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Abstract

This thesis was done in the Institute of Electric Drives and Machines, Tech-
nical University of Graz. The project is focused on the design of Synchronous
Reluctance Motors and the study about this motor can be used for household
applications. The target of the motor is to achieve high efficiency and low
cost. At the moment, single phase induction motors are the most common
units for home appliances. The reason for this choice is its low production
cost. Synchronous reluctance motor, operated as a variable speed drive, can
be more qualified candidates for this type of application. The design is car-
ried out by a simple mathematical model and the analysis is used the finite
element software COMSOL. For this reason, the aim of the thesis is to cre-
ate a motor with high efficiency and lower cost in an operating point that
is 10 times less the value of its rated power. The motor is optimized with
a Genetic Algorithm, which allows to choose the best candidates to achieve
the target.
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Chapter 1

Introduction

The aim of the project is to study the optimization of a Synchronous Reluc-
tance Motor for refrigerators household applications. The requirements are
design the motor for two different operating points: the rated power point
is equal to 100W and at an operating point of 10W the motor should have
an efficiency of 95%. One important constraint of this motor is the fact that
the windings should be concentrated. This choice is due to the low ohmic
resistance motivated by short end-windings and low manufacturing costs.

1.1 Thesis motivation
Electric motors are used extensively in households and industries applica-
tions. In Europe, they represent the 40% of the global consume. The most
employed units are single phase induction motors where the efficiency is
around 70-80%. The efficiency level can be improved using permanent mag-
net motors, which allow variable speed drives. Due to the high cost of mag-
nets, brushless motors are not an economic alternative. For this reason,
synchronous reluctance motors can be an interesting solution, since they do
not have magnets. The main characteristics of these motors are the low
construction price and be a "cold rotor".
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Chapter 2

Mathematical model

A mathematical model represents a description of a physical system. It helps
to explain singular effects interacting between them. The complexity of the
rotor shape is linked to the anisotropy of the motor, and as a consequence
the torque. A common disadvantage of these machines is the high value of
torque ripple [1]. That is due to the interaction between the stator MMF
spatial harmonics and the permeance harmonics, high iron losses and noise
caused by the vibration.

Fig.2.1 shows an example of the shape of the rotor with two flux barriers
and different angular openings. The reluctance machine with transversely
laminated rotor is a good competitor in fact of high dynamic, high torque
density and fault-tolerant capability than other types of electric motors [2].
To increase the power factor of this type of machine, which is usually low,
the permanent magnets are inserted. This configuration is called PM-assisted
synchronous reluctance machine, Fig.2.2. The goal of the permanent magnet
is to increase the saturation of the magnetic ribs.

It is possible to obtain a reasonable reduction of the torque ripple with
a suitable choice of the number of flux barriers and the number of the sta-
tor slots. Another method consist in shifting the flux barriers from their
symmetrical position.

This chapter studies the link between the expression of the torque and
the shape of the motor. The rotor geometry has an important influence on
the performance of the machine, as shown in [3]. The analytical model, that
is a function of the geometry of the motor, allows to compute both the air
gap radial flux-density and the electromagnetic motor torque. The analytical
model shows the effect of the flux-barriers.

The geometrical variables are angle of the flux-barrier ends θb, lenght of
the flux-barriers lb, thickness of the flux-barriers tb, bore diameter D, stack
length Lstk, number of slots Qs and rotor position θm, represented in Fig.2.3.

3
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Figure 2.1: Shape of the rotor in a synchronous reluctance machine having
two flux barriers

Figure 2.2: PM-assisted syncrhonous reluctance motor
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Figure 2.3: Reference of the synchronous reluctance machine

2.1 Magnetic design
Starting from the model, only the reluctance effect is considered (avoiding
the permanents magnets). The d-axis is aligned with the rotor path that
exhibits a high permeance. The q-phase axis is shifted π/2 electrical radians.
The a-phase coincides with the stator reference axis, while phase b and c are
shifted 2π/3 and 4π/3 respectively. This model is linear [4], i.e. it avoids
the saturation effects (only for the magnetic ribs) and the iron permeability
is considered infinite.

To take care of the magnetic drop in the iron it is necessary increase the
actual airgap gact, to consider the assumption of the infinite iron permeability.

g = kCarterksatgact (2.1)

where the saturation factor ksat, is the ratio between the total magnetic drop
and the magnetic drop in the actual airgap gact and the carter factor kCarter is
a coefficient that increase the airgap in case slot opening are considered. The
synchronous reluctance motor has its winding placed around the geometry of
the stator in order to obtain a sinusoidal magnetic field, that rotates in the
air gap. The distribution of conductors phase a can be written as follows

nda(θ) = n̂d sin(pθs) (2.2)
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Figure 2.4: Conductors slot distribution

where θs is the mechanical angular position in the reference frame of the
stator and n̂d is defined as

n̂d = 4
π

kwN

2D (2.3)

Where D is the bore diameter and kw is the winding factor obtained by
the product of the distribution factor kd, the pitch factor kp and the skew
factor ksk.

kw = kdkpksk (2.4)
with this assumptions, the stator can be considered as a conductor sheet

of infinitesimal thickness placed in the inner surface of the stator. The con-
ductor distribution is shown in (Fig.2.4). The linear current density of the
winding, Ksa, can be written

Ksa(θs) = 2
D

dia(θs)
dθ

(2.5)

where (D/2)dθ is a generic elementary arc crossed by the infinitesimal
current dia(θ) [4]. Since the conductors distribution has a sinusoidal shape,
the current density has a similar shape.

Ksa(θ) = n̂dia sin(pθs) (2.6)
Summing the contribution of each phase it is possible obtain the overall

linear current density distribution Ks(θ)
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Ks(θ) =
m∑
j=1

n̂dij(t) sin
pθs − (j − 1)2π

m

 (2.7)

m is the number of phases and ij(t) is the current of the j-th phase.
Considering a symmetric three-phase winding, the current can be written as
a function of the position of the rotor θm

ia = Î cos(pθm + αei ),

ib = Î cos
pθm + αei −

2π
3

,
ic = Î cos

pθm + αei −
4π
3

.
(2.8)

αei is the angle of the current in electric degrees, p is the number of pole
pairs and θm is the rotor position.

Ks(θ) = n̂dia sin(pθs) + n̂dib sin
pθs − 2π

3

+ n̂dic sin
pθs − 4π

3

,
= n̂dÎ

cos(pθm + αei ) sin(pθs) + cos
pθm + αei −

2π
3

 sin
pθs − 2π

3

+

+ cos
pθm + αei −

4π
3

 sin
pθs − 4π

3

,
= 3

2 n̂dÎ sin(pθs − pθm − αei ),

= K̂s sin(pθs − pθm − αei ).
(2.9)

Ks(θ) is the linear current density across the pole. Since that the system
of sine wave currents is symmetric (2.8), also the distribution of the electric
load will be symmetric and synchronous with the rotor (2.9). The maximum
value is

K̂s = 3
2 n̂dÎ (2.10)

plugging the value of n̂d of equation (2.3) in (2.10), we obtain
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Figure 2.5: d-q refernce

K̂s = 3kwNÎ
πD

(2.11)

using the change of reference coordinate, θs = θr + θm, in equation (2.9)
becomes

Ks(θr) = K̂s sin(pθr − αei ) (2.12)
αei represents the phase angle of the stator current in the d-q reference

frame, Fig.2.5. Choosing αei = 0 means to have only d-axis current with
maximum value of the linear current density distribution K̂s(θr) along the
q-axis. Instead, impose αei = π/2, is equal to have only q-axis current and
then minimum value of the linear current density distribution K̂s(θr) along
the d-axis, respectively.

The electrical loading (2.12) can be decomposed in Fourier series expan-
sion [3]

Ks(θs) =
∑
v

K̂v sin(vpθs − pθm − αei ) (2.13)

where v is the harmonic order and K̂v is the peak of electric loading
harmonic of vth order. The harmonic order v can have either positive or
negative sign depending of the winding, number of slots and poles. The
value of this coefficient can be expressed as [2]

v = 6k + 1 (2.14)
with k is an integer number, k = 0,±1,±2, . . . .
Changing the reference frame, from the stator to the rotor (Fig.2.3),

pθr = wmet (2.15)
the electrical loading becomes
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Figure 2.6: Stator magnetic potential

Ks(θr) =
∑
v

K̂v sin[vpθr + (v − 1)pθm − αei ]

=
∑
v

K̂v sin[vpθr + (v − 1)wmet− αei ]
(2.16)

Magnetomotive force of the stator Us(θr) can be computed using Am-
pere’s Law as shown in [2]

Us(θr) =
∫
Ks(θr)

D

2 dθr

=
∑
v

−K̂v

v

D

2p cos[vpθr + (v − 1)wmet− αei ]
(2.17)

The Fig.2.6(a) shows the geometrical motor components. It can be seen
that the magnetic potential has a square distribution, Fig.2.6(b). The mag-
netic field of the rotor is generated as a consequence of the magnetic flux
distribution. In the reluctance machine the rotor magnetic potential in the
"island" is constant and proportional to the flux-barrier reluctance and the
flux (Fig.2.7(a)). As it is possible to see in Fig.2.7(b) the air-gap flux density
can be computed as the difference between the two magnetic potentials.

For the resolution of the analytical model some geometrical simplifications
are made: the stator is replaced by infinitesimal sheet, the shape of the flux-
barrier is simplified, i.e. it is assumed an equivalent reference value that
describe their length and the thickness, identified equipotential magnetic axes
thanks to the magnetic symmetries of the motor, which permits to consider
only the complete rotor pole magnetic circuit and the iron is considered
infinitely permeable.
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Figure 2.7: Rotor magnetic reaction

Figure 2.8: Magnetic network with one flux-barriers per pole

2.1.1 Rotor with one flux-barrier
The flux-barrier angle, θb, in Fig.2.1 is the half-angle of the flux-barrier (in
mechanical degrees). The air-gap flux density distribution, neglecting the
magnetic voltage drop in the stator iron path, is given by

Bg(θr) = µ0
−Us(θr) + Ur(θr)

g
(2.18)

The magnetic potential of the rotor is constant in the magnetic "island"
and null elsewhere.

To study the configuration of the rotor with one flux-barrier per pole, it
is possible to analyze the equivalent magnetic lumped-parameter network for
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an SynRM (Synchronous Reluctance Motor) and the model is represent in
Fig.2.8. Rg1 represents the reluctance of the air gap over the rotor island and
Rg2 is the reluctance of the remainder air gap over the pole end.

The magnetic reluctance of the flux-barrier is given by

Rb1 = tb
µ0Lstklb

(2.19)

where tb and lb are the barrier thickness and length, µ0 is the air perme-
ability and Lstk the stack length.

Integrating the air-gap flux density (2.18) the result is the magnetic flux
crossing the flux-barrier

φ = φb1 =
∫ π

2p+θb

π
2p−θb

−Bg(θr)Lstk
D

2 dθr (2.20)

The rotor magnetic potential Ur1 can be expressed as

Ur1 = φb1Rb

=
∫ π

2p+θb

π
2p−θb

−Bg(θr)Lstk
D

2 dθr

 tb
µ0Lstklb

= µ0
LstkD

2g

∫ π
2p+θb

π
2p−θb

Us(θr) dθr − 2θbUr

 tb
µ0Lstklb

= D

2g
tb
lb

∫ π
2p+θb

π
2p−θb

Us(θr) dθr − 2θbUr



(2.21)

then

Ur1

1 + D

2g
tb
lb

2θb

 = D

2g
tb
lb

∫ π
2p+θb

π
2p−θb

Us(θr) dθr

 (2.22)

some dimensionless coefficients are introduced for simplify, which are in
function of the geometrical parameters

a =
D
2g
tb
lb

1 + D
2g
tb
lb

2θb
(2.23)

kτ = µ0
D2Lstk
g

(2.24)

The rotor magnetic potential can be written as
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Ur1 = a
∫ π

2p+θb

π
2p−θb

Us(θr) dθr

= a
∑
v

∫ π
2p+θb

π
2p−θb

−K̂v

v

D

2p cos[vpθr + (v − 1)wmet− αei ]

= a
∑
v

−K̂v

v

D

2p
1
vp

sin[vpθr + (v − 1)wmet− αei ]

∣∣∣∣∣∣
π
2p+θb

π
2p−θb

(2.25)

the argument inside the trigonometric function (2.25) can be grouped in
an unique term (2.26)

λv = vπ

2 + (v − 1)wmet− αei (2.26)

the equation (2.25) can be written as

Ur1 = −aD
∑
v

K̂v

(vp)2 cosλv sin(vpθb) (2.27)

It is possible to obtain the torque expression from the integration of the
Lorentz’s force density [2] along the air-gap surface, multiplied by the radius
D/2

τm = −D2

∫ 2π

0
Bg(θr)Ks(θr)

DLstk
2 dθr

= −D2

∫ 2π

0
µ0
−Us(θr) + Ur

g
Ks(θr)

DLstk
2 dθr

= µ0

g

D2Lstk
4

∫ 2π

0
Us(θr)Ks(θr) dθr︸ ︷︷ ︸

A

+
∫ 2π

0
−Ur(θr)Ks(θr) dθr︸ ︷︷ ︸

B


(2.28)

The first part of the integral (2.28), A, is null since Us(θr) and Ks(θr) are
orthogonal functions. The second part remains in (2.28), B,

τm = µ0

g

D2Lstk
4

∫ 2π

0
−Ur(θr)Ks(θr) dθr (2.29)

It is important to note that Ur(θr) is a function piece-wise defined, only
in the intervals (π/2p− θb, π/2p+ θb) and (3π/2p− θb, 3π/2p+ θb) assumes
a value and null elsewhere, also has opposite value under every other pole.
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Figure 2.9: Magnetic network with two flux-barriers per pole

Only two poles are considered thanks the symmetry of the motor, it is only
necessary multiply the result by the number of the pole pairs p.

After some manipulation the expression of the torque is

τm = µ0

g

D2Lstk
4 Ur1(−2p)

∫ π
2p+θb

π
2p−θb

Ks(θr) dθr (2.30)

Substituting the equations of the electric load (2.16) and the rotor mag-
netic potential (2.27) the torque becomes

τm = akτ
∑
v

K̂v

(vp)2D cosλv sin(vpθb)
∑
ξ

K̂ξ

ξ
sin λξ sin(ξpθb) (2.31)

The two different terms of harmonics v and ξ are used to avoid confusion
from the two series expansions.

2.1.2 Rotor with two flux-barriers
The analytical description of the motor with two flux-barriers is represented
through the magnetic lumped-parameter network of Fig.2.9. The inner flux-
barrier is named with subscript "1" and second with the subscript "2".

The electric load and the magnetic potential are defined respectively from
the equation (2.6) and (2.7).
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Ur1 = φb1Rb1 + Ur2

=
∫ π

2p+θb1

π
2p−θb1

−Bg(θr)
LstkD

2 dθr + Ur2

=
∫ π

2p+θb1

π
2p−θb1

µ0
Us(θr)− Ur1

g

LstkD

2 dθrRb1 + Ur2

= D

2g
tb1
lb1

∫ π
2p+θb1

π
2p−θb1

Us(θr) dθr −
∫ π

2p+θb1

π
2p−θb1

Us(θr) dθr︸ ︷︷ ︸
2θb1Ur1

+ Ur2

= D

2g
tb1
lb1

∫ π
2p+θb1

π
2p−θb1

Us(θr) dθr −
D

g

tb1
lb1
θb1Ur1 + Ur2

= a
∫ π

2p+θb1

π
2p−θb1

Us(θr) dθr + bUr2

(2.32)

and

b = 1
1 + D

2g
tb1
lb1

2θb1
(2.33)

The two coefficients a (2.23) and b (2.33) are dimensionless and func-
tions of the motor geometry. The magnetic potential of the outer island is
computed by means of the flux crossing through the flux-barrier, wich is

Ur2 = φb2Rb2

=
φb1 +

∫ π
2p−θb1

π
2p−θb2

−Bg(θr)
LstkD

2 dθr +
∫ π

2p+θb2

π
2p+θb1

−Bg(θr)
LstkD

2 dθr

Rb2

=
Ur1 − Ur2

Rb1
+
∫ π

2p−θb1

π
2p−θb2

µ0
Us(θr)− Ur2

g

LstkD

2 dθr+

+
∫ π

2p+θb2

π
2p+θb1

µ0
Us(θr)− Ur2

g

LstkD

2 dθr

Rb2

=
Ur1 − Ur2

tb1
lb1 + D

2g

∫ π
2p−θb1

π
2p−θb2

(Us(θr)− Ur2) dθr+

+
∫ π

2p+θb2

π
2p+θb1

(Us(θr)− Ur2) dθr

tb2
lb2

(2.34)
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Substituting Ur1 (2.32) in the equation (2.34) and assuming Ur2 constant,
the result is

Ur2 = Ur2
tb2
lb2

(b− 1) lb1
tb1
− D

2g2(θb2 − θb1)
+ tb2

lb2

a lb1
tb1

∫ π
2p+θb1

π
2p−θb1

Us(θr) dθr+

+ D

2g

∫ π
2p−θb1

π
2p−θb2

Us(θr) dθr +
∫ π

2p+θb2

π
2p+θb1

Us(θr) dθr


= c

∫ π
2p+θb1

π
2p−θb1

Us(θr) dθr+

+ d

∫ π
2p−θb1

π
2p−θb2

Us(θr) dθr +
∫ π

2p+θb2

π
2p+θb1

Us(θr) dθr


(2.35)

Also the coefficients c and d are dimensionless and they depend from
geometrical parameters.

c =
a lb1
ttb1

tb2
lb2

1− (b1) lb1
tb1

tb2
lb2

+ D
g
tb2
lb2

(θb2 − θb1)
(2.36)

d =
D
2g
tb2
lb2

1− (b1) lb1
tb1

tb2
lb2

+ D
g
tb2
lb2

(θb2 − θb1)
(2.37)

The integral of the magnetic potential Us(θr) from the air-gap to the inner
flux-barrier is

S1 =
∫ π

2p+θb1

π
2p−θb1

Us(θr) dθr =
∑
v

− K̂v

(vp)2D[cos(λv) sin(vpθb1)] (2.38)

λv is described in the equation (2.26). The integral between the inner
and the outer flux-barrier is

S2 =
∫ π

2p−θb1

π
2p−θb2

Us(θr) dθr +
∫ π

2p+θb2

π
2p+θb1

Us(θr) dθr

=
∑
v

− K̂v

(vp)2D cos(λv)[sin(vpθb2)− sin(vpθb1)]
(2.39)

Ur2 results
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Ur2 = cS1 + dS2

=
∑
v

K̂v

(vp)2D

−c cos(λv) sin(vpθb1)− d cos(λv)[sin(vpθb2)− sin(vpθb1)]


= −
∑
v

K̂v

(vp)2D cos(λv)
(c− d) sin(vpθb1) + d sin(vpθb2)


(2.40)

from the equation (2.32) it is possible to obtain the rotor magnetic po-
tential Ur1

Ur1 = a
∫ π

2p+θb1

π
2p−θb1

Us(θr) dθr

= −a
∑
v

K̂v

(vp)2D cos(λv) sin(vpθb1)+

+ b
∑
v

K̂v

(vp)2D cos(λv)[(c− d) sin(vpθb1) + d sin(vpθb2)]

= −
∑
v

K̂v

(vp)2D cos(λv)[a sin(vpθb1) + b(c− d) sin(vpθb1) + bd sin(vpθb2)]

(2.41)

rewriting the equation (2.40) and (2.41) in a more compact way, it is
possible to obtain

Ur1 = −
∑
v

K̂v

(vp)2Dρ1 cos(λv) (2.42)

Ur2 = −
∑
v

K̂v

(vp)2Dρ2 cos(λv) (2.43)

the coefficients ρ1 and ρ2 are

ρ1 = a sin(vpθb1) + b(c− d) sin(vpθb1) + bd sin(vpθb2) (2.44)

ρ2 = (c− d) sin(vpθb1) + d sin(vpθb2) (2.45)

Applying the Lorentz’s force Law and multiplying for the radius of the
rotor D/2 it is possible calculate the torque [2]



2.1. MAGNETIC DESIGN 17

τm = −D2

∫ 2π

0
Bg(θr)Ks(θr)

D

2 Lstk dθr = µ0D
2

4g Lstk

∫ 2π

0
−Ur(θr)Ks(θr) dθr

= kt
4 (−p)

∫ π
2p−θb1

π
2p−θb2

Ur2Ks(θr) dθr +
∫ π

2p+θb1

π
2p−θb1

Ur1Ks(θr) dθr +
∫ π

2p+θb2

π
2p+θb1

Ur2Ks(θr) dθr


= −kτp2

∫ π
2p−θb1

π
2p−θb2

−∑
v

K̂v

(vp)2Dρ2 cos(λv)
∑

ξ

K̂ξ sin λξ dθr + . . .


= kτp

2

∑
v

K̂v

(vp)2 cosλv
∑
xi

K̂ξ

ρ2

∫ π
2p−θb1

π
2p−θb2

sin λξ dθr + ρ1

∫ π
2p+θb1

π
2p−θb1

sin λξ dθr+

+ ρ2

∫ π
2p+θb2

π
2p+θb1

sin λξ dθr


(2.46)

kτ is defined in (2.24) and λξ is

λξ = ξπ

2 + (ξ − 1)wmet− αei (2.47)

The integral between the inner and the outer flux-barrier, bordered by
the air gap, is equal to

∫ π
2p+θb1

π
2p−θb1

sin λξ dθr = − 1
ξp

[cos(λξ + ξpθb1)− cos(λξ − ξpθb1)]

= 2
ξp

sin λξ sin(ξpθb1)
(2.48)

∫ π
2p−θb1

π
2p−θb2

sin λξ dθr +
∫ π

2p+θb2

π
2p+θb1

sin λξ dθr = 2
ξp

sin λξ[sin(ξpθb2)− sin(ξpθb1)]

(2.49)
and substituting in the expression of the torque (2.46)

τm = kτ
∑
v

K̂v

(vp)2D cosλv

(ρ1 − ρ2)
∑
ξ

K̂ξ

ξ
sin λξ sin(ξpθb1) + ρ2

∑
ξ

K̂ξ

ξ
sin λξ sin(ξpθb2)


(2.50)
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2.2 Mechanical design
This model neglects the existence of any space harmonic except the funda-
mental. The value of the mean torque can be computed for v = 1 in equation
(2.50).

τm1 = kτK̂v
D

p2 cos(λv)[(ρ1 − ρ2)K̂ξ sin(λξ) sin(pθb) + ρ2K̂xi sin(λξ) sin(pθb2)]

= kτK̂
2
v

D

p2 cos(λv) sin(λv)[(ρ1 − ρ2) sin(pθb1) + ρ2 sin(pθb2)]

= kτK̂
2
v

D

2p2 sin(2λv)[(ρ1 − ρ2) sin(pθb1) + ρ2 sin(pθb2)]

(2.51)

The equation (2.51) is in function only of the geometric parameters (2.44)
(2.45) and it is time independent. When the value of the torque is known,
it is possible to calculate the value of the electric load, K̂v, by inverting
equation (2.51) and using the following equation.

τm1 = Pmec

2π fmec60
(2.52)

where Pmec is the mechanical power [W] and fmec is the rotor speed [rpm].

K̂v1 =
√√√√ τm1

kτ
D
p2

sin(2λv)
2 [(ρ1 − ρ2) sin(pθb1) + ρ2 sin(pθb2)]

(2.53)

the equation (2.26), λv, for the first harmonic becomes

λv = π

2 − α
e
i (2.54)

Theorically, Synchronous Reluctance Motor has its best phase angle αei
equal to 45◦ [5], but with this type of winding (concentrated winding) is
higher, αei = 75◦. This parameter is also dependent of the degree of saturation
of the iron.

Fig.2.10 represents the shape the metal with the various sizes. Where,
Rsi is the inner radius of the stator.

Rsi = D

2 (2.55)

With the air-gap length g it is possible calculate the radius Rro
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Figure 2.10: Motor shape
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Table 2.1: Geometrical parameters

Size Name
d1 Pole shoe height
d2 Transition height
d3 Slot height
ds Total slot height
g Air-gap lenght
lb1 Length of the inner flux-barrier
lb2 Length of the outer flux-barrier
Rri Shaft radius
Rro Rotor radius
Rsb Stator base radius
Rsi Stator base radius
Rso Outer stator radius
tb1 Inner flux-barrier thickness
tb2 Outer flux-barrier thickness
τp Pole pitch at the inside radius
τs Angular slot pitch
θp Pole pitch angle
θs Slot pitch angle
wb1 Back iron width
wm Mean width of the slot
ws Slot opening
wsb External slot width
wsi Internal slot width
wt Polar shoe width
wtb Teeth width
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Rro = Rsi − g (2.56)

Using the peak value of the electrical load K̂v, it is possible to obtain the
rotor and the stator magnetic potential Ur1 (2.42) Us1 (2.17). Subtracting
the peak values of the magnetic potentials and applying the equation (2.18)
the result is peak value of the flux density at the air-gap Bg. The efficiency
target, ηtarget, can be written as follow

Pin = Pmec
ηtarget

(2.57)

This type of electric motor is characterized by a low value of power factor.
The power factor, cos(ϕ), is the angle between current and voltage. This
value is around 74◦. For the calculation of the phase current, Iph, is necessary
to know the maximum phase voltage that can be achieved by the inverter.
This value is Emax = 150V , to obtain the maximum efficiency.

Iph = Pin
3Emax cos(ϕ) (2.58)

The pulsation of the current felec [Hz] is obtained from the mechanical
speed of the rotor, fmec, and the number of pole pairs p.

felec = fmecp

60 (2.59)

The flux density at the air-gap can be written as a function of the rotor
position, imposed the phase angle of the current vector

Bg(θr) = B̂g sin(pθr − αei ) (2.60)

Changing the reference coordinates, as in equations (2.12), (2.60) can be
rewritten as a function of the stator position, θs, and the time, t.

Bg(θs, t) = B̂g sin(pθs − wmet− αei )
= B̂g sin(pθs − 2πfelect− αei )

(2.61)

The flux under two stator teeth can be computed by the equation (2.61)
and integrating the area formed by these teeth.
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Φ(θs, t) =
∫
dS
Bg(θs, t) dS

= lstkRro

∫ π
Q

− π
Q

B̂g sin(pθs − 2πfelect− αei ) dθs

= −lstkRro
B̂g

p

cos(p π
Q
− 2πfelect− αei )− cos(−p π

Q
− 2πfelect− αei )


= lstkRro

B̂g

p

2 sin(−2πfelect− αei ) sin(p π
Q

)


= 2lstkRro
B̂g

p
sin(p π

Q
) sin(−2πfelect− αei )

(2.62)

According to Faraday’s law, the electromotive force is E(t)

E(t) = −Ns
dΦ
dt

= −2Nslstk
B̂g

p
Rro sin(p π

Q
) cos(−2πfelect− αei )(−2πfelec)

= Nslstk
B̂g

p
Rro sin(p π

Q
)4πfelec cos(2πfelect+ αei )

= 4πfelecNsRrolstk
B̂g

p
sin(p π

Q
) cos(2πfelect+ αei )

(2.63)

the peak value Ê is equal to

Ê = 4πfelecNsRrolstk
B̂g

p
sin(p π

Q
) (2.64)

where Ns is the number of conductors. The number of conductors can be
computed, inverting the previus equation.

Ns = Ê

4πfeleclstk B̂gp sin(p π
Q

)RroNlayer

(2.65)

Number of layers, Nlayer, takes into account the number of layers in one
slot. It is interesting to notice that the sinusoidal term of the equation (2.65)
represent the winding factor kw.

To design the slots, it is necessary calculate the effective area Seq
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Seq = IphNlayer

Jc
(2.66)

Seq represents the area of the slot that can be used for a concentrated
winding with the current density Jc [A/m2]. From the conductor area is easy
to determine the relative radius Rcp. Assuming a circular section,

Rcp =
√
Seq
π

(2.67)

To obtain the total slot current, Is, it calculates the equivalent number
of conductor ncs

ncs = NphNcond

Q
(2.68)

Is = NcondIph (2.69)

where Nph is the number of phases. The effective area of the conductor
in the slot is SCuslot

SCuslot = ncsπR
2
cp (2.70)

and then the section of the slot, As, is

As = SCuslot
kcp

(2.71)

where kcp is the filling factor. Now, it is possible to draw the whole. The
table 2.1 explains the different sizes of the stator. The width of the stator
teeth wtb can be derived from the relation of continuity of the flux between
the air-gap and the stator per unity of length

wtbBmaxkst = Bgτs (2.72)

wtb = Bgτs
Bmaxkst

(2.73)

where Bmax is the maximun value of the flux density in the iron. kst is the
iron stack factor. The stacking factor gives an approximate number about
how much core is effective when insulation is taken into account. The slot
pitch, τs, is the linear length between the teeth, as shows Fig.2.10.

θs = 2π
Q

(2.74)
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τs = Rsiθs (2.75)
The width of the polar shoe wt depends on the angular polar pitch, τs,

and the slot opening ws

wt = τs − ws (2.76)
The airgap flux, Φg, is

Φg = BgDLstk
p

(2.77)

Thanks to the relation (2.77), it is possible obtain the back iron width
wbi.

wbi = Φg

2Bmaxlstkkst
(2.78)

where Bmax is the maximum flux density in the iron. It is important to
verify that the slot opening must be lower than the angular slot pitch. Also
the pole shoe must not exceed the tooth width. The pole shoe height d1
and the transition height d2 are important to limit the cogging torque. To
calculate d3 one way is to solve the quadratic equation in function of the area
of the slot As

wsi = (Rsi + d1 + d2)θs − wtb (2.79)

wsb = (Rsi + d1 + d2 + d3)θs − wtb (2.80)
where wsi and wsb are the internal and external slot widths, respectively.

It is possible to express the area slot in function of these variables

As = (wsi + wsb)
d3

2
= [(Rsi + d1 + d2)θs − wtb + (Rsi + d1 + d2 + d3)θs − wtb]

d3

2
= θs

2 d
2
3 + [(Rsi + d1 + d2)θs − wtb]

(2.81)

so it is possible to rewrite the previous equation (2.81) in the common form
of a quadratic equation as ax2 + bx+ c = 0

θs
2 d

2
3 + [(Rsi + d1 + d2)θs − wtb]− As = 0 (2.82)
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and solve for the variable d3

d3 =
−(Rsi + d1 + d2) + wtb +

√
((Rsi + d1 + d2)θs − wtb)2 + 2Asθs
θs

(2.83)

The stator base radius Rsb and the outer stator radius Rso are calculated
from the geometry as

Rsb = Rsi + d1 + d2 + d3 (2.84)
and

Rso = Rsb + wbi (2.85)
Once the parametric paremeters are found, we can obtain the ohmic resis-

tance as follow, first of all, the ohmic equation to know the ohmic resistance.

Rhostate = Rcp(1 + ∆TCcp) (2.86)
where Rcp is the copper conductivity at 20◦C (1.68 ·10−8 S/m), ∆T is the

gradient temperature (equal to 60◦C) and Ccp is the temperature coefficient
of the copper (3.862 · 10−3 K−1). The length of the end winding Lend can be
aproximated by

Lend = (Rsi +Rsb)
π

Q
(2.87)

One important parameter to calculate the losses in the conductors is the
phase resistance Rph

Rph = RhostateNcond
Lstk + Lend

Seq
(2.88)

Finally, the ohmic losses, Pohm, are computed as follow,

Pohm = NphRphI
2
ph (2.89)

To evaluate the losses in the iron Piron it needs to calculate volume of
the stator. These losses can be computed using the curves provided by the
manufacturer as shown in (Fig.2.11). For this reason, the mass of the stator
needs to be limited. The volume of the stator core is

V olstator = kstlstkQ

 π
Q

(R2
so −R2

sb) + wtbd3 + wtd1 + d2
wtb + wt

2

 (2.90)



26 CHAPTER 2. MATHEMATICAL MODEL

50 100 150 200 250 300 350 400 450 500

0

0.5

1

1.5

2
0

20

40

60

80

100

f [Hz]B[T]

Lo
ss

es
[W

/k
g]

Figure 2.11: Iron losses

These losses are depending by the peak value of the flux density and the
frequency. These graphs are giving the losses per unit of mass. Rotor losses
are neglected since this part rotated in synchrony with the magnetic field.

Piron = ρironPironcoefV olstator (2.91)
where ρiron is the mass density of the iron (7.874 ·103 kg/m3 for this type

of sheet metal) and Pironcoef is the loss coefficient [W/kg] obtained from
the interpolation of the loss characteristic in function of the flux density and
the frequency. This data is interpolated using a piecewise spline within the
limits of the information provided.

It is important to consider the windage losses [6] through the Reynolds
number. These losses are function of the friction between the rotating sur-
faces and the surrounding gas. The rotor can be modelled as a rotating
cylinder in an enclosure.

Re = ρairwrRrog

µair
(2.92)

where the ρair is the mass density of the air (1.15 kg/m3), µair is dynamic
viscosity of the air and wr is the angular velocity obtained by

wr = 2πfmec
60 (2.93)

so the windage losses Pwind are calculated for different number of Reynolds

Pwind =
0.515( g

Rro
)0.3

Re0.5 , Re > 104 (2.94)
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Pwind =
0.0325( g

Rro
)0.3

Re0.2 , Re < 104 (2.95)

knowing all the losses it is immediate the efficiency, η, calculation

η = Pmec
Pmec + Pwind + Piron + Pohm

(2.96)

.
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Chapter 3

Fractional-slot winding

The use of a fractional number of slots and pole per phase in synchronous
motors involves a series of advantages. These include high efficiency, high
power density, short end turns, high slot fill factor and fault tolerance [7]. The
most common configurations employed for three-phase radial-field are: the
overlapped winding, and distributed (two slot/pole/phase)and concentrated
(one slot/pole/phase), or nonoverlopped, i.e. concentrated with either all or
alternate teeth wound. When the teeth are wound alternatively, it can be
defined as single-layer and when all the teeth are wound, it can be defined
as double layer.

In the overlapped distributed winding the electromotive force generally
has a sinusoidal distribution. This thesis work will cover the case of nonover-
lapped winding. The fault-tolerant capability is a skill that electric motors
are required to have. The fault tolerance of these windings was studied in [8].
The disadvantages of this application are the slightly lower winding factor
and the high harmonic contents of the magnetomotive force. For this reason
is important to distinguish the main harmonic, which is the harmonic where
wave lenght is equal to pole-pair pitch 2τp. This harmonic is represented by
the value v = 1. The correct choice of p and Q can minimize the torque
ripple, i.e. avoid the periodical combinations between the number of poles
and slots can reduce cogging torque and torque ripple generated by harmon-
ics. Fractional-slot winding may produce sub-harmonics, which they cause
high rotor losses and unbalanced saturation among the rotor poles, that can
produce high value of torque ripple mainly in motor with small air-gap.

It is interesting study a sub-class of fractional-slot windings characterized
by non-overlapped coils when the angular slot pitch is near to the unity θp'1
(Fig.3.1). It means that the number of slots Q is similar to the number of
pole pairs 2p (Q'2p). The combination considered in this thesis is Q = 6
and 2p = 4 [9].

29
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Figure 3.1: Typical stator winding

3.1 Concentrated windings
Concentrated windings have the advantage of having short end-windings.
This feature minimizes the ohmic resistance of the phase and then reducing
the joule losses. This is a good feature for low power household applications.
This thesis presents a structures with a regular distribution of slots [10].

To determine a suitable combination of poles and slots, equation (3.1)
must be verified

Q

GCD(Q, 2p) = 3k (3.1)

where k is an integer number and GCD is the Greatest Common Divisor.
For a three-phase machine the number of slots per pole q and phase is

q = Q

3·2p (3.2)

Electric machines, that have concentrated windings, are characterized by
a value of q which is less or equal to 1/2. To determine the phases inserted
in every slot, we must decompose q as the ratio of non-divisible numbers as
follow, e and f

q = e

f
(3.3)
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Figure 3.2: Concentrated winding of a three-phase machine with 6 slots and
4 poles

from this relation it is possible obtain a sequence of 0 and 1 specifics
for the winding, where f is the total number of the coefficients, e are the
numbers "1" and the others "0" are equals to f − e.

f︷ ︸︸ ︷
000. . .0︸ ︷︷ ︸
f−e

111. . .1︸ ︷︷ ︸
e

The winding that allows to obtain the motor with highest performance is
achieved thanks the most regular distribution of "0" and "1". The sequence
of f numbers has to be repeated 3 times. For the combination of Q and 2p
considered the initial repeatable sequence is 01, which is dual to 10. The
second step is to repeat the sequence 3 times as shown in Fig.3.2.

The usual phase sequence is AC’BA’CB’, which is associated with the bi-
naric sequence. The conductors with the subscript are the return conductors.
In the third step, the phases positioned in correspondence with a "1" make
the first layer. The second layer is obtained by reproducing and shifting the
initial layer. The final structure is the pair combination of the first and the
second layer.

Motors with a number of slots per pole and per phase equal to 1/2 have
phases shifted 120◦ electric degrees. The performance of these machines are
relatively low, because the winding factor of the fundamental harmonic is
only 0.866. The torque ripple presents important values when the motor is
loaded. For this reason this type of machine is prefered in applications of
low power where the torque ripple is not an important issue.

It is possible calculate the number of pulsations N of the cogging torque
with the least common multiple between Q and 2p in no-load condition using
the following relationship [10].
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N = LCM(Q, 2p) (3.4)

where N = 12, 24, 36, 48 . . .



Chapter 4

Genetic algorithm optimization

This chapter explains the optimization of the synchronous reluctance motor
explained in the Chapters 2 and 3 with Genetic Algorithm. The aim is
to optimise an objective function such as the efficiency and the material
cost [11].

This part presents the combination of the analytic model with the ge-
netic algorithm. The optimization is a computationally hard problem, for
the difficulty of solve a multy-objective problem with a very big dimensional-
ity. The big dimensionality comes from the amount of electric and geometric
parameters. It is studied the case of synchronous reluctance to exemplify
this optimisation technique, but it can be extended to any type of motor.
The aim of the optimization is maximising or minimising an objective func-
tion related to the efficiency, motor torque, material cost or a combination
of them, obtaining the motor performance. A fitness function, elaborated by
the genetic algorithm, is associated to the motor performance. This algo-
rithm emulates the natural mechanism of selection to produce motors with
improved performances, taking care of manufactoring problems. On other
words, the algorithm discards the worst motors in each population to select
best ones.

The vector x represents the electric and geometric variables that define
the synchronous reluctance motor.

x = (x1, . . ., xn) (4.1)

where each parameter is bounded by a maximum and minimum limit in
the search space.

33
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4.1 Description of genetic algorithm
The genetic algorithm is one of the most similar routine to the artificial
intelligence. The objective is to emulate the natural selection. Optimizing the
motor means explore the motor design variable space through the mechanism
of reproduction, crossover and mutation with the objective to design the best
motor possible.

The fitness function F (x) allows to define the quality of the motor, which
is related to the objective function. The genetic algorithm manipulates
strings of binary digits, which represents the sets of values. The strongest
strings advances at the next generation to producing more descendents.

Fig.4.1 shows the main steps of a genetic algorithm routine. First step
is to define a fitness function F (x). The next stage is to generat a random
family of N individuals, which are codified in strings of bits (1 or 0). The
third step is necessary to evaluate the population through the fitness function
F (xi). The aim of this function is to predict the performance of the motor. At
the next step, there is the reproduction of the best candidates until reaching
N individuals. The reproduction phase is characterized by three process:
Selection, Crossover and Mutation. The selection process groups the old
population, giving the preference to the ones having a higher fitness function.

In the crossover, two random individuals are selected and their bits are
mated as shown Fig.4.2a. In the mutation stage, Fig.4.2b, one part of a
string is selected and swapped from 1 to 0 and vice versa, that allows to
explore new solutions in the search zone and avoiding the losses of impor-
tant informations. The algorithm stops after a prefixed number of iteration
maxiter. The indipendent variables are ten and they are shown in table 4.1.
These parameters are in input of the genetic algorithm [13].

Table 4.2 shows constant values that are used in the Genetic Algorithm.
This multi-objective optimization can be interpreted as a function that has
as input ten free parameters and as output only two. These bits outputs
represent the efficiency and the cost of the motor. The first aim is to
minimize the cost, while the efficiency must be optimized.

The efficiency must be valuated at a power is ten times smaller as the
rated power. This point is located the values of supply current and frequency
defined in Table 4.3. Placing a negative sign to the cost function, it is possible
to analyze the objective functions as a maximizing problem. The input vector
x is constituted by a series of binary logic numbers, while the output function
is realized by a set of floating numbers. In every iteration all the objectives
are compared. Every candidate is computed through the analytical model
presented in Chapter 2. The best candidate has the probability to be crossed,
equal to Pc. The routine is implemented in Matlab, as presented in Chapter
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Figure 4.1: Steps of genetic algorithm
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Figure 4.2: Crossover and mutation processes (a Crossover, b Mutation)
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Figure 4.3: Initial population

2, in order to achieve the objective.
The coefficients necessary for the optimization are shown in Table 4.4.

These parameters are chosen to allow an enough exploration in the search
space.

Fig.4.3-4.4 show the initial iteration and the distribution of the solutions
after hundred iterations. In the first picture, it can be seen the random
distribution of the population. After many iterations, all the candidates are
concentrated in a unique point. This is the result of the selection routine,
only the strongest individuals remain, in terms of efficiency and price. It is
worth notify that the algorithm converge in the most efficient motor.

Table 4.5 shows the geometric and electric parameters necessary for the
design of the best motor of Fig.4.5. It is interesting to see the comparison of
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Table 4.1: Design variables with relative limits

Variables Search zone
Geometrical

D Bore diameter 1.5·10−2≤D≤5·10−2[m]
Lstk Stack length 1.5·10−2≤Lstk≤5·10−2[m]
g Air-gap length 0.5·10−3≤g≤1·10−3[m]
tb1 Inner flux-barrier thickness 10≤tb1≤100[%]
tb2 Outer flux-barrier thickness 10≤tb2≤100[%]
θb1 Inner flux-barrier angle 10≤θb1≤100[%]
θb2 Outer flux-barrier angle 10≤θb2≤100[%]

Electrical
Bmax Maximum flux density in the iron 0.1≤Bmax≤1.2[T ]
Jc Current density 1.5·10−6≤Jc≤6·10−6[A/m2]
fmec Mechanical speed 2·103≤fmec≤5·103[rpm]

the losses in Table 4.6, efficiency between rated and optimal point remains
nearly constant. Input power and losses decrease in the same ratio, keeping
a similar efficiency.
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Figure 4.4: Distribution of the population after hundred iterations

Figure 4.5: Optimized motor
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Table 4.2: Constants

Parameter Value
Ingoing power Pin 100[W ]
Phase voltage Emax 150[V ]
Phases number m 3
Iron stack factor kst 0.9

Copper filling factor kcp 0.5

Table 4.3: Optimal point

Optimal parameters Value
Power Popt 10[W ]

Frequency fopt felec/
√

5[Hz]
Current Iopt Iph/2[A]

Table 4.4: Optimisation parameters

Constant Value
Chromosome length 57

Population size 100
Tournament size 2

Maximum number of iterations 100
Pc Crossed probability 0.25
Pm Swapping probability 0.01
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Table 4.5: Optimized motor

d1 Pole shoe height [mm] 0.5
d2 Transition height [mm] 1
d3 Slot height [mm] 14.5
ds Total slot height [mm] 16
g Air-gap length [mm] 0.5
lb1 Length of the inner flux-barrier [mm] 25.5
lb2 Length of the outer flux-barrier [mm] 13
Rri Shaft radius [mm] 4.5
Rro Rotor radius [mm] 18.5
Rsb Stator base radius [mm] 35.5
Rsi Stator base radius [mm] 19
Rso Outer stator radius [mm] 38.5
tb1 Inner flux-barrier thickness [mm] 2.5
tb2 Outer flux-barrier thickness [mm] 2.5
wbi Back iron width [mm] 3
ws Slot opening [mm] 5.5
wt Polar shoe width [mm] 14.5
wtb Teeth width [mm] 6.5
Q Slot number 6
2p Pole number 4
Iph Current phase [A] 0.81
K̂s Electric load peak [A/m] 36735
Ns Conductors number 460
T Torque [N/m] 0.227
felec Electric frequency [Hz] 139.9
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Table 4.6: Comparison losses

Rated point Optimal point
Pmec Rated power [W] 100 10
Piron Iron losses [W] 1.218 0.139
Pohm Ohmic losses [W] 2.181 0.380
η Efficiency [%] 0.967 0.951
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Chapter 5

Genetic algorithm results and
FEM comparison

To evaluate the results obtained for the Genetic Algorithm, it is used a finite
element software (COMSOL). Thanks to the symmetry of the motor, it is
necessary to analyze half motor, reducing the computation cost, as shown
Fig.5.1. The motor is divided in several domains: Ωco represents the copper
domain, Ωsh is the area of the shaft, Ωir is the iron sheet domain and Ωair is
the air domain.

The machine is analysed with an impressed three phase current, as com-
puted in table 4.5. To work in the condition of the highest torque for absolute
value of current it is important to study the torque as function of the phase
angle of the current αei (defined in Fig.2.5) as show the graph Fig.5.6. The
maximum torque value matches with a phase angle equal to 1.3 rad, or 75◦.

From the analysis of the flux and the flux density, in both operating points
Fig.5.2-5.3, the saturation zones match only in the tinier parts of the polar
shoes. The flux does not penetrate in the shaft. The presence of harmonics
is reflected on the torque variation (Fig.5.4-5.5).

The torque is evaluated trough the Maxwell stress tensor with a average
value about to 0.225Nm and 0.11Nm respectively, similars to the analytical
values of Table 4.5. The oscillation from the average value is equal to 56% and
54%. The value of ripple, ever high, is enough for compressor applications as
long as it does not become a nuisance to the ear. As it may observed by the
number of periodicity, the dominant harmonic is the sixth, which depends
from the periodicity between the number of slots and poles, as previously
stated.

The flux density in Fig.5.3 decreases due to the fact that supply current
is employed to magnetize the iron (d-axes current decreases).

The mechanical power is shown in Fig.5.7-5.8 where the mean value is in
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Figure 5.1: Domains of the motor

Figure 5.2: Flux density and flux lines in rated operating
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Figure 5.3: Flux density and flux lines in optimal point operating

Figure 5.4: Torque expressed in function of the time calculated by the
Maxwell stress tensor



46CHAPTER 5. GENETIC ALGORITHM RESULTS AND FEM COMPARISON

Figure 5.5: Torque expressed in function of the time calculated by the
Maxwell stress tensor in the optimal point

Figure 5.6: Torque expressed in function of the phase angle of the current
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Figure 5.7: Mechanical power in function of the time

proximity of the target value and the ripples are about of 54% in both the
cases.

For an accurate computation of the efficiency in different values of supply
frequency and current, we need FE to compute the losses [13]. The iron
and ohmic losses are considered. The conductor losses depend by the stator
currents.

PohmFE = Rph

T

∫ T

0
iphi

T
ph dt = Rph

T
(iph, iTph) (5.1)

The phase resistance, Rph, is computed in the equation (2.88). The cur-
rent phase iph is a vector in time integration form with amplitude equal to
equation (2.58). The iron losses, PironFE , are computed as a sum of differents
terms,

PironFE = Ph + Ped + Pex (5.2)

where Ph are the hysteresis losses, Ped are the eddy current losses and Pex
are the losses due to movement of domain blocks inside the iron [14]. These
losses are defined as follow

Ph = ch

∫ T

0

∫
Ωir

H·dB
dt
dΩir dt (5.3)
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Figure 5.8: Mechanical power in function of the time

Ped = σL2
stkNstk

12T

∫ T

0

∫
Ωir

(
dB

dt

)2
dΩir dt (5.4)

Pex = cex
T

∫ T

0

∫
Ωir

∣∣∣∣dBdt
∣∣∣∣1.5dΩir dt (5.5)

where the coefficients ch and cex are interpolated using optimization algo-
rithms in the iron losses curve, Fig.2.11. The number of iron stacks is ex-
pressed byNstk. The losses in the iron parts of the rotor must be reformulated
because the magnetic fields are attached to the spatial frame of reference of
the FE model. The time derivatice equation becomes

dB

dt
= dB

dt
+ dB

dx

dx

dt
= dB

dt
+∇xB·v (5.6)

Windage losses are neglected in this model.
Fig.5.9-5.11 show the trends of the different contributions of the losses in

function of the frequency and the current phase. It is interesting to notify
that the trend of the losses are similar in both the 3 graph. The losse are
improved at the growing of the supply current and frequency.

Knowing the mechanical power it is possible to obtain the efficiency map
of Fig.5.12. In the efficiency map, it can be seen that in both conditions of
work, rated and optimal power, the efficiency of the motor is higher than the
target equal to 95%.
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Figure 5.9: Eddy current loss
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Figure 5.12: Efficiency map



Chapter 6

Conclusions

The target of the project has been achieved by conducting a detailed study
on the features and performance of the synchronous reluctance motor. Some
of the design parameters an their effect on motor performance have been
identified by doing finite element analysis simulations. Prior to the compu-
tation of the motor using FE, the optimization of an analytical model has
been performed. In the optimization of the motor, a good magnetic design
can be achieved only with a analytical model, i.e. without a numerical anal-
ysis. Although, the finite element simulation is necessary to consider the
nonlinear behaviors of the material.

In the second chapter was performed an analytical model to determine
the contribute of the motor shape in the performance. The variables are the
dimensions of the flux-barriers, of the rotor and some electric parameters as
the current density and the maximum flux density in the iron. The motor
analyzed is with fractional slots, in this case with four poles, six slots and
transversely laminated. An algorithm allows to obtain an optimized geome-
try with two flux-barriers.

The third chapter explaines the factors for the choose of this type of
winding with its strengths, weaknesses and limitations. The concentrated
winding allows to reduce the length of the conductors, using less material
and decreasing the ohmic losses. Even though it involves a high harmonic
content.

During the fifth chapter, a worthy verification of the analytical results
has been presented. The results of this thesis show that the Synchronous
Reluctance Motor, taken into account, is characterized by high efficiency in
a wide operating zone and low materials cost. In spite of their poor value of
power factor.
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