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Chapter 1

Introduction

With the advance in single-molecule techniques, such as magnetic and optical
tweezers, it’s nowadays possible to reproduce the behavior of biological macro-
molecules subject to forces and torques.
These situations are often found in cells during natural events.
For example double stranded DNA can undergo a phase transition, reaching a
supercoiled state, and its topology can be changed by type I and II topoisomerases
which provoke a nick in one or both strands and transport a filament through the
gate [1]. Supercoiled DNA was deeply studied experimentally [2], analytically [3]
and by Monte Carlo simulations [4] in the 90’s, revealing different elastic responses
of the system depending on the force and on the torque injected into it (Fig. 1.1).
Magnetic tweezers also allow investigation of the work of some enzymes involved in
particular processes, e.g. DNA replication [1, 5].
During DNA replication polymerases synthesize a new strand copying the base
sequence from a template DNA chain. The progression of the replication can be
followed by checking changes in the molecule extension: these results suggest that
there is a force dependence of the replication rate and that pause sites are part of
this process (Fig. 1.2).
More recently magnetic tweezers have been used for studying the formation of braids
in DNA filaments [6, 7].
Braids are formed during replication between the newly synthesized molecules: type
II topoisomerases have the task to resolve these links allowing the replication to
continue [6] .
It’s therefore interesting and biologically important to understand the topology of
braids and inspect their possible phase transitions: this is the aim of this thesis
where all the above cited aspects will be investigated using large scale simulations .
Before describing our approach and present our results, we will briefly summarize
what is known experimentally and theoretically on braiding (Chapters 2 , 3).
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2 CHAPTER 1. INTRODUCTION

Figure 1.1: Extension versus catenation curves from Strick et al. [2]. One can observe that the
system reacts differently to positive and negative supercoling depending on the force acting on it.
Relative extension is given by x

L0
where x is the chain extension and L0 is the DNA contour length;

σ is the excess linking number, or supercoiling, defined as σ = Lk−Lk0
Lk0

where Lk0 is the linking
number of a single torsionally relaxed ds-DNA and Lk is the actual link.

Figure 1.2: Study of the progression of the DNA replication. In each panel two examples are
reported.
(a) Time evolution of the number of bases replicated by Klenow polymerase without 3’ to 5’
exonuclease activity under a tension of 1 pN.
(b) Time evolution of the number of bases replicated by Sequenase polymerase under a tension of 1
pN.
Figure panels (a) and (b) from Maier et al. 2000 [5].



Chapter 2

Magnetic Tweezers: an overview

Optical and magnetic tweezers allow the study of biological systems by manipu-
lating a single molecule.
Optical tweezers were first assembled by Ashikin et al. at Bell Labs and in 1986 they
described the first experiment in which dielectric particles were hold by a single-beam
gradient force trap [8]. A glass Mie particle (10µm in diameter) was trapped thanks
to a highly focused laser beam and in the following year these tools were applied in
the biological field with the aim of manipulating bacteria and viruses [9].
Later, in 1996, Strick et al. designed a new way to study single-molecule that was
the basic idea of magnetic tweezers: by using a gradient of magnetic field in order
to move paramagnetic beads, they were able to investigate supercoiled DNA [10].
Even if optical tweezers provide a simpler method for handling biological systems,
magnetic tweezers have the advantage of allowing a multiple-beads manipulation
(improving the statistics of experiments) and they don’t require intense irradiation
that could damage the sample [11] .
We now give a brief description of the instrumental configuration and of the various
parts composing magnetic tweezers.

2.1 Experimental setup
An example of the experimental setup for a magnetic tweezers (MT) is reported

in Fig. 2.1. The main features are the following:

• Flow cell: all the experiment is immersed in a glass flow cell which contains
the polymer under investigation (DNA in Fig. 2.1) and a paramagnetic bead
controlled by an external magnetic field. One end of the molecule is attached
to the bottom of the cell, while the other one to the paramagnetic bead. If the
polymer is a DNA chain, these anchorings are achieved by using a normal DNA
molecule with particular handles previously prepared. Usually attachment to
the surface takes place via interactions between digoxigenin labeling DNA and
anti-digoxigenin which covers the surface, while attachment to the bead is
allowed by interactions between streptavidin (on the bead) and biotin (forming
a DNA handle) (see panel a of Fig. 2.2). Below the cell there is an inverted
microscope which captures bead movements recorded by a computer program
that has also the purpose of controlling the magnets.

3



4 CHAPTER 2. MAGNETIC TWEEZERS: AN OVERVIEW

Figure 2.1: A diagram of magnetic tweezers. It’s possible to observe the main components, such
as magnets that create a gradient of magnetic field, the tethered bead and the objective used for
tracing movements of the paramagnetic bead.
Figure from Sarkar and Rybenkov [11].

The flow cell is filled with a buffer whose composition can vary depending on
the aim of the experiment: for example, if one’s studying charged polymers,
the salinity of the buffer plays an important role since it changes the effective
charge of the polymer following the Debye-Huckel theory.

• Magnets: magnets are located above the flow cell and they move the para-
magnetic bead. Variations of the intensity of the magnetic field generate a
force having the same direction as the field gradient. Using a single magnet
(see Fig. 2.2 c) it’s possible to move vertically the paramagnetic bead pulling
the molecule attached to it; instead, if one wants to introduce torque on the
system, it’s necessary to include a second magnet creating a configuration like
the one shown in Fig. 2.2 b.
By employing NdFeB magnets and 2.8µm bead, magnetic tweezers generate
forces up to 20 pN when the distance between the magnets and the bead is
of about 1 mm. Using a bigger bead or reducing the distance between the
magnets and the bead, one can reach higher forces.

• Analysis of bead movements: thanks to computer analysis, movements of the
paramagnetic bead can be followed. This is achieved through images of the
bead collected by the inverted microscope: since the diameter of the bead is
comparable to the wavelength of the incident light these images are subject to
diffraction and the size of diffraction rings changes with displacements of the
bead respect to the focal plane.
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The vertical position of the bead is obtained through a comparison with diffrac-
tion images gathered prior to the experiment: in order to collect these reference
images one has to hold the paramagnetic bead (using a strong force) and to
move the objective. To avoid drift errors, a reference bead is placed on the
bottom of the flow cell, stuck to the surface.

Figure 2.2: Experimental features of magnetic tweezers. (a) A representation of covalent bonds
that allow attachments between the molecule and the bottom of the flow cell and between the
molecule and the paramagnetic bead. (b) Horizontal arrangement of magnets used to exert torque
on polymers. (c) Vertical arrangement of magnets useful to pull polymers without torquing them.
Panel (a) from Janissen et al. [12]; panels (b) and (c) from Sarkar and Rybenkov [11] .
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2.2 Applications of magnetic tweezers

Magnetic tweezers offer a practical tool allowing to inject torque on biological
chains and therefore they are widely used with the purpose of studying torsional
and elastic properties of polymers.
We now introduce two main types of experiments conducted with magnetic tweezers.

2.2.1 Supercoiled DNA

As mentioned in Chapter 1, supercoiled DNA was thoroughly examined in last
years observing different behaviors depending on the sign of the torque exerted by
magnets and on the force that pulls the chain. Fig. 1.1 shows relative ds-DNA
extension versus supercoiling σ 1 in moderate ionic conditions (10 mM PB). It’s
interesting to note three possible responses of the system.

At low forces (F < 0.5 pN) the molecule reacts symmetrically both
to positive and negative supercoiling. While the external magnets
rotate, the DNA chain reduces abruptly its length forming
plectonemic domains. An example of plectoneme is reported in
figure on the side (figure from Strick et al. [13]).

At intermediate forces (0.5 < F < 3 pN) overwound DNA
molecules continue to create plectonemes, while underwound chains
exhibit a completely different behavior 2 : for negative supercoiling,
molecules seem insensitive to the rotation of the magnets, in fact
their length doesn’t change. This fact can be explained by
considering local denaturation of double-stranded DNA: local
bubbles, like the one in figure on the right (from Strick et al. [13]),
form, provoking the stability of the relative extension despite the
torque introduced by magnetic tweezers. In 1998 Strick et al. [13]
demonstrated the formation of denaturation bubbles observing
that underwound DNA was able to hybridize with a homologous
single-stranded DNA.

1We remind that supercoling σ is defined as σ = Lk−Lk0
Lk0

where Lk0 is the link of a torsionally
relaxed DNA and Lk is the actual link. The definition of link and an exhaustive explanation of the
DNA topology can be found in Appendix C.

2An overwound DNA corresponds to a positively supercoiled molecule σ > 0, while we talk about
underwound DNA if it’s negatively supercoiled σ < 0.
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At higher forces (3 < F < 10 pN) the relative extension of under-
and overwound DNA molecules shows a symmetric response, even
if their structures are completely different. Indeed, in underwound
chains one finds denaturation bubbles, while overwound DNA
changes its structure giving rise to the so called P-DNA. In figure
on the side it’s possible to observe differences between B-DNA (on
the left) and P-DNA (on the right) (figure from Allemand et al.
[14]). At high forces, positively supercoiled DNA was studied with
experiments and molecular models by Allemand et al. [14], whose
data suggested that this conformation is consistent with Pauling’s
DNA formed by interwound phosphate-sugar backbones with bases
exposed outwards.

2.2.2 Braided DNA

Braids can form during DNA replication between the two synthesized molecules
since the unwinding of the original DNA induces positive supercoils [15, 16, 17] .

Figure 2.3: Representation of DNA replication: the anchoring points, represented as two dashed
walls on both sides, can be membranes or the chromosome scaffold. (a) The replication machinery
(that includes DNA polymerase) cannot rotate around the axis of the original ds-DNA: this causes
the formation of supercoiled DNA ahead of the replication fork. (b) The replication machinery
is allowed to rotate: in such a way the supercoiling is redistributed between braiding behind the
replication fork and supercoiling ahead of it. Panels (a) and (b) from Wang [15].

In Fig. 2.3 one observes two possible scenarios that could occur during DNA
replication: in the upper panel the replication machine, depicted as a grey rod, is
immobile, while in the lower panel it is free to rotate around the helical axis of the
template ds-DNA molecule. In the first case the linear movement of the fork unwinds
the two strands of the template molecule which cannot rotate since they’re attached
to topological barriers. Therefore the advance of replication produces supercoils
in the unreplicated DNA. In the second case the replication machine can rotate



8 CHAPTER 2. MAGNETIC TWEEZERS: AN OVERVIEW

Figure 2.4: Braiding in DNA. (a) Diagram of experimental setup used for braiding two DNA
molecules. Magnets rotate the two chains previously nicked. (b) Representation of braid formation:
it’s possible to note the presence of plectonemes. Distance d is known as intertether distance and
f is the pulling force exerted by the magnets. The regions of the strands included between the
anchoring points and the first (or the last) crossing are known as end regions. Panel (a) from
Charvin et al. [6], panel (b) from Brahmachari et al. [20].

redistributing the torque between plectonemic domains ahead of the replication fork
and a braid behind it.
Type IB and type II topoisomerases remove supercoiling or braiding: if type II
topoisomerases don’t resolve links between the two synthesized molecules , the
replication can’t continue, stopping the process of cell division [6].
First theoretical models of braiding were developed by Marko [18, 19], but even
now there are only a few experimental results performed with magnetic tweezers
[6, 7, 21].
Usually braiding is experimentally studied by using two nicked ds-DNA molecules:
the introduction of a nick in a double-stranded DNA allows a strand to swivel about
the other, so, when the magnets rotate the paramagnetic bead, the ds-DNA can relax
the internal torsional stress due to hydrogen bonds. In this way a braid between
two DNAs can be compared to a braid between two single strands (with appropriate
interactions) as in Fig. 2.4.

As in supercoiling, plectonemic transition is observed in braiding too: exceeded
a critical catenation (i.e. half of the number of crossings between the two strands)
the braid starts to form plectonemic domains and the transition is highlighted by a
change in the curve slope in the Extension versus Catenation graphic 3. An example
is reported in Fig. 2.5, where along the ordinate there is extension (or end to end
distance of strands) and along the abscissa there’s the number of turns n of the
magnets, that is a measure of catenation.

3With terms extension or end-to-end distance we indicate the extension of the braid along its
axis, while the meaning of catenation can be found in Appendix C.
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Figure 2.5: Extension versus catenation for d= 0.36 L. The catenation can be calculated as the
number of turns of magnets, because every turn of the paramagnetic bead entails a crossing between
the two strands. It’s possible to distinguish the three regimes mentioned in the text: the abrupt
decrease due to the first half turn (0 <| n |< 0.5), the braid formation (0.5 <| n |< nc) and the
plectonemic nucleation (n ≥ nc). Open diamonds are experimental data obtained with a pulling
force f = 2 pN in 100 mM PB, while the curve in region III is a linear fit to the data. Finally in
regions I and II there’s a fit to the geometrical model developed by Charvin et al.. Figure from
Charvin et al. [6].

Here three different regimes can be observed:

1. 0 <| n |< 0.5: a sudden decrease is introduced by the first half turn. These
experimental data are referred to the case where the relation between the
intertether distance d (see Fig. 2.4) and the strands length L is d=0.36 L.
Such a distance provokes a remarkable reduction in the extension when the
first crossing forms (n=0.5);

2. 0.5 <| n |< nc: in regions II a strand wraps around the other creating a
straight braid;

3. | n |> nc: after a critical value nc, the helically wrapped region undergoes a
phase transition (buckling transition). An abrupt change in the curve slope is
observed and this is due to plectonemes formation.

These experiments have allowed to study braiding in DNA and in the next
chapter we will review the main results obtained so far on this issue.
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Chapter 3

Braiding DNA: state of the art

The response curves commonly used to study braiding are those that represent
Extension versus Catenation, like the one in Fig. 2.5 : it’s interesting to see how these
curves change with intertether distance d, pulling force f and ionic concentration of
the buffer in the flow cell 1.
Such features were analyzed in depth by Brahamachari et al. by developing a
statistical-mechanical model [20] and then testing their theoretical results with
experiments [7]: in this model the total free energy of a braid is divided into the
three terms βEs, βEp and β∆F .
The first term βEs is the free-energy of the straight braid: it involves different
contributions due to the elastic bending energy of the helix, to the force-extension
energy and to the electrostatic potential calculated through the Debye-Huckel theory.
The second term βEp is the contribution given by the plectoneme region and it
depends on the bending and electrostatic energies of the braid forming plectonemes,
on the bending and electrostatic energies of the superhelical structure of the braid
within plectonemic domains and on the total elastic energy. It contains also a
contribution related to the entropy of a buckled braid with m end-loops, whose
origin is due to two main factors: the possible diffusion of a plectoneme along the
braid (plectonemes can develop in different nucleation sites) and the exchange of
DNA among plectonemes (the total length of the buckled state remains constant,
but length of a single plectoneme can change).
Finally the last term β∆F represents the total free energy due to worm-like-chain
fluctuations.
So the total free energy of a braid with a plectonemic length Lp and m end-loops is
obtained by minimizing the following free-energy over the catenation of the straight
phase Cas:

F (Lp,m) = min
Cas

(Es + Ep + ∆F).

By summing over all configurations, one can write the partition function:

Z(Ca, f) = e−βF (0,0) +
∑

m=1,2..

∑
Lp

e−βF (Lp,m)

1DNA is a polyelectrolyte whose negative charge is due to the presence of phosphate groups;
therefore the salt concentration of the solution where it is immersed in can influences its behavior.

11
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where Ca is the total catenation divided between the straight phase (Cas) and the
buckled (plectonemic) phase (Cap), i.e. Ca = Cas +Cap, and f is the applied force.
The partition function allows to calculate equilibrium values of physical quantities
such as the average end-to-end extension of the braid < z/L > (where L is the
contour length of each DNA strand), the torque in the system < τ > and the mean
number of plectonemes < m >.
As we said at the beginning of this chapter, the behavior of the braid changes with
the value of the pulling force, as shown in Fig. 3.1 : in this figure, along the abscissa,
there is catenation density defined as σc ≡ Ca/Lk0 (Lk0 = L/h where h = 3.6nm is
the pitch of a double-helix DNA).

Figure 3.1: Braid behavior when force changes between 1.25 pN and 4 pN; theoretical curves are
related to DNA chains of ≈ 11kbp (L = 3.6µm) with an intertether distance of 1.5µm (d = 0.42L).
(a) Normalized end-to-end distance over catenation density. The buckling transition occurs at
higher catenations for larger forces: the change the in curve slope is due to plectoneme nucleation.
Solid circles are experimental data (for 2 pN at 100 mM univalent salt concentration) obtained
by Charvin et al. [6]. (b) Torque in the braid over catenation density. It’s interesting to note
how torque doesn’t increase linearly before the buckling point; instead, after the transition, it
increases with a small slope thanks to the internal torsional relaxation provoked by plectonemic
nucleation. (c) Number of plectonemic domains over catenation density. Beyond the buckling point,
plectonemes start to nucleate: their number increases with decreasing force. (d) Length of the
straight braid region < Lb > (solid grey line) and length of the plectonemic region < Lp +mΓ >
(dashed black line) as a function of catenation density; m is the number of plectonemes, while Γ is
the size of plectoneme end-loop. Obviously, after the transition, < Lb > decreases abruptly, while
the size of the plectoneme region starts to rise. Figure from Brahamachari et al. [20].
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In panel (a) of Fig. 3.1 one can notice an initial abrupt drop due to the formation
of the first half catenation: since the intertether distance is enough large (d = 0.42L),
there is a noticeable reduction in the end-to-end distance when the two strands form
the first crossing. After that, the extension is subject to a slow decrease: at this
stage the helically wrapped region is formed, resulting in a straight braid. Finally
we find the buckling point: in panel (a) of Fig. 3.1 it is identified as a knee in the
curve and, in panel (c), we can observe that, at this critical catenation, nucleation
of plectonemes appears.
After the transition the internal torsional stress is released and the plectoneme
nucleation becomes energetically favorable: this is apparent in panel (b) where,
beyond the buckling point, the torque in the braid increases slower thanks to the
writhe contribution. It’s interesting to note a deep difference between braiding and
supercoiling: in supercoiling, before buckiling, the torque increases linearly, while
here a non-linear response is observed. The origin of this difference is the lack of
chemical bonds between the two strands forming the braid: in fact, in double-helix
DNA, hydrogen bonds provide a constant twist stiffness to the structure, while in a
braid the twist modulus depends on the catenation [7] .
It’s also possible to distinguish effects due to the application of different forces:
higher forces shift the buckling transition to larger values of Ca.
After the buckling, the number of plectonemic domains grows with Ca, as show in
panel (c) of Fig. 3.1. Brahamachari et al. highlight another difference between
supercoiling and braiding: supercoiling favors the nucleation of a single long plec-
toneme, while in braiding many short plectonemes appear beyond the transition
point [7]. As they explain, this different behavior is due to two factors:

• electrostatic repulsions are more effective in braids (a braid has a charge that
is twice of the one of a ds-DNA), so these interactions implicate a greater
excluded volume which destabilizes the superhelical structure;

• braids are bulky structures with a larger bending stiffness respect to a double-
helix DNA.

The intertether distance d plays an important role too, as can be noticed in Fig.
3.2. It’s interesting to see how, keeping a fixed σc, the twist modulus grows with
increasing intertether distances (panel (b)): this implies that the buckling transition
occurs for lower catenations when d is larger.
As already mentioned, the initial abrupt decrease in the end-to-end distance takes
place after the first half catenation: by looking at the panel (a), it’s clear that when
d = 0.5L the extension reduction is more pronounced than when d = 0.1L. However,
it can be calculated by simply using the Pythagorean theorem [21].



14 CHAPTER 3. BRAIDING DNA: STATE OF THE ART

Figure 3.2: Braid behavior when intertheter distance is d = 0.1L, 0.25L, 0.35L and 0.5L. Data
are referred to braids with length of L = 2µm under 2pN force at 100mM salt. (a) Normalized
extension over catenation density: a smaller intertether distance provokes a delay in the buckling
transition. (b) Torque in the braid over catenation density. Torque is a thermodynamic property of
the system and it doesn’t depend on the distance d between the anchoring points: this means that
the value of the critical torque doesn’t change with d. (c) Number of plectoneme domains over
catenation density: multiple domains form after the transition. (d) Length of the straight braid
region < Lb > (solid grey line) and length of the plectoneme region < Lp +mΓ > (dashed black
line) as a function of catenation density: one observes that the buckling value of Lb is smaller for
greater distances since end-regions of the two strands (where there isn’t the braid formation) have a
larger size. Figure from Brahamachari et al. [20].

Finally, considering DNA as a charged polymer, also ionic conditions can influence
the phase transition and so, in Fig. 3.3, it’s represented the behavior of a braid
surrounded by a buffer with various salt concentrations included between 0.1mM
and 0.5mM .
Lowering salt molarity induces a greater Debye length with a consequent growth of the
excluded volume: the effective diameter increases, the straight phase becomes more
instable and so the buckling transition occurs for lower catenation values (panel (a)
of Fig. 3.3 ). At the same time, an higher ionic concentration stabilizes superhelical
structures: as a consequence, the number of plectoneme domains decreases with the
increasing molarity, as shown in panel (c).
As in Fig. 3.2 , also in panel (b) of Fig. 3.3 it’s possible to observe the thermodynamic
nature of the critical buckling torque, which therefore doesn’t change according to
ionic concentrations.
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Figure 3.3: Effects of ionic concentration on DNA chains of 3.6 in length under 2pN force and
divided by an intertether distance equal to d = 0.42L. Curves are referred to 0.01, 0.05, 0.1 and 0.5
M salt concentration. (a) Normalized extension over catenation density: an high ionic concentration
stabilizes the straight braid delaying the buckling transition. Open squares and solid circles are
experimental data obtained for 0.01 M and 0.1 M by Charvin et al. [6]. (b) Torque in the braid
over catenation density: torque doesn’t depend on salt concentration, so its critical value remains
the same for different molarities. (c) Number of plectoneme domains over catenation density:
an higher salt concentration provokes a reduction in the electrostatic repulsion, resulting in the
nucleation of few domains. (d) Length of the straight braid region < Lb > (solid grey line) and
length the of plectoneme region < Lp+mΓ > (dashed black line) as a function of catenation density:
< Lb > increases faster for lower concentrations, since the excluded volume is greater. Figure from
Brahamachari et al. [20].

The last important graphic giving us informations about the buckling transition
is shown in Fig. 3.4 and it was obtained by Charvin et al.[6]. The authors used
Monte Carlo simulations to model DNA braiding, including various energy terms,
such as the bending energy of a chain configuration, an energy term related to the
pulling force and other three terms with the purpose of keeping the positions of the
anchoring points.
The underlying force versus catenation equilibrium phase diagram shows the behavior
of the buckling transition when the intertether distance is such that d << L. In
the y axis we find a dimensionless variable depending on the pulling force, while
in the x one it is reported the critical catenation density, namely the value of the
catenation density at which the (σc, < z/L >) graphic changes its slope revealing
the buckling transition. Therefore above the transition line one observes unbuckled
systems, while below we see buckled braids, in which, according to the model of
Brahamachari et al., plectonemic domains nucleate.
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Figure 3.4: Force versus critical catenation density (Ca) when d/L � 1; this phase diagram is
obtained with Monte Carlo simulations. Along the y axis there’s a dimensionless variable 2Fξ/kbT
where ξ is the persistence length of a single DNA and T the temperature of the system; instead
along the abscissa we find the critical catenation density at which the buckling transition occurs.
Figure from Charvin et al. [6] .



Chapter 4

Our model of braiding and
simulation methods

In our study braiding of two chains is simulated by using the LAMMPS software:
different elements compose the simulations setup, in such a way that we can work
on a coarse-grained model that mimics, at a given scale, the experimental setups.

4.1 Coarse-grained model of strands

Each strand is described by a chain of N beads. Lennard-Jones units are used
(see Appendix B), therefore lengths are expressed in term of σ and as reference
length we take the DNA diameter which depends on the ionic conditions of the
buffer surrounding the chain.
An example of our setup is reported in Fig. 4.1.

As can be seen, a ds-DNA molecule is given by a sequence of beads bonded
together and we can distinguish between two main types of interactions:

• two body interactions;

• three body interactions.

Two body interactions embrace pair potentials both between bonded and unbonded
atoms.
Unbonded beads interact via the Lennard-Jones (LJ) 6-12 potential 4.1 1 :

E = 4ε
[(

σ

r −∆

)12
−
(

σ

r −∆

)6
]

(4.1)

This form of the LJ potential includes a variable ∆ that allows us to work with
beads of different sizes. This can seem worthless since atoms forming the strands
have the same dimensions, but we’ll see that various diameters will be necessary in
order to simulate experimental magnetic tweezers.

1In our runs this potential is cutoff at 6√2σ + ∆.
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Figure 4.1: Example of the setup. (a) The entire setup where it’s possible to distinguish between
the different elements composing our model. The point F1 indicates the upper fork where the two
strands start to form the braid; on the other hand F2 corresponds to the lower fork. (b) A detail of
the braid: one can notice that in this configuration the braid has yet undergone the phase transition
giving rise to plectonemes.

Instead, bonded beads interact via a potential given by 4.2:

E = −1
2KR

2
0ln

[
1−

(
r

R0

)2
]

+ 4ε
[(

σ

r

)12
−
(
σ

r

)6
]

+ ε (4.2)

The first term corresponds to a finitely extensible nonlinear elastic (FENE) potential,
whose extended expression is the following:

E =

−0.5KR2
0 ln

[
1−

(
r
R0

)2
]

if r < R0

∞ if r > R0

It is often used for bead-spring polymer models: it reduces to an harmonic potential
for little r values, while it diverges for large extensions, causing the finite extensibility
of the polymer. The value of R0 stands for the maximum extension of the bond,
while K is related to its strength. In our simulations we use to set R0 = 1.5 and
K = 30, both expressed in LJ units.
The last two terms of Eq. 4.2 represent a shifted Lennard-Jones potential: in
simulations it is cutoff at 6√2σ, so it describes interactions between rigid spheres.
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The potential 4.2 is reported in Fig. 4.2, where the values of coefficients R0 and K
are set as just said and furthermore σ and ε are equal to 1.

Figure 4.2: Fene and shifted Lennard Jones potentials used for bonded beads. The blue line shows
the sum between these two terms.

Three body interactions emerge between three bonded beads forming an angle θ.
This potential has the following form:

E = K[1 + cosθ] (4.3)
Using a worm-like-chain model, one observes that K is proportional to the persistence
length of the polymer, so, depending on what we want to simulate, we can use differ-
ent values for it: usually we deal with a persistence length of 50 nm, thereforeK = 50

σ .

For polyelectrolytes as DNA, one should also consider the energy contribution
due to the charges of the molecule and the ions of the solution where the polymer
is immersed in. This can be done in an approximate way by using a Deby-Huckel
interaction

Ψ(r) = zje

4πεrε0
e−kr

r
(4.4)

where zj is the charge of the ion we’re considering, εr is the relative permittivity of
the medium and k is the reciprocal of the Debye length λD.
By lowering salt concentration, the Debye length grows and so the electrical repulsion
is more effective causing an increase in the braid diameter. Normally we’ll consider
a DNA molecule 2.5 nm in diameter, which will be equal to the braid radius: this
value of the braid radius corresponds to an high salt concentration of about 0.5 M
(λD ' 0.4 nm) and, consequently, the electrical interaction can be ignored [20].
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4.2 Simulating the experimental setup
Experimental magnetic tweezers, which rotate and pull DNA chains, are repre-

sented by several beads forming a wall. The number and the size of beads depend on
the distance between the DNA strands: with bigger distances bigger beads are used
in order to create a wall with a little number of atoms reducing simulation time.
The x-y-z axes are oriented as in Fig. 4.1. The central bead is pulled by a constant
force: since the wall is a rigid body, this force has the effect to move the entire
wall and the upper beads of the strands joined with it. In such a way one can pull
polymers simulating the action of magnetic tweezers.
Magnetic tweezers can rotate the strands too, so in our simulations rotations are
obtained by imposing a torque to the rigid body formed by the wall and the upper
beads of the chains.
The interactions between the beads of the wall can be neglected: the wall has only
the purpose of moving the chains, so it’s also possible to exclude these interactions
during runs improving their speed.
Interactions between the wall and the strands are instead crucial: these would forbid
the strands to overcome the wall, which could give rise to unphysical situations.
Therefore potential 4.1 is used: σ and ε are equal to 1, while ∆ takes on value

6√2σ(R− r) where R is the radius of the beads of the wall and r the one of the beads
of the chains 2.

4.3 Dynamics
In our stochastic simulations, the chain beads follow Brownian dynamics, where

the position vector of the i-esim bead, ~ri, respects the Langevin equation 4.5

m
d2~ri
dt2

= −λd~ri
dt

+ ~η(t). (4.5)

The first term on the right is a viscous force and it’s proportional to particle velocity,
while the second one is the stochastic part of the motion due to collisions between
DNA bases and particles of the buffer.

The beads forming the bottom part of the strands are held in fixed position: they
are also in contact with a region that stands for the surface of the experimental flow
cell. This region, represented in Fig. 4.1 as a grey wall, interacts with the strands
through the harmonic potential

E = ε(r − rc)2 (4.6)

where ε plays the role of a spring constant and rc is the cutoff distance.
In order to maintain distances between the region and the strands, we use ε = 200
and rc = 1 expressed in Lennard-Jones units.
Another force to be taken into account is the one imposed on the central bead of
the upper wall that causes the stretching of the braid along the y-axis (normally
this is kept constant during an experiment).

2In our simulations the beads of the chains are 1σ in diameter, so r = σ/2.
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The last term that could be included in the dynamics is a constant torque applied
on the upper wall. So we recognize two possible setups:

• varying catenation setup: the upper wall is moved by a torque directed along
the y-axis provoking a change in the catenation between the two strands;

• fixed catenation setup: the wall is fixed and the two strands were prepared
with a given catenation. The system is then allowed to relax with a constant
pulling force acting on it.

We now give a more detailed description of these two setups.

4.3.1 Varying catenation setup

In order to study the buckling transition and find the equilibrium phase diagram
(Cac, F ) 3, we need to work at constant catenation. To obtain these configurations
we add a torque to the upper wall: the torque rotates the wall in the x-z plane, so
it’s directed along the y-axis. Such a dynamics let the braid formation, since the
strands, initially straight and parallel, can wrap around each another. At this stage
we use a strong pulling force, so we can reach high values of Ca without causing the
formation of plectonemes.
For a given simulation the value of the torque is fixed and it’s chosen so that it
can provide the greatest number possible of initial configurations with different
catenations .

4.3.2 Fixed catenation setup

The configurations with a fixed Ca are then used as initial conditions for the
equilibrium simulations: in this case the upper wall cannot rotate any more, so we
simply allow the system to relax while the pulling force is kept constant. Generally
its value is lower than the one used in the first setup, but this choice doesn’t influence
the evolution of the system: since we aim to reach the equilibrium, the result wouldn’t
have changed if the force in the first setup had been lower than the force in the
second one.

3Cac indicates the critical catenation where the buckling transition starts, while F is the pulling
force.
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Chapter 5

Statics of the buckling
transition

In this chapter we’ll analyze the buckling transition in a braid formed by two
strands.
Since we know from previous studies that the intertether distance d affects the
buckling transition, we’re going to study it for three values of d.
We choose to use two strands composed by 250 beads 1σ in diameter (see Appendix
B) and, once fixed the catenation Ca, we apply different forces F to the upper wall:
for higher forces we expect that the transition occurs at larger values of Ca. Since
σ = 2.5 nm, our chains have a contour length of 625 nm.
By imposing L0 = 250σ, we analyze the following cases:

d(σ) d/L0
1 6 0.024
2 42 0.168
3 120 0.48

For each one of the three cases we inspect different catenations obtained from
the varying catenation setup. As d decreases, we need to handle larger values of Ca
in order to observe the formation of plectonemes.

23
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5.1 Intertether distance d=0.024L0

We start with the case in which the two strands are very close to each another
(d = 0.024L0): this ratio between d and L0 was studied by MC simulations in [6].
An example of our setup is shown in Fig. 5.1

Figure 5.1: Example of the setup employed for the case d = 0.024L0 when Ca = 19 and
F = 13.3 pN. The right panel is a zoom to highlight the braided phase.

We now report the forces used for studying the buckling transition:

Force (pN)
10.0 11.6 13.3
14.9 16.6 18.3
19.9 21.6 23.2

Table 5.1: Values of the forces used in the setup d = 0.024L0

For each catenation and force, we allow the system to relax: in order to reach
equilibrium, note that at high Ca one has to wait longer because the braid has to
form plectonemes. To decide whether the system has reached equilibrium we look at
the time behavior of the extension Ext (i.e. the end-to-end distance) of the braid.
Below we show two graphics reporting Extension versus Time.
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Figure 5.2: Extension versus time at Ca=24 with the force F varying from 23.2 pN to 13.3 pN.
In the two axis we use Lennard-Jones units (see Appendix B ).

Figure 5.3: Extension versus time at Ca=41 with F varying from 23.2 pN to 13.3 pN.
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Note that the system reaches the equilibrium for every considered force. As the
force varies, the values of the braid extension are similar for Ca = 24, while there
are greater gaps when Ca = 41: this is a signal of the buckling transition which, as
we’ll show, has yet occurred for F=19.9, 16.6 and 13.3 pN. Furthermore, for these
forces, fluctuations around the equilibrium value are larger because the system is
near the buckling point and so there is a continuous formation and destruction of
plectonemes causing an instability in the extension of the braid.
For fixed Ca and F, by averaging the values belonging to the equilibrium plateaux
(such as the ones reported in Figs. 5.2 and 5.3), one can extract the trend of the
average braid extension as a function of Ca. An example is reported below in Fig.
5.4. 1

The slope variation indicates that buckling occurred, so internal twist is converted
into writhe (see Appendix C), giving rise to plectonemic nucleation. As the force
increases, the buckling point moves to higher catenations.
We can draw the diagram of the phase transition (Ca,F) by fitting the two curves
(before and after the plectonemes formation) for every force of Fig. 5.4 and finding
their intersection point: this can be made both for positive and negative catenation
values, but, due to the symmetry of the curve, the phase diagram would be specular
for Ca > 0 and Ca < 0, so we report it only for positive catenations.
Fig. 5.5 shows an example of fit when the pulling force is F = 10.0 pN: by searching
for the minimum reduced chi square, we find the two functions (indicated through
red and green lines) which fit points before and after the transition. The points used
in the unbuckled system (before the transition) correspond to the red dots, while
the ones used for the buckled braid are identified by green dots. The abscissa of
the intersection point between the two functions provides the value of the critical
catenation Cac, i.e. the point where the buckling starts.
Table 5.2 and Fig. 5.6 show the transition point for several forces as a function of
Cac.

1In plateaux with a fixed F and Ca, we consider only uncorrelated configurations. For example,
if we look at Fig. 5.3 and focus on F = 13.3 pN, we follow this scheme: we choose a time from
which the system has reached the equilibrium (t∗ > 9000 τ) and we calculate the autocorrelation
function (ACF) between different extension values, each of which corresponds to a time t such that
t∗ < t < 120000 τ . For X1, X2, X3....XN measurements (i.e. extensions) and for a lag time i, this

function is defined as: ACF =
∑N−i

k=1
(Xk−µ)(Xk+i−µ)∑N

k=1
(Xk−µ)2

where µ is the mean of the N data. In our

case, N is the number of data in the plateau with a time t as defined above. One can say that
these extensions are uncorrelated if | ACF |≤ 1.96√

N
: so, if ACF respects this condition when the lag

time is i∗, we calculate the mean extension only taking those configurations with a time t ≥ t∗ and
divided by i∗ steps. All results we’ll report are averaged between 10 trajectories, namely, for each
fixed force and catenation, we work with 10 simulative runs.
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Figure 5.4: Normalized extension versus catenation for d = 0.024L0 and different
values of the force F.

Figure 5.5: Example of fit for the case F = 10.0 pN
and d = 0.024L0.

Cac σCa Force (pN)
33.5 0.5 10.0
35.9 0.4 11.6
37.8 0.4 13.3
38.9 0.6 14.94
39.4 0.6 16.6
39.9 0.5 18.3
40.2 0.5 19.9
40.6 0.6 21.6
41.1 0.5 23.2

Table 5.2: Values of the pos-
itive critical catenation (and
its error) for each examined
force.
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Figure 5.6: Force versus critical catenation for positive values of Ca. The diagram is divided into
two regions: the unbuckled area includes those systems which are in the braided phase, while the
buckled area contains systems that have yet undergone the buckling transition.

Another interesting property of the system to measure is the writhing number
Wr (see Appendix C).

Writhe is used to describe supercoiling of DNA chains, but it also gives informa-
tions about the formation of plectonemes during braiding.
We study both the writhe of each strand and the writhe of the braid.
Working on the equilibrium plateau of the extension vs time curves, we calculate the
mean between Wr1 and Wr2 where Wr1 and Wr2 refer to the writhe of the first
(the blue one in Fig. 5.1) and second strand respectively . By plotting this average,
indicated as Wrss, over the catenation, one obtains Fig. 5.7.
A similar study can be made for the curve Cbraid relating to the braid. This curve is
made up of points found by calculating the center of mass of the two strands when
they’re forming the braid.
In order to find these points, we consider each bead of the blue strand and we search
for the bead of the red strand closest to it: we accept them as a pair only if the
distance between them is smaller than 2σ.2 If a blue bead doesn’t have a red bead
closer than 2σ it won’t take part to the formation of the curve Cbraid.
The writhe of Cbraid is shown in Fig. 5.8.

2We set 2σ as cutoff because each bead is 1σ in diameter.
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Figure 5.7: Writhe of the single strand (Wrss) as a function of the catenation for
d = 0.024L0 and different forces. Wrss corresponds to the average between Wr1 and
Wr2.
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Figure 5.8: Wrbraid over catenation for d = 0.024L0 and different forces .
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In Figs. 5.7 and 5.8 the absolute value of the writhe increases with catenation,
but Wr in Fig. 5.7 starts to raise for |Ca| ' 20, while in Fig. 5.8 this happens for
|Ca| ' 40. The writhe of the single strand Wrss is generally higher than the one of
the braid Wrbraid and this is due to the wrappings of a strand around the other one
which increase Wrss: so the writhing number reported in Fig. 5.7 does not provide
a sharp location of the buckling point as Wrbraid does.
In fact the curve Cbraid, that is a kind of backbone of the braid, is characterized by
a Wrbraid approximately equal to zero until there isn’t the buckling transition and
then its value suddenly increases (or decreases for Ca<0).

Finally we study the number of plectonemes and their length.
To detect plectonemes we look at the contact maps of each strand: a contact map is
a two-dimensional heat map as the one in Fig. 5.9.

Figure 5.9: Example of a contact map for the blue strand when Ca = 52 and F = 13.3 pN. In the
inset we show the same contact map, but with a cutoff on the physical distance equal to 3σ: all the
black areas represent beads (i,j) such that dist(i, j) ≤ 3σ. There are 5 main black regions moving
away from the diagonal and, indeed, this configuration is characterized by 5 plectonemes.
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Figure 5.10: Snapshot of the blue strand corresponding to the contact map in Fig. 5.9. In the
two right panels one can observe a zoom on the plectonemes.

We now give a brief description of how we obtain Fig. 5.9 which is referred to
the blue strand and to a given configuration obtained during runs with Ca=52 and
F=13.3 pN (see Fig. 5.10).

• x-axis: in the x axis we find the i-index that is included between 1 and 250, in
other words it indicates the identification (ID) number (see Appendix A) of
beads forming the blue chain;

• y-axis: in the y-axis there is the j-index that moves from 1 to i, so it refers to
blue beads whose ID number has a value between 1 and i;

• colour palette: the colour palette provides the distance (in sigma units) between
the beads i and j. A cut-off of 10σ is set, so that if i and j have a distance
greater than it, in Fig. 5.9 we report a distance of 10σ anyway.
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A similar map can be obtained for every configuration with fixed catenation,
both for the blue and the red strand.
Note that in map 5.9 there are blue-violet regions moving away from the diagonal.
This is a signal of the plectonemic nucleation: in fact, in the lower extremity of
these regions (the extremity with a smaller value of j), one finds two beads (i and j)
which are far along the backbone but spatially close (see Fig. 5.11). This condition
occurs when a plectoneme forms, so we can use contact maps to locate plectonemic
domains and determine their length.

Figure 5.11: Difference between the braided and the plectonemic phase. (A): in the braided phase
two beads numerically far (e.g. | i− j | >10) are separated by a large physical distance. (B): at
the starting point of a plectoneme we find two close beads whose ID numbers are diveded by a
remarkable distance.



34 CHAPTER 5. STATICS OF THE BUCKLING TRANSITION

However other considerations are required here.
First of all it’s important to note that plectonemes end-loops are placed at the
beginning parts of the blue-violet regions 3 : here we find beads with a similar
ID number and a small physical distance, which are characteristics of plectonemes
end-loops.
Instead the starting beads of a plectonemic domain are found in the lower extremities
of these regions, so, if we want to know its length, we have to pinpoint the far ends.
The cutoff for the physical distance is 3σ: when we find two points i and j such
that dist(i, j) ≤ 3σ, we focus on them because they can be signal of a plectonemic
domain as the one in panel (A) of Fig. 5.12. Here it’s possible to observe that the
two red beads A and B are divided by a distance of about 3σ (since every bead
is 1σ in diameter). Obviously the distance between A and B could be greater (for
example if the superhelix doesn’t form a compact structure, as the plectoneme 1 in
panel (B) of Fig. 5.12), but by imposing a cutoff bigger than 3σ we would consider a
greater number of beads that are physically near, but they don’t belong to the same
plectoneme (Fig. 5.13). This would provoke evident errors in the determination of
plectonemes length.

Figure 5.12: Different plectonemes that can nucleate during braiding

3With the term beginning part we mean the blue-violet area closer to the diagonal.
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Figure 5.13: Beads A and B have a distance included between 3σ and 4σ: if we set 4σ as the
cutoff, we would commit important errors in the determination of the initial and final beads of the
plectoneme, i.e. in its length.

Another problem emerging from Fig. 5.9 is the size of the blue-violet regions.
Clearly it’s necessary to set a minimal length (i.e. a minimal numerical distance
between i and j) above which we accept that region as a plectoneme. It’s possible to
see that near the diagonal there are numerous point pairs characterized by a distance
lower than 3σ, but not all belong to a plectoneme. For example the blue-violet areas
for i ' 210 and j ' 200 are due to wrappings of the blue strand around the red one.
Therefore setting a threshold for the numerical distance between i and j allows us to
distinguish between plectonemes and simple windings of a strand. This numerical
cutoff is 13: by depicting the braid as a ribbon with a thickness of 2σ and looking
at the smallest possible plectoneme (represented in Fig. 5.14), one can say that its
circumference is equal to 4πσ, so it includes 4πσ

σ ' 13 beads.
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Figure 5.14: We can think about the braid as a ribbon 2σ in thickness: if we approximate the
smallest possible plectoneme as a circumference, we can say that it contains almost 13 beads.

Finally it’s necessary to pay attention to possible spots far from the diagonal,
such as the one in Fig. 5.9 for i ' 150 and j ' 110. The origin of these spots is
due to the approach between beads belonging to two different plectonemes, so they
must be excluded when we’re counting the number of plectonemic domains. Simply
by imposing that a plectoneme is localized when we find two beads (i,j) such that
dist(i, j) ≤ 3σ and | i− j |= 13, we are able to exclude most of these spots (which
often correspond to a couple (i,j) with | i− j |> 13). Thanks to all these thresholds,
once localized a plectoneme, we can move through the corresponding blue-violet
region and find its extremity far from the diagonal, i.e. we can calculate the length
of the domain.
By taking into consideration all the previous warnings, we can now evaluate the
plectonemes number (Nplect) and their length (Lplect).
We use contact maps both for the blue and red strand, but sometimes the number
of plectonemes in the two chains is different. This situation occurs because some
wrappings of a strand around the other can satisfy the conditions which define a
plectoneme( dist(i, j) ≤ 3σ and | i − j |= 13), so our method counts an excess of
plectonemic domains (see Fig. 5.15).

Figure 5.15: The two green beads (belonging to the blue strand) satisfy the conditions required
for a plectonemic domain (| i− j |= 13 and dist(i, j) ≤ 3σ), but they don’t locate a plectoneme of
the braid. The snapshot is obtained from a run with d = 0.024L0, F = 23.2 pN and Ca = 50.
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To avoid this problem we choose to take the minimum value between Np1 and Np2
where Np1 and Np2 are respectively the number of plectonemes in the blue and
in the red strand. If this value correspond to Np1, the lengths of plectonemes are
deduced by contact maps of the blue chain 4 ; supposing that a plectoneme contains
N beads, its length is Nσ.
The plectonemes length reported in figures below is the total length of that part of
the braid which underwent the transition .
Note that Nplect and Lplect are obtained by considering only uncorrelated data that
belong to the equilibrium plateau of the extension seen in Figs. 5.2 and 5.3. In
Figs. 5.16 and 5.17 we show the behavior of these two quantities as a function of
the catenation.

Figure 5.16: Nplect versus catenation for d = 0.024L0.

4If Np1 = Np2 the plectonemic length is given by the blue strand.
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Figure 5.17: Total length of the plectonemic phase versus catenation for d = 0.024L0.



5.2. INCREASING THE INTERTETHER DISTANCE: D=0.168L0 39

5.2 Increasing the intertether distance: d=0.168L0

We now study a braid formed by two strands separated by a larger intertether
distance d: we set d = 42σ , therefore d = 0.168L0.

Figure 5.18: Example of the setup used for d = 0.168L0, Ca = 23 and F = 11.6 pN. A zoom is
reported on the right.

For this case we investigate the following forces:

Force (pN)
10.0 11.6
13.3 14.9
16.6 18.3
19.9

Table 5.3: Values of the forces used in the setup d = 0.168L0.
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As in the previous paragraph, we work with fixed catenation searching for the
equilibrium of the extension. We obtain Fig. 5.19 by averaging over the extension
values that form plateaux.

Figure 5.19: Normalized extension versus catenation for d = 0.168L0.
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For each force, the change in the curve slope reveals the buckling transition,
which occurs for the critical catenations Cac shown in Table 5.4.

Cac σCa Force (pN)
28.0 0.5 10.0
29.7 0.6 11.6
31.8 0.4 13.3
32.8 0.4 14.9

Cac σCa Force (pN)
33.6 0.9 16.6
34.2 0.6 18.3
34.6 0.7 19.9

Table 5.4: Values of positive critical catenation (and its error) for each examined force.

Figure 5.20: Force versus critical catenation for positive values of Ca.

By recalling what we said in Chapter 3, one notes that the buckling transition
is shifted towards lower values of Ca as the intertether distance increases (see Fig.
3.2).

As in the case d = 0.024L0, even now the writhing number is a useful quantity
to check and its behavior is reported in the underlying graphics.
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Figure 5.21: Writhe of the single strand versus catenation for d = 0.168L0.
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Figure 5.22: Writhe of the braid as a function of the catenation for d = 0.168L0 .

Once again it’s possible to notice that Wrss doesn’t highlight the buckling
transition, since it starts to raise before the Cac; instead Wrbraid is a more reliable
tool.
Finally we’re interested in studying the number and the length of plectonemic
domains: we employ contact maps with the same conditions seen in Section 5.1,
obtaining Figs. 5.23 and 5.24.
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Figure 5.23: Number of plectonemic domains versus catenation for d = 0.168L0 .
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Figure 5.24: Normalized length of the plectonemic phase over catenation for d =
0.168L0.

In Fig. 5.24 it’s interesting to note that the curve for F=10 pN reveals an evident
drop when Ca & 45: its origin will be discuss in Section 5.4.



46 CHAPTER 5. STATICS OF THE BUCKLING TRANSITION

5.3 Large intertether distance: d=0.48L0

The last configuration we study is the one in which the two strands are separated
by a distance almost equal to half of their length: d = 0.48L0.

Figure 5.25: Example of the setup for d = 0.48L0, Ca = 13 and F = 8.3 pN.

We study this setup for the forces reported in Table 5.5.

Force (pN)
6.6 11.6
8.3 13.3
10.0 14.9

Table 5.5: Values of the forces used in the setup d = 0.48L0
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Note that the Ext vs Ca curves reported in 5.26 exhibit an abrupt decrease after
the first half catenation since d is much larger than in the previous two cases: this
is due to the formation of the first helical bend which requires a greater length of
the end regions (see panel (b) of Fig. 2.4) as d increases.

Figure 5.26: Normalized end-to-end distance over Ca for d = 0.48L0.
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As before, we can fit our data and estimate the critical catenation corresponding
to the buckling transition. These estimates are reported in Table 5.6 and, as points,
in the (Cac, F ) phase diagram of Fig. 5.27.

Cac σCa Force (pN)
13.7 1.2 6.6
14.6 0.3 8.3
15.7 0.2 10.0

Cac σCa Force (pN)
16.7 0.2 11.6
17.5 0.2 13.3
18.1 0.3 14.9

Table 5.6: Estimates of the positive critical catenation (and its error) for each force.

Figure 5.27: (Cac, F ) phase diagram for positive values of Ca.

By employing the same techniques described in Section 5.1, we obtain informa-
tions about the writhe of the single strand Wrss and the writhe of the braid Wrbraid.
As in Sections 5.1 and 5.2, Wrss corresponds to the average value between the
writhe of the blue and the red strand (Wr1 and Wr2), while Wrbraid is calculated
by moving along the the backbone of the braid as seen for the case d = 0.024L0.
The (Ca,Wrss) and (Ca,Wrbraid) graphics are reported in Figs. 5.28 and 5.29.
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Figure 5.28: Wrss as a function of Ca for d = 0.48L0.
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Figure 5.29: Writhe of the braid versus Ca for d = 0.48L0 .
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Finally, contact maps allow us to investigate the statistics of plectonemes. In Figs.
5.30 and 5.31 we show their number and length as a function of the catenation.

Figure 5.30: Number of plectonemic domains as a function of the catenation for
d = 0.48L0 .
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Figure 5.31: Normalized total length of plectonemic domains over Ca for d = 0.48L0 .

In Fig. 5.30 we observe that Nplect reaches a plateau when the pulling tension is
F = 6.6 pN, 8.6 pN or 10.0 pN: for these values of F and Ca, the two strands prefer
to form a single domain whose length grows while the catenation increases. Only by
adding further twist, the system can nucleate new plectonemes. Instead this trend
doesn’t appear for d = 0.024L0 and d = 0.168L0, where the braid responds to the
injected torque by giving rise to numerous plectonemic domains without achieving a
constant value of Nplect.
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5.4 Discussion of results
In light of the results reported in Sections 5.1 , 5.2 and 5.3 we can make the

following considerations.

5.4.1 Comparison between the three intertether distances

Our study confirm previous works [6, 7, 20] : the buckling transition occurs later
for greater forces F and Cac decreases with increasing intertether distances d (see
Fig. 5.32).

Figure 5.32: Summary graphic of the buckling transition for the three intertether distances d.
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Results concerning the number and length of plectonemes cannot be completely
compared to what has been already said by Brahamchari et al., because we don’t
include charges in our polymers.
However we can point out that at intermediate forces (e.g. F = 11.6 pN and F = 13.3
pN) and for a fixed Ca beyond the buckling point, the configurations with a larger
d present greater values of Nplect and Lplect/L0 than the case where the strands are
closer (see Figs. 5.33 , 5.34). These results agree with previous works (see panel (c)
and (d) of Fig. 3.2).

Figure 5.33: Number of plectonemes versus positive catenation for the three investigated intertether
distances. (a): Nplect over Ca for F = 11.6 pN. (b): Nplect over Ca for F = 13.3 pN.

Figure 5.34: Normalized length of the plectonemic phase versus positive catenation for the three
investigated intertether distances. (a): Lplect/L0 over Ca for F = 11.6 pN. (b): Lplect/L0 over Ca
for F = 13.3 pN.
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5.4.2 Branched plectonemes

When d = 0.168cL0 and F = 10.0 pN, the normalized end-to-end distance
saturates and the addition of catenation doesn’t provoke an apparent reduction in
the extension of the braid (see Fig. 5.35).

Figure 5.35: Saturation for d = 0.168L0 and F = 10.0 pN. The blue triangles represent the
normalized end-to-end distance (left y axis); the red squares are referred to the normalized total
length of the plectonemic phase (right y axis).

The system has thus reached a critical value of Ext/L0 and almost the total
contour length has undergone the buckling transition. 5 This saturation is accompa-
nied by a decrease in Lplect/L0 (see Fig. 5.24): it seems that when the extension
reaches a plateau, a part of the plectonemic domains returns to the braided phase
dropping the total buckled length. The strangeness of this behavior suggests that
maybe our method to define the number and the length of plectonemes is no longer
reliable when the system is subject to a very strong torque. In fact, by checking the
contact maps and the movies of these simulations, we discover that the braid starts
to form a superhelix which doesn’t correspond to a single plectoneme end-loop: so
a single superhelix exhibits a fork where one finds the nucleation of two different
plectonemes (see Figs. 5.36 , 5.37 ).

5It’s important to keep in mind that there is always a part of the two strands which cannot
participate to the braid because it forms the conjunctions between the anchoring points and the
first (or last) crossing of the chains. The larger is the intertether distance d and the greater is the
percentage of the contour length that doesn’t take part to the braid.
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Figure 5.36: Snapshot from a simulation for d = 0.168L0, F = 10.0 pN and Ca = 46. The beads
involved in the superhelix diveded in two plectonemes are highlighted by different colours (violet
and sea green).The initial superhelix is marked by the label SH ; E1 and E2 are the two end-loops,
while F is the fork.
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Figure 5.37: Contact map of the frame reported in Fig. 5.36. The area enclosed within the black
rectangle corresponds to the initial superhelix labeled with SH.

The initial superhelix (labeled with SH in Fig. 5.36) appears as a blue-violet spot
far from the diagonal (Fig. 5.37 ): our method explained in Section 5.1 doesn’t count
this area as a plectonemic region and therefore the total length of the plectonemic
phase in Fig. 5.24 decreases. By increasing the catenation, the size of SH gets
smaller and we can observe a new growth of Lplect/L0.
Therefore the plectoneme reported in Fig. 5.36 reveals a branching: this confor-
mational regime has already been predicted for DNA supercoils by Krajina and
Spakowitz through MC simulations [25].
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5.4.3 Solenoidal phase

Finally, the case d = 0.024L0 shows a particular characteristic: the number and
the length of plectonemic domains grow very slowly after the buckling transition if
the pulling force is quite large ( F = 21.6 pN and F = 23.2 pN). This is apparent in
Figs. 5.38 and 5.39 where one can see the different behavior of Nplect and Lplect/L0
depending on the tension.

Figure 5.38: Number of plectonemes for two low tensions (F = 11.6 pN and F = 13.3 pN) and for
two larger ones (F = 21.6 pN and F = 23.2 pN). Both panels are referred to the case d = 0.024L0.

Figure 5.39: Normalized length of the plectonemic phase for two low tensions (F = 11.6 pN and
F = 13.3 pN) and for two larger ones (F = 21.6 pN and F = 23.2 pN). In this two graphics the
intertether distance is d = 0.024L0.
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In particular conditions, such as the ones just mentioned (little intertether distances
d and high forces F), we note that the buckling transition doesn’t coincide with the
nucleation of the first end-loop: for example for F = 21.6 pN one has Cac = 40.6, but
for catenation values slightly higher (i.e. 41 . Ca . 50) the number of plectonemes
is negligible (even lower than 0.5). By studying movies of our runs, we find that in
similar situations the braid forms a structure where a strand starts to wrap around
the other one forming a little, but visible, solenoid (see Fig. 5.40). Therefore it
seems that, if d is small and F large enough, the buckling transition isn’t due to a
plectonemic nucleation, but to a solenoidal phase. By injecting further twist into
the system, we can reach a plectonemic phase anyway, but the first end-loop doesn’t
form at Ca = Cac.
A solenoidal phase was observed on macroscopic filaments by Ghatak et al. [26], but
it has never been mentioned for braiding. We still don’t know if solenoids weren’t
observed in the previous works [7] and [20] because they didn’t investigate such a
high forces or because they included also electrostatic repulsions which could modify
the structure of the braid. If this last point is correct (namely the Coulomb repulsion
plays an important role on the buckling transition), we could however suppose that
solenoidal structures form during braiding between strands immersed in a buffer
with an high salt concentration where the Coulomb potential is negligible.
Lastly, we see that the writhe of the braid follows the buckling transition and its
value grows for Ca > Cac even if there isn’t plectonemes nucleation. Anyway it’s
reasonable to think that also solenoids give a contribution to the computation of
Wrbraid and therefore its increase after the buckling point is expected.

Figure 5.40: Example of solenoidal structure formed during a run with F = 23.2 pN, Ca = 50
and d = 0.024L0.
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Chapter 6

Equilibrium dynamics and
statistics of plectonemes

In Chapter 5 we introduced contact maps as a tool through which recognize
and count plectonemes. We can now address some questions about the behavior of
plectonemic domains: how do they move along the braid? How does their number
fluctuate at equilibrium for fixed Ca and F? Can two plectonemes merge forming a
single domain? What can be said about their statistics (i.e. number, size, position,
etc.)?
In the next two sections we’ll try to answer all these points, first by focusing on
the equilibrium dynamics of plectonemes and then on their statistics. The study
will be carried out only for the case d = 0.168L0 and we’ll concentrate our efforts
on four points of the phase diagram (Cac, F ): two near the buckling transition,
A = (31, 11.6) and B = (32, 13.3), and the other two deep in the buckling phase,
A∗ = (31, 10.0) and B∗ = (32, 10.0) (see Fig. 6.1).

Figure 6.1: Phase diagram for the case d = 0.168L0. In the next two sections we’ll give an overview
on the dynamics and statistics for the four points A = (31, 11.6), B = (32, 13.3), A∗ = (31, 10.0)
and B∗ = (32, 10.0).

61
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6.1 Plectonemes’ dynamics
In the two works of Brahamachari et al., [7] and [20], the plectonemic transition

has been extensively analyzed via a statistical-mechanical model (Chapter 3) that
allows to investigate the dependence of the transition on the intertether distance
d, the pulling force F and the ionic concentration. Nevertheless all these results
concern the static of plectonemes, while their dynamics, as far as we know, has never
been examined.
Our method of plectoneme detection gives us the possibility to follow the time
evolution of plectonemes formed during braiding: in particular we can determine
how many plectonemic domains there are as well as their positions along the braid.
We’ll analyze the equilibrium dynamics, namely we first allow the system to relax
and then we monitor the plectonemes movements.

6.1.1 Dynamics close to the transition

The motion of plectonemes is studied through kymographs: in the x axis there
is the time, while in the y axis we find the plectonemes position along the braid 1.
Following Chapter 5, we study plectonemes both of the blue and of the red strand
(thanks to contact maps): if a frame of a simulation contains Nb blue domains and
Nr red domains, we say that the number of plectonemes in this frame is equal to
min(Nb, Nr). For example, if at time t = t∗ one has Nb ≤ Nr, the plectonemes are
given by the blue strand: this means that the blue chain provides the number of
domains, their length and also their position along the contour length. Otherwise, if
Nr > Nb, these informations are derived from the red strand.
So in the kymographs that we’ll show there are continuous jumps between blue and
red plectonemes: if at time t = t1 the plectonemes are given by the blue strand
(because Nb ≤ Nr), at the following time step, t2 > t1, they can be given by the red
one (because Nr > Nb). One could think that this procedure is incorrect, since two
corresponding blue and red domains (namely, two blue and red domains which form
the same plectoneme of the braid) have different positions in relation to their own
strand (see Fig. 6.2).
However, the shift between these positions is negligible and so we can study the
dynamics of the braid’s plectonemes by considering the blue or the red domains
depending on whether N1 ≤ N2 or N2 < N1.

1Along the ordinate we choose to set the normalized position, i.e. the position N divided by
the number of atoms composing the single strand N0 = 250. For the blue chain, N is simply the
ID number reported in the LAMMPS Input File (see Appendix A), for the red one N is the ID
number minus 250. So N moves between 1 and 250, since each strand is composed by 250 beads:
the bead (blue or red) with position N = 1 corresponds to the first upper bead (the bead with
the greater value of y in Fig. 4.1), while the one with N = 250 coincides with the atom held in
fixed position on the bottom part of the flow cell. Therefore, if there are two plectonemes, one with
the end-loop in position N1/N0 = 0.2 and the other with N2/N0 = 0.6, one can say that the first
domain is closer to the upper fork where the two strands start to form the braid.
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Figure 6.2: Blue and red plectonemes forming the same plectonemic domain of the braid for
F = 10.0 pN and Ca = 31. In the two panels (A and B), we highlight the initial and the final
beads of the domains with the yellow and green colors respectively. In panel (A) the yellow bead
corresponds to N(A,y) = 159, while the green one to N(A,g) = 178. In panel (B) the two atoms have
positions N(B,y) = 151 and N(B,g) = 170. Therefore the shift between the positions is equal to
N(A,y) −N(B,y) = N(A,g) −N(B,g) = 8. This value is quite low if compared to the total number of
beads (250): this means that we can consider the blue or the red plectonemes without committing
important errors in the position of the braid’s plectonemes.

First of all we analyze the dynamics near the buckling transition, i.e. for points
A = (31, 11.6) and B = (32, 13.3).
A kymograph for the point A is reported in the top panel of Fig. 6.3, while in the
bottom panel it’s possible to observe a zoom for a time t such that 30000 τ 6 t 6
70000 τ 2.
The yellow points coincide with the parts of the chains enclosed in a plectoneme,
whose extremities 3 are marked with red points. These yellow bars are referred to
the left y axis, where we find the normalized position N/N0.
On the other hand, the dotted blue line shows the time evolution of the normalized
end-to-end distance Ext/L0 and its values can be found in the right y axis.
The graphic contains two additional horizontal green lines that indicate the mean
position of the upper and lower fork (see panel A of Fig. 4.1): these averages are
calculated by moving between uncorrelated frames of the trajectory represented in
each kymograph. After a period of equilibration (the blue line drops abruptly in
the first part of the simulation) 4, we observe the formation of numerous short-lived
plectonemes.

2In our kymographs the time is expressed in Lennard-Jones units τ ; in Appendix B we explain
the conversion between τ and seconds.

3The extremities coincide with the initial and final bead of a domain, e.g. the yellow and green
atoms in Fig. 6.2.

4The initial drop of the end-to-end distance is due to the starting configuration of the braid.
In fact the input configuration, with fixed Ca, has been obtained through the varying catenation
setup, where we use a very strong pulling force F . Then in these runs we allow the system to relax
fixing a lower tension F ∗ and keeping a constant Ca value: so the Ext decreases abruptly reaching
a plateau depending on F ∗.
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The Ext fluctuates and sometimes it is affected by the nucleation of plectonemic
domains: this is apparent at time t = t∗, when the formation of a plectoneme implies
a decrease in the braid extension.
It’s also interesting to note how plectonemes are constrained within the two forks:
their centers of mass (i.e. their end-loops) are always enclosed in this region and the
initial or the final part of a domain (namely the yellow points close to the red ones)
seldom exceed the green lines.

Figure 6.3: Kymograph for F = 11.6 pN and Ca = 31 (top panel) and a zoom
(bottom panel). Yellow bars indicate plectonemes and they are referred to the
normalized position N/N0 (left y axis); the dotted blue line represents the normalized
braid extension Ext/L0 and its values are reported in the right y axis. The horizontal
green lines highlight the average positions of the upper and lower fork.
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In Fig. 6.4 we show other two kymographs for point A. Again one observes the
presence of a gas of small plectonemes: several plectonemic domains are created and
destroyed, but they aren’t able to form stable structures.

Figure 6.4: Two different kymographs for F = 11.6 pN and Ca = 31. On the left y
axis one finds the normalized position, while on the right one there are the values of the
normalized end-to-end distance.
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A similar study can be performed for B = (32, 13.3). In Fig. 6.1 one sees that
this point is closer to the transition line than point A: therefore we expect to find
fewer plectonemes, since in Fig. 5.23 we observe that Nplect is lower when one is
nearer the critical catenation.
Fig. 6.5 shows a kymograph (and a zoom) for B. As in the previous case, the
extension Ext is weakly influenced by the presence of plectonemes, such as at time
t = t∗.

Figure 6.5: Kymograph for F = 13.3 pN and Ca = 32 (top panel) and a zoom
(bottom panel). The left y axis shows the normalized positions of plectonemes; the
right y axis refers to the normalized end-to-end distance (dotted blue line).
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In Fig. 6.6 we report two additional kymographs for the same values of F and Ca
(F = 13.3 pN and Ca = 32). It’s interesting to note how these domains seem to have
a smaller lifetime than the ones seen for point A (Figs. 6.3 and 6.4): the proximity
to the buckling transition doesn’t affect only the number of plectonemes, but also
their survival time.

Figure 6.6: Two different kymographs for F = 13.3 pN and Ca = 32.

From the examination of these two cases (A and B) we have obtained that
just past the buckling transition 5 one observes the formation of a plectonemic gas:
numerous small domains form, but they are short-lived and cannot merge forming a
larger plectoneme.

5We are dealing the situation in which the buckling transition coincides with the plectonemic
one, since in Section 5.2 we saw that for Ca & Cac and F = 11.6, 13.3 pN there is the nucleation of
plectonemes.
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6.1.2 Dynamics deep in the buckling phase

We now focus on points A∗ = (31, 10.0) and B∗ = (32, 10.0) that are well inside
the plectonemic phase.
From Chapter 5 we know that, going deeper into the buckling phase by keeping the
pulling force fixed, the number of plectonemes Nplect and their total length Lplect
increase: so one could think that in point B∗ more and larger plectonemes will be
observed than in point A∗.

Taking into consideration A∗ = (31, 10.0) one gets kymographs as the one in Fig.
6.7.

Figure 6.7: Kymograph for F = 10.0 pN and Ca = 31 (top panel) and a zoom
(bottom panel). The solid blue line corresponds to the time evolution of the end-to-end
extension and its values are in the right y axis.
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Several considerations can be made about this dynamics:

• after an initial drop due to relaxation, the ratio Ext/L0 reaches a plateau
approximately at time t = tE . From this moment and before t = tH , we find
a long-lived plectoneme, which rarely branches into multiple domains. This
plectoneme stays close to the upper fork of the braid;

• at t = tH an hopping event occurs: just before t = tH , the plectoneme
disappears from its original position and at time tH reappears in another point,
where N/N0 ∼ 0.6.
Note that this kind of hopping mechanism was observed experimentally for
supercoiled DNA [27]. The authors observed that the energetics of this event
is correlated to the nucleation cost of a new loop and to the rotation of the
intermediate DNA (see Fig. 6.8). Non local mechanism of motion allow the fast
movement of plectonemes along the contour length (they found a maximum
hopping distance of ∼ 5µm in a time range < 20 ms);

Figure 6.8: Hopping mechanism in supercoiled DNA. (A): exper-
imental kymograph of an hopping event. (B): the formation of a
plectoneme in a new far site is correlated to the energy cost of the
nucleation of a new loop and to the transfer of writhe, namely to the
rotation of the intermediate DNA. Figure from Leonhout et al. [27].

• at t = tS the plectoneme separates into two shorter domains, that merge later
at time tM by forming a single loop whose size increases with time. For t > tM
the normalized extension Ext/L0 is evidently affected by this growth, in fact
its value lowers.
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Other two trajectories for point A∗ are shown in the kymographs of Fig.6.9, where
one can see behaviors similar to the ones explained for Fig. 6.7.

Figure 6.9: Kymographs for two different trajectories simulated at F = 10.0 pN
and Ca = 31.
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Finally let us examine point B∗, i.e. the case F = 10.0 pN and Ca = 32.
From the data of Chapter 5 we know that between A∗ and B∗ the number of
plectonemes increases by 28%, while the total length of the plectonemic phase by
49%: therefore one expects to observe more frequently bigger plectonemic domains
rather than two or three small ones.
Fig. 6.10 suggests that this is indeed the case: after the equilibration, a large
plectoneme forms and stays in the same position until, at t ∼ tS , it splits into two
smaller ones. At tM they merge again forming a single plectoneme which survives
until the end of the simulation. Note that this splitting and rejoining mechanism
results into an effective spatial displacement of the original plectoneme.

Figure 6.10: Kymograph for F = 10.0 pN and Ca = 32 (upper panel) and a zoom
(bottom panel).
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In Fig. 6.11 we show two further trajectories for point B∗. In both these two cases,
the single large plectoneme is rather stable during the simulation.

Figure 6.11: Kymographs for F = 10.0 pN and Ca = 32.

Comparing all the previous figures (for A, B, A∗ and B∗) one notes that the
fluctuations of the extension are similar. From the zooms of Figs. 6.3, 6.5, 6.7
and 6.10 it’s possible to observe that they are slightly higher when we are in the
deep buckling phase (points A∗ and B∗): however the distance or the proximity to
the buckling transition don’t seem to affect the oscillations around the equilibrium
throughly.
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6.2 Statistics of plectonemic domains
In this section we’ll introduce the statistics of plectonemes at equilibrium. As

far as we know, the only statistical study has been performed by Brahamachari
et al. [7], who investigated the distribution of the braid extension experimentally,
succeeding in recognizing the nucleation of different domains (see Figs. 6.12 and
6.13).

Figure 6.12: Experimental time evolution of the braid extension for two 6 kb DNAs under a
pulling force of 0.8 pN and immersed in 100 mM NaCl. The panels show three catenation values
near the buckling transition: on the right it’s possible to observe the corresponding frequency
histograms, which are fit to a sum of Gaussian distributions. Figure from Brahamachari et al. [7].

Figure 6.13: Theoretical histograms of the end-to-end distance for four catenations near the
buckling transition. The probability distributions were calculated via the statistical-mechanical
model reported in [20]. P0, P1 and P2 are the probabilities correlated to the presence of 0,1 or 2
plectonemes respectively. Increasing the catenation one finds the nucleation of multiple plectonemic
domains. Figure from Brahamachari et al. [7].

Thanks to our simulations we can extract the behavior of the extension Ext as a
function of the number of plectonemes Nplect; however we are also able to know what
is the trend of the total plectonemic length and of the size of the single plectoneme
depending on Nplect. Another interesting feature which will be studied is the position
of the center of mass of each plectoneme 6.

6The center of mass of a plectoneme coincides with the position of its end-loop: if the initial and
the final beads of a domain have position Ni and Nf , its center of mass is given by Ni+Nf

2 .
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As in the previous section, we’ll focus on points A, B, A∗ and B∗ of Fig. 6.1.
For each point we have simulated 200 trajectories. To perform an unbiased estimate,
we take only configurations well separated in time to be considered uncorrelated
(see footnote 1 of Chapter 5).

6.2.1 Histograms of the end-to-end distance

Let us start with the statistics of the normalized end-to-end distance Ext/L0.
In Figs. 6.14, 6.15, 6.16 and 6.17 we show Ext/L0 as a function of the number of
plectonemes and on the right panels we set the related histograms. The bin size is
equal to 0.004 which is the relative size of a bead (i.e. σ

L0
= σ

250σ = 0.004); moreover,
we plot the normalized frequency, namely we divide the frequency in each bin by
the total number of data.

Figure 6.14: Left panel: ratio Ext/L0 as a function of the number of plectonemes for point
A (F = 11.6 pN and Ca = 31). Right panel: normalized frequency histogram of the extensions
reported on the left.

Figure 6.15: Left panel: end-to-end distance over plectonemes number for point B (F = 13.3 pN
and Ca = 32). Right panel: normalized frequency histogram of the extensions reported on the left.
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Figure 6.16: End-to-end distance over Nplect (left panel) and the corresponding histogram (right
panel) for point A∗ (F = 10.0 pN and Ca = 31).

Figure 6.17: End-to-end distance over Nplect (left panel) and the corresponding histogram (right
panel) for point B∗ (F = 10.0 pN and Ca = 32).

The data included in the previous graphics are summarized in Table 6.1 which
contains the mean normalized extensions Êxt for A, B, A∗ and B∗, depending on
the number of plectonemes. Let us indicate the mean normalized extension for a
point P 7 and Nplect = N with the symbol Êxt(P,N).
In Figs. 6.14 and 6.15 there is an apparent shift between extension values for
Nplect = 0 and Nplect = 1, since the nucleation of an end-loop reduces the end-to-end
distance. From Table 6.1 we note that the formation of the first domain provokes
an Êxt reduction equal to 0.02 for point A (Êxt(A,0)

− Êxt
(A,1)

' 0.02) and to 0.01
for point B (Êxt(B,0)

− Êxt
(B,1)

' 0.01).
Nevertheless in Figs. 6.16 and 6.17 we cannot recognize different peaks related to
the nucleation of multiple domains (as Brahamachari et al. made in Fig. 6.13).
Looking at the following table, we see that Êxt(A

∗,1)
− Êxt

(A∗,2)
' 0.001 and

Êxt
(B∗,1)

− Êxt
(B∗,2)

' 0.005: these differences are up to 10 times smaller than the
decreases brought by the growth of the first plectoneme.

7P can be A, B, A∗, B∗
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(Ca, F) No of plectonemes No of data Êxt

A = (31, 11.6)
0 2258 0.6778 ± 0.0002
1 1044 0.6592 ± 0.0003
2 3 0.6334 ± 0.0059

B = (32, 13.3)
0 4171 0.6696 ± 0.0002
1 690 0.6553 ± 0.0004
2 4 0.6389 ± 0.0046

A∗ = (31, 10.0)

0 11 0.6413 ± 0.0056
1 3036 0.6017 ± 0.0003
2 159 0.6003 ± 0.0012
3 1 0.6166

B∗ = (32, 10.0)

1 2091 0.5378 ± 0.0004
2 860 0.5433 ± 0.0006
3 35 0.5310 ± 0.0020
4 1 0.5272

Table 6.1: Values of the mean normalized extension depending on (Ca, F ) and on the number of
plectonemes.

The discrepancy between our results and the ones seen in Figs. 6.12 and 6.13 could
be due to the absence of charges in our chains: in fact, in works [7] and [20], the
charged DNA strands form numerous and short plectonemes, therefore the nucleation
of a new end-loop provokes a shortening in the end-to-end extension. Instead our
plectonemes can grow in size getting deeper into the buckling phase, and so, even if
a domain splits into two different plectonemes during a run, the total plectonemic
length stays constant and this event doesn’t affect the braid extension.
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6.2.2 Statistics of the total plectonemic length

We now consider the behavior of the total length of the plectonemic phase Lplect
as a function of the number of plectonemes Nplect. Figs. 6.18, 6.19, 6.20 and 6.21
show how Lplect/L0 changes depending on Nplect and in the right panels we report
the corresponding normalized histograms.
Table 6.2 contains all the results dividing them according to the point of the phase
diagram (A, B, A∗ and B∗) and to Nplect: with L̂plect we refer to the average of
the normalized total plectonemic length and, if we have to indicate a particular
configuration (point P of the phase diagram and Nplect = N), we use the symbol
L̂

(P,N)
plect .

Figure 6.18: Normalized total plectonemic length over Nplect (left panel) and the corresponding
histogram (right panel) for point A (F = 11.6 pN and Ca = 31).

Figure 6.19: Normalized total plectonemic length versus Nplect (left panel) and its histogram
(right panel) for point B (F = 13.3 pN and Ca = 32).
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Figure 6.20: Lplect/L0 over Nplect (left panel) and its histogram (right panel) for point A∗
(F = 10.0 pN and Ca = 31).

Figure 6.21: Lplect versus Nplect (left panel) and the corresponding histogram (right panel) for
point B∗ (F = 10.0 pN and Ca = 32).

(Ca, F) No of plectonemes No of data L̂plect

A = (31, 11.6) 1 1044 0.0693 ± 0.0005
2 3 0.1087 ± 0.0059

B = (32, 13.3) 1 690 0.0634 ± 0.0004
2 4 0.1135 ± 0.0080

A∗ = (31, 10.0)
1 3036 0.1411 ± 0.0005
2 159 0.1625 ± 0.0021
3 1 0.2240

B∗ = (32, 10.0)

1 2091 0.2182 ± 0.0008
2 860 0.2255 ± 0.0011
3 35 0.2517 ± 0.0064
4 1 0.3980

Table 6.2: Values of the average of the normalized total plectonemic length depending on (Ca, F )
and on the number of plectonemes.
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Dealing only with cases with a better statistics (points A∗ and B∗) we note that
L̂

(A∗,2)
plect − L̂

(A∗,1)
plect ' 0.02 and for point B∗ one has L̂(B∗,2)

plect − L̂
(B∗,1)
plect ' 0.007 that is

of the same order of magnitude of the errors reported in Table 6.2.
We remind that the smallest plectoneme contains 13 beads, so it’s reasonable to
think that the growth of the second domain would provoke an increase in L̂plect
equal to 0.05 (13 · 0.004 ' 0.05) at least: nevertheless both above values are lower
than it. This confirms the idea that, in our setup, the size of a plectoneme can
grow and so, even if an end-loop splits into two domains, the length of the total
plectonemic phase stays almost constant. Therefore the nucleation of new domains
is not necessarily related to an evident increase of the total plectonemic length.

6.2.3 Statistics of a single plectonemic domain

In this subsection we introduce the study of a single plectonemic domain.
We have always focused on the total plectonemic length so far, while now the
normalized length of a single plectoneme Lsp/L0 will be considered: the statistics
will be obtained from the same runs used in the previous analysis, so we report
results concerning the four points A, B, A∗, B∗ of the phase diagram 6.1.
The average normalized length of a single plectoneme is indicated with L̂sp and,
if we are referring to a particular configuration (point P and Nplect = N), we use
L̂

(P,N)
sp .

Figs. 6.22, 6.23, 6.24 and 6.25 show the length of a plectoneme as a function of
Nplec; on the right one finds the related normalized histograms.

Figure 6.22: Length of a single plectoneme over Nplect for F = 11.6 pN and Ca = 31 (on the left)
and the corresponding histogram (on the right).
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Figure 6.23: Length of a single plectoneme over Nplect for F = 13.3 pN and Ca = 32 (on the left)
and the corresponding histogram (on the right).

Figure 6.24: Length of a single plectoneme versus Nplect for point A∗ = (31, 10.0). Its histrogram
is reported on the right.

Figure 6.25: Length of a single plectoneme versus Nplect (and its histogram) for point B∗ =
(32, 10.0).
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Table 6.3 sums up the data of the previous graphics.

(Ca, F) No of plectonemes No of data L̂sp

A = (31, 11.6) 1 1044 0.0693 ± 0.0005
2 6 0.0543 ± 0.0032

B = (32, 13.3) 1 690 0.0634 ± 0.0004
2 8 0.0567 ± 0.0030

A∗ = (31, 10.0)
1 3036 0.1411 ± 0.0005
2 318 0.0812 ± 0.0012
3 3 0.0747 ± 0.0127

B∗ = (32, 10.0)

1 2091 0.2182 ± 0.0008
2 1720 0.1128 ± 0.0009
3 105 0.0839 ± 0.0026
4 4 0.0995 ± 0.0205

Table 6.3: Values of the average normalized length of a single plectoneme depending on (Ca, F )
and on Nplec.

Looking at the cases with a more reliable statistics (points A∗ and B∗), evidently
the length of a single domain decreases as the number of plectonemes rises. By
comparing Tables 6.2 and 6.3 we can see that, if a configuration contains two
domains, the total plectonemic length is equally divided between them: in fact
L̂

(A∗,2)
plect ' 2L̂(A∗,2)

sp and L̂(B∗,2)
plect ' 2L̂(B∗,2)

sp .
The same thing can be said for configurations with three domains: even if the
statistics isn’t very acceptable, we note that L̂(B∗,3)

plect ' 3L̂(B∗,3)
sp .

6.2.4 Distribution of the plectonemic center of mass

Finally we look at the distribution of the center of mass of a plectoneme. We
remind that the position of the center of mass is Ncm = Ni+Nf

2 where Ni and Nf are
the positions of the initial and the final beads of a domain respectively (for example
the yellow and the green beads of Fig. 6.2). In Figs. 6.26 and 6.27 we show the
histograms for the normalized Ncm (i.e. Ncm divided by the total number of beads
composing a chain N0 = 250): the plectonemes for which we calculate Ncm are the
same of the ones studied in Subsection 6.2.3.
All the below histograms present two spatial limits Ncm/N0 ' 0.1 and Ncm/N0 ' 0.9,
which are the average relative positions of the upper and lower fork of the braid
(reported as vertical green lines), so a plectoneme cannot form beyond these points.
Figs. 6.26 and 6.27 show different behaviors: for points near the transition (A and
B) plectonemes don’t have favorite sites of nucleation, while when we are in the
deep buckling phase (A∗ and B∗) we mostly find domains near the upper fork (low
values of Ncm/N0).
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Figure 6.26: Positions of the plectonemic center of mass for points A = (31, 11.6) and B =
(32, 13.3). On the abscissa one finds the normalized position, namely Ncm divided by the number of
beads forming a strand N0 = 250.

Figure 6.27: Normalized positions of the plectonemic center of mass for points A∗ = (31, 10.0)
and B∗ = (32, 10.0).



Chapter 7

Introduction of local defects:
the buckling transition on
filaments with heterogeneous
rigidity

In natural conditions, the bending rigidity of a double-stranded DNA chain
can vary often: it is influenced by the surrounding environment (i.e. the salt
concentration of the buffer in which it is immersed), but one can also find local
stiffness changes due to the base sequences 1 or to the presence of binding proteins
[28, 29].
It is therefore reasonable to study how the buckling transition varies by including
sharp variations (local kinks) along the contour length of the strands. In order to
introduce kinks as regions of high flexibility, we set K = 0 in 4.3.
The only case we’ll focus on is the one with an intermediate intertether distance,
i.e. d = 0.168L0. From Chapter 5 one knows that in these conditions, if Ca = 42
(which is the maximum catenation for F = 11.6, 13.3, 14.9, 16.6 pN), the larger value
of Nplect is Nplect ' 3: we decide to place six kinks (three in each strand), with the
aim to observe a transition with different characteristics (for example one could
expect to find an higher number of plectonemes, because maybe the lack of stiffness
favorites the nucleation). Each kink involves three atoms: this means that we set
K = 0 for six angles reported in the LAMMPS Input File (see Appendix A) 2. The
relative position of the central bead of every kink N/N0 is reported in Table 7.1: N
is the same variable seen in Section 6.1, namely the ID number of the LAMMPS
Input File for the blue chain, while it corresponds to the ID number minus 250 for
the red one.
In the following sections we’re going to analyze the statics of the buckling transition
(as in Chapter 5), the equilibrium dynamics of plectonemes and their statistics (with
the same tools used in Chapter 6) in presence of these stiffness inhomogeneities.

1The regions of the chain with adenine-thymine base pairs are more flexible than the ones rich
of guanine-cytosine.

2Every strand contains three kinks each of which includes three beads: so the region with null
stiffness accounts for 0.036% of the total contour length L0 = 250σ.

83
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Strand Kink relative position
Blue 0.38 0.55 0.69
Red 0.48 0.61 0.80

Table 7.1: Relative position N/N0 of the kinks in the blue and in the red strand. N0 is the total
number of beads in each chain, i.e. N0 = 250.

7.1 Statics of the buckling transition in the presence of
kinks

For F = 10.0, 11.6, 13.3, 14.9, 16.6 and 18.3 pN we will report results concerning
the statics of the buckling transition. The procedure is the same of the one illustrated
in Chapter 5: once fixed the pulling force F and the catenation Ca, we allow the
system to relax and then we extract the mean physical quantities (end-to-end
distance Ext, number of plectonemes Nplect and total plectonemic length Lplect) by
considering uncorrelated configurations of the extension plateaux. The behavior of
plectonemes, i.e. their number and length, is derived by contact maps, where we set
the same conditions of Section 5.1. Below, in Fig. 7.1 , we show the setup used for
this study: the green beads indicate the positions of kinks.

Figure 7.1: Setup of our simulation model with kinks (green beads) for Ca = 35 and F = 10.0 pN.
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In Figs. 7.2, 7.3, 7.4, 7.5, 7.6, 7.7 we report the main results for the different
forces: for each one, we compare Ext/L0, Nplect and Lplect/L0 with the case without
defects.

Figure 7.2: Analysis of the statics of the buckling transition with kinks. The figure
is referred to the case in which the pulling force is F = 10.0 pN. (A): end-to-end
distance versus catenation both for the case with and without kinks. (B): number
of plectonemes over catenation for both the cases (with and without defects). (C):
normalized total length of the plectonemic phase. Again we compare the two setups.
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Figure 7.3: Statics of the buckling transition for the tension F = 11.6 pN. In the three panels we
show both the setups (with and without kinks). (A): normalized extension versus catenation. (B):
number of plectonemes versus catenation. (C): normalized total length of plectonemes over Ca.
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Figure 7.4: Statics of the buckling transition for F = 13.3 pN (A): end-to-end dis-
tance versus catenation. (B): number of plectonemes over catenation. (C): normalized
total length of the plectonemic phase over Ca.
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Figure 7.5: Buckling transition (both with and without kinks) for F = 14.9 pN. (A): normalized
Ext over Ca. (B): number of plectonemes versus catenation . (C): normalized total length of the
plectonemic phase as a function of Ca.
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Figure 7.6: Statics of the buckling transition for F = 16.6 pN. (A): end-to-end dis-
tance versus catenation.(B): number of plectonemes over catenation. (C): normalized
total length of the plectonemic phase over catenation.
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Figure 7.7: Buckling transition for F = 18.3 pN. (A): normalized Ext over Ca. (B): number
of plectonemes versus catenation. (C): normalized total length of the plectonemic phase versus
catenation.

In the previous figures one notes that the critical catenation (i.e. the catenation
of the (Ca,Ext/L0) graphic where the curve slope changes) is practically unaffected
by the presence of defects. Therefore the phase diagram (Cac, F ) remains the
same seen in Section 5.2. However, there are apparent differences in the number of
plectonemes and in the total plectonemic length, which are more visible for lower
forces (F = 10.0, 11.6, 13.3 pN).
Let us indicate the number of plectonemes Nk

plect for the setup with local defects
and Nnk

plect for the one without kinks. We observe that for weak forces there is an
initial region (after the buckling) where Nnk

plect > Nk
plect, but for higher values of Ca

we find an abrupt increase of Nk
plect. So the presence of kinks favors the nucleation

of numerous domains when F is low and the catenation is large enough.
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The total plectonemic length is weakly influenced by the introduction of kinks,
even if its value is almost always slightly higher in the case with no defects (only for
F = 18.3 pN we find that Lkplect exceeds Lnkplect).
The differences between the two cases (homogeneous and inhomogeneous braid)
are reduced by increasing the pulling force, e.g. for F = 16.6 pN and Ca ' 40 we
observe Nnk

plect ' Nk
plect, while for F = 10.0 pN and Ca ' 40 the discrepancy between

these two values is apparent.
It’s reasonable to think that kinks could form the end-loops of plectonemes, since
their persistence length is null and so they would reduct the bending energy cost for
the nucleation of a domain.

7.2 Equilibrium dynamics of plectonemes with kinks
In this section we’ll study kymographs representing the movements at equilibrium

of plectonemes in presence of local defects. In order to compare these results with
the ones of Section 6.1, we focus on the four points A = (31, 11.6), B = (32, 13.3),
A∗ = (31, 10.0) and B∗ = (32, 10.0) of the phase diagram (Cac, F ) 6.1. As in Chapter
6, the yellow bars indicate beads belonging to a plectoneme, whose extremities are
highlighted by red points, while the positions of kinks are showed through green
horizontal solid lines.

7.2.1 Dynamics just past the transition

As in the previous chapter, we begin with points A = (31, 11.6) and B = (32, 13.3)
of the phase diagram 6.1. In Fig. 7.8 we show two trajectories for point A 3 and
in the same graphics we plot also the normalized end-to-end distance of the chains,
which is referred to the right y axis.
As in Subsection 6.1.1, one notes the growth of a gas of small plectonemes: however
we can underline some important differences between Figs. 6.3, 6.4 and 7.8.
First of all, in Fig. 7.8 we observe that the defects influence the positions of
plectonemic domains: while in absence of kinks plectonemes form in every position
within the two forks of the braid, here it’s apparent that domains prefer to nucleate
near the local defects.
Often the kinks are placed in the center of the yellow bars, therefore they coincide
with the end-loops of plectonemes: we can expect that the distribution of the
plectonemic centers of mass will be influenced throughly by the introduction of
kinks.
Another difference between the cases with and without kinks is observed on the
survival time of plectonemic domains. Even if we haven’t yet performed an extensive
statistical analysis about it, in Fig. 7.8 the plectonemes appear qualitatively more
unstable than in Figs. 6.3 and 6.4, suggesting that local defects make the domains
lifetime shorter.

3Time is expressed in Lennard-Jones units τ . The τ to seconds conversion is explained in
Appendix B.
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Finally, sometimes the Ext suffers from the nucleation of end-loops (such as at time
t ' 80000 τ in the upper panel of Fig. 7.8), but one cannot see deep differences in
comparison to the case with no defects.

Figure 7.8: Kymographs for F = 11.6 pN and Ca = 31 in the presence of kinks.
On the left axis there is the relative (or normalized) position of plectonemes; on the
right one we find the values of the normalized end-to-end distance (dotted blue lines).
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Fig. 7.9 reports two kymographs for point B (F = 13.3 pN and Ca = 32).

Figure 7.9: Two trajectories for F = 13.3 pN and Ca = 32 obtained from the setup
with local defects.

Considerations are similar to the ones made for point A. Comparing Fig. 7.9 with
Figs. 6.5 and 6.6, we conclude that, in the setup with kinks, plectonemes with
a smaller survival time nucleate and they are mostly located in proximity of the
defects, which often form their end-loops. In Fig. 7.9 the number of domains is
lower than in Fig. 7.8, since point B is closer to the transition line than point A.
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7.2.2 Dynamics inside the buckling phase

In this Subsection we monitor the time evolution of plectonemes for the two
points of the phase diagram 6.1 A∗ = (31, 10.0) and B∗ = (32, 10.0). One can predict
some changes in the dynamics, since in Section 7.1 we have seen that for F = 10.0
pN and Ca = 32 the quantity Nplect exhibits a noticeable gap between the cases
with and without kinks.

In Fig. 7.10 we report two kymographs for point A∗, i.e. for Ca = 31 and F = 10.0
pN. The blue solid line shows the normalized end-to-end distance whose values can
be found in the right y axis.

Figure 7.10: Kymographs for F = 10.0 pN and Ca = 31 in strands with local
defects.
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By looking at Figs. 6.7, 6.9 and 7.10, one observes a rather different dynamics
when kinks are present.
In Figs. 6.7 and 6.9 we found a long-lived plectoneme which sometimes splits into
two domains: specifically, we observed particular events, such as the merge of two
domains and the hopping mechanism.
The introduction of local defects changes this behavior in an appreciable way. First of
all note that kinks reduct the lifetime of plectonemes: in Fig. 7.10 we don’t observe
a single domain dominating the dynamics, but there is a continuous nucleation
and destruction in proximity of the kinks. As for the cases close to the buckling
transition (points A and B), the kinks prefer to form the end-loops, so they are
located in the middle of the yellow bars.
This fragmented dynamics doesn’t allow to recognize apparent merging events
between two plectonemes as the ones seen in Fig. 6.7: almost each kink is located in
the plectonemes end-loops where the required bending energy cost would be higher.
Finally we focus on point B∗ = (32, 10.0) shown in Fig. 7.11. Again the defects
have the effect of pinning the plectonemic domains, which tend to be apart, without
giving rise to the formation of a single large domain (as in Figs. 6.10 and 6.11).
Thereby we can conclude that the local changes of the bending stiffness greatly
affects the dynamics of plectonemes: two domains have less probability to merge
because the nucleation is favored in the proximity of a kink and this results in the
formation of numerous and smaller plectonemes.
We can also expect that the statistics will exhibit substantial differences (mostly the
distribution of the plectonemic centers of mass): these aspects will be discussed in
the next section.
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Figure 7.11: Trajectories for F = 10.0 pN and Ca = 32 in strands with local defects.
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7.3 Plectonemic statistics in chains with varying stiff-
ness

The last aspect worth to be examined is the statistics of plectonemes, i.e. the
distribution of the end-to-end distance Ext, of the total plectonemic length Lplect
and of the size of the single plectoneme Lsp. The notation which we’ll use is the
same introduced in Section 6.2: every quantity will be studied in relation to the
number of plectonemes and to the point of the phase diagram 6.1, therefore for
Nplect = N and for a configuration P 4 the average normalized extension Ext/L0 is
indicated by Êxt(P,N) (a similar notation will be used for Lplect and Lsp).
All the following results have been obtained by averaging over 200 runs and consid-
ering only uncorrelated configurations.

7.3.1 Distribution of the end-to-end distance

Let us start with the study of the braid extension. In Figs. 7.12, 7.13, 7.14 and
7.15 we show the normalized Ext as a function of the number of domains and in the
right panels it is possible to observe the related histograms 5. On the right panels
we overlay also the corresponding probability for points A, B, A∗ and B∗ in absence
of kinks (i.e. the same histograms seen in Chapter 6): these are indicated through
boxes with red borders.

Figure 7.12: Ext/L0 over Nplect and its histogram (on the right) for A = (31, 11.6). Boxes with
red borders show the histogram for point A when there are no kinks (the same histogram of Fig.
6.14).

4We remind that P could be A = (31, 11.6), B = (32, 13.3), A∗ = (31, 10.0) or B∗ = (32, 10.0).
5In the following histograms, the bin size is set equal to 0.004, which is the normalized diameter

of a bead composing the strands (i.e. σ
L0

= σ
250σ = 0.004).



98 CHAPTER 7. LOCAL DEFECTS

Figure 7.13: Ext/L0 over Nplect and its histogram (on the right) for B = (32, 13.3).

Figure 7.14: Ext/L0 over Nplect and its histogram for A∗ = (31, 10.0)

Figure 7.15: Ext/L0 over Nplect and its histogram for B∗ = (32, 10.0).
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Table 7.2 contains the mean values of the data reported in the above figures.
Compared to the case without kinks (Subsection 6.2.1), the shapes of the frequency
histograms don’t undergo evident changes and the peaks are located approximately
in the same positions; however great differences can be observed in the left panels.
By the study of the statics we know that, for points A = (31, 11.6) and B = (32, 13.3),
the number of plectonemes is higher for an homogeneous braid: this fact is reflected
in Tables 6.1 and 7.2. In fact by considering point A one notes that in Table 6.1 the
number of data for Nplect = 0 is 2258, while in Table 7.2 it is equal to 3567; on the
other hand there is a remarkable decrease of the number of data for Nplect = 1 when
we are dealing with strands characterized by an heterogeneous rigidity. The same
features are observed for the case Ca = 32 and F = 13.3 pN , i.e. for point B.
A separate discussion has to be made for points belonging to the deep buckling
phase (A∗ = (31, 10.0) and B∗ = (32, 10.0)).
Looking at panel B of Fig. 7.2 we note that the mean number of domains for the
two setups (with and without kinks) is similar when Ca = 31, while it is quite larger
when Ca = 32 for configurations with local defects. Again this behavior is found
in Tables 6.1, 7.2 and in Figs. 6.16, 6.17, 7.14, 7.15. In Fig. 7.14 one sees that the
number of data for Nplect = 0 considerably increases if compared to Fig. 6.16 , but at
the same time also the one related to Nplect = 2 increases, suggesting that the mean
number of plectonemes stays almost constant. Moreover, in Fig. 7.15 we find more
data for Nplect = 2, 3 than in Fig. 6.17, which provokes a rise of the mean number
of plectonemes for the configurations with kinks when Ca = 32 and F = 10.0 pN.

(Ca, F) No of plectonemes No of data Êxt

A = (31, 11.6)
0 3567 0.6618 ± 0.0002
1 426 0.6462 ± 0.0005
2 3 0.6212 ± 0.0058

B = (32, 13.3) 0 4437 0.6568 ± 0.0001
1 239 0.6429 ± 0.0006

A∗ = (31, 10.0)

0 266 0.6282 ± 0.0008
1 1940 0.6092 ± 0.0003
2 609 0.5987 ± 0.0006
3 7 0.5909 ± 0.0041

B∗ = (32, 10.0)

0 4 0.5796 ± 0.0074
1 804 0.5564 ± 0.0007
2 1379 0.5510 ± 0.0004
3 307 0.5447 ± 0.0009
4 9 0.5365 ± 0.0058

Table 7.2: Values of the mean normalized extension depending on (Ca, F ) and on the number of
plectonemes.
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7.3.2 Total plectonemic length

We now give informations about the distribution of the normalized total plec-
tonemic length. In Figs. 7.16, 7.17, 7.18, 7.19 and in Table 7.3 results obtained from
200 simulative runs are summarized. In the right panels of the following figures,
boxes with red borders depict frequency histograms for the case without kinks.

Figure 7.16: Normalized total length of the plectonemic phase versus the number of plectonemes
and its histogram (on the right) for A = (31, 11.6).

Figure 7.17: Normalized total plectonemic length over the number of domains for B = (32, 13.3).
The related frequency histogram is shown on the right.
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Figure 7.18: Normalized total plectonemic length (and its histrogram) over Nplect for A∗ =
(31, 10.0).

Figure 7.19: Normalized total length of the plectonemic phase as a function of Nplect for B∗ =
(32, 10.0). The corresponding frequency histogram is reported on the right.

(Ca, F) No of plectonemes No of data L̂plect

A = (31, 11.6) 1 426 0.0612 ± 0.0005
2 3 0.1153 ± 0.0107

B = (32, 13.3) 1 239 0.0592 ± 0.0006

A∗ = (31, 10.0)
1 1940 0.0839 ± 0.0005
2 609 0.1398 ± 0.0009
3 7 0.1837 ± 0.0088

B∗ = (32, 10.0)

1 804 0.1327 ± 0.0015
2 1379 0.1798 ± 0.0009
3 307 0.2239 ± 0.0015
4 9 0.2740 ± 0.0054

Table 7.3: Values of the mean normalized total plectonemic length depending on (Ca, F ) and on
the number of plectonemes.
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Kinks influence the length of plectonemic domains throughly: even if the shape
of histograms doesn’t exhibit great differences compared to to the ones shown in
Figs. 6.18, 6.15, 6.16 and 6.17 (except for the case Ca = 31 and F = 10.0 pN where
the peak is evidently shifted toward the smallest values), generally in Table 7.3 one
can notice that the presence of defects reduces L̂(P,N)

plect for every blue point P of the
phase diagram 6.1 and for every N = Nplect = {0, 1, 2, 3, 4}.
This behavior could already be extrapolated from Figs. 7.2, 7.3 and 7.4 concerning
the statics, where the total length of plectonemes appeared to be smaller in the
setup with kinks.
However, the most visible variation is related to the change of Lplect when there is
the nucleation of multiple domains. In Fig. 6.20, the emergence of a second end-loop
implies a growth of ∼ 15% in L̂plect 6, while in presence of defects this growth is
equal to ∼ 67%. A similar result affects the point B∗ = (32, 10.0): without kinks
the rise of the second plectoneme provokes an increase of ∼ 3%, while with kinks of
∼ 35%.
One can explain the origin of this behavior by looking at the dynamics of plectonemes.
Without kinks (Figs. 6.7, 6.9, 6.10, 6.11), a plectoneme can grows in size, implying
that, even if a single domain splits into two end-loops, the total plectonemic length
stays almost constant.
Instead the presence of small and fully flexible regions has the effect of preventing
the merging between two (or more) plectonemes, as we can see in Figs. 7.10 and 7.11.
Therefore the formation of a second domain increases the length of the plectonemic
phase noticeably.

6We mean that
L̂

(A∗,2)
plect

−L̂(A∗,1)
plect

L̂
(A∗,1)
plect

· 100 ' 15%.
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7.3.3 Statistics of the single plectoneme length

As in Section 6.2, we now give a description of what happens to the size of a single
domain when we’re considering the braiding between strands with heterogeneous
stiffness. One can see the main results in Figs. 7.20, 7.21, 7.22, 7.23 and in Table
7.4 (figures contain also the histograms of the configuration with no kinks and they
are represented by boxes with red edges).

Figure 7.20: Normalized length of a single domain as a function of the number of plectonemes for
Ca = 31 and F = 11.6 pN.

Figure 7.21: Normalized length of a single domain over number of plectonemes for Ca = 32 and
F = 13.3 pN.
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Figure 7.22: Normalized length of a single plectoneme versus Nplect for Ca = 31 and F = 10.0
pN.

Figure 7.23: Normalized length of a single plectoneme over Nplect for Ca = 32 and F = 10.0 pN.

(Ca, F) No of plectonemes No of data L̂sp

A = (31, 11.6) 1 426 0.0612 ± 0.0005
2 6 0.0577 ± 0.0038

B = (32, 13.3) 1 239 0.0592 ± 0.0006

A∗ = (31, 10.0)
1 1940 0.0839 ± 0.0005
2 1218 0.0699 ± 0.0005
3 21 0.0612 ± 0.0032

B∗ = (32, 10.0)

1 804 0.1327 ± 0.0015
2 2758 0.0899 ± 0.0005
3 921 0.0746 ± 0.0006
4 36 0.0685 ± 0.0022

Table 7.4: Values of the mean normalized length of a single domain depending on (Ca, F ) and on
the number of plectonemes.



7.3. STATISTICS OF PLECTONEMES WITH KINKS 105

The situation is similar to the one presented in Subsection 6.2.3: the total size of
the plectonemic phase prefers to divide equally between the different domains, i.e.
L̂

(A∗,2)
plect ' 2L̂(A∗,2)

sp , L̂(B∗,2)
plect ' 2L̂(B∗,2)

sp and L̂(B∗,3)
plect ' 3L̂(B∗,3)

sp .
Furthermore it’s interesting to observe how the mean size of a plectoneme changes
for the two points A∗ and B∗ in the presence of defects (provoking evident variations
in the shape of histograms). For example note that introducing fully flexible regions
implies a decrease of 39% in L(B∗,1)

sp
7 and of 20% in L(B∗,2)

sp . This confirms that,
well inside the buckling phase, kinks enhance the nucleation of numerous and small
domains.

7.3.4 Centers of mass of plectonemic domains

The last thing we investigate is the distribution of the centers of mass of plec-
tonemes. In the previous chapter we saw that, for points close to the transition
line (A and B), no favorite sites of nucleation are observed, while, well inside the
buckling phase (A∗ and B∗), end-loops prefer to form close to the upper fork of the
braid.
In this setup, i.e. with kinks, we expect to mostly observe a growth of domains in
proximity of the defects: the distribution of the centers of mass is shown in Fig. 7.24
where the positions of the central beads of kinks are represented as green solid lines.
Actually one observes six peaks corresponding to the black lines: this confirms that
kinks tend to be the nucleation points for the end-loops where bending is necessary
greater.
We can also point out the presence of three higher peaks. These are localized in
proximity of the position of the kinks belonging to the blue strand: this discrepancy
between blue and red kinks is originated by our method of counting plectonemic
domains. In fact we remind that if Nb ≤ Nr, the domains are given by the blue
strand (where Nb and Nr are the number of blue and red plectonemes respectively):
the equal sign unbalances the counting of domains in favor of the blue strand, namely
the plectonemes of the braid correspond more frequently to the blue ones than to
the red ones.

7 L̂
(B∗,1),nk
sp −L̂(B∗,1),k

sp

L̂
(B∗,1),nk
sp

· 100 ∼ 39% where the apexes k and nk indicate configurations with and
without kinks respectively.
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Figure 7.24: Normalized position of the centers of mass of plectonemic
domains in the presence of kinks for points A = (31, 11.6), B = (32, 13.3),
A∗ = (31, 10.0) and B∗ = (32, 10.0). The vertical green solid lines highlight
the positions of the central beads of the defects.



Chapter 8

Conclusions

The aim of this thesis was to study the buckling transition of two strands subject
to braiding and the possible formation of plectonemes.
Only few works have been published so far on this argument [6, 7, 20] and, as far as
we know, this is the first study based on Brownian dynamics which comprehends
a systematic analysis of the statics of the buckling transition combined with an
introduction to the dynamics and statistics of plectonemes.
The state of the art of literature showed that, beyond a critical catenation, a
two strands braid undergoes a phase transition with the formation of plectonemic
domains. Experiments performed on nicked DNAs and a mechanical-statistical
model highlighted how this transition depends on the intertether distance between
the two strands d, on the pulling force F and on the ionic concentration of the buffer
surrounding the chains.
Starting from these knowledges, we developed a coarse-grained model where two
strands subject to Brownian motion could be twisted and pulled reproducing the
action of the experimental magnetic tweezers setup.
We first focused on the statics of the buckling phase, being able to reproduce the
typical (Ca,Ext) diagrams of braiding, whose knees indicate the critical catenation
at which the transition occurs. Contact maps provided an efficient tool to localize
plectonemic domains and allowed us to characterize the nature of the buckling
transition, since we could count the number of end-loops and determine their length.
In this way we confirmed previous results and we showed the importance played by
d and F in this problem.
In addition we found other interesting results, such as:

• the presence of a solenoidal phase, which precedes the plectonemic one for
high forces F and small intertether distances d;

• the formation of branched plectonemic domains at very high catenation values
(where the end-to-end extension of the braid seems to reach a plateau).

In Chapter 6 we concentrated our efforts on the plectonemes equilibrium dynamics
and on their statistics (i.e. the distribution of the end-to-end distance, of the total
length of the plectonemic phase, etc.). Only the case d = 0.168L0 was taken into
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consideration and in particular we studied four points of the (Ca, F ) phase diagram,
two close to the transition line (A = (31, 11.6) and B = (32, 13.3)) and other two
well inside the buckling phase (A∗ = (31, 10.0) and B∗ = (32, 10.0)).
Kymographs exhibit different behaviors: close to the transition we observe the
formation of a gas of small plectonemic domains, while, well inside the plectonemic
phase, one notices the presence of one or two more stable plectonemes which can split
and merge changing the original position along the contour length. The mechanism
of hopping was found for point A∗, and it is similar to the one observed by Loenhout
et al. [27] experimentally in the diffusion of plectonemes in supercoiled DNAs.
The statistics of plectonemes indicates that the nucleation of the first domain greatly
affects the end-to-end distance Ext and the total plectonemic length Lplect, while
the formation of a second domain doesn’t: this suggests that a plectoneme can grow
in size and, if it splits into two end-loops, the length of the plectonemic phase stays
almost constant. However, Lplect prefers to divide equally between the total number
of plectonemes. Therefore, if there is only one domain, its length is Lplect, while if
there are two end-loops each of them has a size equal to Lplect/2.
The analysis of the centers of mass of plectonemes distinguishes between points close
to the transition (A and B) and the other two points deep in the buckling phase
(A∗ and B∗): the former don’t have favorite sites along the braid where plectonemes
form, the latter show an higher nucleation near the upper fork of the braid.
In Chapter 7 we introduced local defects in the strand rigidity, namely small fully
flexible regions. We showed that the statics of the phase diagrams doesn’t change,
while the number of domains Nplect and their length Lplect present discrepancies
compared to the case of homogeneously rigid strands: in fact normallyNplect increases
in the presence of kinks, while Lplect is slightly smaller. These differences disappear
by increasing the pulling force.
The introduction of kinks has also the effect of changing the plectonemes equilibrium
dynamics dramatically, specially for points of the phase diagram inside the buckling
phase. Domains now form in proximity of kinks which often coincide with their
end-loops, where the bending energy would be larger.
The merging events are rarer since every defect tends to pin a plectoneme, preventing
the fusion between two close domains. Also the plectonemic lifetime seems to be
affected by the heterogeneous stiffness, in fact for points A∗ and B∗ we cannot still
observe stable domains.
Finally the distribution of the plectonemic centers of mass confirms all the previous
observations and it exhibits well defined peaks in correspondence of the kinks
positions.

To conclude the study of the buckling phase in two-braids, one should perform a
more systematic analysis of the plectonemes lifetime, in order to distinguish between
different behaviors for points of the phase diagram near and far from the transition
line. Another issue one could explore concerns the plectonemes dynamics upon a
quench from one equilibrium phase to another: for example, starting from a point
(Ca∗, F ∗) in the buckling phase, one can suddenly increase the force keeping fixed
the catenation and let the system relax toward the unbuckled phase. In such a
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way we can monitor the dissolution of plectonemic domains. If we then decrease
the force again passing through the transition line, we can study the re-nucleation
dynamics of end-loops. For example it could be interesting to study where the
domains re-nucleate: do they form in the same place of the original ones or their
formation is independent from the initial configuration?
To extend this area of research, one can think to use the same simulative method
to reproduce braids between three or more strands. The buckling transition is now
more complex and we can assume that it should depend on the intertether distances
between every pair of chains. These distances can be equal or not and in this last
case the buckling point could be more influenced by an intertether distance than by
the others. The reproduction of this setup could be also developed experimentally,
by using active colloids as Goodrich and Brenner proposed [30].
Finally the simulation of topoisomerases’ action should be worthy of attention. For
example one can consider a setup where particles attached to the braid provoke a
gate allowing the passage of a strand: therefore the catenation decreases and this
decatenation process could depend on the intertether distance, on the pulling force,
but also on the presence of local defects.
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Appendix A

LAMMPS script

Below we show an example of the LAMMPS script used to obtain trajectories in
which force can vary.

variable tname loop 1 10
variable tseed index 4332508 9592806 4224286 8664701 7861908 1622007 1519940
5823255 4327454 4695761

# Initialization
units lj
boundary p p p
atom_style angle
read_data Input_N250_Lk10
neighbor 10.3 bin
neigh_modify every 1 delay 1 check yes

# Define groups
group all type 1
group upperwall type 2
group upperatoms id 1 251
group downatoms id 250 500
group rotatingbeads union upperwall upperatoms
group pulledbead id 501
group others subtract all upperatoms

# Generating file for trajectory
dump 1 all custom 1000 Videos/Video_2s_N250_Lk10.${tname} id x y z
dump_modify 1 format line "%d %.4f %.4f %.4f"

# Potential information
pair_style lj/expand 1.1224615296218
pair_modify shift yes
pair_coeff 1 1 1.0 1.0 0.0
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pair_coeff 1 2 1.0 1.0 3.3673845888654
pair_coeff 2 2 1.0 1.0 6.7347691777308

bond_style fene/expand
bond_coeff 1 30.0 1.5 1.0 1.0 0.0
special_bonds fene

angle_style cosine
angle_coeff 1 20.6

atom_modify sort 0 0.3
neigh_modify exclude molecule/intra rotatingbeads

reset_timestep 0
timestep 0.0025

region muro block -50.00 50.00 -1.0 0.0 -50.0 50.0 side out units box

label loopforce
variable force index 10.0 9.0 8.0 7.0
variable tempi_force index 5000000 5000000 5000000 5000000
variable tempi_dump index 50000 50000 50000 50000
dump_modify 1 every $tempi_dump

# Dynamics
fix 1 others nve
fix 2 others langevin 1. 1. 2. ${tseed}
fix 3 downatoms setforce 0.0 0.0 0.0
fix 4 others wall/region muro harmonic 200.0 1.0 1.0
fix 5 pulledbead smd cfor ${force} tether NULL 258.0 NULL 0.0
fix 6 rotatingbeads rigid group 1 rotatingbeads force 1 off on off torque 1 off off off run
${tempi_force}

next force
next tempi_force
next tempi_dump
jump SELF loopforce

clear
next tseed
next tname
jump SELF

This script generates 10 trajectories for every force, whose higher value is 10 εσ
and the lower is 7 εσ .
In Initialization units, boundary conditions and atom-style are set; then different
groups are defined in order to create the rigid body forming the upper wall and to
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identify its central bead on which we apply the pulling force. The group rotatingbeads
has this name because in the varying catenation setup it includes all beads subject
to torque.
As we have already said in Chapter 4, pair interactions are given by Lennard-Jones
potentials that are used in their expand form allowing interactions between beads of
different sizes.
Bonded beads interact via FENE potential, while three-body potentials are repre-
sented by the cosine style.
Finally, at the end of the script, we introduce dynamics: it incorporates Brownian
motion, interactions between beads and the underlying wall and the force pulling
the central bead of the rigid body.

Here we also show an example of an Input File used in LAMMPS scripts. Atoms
with an identification number (ID number) 1 included between 1 and 250 form the
first strand (the blue chain in Fig. 4.1), atoms with an ID number between 251 and
500 belong to the second strand (the red one in Fig. 4.1) and finally ID numbers
grater than 500 are referred to beads forming the upper wall ( atom 501 is the pulled
bead).

LAMMPS data file from restart file: timestep = 0, procs = 1
563 atoms
498 bonds
496 angles

2 atom types
1 bond types
1 angle types

-60. 60. xlo xhi
-5. 260. ylo yhi
-60. 60. zlo zhi

Masses

1 1
2 0.001

Atoms

1. 1 1 -19.5770 226.1547 -7.5988 0 0 0
2. 1 1 -19.5635 225.1701 -7.9785 0 0 0
3. 1 1 -19.3286 224.1725 -8.0567 0 0 0
4. 1 1 -19.2718 223.1864 -8.2329 0 0 0

1The ID number is reported in the first column below the writing Atoms.
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5. 1 1 -18.8601 222.2651 -8.3543 0 0 0
6. 1 1 -18.3027 221.4156 -8.2493 0 0 0
7. 1 1 -17.9154 220.5375 -8.2003 0 0 0
8. 1 1 -17.6613 219.5824 -8.2949 0 0 0
9. 1 1 -17.3716 218.6418 -8.2307 0 0 0
10. 1 1 -17.0035 217.7846 -8.2022 0 0 0
11. 1 1 -16.6481 216.8423 -7.9635 0 0 0
12. 1 1 -16.3411 216.0327 -7.4680 0 0 0
13. 1 1 -15.7337 215.3064 -7.3453 0 0 0
14. 1 1 -15.3912 214.3594 -7.2152 0 0 0
15. 1 1 -14.8552 213.4923 -7.0767 0 0 0
16. 1 1 -14.3487 212.7270 -7.0554 0 0 0
17. 1 1 -13.7572 211.8790 -7.0657 0 0 0
18. 1 1 -13.5348 210.9446 -7.0520 0 0 0
19. 1 1 -13.3034 209.9496 -7.1039 0 0 0
20. 1 1 -12.9145 209.0392 -7.1446 0 0 0

.

.

.

.

.

.

.

.
251. 2 1 19.5770 226.1547 7.5988 0 0 0
252. 2 1 19.3468 225.1503 7.4906 0 0 0
253. 2 1 19.1335 224.1370 7.4754 0 0 0
254. 2 1 18.8472 223.2222 7.5526 0 0 0
255. 2 1 18.5218 222.3152 7.4813 0 0 0
256. 2 1 18.1234 221.4447 7.3943 0 0 0
257. 2 1 17.6204 220.6553 7.4319 0 0 0
258. 2 1 17.4517 219.6842 7.4093 0 0 0
259. 2 1 17.3606 218.6648 7.6959 0 0 0
260. 2 1 17.2077 217.7078 7.8101 0 0 0
261. 2 1 16.8866 216.8031 7.7441 0 0 0
262. 2 1 16.4902 215.9295 7.7888 0 0 0
263. 2 1 16.3947 214.9921 7.7375 0 0 0
264. 2 1 16.0707 214.1131 7.8508 0 0 0
265. 2 1 15.9374 213.1202 7.8580 0 0 0
266. 2 1 15.6341 212.2307 7.6791 0 0 0
267. 2 1 15.2048 211.3645 7.6145 0 0 0
268. 2 1 14.8479 210.4599 7.5333 0 0 0
269. 2 1 14.5251 209.5134 7.3710 0 0 0
270. 2 1 14.1792 208.5982 7.4545 0 0 0
271. 2 1 13.8056 207.7051 7.4717 0 0 0

.

.
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.

.

.

.

.

.
501. 3 2 0.0000 230.1547 0.0000 0 0 0
502. 3 2 -18.5038 230.1547 -29.7087 0 0 0
503. 3 2 -11.9782 230.1547 -27.1758 0 0 0
504. 3 2 -5.4525 230.1547 -24.6428 0 0 0
505. 3 2 1.0731 230.1547 -22.1099 0 0 0
506. 3 2 7.5988 230.1547 -19.5770 0 0 0
507. 3 2 14.1245 230.1547 -17.0440 0 0 0
508. 3 2 20.6501 230.1547 -14.5111 0 0 0
509. 3 2 27.1758 230.1547 -11.9782 0 0 0
510. 3 2 33.7014 230.1547 -9.4452 0 0 0
511. 3 2 -21.0368 230.1547 -23.1831 0 0 0
512. 3 2 -14.5111 230.1547 -20.6501 0 0 0
513. 3 2 -7.9855 230.1547 -18.1172 0 0 0
514. 3 2 -1.4598 230.1547 -15.5843 0 0 0
515. 3 2 5.0659 230.1547 -13.0513 0 0 0
516. 3 2 11.5915 230.1547 -10.5184 0 0 0
517. 3 2 18.1172 230.1547 -7.9855 0 0 0
518. 3 2 24.6428 230.1547 -5.4525 0 0 0
519. 3 2 31.1685 230.1547 -2.9196 0 0 0
520. 3 2 -23.5697 230.1547 -16.6574 0 0 0

.

.

.

.

.

.

.

.

Velocities

1 0 0 0
2 0 0 0
3 0 0 0
4 0 0 0
5 0 0 0
6 0 0 0
7 0 0 0
8 0 0 0
9 0 0 0
10 0 0 0
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11 0 0 0
12 0 0 0
13 0 0 0
14 0 0 0
15 0 0 0
16 0 0 0
17 0 0 0
18 0 0 0
19 0 0 0
20 0 0 0

.

.

.

.

.

.

.

.

Bonds

1 1 1 2
2 1 2 3
3 1 3 4
4 1 4 5
5 1 5 6
6 1 6 7
7 1 7 8
8 1 8 9
9 1 9 10
10 1 10 11
11 1 11 12
12 1 12 13
13 1 13 14
14 1 14 15
15 1 15 16
16 1 16 17
17 1 17 18
18 1 18 19
19 1 19 20
20 1 20 21

.

.

.

.

.

.
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.

.

Angles

1 1 1 2 3
2 1 2 3 4
3 1 3 4 5
4 1 4 5 6
5 1 5 6 7
6 1 6 7 8
7 1 7 8 9
8 1 8 9 10
9 1 9 10 11
10 1 10 11 12
11 1 11 12 13
12 1 12 13 14
13 1 13 14 15
14 1 14 15 16
15 1 15 16 17
16 1 16 17 18
17 1 17 18 19
18 1 18 19 20
19 1 19 20 21
20 1 20 21 22

.

.

.

.

.

.

.

.
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Appendix B

Lennard-Jones units

In Appendix A we reported an example of LAMMPS script where we chose
units lj. This means that in our simulations we work with Lennard-Jones units
which employ the mass, ε and σ of a system in order to use dimensionless physical
quantities. Labeling quantities expressed in lj units with an asterisk, the conversion
between these reduced values and the real physical values is the following:

• distance: x∗ = x
σ ;

• energy: E∗ = E
ε ;

• force: F ∗ = F σ
ε ;

• mass: m.

σ and ε are the values that appear in the Lennard-Jones potential 4.1 , so they
depend on the system which is the object of the simulation. In our case σ is the size
of a bead composing one of the two strands, so it corresponds to the diameter of a
single double-helix DNA. Considering a DNA molecule under normal physiological
conditions, its diameter is approximately 2.5 nm, so we decide to set σ = 2.5 nm.
ε is an energy and it can be expressed as ε = kbT where kb is the Boltzmann constant
and T is the temperature of the system. By assuming that chains are immersed in a
buffer at room temperature (T=300 K) we have ε = 4.14 · 10−21 J.
m is the mass of what we are simulating: in our case, as reference mass, we choose
the one of a bead belonging to a chain, so in the Input File every bead of this kind
has m = 1.
The Lennard-Jones time unit is indicated as τ . To convert τ to nanoseconds we use
a typical time of the system, i.e. the time employed by a bead to cover a diffusion
length of σ. Therefore one has:

σ2 = 2Dτ

where D is the diffusion constant given by the Einstein’s relation: D = KbT
fη .
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In the denominator η is the viscosity of the fluid where the chains are immersed
in, while f provides a geometrical term which for a sphere σ

2 in radius is f = 3πσ.
Finally we have:

τ = 3π
2
σ3η

KbT

By using the room temperature T = 300K and the corresponding water viscosity
η = 1 cP , the relation between τ and nanoseconds is the following:

τ = 17.8ns.



Appendix C

DNA topology

In the cellular environment, DNA is usually topologically constrained [22, 23]
and the result is the formation of supercoiled molecules.
Supercoiled DNA was first studied for circular DNA chains, but this theory can
also be extended to the molecules whose ends aren’t free to rotate: therefore
magnetic tweezers simulate the formation of supercoils in linear DNAs, providing an
experimental method for changing the DNA topology. The changes introduced by
magnetic tweezers can be summarized by three quantities: linking number, writhe
and twist, that we now analyze.
Considering a double-helix DNA, one observes that the rotation of the paramagnetic
bead induces a strand to swivel about the other: the number of intertwining is called
linking number, Lk, and for closed curves its value is always an integer. In this last
case the procedure to calculate the linking number is the following: one chooses a
travel direction along both the closed curves and projects them into a plane counting
the number of crossings between the two two-dimensional strands. At each crossing
is given a value +1 if it’s a right-handed crossing and -1 if it’s left-handed (see Fig.
C.1). Therefore link is given by the following equation:

Lk = 1
2
∑
i

wi (C.1)

where wi is the contribution of the i-th crossing (+1 or -1).
The linking number doesn’t depend on the direction of view, but it changes if one of
the two travel directions is inverted.
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Figure C.1: Calculation of link. Panel a shows a right-handed crossing, that is a crossing which
can be completed with a right-handed helix turn (panel a’). Panel b represents a left-handed
crossing completed with a left-handed helix turn such as in panel b’. Figure from Klenin and
Langowski [24].

So Lk is an invariant for closed curves and it can be seen as the sum of two
quantities, writhe Wr and twist Tw:

Lk = Wr + Tw (C.2)

Twist crossings are due to the rotations of a strand around the other, while the
origin of the writhing number are the self-crossings of DNA axis (see Fig. C.2). Wr
and Tw change depending on the direction of view, but their sum remains the same:
for this reason, the writhe and the twist reported in the above equation are obtained
averaging over all possible view directions.

Figure C.2: Relation between link, writhe and twist. Here the circular DNA molecule is represented
as a ribbon, whose edges are the sugar-phosphate backbones. Figure from Sarkar and Rybenkov
[11].
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The linking number between two curves C1 and C2 and the writhing number of
a curve C can be found also through Gauss double integrals:

Lk = 1
4π

∫
C1

∫
C2

(d~r2 × d~r1)~r12
r3

12

Wr = 1
4π

∫
C

∫
C

(d~r2 × d~r1)~r12
r3

12

where ~r1 and ~r2 are two points of C1 and C2 or two different points of the same
curve C, ~r12 = ~r2−~r1 and r12 =| ~r12 |. Finally twist is simply given by the difference
between Lk and Wr.

In braiding we work with catenation Ca between two open strands. We define
catenation as the linking number between the two chains looking along the direction
orthogonal to the plane of the braid: Ca assumes both positive and negative values
(according to the rules described for Lk) and it is an half-integer number. Four
examples are reported in Fig. C.3 .
Considering our setup, one understands that catenation corresponds to half of the
number of turns of the upper wall: by observing the system along the y-axis (see Fig.
4.1), a clockwise movement of the wall induces a positive Ca, while an anti-clockwise
rotation introduces a negative one.



124 APPENDIX C. DNA TOPOLOGY

Figure C.3: Examples of strands with different catenation values. We choose a travel direction
opposite to the y-axis, which is oriented as in Fig. 4.1 .
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