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Abstract

The ability to communicate without using speech or hand gestures poses a great improve-

ment in the quality of life of patients that suffer from movement impairment. Human-

machine interaction tools are being studied and developed in order to optimize the usage

of biological signals that survive the individual’s disease. Among different approaches, Elec-

trooculography signals are an alternative for those who still have a residual eye control ca-

pability. An interface was designed to record, process and classify EOG activity. Four ALS

patients were recorded while controlling the interface for yes/no answering. This work pro-

poses the use of different features extraction techniques for classification of EOG signal. The

challenge stems from the need to extract spatial and temporal patterns from noisy multidi-

mensional time series obtained frompatientswithdifferent clinical conditions. Time and fre-

quency domain feature extractionmethods are proposed by the use ofDiscrete CosineTrans-

form, Autoencoder and Complex Wavelet Transform. The different algorithms allowed to

reach an average classification accuracy up to 75 %, 92 %, 94 % and 98 % in the four different

patients.
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1
Introduction

Amyotrophic lateral sclerosis (ALS) is a progressive disease of the lower and often upper mo-

tor neurons that usually leads to complete paralysis within 2–5 years [1]. Each year, approx-

imately 5600 people in the United States are diagnosed with ALS at a mean age of 55 years.

About 30,000 people are livingwithALS in theUnited States alone (ALSAssociation, 2013).

As the disease progresses, individuals may use their remainingmuscle control to operate a va-

riety of assistive communication devices for interactingwith theworld [2]. However, as their

disease progresses these devices may become ineffective. Human-Machine Interface (HMI)

technology can allow people with severemotor disabilities (i.e., ALS) to use alternative tools,

rather than voice or muscles, to communicate and to control their environments [3][4].

The term ‘locked-in syndrome’ (LIS) was first introduced by Plum and Posner[5] [6].

The term denotes a neurological condition consisting of tetraplegia and paralysis of all cra-

nial nerves except voluntary eye movements[7]. Consciousness is fully preserved and can be

demonstrated by voluntary blinking. The patients are able to communicate complex ideas

for instance by blinking Morse code [5].
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Patientswith aneurodegenerative disease likeALS, lose the voluntary control of theirmus-

cles and transit to LIS as time passes. When the patients lose control of their eye movement,

which is usually the last active muscle [8], the patient is in the completely locked-in state

(CLIS) [9]. The patients in CLIS are then left without any means of communication[7].

Preprocessing

Feature Extraction

Classi�cation

Activity Recording

Feedback
Device

Control signal

Figure 1.1: High-level structure of a Human-Machine Interface

Many interfaces have been designed and successfully used in the last years using differ-

ent strategies. For instance, the use of invasive BCIs involve surgical implantation of elec-

trodes or multi-electrode grids. They measure activity patterns of neurons, which encode

behaviourally relevant information. Different types of brain activity are measured with inva-

sive BCIs such as local field potentials, multi-unit activity, and calcium channel permeability

[10]. Even if havingmany advantages compared to other non-invasive techniques, they carry

all the drawbacks and costs of brain surgery. Other non-invasive BCI techniques have been

developed. For instance, in [4], functional near-infrared spectroscopy (fNIRS) was used to
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measure and classify cortical oxygenation and deoxygenation after the presentation of a ques-

tion, resulting in satisfactory classification accuracy for the patients’ answers. Another valid

strategy is the use of EEG signals; using different paradigms as motor imagery [11] or inner

speech [12] is possible to restore the communicationswith the patients, however both fNIRS

andEEGset up require a time consuming set up and return amuchmore complex signal com-

pared to eye-movement based techniques. The most used communication systems for ALS

patients are in fact eye tracker based. The problem with this communication technology is

that it primarily relies on the gaze fixation ability of the patients. In the transition from LIS

to CLIS, this capability is lost by the patients, forcing the caregivers to abandon the commu-

nication. In this study, an electrooculography (EOG) based interface will be presented as it

can overcome some of the previously described shortcomings. As will be discussed in the

following chapters, an ALS patient in transition from LIS to CLIS is still able to perform

voluntary eye movements and EOG signal can be exploited to detect it and to control an

interface. A deeper analysis of this technology will be proposed in the next chapters.

EOG based HMIs have been object of study in the last decades for different applications.

In [13] for instance, a computer input devicewas developed. Thedevice acquires EOGsignals

generated by eye movements and blinks and produces output for emulating the PC mouse.

From the acquired signals is possible to estimate the direction and amplitude of eye move-

ment and detect blinks using a microcontroller. In [14] and [15]the EOG signal is used to

control an electric wheelchair. In the latter application, the wheelchair dynamic is controlled

by constantly estimating the eyes rotation, modeling the process as a transition of states. In

[16] and [17] using two different strategies, the EOG signal is used as the mean to control a

speller. The promising results from Tonin et al. confirmed how it is possible to use EOG

based control algorithm to restore communication with ALS patients.
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All the previously mentioned possible applications of EOG based HMI (as many others

in literature) have a similar pattern in the signal processing pipeline. From the preprocessed

signal a set of features are extracted with the goal of representing in a compact set the useful

information produced by the eye movement. This process is the core strategy of many clas-

sification pipelines, in the next chapters will be analyzed different methods and their results.

A work with an interesting perspective about feature extraction optimization has been

done in [18]. Features are extracted and selected through a scheme called ‘Genetic Program-

ming’. It consists in generating and combining ensembles of features that can maximize the

so called ‘fitness function’. In this iterative heuristic procedure, every combination of fea-

tures competes with the others and just the fittest are selected. The algorithm is stopped

when a threshold value is achieved by the fitness function or when themaximumnumber of

iteration is reached. This method represents an attempt of optimality criteria in the design-

ing of the feature set.

Another endeavor towards the removing of subjectivity in the feature extraction process is

the usage of neural network algorithms for classification. In [19] for example, the EOG signal

is directly used to feed the input layer, while the output layer is the class membership. In this

way, the feature extraction step is embedded in the network and the features are represented

by the neurons. In this structure, the subjectivity of the results due to the ability of the ex-

perimenter to describe the signal by the feature set is heavily reduced. The back propagation

step allows replacing empirical research with a gradient descent, optimizing classification ac-

curacy.

According to this philosophy, in this study will be proposed three data driven approaches

for the feature extraction of EOG signals from LIS patients. In the process of signals classi-

fication, is important to have an a-priori knowledge of the explored phenomena, but hand
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selecting the features that should discriminate the class membership might lead to loss of

useful information. The proposed methods exploit advanced signal processing techniques

whose goal is retaining the maximum amount of information from the signal space to the

feature set. The effort made in this study has been to combine the two approaches.

In chapter 2 will be presented the methods and the instrumentation used retrieving the

data from the patients. In chapter 3 will be proposed an overview of the EOG signal in the

specific case of the LIS patients. In chapter 4 three different methods for feature extraction

will be proposed. In chapter 5 will be presented the results and a comparison of the different

techniques. And finally in chapter 6 will be proposed an analysis of the study highlighting

the potentialities of the discussed techniques and the future works.
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2
Methods & instrumentation

In this study four lateral sclerosis (ALS) patients are analyzed. The data used from these

subjects is retrieved in a period of transition from a locked-in-state (LIS) (with the ability to

control some muscle of the body) to completely-locked-in-state (CLIS) (without the possi-

bility to control any muscle in the body). With the progression of the disease the patients

gradually lose the possibility to control eye-tracker devices and are left without any mean of

communication. An EOG based interface was developed to allow patients to answer ques-

tions controlling the interface through eye movements. The majority of eye-tracker based

communication systems, strongly depend on the gaze fixation ability of the patient and rely

on a sharp control of eye movements. The aggravation of ALS leads to a progressive decreas-

ing of quality of vision and an advancing paralysis of eye and lid muscles[20]. As discussed

in [21] and [4] an auditory based interface can be a solution to tackle the aforementioned

problems.
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2.1 Instrumentation & paradigm

For data collection, EEG+EOG channels were recorded with a 16 channel EEG amplifier (V-

Amp DC, Brain Products, Germany) with Ag/AgCl active electrodes. A total of 7 EEG elec-

trodes (with locations C1, Cz, C2, and FC3, F3, F4, FC4 and F4, depending on experimental

conditions) and 4 EOG (electrooculogram channel placed above the eyebrowof the right eye

(EOGU) , electrooculogram channel placed below the right eye (EOGD), electrooculogram

channel placed on the side of the right eye (EOGR) and electrooculogram channel placed on

the side of the left eye (EOGL) electrodes. All the channelswere referenced to an electrode on

the right mastoid and grounded to the electrode placed at FPz. For the montage, electrode

impedance is kept below 10 kΩ. Frequency sampling was 500 Hz.

EOGU

EOGD

EOGR EOGL

Figure 2.1: EOG Electrode Placement

Before the recording of the data, more than 200 questions were provided from the pa-

tients’ families. The contents of the questions cover trivial information that is known to

patients and families. For instance: ‘Is Berlin the capital of Germany?’, or ‘Were you born in

1969?’ For every known question with a ‘yes’ answer a semantically identical question which

requests a ‘no’ answer was constructed and vice versa, in order to maintain a balanced class
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representation. Each recording session started with a ‘Training block ’ of 20 questions pre-

sentation, 10 of which had positive answers and the other 10 negative answers. The yes-no

questions were presented randomly. The training blocks were repeated until a satisfactory

model was built in the software classification (usually 75% or more of prediction accuracy).

To clarify the data retrieval structure and the terminology in Fig 2.2 there is a summarizing

scheme of the visits procedure.

Session 1 Training Block 1 Trial 1

Session 10

Training Block 2Session 2

Feedback Block 6

Trial 2

Trial 20

Baseline
Question
Presentation Thinking Period Audio Feedback

5 s 2.3 s 3 s 1.4 s

Figure 2.2: Paradigm & structure of the retrieved data

After the achievementof an above chance classification ‘FeedbackBlocks’ canbeperformed.

Each block is composed of 20 ‘Trials’, each of them consisting in the following paradigm.

The first phase of resting state is followed by a question presentation, once terminated the

patient is instructed to move the eyes for answering yes and to do nothing for answering no

(thinking period), and the last seconds are dedicated to providing a feedback to the user to

let him know the finish of the trial. The difference between the two blocks types relies on
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the interface response to the patient. During training blocks, the auditory feedback given to

the user is simply ‘Danke’, the German word for ‘Thank you’, while in the feedback block

it would be ‘Deine Antwort wurde als Ja/Nein erkannt’ (‘Your answer was recognized as

yes/no’). The signal processing for the classification will be discussed in the next sections,

but in order to understand the data retrieval process is important to state that the classifica-

tion algorithms used in this study have to be trained in a supervised fashion framework. This

technique allows achieving better classification accuracy than the unsupervised approach but

as a drawback needs training sets in order to build a model for the classification. For this rea-

son, performing training blocks is necessary before moving to feedback blocks, in this way is

possible tominimizeboredomand frustration in theuser trying to control the interface. Dur-

ing the feedback block, the patients can actually learn how to control the interface finding

the most suitable technique for eye movement as a compromise between good classification

accuracy and personal effort. Simple tasks as eye movement can result in fatigue and some-

times exhaustion for ALS patients, and this is important while evaluating the classification

performance as it indicates how the classification outcomes are not fully determined by the

experiment efficacy, but they also have a certain grade of uncertainty rooted in the stage of

the disease and patient’s motivation.

2.2 The patients

Four patients are analyzed in this study, but even sharing the locked-in-state there are impor-

tant differences that are worth to be mentioned, as they are reflected in EOG signals. Here

follows a brief summary of each patient most salient clinical traits.
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2.2.1 Patient 11

Male, 33 years old, was diagnosed with not-bulbar ALS in August 2015. He lost speech and

capability to walk by the end of 2015. He has been fed through a percutaneous endoscopic

gastrostomy tube and artificially ventilated since July 2016 and is in home care. He started us-

ing an eye-tracking-based communication system in August 2016 for communication. From

August 2017 onwards, he could not use the eye-tracker for communication because of his

inability to fixate his gaze, after that the family developed its own spelling system to commu-

nicate with the patient by observing the eyemovements, which did not require the patient to

fixate his gaze. Any visible eye movement was identified as a “yes” response, no movements

as “no”. Detection of eye-movements by relatives became increasingly difficult and errors

made communication attempts virtually impossible up to the point where communication

had to be abandoned. The followup time of Patient 11 (P11) spans fromMarch 2018 toMarch

2019

2.2.2 Patient 13

Male, 59 years old in June of 2018, was diagnosed with bulbar ALS at Jan of 2011. He lost

speech and capability to walk by the end of 2011. He has been fed through a percutaneous

endoscopic gastrostomy tube since July 2011, artificially ventilated since December 2011, and

is in home care. He started using an eye-tracking based communication system for commu-

nication in February 2012 and used it until April 2017. From May 2017 onwards when he

could not use the eye-tracking system for communication the family and caretakers commu-

nicated reliably with him based on his eyemovements (looking straightmeans ”no”, looking

to right means ”yes”). The fidelity of the answer of the patient depends on the experience of

the caretaker to decipher the patient’s eye movement. The follow up time of Patient 13 (P13)
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spans from June 2018 to May 2019

2.2.3 Patient 15

Female, 63 years old, was diagnosedwith lowermotor neuronpredominant-ALS inFebruary

2017. She has been fed through a percutaneous endoscopic gastrostomy tube sinceMay 2017,

artificially ventilated since May 2017, and is in a shared caring community. She started using

an eye-tracking based communication system inApril 2018. SinceNovember 2018 the family

and caretakers communicated with her relying on her eye movements (looking to the right

means ”no”, looking to the left means ”yes”) because of her inability to calibrate the eye-

tracker. The patient was visited for the first time in February 2019. The visits of Patient 15

(P15) were performed in the month of February 2019

2.2.4 Patient 16

Male, 56 years old in Feb 2019, was diagnosed with lower motor neuron ALS at the end of

2012. He has been fed through a percutaneous endoscopic gastrostomy tube since June 2015,

artificially ventilated since June 2015, and is in home care. He started using an eye-tracking

based assistive communication device in 2017. Since June 2018 he has not been able to reliably

communicate using the eye-tracker. The family and caretakers communicate with him since

June 2018 based on his eye movements (looking straight means ”no”, looking to the right

means ”yes”). The follow up time of Patient 16 (P16) spans from February to May 2019

12



3
Signals and classification

Electrooculography (EOG) is a method for sensing eye movement and is based on recording

the standing corneal-retinal potential arising from hyperpolarizations and depolarizations

existing between the cornea and the retina; this is commonly known as an electrooculogram.

This potential can be considered as a steady electrical dipole with a negative pole at the fun-

dus and a positive pole at the cornea [22]. The standing potential in the eye can thus be

estimated by measuring the voltage induced across a system of electrodes placed around the

eyes as the eye gaze changes, thus obtaining the EOG. The EOG value varies from 50 to 3500

μV with a frequency range of about dc-100 Hz. Its behavior is practically linear for gaze an-

gles of ±30o and changes approximately 20microvolts for each degree of eyemovement. The

variability of the electrooculogram reading depends on many factors that are difficult to de-

termine: perturbations caused by other biopotentials such as EEG (electroencephalogram),

EMG (electromyogram); moreover has to be considered the variability introduced by the ac-

quisition system, plus the one due to positioning of the electrodes, skin-electrode contacts,

lighting conditions, head movements, blinking, etc [23].
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Another factor that is important to consider, is that the ability to control eye movement

varies from patient to patient and changes with the progress of ALS. In Fig 3.1 and 3.2 is

possible to have an insight into the strategy adopted by each different patient. Both figures

represent the differential channel (EOGL - EOGR). All the experimenters were instructed

tomove the eyes in any direction to answer ‘yes’ and not tomove them to say ‘no’. However,

they were also encouraged to find themselves the most suitable strategy during the feedback

sessions. Is interesting to notice how the differences of patients’ conditions are reflected in

the EOG signals.

Figure 3.1: P11 (top-le ), P13 (top-right), P15 (bo om-le ), P16 (bo om right)

From these figures is possible to observe how the patients’ response can anticipate the

thinking period trigger during data acquisition. With this windowing, an important part of
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the signal information is lost as it is directly discarded. In order to try to maximize classifica-

tion accuracy and for the sake of integrity in the signal might be useful considering also part

of the signal acquired during the question presentation. During data retrieval, the training

and feedback blocks were performed using the hard windowing just described. Even if this

strategy might result fallacious, in this study is kept for two reasons. The first is for consis-

tency of the data acquisition process: during the feedback blocks the patients learn how to

control that particular interface, giving the feedback to the patients re-basing the signal pro-

cessing on a different timewindowmight lead to different results. The second reason regards

the first steps of this study, that started with a qualitative comparison of proposed methods

with the online results in classification accuracy. In this phase has been important working

on the same reference signals. The objective of the analysis proposed in the next chapters is

not focused on the maximization of results, but is a comparison between different feature

extractionmethods. In this sense, while the different techniques are extracting features from

the same chunk of data, the comparison is not corrupted. In the next sections, all the figure

and results will be obtained using this standard.

3.0.1 Patient 16

Patient 16 dataset consists of two visits, with a total of 20 between training and feedback

blocks. As will be discussed in the following sections, the performance in terms of classifica-

tion is the best between the group and it reflects in a clearer EOG signal. Even having lost the

gaze fixation ability, the eye movement control is sufficient for a correct classification during

the follow up period.
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3.0.2 Patient 15

Patient 15 dataset consists of two visits, with a total of 20 between training and feedback

blocks. The performance in term of classification is comparable with the ones of P16. Even

having lost the gaze fixation ability, the eye movement control is sufficient for a correct clas-

sification during the follow up period.

3.0.3 Patient 13

Patient 13 dataset consists of four visits, with a total of 40 between training and feedback

blocks. One peculiarity of P13 is that in the very early session he decided to move the eyes on

one side for ‘yes’ and to the other for ‘no’.

3.0.4 Patient 11

Patient 11 dataset consists of ten visits from March 2018 to March 2019 with a total of 79

between training and feedback blocks. His case probably represents the most interesting

study because of the longest follow up where is possible to understand how the ALS course

is affecting the control on eye movement. Fig 3.2

An overview of the dataset structure can be found in Table A.1

The following sections will be dedicated to the data processing: from raw signal to classi-

fication. In this chapter, in particular, will be taken into consideration one specific feature

extraction strategy as reference for a deeper analysis in the following chapters.
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Figure 3.2: March 2018 (top-le ), May 2018 (top-right), September 2018 (bo om-le ), March 2019 (bo om-right)

3.1 Preprocessing & feature extraction

The first proposed feature extractionmethod relies on the idea that is possible to estimate the

EOG general trend during a thinking period by extrapolating from each channel the maxi-

mum andminimum values and their respective time location. It is a simple yet effective time

domain analysis that provides a compact and intuitive feature coefficients set that can dis-

criminate eye movements period from resting states[17]. From each trial, the EOG signal

is first divided into the different subsections keeping the structure shown in Fig 2.2. The

following step is to apply a zero phase-shift digital filter consisting of an Infinite Impulse

Response passband Butterworth. Similarly to what is done in [24], the selected frequency
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band is 0.5 − 30Hz. Once cleared the signal from high frequency noise, four feature func-

tions are applied channel-wise to each thinking period. This strategy is hereafter referred to

as MinMax.

− Maximum value: Returns the maximum value of the amplitude of the signal in the
time domain.

− Minimum value: Returns the minimum value of the amplitude of the signal in the
time domain.

− Maximum Location: Returns the time location relative to the maximum amplitude
recorded value.

− Minimum Location: Returns the time location relative to the minimum amplitude
recorded value.

This feature extraction method has several advantages: the computational burden is very

lightweight, it is easy to be implemented, and returns a set of values of immediate compre-

hension. As presented in the results section, it shows great reliability in healthy patients and

doesn’t need any tuning of complex parameters. The main drawback is that trying to repre-

sent each channel with just four salient coefficients there is an uncontrolled loss of informa-

tion from the time domain signal to the feature set. In the results section, will be explained

how this is not critical for patients with high responsiveness, but might be crucial in the late

stages of ALS.

3.2 Feature selection

Generalizing the step of feature extraction is important to state that some methods could

return a high dimension feature set. In this case, before classification, some feature extraction

methods can be taken into consideration in order to improve the classifier performance [25].

Using techniques of dimensionality reduction can be used for the following reasons:
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− Reducing computational burden: With the perspective of using a supervised classifier,
reducing the number of features can lead to faster training and predictions.

− Reducing overfitting: High dimension feature sets usually reflect in complex models
built in the training step. This downside might reduce the generalization properties
of the classifier, with high training accuracy and poor prediction performance.

− Discarding highly correlated featur : Some features can be highly dependent one an-
other. In this case they should be removed before classification, because useless and
possibly biasing the results.

− Discarding noise: Some features can be both very sensitive to signal noise, or irrele-
vant regarding the investigated phenomena. In both cases, they should be removed as
adding unnecessary complexity to the classifier model leading to worse classification
performance.

In this study, the proposed feature selection method follows what is called ‘minimal re-

dundancymaximal relevance criterion’ (mRMR) [26]. In terms of mutual information, the

purpose of feature selection is to find a feature set S withm features xi, which jointly have

the largest dependency on the target class c. This scheme, called Max-Dependency, has the

following form:

maxD(S, c), D = I({xi, i = 1, ...m}; c) (3.1)

The Max-Relevance criterion is to search features satisfying the following equation, which

approximatesD(S, c) in 3.1 with the mean value of all mutual information values between

individual feature xi and class c:

maxD(S, c), D =
1

|S|
∑
xi∈S

I(xi; c) (3.2)

It is likely that features selected according to Max-Relevance could have rich redundancy.

When two features highly depend on each other, the respective class-discriminative power
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would not change much if one of them were removed. Therefore, the following minimal

redundancy (Min-Redundancy) condition can be added to selectmutually exclusive features

minR(S), R =
1

|S|2
∑

xi,xj∈S

I(xi, xj) (3.3)

The criterion combining the above twoconstraints is called “minimal-redundancy-maximal-

relevance” (mRMR). In [27] are proposed two different strategies to define it :

ΦMID = D −R (3.4)

ΦMIQ = D/R (3.5)

These different schemes are respectively called ‘Mutual Information Difference’ and ‘Mu-

tual Information Quotient‘. For a deep characterization and differences between the two

strategies is possible to find an exhaustive work in [27]. In this study, the strategy adopted is

the one in equation 3.5.

3.3 Classification

After feature selection, the following critical step is the choice of the classification strategy.

Depending on the preprocessing, the feature extraction, and feature selection methods, dif-

ferent classifiers could be more suitable than others. In this study, three different classifiers

are taken into consideration in order to evaluate the performance of the different feature

extraction technique proposed.
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3.3.1 Support Vector Machine

The features of ‘Support Vector Machine’ (SVM) make it one of the most used tools for

binary classification of EEG/EOG signal and suitable for this study [28]. The SVM classi-

fies data by finding the best hyperplane that separates data points of one class from those of

the other class [29]. Some binary classification problems do not have a simple hyperplane

as a useful separating criterion. For those problems, there is a variant of the mathematical

approach that is based on a non-linear transformation kernel and retains nearly all the sim-

plicity of an SVM separating hyperplane. It is an easy yet effective tool that can be used to

discriminate the state of an EOG signal from a set of extracted features [30].

3.3.2 Decision Tree

The second classifier taken into consideration is based on a ‘Decision Tree’ strategy. The

goal of a Decision Tree is to create a model that predicts the value of a target variable based

on several input variables [31]. A tree is built by splitting the source set, constituting the root

node of the tree, into subsets which constitute the successor children. The splitting is based

on a set of splitting rules based on classification features. This process is repeated on each de-

rived subset in a recursive manner called recursive partitioning. The recursion is completed

when the subset at a node has all the same values of the target variable, or when splitting no

longer adds value to the predictions. This process of top-down induction of decision trees

is one of the most common and widely used for its simplicity and almost ‘out-of-the-box’

usage [32]. Individual decision trees tend to overfit, and one possible enhancement here con-

sidered is the Bootstrap-aggregated (bagged) strategy. Bootstrap-aggregated decision trees

combine the results of many decision trees, which reduces the effects of overfitting and im-

proves generalization. Bagged Trees grow the decision trees in the ensemble using bootstrap
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samples of the data [33].

3.3.3 K-Nearest-Neighbors

The third classifier taken into consideration is the ‘K-Nearest-Neighbors’ algorithm (K-NN).

In K-NN classification, the input consists of the k closest training examples in the feature

space (the training set), the output is a class membership. An element is classified by a plural-

ity vote of its neighbors, with the element being assigned to the class most common among

its k nearest neighbors (k is a positive integer, typically small) [34].
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4
Automatic feature extraction

Asdiscussed in the previous sections, one of the core challenges in the EEG/EOGsignal classi-

fication is the feature extraction. In this chapter will be proposed three techniques of feature

extraction exploiting data compression algorithms. A substantial part of existing projects in-

volvingEOGclassification focus on the design of functions that try extrapolate some features

that could help to discriminate the class of the signal [35] [36]. This strategy has many bene-

fits: each feature function (depending on its simplicity) can have a straightforward meaning,

informative on the signal nature, moreover feature functions usually have a low computa-

tional burden and don’t need any training dataset. However using this approach, from the

signal to the extracted feature, there is an uncontrolled loss of information, and the effec-

tiveness of the process depends by an a-priori knowledge on the nature of the signal by the

feature functions designer. The dimensionality reduction from the original signal space to

the feature space can be considered as an attempt to encode the signal characteristics, to feed

a classifier with a compressed version of the signal. In this sense, the next sections will be

focused on exploring the application of well-known data compression algorithm for an au-
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tomatic feature extraction. The first technique will be based on the ‘Discrete Cosine Trans-

form ’ (DCT), the second will be based on an Autoencoder (AE) framework and the third

on ‘Discrete Wavelet Transform’ (DWT).

4.1 Automatic feature extraction for eye movement in ALS patients

The transition from LIS to CLIS brings to the loss of control of the eye movements reflect-

ing in a notable degradation of the signal. In Fig 3.2 is possible to detect in patient 11 an eye

activity at first sight (in an early stage of the transition); for later stages of the disease is pos-

sible to note the fading of a clear response. The eye movement detection for ALS patients is

thus amultifaceted problemdepending not only on the algorithms’ performance but also on

the patients’ responsiveness and the stage of ALS. Patient 16 and patient 15, in fact, proved

to have the best eye control among all the patients, with a clear signal response and good

prediction accuracy. Patient 13 after the first training sessions decided his own strategy to

control the response, and started to move the eyes right for yes and left for no. Being able to

achieve discrete prediction accuracy with this strategy the patient was encouraged to stick to

his technique. P11, compared to the patients, is in themost advanced stage of ALS, reflecting

a poorer response in the EOG signals for yes/no questions. Moreover, P11 is the one with the

longest follow-up spanning from March 2018 to March 2019. This period is characterized

by an aggravation of P11 conditions, reflecting in a notable reduction of the signal amplitude

response from visit to visit. Refer to chapter 2 and 3 for a deeper analysis of the patients’

conditions.

All these peculiarities suggest that eye movement recognition in ALS patients is a non-

trivial problem, in this sense there is the need for an adaptive feature extraction technique

that can keep upwith the patients’ changes, a data driven approach that can follow themuta-
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ble nature of the signal. The proposed feature extraction methods aim to preserve the EOG

signal information in the bands of interest.

4.2 Feature extraction through DCT

The first approach thatwill be explored, is an application of discrete cosine transform (DCT)

on EOG signals. DCT takes correlated input data and concentrates its energy in just first

few transform coefficients. Successfully used for the feature extraction in BCI applications

[37], this method allows data size reduction without losing the low frequency information

[38]. DCT is a transformationmethod for converting a time series signal into basic frequency

components. Low frequency components are concentrated in the first coefficients and high

frequency in the last ones. The one-dimensional DCT of a signal x of length N , and with

δkh the Kronecker delta, the transform is defined by:

Z(k) =

√
2

N

N∑
n=1

x(n)√
1 + δk1

cos
( π

2N
(n− 1)(k − 1)

)
k = 1, 2, ..., N (4.1)

The input is a set ofN data values and the output is a set ofN DCT transform coefficients

Z . DCT exhibits good energy compaction for highly correlated signals. If the input data

consists of correlated quantities, then most of theN transform coefficients produced by the

DCTare zeros or small numbers [37]. Applying this feature extraction to EOGsignals allows

compressing useful data to the first few coefficients. Therefore, only these coefficients can be

used for classification using machine learning algorithms. This kind of data compression

dramatically reduce input vector size and can capture features useful for classification [39]

[37].
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Using this approach leads to several advantages:

• Solves the problem of data filtering for high frequency noise

• Allows to select the bandwidth of interests

• Reduces dataset size

• Captures significant features for classification

0 1 2 3 4 0 1 2 3 4

0 1 2 3 4 0 1 2 3 4

Figure 4.1: Example of signal reconstruc on through inverse DCT from different number of coefficients with com-
pression rate equal to 2 (top-le ) 7 (top right) 11 (bo om le ) 20 (bo om right)

In order to capture an eye movement dynamic that hardly exceeds 12 Hz [40], a 500 Hz

sampling rate is heavily oversampling the bandwidth of interest. It is thus possible to de-

crease the input signal size by a down-sampling step as a first straight-forward technique for

dimensionality reduction. The values used in this study for results and figures can be found

in appendix A.

In Fig 4.1 is notable how is possible to reconstruct the original signal from just a small set

of the first DCT coefficients and the progressive degradation of the inverse DCT results, as

function of the increasing compression rate. Is clear how the lowest frequencies canmaintain
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the information relative to the patient’s eye movement, capturing the slowest oscillations.

The reconstruction is comparedwith the original signal filtered in the (0.5-30Hz) bandwidth

with zero-phase ‘Back-Forward’ Butterworth filter.

A crucial decision is the choice of the number of coefficients. Three metrics are proposed

here to capture the fidelity of the reconstruction. The Pearson correlation coefficient, the

Percentage-Root-Square Error (PRD) and the Spearsman ρ. Values are calculated as an av-

erage performance of signal reconstruction between all the available trials. Only significant

values are considered for Pearson correlation and Spearsman ρ with a 5% threshold. In Fig

4.2 is possible to notice how trying to reconstruct the signal with smaller subset ofDCT coef-

ficient the error is increasing and correlations decreasing as cause of the removal of the higher

frequencies.
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Figure 4.2: DCT reconstruc on performance for the four different pa ents
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4.3 Feature extraction through Autoencoder

In this section, will be proposed the use of an Autoencoder-based technique for dimension-

ality reduction. AnAutoencoder (AE) is a simple neural network that consists of threemain

layers: input layerX , hidden layerZ and output layer X̂ [41]. The goal of the Autoencoder

is to train the network with the target values set to be equal to the inputsX = X̂ through

a reduced number of dimensions. In this way, the AE is forced to find a signal representa-

tion in the hidden spaceZ , much smaller than the original signal. AEs are currently in wide

use in deep learning applications. They have been utilized in BCI for feature extraction and

classification in [42] [43]. Exploiting the high correlation existing in the EOG channels, AE

framework can reach extreme compression rate preserving the original signal information.

The input matrix shape depends on visits and patients. In P11 for example, only three

channels are consistently used throughout all the visits (EOGD, EOGL, EOGR), and four

are used for P13, P15 and 16 (EOGU, EOGD, EOGL, EOGR). The thinking period duration

changes from patient to patient depending on the ability of the participant to control the

interface (better results, shorter thinking periods). In any case, for every patient, the input

signal can be arranged in a matrix with size NC × NS × NT . Being NC the number of

channels, NS the number of samples in the thinking period and NT the number of trials.

Each trial has been filtered channel/wise with a Butterworth filter between 0.5-30 Hz. The

filter has been applied with a ‘Backward-Forward’ technique in order to obtain a zero phase

distortion. In order to capture a dynamic that hardly exceeds 12 Hz [40], a down-sampling

step is performed as a first straight-forward technique for dimensionality reduction, from

a 500 Hz sampling rate with a factor of 20. The input is subsequently normalized in the

interval [-1,1], in order to exploit the central region of the activation function selected. The
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resulting preprocessed matrix size will then be indicated asNC × N̂S ×NT .

Autoencoders convergence is a high demanding computational task, requiring time and

quantity of data that are not compatible with an online application. For these reasons, the

learning framework is divided into two steps. The first one entirely off-line andunsupervised

to enable the AE to find the weights’ values for the representation of a generic set of EOG

signal, and a second step online often referred to as ‘fine-tuning’, supervised, that can be per-

formed online. For a mathematical description of the unsupervised learning the following

definitions will be used:

Definition 1. Dx = NC ∗ N̂S dimension of the input space.

Definition 2. Dz = Nz be the dimensions of the hidden layer.

Definition 3. Dx̂ = NC ∗ N̂S the dimensions of the output space.

Definition 4. x ∈ RDx×1 is an element of the input matrix.

Definition 5. z ∈ RDz×1 represents the hidden space.

Definition 6. W (1) ∈ RDz×Dx is the weights matrix of the first layer.

Definition 7. b(1) ∈ RDz×1 is the bias vector of the first layer.

Definition 8. h(1) : RDz → RDz indicates the punctual application of the activation func-

tion.

Exploiting the previous definitions the ‘encoding’ layer from the signal space to the feature

space can be described as:

z = h(1)(W (1)x+ b(1)) (4.2)
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Similarly, the decoding part from the hidden layer to the reconstructed signal can be defined

with an analogous structure remembering that the output layer x̂ has the same shape of the

input layer x:

x̂ = h(2)(W (2)z + b(2)) (4.3)

In order to exploit the correlation inter- and intra-channels of theEOGdata a ‘Dense’ layer

has been chosen for both the encoding and decoding side. Moreover, considering that the

information that must be preserved lies in the lower frequencies, where most of the signal’s

power is concentrated, a ‘Mean-Squared-Error’ (MSE) strategy can be used as coremetric for

the cost function represented by the error:

E = MSE + λ ∗ Ωw + β ∗ Ωs

With MSE the mean-squared-error calculated between the input and the reconstructed

signal, Ωw is the L2 regularization, and Ωs sparsity regularization. The coefficients λ and

β are hyper-parameters left to the user choice and reported in appendix A. The first term is

thus the mean square error defined as:

MSE =
1

Nx

Nx∑
n=1

(xn − x̂n)
2

Ωs is often referred to as Sparsity regularizer. This term attempts to enforce a constraint

on the sparsity of the output from the hidden layer. Sparsity can be encouraged by adding a

regularization term that takes a large value when the average activation value, ρ̂i, of a neuron

i and its desired value, ρ, are not close in value [44]. One such sparsity regularization term

can be the Kullback-Leibler divergence.
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Ωs =
Dz∑
i=i

KL(ρ||ρ̂i) =
Dz∑
i=i

ρ log

(
ρ

ρ̂i

)
+ (1− ρ) log

(
1− ρ

1− ρ̂i

)
(4.4)

Kullback-Leibler divergence is a function for measuring how different two distributions

are. In this case, it takes the value zero when ρ and ρ̂i are equal to each other, and becomes

larger as they diverge from each other. Minimizing the cost function forces this term to be

small, hence ρ and ρ̂i to be close to each other.

When training a sparse autoencoder, it is possible to make the sparsity regulariser small

by increasing the values of the weights w and decreasing the values of z [44]. Adding a

regularization term on the weights to the cost function prevents it from happening. This

term is called the L2 regularization term and is defined by:

Ωw =
1

2

L∑
l

NT∑
j

N̂S∑
i

(w
(l)
ij )

2 (4.5)

where L is the number of hidden layers,NT is the number of observations, and N̂S is the

number of variables in the training data.

The selected training algorithm is known as Scaled Conjugate Gradient Descent, more

information can be found in the original paper [45].

In fig 4.5 is possible to see the AE unsupervised simple structure. The unsupervised train-

ing has been performed ‘patient-wise’.

A critical parameter in the AE framework is the number of hidden neurons Nz . In Fig

4.4 is possible to note the performance of the Autoencoder evaluating the similarity of the

reconstructed signal from the latent space from the original signal. Three metrics are pro-

posed to capture the fidelity of the reconstruction. The Pearson correlation coefficient, the

Percentage-Root-Square Error (PRD) and the Spearsman ρ.
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Figure 4.3: Example of signal reconstruc on through Autoencoder from different hidden sizeNZ with compression
rate equal to 5 (top-le ) 15 (top right) 25 (bo om le ) 50 (bo om right)

10 20 30 40 50
0.65

0.7

0.75

0.8

0.85

0.9

0.95

10 20 30 40 50
30

35

40

45

50

55

60

65

70

10 20 30 40 50
0.65

0.7

0.75

0.8

0.85

0.9

0.95

Figure 4.4: Average performance of signal reconstruc on as func on of compression rate, for the four different
pa ents

Despite the other two techniques the Autoencoder framework exploits the inter-channel

EOG correlation allowing a much more efficient encoded version of the signal. In Fig 4.3 is
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possible to see how the reconstruction of EOG time series from the different hidden space

follows the original signals. Is clear how the choice of the cost function during the training

phase allows the hidden layer to capture the slowest component of the EOG, with a progres-

sive degradation of the reconstruction caused by more aggressive compression rates.

As discussed in chapter 2, in order to build a model for one of the proposed classifiers, a

supervised training step is necessary. In this phase is possible to exploit the labeled training

set to back propagate the class membership in order to fine tune the network weights for a

discrimination of the signal class (yes/no). The pretrained encoding side is thus linked to

a softmax layer for a supervised fashioned second training. During the fine tuning step the

input layer consists of different trial of the training set, and the output layer is set as the ‘one-

hot-encoding’ representation of the relative class membership. This strategy, often used as

classification step, lacks a proper amount of consistent data. As discussed in the previous sec-

tions the nature of the signal is heavily changing between patients, and sometimes also in the

same patients and different visits. For this reason, this supervised step should be performed

‘day-wise’ and wouldn’t allow satisfying convergence for classification. However, it is still

performed as it can adaptively augment the discrimination power of the feature space.
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Figure 4.5: Structure of the Autoencoder framework in the unsupervised configura on (le ), and fine tuning configu-
ra on (right)

4.4 Feature extraction through Dwt

Wavelet analysis is a common tool for analyzing variations of power within a time series. By

decomposing a time series into time–frequency space, is possible to determine both the dom-

inant modes of variability and how those modes vary in time. Wavelet Transform can be

represented as a linear transformation Y = WX , whereX , Y are input and output of the

transformation and W is orthogonal mother wavelet transformation matrix [46]. Mother

wavelet is defined as:

Ψu,s(t) =
1√
s
Ψ

(
t− u

s

)
(4.6)

Wavelets are oscillating functions of time that must satisfy several conditions: A wavelet

Ψ has zero time average and unit energy corresponds to orthonormality property of wavelets.
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The amplitudes of a wavelet have large fluctuations within a designated time period and ex-

tremely small values outside of that timewhile beingband-limited in termsof their frequency

content. The continuous wavelet transform CWT of a signal f(t) can be calculated using

equation 4.7.

F (u, s) =

∫
x(t)

1√
s
Ψ

(
t− u

s

)
dt (4.7)

By varying the values for s andu results in an infinite number of combinations and can be

used to decompose the signal x(t). Here u and s are the translation and dilation respectively.

Amuchmore computationally efficient approach is the use of the discrete wavelet transform

(DWT), which was developed in 1989 [47]. Knowing only the values of the DWT coeffi-

cients, the waveform can be perfectly reconstructed. All of the extra coefficients of the CWT

create redundancy in calculation as they are highly correlated with the ones of the DWT. In

implementation, the DWT can even outperform CWT because waveforms are already dig-

itally sampled and have finite duration so the number of coefficients is limited. DWT or

CWT can be seen as a number on the time scale plane representing the correlation between

the signal vector and thewavelet function at a given time-scale point. TheDWTcanproduce

as many wavelet coefficients as there are samples in the original signal. In Fig 4.6 is shown a

structure of a DWT.

The original signal is convolved with a low and high pass filter whose impulse response

is determined by the wavelet chosen. The output of each filter produces the same number

of samples as the original signal, so both outputs are downsampled by 2 resulting in the ap-

proximation and detail coefficients each with half the number of points as the original signal.

The coefficients represent a correlation between the signal of interest and wavelet chosen at

different scales and during translation. Because all of the coefficients are preserved, the origi-
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Figure 4.6: Discrete Wavelet Transform interpreta on as filter-banks

nal signal or any level of decomposition can be reconstructed using a filter scheme similar to

decomposition shown in Fig 4.6. The process can be reversed; doing so the coefficients are

upsampled(interpolated), filtered, and summed.

Dual tree complexwavelet transform (DTCWT) is an enhancement to the discretewavelet

transform (DWT) which has additional properties useful for the problem considered. Pub-

lished in 1999, Kingsbury’s work [48] first highlighted the potentiality and features of com-

plex wavelets for signal processing that proved to have desirable properties compared to real

wavelet transform.

The framework of DTCWT is shown in Fig 4.7 and is structured as follows. DTCWT

employs two real DWTs where the first DWT gives the real part of the transform while the

second DWT gives the imaginary part. The analysis filter bank structure used to implement

DTCWT uses two different sets of filters which satisfy perfect reconstruction conditions.

When the dual-tree CWT is applied to a real signal, the output of the upper and lower filter

banks give the real and imaginary parts of the complex coefficients respectively.

The filter design is a non trivial task in a DTCWT framework. In this work, a strategy

known as ‘Q-shift solution’ has been adopted. More information can be found in[49].

The proposed method of feature extraction consists in first decomposing the EOG signal
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Figure 4.7: Structure of a Double Tree Complex Wavelet Transform as an ensemble of two real DWT

of each trial with dual tree complex wavelet transform into different levels and then extract-

ing suitable features from the lower bands. Since forward transform of DTCWT gives two

branches containing real and imaginary coefficients, it gives a rich way of analyzing EOG

signals in both time and frequency domain. DTCWT proved to overcome several DWT

shortcomings [50] [48], but the one particularly interesting property of theDTCWT is that

compared to the DWT it is nearly shift invariant. The delay of response of the patients de-

pends onmany uncontrollable factors. The double tree framework reflects lower changes in

its transform coefficients for a time shifted signal compared to the real DWT, and this feature

allows the classification to achieve results that are less dependent on the patient’s delay in the

response.
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Figure 4.8: Example of signal reconstruc on through inverse Dwt from different number of coefficients with com-
pression rate equal to 3 (top-le ) 5 (top right) 22 (bo om le ) 44 (bo om right)

In Fig 4.8 is possible to notice how the signal reconstruction is performed from different

levels of the DTCWT and how the lowest bands can follow the EOG dynamic (initial and fi-

nal artifact omitted). Is important to notice that each next level of the transformation thanks

to the down-sampling step allows the reconstruction from half of the previous level samples.

Fig 4.9 shows the trend of three different metrics to evaluate the signal reconstruction de-

pending on the compression rate. While trying to compare the compression rates between

the current and the previous techniques is important to take into consideration the different

preprocessing. While DCT and AE were preceded by a heavy downsampling, this is not the

case for DTCWT feature extraction. The compression rates in the previous section indicate

the reduction from the downsampled signal and the feature set. In the current framework

(as notable in Fig 4.7) the downsampling step is embedded in the filter bank cascade. For this

reason, the possible comparison between the compression rate should consider a scale factor

equal to the downsampling rate.
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Figure 4.9: Average performance of signal reconstruc on as func on of compression rate, for the four different
pa ents
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5
Results

The offline results obtained in this section try to replicate the structure of the retrieval of the

data, in order to analyze a possible implementation of the aforementioned feature extraction

technique. Following the scheme shown in Fig 2.2, for every different day a train set and a

test set are created. Considering the whole trials of one day the first 70% are considered part

of the training set and the remaining 30% as part of the test set.

A critical choice that had to be made is regarding the classifier hyperparameters. Every

previous step in the processing pipeline (preprocessing, feature extraction, feature selection)

would lead to long and costly effort about the parameters tuning. A possible solution for

achieving the best test accuracy would be an exhaustive grid search of every parameter in the

pipeline, including classification. This solutionwas not considered for two reasons. The first

reason is that the computational burden of such an optimization would lead to training and

testing one different classifier for each one of the previous configurations; this combinatorial

explosion makes this strategy nearly impossible. The second reason why this option is not

considered is that themain goal of this study is to investigate the potentiality of the proposed
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feature extraction techniques. For these reasons, the classifier parameters are kept fixed for

every patient and feature extractionmethod. Doing so, in this case, the classifiers are used as a

fixed reference and exploited to evaluate the different feature extractionmethods efficacy. For

these reasons, in this study is made the debatable assumption that the results are depending

just on the feature extraction effectiveness.

Is important to be stated that the following results are biased in favor of theMinMax strat-

egy. This feature extraction method can be set in three different configurations: using only

minimum and maximum amplitude of the signal, using just their relative time locations, or

using all the four coefficients at the same time. In each trial of the following results just the

best performing one is selected. In this way, the results reported regarding MinMax, loose

their meaning of one-method effectiveness, but on the other hand the proposed feature ex-

traction techniques are compared with the best performing solution within the three.

In this section is shown the classification accuracy of the three proposed methods with

the classifier previously described: SVM, K-NN, Decision Tree. The bar plots represent the

performance of test classification accuracy on a subset of single days. Depending by how

many blocks were performed that day each date might represent a different number of trials

having different statistical weights when comparing the results.
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Figure 5.1: Classifica on Performance with DCT feature extrac on with four different pa ents
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Figure 5.2: Classifica on Performance with Autoencoder feature extrac on with four different pa ents
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Figure 5.3: Classifica on Performance with DTCWT feature extrac on with four different pa ents
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5.1 Overall Results

The results reported in this section are calculated over all the trials available. Every table

shows thepercentageof success of eachpair feature extraction - classifier, for the fourdifferent

patients. A further division of the patient visits was performed for P11 in order to analyze any

time related performance of the classification. The number of visits available for P15 and P16

were not enough to justify the splitting and the ones from P13 didn’t show any significant

changes. Specifically, the ‘Early Stage’ and ‘Advanced Stage’ notation refers to the first and

last five days available.

Table 5.1: P11 All days

Feature Extraction Support Vector Machine K-Nearest Neighbors Decision Tree

MinMax 68.38 66.03 70.94
Dct 73.29 64.53 73.93

Autoencoder 75.21 70.30 74.79
Autoenc+Dct 73.93 64.96 73.29

DTCWT 62.61 63.68 66.67

Table 5.2: P11 Early Stage

Feature Extraction Support Vector Machine K-Nearest Neighbors Decision Tree

MinMax 72.62 67.86 72.62
Dct 72.02 68.45 67.86

Autoencoder 76.19 73.21 68.45
Autoenc+Dct 74.40 70.83 70.24

DTCWT 55.36 66.67 70.24
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Table 5.3: P11 Advanced Stage

Feature Extraction Support Vector Machine K-Nearest Neighbors Decision Tree

MinMax 64.44 62.22 62.22
Dct 72.22 58.89 73.33

Autoencoder 76.67 68.89 71.11
Autoenc+Dct 77.78 61.11 73.33

DTCWT 58.89 58.89 54.44

Table 5.4: P13 All Days

Feature Extraction Support Vector Machine K-Nearest Neighbors Decision Tree

MinMax 87.92 85.42 90
Dct 91.67 85.83 92.08

Autoencoder 89.17 84.58 85.83
Autoenc+Dct 91.25 84.17 89.58

DTCWT 63.75 88.33 87.92

Table 5.5: P15 All Days

Feature Extraction Support Vector Machine K-Nearest Neighbors Decision Tree

MinMax 90.91 96.10 94.81
Dct 88.31 90.91 90.91

Autoencoder 84.42 83.12 80.52
Autoenc+Dct 89.61 93.51 92.21

DTCWT 70.13 90.91 92.21

Table 5.6: P16 All Days

Feature Extraction Support Vector Machine K-Nearest Neighbors Decision Tree

MinMax 96.67 99.17 98.33
Dct 95.83 96.67 96.67

Autoencoder 95.83 95 90
Autoenc+Dct 96.67 95.83 98.33

DTCWT 69.17 95.83 98.33
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6
Conclusion

The first consideration coming from the previous chapter results, is that the three proposed

solutions (plus theMinMax strategy) are a valid alternative for the classification of eye move-

ments of ALS patients in transition fromLIS to CLIS. The three methods proved (with one

exception) to have comparable results one another, showing classification accuracy consis-

tent with the patients’ conditions. The only coupling that seems to be widely sub-optimal

is the DTCWT feature extraction with SVM classifier. As shown in Tab 5.6 the coupling of

DTCWT with K-NN and Decision tree on the same dataset are satisfactory, with an almost

25% difference in term of classification performance for P15 and P16. It suggests that the par-

ticular shape of the feature set extractedwith theDTCWT framework are hardly divisible by

the SVM hyperplane. One could speculate that if the information is retained in the wavelet

coefficients (as shown with K-NN and Decision Tree) it should exist a non linear transfor-

mation that could make the feature set separable allowing SVM to reach performance up to

expectations. Such an optimization was not taken into consideration because the argument

would go beyond the purpose of this study as discussed in Chapter 5. But can be stated that
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this configuration proves to be strongly sub-optimal.

Other considerations can be done regarding the Autoencoder framework, the first one is

about the offline/online nature of the results. P11 ‘Early Stage’, P13 ‘Early Stage’, P15 and P16

can’t be considered comparable to online performance as their data are used for the unsu-

pervised training of the AE. One could argue that this procedure goes against the train/test

splitting philosophy prejudicing the transparency of the results. That would not be com-

pletely correct as the splitting regards the classification step and its integrity is here preserved.

During the prediction of a trial class (in the test-set), what is guaranteed is the fact that is

the first time for the classifier to ‘see’ that trial, but is not for the Autoencoder. Even if the

classifier performance can be directly compared to the online results, the Autoencoder has

thus to be considered an offline application in the aforementioned subset. The choice to

use the first part of the dataset in the case of patients 11 is debatable. In the first instance,

this strategy was chosen to maintain a chronological consecutiveness between the training

and the prediction. In this manner is possible to evaluate a ‘real world’ application of the

technique. As discussed in Chapter 3 the signal’s nature might vary during time. The right

selection of the time window used as training set might be crucial. Large training set might

weaken representation ability of the AE (as it would be trained to represent different signals

at the same time), on the other hand, a small dataset would lead to a lack of generalization

from the AE and consecutive overfitting.

Some of the previous choices in the AE framework are forced by the lack of data. The

scarcity and singularity of the patientsmake the signal retrieval costly and difficult. A promis-

ing strategy that could tackle the problem would be the one known as ‘transfer learning’. In

somemeasure, the newpatients (with no dataset available) can use pre-trainedAEwith other

patients data.
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Table 6.1: Transfer table

Transfer Support Vector Machine K-Nearest Neighbors Decision Tree

P13 -> P11 68.80 61.75 69.44
P11 -> P13 93.65 86.51 87.30
P16 -> P15 83.12 80.52 79.22
P15 -> P16 93.33 93.33 90.83

Table 6.1 represents the results of the classification through AE feature extraction swap-

ping the patients’ training set. The notation ‘P13 -> P11’ for instance indicates the prediction

accuracy on P11 test set using an AE trained with P13 train-set. These results prove that this

technique can be applied also to new patients and refined with the usage and the increasing

dataset. Further cross validation results weren’t obtained because of the different paradigm

between the patients. The thinking period of P11 and P13 was set to 5 s while for P15 and

P16 it was 3 s. For this reason the strict structure of the AEwouldn’t allow a straightforward

comparison.

Another interesting feature regarding theAE framework comes fromthe comparisonwith

the feature functions strategy. Observing tables 5.2 and 5.3, is possible to notice a difference of

about−8%−5%−10% from ‘Early’ to ‘Late’ stage of P11 withMinMax strategy, while the

same comparisonwithAE is about0%−4%+3%. From these results seems thatAE strategy

performanceholds betterwith theprogressionofALS inP11. In order to asses the significance

of the difference between the two strategies a Wilcoxon test has been performed. In Fig 6.1

is shown the difference between the performance of two different groups: the MinMax and

AE feature extraction with SVM classification.

The 10 days grouping (with one day sliding window) has been chosen as a compromise

between having high sample population for significant results and time resolution: a few

days grouping would lead to non significant results (because of the lack of data), and a many
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days groupingwould lose the time resolution, losing the time analysis purpose of the statistic.

From the Fig 6.1 is possible to see that in this statistical set up the AE classification accuracy is

grater thanMinMax in every groupand is evenmore interesting tonotice that the significance

of the difference is increasing along time as shown from the decreasing of the p-value.

6.0.1 Future works

The passage from LIS to CLIS is a very unpredictable transition where the decline of the

disease can follow various trends. The decay of the muscle control ability is a subjective

path different for each person. In this study has been analyzed four different patients that

showed different signal characteristic, with a particularly interesting evolution in the case of

P11. The goal of the interface that has been created is to allow communication in the short-

est period possible. The duration of patients’ answering is one of the critical parameters in

the paradigm that has not been discussed in this study. An interesting possible future work
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would be developing a method and an optimality criteria for the selection of the right inter-

val.

Another interesting topic related to the advanced stage of ALS regards the patients’ col-

laboration. If it is simple to asses the subjects’ response looking at their eye movement in

the early stage, is more difficult if not impossible, getting closer to CLIS; confusion, distrac-

tion and frustration for instance could be factors that could weaken the hypothesis of col-

laboration. A possible future study could be on the aforementioned hypothesis of patients’

responsiveness. Having more information on the patients’ effort would be interesting for

many reasons. First of all it would be a potential psychophysical index about the subject, but

apart from that it could allow selecting the ‘good’ trials performed by the patient to build a

more robust classifier model.

In conclusion, there are still many possibilities for improvement of the proposed system

and it is of fundamental importance to continue this research mainly for two reasons. On

the one hand, finding a stable and performing system also means better understanding the

ALS progression, giving fundamental information about the development, diagnosis, and

treatment of this syndrome. On the other hand, a system capable of restoring communica-

tion between a conscious person but unable to relate to the environment around him could

greatly improve the psychological well-being of the patient himself but in the same way of

his family and caregivers.
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A
Appendix

A.1 Dataset specifics

Table A.1: Dataset informa on

Patient Visits period Visits # Days # Blocks # Trials # Thinking Channels #

P11 Mar 2018-Mar 2019 10 26 79 1580 5s 3
P13 Jun 2018-May 2019 4 12 40 800 5s 4
P15 Feb 2019-Feb 2019 2 5 20 400 3s 4
P16 Feb 2019-May 2019 2 5 20 400 3s 4

A.2 Dct parameters

Table A.2: Parameters for Dct feature extrac on

Method Downsampling rate Selected coefficients Total features # Features selected #

Dct 20 25 25 ×Nc 20
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A.3 AE parameters

Table A.3: Parameters for AE feature extrac on

Method Downsampling rate Hidden size Activation λ β ρ Features selected #

AE 20 25 Sigmoid 0.001 1 0.05 20

A.4 DTCWT parameters

Table A.4: Parameters for DTCWT feature extrac on

Method Downsampling rate Tree Level Wavelet Total features # Features selected #

DTCWT None 6 Kingsbury-Q-shift Ns/2
6 ×Nc 20
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