also known as generalization error is defined as follows:

LD(h) = ED[l(h, z)] (3.1)

and it represents the expected performance of a machine learning model on unseen data
drawn from the actual underlying distribution that generated the data. Unfortunately,
the true risk is often impossible to calculate directly because we typically don’t have
access to the entire data distribution.
The empirical risk, also known as training error,

LS(h) = 1
m

m∑
i=1

l(h, z) (3.2)

represents the average performance of a machine learning model on the training data
itself. Since the training sample is the snapshot of the world that is available to the
learner, it makes sense to search for a solution that works well on that data. The goal
of the learning algorithm is to compute a predictor hS that minimizes LS, and for this
reason it is called Empirical Risk Minimization or ERM for short [32]. However, the
key challenge lies in ensuring this learning generalizes to unseen data – reflected by a
low true risk. So we can define the generalization gap as:

Generalization Gap = LD(h) − LS(h) (3.3)

In other words, the goal of machine learning is to find a model that minimizes the true
risk, based on its empirical risk.

The Bias-Variance Tradeoff

The bias-variance tradeoff is a fundamental concept in machine learning that refers to
the tension between a model’s ability to fit the training data well and its ability to
generalize to new, unseen data.
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• Bias: refers to the systematic underestimation or overestimation of the true
relationship between the input features and the output variable. It arises from
simplifying assumptions made by the model or limitations in its capacity to
capture the complexity of the data. In other words, bias is inherent to your
model. High bias leads to underfitting, where the model fails to capture the
underlying patterns in the data, resulting in poor performance on both the
training and testing data. This leads to a high empirical risk and likely a high
true risk as well.

• Variance: represents the model’s sensitivity to the specific training data used.
A model with high variance memorizes the training data too well, including noise
and irrelevant details. This can lead to overfitting, where the model performs
very well on the training data but fails to generalize to unseen data. In other
words, this results in a low empirical risk but a high true risk.

Train-Validation-Test Split

A more accurate estimation of the true risk can be obtained by using some of the
training data as a validation set [32]. In most practical applications, we split the
available examples into three sets.

1. Training Set: This is the primary dataset used to train the model. The model
learns patterns and relationships within the training data by fitting its internal
parameters to minimize the prediction error on these examples.

2. Validation Set: This second dataset serves a crucial role in model selection.
After training various models on the training set, we evaluate their performance
on the validation set. The model that generalizes best to the unseen validation
data is chosen as the final model.

3. Test Set: Finally, we have the test set, often referred to as the "holdout"
data set if it’s completely untouched during training. This set provides an
unbiased estimate of the final model’s true error on unseen real-world data. The
performance on the test set reflects how well the model generalizes and performs
in practical scenarios.

By splitting the data and following this approach, we try to avoid overfitting the model
to the training data and ensure it can effectively learn and predict on unseen data.
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K-fold Cross Validation

The validation procedure described so far assumes abundant data, allowing for a
dedicated validation set separate from the training data. However, in many real-world
applications, data is scarce, and using a portion of it for validation feels like a waste.
K-fold cross-validation offers a solution to this by providing an accurate estimate of
the model’s true error rate while maximizing the usage of limited dataset [32].
In k-fold cross-validation, the original training set is partitioned into k subsets (folds)
of size m=k. Each iteration, one fold is treated as a validation set, and the method
is fit on the remaining k-1 folds [15]. Finally, the average of all these errors is the
estimate of the true error. A special case of k-fold cross-validation occurs when k is
equal to the number of data points (m). This is called leave-one-out cross-validation
(LOO) and involves training on all but one data point and validating on the remaining
single point. This process is repeated for all data points, providing a very thorough
but computationally expensive estimate of the error rate.

3.1.2 Gaussian Regression Models

A Gaussian process is a stochastic process that is in general a collection of random
variables indexed by time or space. A Gaussian Process GP is specified by a mean
function m(x) and a covariance function k(x, x′). Its special property is that any
finite collection of these variables follows a multivariate Gaussian distribution [4]. We
can think of a GP as a collection of infinitely many functions, all following a joint
Gaussian distribution. This means that given f(x) ∼ GP(m(x), k(x, x′)), then for
any set of points x1, x2, . . . , xn, the function values f(x1), f(x2), . . . , f(xn) have a joint
multivariate Gaussian distribution.

Gaussian Process Regression (GPR)

A Gaussian Process is the foundation upon which Gaussian Regression Processes (GPR)
are built. This is a specific application of a Gaussian Process used for regression tasks.
GPR leverages the properties of a GP to model the relationship between features and a
target variable in your data. It assumes the data points follow a Gaussian distribution
and uses the GP framework to make predictions and quantify uncertainty. Unlike
traditional regression methods that estimate parameters for a fixed functional form
(like linear or polynomial regression), GPR models the entire distribution of functions
consistent with observed data. In Gaussian Process Regression (GPR), it is possible to
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incorporate prior knowledge about the data into the model through the choice of the
kernel function and prior distributions. The key steps in GPR are as follows:

Prior: The prior is a probability distribution that represents our initial beliefs about
the functions we’re trying to model. It essentially encodes our assumptions about how
the features might relate to the target variable before we see any actual data. The
prior fixes the properties, like mean and pointwise variance, of the functions the model
considers for inference [27]. For any finite set of input points {xi}, the corresponding
function values {f(xi)} follow a multivariate normal distribution with mean vector m
and covariance matrix K.

Covariance: The covariance function k(x, x′), also known as the kernel function,
defines how similar different data points are likely to be in terms of the target variable.
It calculates the covariance between the outputs of the GPR model for two different
input points. In simpler terms, it tells us how much two data points, based on their
features, are expected to have similar target variable values [27]. Choosing a suitable
kernel function heavily influences the types of functions the model considers. Common
kernel choices include: exponential, rational quadratic and Matern kernel.

Training Data: Given training data D = {(xi, yi)}n
i=1, where xi are inputs and yi

are observed outputs, we assume yi = f(xi) + ϵi, with ϵi being independent Gaussian
noise with variance σ2

n.

Posterior: Using Bayes’ theorem, we combine the prior with the likelihood of the
observed data to get the posterior distribution. The joint distribution of the training
outputs y and the predicted values f∗ at new inputs X∗ is given by:y

f∗

 ∼ N

0,

K + σ2
nI K⊤

∗

K∗ K∗∗

 (3.4)

where K is the covariance matrix for the training inputs, K∗ is the covariance between
training inputs and new inputs, and K∗∗ is the covariance matrix for the new inputs.

Prediction: The conditional distribution of the predicted values given the observed
data is:

f∗|X, y, X∗ ∼ N (f̄∗, Cov(f∗)) (3.5)
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Fig. 3.1 Left figure shows four samples drawn from the prior distribution. Right figure
shows the situation after two datapoints have been observed. The mean prediction is
shown as the solid line and four samples from the posterior are shown as dashed lines.
In both plots the shaded region denotes twice the standard deviation at each input
value x. Figure from [27].

where:

f̄∗ = K∗(K + σ2
nI)−1y (3.6)

Cov(f∗) = K∗∗ − K∗(K + σ2
nI)−1K⊤

∗ (3.7)

Predictions are made by conditioning this posterior on new input points, yielding not
only predicted values but also associated uncertainty estimates [27].

Despite its flexibility and ability to model complex relationships, GPR can become
computationally expensive, especially with large datasets, due to the O(n3) complexity
of covariance matrix inversion [41].



34 Regression Model for Depth Estimation

3.2 Practical Work

This part of the thesis focuses on the development of a machine learning model that
exploits the relationship between eye vergence and object distance. The model utilizes
pupil position coordinates as input and aims to predict the corresponding gaze depth.
To facilitate the development, training, and evaluation of various regression models,
MATLAB’s (version R2024a) Regression Learner app was employed.

Given the limited data sample, k-fold cross-validation was essential for an initial
evaluation of model performance. Particular attention was given to the selection of k,
as an inappropriate choice can lead to a misleading assessment of model performance.
An inadequate value of k in k-fold cross-validation can lead to high variance in the
evaluation scores (sensitivity to data folds) or high bias (overestimation of the model’s
true skill). To summarize, there is a bias-variance trade-off associated with the choice of
k in k-fold cross-validation. Typically, given these considerations, one performs k-fold
cross-validation using k = 5 or k = 10, as these values have been shown empirically to
yield test error rate estimates that suffer neither from excessively high bias nor from
very high variance [15].

Despite the use of k-fold cross-validation, initial tests showed overfitting in most
models. To address this, 20% of the data was set aside as a holdout test set. This
approach helps to ensure that the final model evaluations are unbiased and reflect
the model’s performance on unseen data, thus enhancing the generalizability of the
regression models.

Linearized Model

In the context of the MATLAB Regression Learner, which employs Mean Squared
Error (MSE) as the loss function for training models, it is important to consider the
nature of the data being modeled. Given that the relationship between eye vergence
and object distance is exponential, we can potentially enhance model performance
by linearizing the input data. One limitation of using MSE with exponential data is
that it disproportionately penalizes larger errors, making the model more sensitive to
deviations at greater distances. However, our primary objective is to achieve accurate
predictions for closer distances, even if this comes at the cost of less precision for farther
objects. To address this, we can apply a logarithmic transformation to the distance
values used in training. This transformation compresses the data range, thereby
balancing the error penalties across the entire range of distances. Mathematically, if d
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represents the original distance values, the transformed distances d′ are obtained using:

d′ = log(d) (3.8)

Overall, the logarithmic transformation is a valuable preprocessing step in handling
exponential relationships within regression tasks. By adopting this approach, we aim to
enhance the model’s predictive accuracy for near distances, aligning with our primary
focus while maintaining reasonable performance for farther objects.

3.3 Results

This section presents the results obtained from training and evaluating the machine
learning regression models. We analyze the performance of the various models explored,
with a particular focus on the one demonstrating the best overall performance. The
evaluation metrics used to assess model performance are described, followed by a
detailed discussion of the results. Additionally, we discuss the influence of the choice
of k in k-fold cross-validation on the final model’s generalizability,.

3.3.1 Binarization Dataset

This section explores the performance of the models trained on the data obtained
through the binarization method, utilizing a dataset of 590 samples. We compare the
performance of a normal linear regression model with a linearized model to assess
whether the linearization process, applied to address the potential issues previously
discussed, can improve the model’s ability to capture the underlying relationships in
the data. Among the 21 models available within MATLAB’s regression app, Gaussian
Process Regression (GPR) models consistently demonstrated superior performance.
Consequently, the following analysis will exclusively focus on the results obtained from
GPR models.

The models compared in the following table are GPR models that use a rational
quadratic kernel and an exponential kernel, respectively. The mathematical expressions
for these kernels are as follows:

• Rational Quadratic Kernel:

kRQ(x, x′) = σ2
(

1 + (x − x′)2

2αl2

)−α
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where σ2 is the signal variance, l is the length scale, and α is a positive constant
that determines the relative weighting of large-scale and small-scale variations.

• Exponential Kernel:

kExp(x, x′) = σ2 exp
(

−|x − x′|
l

)

where σ2 is the signal variance and l is the length scale.

The subsequent sections will detail the comparative performance of these GPR models,
highlighting their effectiveness in capturing the complex relationships within the data.

Table 3.1 Performance of the best two GPR models with varying k-Fold values

Regression Model
RMSE (k = 5) RMSE (k = 10)

Validation Test Validation Test

Rational quadratic GPR 22.84 17.30 20.81 24.01
Exponential GPR 23.36 19.03 21.53 23.94
Lin. Rational quadratic GPR 27.84 25.46 25.43 28.89
Lin. Exponential GPR 27.88 28.41 26.07 29.45

The table compares the Root Mean Squared Error (RMSE) performance of the
models with k = 5 and k = 10 for both validation and test sets. For k = 5, the MSE
in validation is higher than in testing, which is unusual and can be attributed to the
random splitting of the data and the presence of many duplicates in the dataset. In
fact, when the dataset contains many duplicate entries, these duplicates can end up
being split between the training, validation, and test sets. If the test set includes
many data points that are very similar (or identical) to those in the training set, the
model will perform well on the test set because it has effectively "seen" those examples
before during training. This can result in a lower MSE on the test set compared to
the validation set, where the duplicates might be distributed differently, leading to
less overlap and thus higher MSE. Conversely, for k = 10, the MSE in validation is
lower than for k = 5, but the MSE in testing is the highest, indicating overfitting. This
suggests that the model performs well on the training data but fails to generalize to
unseen data. Contrary to our expectations, the linearized model performs worse, as
evidenced by a higher error compared to the standard model. To better appreciate
the effect of linearization, it is more informative to resort to graphical representations,
which can more clearly illustrate performance improvements at closer distances.
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Fig. 3.2 Comparison of validation predictions between the standard model and the
linearized model for k = 10 in k-fold cross-validation.
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Fig. 3.3 Comparison of validation predictions between the standard model and the
linearized model for k = 5 in k-fold cross-validation.
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Fig. 3.4 Comparison of test predictions between the standard model and the linearized
model for k = 5 in k-fold cross-validation.

The plots of the validation and test predictions reveal the impact of linearization,
which enhances model performance at closer distances as expected. However, evaluating
the models’ actual performance from the plots is challenging due to the presence of
many duplicate points that overlap, making it difficult to discern individual predictions.
Additionally, the outliers present in the data tend to stand out more prominently,
which can skew the visual interpretation of the models’ effectiveness.

3.3.2 MATLAB Dataset

Here, we explore GPR models trained on the dataset processed using the MATLAB
method. In contrast to the previous dataset, this one is much more compact, with just
315 entries. As in the previous section, the focus remains on investigating the impact
of linearization on model performance. The following table compares the performance
of GPR models utilizing two different kernels: a rational quadratic kernel and a Matern
5/2 kernel. The mathematical expressions for the latter is:

• Matérn 5/2 Kernel:

kMatérn 5/2(x, x′) = σ2
(

1 +
√

5|x − x′|
l

+ 5(x − x′)2

3l2

)
exp

(
−

√
5|x − x′|

l

)

where σ2 is the signal variance and l is the length scale.
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Table 3.2 Performance of the best two GPR models with varying k-Fold values

Regression Model
RMSE (k = 5) RMSE (k = 10)

Validation Test Validation Test

Rational quadratic GPR 27.01 21.01 27.58 26.79
Matern 5/2 GPR 26.91 21.26 27.74 23.86
Lin. Rational quadratic GPR 31.74 26.26 26.53 23.48
Lin. Matern 5/2 GPR 30.8 26.83 26.04 28.77

The table obtained using the MATLAB dataset shows results similar to the previous
analysis. However, for k = 10, the RMSE performance is worse even in the validation
set. This can be attributed to the smaller sample size of this dataset, which is about
half the size of the binarization one. Consequently, having more but smaller k-folds
may fail to represent the entire data distribution adequately, leading to poorer model
performance.
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Fig. 3.5 Comparison of validation predictions between the standard model and the
linearized model for k = 5 in k-fold cross-validation.
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Fig. 3.6 Comparison of test predictions between the standard model and the linearized
model for k = 5 in k-fold cross-validation.

3.4 Second Experiment and Results

A similar experiment to the one presented in the previous chapter was repeated with
some modifications. This time, the distances were reduced to 1 meter, 2 meters,
and 4 meters. Moreover, the videos were captured not only with the target aligned
frontally but also while the observer was looking to the left and right, at an angle
of approximately 25°. To achieve this, instead of moving the target, the observer
rotated their body and head while maintaining their gaze fixed on the target, exploiting
the vestibulo-ocular reflex. This setup aimed to examine the effect of different gaze
directions on the observed pupil distances.
The modifications allowed for an expanded dataset, incorporating different gaze direc-
tions, which could provide more comprehensive insights into the relationship between
eye vergence and object distance under various viewing conditions. To extract the
pupil position it was used the binarization method, as it had previously proved to give
the best results.
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Table 3.3 Data sample distribution obtained from the experiment

Target Distance
Target Relative Position

Left Frontal Right

1 meter 33 45 37
2 meter 40 34 36
4 meter 44 50 57

Following the same methodology as before, new Gaussian Process Regression (GPR)
models were trained using this updated dataset. As with the previous experiment, 20%
of the data was kept as a holdout test set to evaluate model performance. A value of
k = 5 for k-fold cross-validation was again found to be the most effective in providing
a reliable estimate of model performance.
The results for the two models compared are as follows:

1. Rational Quadratic GPR:

• RMSE on Validation Set: 12.62 cm

• RMSE on Test Set: 8.43 cm

2. Linearized Rational Quadratic GPR:

• RMSE on Validation Set: 14.67 cm

• RMSE on Test Set: 9.13 cm
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Fig. 3.7 Comparison between the normal model and the linearized version, with k = 5.
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Fig. 3.8 Comparison between the normal model and the linearized version, with k = 5.

As can be seen from the figures, the linearized model exhibits the anticipated
behavior: it is able to make more accurate predictions at closer distances, while at the
expense of reduced precision for farther distances. This is a desirable outcome given
the primary objective of the experiment, which prioritizes accuracy for near distances
over far ones. The linearization process successfully balances the penalty for errors
across the range of distances, in turn enhancing the model’s performance where it is
most critical.



Chapter 4

Real-Time Depth Estimation

In this chapter, we evaluate the real-time performance of the developed regression model
for estimating gaze depth. To achieve this, we will decode video streams from Tobii Pro
Glasses 3 in real-time, extract individual frames, detect the pupil coordinates, and use
these coordinates as inputs to the regression model to predict the corresponding gaze
depth. This process involves several critical steps: efficient video decoding, accurate and
rapid pupil detection, and seamless integration of the model’s predictions. The chapter
will detail the implementation of these steps, discuss the challenges encountered, and
present the real-time testing results, highlighting the model’s performance in dynamic,
practical scenarios.

4.1 Video Coding Concepts

Compression refers to the process of reducing the amount of data by compacting it
into fewer bits. Video compression, or video coding, involves transforming digital
video into a format that is more suitable for transmission or storage while typically
reducing the amount of bits. This process involves two complementary systems: a
compressor (encoder) and a decompressor (decoder). The encoder reduces the bit
count by converting the source data into a compressed form, which is then transmitted
or stored. The decoder, in turn, reconstructs this compressed form back into a
representation of the original video data. Together, the encoder and decoder are
referred to as CODEC [30].

Video compression is a process that reduces the size of video files by eliminating
redundant information. Most video coding methods exploit both temporal and spatial
redundancy to achieve efficient compression. Temporal redundancy arises because
successive frames captured in close temporal proximity are often highly correlated,
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especially at high frame rates. This means that frames following each other in time
typically contain similar visual information, which can be efficiently encoded by
referencing changes from one frame to the next, rather than storing each frame
independently [33]. Spatial redundancy, on the other hand, occurs because neighboring
pixels within the same frame tend to have similar values. This correlation between
adjacent pixels allows for compression within a single frame by encoding the differences
between neighboring pixels rather than the absolute values of each pixel. By leveraging
these redundancies, video compression techniques can significantly reduce the amount
of data required to represent the video.

Compression methods can be categorized as either lossy or lossless. Lossless
compression retains all original data, ensuring that the decompressed video is identical
to the original. This method is essential for applications requiring exact replication
of the original data, such as medical imaging or archival storage. However, lossless
compression typically achieves lower compression ratios compared to lossy methods.
Lossy compression, in contrast, achieves higher compression ratios by discarding some
data deemed less critical to the overall visual experience. This results in a reduction of
file size at the expense of a slight loss in quality, which is often imperceptible to the
human eye. By removing less important information, lossy compression methods like
H.264 can drastically reduce file sizes. This is crucial for real-time applications, such
as our gaze depth estimation system, where large, uncompressed video files would be
impractical due to their substantial storage requirements and transmission bandwidth.

4.1.1 The Need for Video Encoding

The primary need for video encoding arises from the massive amount of data generated
by raw video. High-resolution video streams, such as those captured by the Tobii Pro
Glasses 3, consist of numerous frames per second, each containing a significant amount
of pixel data. Without encoding, storing, or transmitting this raw data would require
extensive disk space and bandwidth, leading to inefficiencies and potential bottlenecks
in real-time processing systems.

Video encoding compresses video data using various algorithms to represent the
video more compactly. The process typically involves several steps and is managed by
three main functional units within a video encoder.

1. Prediction model: The prediction model aims to reduce redundancy by exploit-
ing similarities between neighboring video frames (temporal redundancy) and
between neighboring pixels within a frame (spatial redundancy). In H.264/AVC,
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Fig. 4.1 Video encoder block diagram. Figure from [30].

predictions can be formed from data within the current frame or from one or
more previous and/or future frames. The model uses techniques such as intra
prediction (spatial extrapolation from neighboring samples) and inter prediction
(compensating for motion differences between frames). The output of the pre-
diction model is a residual frame, which is created by subtracting the predicted
frame from the actual current frame, along with a set of model parameters.

2. Spatial model: The spatial model works on the residual frame produced by
the prediction model to further reduce spatial redundancy. In H.264/AVC, this
is achieved by applying a transform, typically the Discrete Cosine Transform
(DCT), to the residual samples. This transformation converts spatial domain
data into frequency domain coefficients. These coefficients are then quantized to
remove insignificant values, leaving a more compact representation of the residual
frame. The quantized transform coefficients are the output of the spatial model.

3. Entropy encoder: The entropy encoder compresses the parameters from the
prediction model (such as intra prediction modes and motion vectors) and the
quantized transform coefficients from the spatial model. This process removes
statistical redundancy by using methods like Huffman coding or Arithmetic
coding, which assign shorter binary codes to more frequent values and longer
codes to less frequent ones [5]. The result is a compressed bitstream or file
that can be transmitted or stored. The bitstream contains coded prediction
parameters, residual coefficients, and necessary header information.

Different video codecs, such as H.264, H.265, and VP9, employ these principles to
varying extents, balancing compression efficiency and computational complexity. Since
Tobii Pro Glasses 3 captures video in H.264 format [38], let’s take a closer look at the
inner workings of this codec.
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4.1.2 H.264 Video Encoding

H.264, also known as Advanced Video Coding (AVC), is one of the most widely used
video compression standards. Developed by the ITU-T Video Coding Experts Group
(VCEG) together with the ISO/IEC JTC1 Moving Picture Experts Group (MPEG),
H.264 provides high compression efficiency and good video quality, making it ideal for a
variety of applications, from streaming and broadcasting to storage and real-time video
processing. Compared with previous standards, H.264 achieves up to 50% improvement
in bit-rate efficiency [6].

H.264 employs a sophisticated prediction model that includes both intra-frame and
inter-frame compression techniques.

• Intra-frame (Spatial Prediction): Each frame is divided into smaller blocks
called macroblocks (16x16 or 4x4 pixels [29]). The idea is to predict the pixel
values of a block based on the pixel values of neighboring, previously-coded blocks
within the same frame. The prediction block is then subtracted from the actual
block to form a residual, which is further processed and encoded. The use of
various block sizes and prediction modes allows the encoder to adapt to different
regions of the frame, balancing compression efficiency and video quality.

• Inter-frame (Temporal Prediction): Inter-frame compression exploits tem-
poral redundancy by encoding differences between successive frames. Motion
estimation is performed to find blocks in the current frame that match blocks
in a previous frame (reference frame). Inter-frame prediction uses a range of
block sizes (from 16x16 down to 4x4 [29]). The motion vectors and the difference
(residual) between the blocks are encoded. This allows significant data reduction
since only changes between frames need to be encoded.

Types of Frames in H.264

From this process we can distinguish three types of frames: I-frames, P-frames, and
B-frames [20], each serving different roles in the compression process.

• I-Frames (Intra-coded frames):I-frames are encoded using only intra-frame
compression. They do not reference any other frames and can be decoded
independently. I-frames serve as key frames, providing reference points for
decoding subsequent P-frames and B-frames. They are essential for random
access and error recovery in video streams.



4.2 Video Decoding in Real-Time 47

• P-Frames (Predictive-coded frames):P-frames use inter-frame compression,
referencing previous I-frames or P-frames to encode the changes (motion vectors
and residuals). They require less data to encode compared to I-frames, as
they exploit temporal redundancy. P-frames rely on previously decoded frames,
meaning they cannot be decoded independently.

• B-Frames (Bi-predictive-coded frames):B-frames use both previous and
subsequent frames (I-frames or P-frames) as references for encoding. This allows
for even higher compression efficiency by exploiting temporal redundancy more
effectively. Like P-frames, B-frames cannot be decoded independently and rely
on multiple reference frames.

By using a combination of I, P, and B frames, H.264 achieves high compression efficiency.
I-frames provide key reference points, while P-frames and B-frames significantly reduce
the amount of data needed to represent motion and changes between frames [12]. This
layered approach enables H.264 to deliver high-quality video at lower bit rates, making
it an ideal choice for applications requiring real-time processing and transmission, such
as our gaze depth estimation system.

4.2 Video Decoding in Real-Time

In real-time systems, video encoding must be rapid to keep up with the incoming stream.
The Tobii Pro Glasses 3 use H.264 encoding to efficiently compress the captured video,
allowing for manageable transmission. They support live streaming of the scene camera
video via the Real-Time Streaming Protocol (RTSP).

4.2.1 Real-Time Streaming Protocol

Real-Time Streaming Protocol (RTSP), is an application-level network control protocol
designed for use in entertainment and communications systems to control streaming
media servers. The protocol is used for establishing and controlling media sessions
between endpoints. RTSP is used for various purposes including media streaming
applications such as live video and audio.

RTSP offers several key features that make it suitable for streaming media. One of
its primary functions is to provide control commands such as play, pause, and stop,
allowing users to manage the media stream similarly to how they would use a remote
control. RTSP operates within a client-server architecture, where the client sends
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requests and the server responds, facilitating efficient communication and control over
the media stream [31]. Additionally, RTSP is transport protocol independent, meaning
it can function with various transport protocols like UDP, TCP, or others, providing
flexibility in data transmission.

Socket

A socket is a software construct that enables communication between different processes
on the same or different machines. It acts as an interface between the application
layer and the transport layer within the network stack [17]. In the context of real-time
video streaming and RTSP, a socket is an endpoint for sending and receiving data
across a network. Sockets allow for communication between two devices over a network
using protocols such as Transmission Control Protocol (TCP) or User Datagram
Protocol(UDP).

• TCP Sockets: These provide reliable, connection-oriented communication. Data
sent via TCP is guaranteed to arrive in the same order it was sent. This type
of socket is often used for the control connection in RTSP to ensure reliable
communication for setup, control messages, and metadata exchange.

• UDP Sockets: These provide connectionless communication, which doesn’t
guarantee order or even delivery of data packets. However, this trade-off allows
for low latency and continuous streaming, crucial for a smooth user experience.
UDP prioritizes speed over reliability, making it ideal for streaming applications
like video and audio. This is because these applications can tolerate some packet
loss, and uninterrupted delivery is more important than ensuring every single
packet arrives.

4.2.2 Connecting to the Glasses

In this setup, RTSP is used to initiate and control the video stream from Tobii Pro
Glasses 3. The client sends a series of RTSP commands to negotiate the streaming
parameters and initiate the video feed. These commands are sent through a TCP
socket, ensuring reliable communication and setup of the stream. During the RTSP
setup phase, the client and server negotiate the use of RTP (Real-Time Protocol) for
transporting the video stream. In this phase it is also specified that the RTP packets
will be sent over UDP.
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In H.264 video streaming over RTP, the video data is packetized into RTP packets
for transmission. An RTP packet consists of two main parts: the RTP header and the
RTP payload. The H.264 encoder compresses raw video frames into compressed video
frames, which are then segmented into smaller pieces to fit into these packets [40]. The
header, which is usually 12 bytes long, contains information like timestamps or the
sequence number, which enables the receiver to detect any lost packets and restore
the correct order of the packets. On the other hand, the payload of an RTP packet
contains one or more Network Abstraction Layer (NAL) units.

NAL units are the fundamental building blocks of the H.264 encoded video stream,
each containing a portion of the video data. These NAL units can represent various
types of video information. A Sequence Parameter Set (SPS) contains important
parameters needed to decode a series of video frames, such as resolution, frame rate,
and other sequence-level settings. A Picture Parameter Set (PPS) includes information
necessary to decode individual pictures within a sequence. It works alongside the SPS
to provide the complete set of parameters required for decoding, such as entropy coding
mode and slice group mapping. Instantaneous Decoding Refresh (IDR) frames are
a special type of I frame. Like I frames, they are self-contained and can be decoded
independently. However, IDR frames also signal the end of a GOP (Group of Pictures).
When an IDR frame is received, the decoder can discard all previously decoded data
and begin anew from this frame, ensuring synchronization and recovery from data
loss. In other words, any frame that follows an IDR frame in decoding order cannot
reference any frame that precedes the IDR frame. Non-IDR frames, on the other hand,
are regular frames that follow IDR frames. They rely on previously decoded frames
for reconstructing the video image. Finally, Fragmentation Units (FU-A, FU-B) for
splitting large NAL units into smaller parts.

Fig. 4.2 Example of a GOP: the initial frame is always an IDR frame (image from
[37]).
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The digesteyepacket function processes RTP packets to extract and handle these
NAL units:

1. Extracts the NAL byte from the RTP payload to determine the type of NAL
unit.

2. Identifies the NAL unit type and processes it accordingly.

3. Handles different NAL unit types such as SPS, PPS, and fragmented units (FU-A,
FU-B).

4. Prepares the NAL units for decoding by adding start bytes and ensuring they
are in a format suitable for video decoders.

1 def digesteyepacket (st):
2 nal = st [12] # NAL byte
3 typ = nal & 0 b00011111
4 startbytes =b"\x00\x00\x00\x01" # this is the sequence of four

bytes that identifies a NAL packet .
5 global bypass
6 match typ:
7 ...
8 # Handling other cases
9 ...

10 # Reconstructing fragmented units
11 case 28: # FU -A
12 return rtp_h264_unpack_fu (st , 0), False
13 case 29: # FU -B
14 return rtp_h264_unpack_fu (st , 1), False
15 # Returning True for SPS or PPS packets
16 case 7: # 7 NAL unit SPS Packet
17 bypass = False
18 return startbytes +st [12:] , True
19 case 8: # 8 NAL unit PPS Packet
20 bypass = False
21 return startbytes +st [12:] , True
22 case 1: # 1 non -IDR picture
23 if bypass :
24 return bytes (0) , False
25 else:
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26 return startbytes +st [12:] , False
27 case _: # 1-23 other NAL units
28 return bytes (0) , False

Listing 4.1 This function processes a UDP packet, transforming it into a format suitable
for writing to disk, which can then be recognized by standard media players as an
H.264 stream.

4.2.3 The Actual Decoding Process

Decoding a video stream frame by frame is not feasible due to the nature of video
encoding processes. To decode the video stream in real-time, it is necessary to wait until
a complete Group of Pictures (GOP) is received. The following function accomplishes
this by collecting an entire GOP before decoding. After an inspection of the incoming
bytes received from the Tobii Pro Glasses 3, it emerged that each GOP starts with a
SPS followed by a PPS, which are identified by flags from the digesteyepacket function.
Once the initial SPS and PPS are received, subsequent frames are collected until
the next SPS and PPS are encountered, signaling the end of the current GOP. This
complete GOP is then stored in a file, ready for decoding.

1 def sink_eyes ():
2 header = b’’
3 first_GOP = True #The first time we receive a PPS there is

nothing to be decoded .
4 while (time. perf_counter_ns () - t_init ) /1000000 < rn:
5 with open(fname_eyes ,’wb’) as fe:
6 if(not first_GOP ):
7 fe.write( header ) # writes data in the eyes file
8

9 flag = True
10 counter = 0
11 header = b’’
12

13 while(flag):
14 reeyes = s4.recv (65507) # Receive data from socket

in chunks
15 # starting_sequence is True when receiving PPS or SPS

units
16 data , starting_sequence = digesteyepacket ( reeyes )
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17 if ( starting_sequence ):
18 counter = counter + 1
19 header = header + data
20 if ( counter == 2):
21 flag = False
22 if(flag and not starting_sequence ):
23 fe.write(data) # writes data in the eyes file
24

25 first_GOP = False
26 fe.close ()
27 #Here open the file and decode
28 decode_from_file ("eyes.h264")

Listing 4.2 Sink_Eye Function: used to store a GOP in a file.

The decode_from_file function is responsible for decoding each GOP previously
stored in a file. Initially, the function reads the entire video file as bytes and then
starts a FFmpeg process to decode the video into raw frames. FFmpeg is a free
and open-source toolset for multimedia processing, that allows to decode the H.264
video stream. A separate thread is started to handle writing the bytes from the file
to the FFmpeg process’s input. The main loop reads the decoded frames from the
process’s output, converting each frame into a NumPy array, which can then be read
by OpenCV. The frames undergo pupil detection analysis, and if pupils are detected,
their coordinates are forwarded to a MATLAB function for distance prediction. This
involves a call to the MATLAB engine, as the regression model for distance prediction
was developed using in that environment. Upon receiving the coordinates, MATLAB
executes the regression model to calculate the distance. Subsequently, the calculated
distance is transmitted back to the Python environment for further processing.

1 def decode_from_file ( filename ):
2

3 width , height = 1024 , 256 #Frame size
4 with open(filename , ’rb’) as binary_file :
5 in_bytes = binary_file .read ()
6

7 # Starting the FFmpeg process
8 process = sp.Popen(shlex.split(’ffmpeg -i pipe: -f rawvideo

-pix_fmt bgr24 -an -sn pipe:’), stdin=sp.PIPE , stdout =
sp.PIPE , bufsize =10**8)

9
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10 thread = threading . Thread ( target =writer , args =( process ,
in_bytes ))

11 thread .start ()
12

13 # Read decoded video (frame by frame)
14 while True:
15 # Read raw video frame from stdout as bytes array.
16 in_bytes = process . stdout .read(width * height * 3)
17 if not in_bytes :
18 break # Break loop if no more bytes.
19 in_frame = (np. frombuffer (in_bytes , np.uint8). reshape ([

height , width , 3]))
20 cv2. imshow (’in_frame ’, in_frame )
21

22 #Pupil detection
23 coordinates , detection = detect_pupils ( in_frame )
24

25 # MATLAB call
26 if( detection ):
27 # Convert coordinates to NumPy array
28 X = np.array( coordinates , dtype=float)
29 distance = engine . predictY2 (X)
30 integer_part = int( distance // 1)
31 print(f"The distance is: { integer_part }cm")
32

33 # Thread and Process Cleanup
34 if not in_bytes :
35 thread .join ()
36 try:
37 process .wait (1)
38 except (sp. TimeoutExpired ):
39 process .kill ()

Listing 4.3 Function to perform the actual real-time decoding of the video stream.
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4.3 Depth Estimation Results

The gaze depth estimation system was finally ready for real-time testing. The exper-
imental setup involved placing targets at distances of 1, 2, and 3 meters from the
observer. Initial tests were conducted with the observer looking straight ahead at
the targets, while subsequent tests included looking at targets positioned to the left
and right to assess the system’s performance in different directions. For consistency,
since the binarization method was used to obtain the datasets on which the regression
models were trained, it was also employed for pupil detection in these experiments. In
the following table, the mean value of the gaze depth estimation obtained from these
tests is presented alongside its relative error compared to the actual distances.

Table 4.1 Mean gaze depth estimation and relative error for frontal and side targets

Real Distance
Frontal Sides

Mean [cm] Error [%] Mean [cm] Error [%]

100 [cm] 131 31.0% 149 49.0%
200 [cm] 225 12.5% 205 2.5%
300 [cm] 271 9.6% 238 20.6%

On the left, the results of the frontal tests are displayed, while the right side shows
the results of the side tests. The blue line represents the actual distance, the red line
indicates the estimated gaze depth (with its mean shown as a dotted line), and the
green line represents the built-in gaze depth measurement of the glasses. These visual
comparisons illustrate the performance of the gaze depth estimation algorithm across
the different testing scenarios.

In the frontal test, the depth estimation predictions are relatively consistent.
However, when including the side view, the gaze estimation shows significant peaks,
often caused by false detections during blinking. Consequently, the mean is artificially
inflated. By considering the median, which is 105 cm, we obtain a value that more
accurately reflects the actual distance.
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Fig. 4.3 Comparison of gaze depth estimation performance for frontal and side tests at
1 meter.

Similar to the previous results, we can observe that the estimation obtained using
the regression model significantly outperforms the one provided by Tobii. The peaks
in the data correspond to instances of eye blinking: during these moments, the pupil
detection algorithm likely identified the pupil when the eyelid was still partially open,
leading to unreliable coordinate extraction. In the case of the side view, even though
the mean value closely matches the real distance, the model struggles more with
estimating gaze depth. This precision overstates the actual capabilities of the model
and is likely due to a particularly fortunate sample.
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Fig. 4.4 Comparison of gaze depth estimation performance for frontal and side tests at
2 meters.
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Finally, the tests done at 3 meters, show consistent results that are surprisingly
precise. Gaze estimation accuracy also declines when looking at the sides compared
to a frontal view. This is likely due to the pupil detection algorithm which struggles
when the eyes are not looking straight forward.
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Fig. 4.5 Comparison of gaze depth estimation performance for frontal and side tests at
3 meters.

In conclusion, the developed model outperforms by far the built-in gaze depth
estimation of the glasses. Contrary to our expectations, the model’s performance
showed a slight decline at closer distances. Imperfections in the pupil detection method
itself could be a contributing factor. These limitations might be attributed to the
method’s sensitivity to variations in lighting conditions and other environmental factors.
Alternatively, the regression model might have been overfitted due to an insufficiently
large and diverse training dataset. Expanding the dataset to include a wider range of
scenarios could potentially improve the model’s ability to accurately handle close-range
estimations. Despite the mean value providing an accurate depth value, the single
estimations can oscillate very much between consecutive samples, making the model
unsuitable when looking around frequently.

In addition, during the tests emerged the problem of the glasses positioning on the
user. In fact when they were positioned slightly further from they eyes, the estimations
obtained were completely unpredictable.
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4.4 Glasses’ Positioning Estimation

Accurately determining the pose of the glasses is essential, as it greatly influences the
accuracy of depth estimation. By utilizing the pupil positions provided by Tobii, which
includes a 3D model of the eyes detailing the pupils’ positions relative to the frame, we
can focus on the distance along the z-axis, as it appears to have the most significant
impact. This information can then be used to train a model that incorporates this
additional feature, thereby accounting for the pose of the glasses in relation to the user
and improving the overall accuracy of depth estimation.

To test the feasibility of this approach, we conducted a simple experiment. With
the user’s gaze fixated straight ahead, the glasses were gradually moved further away
from the eyes to determine if the built-in eye localization system could detect this
change in position.
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Fig. 4.6 Z-axis distance between the frame of the glasses and the eyes.

Unfortunately, as can be seen in figure 4.6, Tobii’s software is unable to correctly
estimate the distance. The glasses were moved by at least 1cm from their initial
position, but this change is not reflected in the plot. For this reason any attempt to
integrate the gaze depth estimation with a correction based on the positioning of the
glasses cannot be pursued in this way.

4.4.1 Roll Angle Estimation

To estimate the roll angle of the glasses, we can apply a similar reasoning as before
by utilizing Tobii’s software to compute the difference between the y-coordinates of
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Fig. 4.7 Comparison between images of the eyes obtained with the glasses positioned
correctly (top figure), and with misplaced glasses (bottom figure).

the pupils. If the glasses are positioned correctly, the eyes should be at the same
height. Any discrepancy in the y-coordinates indicates a non-zero roll angle of the
glasses. Specifically, since the glasses rotate precisely at the midpoint between the eyes,
it means that if one eye rises by a certain amount, the other eye drops by the same
amount, resulting in a total difference in their y-coordinates that corresponds to the
sum of these changes.

To test the detectability of the roll angle, we conducted an experiment where the
user initially positioned the glasses correctly and, after a few seconds, rotated them
left and right.
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Fig. 4.8 Roll angle estimation.
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As illustrated in figure 4.8, the roll angle can be successfully detected based on
the relative position of the pupils. This estimated roll angle could then be used
to adjust the extracted pupil coordinates, thereby enhancing the accuracy of depth
estimation. It is important to consider that most individuals have natural asymmetries
in their facial structure, which may result in a slight difference in the height of their
eyes. Therefore, a discrepancy in the y-coordinates of the pupils might not necessarily
indicate a misalignment of the glasses but rather a natural variation in facial anatomy.





Chapter 5

Conclusions

In this thesis, we explored various aspects of gaze depth estimation using Tobii Pro
Glasses 3. Our key contributions include:

• Development of a Pupil Detection Algorithm: We developed various pupil
position detection algorithms and compared their performances under varying
conditions.

• Development of a Regression Model: We then developed a machine learning
regression model to estimate gaze depth from the previously extracted pupil
position coordinates.

• Real-Time Video Decoding: Implemented a robust pipeline for real-time
decoding of H.264 video streams, enabling on-the-fly analysis and gaze depth
estimation.

• Glasses’ Positioning Estimation: Investigated the impact of the distance
between the glasses and the eyes, as well as the roll angle of the glasses, on depth
estimation accuracy.

Our research makes notable contributions to the field of gaze estimation. We have
demonstrated that our regression model outperforms the built-in depth estimation
capabilities of the glasses, offering enhanced accuracy. The methodology developed for
real-time analysis and depth estimation is robust and adaptable for various applications.
Moreover, our detailed analysis of glasses’ positioning effects provides valuable insights
that can inform future improvements in gaze tracking systems.

Despite the promising results, our research has several limitations. Natural facial
asymmetries can affect the accuracy of depth estimation and glasses’ positioning analysis.
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Environmental factors, such as lighting conditions, also impact the performance of
pupil detection algorithms. Furthermore, the generalizability of our regression model
is limited by the specific dataset used for training.

Future research can build on our findings in several ways. Improving pupil detection
algorithms to better handle variations in lighting and eye occlusions is a key area
for development. Expanding the dataset and exploring different machine learning
techniques could refine the regression model further. Integrating additional sensors,
such as accelerometers or gyroscopes, may enhance the accuracy of glasses’ positioning
and depth estimation. Finally, developing methods for user-specific calibration can
address individual facial asymmetries and improve the reliability of depth estimation.
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