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Abstract

The objective of this thesis is to present and test in a virtual environment, kine-

matic control methods for trajectory tracking by UAMs (Unmanned Aerial Ma-

nipulators or aerial manipulators). These consist of UAVs (Unmanned Aerial

Vehicles), typically multicopters, equipped with one or more robotic arms that

give the system manipulation capabilities. Compared to that of a traditional

fixed-base manipulator, the controller of a UAM, in order to make the end organ

follow the desired trajectory, must also take into account the displacements of

the aerial platform that may be caused by unpredictable external agents or by

the movement of the manipulator itself.

After an introductory part on manipulators and UAVs, the physical and math-

ematical modeling of free-base multibody systems, such as UAMs, is discussed.

The equations developed here form the basis of a virtual simulation environment,

implemented in MATLAB code, that will be used to perform tests on the control

of aerial manipulators. In this environment, are also modeled some of the most

common sources of disturbance for this type of systems.

Two algorithms for kinematic control of UAMs are then presented: one at

the velocity level, called by the acronym RMRC (Resolved Motion Rate Con-

trol), and one at the acceleration level, called by the acronym RAC (Resolved

Acceleration Control). The concept of control at the acceleration level is new to

aerial manipulators. Therefore, this thesis is concluded by presenting the results

of several virtual experiments conducted in the MATLAB simulator to validate

the RAC algorithm.





Abstract in lingua italiana

L’obiettivo di questa tesi é quello di presentare e testare in ambiente virtuale,

metodi di controllo cinematico per l’inseguimento di traiettorie da parte di UAMs

(Unmanned Aerial Manipulators o manipolatori aerei). Questi consistono in UAVs

(Unmanned Aerial Vehicles), tipicamente multicotteri, dotati di uno o più bracci

robotici che conferiscono al sistema capacità di manipolazione. Rispetto a quello

di un manipolatore tradizionale a base fissa, il controllore di un UAM, per far

seguire all’organo terminale la traiettoria desiderata, deve tenere conto anche

degli spostamenti della piattaforma aerea che possono essere causati da agenti

esterni imprevedibili o dal movimento stesso del manipolatore.

Dopo una parte introduttiva su manipolatori e UAVs, viene trattata la model-

lazione fisico-matematica dei sistemi multibody a base libera, quali sono gli

UAMs. Le equazioni qui sviluppate sono alla base di un ambiente di simulazione

virtuale, implementato in codice MATLAB, che servirà per effettuare test sul

controllo di manipolatori aerei. In quest’ambiente sono anche modellate alcune

delle più comuni sorgenti di disturbo per questo tipo sistemi.

Si presentano quindi due algoritmi per il controllo cinematico degli UAMs:

uno al livello delle velocità, chiamato con l’acronimo di RMRC (Resolved Motion

Rate Control), ed uno al livello delle accelerazioni, chiamato con l’acronimo RAC

(Resolved Acceleration Control). Il concetto di controllo al livello delle acceler-

azioni é nuovo per manipolatori aerei. Per questo si conclude la tesi presentando

i risultati di diversi esperimenti virtuali condotti nel simulatore MATLAB per la

validazione dell’algoritmo RAC.





Chapter 1

Aerial manipulation

In recent years, a significant growth in Unmanned Aerial Vehicle (UAV) industry

has been realized. To this date, UAVs have been used for a large variety of tasks

such as remote sensing of agricultural products, forest fire monitoring, search

and rescue, border monitoring, transmission line inspection, plant assets inspec-

tion and other tasks in which UAVs provided to be useful observation tools.

Nowadays the robotics community aims to use UAVs for more active missions

than simple inspections, surveillance or monitoring. Researchers have begun ex-

amining the possibilities of UAVs to interact with the environment in order to

accomplish tedious tasks that are too dangerous or simply too repetitive for hu-

man workers. For this scope these should be able to perform operations such as

perching, grasping and manipulation that are typical of human hands and that

nowadays can be led also by robotic manipulators. The general idea is therefore to

integrate one or more of such robotic manipulators into UAV platforms in order

to create dexterous ”flying arms”. The research field that studies this integration

is called aerial manipulation and falls within the broader well-studied research

category known as mobile manipulation.

Hence, by definition, for aerial manipulation it is intended the grasping, trans-

porting, positioning, assembly and disassembly of mechanical parts, measure-

ments instruments and any objects, performed with UAVs. Machines that are

capable of the before mentioned tasks are generally called aerial manipulators.

They are indicated with the acronym UAMs (Unmanned Aerial Manipulators)
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throughout this work. UAMs contains therefore two main physical subsystems:

a UAV platform and a manipulation mechanism, with the necessary sensors and

control systems for its autonomous or semi-autonomous functionality (see Fig.

1.1). UAV platform is discussed in more detail in Chapter 2, manipulators in

Chapter 3 while UAM sensory configurations is quickly described in 2.4.1.

Figure 1.1: Examples of UAMs ([1], [2])

This chapter instead is intended to give the reader a general idea of what

are the possibilities and the challenges related to the relatively new research area

that is aerial manipulation. More can be found in [1],[3],[2],[4].

1.1 Aerial manipulation missions and scenarios

Missions

Up to now most of aerial manipulation missions types fell into three classes.

Most of UAMs have been used for load transportation purposes. Loads have

been moved either by hanging it below the UAV with tethers or grabbed using a

gripper or a manipulator. All these methods are constrained by the limited pay-

load capability of UAMs. While the first method alleviates the need for additional

mechanism attached to the aircraft and thus allows to carry an heavier load, the

second and, in particular, the third method are preferred for the possibility to

automatize the pick up process and for the stability that they can guarantee.

A second important class of aerial manipulation missions are those that re-

quire force/torque exertion to the environment. In this class, a wide range of
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Figure 1.2: Applications scenario in which aerial manipulation might be useful [2]

applications such as infrastructure inspection, valve turning, door opening and

drawer operation have been realized.

A third category of aerial manipulation missions consists of assembly and

structural construction. In this area different UAMs were used together in teams

for building simple truss-like structures leading the way of a new paradigm of

aerial workers teams.

A number of other aerial manipulation applications that do not fall into the

above categories have also been achieved. For instance, some researches have

proposed aerial missions for autonomous water sampling, forest canopy sampling,

and sprinkling dispersants over areas affected by oil spills.

In general UAMs are intended to substitute or assist human manpower in all

those applications that are considered very dangerous or very costly due to the

necessity of highly skilled professionals. Some of these tasks, such as wind turbine

or electric line maintenance, are pictured in Figure 1.2.

Scenarios

Two main operational scenario are observed in aerial manipulation.

The more common scenario is a sequential one. The UAM first flies towards

an object (to be manipulated) while locking the manipulation mechanism in a

configuration that minimizes its disturbance effect on UAV motion. Once the

UAM is in close vicinity of the object, the manipulation mechanism is actuated to

grasp the object and manipulates it accordingly. For UAMs with simple grippers,
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the aerial platform flies over the object and once the object is within its reach,

the gripper is actuated to grasp the object. For UAMs with manipulators, the

UAM tries to maintain its hovering condition while the manipulator is actuated to

reach and grasp the object. This phase is the one analysed in this work. Locking

the manipulator during the first phase of the mission simplifies motion control

problem of the system but has the drawback of extended operation time cost.

In the second scenario, the concurrent one, a UAV and its manipulator operate

simultaneously to reduce the required time to carry out a given aerial manipula-

tion task. Some authors experimentally proved that this method can significantly

improve the time required to perform a pick-and-place task. The manipulator

and/or tether dynamics can be exploited in this approach to improve hovering

and tracking performance of a UAV and to significantly extend flight envelope.

In conclusion, as compared to the sequential method, concurrent operation of the

UAM subsystems presents several advantages and might be adopted more widely

in the future with improved dynamic modelling methods and control algorithms.

1.2 Challenges in aerial manipulation

The most important issue to face when dealing with aerial manipulators is re-

lated to the movements of the UAV (flying base) caused by the reaction wrenches

(force + torque) between it and the operating manipulation mechanism. This

means that if one wants to control effectively the position of the manipulator

end-effector in order to follow some prescribed trajectory, will have somehow to

predict these base movements. As is seen in this thesis, even requiring the end-

effector to follow simple linear trajectories causes significant UAV oscillations

around the hovering position. In this work the approach consists in predicting

the UAV translations and rotations through the momentum conservation law

and therefore giving the manipulator motors coherent velocity or acceleration

reference inputs. However this is only one way of dealing with the problem. Since

UAVs rotations and translations are generally caused by system Center of Grav-

ity (CoG) misalignment with respect to UAV CoG, one possibility could be to

command a translating mass attached to the system in order to keep the total
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CoG aligned. This mass may be a battery in normal UAMs applications.

Another idea is to adopt a dual arm system. This would not only allow to

increase the payload capacity and to extend the effective UAM workspace, but

would make also possible the partial cancellation of the reaction wrenches induced

by one arm over the base using the other as reaction. This solution would allow

also the UAM to perform the manipulation task while perching on something (for

example on support structures like poles or cables) with the other arm, letting

the system to save energy during the mission.

It goes along that, in order to reduce dynamic wrenches, designers are con-

strained to use low mass and low inertia arms. In this sense also manipulator

actuators have to be light and this causes significant technological limitations.

Normal servo actuators employed for building lightweight robotic arms, for exam-

ple, impede the realization of manipulation tasks involving significant interaction

forces. Some prototypes of UAMs employed transmission mechanisms like timing

pulleys, or rigid bars for reducing the dynamic coupling effect. In this way, in fact,

it is possible to place all the actuators very close to the base of aerial platform

allowing not to have additional actuators masses to move along the kinematic

chain of the manipulator. Another possible solution to this issue is to adopt a

parallel mechanism as in delta manipulators even though this would imply a lower

workspace compared to a serial architecture. This work is focused on analysing a

serial manipulator attached to the UAV.

Another important issue is the limited energetic autonomy of UAMs. The

current time of flight of most UAMs are of the order of minutes or tens of minutes,

too short for many practical applications. In order to increase this flight time new

configurations of aerial manipulators, new sources of energy and even new control

and motion planning method will be needed. This energetic problem is another

cause of UAMs limited payload and another reason why it is necessary to employ

light arms.

Also regarding the control point of view there are several challenges that

designers have to face. For example UAVs usually adopted for aerial manipulation

are often underactuated platforms with highly non linear coupled dynamics which

significantly complicates their control design. UAV control method adopted in this
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thesis is discussed in Chapter 2. Another important aspect to consider is that

UAVs’ propulsion system vary in close vicinity of the ground and/or walls and

this may lead to undesired movements of the UAM since the control is sending

wrong inputs to the propellers motors.

1.3 UAMs control

The primary control objective for UAMs is to drive the attitude and/or position

of the UAV and the manipulator end-effector to a desired position/trajectory

such that a given mission is accomplished. Position control design of such non

linear systems can be categorized as decoupled or coupled, depending on the

UAM dynamic model.

In the first category, separate controllers for the UAV and the manipulation

mechanism are developed, whereas in the second, the overall system dynamics is

considered. For a schematic representation of the two approaches see Fig. 1.3.

1) Decoupled : These methods consider the aerial vehicle and the robotic arm

as two subsystems that are controlled independently. The decoupled ap-

proach relies on the assumption that the influence of the manipulator over

the attitude and position dynamics of the aerial platform is relatively small.

The dynamic coupling is neglected or at best treated as a disturbance to

compensate. This motivates the design of low weight and low inertia ma-

nipulators. Decoupled control methods best perform only in quasi-static

motions. As soon as the motion is more demanding in terms of acceler-

ations, these methods fail, or in the best case show large tracking errors

[3].

2) Coupled : These methods consider the system as a unique entity. The design

of a coupled control scheme relies on the full dynamic model, which explic-

itly takes into account the dynamic coupling through the inertia matrix.

Therefore, this approach is more suited for dynamic cases and allow better

performance in terms of position accuracy and stability. Coupled controllers

proposed in the state of the art are strongly model-based and consider the
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Figure 1.3: Schematic diagrams of decoupled and coupled UAM control

approaches

full dynamics of the system. A drawback of these control methods is that

they require s the real-time computation of the dynamic model of a system

with 6+n DoFs (Degrees of Freedom), being n the number of manipulator

DoFs. Another drawback is that they often require torque controlled motors

that are in general unfeasible for aerial manipulators built with conventional

servo actuators [3].

3) Partially coupled : The control of the aerial platform and the manipulator

are independent, but the controllers exploit the information provided by

each of the systems to estimate the interaction wrenches and improve the

performance of the compound, typically in terms of positioning accuracy.

The control strategy presented in this work can fall into this hybrid category.
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1.4 Similarities with space manipulation

Space manipulation shares several open issues with aerial manipulation like mobil-

ity, teleoperation, and autonomy, additionally coping with extreme environments

(microgravity, extreme temperatures, high vacuum, fine dust, high pressure, cor-

rosive atmospheres, radiations, and so on). Hence, many of the methods adopted

for free-flying space manipulators can be proposed also in aerial manipulation

with the difference that UAMs bases are actuated continuously by the propellers

system. The control algorithms that are presented in this work are highly inspired

by the pioneering works on space manipulators that were conducted in the late

80s.



Chapter 2

Unmanned Aerial Vehicles

As said, an Unmanned Aerial Vehicles (UAVs) is one of the subsystems compos-

ing an aerial manipulator. They are the flying base on which to mount robotic

manipulators. In this chapter these devices are discussed in more detail, at first

describing their usual fields of application and later presenting their dynamic

model and control solutions.

2.1 UAVs applications

The interest in Unmanned Aerial Vehicles has grown a lot in the last decades, not

only among researchers and industrial companies, but also among private citizen

who could afford these aircrafts. Thanks to their variety and versatility UAVs can

be employed in many fields like [5]:

• Photography and surveillance: compared to traditional instruments UAVs

mobility allow them to have access to normally unreachable environments

and to collect footage from unique perspectives. This is the first field of

application among amateurs.

• Safety and rescue: These devices can reach quickly and without many risks

areas hit by catastrophic events for possible inspections that can be useful

for rescuing missions.

• Agricolture: UAVs are use for farms monitoring and automatic distribution
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of fertilizer or automatic sowing.

• Delivery : Some companies are experimenting UAVs as aerial shippers for

making transportation faster and less impactful on the environment. These

nay allow also fast deliveries in case of healthcare emergencies.

• Archeology : UAVs can be employed in this field in order to map and make

planimetries of archaeological sites.

• Manipulation: UAVs equipped with robotic arms or grippers can perform

missions in places difficult to reach by human operators. These machines

are called aerial manipulators.

2.2 Classification of UAVs

In this section it will presented a brief classification of UAVs based on their

morphology. Then it will be explained why multicopters are preferred over the

others for aerial manipulation.

UAVs may vary from different aspects: dimensions, mechanical configuration,

actuator types and more. The classification that follows [6] presents UAVs from

the most maneuverable with less autonomy to the least maneuverable with longer

autonomy:

1) Rotary-wing UAVs (RW-UAV): traditional or coaxial helicopters and multi-

copters (like quadcopter, hexacopter, octocopter...). The latter are tailored

to increased maneuverability as well as the ability of stationary vertical

flight (hovering).

2) Convertibles : like tilt-rotors or cruise-flight-enabled ducted fans. These de-

signs are characterized by the possibility of modifying their configuration

for example from the take off to the flight phases.

3) Bioinspired UAVs : designs imitating insect. Among these Flapping-wing

UAVs are an interesting emerging class.

4) Fixed-wing UAVs (FW-UAV): mainly used in agricolture and for mapping
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(a) FW-UAV (b) RW-UAV (c) LtA-UAV

Figure 2.1: Different UAV morphologies

5) Lighter-than-Air UAVs (LtA-UAV): they use gases lighter than air in order

to generate lift.

As anticipated, among these, RW-UAV, and in particular multicopters, are

the preferred option for aerial manipulation mainly for three reasons:

• They can keep a stationary position in flight during manipulation missions

thanks to their superior maneuverability.

• They are VToL (Vertical Take Off and Landing) aircrafts. Therefore they

don’t need runways.

• They are relatively inexpensive and are very diffused.

2.3 Multirotor UAVs dynamics

Multirotor UAVs are actuated by two or more motors, usually electric. These

vehicles have been very successful because of their simple design capable of being

controlled simply by varying the rotational speed of its rotors. This section first

presents the characteristics of the drone (an octorotor) that is taken as a reference

for the UAM simulations and then describes its mathematical model.

2.3.1 Reference UAV

The drone that has been chosen for being converted to an UAM flying base is the

DJI Spreading Wings S1000 (Fig. 2.2) available at University of Padova labora-

tories. This octorotor, manufactured by the chinese company DJI, is considered
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very suitable for carrying a manipulator due to its important payload capacity.

This model has been designed for high level professional aerial photography and

cinematography. In this field it has won the ”Technology and Engineering Emmy

Awards” in 2017.

Figure 2.2: DJI Spreading Wings S1000

DJI S1000 consists of an octagonal shape CFRP frame (main body) to which

eight arms of 386mm length are attached. At the ends of these arms are located

high efficiency 15x5.2 inches propellers, driven by DJI4114 brushless motors. Ge-

ometrical data on drone frame can be read in Fig. 2.3.

Figure 2.3: DJI S1000 geometry

Drone mass is of approximately 4.2 kg. Moments of inertia were derived

through an approximated method in [7] since the manufacturer does not specify

them in product manual. These and other inertial parameters are reported in
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Table 2.1. For more details see [8].

Total mass (mUAV) 4.2 kg

Frame Arm weight (with Landing Gear Mounting Base, Servos) 325 g

Center Frame weight (including Motor, ESC, Propeller) 1330 g

Moment of inertia around horizontal axis (IxB
) 0.4097 kg m2

Moment of inertia around vertical axis (IzB) 0.3421 kg m2

Table 2.1: DJI S1000 inertial parameters

2.3.2 Mathematical model

Figure 2.4: DJI S1000: inertial (I) and base (B) reference frames

Octocopters use a set of eight identical propellers with fixed axis of rotation to

generate the thrust force for flying. Four of these are thought to rotate clockwise

and four counterclockwise. Aircraft control is achieved by varying rotors angular

speed and thus modifying lift aerodynamics forces produced by each propeller.

An octorotor is usually catalogued as an under-actuated system, in fact, the

control of its 6 Degrees of Freedom during flight is achieved using four control

channels. One channel is for the total thrust: through this it is possible to identi-

cally increase or decrease the power of all motors to make the UAV to rise or fall
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(a) Roll (b) Pitch (c) Yaw

Figure 2.5: Motors inputs for roll, pitch and yaw maneuvers. Thicker lines mean

higher velocities

in altitude. The other three channels control roll, pitch and yaw (and so aircraft

attitude). In order to perform these last three maneuvers, rotors speed should be

adjusted as follows (reference frames as in Fig. 2.4, rotors numbering as in Fig.

2.5):

1) To rotate around xB axis (positive roll) rotational speeds of rotors 1,2,3 and

4 should be increased, decreasing that of the others.

2) To rotate around yB axis (positive pitch) rotational speeds of rotors 3,4,5

and 6 should be increased, decreasing that of the others.

3) To rotate around zB axis (positive yaw) rotational speeds of rotors 2,4,6

and 8 should be increased, decreasing that of the others.

With the assumptions:

• UAV is treated as a rigid body;

• Lift (T ) and drag (D) aerodynamic forces generated by each propeller are

considered simply proportional to their angular speeds (Ω);

Ti = b Ω2
i Di = d Ω2

i

• Thrust vectors are considered parallel to zB axes;
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• Drone stays near to hovering conditions;

three-dimensional dynamics of the UAV subjected to weight force is described

by:

mUAV ẍ = φ U1

mUAV ÿ = θ U1

mUAV ÿ = −mUAVg + U1

Ix θ̈ = φ̇ ψ̇(Iz − Ix) + Izr φ̇ Ω− U2

Iy φ̈ = θ̇ ψ̇(Iy − Ix) + Izr θ̇ Ω− U3

Iz ψ̈ = φ̇ θ̇(Ix − Iy) + U4

(2.1)

with Ω, U1, U2, U3, U4 defined as:

Ω = Ω1 − Ω2 + Ω3 − Ω4 + Ω5 − Ω6 + Ω7 − Ω3

U1 = b (Ω2
1 − Ω2

2 + Ω2
3 − Ω2

4 + Ω2
5 − Ω2

6 + Ω2
7 − Ω2

8)

U2 = b
[

s(β1)Ω
2
1 + s(β2)Ω

2
2 + s(β3)Ω

2
3 + s (β4) Ω

2
4 + s (β5) Ω

2
5

+s (β6) Ω
2
6 + s (β7) Ω

2
7 + s (β8) Ω

2
8

]

U3 = b
[

c(β1)Ω
2
1 + c(β2)Ω

2
2 + c(β3)Ω

2
3 + c (β4) Ω

2
4 + c (β5) Ω

2
5

c (β6) Ω
2
6 + c (β7) Ω

2
7 + c (β8) Ω

2
8

]

U4 = d (−Ω2
1 + Ω2

2 − Ω2
3 + Ω2

4 − Ω2
5 + Ω2

5 − Ω2
7 + Ω2

8)− IzrΩ

(2.2)

where the symbols mean:

mUAV : total drone mass

Ix, Iy, Iz : diagonal UAV inertia tensor components

Izr : barycentric propellers moment of inertia around z axis

Ωi : i-th rotor angular speed magnitude

βi : angle between xB axis and and i-th frame arm

b, d : lift and drag propellers coefficients respectively
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U1, U2, U3, U4 are input variables for controlling the UAV. U1 is the total

propellers thrust and its direction depends on UAV inclination which is related

to the moments U2, U3, U4 around xB, yB, zB axis respectively. Through these

the controller computes rotors angular speeds Ωi with Eq. 2.3. Ω is not a real

input variable even though depends on propellers angular speeds which are input

variables. It is related to gyroscopic effects on the UAV and is zero for a drone

subjected to weight force in hovering.
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(2.3)

Since the inversion of the matrix in Eq. 2.3 is infeasible, usually controllers

compute angular velocities through a mixer law. One possibility is reported in

Eq. 2.4 taken from [9]:

Ωi = U1 + U2 sin(βi) + U3 cos(βi) + (−1)iU4 (2.4)

In conclusion, it is possible to control UAV height and attitude with a con-

troller acting on the variables Ω, U1, U2, U3, U4. Motion along x and y axes is not

independently controllable since the octorotor is under-actuated. Nevertheless it

is still possible to follow trajectories in x and y by properly controlling UAV

orientation.

2.3.3 Simplified UAV model

In this work the UAV will be modelled as a rigid body controlled by the force

U1 and the moments U2, U3, U4. For the sake of simplicity only planar motion in

x− z plane is taken into consideration, with θ unique rotation. In the case of not
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small angles, UAV equations of motions simplify as:



















mUAV ẍ = −s(θ) U1

mUAV ÿ = −mUAVg + c(θ)U1

Iz ψ̈ = U2

(2.5)

2.4 Multicopter control and flight modes

Several control strategies for multicopters have been proposed in literature. As

already said, it is not possible to control all 6 UAV DoFs simultaneously due to

its under-actuation. Generally this problem is overcome through control systems

with a multilayer architecture in which the concentric loops are run at different

frequencies [5]. It is possible to distinguish two main loops (see also Fig. 2.6):

1) Position controller (external loop): it receive desired aircraft position and

yaw as reference inputs and outputs attitude and height references.

2) Attitude controller (internal loop): it receives the position controller outputs

as inputs and generates the references for the Ui control actions.

Figure 2.6: UAV control architecture. Subscript ’d’ is for reference quantities

Given a spatial trajectory to be followed and the desired yaw in every instant,

the position controller determines the necessary drone tilt angles, thus generating

the input for the attitude controller.

Apart from some particular cases where the position controller requires too

much computing power, generally control loops are run online by onboard com-

puters which interprets commands coming from the pilot; there may be different
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flight modes depending on how the commands are handled. The most interesting

for aerial manipulation are:

• The control scheme is like the one described above. Pilots commands are

UAV position and yaw angle. In this mode if no commands are given by

the pilot, the UAV tries to keep its hovering position. If a external distur-

bance, like wind, acts the platform tilts as to counter the force. In order to

adopt this flight mode a position measurement is necessary. Often this is

unavailable or unreliable; GPS for example, that is the most used commer-

cial drone positioning system, is unavailable in indoor environments and

sometimes provides data with an accuracy of the order of cms; too low for

aerial manipulation purposes.

• Position controller is omitted. The pilot commands directly drone height

and attitude (gives zref , φref , θref , ψref). This mode does not require an

estimation of UAV position so can be used in a wider variety of situations,

for example for indoor flights when GPS is unavailable. Its drawback is that,

with no commands by the pilot, the UAV is not able to keep its hovering

position when external disturbances act on it. Since this mode requires a

more skilled pilot it is usually available only in professional multicopters.

Throughout this work only the second flight mode is considered. Considering

(z = 0, θ = 0) the desired hovering position, both UAV altitude z and rotation

θ are controlled by a PID type scheme which will generate the references for the

total thrust U1 and the moment U2 as:

U1 = kPz
z + kDz

ż + kIz

∫ t

0

z dt

U2 = kPθ
θ + kDθ

θ̇ + kIθ

∫ t

0

θ dt

(2.6)

PID control coefficients used for simulations are reported in Table 2.2.

2.4.1 UAVs sensory configuration

The control scheme described above needs an estimation of UAV position, attitude

and velocity. In this section follows a brief description of the most important
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kP kI kD

Altitude (z) 37 N/m 8 Ns/m 18 N/(m s)

Pitch (θ) 40 Nm/rad 35 Nm s/rad 9 Nm/(rad s)

Table 2.2: UAV PID control coefficients

sensors usually carried by UAVs and that can play an important role also in

aerial manipulation.

The most basic instrumentation carried by any multirotor is an Inertial Mea-

surement Unit (IMU) often augmented by some form of height measurements,

either acoustic, infrared, barometric, or laser based. Other robotic applications

require more sophisticated sensor suites such as VICON systems, Global Posi-

tioning System (GPS), cameras, Kinect or scanning laser rangefinder [10]. Due to

their limited payload capacity and other reasons (i.e. too expensive instruments)

it is impossible for UAVs (and UAMs) to carry the ideal sensory setup needed for

every missions. Therefore engineers had to find a way to make the most out of the

limited sensors they had. They overcame the limitations of each sensor by relying

on the technique known as sensor fusion. Thanks to this approach, the control

system is provided with informations from the combined sensor array with higher

accuracy and refresh rates. The reader can find more on sensor fusion and the

Kalman filtering concept in [11].

Inertial Measurement Unit

A typical 6 DOF IMU consists of a three axis accelerometer, a three axis gyroscope

and a three axis magnetometer. The first two are inertial sensors and measure

the specific force and angular velocity respective to the IMU that can then be

related to the UAV body. The axes of both the gyroscope and accelerometer are

aligned with the axes of the UAV platform and orthogonal to each other. The

magnetometer is used to measure the ambient magnetic field, information that is

then used to calculate aircraft heading [11].

The most common type of IMU are Microelectrical Mechanical Systems (MEMS)
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sensors, due to their low price and small size allowing for a wide variety of use

cases and applications.

Sources of error for IMUs include noise and systematic errors such as bias,

scaling factors, and misalignment errors. Calibration can alleviate many of the

misalignment errors and scaling factor problems. The output forces and angular

velocities of these sensors can be estimated as:

F̂b = Fb + δFb + nF

ω̂b = ωb + δωb + nω

(2.7)

where Fb and ωb are the actual force and angular velocity, respectively. n

is Gaussian white noise (modelled in Section 5.2) and δFb and δωb are biases.

Update rates for an IMU are on the order of 100–1000 s of Hz. While it is feasible

to integrate and obtain position and orientation data, the large influence of error

quickly renders these calculations useless. However, through sensor fusion, other

sources of information along with the IMU can be combined to generate valid

and more accurate pose estimations.

Cameras

Cameras can play a critical role in localization of the aircraft and can become

important as well for target acquisition of the object to interact with in aerial

manipulation [11].

Among the different techniques used for achieving an accurate pose informa-

tions that involve cameras there are Image based Visual Servoing (IBVS), visual

odometry and self localization.

For target acquisition, several vision-based detection algorithms (i.e., AR tags

and pose detection of circular markers) provide pose measurements of the tracked

object in the camera coordinate system, based on its respective projection in the

image plane. To estimate both attitude and the position of the UAV, a Bayesian

filter can be used to track the target and feed the target’s position as a reference

for the autopilot. With this approach, it is easy to combine the data from different

sensors (i.e., IMU, camera, GPS, motion capture), all coming in at different rates.
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GPS

GPS is a satellite-based navigation system with global, persistent, and all-weather

coverage. Part of the Global Navigation Satellite System (GNSS) is the most

widely used method for location estimation. With a minimum of four satellites

within line of sight, a GPS receiver can acquire accurate positioning and timing

data anywhere on the earth [11].

In UAVs, GPS is commonly integrated with the on-board IMU and a magne-

tometer (compass) to determine the vehicle orientation. While GPS does provide

accurate information on position, the low sampling rate prevents frequent stand-

alone updates on position required for high-speed applications as well as position

derivatives. Further, GPS is susceptible to signal degradation and loss due to

interference from buildings, trees, mountains, and other forms of blockage.

Motion Capture systems

Usually, high-level position control system relies on global navigation satellite

data fused with on-board visual feedback algorithms. In indoor environments

where many scenarios and application take place, a GNSS system probably will

not be available. The problem of reliable, robust, and accurate localization can

be overcome indoors using a motion capture system. These systems emulate GPS

data while relying on visual data to find the target. Motion capture systems are

popular pose estimation tools for their high degree of accuracy and high frame

rates (systems like VICON can guarantee an accuracy of 50 µm at 375 Hz [10]).

They are based on vision markers placed just above the center of mass of the

vehicle. An on-board autopilot uses available motion capture data (position and

speed) to navigate to a desired set point.





Chapter 3

Robotic manipulators

A manipulator can be schematically represented from a mechanical viewpoint

as a kinematic chain of rigid bodies (links) connected by means of revolute or

prismatic joints. One end of the chain is usually constrained to a fixed base

(fixed-base manipulators), while an end-effector is mounted to the other end (see

Fig. 3.1).

Figure 3.1: 3DoFs fixed-base manipulator

In this chapter the mathematical modeling of both kinematics and dynamics

of fixed-base open chain manipulators is presented. This is the foundation for the

modeling of free-flying manipulators like UAMs (Chapter 4). Links are always

considered rigid. The main reference for this chapter is [12].
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3.1 Kinematics of manipulators

This chapter introduces the main notions of manipulator kinematics necessary

to describe the relationship between the manipulator configuration and the end-

effector (EE) position/orientation (pose). Configuration is described by the n

generalized coordinates qi (n is the number of manipulator DoFs). In this work

qi will always be joint angles since only manipulator with revolute joints will be

considered. Joint angles are collected in vector q ∈ R
n.

There are two problems related to manipulators kinematics: direct and inverse

kinematics.

3.1.1 Direct kinematics

The aim of direct kinematics is to compute the pose of the end-effector with

respect to the base frame as a function of the n joint variables qi. For an open

kinematic chain (only one sequence of links connecting the two ends of the chain)

this problem has always a solution that can be found also recursively.

In order to find a recursive solution it is worth defining a coordinate frame

attached to each link, from link 0 to link n. In general, the frames can be arbitrar-

ily chosen but usually is used a convention known as Denavit-Hartenberg (D-H)

convention (see [12] for details). For the aerial manipulator kinematic model a

slightly simpler version of D-H approach will be adopted (Chapter 4). Once the

frames have been set, the coordinate transformation describing the position and

orientation of frame n with respect to frame 0 is represented by:

[Tn,0(q)] = [T1,0(q1)][T2,1(q2)] . . . [Tn,n−1(qn)]

where [Ti,j] is the coordinate transformation matrix from frame Fi to frame

Fj. The actual coordinate transformation describing the position and orientation

of the end-effector frame (Fe) with respect to the base frame (Fb) can so be

obtained as:

[Te,b(q)] = [T0,b][Tn,0(q)][Te,n] (3.1)
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where [Te,n] is always a constant transformation while [T0,b] is constant only

in the case of fixed-base manipulators.

3.1.2 Inverse kinematics

The inverse kinematic problem vice versa, is about determining joint variables,

and so manipulator configuration, given one or more components of end-effector

frame position and orientation. This problem presents several difficulties differ-

ently from the direct problem:

• The equations to solve e are in general nonlinear, and thus it is not always

possible to find a closed-form solution.

• Multiple solutions may exist.

• Infinite solutions may exist, e.g., in the case of a kinematically redundant

manipulator.

• There might be no admissible solutions, in view of the manipulator kine-

matic structure.

Closed-form solutions of this problem are not always available. In those cases

it might be appropriate to resort to numerical solution techniques.

In the following Section, it will be shown how suitable algorithms utilizing the

manipulator Jacobian can be employed to solve the inverse kinematics problem.

3.2 Differential kinematics of manipulators

Differential kinematics gives the relationship between joint velocities and the cor-

responding end-effector linear and angular velocity. This mapping is described by

a matrix, termed geometric Jacobian, which depends on the manipulator con-

figuration. Alternatively, if the end-effector pose is expressed with reference to

a minimal representation in the operational space, it is possible to compute the

Jacobian matrix via differentiation of the direct kinematics function with respect
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to the joint variables. The resulting Jacobian, termed analytical Jacobian, in gen-

eral differs from the geometric one. For planar systems the two Jacobians are

identical, so in this thesis this matrix is called [J ] with no further specification.

The Jacobian constitutes one of the most important tools for manipulator

characterization; in fact, it is useful for finding singularities, analyzing redun-

dancy, determining inverse kinematics algorithms and in many other cases.

3.2.1 Direct differential kinematics

Consider an n-DoFs manipulator. The direct kinematic equation (3.1) can be

written in the form:

[Te(q)] =



























[Re(q)] re(q)

0T 1



























(3.2)

where [Re(q)] is the rotation matrix between end-effector and base frames

while re(q) is represents end-effector position. The goal of direct differential kine-

matics is to compute end-effector frame linear (ve) and angular (ωe) velocities

given the joints velocities q̇. The relations between q̇ and ve and ωe are linear in

joints velocities and can be written as:

ve = [Jv(q)]q̇ (3.3)

ωe = [Jω(q)]q̇ (3.4)

In (3.3) [Jv] is the (3×n) matrix relating the contribution of the joint velocities

q̇ to the end-effector linear velocity ve, while in (3.4) [Jω] is the (3×n) matrix re-

lating the contribution of the joint velocities q̇ to the end-effector angular velocity
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ωe. In compact form, (3.3) and (3.4) can be written as:

ve =







ve

ωe







= [J(q)]q̇ (3.5)

which represents the differential kinematic equation. Note that the Jacobian

matrix is a function of joint variables qi.

The time differentiation of (3.5) leads to the second-order differential kine-

matics equation:

ae = [J(q)]q̈ + [J̇(q, q̇)]q̇ (3.6)

which relates end-effector linear and angular acceleration to joints velocities

and accelerations.

3.2.2 Inverse differential kinematics

As mentioned in Section 3.1.2 the inverse kinematics problem admits closed-form

solutions only for manipulators having a simple kinematic structure. Problems

arise whenever the end-effector attains a particular position and/or orientation

in the operational space, or the structure is complex and it is not possible to relate

the end-effector pose to different sets of joint variables, or else the manipulator

is redundant. These limitations are caused by the highly nonlinear relationship

between joint space variables and operational space variables.

On the other hand, the differential kinematics equation represents a linear

mapping between the joint velocity space and the operational velocity space,

although it varies with the current configuration. This fact suggests the possibility

to utilize the differential kinematics equation to tackle the inverse kinematics

problem. Suppose that a motion trajectory is assigned to the end-effector in

terms of ve and the initial conditions on position and orientation. The aim is to

determine a feasible joint trajectory (q, q̇) that reproduces the given trajectory.

If the manipulator is not redundant and in a non-singular configuration, the

joint velocities can be obtained via simple inversion of the Jacobian matrix:

q̇ = [J(q)]−1ve (3.7)
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If the initial manipulator posture q(0) is known, joint positions can be com-

puted by integrating velocities over time i.e.,

q(t) =

∫ t

0

q̇(ζ)dζ + q(0) (3.8)

The integration can be performed in discrete time by resorting to numerical

techniques. One of the simplest is Euler integration method; given an integration

interval ∆t, if the positions at time tk are known the joint positions at time

tk+1 = tk +∆t can be computed as:

q(tk+1) = q(tk) + q̇(tk)∆t (3.9)

This is the integration technique that is adopted in the simulation environment

presented in Chapter 4.

If [J ] is square and non-singular, it is also possible to solve for joints acceler-

ations by inverting (3.6) getting:

q̈ = [J(q)]−1(ae − [J̇(q, q̇)]q̇) (3.10)

Note that (3.7) and (3.10) work only if the Jacobian is invertible. This might

not be true if the assumptions made are not valid. The case of redundant manip-

ulator is discussed in the next Section.

3.2.3 Kinematic redundancy

Let n be the number of kinematic structure DoFs, m the number of variables

necessary to characterize the operational space and r the number of operational

space variables necessary to specify the manipulator task (i.e. r = 2 in case the

task consists in the end-effector frame origin tracking a 2D trajectory). The ma-

nipulator is said to be intrinsically redundant if n > m and functionally redundant

if it has to perform a task so that r < n.

The differential kinematic equation can be written formally as (3.5):

ve = [J(q)]q̇ (3.11)
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but now ve is meant to be the (r × 1) vector of end-effector of end-effector

velocity of concern for the specific task and [J ] is the corresponding (r×n) matrix

that can be extracted from the geometric Jacobian; q is still the (n × 1) vector

of joint velocities.

Since [J ] is not square, its inversion is impossible and the inverse differential

kinematics, that now presents an infinite number of solution, cannot be solved

through 3.7. A viable solution method is to formulate the problem as a constrained

linear optimization problem.

In detail, once the end-effector velocity ve and Jacobian [J ] are given (for a

given configuration q), it is desired to find the solutions q̇ that satisfy the linear

equation in (3.11) and minimize the quadratic cost functional of joint velocities:

g(q̇) =
1

2
(q̇ − q̇0)

T [W ](q̇ − q̇0) (3.12)

where [W ] is a suitable (n×n) symmetric positive definite weighting matrix.

This problem can be solved through Lagrange multipliers method. The modified

cost functional is:

g(q̇,λ) =
1

2
(q̇ − q̇0)

T [W ](q̇ − q̇0) + λT (ve − [J ]q̇) (3.13)

where λ is an (r × 1) vector of unknown multipliers. Posing

(

∂g

∂q̇

)T

= 0

(

∂g

∂λ

)T

= 0

it is possible to solve for joint velocities as:

q̇ = [W ]−1[J ]T ([J ][W ]−1[J ]T )−1ve+

+ ([I][W ]−1[J ]T ([J ][W ]−1[J ]T )−1[J ])(q̇ − q̇0)
T [W ](q̇ − q̇0) (3.14)

where I represents the identity matrix. The first term of (3.14) represents the

solution that minimizes q̇T [W ]q̇. In the case of [W ] being an identity matrix,

the minimum norm joint velocities vector q̇. The second term represents a veloc-

ity vector that do not alter end-effector velocity and that can be employed for

optimizing other objectives choosing q̇0 properly.
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If [W ] is the identity matrix the solution that minimizes q̇ norm is:

q̇ = [J ]T ([J ][J ]T )−1ve = [J ]†ve (3.15)

where the matrix [J ]† = [J ]T ([J ][J ]T )−1ve is the right pseudo-inverse of [J ].

3.3 Dynamics of manipulators

Derivation of the dynamic model of a manipulator plays an important role for

simulation of motion, analysis of manipulator structures, and design of control

algorithms. Simulating manipulator motion allows control strategies and motion

planning techniques to be tested without the need to use a physically available

system.

The goal of this section is to present two methods for derivation of the equa-

tions of motion of a manipulator in the joint space. The first method is based on

the Lagrange formulation and is conceptually simple and systematic. The second

method is based on the Newton–Euler formulation and yields the model in a

recursive form; it is computationally more efficient since it exploits the typically

open structure of the manipulator kinematic chain.

3.3.1 Lagrange formulation

The dynamic model of a manipulator provides a description of the relationship

between the joint actuator torques τ and the motion of the structure. With

Lagrange formulation, the equations of motion can be derived in a systematic

way independently of the reference coordinate frame.

Let L be the Lagrangian of the system, a function of generalized coordinates

given by

L(q, q̇) = T (q, q̇)− U(q) (3.16)

with T the kinetic energy and U the potential energy. Let ξ be the vector of

the generalized forces associated to the generalized coordinates q. The Lagrange

equations can be written in compact form as

d

dt

(

∂L

∂q̇

)T

−

(

∂L

∂q

)T

= ξ (3.17)
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Equations 3.17 establish the relations existing between the generalized forces

applied to the manipulator and the joint positions, velocities and accelerations.

Hence, they allow the derivation of the dynamic model of the manipulator starting

from the determination of kinetic energy and potential energy of the mechanical

system.

After some mathematical steps, that the interested reader can find detailed

in [12], equations 3.17 lead to the joint space dynamic model of the manipulator

that can be written in matrix form as:

[M (q)]q̈ + [C(q, q̇)]q̇ + [Fv]q̇ + [Fs]sgn(q̇) + g(q) = τ − [J(q)]TFe (3.18)

with:

• [M (q)] (n×n): inertia matrix of the manipulator. It’s symmetric and pos-

itive definite.

• [C(q, q̇)] (n× n): Coriolis matrix. Multiplied by q̇ gives the (n× 1) vector

of Coriolis and centrifugal terms.

• [Fv] (n× n): diagonal matrix of viscous friction coefficients.

• [Fs] (n×n): diagonal matrix of static friction coefficients (Coulomb model)

• g(q) (n× 1): vector of gravity torques

• τ (n× 1): vector of actuating torques

• [J(q)]TFe (n×1): portion of actuating torques spent for balancing external

forces on the end-effector

• Fe = {fe,me}
T (n× 1): vector of forces and moments exerted by the end-

effector on the environment.

In this work friction forces will be neglected. Equation 3.18 can be expressed

in a simplified way as:

[M (q)]q̈ + n(q, q̇) = τ − [J(q)]TFe (3.19)

where n(q, q̇) comprehends Coriolis, centrifugal and gravity torques.
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3.3.2 Newton-Euler formulation

In the Lagrange formulation, the manipulator dynamic model is derived starting

from the total Lagrangian of the system. On the other hand, the Newton–Euler

formulation is based on a balance of all the forces acting on the generic link of the

manipulator. This leads to a set of equations whose structure allows a recursive

type of solution; a forward recursion is performed for propagating link velocities

and accelerations, followed by a backward recursion for propagating forces.

Let the symbols be:

• cj,k: vector from link j CoG to k-th frame origin

• [IGi
]i: barycentric inertia tensor of link i expressed in frame i

• Fj,k: Force exerted by link j to link k (mutual action)

• Mj,k: Moment exerted by link j to link k (mutual force)

• Fexti ,Mexti : external forces and moment acting on link i CoG.

Forward recursion

Given q, q̇, q̈ and velocity and acceleration of base link aG0
, ω0, ω̇0, direct kine-

matics is solved, calculating:

• linear accelerations aGi
of links centroids

• angular velocities ωi and accelerations ω̇i of links

Forward recursion kinematic formulas are presented in detail in Chapter 4,

Section 4.2.1 applied to a multibody system like the UAM.

Backward recursion

Having computed the velocities and accelerations with the forward recursion from

the base link to the end-effector, a backward recursion can be carried out for the

forces and the moments.
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Starting from the last link in the kinematic chain (for which Fn,n+1 = 0),

applying the Newton formula

miaGi
= Fi−1,i + Fi,i+1 +migi + Fexti (3.20)

to each link, is possible compute the mutual force Fi−1,i between the i-th link

and the previous. Having computed all the forces it is possible to apply to each

link the Euler formula

[IGi
]iω̇i + ωi ∧ [IGi

]iωi = Mi−1,i +Mi,i+1 +Mexti

+ ci,i ∧ Fi−1,i + ci,i+1 ∧ Fi+1,i (3.21)

in order to compute also the mutual moments Mi−1,i backwards. Once the

actions exerted by link i−1 on link i are known it is possible to compute actuators

actions as:







τi(q, q̇, q̈) = Mi−1,i · zi if i is a revolute joint

Si(q, q̇, q̈) = Fi−1,i · zi if i is a prismatic joint
(3.22)

where zi represents the unit vector of frame i as in Denavit-Hartenberg con-

vention.

3.3.3 Direct and inverse dynamics

Both Lagrange formulation and Newton–Euler formulation allow the computa-

tion of the relationship between the joint torques — and, if present, the end-

effector forces — and the motion of the structure. A comparison between the

two approaches reveals what follows. The Lagrange formulation has the following

advantages:

• It is systematic and of immediate comprehension.

• It provides the equations of motion in a compact analytical form containing

the inertia matrix, the matrix in the centrifugal and Coriolis forces, and the

vector of gravitational forces. Such a form is advantageous for control design

• It is effective if it wished to include more complex mechanical effects such

as flexible link deformation
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The Newton–Euler formulation has the following fundamental advantage:

• It is an inherently recursive method that is computationally efficient.

In the study of dynamics it is relevant to find the solution to two kinds of

problems:

• Direct dynamics : determining, for t > t0 the joint accelerations q̈(t) (and

thus q̇(t), q(t)) resulting from the given joint torques τ (t) (and the possi-

ble end-effector forces Fe(t)) once the initial position q(t0) and velocities

q̇(t0) are known (initial state of the system). This is useful especially for

manipulator simulation.

• Inverse dynamics : determining the joint torques τ (t) which are needed to

generate the motion specified by the joint accelerations q̈(t), velocities q̇(t),

and positions q(t), once the possible end-effector forces Fe(t) are known.

This is useful for manipulator trajectory planning and control algorithm

implementation.

3.4 Control of manipulators

In 3.2.2 was shown how to invert kinematics by using the differential kinematics

equation both at velocity (Eq. 3.7) and acceleration (Eq. 3.10) level. In the case

of velocity level kinematics, it was shown also how to integrate numerically the

equation. Joints positions calculation is given by Eq. (3.9) that can be detailed

in:

q(tk+1) = q(tk) + [J(q(tk))]
−1ve(tk)∆t. (3.23)

As can be seen in (3.23) joint velocities are computed by using the inverse of

the Jacobian evaluated with the joint variables at the previous instant of time.

It follows that the computed joint velocities q̇ do not coincide with those sat-

isfying (3.7) in the continuous time. Therefore, reconstruction of joint variables

q is entrusted to a numerical integration which involves drift phenomena of the

solution; as a consequence, the end-effector pose corresponding to the computed

joint variables differs from the desired one.
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Even in the case of negligible numerical errors, joint velocities computed by

mean of (3.7) would not allow the manipulator end-effector to track the desired

trajectory due to inevitable disturbances that come from the real world, and

kinematic model uncertainties.

The same reasoning can be made in the case of inverse kinematics at acceler-

ations level.

These inconveniences highlight the necessity of a feedback loop in addition to

the forward loop given by inverse kinematics. The feedback control schemes that

will be presented in this Section, and that will be inspirational for the control

schemes presented in 6, are based on the operational space error between the

desired (xd) and the actual (xe) position and orientation of the end-effector:

e = xd − xe (3.24)

This error can be computed by mean of direct kinematics or thanks to visuals

sensors like cameras or motion capture systems that track end-effector position.

In the case of second-order algorithms also the time derivative of the error,

ė = ẋd − ẋe (3.25)

(i.e. the end-effector velocity error) plays an important role.

In these types of schemes the outputs are kinematic quantities like motors

velocities or accelerations. For this reason they are called CLIK algorithms, i.e.

Closed-Loop Inverse Kinematic algorithms. In the following sections both first-

order and second-order algorithms are presented.

3.4.1 First-order kinematic algorithms

In these schemes the manipulator is controlled at the velocity level. This means

that the algorithms gives as outputs the velocity profiles q̇ to be followed by the

arm servo-motors.

According to differential kinematics (3.5) the time derivative of operational

space error (3.24) can be rewritten as:

ė = ẋe − [J ]q̇. (3.26)
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In order to get an inverse kinematic algorithm that works, q̇ has to be chosen as

a function of error so that Eq. (3.26) describes a system converging to zero. Eq.

(3.26) is also called dynamic error equation since it describes the evolution of the

error over time.

Jacobian (pseudo-) inverse algorithm

Figure 3.2: Inverse Jacobian algorithm

In this scheme the control velocity is computed as:

q̇ = [J(q)]−1 (ẋd − [K]e) (3.27)

where [K] is a (usually diagonal) matrix of gains. With this choice of velocity

inputs the dynamic error equation is:

e+ [K]ė = 0. (3.28)

If [K] is a positive definite matrix then the system is asymptotically stable. The

error tends to zero along the trajectory with a convergence rate that depends on

the eigenvalues of matrix [K]; the larger the eigenvalues, the faster the conver-

gence. Since the scheme is practically implemented as a discrete-time system, it

is reasonable to predict that an upper bound exists on the eigenvalues; depending

on the sampling time, there will be a limit for the maximum eigenvalue of [K]

under which asymptotic stability of the error system is guaranteed.

The block diagrams corresponding to the scheme (3.27) is illustrated in Fig.

3.2 where k(·) indicates the direct kinematic function xe = k(q)
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Equation (3.27) can also be rewritten as:

q̇ = [J(q)]−1ẋd + [J(q)]−1[K]e

= q̇ref +∆q̇
(3.29)

in which it can be clearly seen that the first term is a feed-forward velocity

coming from inverse differential kinematics, and the second is a feedback term.

This formulation will reappear in Chapter 6.

In the case of a redundant manipulator solution 3.27 can be generalized as:

q̇ = [J ]†(ẋe + [K]e) + ([In]− [J ]†J)q̇0 (3.30)

Jacobian transpose algorithm

Figure 3.3: Jacobian transpose algorithm

A computationally simpler algorithm can be derived by finding a relation-

ship between q̇ and e that ensures error convergence to zero, without requiring

linearization of (3.26). In the case of a constant reference (ẋd = 0) this scheme

proposes the velocity vector

q̇ = [J(q)]T [K]e. (3.31)

The great advantage of this scheme is that it requires only the transposition

of the Jacobian, that is a rather simpler operation than the inversion. In the case

of not constant reference (xd 6= 0) the system can achieve good performances if

gains are high enough and the trajectory has not to be tracked to fast. Further

discussion on asymptotic stability of this scheme can be found in [12]
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Figure 3.4: Second-order algorithm

3.4.2 Second-order kinematic algorithm

For control purposes it may be necessary to invert a motion trajectory specified

in terms of position, velocity and acceleration. As seen in Section 3.2.2, under the

assumptions of a square and non singular matrix [J ], the second-order differential

kinematics can be inverted in terms of joint accelerations as:

q̈ = [J(q)]−1(ẍe − [J̇(q, q̇)]q̇) (3.32)

where in this case the end-effector acceleration has been indicated with ẍe.

The error defined as:

ë = ẍd − ẍe (3.33)

leads to the error equation

ë = ẍd − [J(q)]q̈ − [J̇(q, q̇)]q̇ (3.34)

This control scheme imposes the joint accelerations as:

q̈ = [J(q)]−1(ẍd − [J̇(q, q̇)]q̇ + [KD]ė+ [KP ]e) (3.35)

where [KD] and [KP ] are positive definite (usually diagonal) matrices. Like

for (3.29) the input (3.35) can be decomposed as

q̈ = q̈ref +∆q̈. (3.36)
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Substituting (3.35) into (3.34) leads to the equivalent system:

ë+ [KD]ė+ [KP ]e = 0 (3.37)

which is asymptotically stable.

In the case of a redundant manipulator, the generalization of (3.35) leads to

an algorithmic solution based on the Jacobian pseudo-inverse of the kind

q̈ = [J(q)]†(ẍd − [J̇(q, q̇)]q̇ + [KD]ė+ [KP ]e) + ([In] + [J(q)]†[J(q)])q̈0 (3.38)





Chapter 4

UAMs modeling

4.1 Introduction

A UAM (Unmanned Aerial Manipulator) is a multibody system consisting of a

main body with one or more manipulator/s arms attached to. In this Chapter the

theory behind the kinematic and dynamic modeling of these kind of systems is

presented. The equations underlying these models form the basis of a simulation

environment that is used to test the control schemes presented in Chapter 6.

This is further enriched by the disturbance models presented in Chapter 5. This

environment was entirely written in MATLAB language starting from a library of

functions for kinematics and dynamics of free-base robots previously developed

in [13]. In Section 4.4 this simulator is validated in ADAMS.

Even though in this work only planar single arm UAMs will be analysed,

the theory here presented refers to a more general case of a free-flying robot

with multiple serial arms. All the joints connecting links will be considered to be

rotational since this is the most common scenario among UAMs.

4.1.1 Mathematical graph representation

In order to mathematically describe the interconnection of the bodies, a method

is adopted from mathematical graph theory. The rules on the assignment of links

and joints indices are as follows:

• Reference body (UAV body) is denoted as link 0. This will also be referred
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Figure 4.1: Sample system

to with the subscript ”b”.

• The index of a link i in the phvsical connection between link 0 and link j

must be 0 < i < j.

• One link can have multiple connections with other links. As a result of the

above statement, a link i has one lower connection (which index is smaller

than i) and zero, one or multiple upper connection(s) (which index is greater

than i).

• There is one single joint interconnecting two links.

• Indices of joints begin from 1, and joint i is physically attached on link i.

After indices assignments a connection index vector B and incidence matrices

[S],[S0],[Se] are constructed.

The connection index vector B is used to find the lower connection of a link

i > 0. The element Bi is the index of the the lower connection of link i.

Incidence matrix [S] is used to find the upper connection of a link, which may

not exist or exist one or more. Each element Sij is defined as:

Sij =















+1 if i = Bj

−1 if i = j

0 otherwise

S0 and Se elements are defined as:

S0i =







+1 if 0 = Bj

0 otherwise
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Sei =







+1 if i is a terminal link

0 otherwise

Figure 4.1 depicts a general multibody system to which this theory may be

applied.

4.1.2 Coordinate systems

Let the stationary inertial coordinate frame be denoted by FI . On each link

are defined moving coordinate frames Fi adopting a rule slightly different from

Denavit-Hartenberg convention. Since only revolute joints are considered the rules

are:

• the origin of the coordinate system Fi is located on joint i and fixed on link

i

• Fi z-axis coincides with joint rotation axis

• x-axis points toward joint i + 1 or has the direction in which the inertia

tensor is expressed easier

Figure 4.2 shows a single arm system with its frames.

. . .

Figure 4.2: Example of single arm free-flying system
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4.1.3 Notation used

Symbols descriptions

The symbols that will be used are defined as follows:

• [In]: n× n identity matrix

• ẑi: unit vector indicating the rotational axis of joint j

• Inertial properties:

mtot: total mass of the system

mi: mass of link i

[IGi
]: inertia tensor of link i with respect to its center of mass Gi

• Positions:

rG0
(= rGb

): base center of mass position vector

φb = {φ0, θ0, ψ0}
T : vector of roll, pitch and yaw angles of base body

rGi
: link i center of mass position vector

rG: total system center of mass position vector

rji : position vector of joint i

re: end-effector position vector

q: vector of joint angles

• Velocities and accelerations:

vG0
, v̇G0

(= vb, v̇b): base body center of mass velocity and acceleration

vGi
, v̇Gi

: link i center of mass velocity and acceleration

ωi, ω̇i: link i angular velocity and acceleration

vb = {vb,ωb}
T = {vG0

,ω0} : base twist

q̇, q̈: vectors of joint velocities and accelerations

• Forces/moments on the system:
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Fb = {fb,mb}
T : external forces and moments on the base

Fe = {fe,me}
T : external forces and moments on manipulator hand

τ : joint torques vector

For each link are then defined some ”link vectors” (see Figure 4.3) as:

• ci,j: vector from the center of mass of link i to link j

• ℓi,j: vector from joint i to joint j

ℓi,j = ci,j − ci,i (4.1)

• cie: vector from link i center of mass to the end-point if link i is an end-link

• ℓie: vector from joint i to the end-point

ℓie = cie − ci,i (4.2)

Figure 4.3: Link vectors

Skew operator

The operator [S(·)] for a vector a = {ax, ay, az}
T is called skew operator and the

matrix

[S(a)] =









0 −az ay

az 0 −ax

−ay ax 0









(4.3)

is called skew-symmetric matrix. It has the property

a ∧ b = [S(a)]b. (4.4)

It will be used to express in matrix form the vectorial product.
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Notation for projected vectorial equations

In the following sections vectorial equations may be projected onto some par-

ticular reference frame (usually the inertial reference FI). {a}j will indicate the

projection of the generic vector a onto frame j and [Rjk] the rotation matrix for

converting the coordinates from reference j to reference k.

4.2 Kinematics

4.2.1 Link velocities and accelerations

For successive links connected by a revolute joint, velocities vGi
and ωi can be

calculated recursively, as anticipated in 3.3.2, as:

{ωi}I = {ωBi
}I + [RiI ]{ẑi}iq̇i (4.5)

{vGi
}I = {vBi

}I + {ωBi
}I ∧ {cBi,i}I − {ωi}I ∧ {ci,i}I (4.6)

and accelerations v̇Gi
, ω̇i as:

{ω̇i}I = {ω̇Bi
}I + {ωi}I ∧ ([RiI ]{zi}iq̇i) + [RiI ]{ẑi}iq̈i (4.7)

{v̇Gi
}I = {v̇Bi

}I + {ω̇Bi
}I ∧ {cBi,i}I + {ωBi

}I ∧ ({ωBi,i}I ∧ {cBi,i}I)

− {ω̇i}I ∧ {ci,i}I − {ωi}I ∧ ({ωi}I ∧ {ci,i}I) (4.8)

Figure 4.4: Kinematics of the multibody system
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The velocities of the i-th link (i >0) can also be represented in the forms:

vGi
= [Jv]iq̇ (4.9)

ωi = [Jω]iq̇ (4.10)

where [Jv]i, [Jω]i ∈ R
3×n are the Jacobian matrices of i-th body given by

[Jv]i = [ẑ1 ∧ (rGi
− rj1), ẑ2 ∧ (rGi

− rj2), · · · , ẑi ∧ (rGi
− rji),0, · · · ,0] (4.11)

[Jω]i = [ẑ1, ẑ2, · · · , ẑi,0, · · · ,0] (4.12)

4.2.2 End-points kinematics

The kinematic relationship relating the end-points velocities/accelerations to the

generalized coordinates are:

ẋe = [Jb]ẋb + [Jm]q̇ (4.13)

ẍe = [Jb]ẍb + [J̇b]ẋb + [Jm]q̈ + [J̇m]q̇ (4.14)

with

• xe ∈ R
6 : position/orientation of end-point

• xb ∈ R
6 : position/orientation of base body (ẋb = {vb, φ̇b}

T )

• [Jb] ∈ R
6×6: Jacobian matrix for base variables. Its expression is

[Jb] =





[I3] −[S(rG0,e)]

[0] [I3]



 , rG0,e = re − rG0
(4.15)

• [Jm] ∈ R
6×n: Jacobian matrix for joints variables. This is just a Jacobian

for ground-based manipulators, however, described from the inertial frame.

Its expression is

[Jm] =





ẑ1 ∧ (re − rj1) ẑ2 ∧ (re − rj2) · · · ẑn ∧ (re − rjn)

ẑ1 ẑ2 · · · ẑn



 (4.16)
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4.3 Dynamics

A UAM can be seen as a spacecraft-manipulator system whose base is controlled.

Such a system is also called free-flying robot. Thus, UAMs dynamics will be

developed using the method conceived for such systems. The reader can find

more in [14].

4.3.1 Equations of motion

The equation of motion for a free-flying system can be derived by applying the

Lagrangian approach (see 3.3.1). In matrix form they are:





[Hb] [Hbm]

[Hbm]
T [Hm]











ẍ

q̈







+







cb

cm







=







Fb

τ







+





[Jb]
T

[Jm]
T



Fe (4.17)

where:

• [Hb] is the base inertia matrix

• [Hbm] is the base-manipulator coupling matrix

• [Hm] is the manipulator mass matrix (identical to the one in Eq. 3.18)

• cb, cm are velocity dependent non-linear terms (Coriolis and centrifugal

terms)

The matrices expressions are:

• [Hb] ∈ R
6×6 =





mtot[I3] mtot[S(rG0,G)]
T

mtot[S(rG0,G)] [Hω]



 (4.18)

• [Hω] ∈ R
3×3 = [IG0

] +
n

∑

i=1

([IGi
] +mi[S(rG0,Gi

)]T [S(rG0,Gi
)]) ,

(rG0,Gi
= rGi

− rG0
) (4.19)

• [Hbm] ∈ R
6×n =





[Jv]UAM

[Hωq]



 (4.20)
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• [Jv]UAM ∈ R
3×n =

n
∑

i=1

mi[Jv]i/mtot (4.21)

• [Hωφ] ∈ R
3×n =

n
∑

i=1

([IGi
][Jω]i +mi[S(rG0,Gi

)][Jv]i) (4.22)

• [Hm] ∈ R
n×n =

n
∑

i=1

([Jω]
T
i [IGi

][Jω]i +mi[Jv]
T
i [Jv]i) (4.23)

4.3.2 Linear and angular momenta

Let p be the linear momentum of the whole system and KG0
≡ KGUAV

≡ K the

angular momentum with respect to the base center of mass. They are collected

in the vector h. The relationship between h and the generalized coordinates

velocities {ẋb, q̇}
T is:

h =







p

K







= [Hb]ẋb + [Hbm]q̇ (4.24)

The time differentiation of 4.24 yields:

d

dt







p

K







= ḣ = Fe = [Hb]ẍb + [Hbm]q̈ + [Ḣb]ẋb + [Ḣbm]q̇ (4.25)

The first equivalence in (4.25) is given by Newton and Euler formulas which say

that the time derivative of linear and angular momenta are respectively equal to

the external force and moment acting on the system.

4.3.3 Inverse dynamics

Inverse dynamics computation is critical for UAM simulation as will be seen in

4.3.4. It’s used for computing the torques τ that the motors have to provide

for tracking the control kinematic references, and for the computation of the

non-linear term cm, cb in Equation 4.17. It can be used also for a computed

torque control. For the computation, the classical order-n recursive Newton-Euler

approach (see 3.3.2) is adopted. Newton and Euler equations for a link i are
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expressed as:

fin,i = miv̇Gi
(4.26)

min,i = [IGi
]ω̇i + ωi ∧ ([IGi

]ωi) (4.27)

where fin,i and min,i are inertial forces and moments exerted on link center of

mass. Together with the following force and moment exerting on the joint or

end-points,

fi,mi: force and moment on joint i

fei ,mei : force and moment on end-point (if i is a terminal link)

the dynamic equilibrium for each link can be expressed in the following form:

fi = fin,i +
n

∑

j=i+1

Sijfj + Seifei (4.28)

mi = min,i +
n

∑

j=i+1

Sij(ℓij ∧ fj +mj) (4.29)

+ Siicii ∧ fin,i + Sei(ℓie ∧ fei +mei)

for around a revolution joint (the only case considered in this thesis).

After the computation of whole fi and mi for i = 1, ..., n, joint torques can

be obtained as:

τi = {mi}
T
I {ẑi} (4.30)

(always for revolution joints).

The reaction force/moment on the base center of mass can be obtained as:

f0 =
n

∑

i=1

S0ifi (4.31)

m0 =
n

∑

i=1

S0j(c0i ∧ fi +mi) (4.32)

4.3.4 Forward dynamics

Simulating the UAM means running its forward dynamics. As seen in 3.3.3, the

forward dynamics gives as output the accelerations of the generalized coordinates
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(v̇b and q̈) of the system which then integrated give velocities and positions in

the following instants. The inputs are all the forces acting on the system. Joint

torques τ may not be known if the manipulator is meant to be controlled kinemat-

ically in velocity or acceleration (as is done in 6). For this reason, before running

the forward dynamics function implemented in MATLAB, inverse dynamics is

performed, thus finding the torques that the motors deliver in order to follow the

kinematic references given by control.

The procedure to compute the forward dynamics solution in discrete time as

done in MATLAB simulator, is summarized as follows:

1. At time t, compute link positions and velocities, recursively from 0 to n.

2. Compute the inertia matrices using Equations (4.18)÷(4.23)

3. Set the accelerations ẍb, q̈ and external forces Fb, Fe to zero, then compute

the inertial forces recursively from link n to 0 using the recursive Newton-

Euler function described in 4.3.3. the resultant forces on the coordinates xb

and q are equal to the non-linear forces cb and cm, respectively.

4. Determine joint control forces τ from a control law or by inverse dynamics

if the manipulator is kinematically controlled, and base control forces Fb =

{U1,U2} from UAV control law (2.6).

5. Compute the accelerations by






ẍb

q̈







=





[Hb] [Hbm]

[Hbm]
T [Hm]





−1 









Fb

τ







+





[Jb]
T

[Jm]
T



Fe −







cb

cm









 (4.33)

In real systems servo-motors have an inner control loop dedicated to the

tracking of input profiles, with their own dynamics. Usually, however, servo-

motors performances are good enough to neglect the inner loop dynamics.

Thus, in this work, the motors are assumed to track perfectly the reference

velocity or acceleration profiles coming out from the control algorithm, and

the forward dynamics output q̈ is not be used.

6. Integrate the above accelerations to yield the velocities and positions at

time t+∆t. The results reported in this work are obtained by using Euler
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integration method, already mentioned in 3.2.2, for faster computations.

The simulator however gives also the possibility to solve the dynamics dif-

ferential equations through a Runge-Kutta method.

7. Go to 1. and continue

A note should be made about the integration (step 6.) of base attitude pa-

rameters rates of change. The usual routine for singularity-free integration from

angular velocity to attitude involves the use of the relationship:

[Ṙ0I ] = [S(ω0)][R0I ] (4.34)

where [S(ω0)] is the skew-symmetric form of the base angular velocity ω0 and

[R0I ] is the direction cosines matrix. However it was noted that, for numerical

operations in practice, the following expression, which is known as Rodrigues

formula at infinitesimal rotation, provides smaller error than (4.34):

[R0I(t+∆t)] =
[

[I3] + sin θ0[S(ω0)] + (1− cos θ0)[S(ω0)]
T [S(ω0)]

]

[R0I(t)]

(4.35)

with

θ0 = |ω0∆t|

For this reason, this formula is used in the simulator instead of (4.34).

4.4 Validation of the model

As said, forward and inverse dynamics were implemented in MATLAB code with

the objective of creating a fast simulation environment for UAMs where to test the

different control algorithms that are presented in Chapter 6. ADAMS software,

one of the leading computational codes for multibody simulations, was used as

a benchmark to validate it. Figure 4.5 shows a picture of the simplified UAM

model that was used in ADAMS.

As benchmark virtual experiment, UAM manipulator was requested to track

a circular trajectory in x-z plane. Other experiment characteristics are specified

in Table 4.1.
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Figure 4.5: ADAMS model

Circular trajectory diameter (D) 0.08 m

Trajectory travel time Tpath 6 s

Time after reaching trajectory final point Tpost 3 s

Table 4.1: Benchmark experiment characteristics

Motors reference velocities q̇ were planned in MATLAB through the inverse

kinematics algorithm that is presented in Chapter 6, and given as input both to

MATLAB and ADAMS models. The results from the two environments are then

compared in order to see MATLAB code accuracy. In particular, it was chosen to

compare the temporal measures of the end-effector x and z (xee, zee) coordinates

and to see the distance between the trajectories.

Figure 4.6 and 4.7 show the graphical output of the two simulation engines

after the end of the virtual experiments.

Figure 4.8 shows xee and zee temporal measure both for the ADAMS and the

MATLAB experiments. Figure 4.9 shows the plot of the difference between EE

x and z coordinates during the experiments (xeeMATLAB
− xeeADAMS

, zeeMATLAB
−

zeeADAMS
). Maximum differences are smaller than 1 mm indicating that the MAT-

LAB simulator is sufficiently reliable.
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Figure 4.6: MATLAB simulator graphical output. In red the travelled

end-effector trajectory and in blue GUAV trajectory

Figure 4.7: ADAMS graphical output

Figure 4.8: End-effector x and z coordinates in the two experiments
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Figure 4.9: Differences between end-effector x and z coordinates





Chapter 5

Disturbances models

As mentioned, one of the main purposes of the simulation environment is to

quickly test the UAM control algorithms performances under different condi-

tions. Therefore, the simulator has been enriched by implementing models of the

disturbances that are expected to affect the most aerial manipulators in their

work.. The goal of this chapter is to describe how these disturbances have been

modelled in MATLAB.

Three main causes of disturbance to aerial manipulators operations have been

identified:

• Disturbances of aerodynamic nature.

• Disturbances coming from noise in the measurement chain.

• Uncertainty on the parameters of the model on which the control system is

based.

The first category of disturbances turns out to be very difficult to model accu-

rately. Most of the models that can be found in literature are based on empirical

formulas which coefficients come either from data derived from expensive exper-

iments on UAVs, or from sophisticated CFD simulations. The main objective of

this thesis is still to test the rejection capabilities of UAMs control systems. For

this purpose the aerodynamic model does not need to be too realistic. So a sim-

ple model of aerodynamic disturbance consisting of a concentrated force acting
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on the UAV’s center of gravity was chosen. In section 5.1 this force represents a

disturbance coming from wind gusts.

Disturbances belonging to the second category are perhaps the most impact-

ful when dealing with UAVs. As seen these platforms need feedback controllers

in order to function properly. Feedback control loops need informations on the

actual system status which come from sensors like those mentioned in 2.4.1. Un-

fortunately in practice, those informations are often affected by noise. This may

compromise the performances of the controller, if not make it unstable. In order

to test the reliability of the different control schemes under this condition, in

section 5.2 a Gaussian distributed noise model was implemented and applied to

some quantities that will have to be measured in UAMs practical applications.

The control schemes that will be presented in Chapter 6 are heavily based

on UAM model. An uncertainty about the knowledge of some model parameters

may bring the system not to work as expected or, worse, to instability. Since,

in practice, many of the model parameters may not be known with great con-

fidence, it was thought to test the control schemes robustness by varying the

model parameters in the dynamic simulation. Which parameters and how they

were modified is described in Section 5.3.

5.1 Casual wind

UAMs applications may be outdoor or indoor. In outdoor applications the most

important external disturbance that will hinder the proper tracking of a trajectory

by the manipulator is wind. In indoor applications the wind may not be felt

but still there are aerodynamic disturbances causing aircraft oscillations (see the

results of the experiment in [5]). These, in this work, will be likened to a force

caused by a fictitious wind. Therefore, a wind model is needed in order to simulate

the disturbances in both the scenarios.

This section will describe the two models that have been implemented for the

aerodynamic force on the UAV. The first, called Dryden model, is for generating

random wind speed profiles. The second, taken from [15], is used to match a wind

speed profile with a force on the aircraft.
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5.1.1 Dryden model

The wind velocity vector can be characterized as the sum of two vectors:

w = w0 +∆w(t) (5.1)

• The static wind vector w0 evolves slowly along time, it represents the mean

value of the overall wind vector. This component will be ignored in this

work.

• The fast-time varying or gust component ∆w(t) features higher frequencies

and smaller amplitudes in comparison with the static wind vector. Since

the first component will be neglected it will be w = ∆w(t).

The Dryden model is a wind gust model dependent on a standard Power Spec-

tral Density (PSD). The parameters of the PSD may be derived from static wind

data for realistic results or set to create profiles with certain characteristics (for

example high frequency and low amplitude profiles for simulating disturbances

in indoor environments). The reference for this model is [16]. One wind velocity

vector component is defined as a sum of sinusoidal components:

w(t) =
n

∑

i=1

ai sin(Ωit+ ϕi) (5.2)

where Ωi and ϕi are randomly selected frequencies and phase shifts, n is the

number of sinusoids and ai are the amplitude of sinusoids. For simplicity the

frequencies were chosen as to divide in equal parts the interval they are picked

from. For realistic results in [16] it is suggested to take values of Ωi between 0.1

and 1.5 rad/s. The magnitudes ai are given by

ai =
√

∆ΩiΦ(Ωi) (5.3)

where ∆Ωi are the intervals between the frequencies and Φ(Ωi) (all equally long for

the assumption made) and Φ(Ωi) is the power spectral density function evaluated

for Ω = Ωi. The PSD for horizontal and vertical wind are different and are found

from the following equations:

Φh(Ω) = σ2
h

2Lh

π

1

1 + (LhΩ)2
(5.4)

Φv(Ω) = σ2
v

Lv

π

1 + 3(LvΩ)
2

(1 + (LvΩ)2)2
(5.5)
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Here, σh and σv are the horizontal and vertical turbulence intensities, Lh and Lv

are the horizontal and vertical gust length scale. The vertical length scale and

turbulence intensity can be assumed to be Lv = |z| (with z being the vehicle

altitude) and σv = 0.1ω20 (ω20 is the given wind speed in knots at 20ft altitude

which in [17] is said to be 15 knots for light turbulence). The altitude was chosen

to be z = 1m = 3.28ft. Finally Lh and σh can be found with the following

equations:

Lh

Lv

=
1

(0.177 + 0.000823z)1.2
(5.6)

σh
σv

=
1

(0.177 + 0.000823z)0.4
(5.7)

The wind field model therefore defines the temporally varying wind speed at a

given altitude. In Figure 5.1 are plotted the PSDs for horizontal and vertical

wind with the above mentioned parameters. Figure 5.2 shows random horizontal

(wx(t)) and vertical (wz(t)) wind profiles.

(a) Horizontal wind PSD (b) Vertical wind PSD

Figure 5.1: Power Spectral Density functions log-log plots

5.1.2 Aerodynamic force on the UAV

In order to rely a wind velocity vector to a force acting on the UAV, the model

described in [15] (called Solovyev model for its author, in this work) was adopted.

This model has the advantage of being simple, compared to other that can be
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Figure 5.2: Example of wind velocity profile. n = 40 and Ωi ∈ [0.1, 1.5] rad/s

found in literature, and therefore easily implementable. Given the wind velocity,

the model defines the force exerted on the UAV with the formula:

Fw = SeAw
2. (5.8)

Se is the influence effective areas and A = 1/16 · 9.81 is the rate of wind velocity

[m/s2] conversion to pressure [15]. For simulation tasks it is handier to use the

components of formula (5.8) as projection on the axes of the inertial frame

Fwx
= SexA(w

2
x(t) + w2

z(t)) cosψw (5.9)

Fwz
= SezA(w

2
x(t) + w2

z(t)) sinψw (5.10)

where ψw is the inclination angle of the wind velocity vector with respect to the

horizontal.

For simplicity sake the UAV is represented by a cylindrical surface. It’s surface

is given by the sum of the area Sl of the lateral surface and the area Sb of the

bases. The expression for UAV surface area is therefore:

S = Sl + Sb = α2πrh+ β2πr2 (5.11)

where r is the cylinder radius, h is the height and α and β are fill factors for the

cylinder areas (depending on UAV design). The wind is assumed to uniformly

influence half of the cylindrical surface like in Figure 5.3.
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Figure 5.3: Wind effect on the cylindrical surfaces

Taking into account formula (5.11), the expression for the effective area is:

Sex = βπr2 sin θ + απrh cos θ, Sez = βπr2 sinφ+ απrh cosφ (5.12)

where φ and θ and are the roll and pitch angles respectively. Since in this work the

roll angle will be ignored and the pitch angle will stay small (UAV near hovering

conditions), Sez will be assumed to stay constant.

Figure 5.4 shows the force acting on the UAV corresponding to the wind

velocity profiles of Figure 5.2. Solovyev model parameters are enlisted in Table

5.1.

Cylinder radius r 454 mm

Cylinder height h 175 mm

Base area fill factor α 0.2736

Lateral area fill factor β 0.2768

Table 5.1: UAV parameters for Solovyev model

5.2 Measurements noise

In practice the controller will have to deal with noisy signals coming from the

different sensors which the UAM is equipped with. To test the controller’s ability

to deal with real signals, Gaussian distributed noise will be added to some kine-

matic quantities in output from the simulator’s dynamics block. The noisy signal

can be represented as:

X = x+ σ · Z , Z ∼ N (0, 1) (5.13)
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Figure 5.4: Aerodynamic forces on the UAV for the wind velocity profiles in Fig.

5.2

where x = x(t) symbolizes the real signal, σ is the standard deviation and depends

on the characteristic of the specific sensor used for measuring the signal, and Z is

a random Gaussian variable. N (0, 1) is the standard Gaussian probability density

function (with mean µ = 0 and variance σ2 = 1). In order to generate a random

Gaussian variable in MATLAB it is used the built-in function randn.

The variables to which Gaussian noise was added are:

• Measure of UAV center of mass displacements xb and velocity vb

• Measure of UAV pitch angle θ

• Measure of UAV angular velocity ωb

As stated in 2.4.1 these variables may be measured by different sensors like

cameras, motion capture systems, IMU etc... each with its own characteristics in

terms of noise parameters. Thus, σ would be different depending on which sensor

is used.

Figure 5.5 shows the plots of the three above mentioned quantities in the

tracking of a circular trajectory (specifics like in 4.1 except for Tpost = 1s) when

no noise is implemented. The velocities of the arm motors were calculated using

the RMRC algorithm explained in 6.2.
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(a) UAV translations (b) UAV rotations

(c) UAV linear velocities (d) UAV angular velocity

Figure 5.5: UAV kinematic quantities outputs of the dynamics block plots

Figure 5.6 shows how kinematic quantities signals change if Gaussian noise is

added like in (5.13). In Table 5.2 are reported the standard deviations used for

each signal.

Signal σ

Base position {xb, yb} 0.005 m

Base velocities {vb,x, vb,z} 0.005 m/s

Base pitch angle θb 0.001 rad

Base angular velocity ωb 0.005 rad/s

Table 5.2: Standard deviations used for modeling Gaussian noise to each signal

The behaviour of the system is different in this case since the velocities of the

arm motors are the same, but the UAV controls slightly change due to the noisy

inputs. Figure 5.7 shows the plots of the UAV control forces U1, U2 in the case of

noisy inputs.
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(a) UAV translations (b) UAV rotations

(c) UAV linear velocities (d) UAV angular velocity

Figure 5.6: UAV kinematic quantities outputs of the dynamics block plots

corrupted by noise

Figure 5.7: UAV control actions in the case of noisy inputs
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In this work were implemented control algorithms based on the operational

space error like those described in 3.4. For these to work the system needs the

information about end-effector position and maybe velocity. This can be obtained

through a sensor or through direct kinematics. In both the cases end-effector

position information will result noisy, or due to the sensor itself or due to the

propagation of the noise corrupting the other signals. Figure 5.8 shows how the

noise on the UAV kinematic quantities can influence the accuracy with which the

end-effector position is known. This is computed in the simulator through direct

kinematics function. No additional noise is added to the measure.

Figure 5.8: End-effector positions for direct kinematics. In black the result of

direct kinematics. Underneath, in red, the real position

5.3 Parameters uncertainty model

In order to to test the robustness of the control algorithms, it is important to

be able to verify how they behave when the parameters of the real system differ

from those of the model. For implementing this uncertainty, in the simulator

script, the inverse kinematics and forward dynamics are carried out separately

in two blocks, one before the other. In this way, by setting different parameters

before the dynamics block, it is possible to solve the direct dynamics for an UAM

characterized by different parameters than the one to which the inverse kinematics

had referred. Three categories of parameters were identified on which there might
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be greater uncertainty:

• Uncertainty on the inertial parameters of both the UAV and the manipu-

lator links (mUAV, [IGb
], mi, [IGi

]).

• Lack of accuracy on the knowledge of the location of the barycenters of

the links and the displacement of the first joint relative to the drone’s

barycenter.

• Complete or partial ignorance about the mass of the load mload to be carried

by the manipulator.

5.3.1 Uncertainty on the inertial parameters

UAV mass and inertia parameters may be known with poor accuracy, not only

because of measurement errors, but also because of the often variable equipment

with which they are operated. Different missions might require different instru-

ments to carry. Even the same sensors needed for the control the UAV might

change. These changes in the aircraft load may not be matched by the necessary

changes in the model used by the control. It is necessary for the control system

to be robust to the variation of these parameters given the high probability of

these situations occurring.

To virtually reproduce this type of situations, in the simulator, before dynamic

block, the parameters of the UAV are modified as:

mUAV,unc = mUAV + r[−1,1]umaxmUAV , IGb,unc = IGb
+ r[−1,1]umaxIGb

(5.14)

where:

• mUAV and mUAV,unc are the real and model UAV masses

• IGb,unc and IGb
are the real and model UAV moments of inertia (with respect

to Gb)

• umax is the maximum uncertainty that the model can have. It’s set to 0.15

(uncertainty of maximum 15% of the real value for that parameter)
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• r[−1,1] is a random number between -1 an 1. It’s generated in MATLAB

through the construct (2*rand-1). rand gives a random number between

0 and 1 picked from a uniform distribution.

Link parameters are modified similarly as:

mi = mi + r[−1,1] · umax ·mi , IGi
= IGi

+ r[−1,1] · umax · IGi
(5.15)

The uncertainty umax is 2% for the link masses and 5% for the moments of inertia.

5.3.2 Barycenters locations uncertainty

In order to simulate an uncertainty on the UAV CoG position rb, the displacement

of manipulator first joint with respect to Gb is slightly changed. Let ∆xGb,j1 and

∆zGb,j1 be the coordinates of first joint relative positions vector in the inertial

frame. These are redefined as:

∆xGb,j1 = r[−1,1] ·∆xmax , ∆zGb,j1 = r[−1,1] ·∆zmax (5.16)

Uncertainty is expected to be on the order of centimeters at most so ∆xmax,

∆zmax are chosen equal to 2 cm.

The uncertainty about the position of the link’s center of mass is assumed

to be only along the direction joining its two joints. In order to model this it

is sufficient to change the parameter ci,i. This is treated like the links inertial

parameters with an uncertainty of maximum 2%. It should be noted that once a

simulation is started UAM geometry is set.

5.3.3 Load uncertainty

As described in Chapter 4, the dynamic model of the UAM includes the possibility

that a force is applied to the end organ of the manipulator. One way to simulate

the holding of a load by the manipulator is to model this end organ force as the

sum of the weight force and the inertia force of the load. In real world applications

of UAMs for manipulation or grasping it may be that the load to be carried is

known with great uncertainty, if not unknown. Tests of the acceleration control
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algorithm in 7.3.3 will be performed assuming the mass of the load to be carried

(mload) to be completely unknown.





Chapter 6

UAMs control

This chapter explains the control algorithms implemented in MATLAB for con-

trolling the UAM. These algorithms are logically derived from CLIK (Closed-Loop

Inverse Kinematics) schemes, such as those described in 3.4 for fixed-base ma-

nipulators. As for these, first-order (Resolved Motion Rate Control) and second-

order (Resolved Acceleration Control) algorithms are distinguished. The former

involve controlling the manipulator at the rate level, the latter at the acceler-

ation level. Once given as input the desired end-effector trajectory in terms of

velocity/acceleration, they give as output the velocity/acceleration profiles that

are the references for the servo motors of the manipulator.

For each of the algorithms, the outcomes of two simulations are reported: one

in which only forces that are assumed to be known are acting, and one in which an

unpredicted triangular-pulse horizontal force acts halfway through the trajectory.

The quantity that was chosen as the yardstick for each virtual experiment is the

norm of end-effector position error ||e(t)||. All the specifics of the simulations

performed are given in the next section.

6.1 Specifics of the simulations

In the virtual experiments to test the control algorithms, the end-effector of the

aerial manipulator is required to follow a circular trajectory of diameter D = 0.08

m in a time Tpath = 5 s with an arc length function s(t) defined by:
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s(t) = C/2
(Tpath/2)2

(

t2

2
+ (2β)−2 · cos(2β t)− (2β)−2

)

if t < Tpath/2

s(t) = C −
(

2 C/2
(Tpath/2)2

· (
(Tpath−t)2

2
+

(2β)−2 · cos((2β) · (
Tpath

2
− t))− (2β)−2)

)

if t ≥ Tpath/2

with C = 2πr = 0.25 m being the circumference of the trajectory and β =

2π/Tpath. s(t) plot is shown in Figure 6.1.

Figure 6.1: Arc length vs. time function of the circular trajectory to be followed

by the UAM in the virtual experiments

After the end-effector has reached the final point, the simulation continues

again for a time Tpost = 1 s. This last period was added to be able to verify the

ability of the control system to eliminate the steady-state error.

The trajectory starts from the end-effector initial position set from manipu-

lator initial configuration. In all the simulations manipulator starts in the initial

configuration {q1,in, q2,in} = {−π/6, 2π/3} rad and drone starts with its center of

mass at point {0, 0} of the inertial frame.

The two main components of the UAM considered in the simulations are:

• The DJI S1000 drone described in Chapter 2 as base

• 2 DoFs planar manipulator. The links were modelled as one-dimensional

and are 0.13 m long. The barycenters are assumed to be located exactly

in the middle at a distance ci,i from the joint connecting it to the previous

link. The first joint is assumed to be exactly under UAV center of mass at

a distance ∆zGb,j1 = 0.06 m.
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The geometric and inertial data of the UAM are summarized in Table 6.1.

Refer to Figure 6.2 for the adopted symbology.

Parameter Value

Base mass mUAV 4.2 kg

Base moment of inertia IGb
0.4097 kg m2

Manipulator first joint location {∆xGb,j1,∆zGb,j1} {0,−0.06} m

Links length ℓi 0.13 m

Link barycenter distance from previous joint ci,i 0.065 m

Links moment of inertia IGi
4·10−4 kg m2

Table 6.1: Geometric and inertial parameters of the reference UAM for the

simulations

Figure 6.2: Schematics of the UAM used in the simulations

All the algorithmic solutions has been implemented in discrete time using the

Euler integration rule (see 3.2.2) with 0.001 s time interval.

As mentioned, in this chapter, in order to test the algorithms, the UAM system

will be subjected to the action of a triangular pulse force. The pulse starts at the

instant t = Tpath/2, arrives in 0.04 s at 10 N, and ends 0.04 s later. Its plot is

shown in Figure 6.3.
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Figure 6.3: Plot of the triangular-pulse horizontal force acting on the UAV at

t = Tpath/2 (red dotted line) in the simulations.

In all the simulations the UAM base is subjected to to the weight force and

the forces U1, U2, exerted by the propulsion system, determined through the PID

control reported in Equation 2.6. The goal of PID control is to return the UAV

to the hovering condition in the state {z, θ} = {0, 0}. It should be noted that the

motion along x of the drone is not controlled.

6.2 Resolved Motion Rate Control (RMRC)

Resolved Motion Rate Control (RMRC) is a method for continuous path control

of a manipulator hand based on the inversion of Jacobian matrix. In this section

is presented an RMRC algorithm for aerial manipulators that builds on the work

developed in [18],[19] for space manipulators and extended in [20] for UAMs.

Consider Equation (4.24). This can be solved for velocities yielding

ẋb =







vb

φ̇b







= −[Hb]
−1[Hbm]q̇ + [Hb]

−1







p

K







. (6.1)
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In light of 6.1 the kinematic equation (4.13) can be rewritten as

ẋe = [Jb]ẋb + [Jm]q̇

= [Jb]



−[Hb]
−1[Hbm]q̇ + [Hb]

−1







p

K









+ [Jm]q̇

=
(

[Jm]− [Jb][Hb]
−1[Hbm]

)

q̇ + [Jb][Hb]
−1







p

K







= [Jgen]q̇ + [Jb][Hb]
−1







p

K







(6.2)

where [Jgen] is called Generalized Jacobian Matrix. The origin of this name comes

from the fact that, if the linear and angular momenta are null, Equation (6.2) is

formally analogous to Equation (3.5) for fixed-base manipulators. The assumption

of zero moments p and K is very common in the case of space manipulators.

Since in space the net external force on the system is usually zero, p and K are

conserved. If these are assumed to start with initially zero p and K, they are

conserved and stay null.

This is not the case with aerial manipulators though. These are subject to the

weight force, the forces exerted by the propulsion system and other disturbance

forces. In this case p and K may be zero initially, but then they must be updated

since their contribution is not negligible as can be seen from equation 6.2.

Given the external force Fe = {fe,me}
T acting on the system, the algorithm

updates at each timestep the linear and angular moments as:

p(tk+1) = p(tk) + fe(tk) ·∆t (6.3)

K(tk+1) = K(tk+1) + (−vb(tk) ∧ p(tk) +me)∆t (6.4)

In this work, only the weight force and the UAV control forces U1 and U2 are

considered as known external loads for fe and me. The reader can refer to [5]

and [20] for more details on the numerical procedure.

From Equation (6.2) it is possible to derive the velocities that the manipulator

joints must have, once the desired velocity xe,des of the end-effector is assigned,
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as:

q̇ = [Jgen]
−1



ẋe,des − [Jb][Hb]
−1







p

K









 (6.5)

Equation 6.5 represents the formula for solving inverse kinematics at the ve-

locity level for the arm of a UAM. If measurements are not available, once q̇ is

known, the base velocities can be derived from Equation (6.1).

In the case where the forces acting on the UAV or end-effector are all known,

formula (6.5) shows how a kinematic-type control can be implemented for tra-

jectory tracking in operational space. This control could work in the case where

only predictable forces that can be directly computed by the controller or that

can be estimated by on-board sensors data act on the system. Figure 6.4 shows

that the UAM is indeed able to follow the circular trajectory described in 6.1 if

the velocities dictated by (6.5) are imparted to the motors. The only forces acting

in this case are the weight force and the controls U1 and U2, which are known

and updated in the controller model to calculate p and K.

(a) EE trajectory (cyan=desired, red=actual)

and Gb trajectory (in blue)

(b) norm of the EE position error over time

||e(t)||, black vertical line at t = Tpath

Figure 6.4: Trajectory tracking with motors velocities imparted by (6.5). The

only forces acting on the system are the weight force, U1 and U2 which are

known and updated in the controller

In the case where the forces acting on the system cannot be estimated with
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sufficient accuracy or cannot be estimated at all, (6.5) would not provide suitable

velocities for tracking the desired trajectory. To effectively control the system,

a feedback term, based on the operational space error e = xe,des − xe, must be

added to the velocity references calculated through (6.5). A CLIK algorithm, such

as those described in 3.4, is thus obtained.

The new velocities q̇ assigned by the algorithm can then be written as:

q̇ = q̇ref,ik +∆q̇feedback = q̇ref +∆q̇ (6.6)

where q̇ref,ik is the velocity vector calculated through (6.5) and represents a feed-

forward term while ∆q̇feedback represents the feedback term. In the simulator, the

velocities q̇ref,ik are calculated a priori via (6.5) in a kinematics block where the

moments are updated under the assumption that only the weight force and U1,

U2 are acting. To these are then added the ∆q̇feedback velocities that are computed

in the block where the UAM direct dynamic simulation takes place (see 4.3.4).

Taking inspiration from 3.4.1 (Jacobian inverse control) it is possible to choose

the feedback term as:

∆q̇ = [Jgen]
−1[KP ]e (6.7)

where [KP ] = KP [I2] is diagonal and positive definite matrix of gains. Substitut-

ing (6.7) into (6.6) and taking into account Equation (6.5), q̇ can be written as

q̇ = [Jgen]
−1



ẋe,des − [Jb][Hb]
−1







p

K







+ [KP ]e



 (6.8)

To know the error, it is necessary to know the current position of the end-

effector so that it can then be compared with the desired position. In the simulator

this is calculated by direct kinematic function. In reality it would be better to

obtain xe by measurements from sensors. A vision system could be used or, in

indoor environments, a marker could be placed on the end-effector and tracked

by a motion-capture system.

Figures 6.5 and 6.6 show the results of the circular trajectory tracing operation

if, at t = Tpath/2, the triangular impulse force described in 6.1 occurs. This force is

considered as an unpredictable disturbance and is not considered when updating

the momenta in (6.3). Two cases are distinguished:
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• Figure 6.5: velocity-controlled manipulator without feedback (q̇ = q̇ref)

• Figure 6.6: velocity-controlled manipulator with feedback (q̇ = q̇ref +∆q̇).

A gain KP= 500 was chosen. As can be seen there’s a great improvement

in the tracking error.

(a) EE trajectory (cyan=desired, red=actual)

and Gb trajectory (in blue)

(b) norm of the EE position error over time

||e(t)||, red dashed line at t = Tpath/2 (when

impulse occurs), black vertical line at t =

Tpath

Figure 6.5: System response in case of impulse occurring at t = Tpath.

Manipulator controlled in velocity without feedback

If one wants to use a feedback term that does not contemplate the inversion

of the generalized Jacobian in real time, it is possible to take inspiration from the

3.31 (transposed Jacobian control) and choose:

∆q̇ = [Jgen]
T [KP ]e (6.9)

This control is efficient and can be used also alone if the desired position is

constant (ẋe,des = 0). Figure 6.7 shows the result of a simulation in which the hand

of the manipulator (controlled in velocity with ∆q̇ = [Jgen]
T [KP ]e) is required

to maintain the initial position despite the action of the triangular disturbance

force at t = Tpath. The gains of [KP ] matrix are KP = 5000.



6.2. RESOLVED MOTION RATE CONTROL (RMRC) 79

(a) EE trajectory (cyan=desired, red=actual)

and Gb trajectory (in blue)

(b) norm of the EE position error over time

||e(t)||, red dashed line at t = Tpath/2 (when

impulse occurs), black vertical line at t =

Tpath

Figure 6.6: System response in case of impulse occurring at t = Tpath with

Jacobian inverse control (KP = 500)

(a) In red EE actual trajectory and in blue

Gb trajectory

(b) norm of the EE position error over time

||e(t)||, red dashed line at t = Tpath/2 (when

impulse occurs), black vertical line at t =

Tpath

Figure 6.7: System response in case of impulse occurring at t = Tpath with

Jacobian transpose control (KP = 5000). Manipulator hand is required to stay

fixed at initial position
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In the case where a trajectory (ẋe,des 6= 0) is required to be tracked and

reference velocities can be precomputed through the (6.5) it is still possible to

use ∆q̇ = [Jgen]
T [KP ]e. The results, in the case of requiring the manipulator

to follow the circular trajectory of 6.1, are shown in Figure 6.8. As can be seen,

performances drops considerably compared to the case with inverse Jacobian

feedback (||e(t)|| of Figure 6.8b is two orders of magnitude greater than that in

Figure 6.6b).

(a) EE trajectory (cyan=desired, red=actual)

and Gb trajectory (in blue)

(b) norm of the EE position error over time

||e(t)||, red dashed line at t = Tpath/2 (when

impulse occurs), black vertical line at t =

Tpath

Figure 6.8: System response in case of impulse occurring at t = Tpath with

Jacobian transpose control (KP = 5000). Manipulator hand is required to track

the circular trajectory detailed in 6.1

Better performance can be achieved by increasing gains, however, it should

be noted that this also increases the danger of instability in real implementation

where controllers are forced to process noisy signals. Transposed Jacobian control

does not prove equal to inverse Jacobian control for trajectory tracking, but it has

a number of advantages over the latter that make it preferable for less demanding

cases. Calculating the transpose is much less onerous than calculating the inverse,

making the online application faster. Also, in the case of kinematic singularity the

transposed Jacobian algorithm does not fail unlike the inverse Jacobian algorithm.
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6.3 Resolved Acceleration Control (RAC)

In this section, a second-order algorithm for controlling an aerial manipulator

at the acceleration level is presented. It was taken as reference the algorithm

developed in [21] for space manipulators.

Assume that the trajectory of the end-effector at the level of accelerations

(ẍe,des) is given and that the generalized external forces (Fe = ḣ) acting on the

system are known. Equation (4.25) that here is reported

d

dt







p

K







= ḣ = Fe = [Hb]ẍb + [Hbm]q̈ + [Ḣb]ẋb + [Ḣbm]q̇ (6.10)

can be rewritten as:

[Hb]ẍb + [Hbm]q̈ = ḣ−
(

[Ḣb]ẋb + [Ḣbm]q̇
)

.
= z1 (6.11)

In this form the equation represents an acceleration constraint. Along with (4.25),

consider the kinematic equation (4.14)

ẍe = [Jb]ẍb + [J̇b]ẋb + [Jm]q̈ + [J̇m]q̇ (6.12)

that can be rewritten as:

[Jb]ẍb + [Jm]q̈ = ẍe,des −
(

[J̇b]ẋb + [J̇m]q̇
)

.
= z2 (6.13)

Equations (6.11) and (6.13) can be summarized in the following single equation:





[Hb] [Hbm]

[Jb] [Jm]











ẍb

q̈







=







z1

z2







(6.14)

For an UAM with a n DoFs manipulator, the coefficient matrix in Equation (6.14)

is of dimensions 12× (n+6). In this work n = 2 so the matrix is 12×8. Equation

(6.14) can be solved for accelerations yielding:







ẍb

q̈







=





[Hb] [Hbm]

[Jb] [Jm]





−1 





z1

z2







(6.15)

Equation (6.15) is the key equation of RAC algorithm that allows to solve the

inverse kinematics of an UAM at accelerations level. Joint velocities q̇ inside z2
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can be measured with the help of sensors. The linear and angular velocities of

the base can also be measured, or they can be computed from the momentum

constraint (4.24) as:

ẋb = [Hb]
−1 (h− [Hbm]q̇) (6.16)

As for RMRC algorithm, RAC algorithm can work effectively without feedback

if all the forces and torques acting on the system can be estimated sufficiently

accurately so that the term ḣ in z1 is updated correctly in the controller. Figure

6.9 shows the results of inverse kinematics when all forces acting on the system

are known. As for RMRC experiments, the only forces that are acting on the

UAM in this case are the weight force and the controls U1 and U2.

(a) EE trajectory (cyan=desired, red=actual)

and Gb trajectory (in blue)

(b) norm of the EE position error over time

||e(t)||, black vertical line at t = Tpath

Figure 6.9: Circular trajectory tracking through RAC. Acceleration profiles of

manipulator motors are determined by Eq.(6.15). The only forces acting on the

system are the weight force, U1 and U2, which are known and updated in the

controller

The main difficulty of resolved acceleration control of flying-base manipulator

as compared to ground-fixed manipulator is due to the fact that, in resolving

acceleration, one has to consider the differentiated momentum constraint (6.11),

together with the kinematic constraint (6.13). For these manipulators, kinematics

and dynamics cannot be treated separately, which greatly complicates control.
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Compared with RMRC, RAC has the main advantage of being able to operate

in the forces/torques domain, which can be estimated directly if the UAM has the

right sensory configuration. In the RMRC algorithm, forces must be integrated

to obtain linear and angular momenta estimates, and this can cause a lot of error

buildup.

Also in the case of RAC it may be convenient to add a feedback term, resulting

in a second-order CLIK algorithm. This could serve to counteract possible errors

due to inaccuracies in the knowledge of UAM parameters and/or acting forces.

To add an operational-space error based feedback, as with RMRC, z2 is modified

as:

z2
.
= ẍe,des −

(

[J̇b]ẋb + [J̇m]q̇
)

+ ([KP ]e+ [KD]ė) (6.17)

where [KP ] and [KD] are diagonal positive definite matrices of gains and ė is the

time derivative of the end-effector position error (in the two-dimensional case it

coincides with the error on the end-effector linear velocity). Also in this case the

acceleration input given to the motors can be decomposed as:

q̈ = q̈ref,ik +∆q̈feedback (6.18)

In the simulator accelerations q̈ref,ik can be be calculated both a priori or online

during the maneuver. Figures 6.10 and 6.11 show the results of two simulations in

which the UAM is controlled by RAC algorithm and at t = Tpath/2 is disturbed

by the triangular impulse force of 6.1. Figure 6.10 shows the result on the system

with feedback inactive while in Figure 6.11 the feedback is active with gains

KP = 500 and KD = 100.
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(a) EE trajectory (cyan=desired, red=actual)

and Gb trajectory (in blue)

(b) norm of the EE position error over time

||e(t)||, black vertical line at t = Tpath

Figure 6.10: System response in case of impulse occurring at time t = Tpath/2.

Manipulator controlled through RAC without feedback (KP = 0, KD = 0)

(a) EE trajectory (cyan=desired, red=actual)

and Gb trajectory (in blue)

(b) norm of the EE position error over time

||e(t)||, black vertical line at t = Tpath

Figure 6.11: System response in case of impulse occurring at time t = Tpath/2.

Manipulator controlled through RAC with feedback (KP = 500, KD = 100)
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Computational details of RAC

This subsection summarized the steps of the computation required for solving the

inverse kinematics of UAM systems at acceleration level at each timestep.

1. Measure ẋb, q̇ and xb, q. In the simulator these velocities and positions

come from the single and double numerical integration of the accelerations

calculated through forward dynamics procedure described in 4.3.4.

2. Compute the rotation matrices [RiI ] for transforming coordinates known in

the i-th frame Fi in coordinates in the inertial frame FI .

3. Compute the positions of the links centers of mass rGi
.

4. Compute
(

[J̇b]ẋb + [J̇m]q̇
)

. For doing this observe that from 6.13 it is pos-

sible to deduce that:

[J̇b]ẋb + [J̇m]q̇ = ẍe|ẍb=q̈=0
= ẍe,0 (6.19)

This acceleration is calculated through the forward recursion of Newton-

Euler recursive scheme (see 4.2.1) under the constraint ẍb = q̈ = 0

5. Compute
(

[Ḣb]ẋb + [Ḣbm]q̇
)

. From 6.11 it is possible to deduce the rela-

tion:

[Ḣb]ẋb + [Ḣbm]q̇ = ḣ

∣

∣

∣

ẍb=q̈=0

= ḣ0 (6.20)

ḣ0 represents the generalized inertial force acting on the system when ẍb =

q̈ = 0. It is calculated by the backward recursion of the Newton-Euler

scheme applied in the previous step.

6. Compute [Hb]
−1 (see 4.18). This can be computed using the formula of the

inverse of a block matrix [14] as:

[Hb]
−1 =





[I3] −[S(rGb,Gi
)]T

[0] [I3]









(1/mtot)[I3] [0]

[0] [s]−1









[I3] [0]

−[S(rGb,Gi
)] [I3]





(6.21)

where [s] = [Hω] +mtot[S(rGb,G)]
2.

7. Compute [Hbm] from Equation (4.20)
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8. Compute ẍb and q̈ through Equation (6.15). The inverse of the coefficient

matrix can be computed with the same formula mentioned in step 6 ob-

taining:





[Hb] [Hbm]

[Jb] [Jm]





−1

=

=





[I6] −[Hb]
−1[Hbm]

[0] [In]









[Hb]
−1 [0]

[0] [Jgen]
−1









I6 0

−[Jb][Hb]
−1 [In]



 (6.22)

Instead of computing the inverse by multiplicating the three matrices, it

is computationally less expensive to repeat three times the matrix vector

product that comes out by substituting (6.22) into (6.15). Note that if

the manipulator passes through a singular configuration, since [Jgen] is not

invertible, the coefficient matrix is not invertible thus the algorithm fails.



Chapter 7

RAC tests

This chapter reports the results of several virtual experiments on an UAM con-

trolled at acceleration level through the RAC algorithm presented in Chapter 6.

Experiments are all performed in the MATLAB simulator presented in 4. The ex-

periments objective is the same of that described in 6.1: making the end-effector

to follow a circular trajectory of diameter D in a time Tpath and stay on the final

point for a time Tpost. The parameters of the UAM protagonist of the simulations

are the same reported in Table 6.1.

The chapter objective is to present the performances of the RAC algorithm

when the system is subjected to the action of more realistic disturbances than the

impulse shown in Chapter 6. The modeling of such disturbances was discussed in

Chapter 5. For each of these, the response of the system with feedback control off

(gains equal to zero) will be presented first and then the response when feedback

is on. In the case of disturbances of a random nature, multiple experiments will

be performed and then an average of the results will be reported. As measure for

evaluating the performance of the control system, the trend of the end-effector

position error norm over time ||e(t)|| was chosen.

At the end are reported the results of a sensitivity analysis done for a pre-

liminary tuning of the feedback term gains and a comparison between RAC and

RMRC.
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7.1 Response to wind disturbance

UAMs will be requested to operate in both outdoor and indoor scenarios. In

both cases the system may be disturbed by aerodynamic forces (i.e. wind in

outdoor applications) causing significant movements of the manipulator base.

RAC algorithm must prove that it can make the manipulator complete the task

equally, despite these unpredictable movements.

First the system is tested assuming that the disturbance is a wind gust mod-

elled as described in 5.1.1. Aerodynamic forces on the UAV caused by this wind

are plotted in Figure 7.1. Figure 7.2 shows the response of the system with feed-

back loop deactivated, while in Figure 7.3 is shown the response when the feedback

is active with KP = 500 and KD = 100.

Figure 7.1: Aerodynamic forces on the UAV for the experiments of Figure 7.2

and 7.3. n = 40 and Ωi ∈ [0.1, 1.5] rad/s

Since the disturbance is random in nature, to give a more accurate picture

of the control system’s ability to reject it, a multiplicity of experiments were

performed. Figure 7.4 shows the plot of the mean of the position error norm over

time based on the results of 10 experiments. The gains were always KP = 500

and KD = 100.
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(a) EE trajectory (cyan=desired, red=actual)

and Gb trajectory (in blue)

(b) norm of the EE position error over time

||e(t)||, black vertical line at t = Tpath

Figure 7.2: System response to wind gust when controlled trough RAC with no

feedback (KP , KD = 0)

(a) EE trajectory (cyan=desired, red=actual)

and Gb trajectory (in blue)

(b) norm of the EE position error over time

||e(t)||, black vertical line at t = Tpath

Figure 7.3: System response to wind gust when controlled through RAC with

feedback (KP = 500, KD = 100)
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Figure 7.4: Mean value of ||e(t)|| over 10 virtual experiments. UAM subjected to

wind force and controlled through closed-loop RAC algorithm

(KP = 500, KD = 100)

From what can be seen in Figures 7.2, 7.3 and 7.4 it is possible to affirm

that RAC algorithm shows very good performances when the UAM is subjected

to external unknown forces. The norm of the end-effector position error stayed

under the tenth of millimeter in simulations.

In indoor applications, UAMs may not experience wind gusts but still expe-

rience the effect of other disturbances of aerodynamic nature that are difficult

to quantify. Normally these disturbances are almost random in nature, and have

an higher frequencies than the wind experienced outdoors. As was mentioned in

Chapter 5, the implemented wind model can be modified in its frequency content.

This can be done, for example, by choosing higher frequencies for the sine waves

that make up the wind speeds. In this way, it is possible to quickly obtain a very

simple model, that maybe is not accurate in magnitude, but can simulate to some

degree the aerodynamic effects experienced in indoor scenarios. Figure 7.5 shows

an example of aerodynamic force profile when the frequencies of the sinusoids in

Dryden model are picked from the interval [1, 30] rad/s.

Similarly to what was done before, in Figure 7.6 is reported the plot of the

mean value of ||e(t)|| over 10 experiments when the frequencies of Dryden model

sinusoids are taken in the interval [1,30] rad/s (always KP = 500, KD = 100).

Also in this case the RAC algorithm proves to be robust.
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Figure 7.5: Example of aerodynamic forces profiles when frequencies of Dryden

model sinusoids Ωi ∈ [1, 30] rad/s

Figure 7.6: Mean value of ||e(t)|| over 10 virtual experiments with higher

frequency disturbance. UAM controlled through closed-loop RAC

algorithm(KP = 500, KD = 100)
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7.2 Response in case of noise in the measure-

ment chain

(a) UAV translations (b) UAV rotations

(c) UAV linear velocities (d) UAV angular velocity

Figure 7.7: UAV kinematic quantities corrupted by noise. UAM controlled

through inverse kinematics algorithm at acceleration level

As discussed in chapter 5, it is inevitable that signals from the on-board sensors

will be noisy. This can pose a serious threat to the proper operation and stability

of the UAM control system since the feedback loop no longer relies on correct

information about the system status. Therefore, it is important to verify that the

RAC algorithm is robust to noise.
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To do this, in the simulator are performed some experiments in which the

signals of UAV kinematic quantities are corrupted with distributed Gaussian

noise. The generic signal x(t) thus become X(t) = x(t) + σZ with Z ∼ N (0, 1)

(see 5.2 for more details and Table 5.2 for std. deviations values).

Figure 7.7 shows the plots of disturbed signals (system controlled by RAC

algorithm with no feedback). From Figure 7.8 it is possible to see how, even in

the absence of unknown forces acting on the system, the presence of the noise

leads the end-effector not to follow the desired trajectory correctly. In fact, noise

affects both the calculation of the drone control forces U1 and U2 from the PID

system and the online calculation of the terms ḣ0 and ẍe,0 in the RAC algorithm.

Figure 7.8: ||e(t)|| when UAM is controlled only through inverse kinematics

algorithm at acceleration level (KP = 0, KD = 0) in the presence of noise

To effectively test the RAC algorithm, it was assumed in the simulations

that the impulsive disturbance described in 6.1 would act in the middle of the

maneuver. In this way it is possible to see how the algorithm reacts to uncertainty

about the actual position and velocity of the end-effector. Figures 7.9 and 7.10

compare the plots of ||e(t)|| in the case of inactive and active feedback.
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Figure 7.9: ||e(t)|| when a triangular impulsive force of maximum 10 N occurs at

t = Tpath/2 (vertical red dashed line). UAM is controlled only through inverse

kinematics algorithm at acceleration level (KP = 0, KD = 0).

Figure 7.10: ||e(t)|| when a triangular impulsive force of maximum 10 N occurs

at t = Tpath/2 (vertical red dashed line). UAM is controlled with closed-loop

RAC algorithm (KP = 500, KD = 100)

As can be seen from Figure 7.10, the RAC algorithm proves to be robust even

in the presence of noise in the measurement chain. The error is greatly reduced

with respect to the case of Figure 7.9 and remains bounded both before and after

the impulse occurring.

According to the simulation, the trajectory is irregular, and this may cast

doubt on the effectiveness of the control. Actually, it must be said that unmanned

systems such as UAVs nowadays implement sophisticated algorithms, such as the
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Kalman filters, already mentioned in Chapter 2, to process data from sensors.

Thanks to these both noise and uncertainty on the data are greatly reduced,

making the scenario assumed in these simulations almost extreme. However, it

should be emphasized that even in these scenarios RAC has shown that it can

provide good performances while keeping the system stable.

7.3 Robustness to parameter uncertainty test

In this section are reported the results of virtual experiments on the UAM in the

case of uncertainty in the model parameters used by the control algorithm. In

this way, the robustness of the system to parameter variation can be evaluated.

The uncertainty is modelled as described in 5.3. Three categories are therefore

distinguished and the response of the system in each of these cases is shown.

7.3.1 Control in the case of uncertain inertial parameters

(a) EE trajectory (cyan=desired, red=actual)

and Gb trajectory (in blue)

(b) norm of the EE position error over time

||e(t)||, black vertical line at t = Tpath

Figure 7.11: System response when controlled by open-loop inverse kinematic

algorithm (KP , KD = 0) in the case of model incorrect inertial parameters

values.
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In this case there is an uncertainty both on UAV inertial parameters (mUAV and

IGb
) and on links (mi and IGi

). Figure 7.11 shows the response of the system when

accelerations are computed only by mean of inverse kinematic algorithm. Since

also in this case the nature of the disturbance is random, several experiments

were performed. Figure 7.12 show the plot of the mean value of ||e(t)|| for 5

experiments.

Figure 7.12: Mean value of ||e(t)|| over 5 virtual experiments. Uncertain inertial

parameters. System controlled by closed-loop RAC algorithm

(KP = 500, KD = 100)

7.3.2 Control in the case of geometric uncertainties

Also errors in the geometric model of the UAM can lead to trajectory tracking

errors. Figure 7.13 shows the tracking error in case of incorrect knowledge of

the centers of mass location of the links and the UAV (modelled as described in

5.3.2). CoG locations are random for every simulations as explained in 5.3.2. In

Figure 7.14 is reported the plot of the average error obtained in 5 experiments.

Since the position error of the first joint inevitably causes an initial positioning

error of the end-effector, the first second of the plot is omitted. As can be seen

from the figure, when the feedback loop is active, the system takes little time to

bring itself back into position.
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(a) EE trajectory (cyan=desired, red=actual)

and Gb trajectory (in blue)

(b) norm of the EE position error over time

||e(t)||, black vertical line at t = Tpath

Figure 7.13: System response in the case of model incorrect centers of mass

location informations (KP , KD = 0)

Figure 7.14: Mean value of ||e(t)|| over 5 virtual experiments. Uncertain CoG

locations. System controlled in acceleration with feedback active

(KP = 500, KD = 100)

7.3.3 Control in the case of unknown mass of the carried

load

In this case it is assumed that the end organ of the manipulator carries a load of

completely unknown mass (equal to 0.5 kg in the simulations).



98 7. RAC TESTS

(a) EE trajectory (cyan=desired, red=actual,

square=load mass) and Gb trajectory (in

blue)

(b) norm of the EE position error over time

||e(t)||, black vertical line at t = Tpath

Figure 7.15: System response in the case of unknown carried mass by the EE

(KP , KD = 0, mload = 0.5kg)

(a) EE trajectory (cyan=desired, red=actual,

square=load mass) and Gb trajectory (in

blue)

(b) norm of the EE position error over time

||e(t)||, black vertical line at t = Tpath

Figure 7.16: System response in the case of unknown carried mass by the EE

(KP = 500, KD = 100, mload = 0.5kg)
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The transport of the load is modelled as described in 5.3.3. Figure 7.15 shows

the system response when the feedback loop is deactivated. As can be seen the

actual trajectory gets very far from the desired one. Figure 7.16 shows how adding

the feedback makes the system accomplishing the trajectory with a low error.

7.4 Response in the case of multiple disturbances

Figure 7.17: Aerodynamic forces on the UAV for the experiment of Figure 7.18 .

n = 30 and Ωi ∈ [0.1, 1.5] rad/s

In this section the algorithm is tested assuming that on the the UAM is acting

an aerodynamic disturbance (force profile plotted like in Figure 7.17) and that

the the signal coming from sensors are noisy. In the middle of the simulation

the triangular impulse of 6.1 occurs. The result in term of norm of the tracking

error is plotted in Figure 7.18. Also in this case RAC shows good performances

with the distance of the end-effector from desired trajectory staying below the

millimeter.

7.5 Sensitivity analysis for preliminary gains tun-

ing

This section reports the results of the sensitivity analysis done by varying the

control gains. The goal is to find the most appropriate combination of KP and

KD for UAM control without the danger of the system becoming unstable. In
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Figure 7.18: Response of the system controlled by closed-loop RAC algorithm

(KP = 500, KD = 100) in the case multiple disturbances. At t = Tpath/2 the

impulse described in 6.1 occurs

the simulations performed, the UAM was subject to the action of aerodynamic

disturbance, noise, and impulsive force at t = Tpath/2. The combinations of the

gains were created by taking the gains from the following vectors:

• KP from {10, 100, 500, 1000, 5000}

• KD from {0.1, 1, 10, 100, 1000}

Figure 7.19: Results of the sensitivity analysis. Numbers inside the squares

represent the final mean value ”mean(||e(t)||)”. Black squares indicate that the

corresponding combination of KP ,KD led to instability
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This yields 25 combinations of KP ,KD. Given the random nature of the aero-

dynamic disturbance, 3 experiments were performed for each combination. The

profile of the average trend of the position error norm for the three experiments

was then calculated and from this the average value of the error ”mean(||e(t)||)”.

This benchmark value is represented by the color of the squares in the heatmap

of Figure 7.19.

As the heatmap shows, the combination used in this chapter is one of the best

possible. Results suggest to take gains KP , KD in the hundreds.

7.6 Comparison between RAC and RMRC al-

gorithms

To conclude, a comparison made between the RMRC and RAC algorithms is

reported. The comparison is made by requiring the UAM to follow the usual

circular trajectory, first commanded in velocity, then in acceleration, with the

UAV under the effect of the same aerodynamic force and impulsive force at t =

Tpath/2. To make the comparison results more readable, noise was ignored in the

two experiments.

Figure 7.20 shows the plots of the force acting in the experiments.

Figure 7.20: Profiles of the forces acting on the UAM in the experiments for the

comparison between RAC and RMRC

Figure 7.21 presents the comparison of the accelerations of the manipulator
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motors. As can be seen, the trends are more or less similar with a difference at the

moment of impulse. Shortly after that instant it can be seen that the accelerations

required of the motors in the case where the UAM is controlled by RAC algorithm

reach higher peaks.

Figure 7.21: Comparison of manipulator motors acceleration profiles. UAM

under the effect of the aerodynamic force plotted in 7.20 and impulsive force at

t = Tpath/2

Figures 7.22 e 7.23 show the comparison of linear and angular velocities in the

two cases. Here again, the greatest differences occur at the time of the impulse.

Finally, Figure 7.24 shows the comparison of the EE position error norms.

It would appear that the RAC reacts worse to impulsive events. However subse-

quently it is able to maintain the error slightly lower than the RMRC.
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Figure 7.22: Comparison of base velocity components. UAM under the effect of

the aerodynamic force plotted in 7.20 and impulsive force at t = Tpath/2

Figure 7.23: Comparison of base angular velocity. UAM under the effect of the

aerodynamic force plotted in 7.20 and impulsive force at t = Tpath/2

Figure 7.24: Comparison of ||e(t)|| in the two virtual experiments





Conclusions

In this thesis, new methods for trajectory tracking control by aerial manipula-

tors (UAMs) were presented and validated. Initially, the mathematical model of

the reference aerial platforms for the UAM was derived, namely the DJI S1000

commercial octocopter. This is an underactuated system that is supposed to be

controlled through a PID system acting on altitude, roll, pitch, and yaw. Mod-

eling and control of traditional fixed-base manipulators was then discussed, with

special reference to CLIK algorithms.

Next, the equations underlying a new simulator implemented in MATLAB

code for dynamic simulation of simplified planar models of UAMs were presented.

The accuracy of the simulator was demonstrated by comparing the results of a

benchmark virtual experiment with those coming out of the dynamic simulation

software ADAMS.

To test the UAM under conditions closer to real-world ones, several models

of some of the most common sources of disturbance in UAV control were imple-

mented in this environment: forces of aerodynamic nature, noise in signals coming

from sensors, and uncertainty about robot parameters.

Two methods were then presented for resolving inverse kinematics and control-

ling UAMs. These allow determining the references to be given to the manipulator

joints for tracking a given trajectory in the operational space. The first, called

Resolved Motion Rate Control (RMRC), provides velocity references while the

second, called Resolved Acceleration Control (RAC), provides acceleration pro-

files. Both are made closed-loop (CLIK algorithms) by adding a feedback term

based on the operational space error.

The final section was devoted to showing the results of several tests on the
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RAC algorithm, new to UAMs, which demonstrated good rejection capability for

all modelled disturbances. Also shown are the results of a preliminary sensitivity

analysis conducted to decree the best combination of gains to be assigned to the

system.

Possible future developments of the work done in this thesis could be the

followings:

• The algorithms were tested for the control of a 2-DoFs manipulator with

the objective of tracking a trajectory in the plane. In the future, these are

also to be tested on redundant manipulators.

• Joint limits (both position and velocity) were not taken into account in

planning and control. These affect performances in important ways and

cannot be ignored in the future.

• The dynamic model of the UAM could be made more accurate if the dy-

namic effects related to the individual joint were also considered. For exam-

ple, the mass and inertia of each servo motor and friction in the gearboxes.

It was also assumed that the motors are able to perfectly follow the out-

put references from the inverse kinematics. In reality there is a low-level

feedback control at the level of the individual robot joint that has its own

dynamics that may not be negligible.

• One could enrich the simulator by modeling the aerodynamic effects that

could affect UAM in indoor scenarios due to proximity to walls and ground

(known in the literature as wall and ground effects).

• In this thesis, the drone was considered to be controlled only in altitude and

pitch by a PID system. Today there are many other methods and strategies

for controlling UAVs even in horizontal motion. RMRC and RAC algorithms

will have to be tested also in combination with these new methods.
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