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Introduction

The existence of a uniform ε-equilibrium for general stochastic games with
three or more players is an open question. The aim of this thesis is to in-
vestigate an example of a four-player quitting game that does not have a
stationary undiscounted ε-equilibrium and the relation with the fact that
in a stochastic game there does not need to exist a stationary uniform ε-
equilibrium. In the last part a new class of games is introducted and studied.

In the first two chapters classic definitions and standard results for stochastic
games are stated and commented.

In the following one, the definitions are restricted to the class of quitting
games with some new results.

In the fourth chapter there is the detailed study of the four-player example
that does not have a stationary ε-equilibrium.

In the last chapter, I introduce a new class of games, which may be useful to
find counterexamples to the open problem or; at least, to understand it in a
deeper way. Then, one can find the proof that every game in a subclass of
this new kind of games always has a stationary 0-equilibrium.
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Stochastic games

1.1 The model

Stochastic games generalize Markov Decision problems to a several number
of decision makers, called players. Each player influences the evolution of the
state process and the payoff of the players.

Definition 1.1. A stochastic game is the datum of a tuple

Γ =
(

I, S,
(
Ai(s)

)i∈I

s∈S
, q, r

)

where:

• I = {1, 2, . . . , N} is a finite set of players. Eventually, players can
be denoted by alphabetical letters (i.e. I = {A,B,C, . . . }).

• S is a finite set of states.

• For every player i ∈ I and every state s ∈ S, Ai(s) is a finite set
of actions avaiable to player i at the state s. Let’s introduce the
notation for the set of all action profiles at state s:

A(s) = Πi∈IA
i(s)

and for the set of all action profiles at all states:

SA = {(s, a) : s ∈ S, a ∈ A(s)}

• q : SA → ∆(S) is a transition rule. Here ∆(S) denotes the set of
probabilities on the set S.

• For every player i ∈ I, ri : SA→ R is a payoff.

A stochastic game proceeds in the following way.
The game starts at a stage s1 ∈ S given. At each stage t ≥ 1 the following
happens:

• The current state st is announced to the players.

• Each player i ∈ I chooses an action ait ∈ Ai(st). These choices are
made simultaneously and independently.
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• The action profile at = (ait)i∈I is announced to all players.

• Each player i ∈ I receives the corresponding payoff ri (st, at)

• A new state st+1 ∈ S is picked according to the transition rule q (· | st, at)
and the game proceeds.

It is worth to notice that stochastic games are also a generalization of re-
peated games where there is only one state an thus the transition rule is the
trivial one.

1.2 Histories and strategies

For t ∈ N we can define the set of histories of length t that is

Ht := (SA)t−1 × S

and we denote the set of all histories by:

H :=
⋃

t∈N

Ht

Finally, we define
H∞ := (SA)N

that is the set of all infinite histories or plays.
For an history h̃t = (s̃1, ã1, . . . , ãt−1, s̃t) ∈ Ht we can consider the cylinder

C(h̃t) ⊂ H∞ of length t centered in h̃t that is the collection of all plays that
are starting by h̃t, formally:

C(h̃t) := {h = (s1, a1, . . . , st, at, . . . ) ∈ H∞ : s1 = s̃1, a1 = ã1, . . . , st = s̃t}
On the set H∞ we can define the algebra Ht spanned by the cylinder sets

of length t.

Definition 1.2. A strategy of player i ∈ I is a mapping σi that assigns
to each history h = (s1, a1, . . . , at−1, st) ∈ H an element of ∆(Ai(st)),
called mixed action.

The set of all strategies of player i will be denoted by Σi.
A strategy σi of player i is pure if it is deterministic:

| supp(σi(ht))| = 1 ∀ht ∈ H

A strategy σi of player i is stationary if the mixed action assigned ad
each history depends only on the current state. Formally, this means
that σi(ht) is a function of st and independent of (s1, a1, . . . , st−1, at−1).
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Remark 1.1. Usually, it is convenient to identify a stationary strategy
σi of player i with a vector xi ∈ Πs∈S∆(Ai(s)). Under this identification
xi(s) is the mixed action that player i implements when the current
state is s. Thus the set of stationary strategies of player i is identified
with X i = Πs∈S∆(Ai(s)) that is a compact set.

Definition 1.3. A strategy profile is a vector σ = (σi)i∈I of strategies.
The set of all strategy profile will be denoted by Σ.

Remark 1.2. The space of stationary strategy profiles can be identified
with X = Πi∈IX

i.

Remark 1.3. Every pair (s, σ), where s ∈ S is a state and σ ∈ Σ is
a strategy profile, induces a probability distribution on the space of
plays H∞ equipped with the σ-algebra generated by finite cylinders.
This probability measure is obtained thanks Caratheodory extension
theorem since this (pre)measure is well defined on the set of cylinders
and respects the hypothesis of this theorem thanks the structure of the
cylinders. This measure is called Ps,σ and the corresponding expecta-
tion operator is denoted by Es,σ.

1.3 Absorbing games

This is a particular class of stochastic games. Quitting games are a subclass
of absorbing games.

Definition 1.4. A state s ∈ S is absorbing if for every action profile
a ∈ A(s) we have q( · | s, a) = 1.

This means that a state is absorbing if once the play reaches that state,
it gets stuck there and never leaves that state, no matter which action the
players are choosing. Once the game reaches an absorbing state it reduces
to a repeated game.

Remark 1.4. It is well known that repeated games admit an equilib-
rium (for instance the players are playing an equilibrium of the base
game). So, if we are interested in the existence of an equilibrium, we
can assume without lost of generality that once the game reaches an
absorbing state the stream of payoffs is constant (equal to the equilib-
rium payoff of the base game). In other words, this means that to each
absorbing state we can associate an absorbing payoff.

Definition 1.5. An absorbing game is a stochastic game Γ in which
all states except one are absorbing.
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Remark 1.5. Thanks to remark 1.4 in this kind of games it is reason-
able to assume that the initial state is the non absorbing one, otherwise
we will end up with a repeated game and those kind of games are well
known.

Notice that during an absorbing game the state can change at most once
along the play and we can think as if the game ends when an absorbing state
is reached. This means that the only relevant part of strategy to compute the
payoff is how to behave as long as the game remains in the initial state. It
is worth to emphasize that if we denote with s(0) the unique non-absorbing
state a stationary strategy of a player i ∈ I reduces to a probability measure
in ∆(Ai(s(0))).

Example 1.1. Alessandra and Bruno during their final exam got some
troubles. The supervisior thinks that at least one of those cheated
during the exam. They get interrogated by the supervisior in two
different rooms and the supervisors belives them both in the case one of
them denounces the other. Both of them value most passing the exam
rather then be seen as a snitch even though this leads to a penalization.
If nobody denounces the other the supervisor will repeat the same
question to both of them.

This situation can be described in the following way:

• There are two players: I = {A,B}

• There are 4 states: S = {s(1), s(2), s(3), s(4)}. Those are respec-
tively:

1. Nobody denounces the other.

2. Alessandra denounces Bruno while he doesn’t denounce Alessan-
dra.

3. Bruno denounces Alessandra while she doesn’t denounce Bruno.

4. Both of them denounce the other.

• In the state s(1) both players have two avaiable action: to de-
nounce the other (D) or not (ND). While in the other states they
have only one possible action (just accept the payoff given by the
consequence of their choice).

• Payoffs are chosen according their interest to pass the exam but
with a penalization if they denounce the other.

• This is an absorbing game so the transition rule is deterministic.
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A

B

ND D

ND 0, 0(1,0,0,0) −1, 1(0,0,1,0)

D 1,−1(0,1,0,0) −2,−2(0,0,0,1)

s(1)

A

B

ND

D 1,−1(0,1,0,0)

s(2)

B

D

ND −1, 1(0,0,1,0)

s(3)

B

D

D −2,−2(0,0,0,1)

s(4)

Figure 1 – We can represent the game played by Alessandra and Bruno in this picture.

There are 4 states and we can assume that if a player denounces the other, the payoff of

each player is constant in every following stage.

In the Figure 1 the transition probability is represented by a vector
(p1, p2, p3, p4) where pi represent the probability that the next state will
be s(i)
To make the notation easier we can just represent the game using a
∗ in the payoff matrix corrisponding to absorbing states and we will
represent the only state for which the choice of the actions isn’t forced.

ND D

ND 	 −1, 1 ∗

D 1,−1 ∗ −2,−2 ∗

Actually this is a quitting games. We will see that the action ND

corresponds to the continuing action: while both of them are choosing
to non-denounce the other (or to continue) the game repeats. Instead,
D corresponds to quitting action; indeed after one of the two decides to
denounce the other (or to quit) the game ends. The standard notation
for games in this form will be the following:
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A

B

cB qB

cA 	 −1, 1

qA 1,−1 −2,−2

Figure 2 – The standard representation of the quitting game played by Alessandra and

Bruno

In the Figure 2 the circle means that if the two players decide to con-
tinue the game repeats, while if one of those decides to quit they will
get the constant payoff indicated in the matrix in every following stage.
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Payoffs and equilibria

Since a stochastic game can last for infinitely many stages there is a problem
with the payoff of each player due to its divergent behavior. Assume a player
is reciving a constant payoff of 1 at each stage, simply summing those up
she would get a total payoff of +∞. Obviously, it would be better to recive;
for instance, a constant payoff of 2 at each stage but the sum gives the total
payoff of +∞ as if she would recive 1 at each stage. Thus, in this chapter we
will see two different ways to solve this problem.

2.1 The discounted payoff

The first way to solve this problem is to weight each stage of the stochas-
tic game. Fix a parameter λ ∈ (0, 1] that is called discount factor, this is
measuring how money grows with time: one dollar today is worth 1

1−λ
dol-

lars tomorrow and 1
(1−λ)2

dollar the day after tomorrow and so on. So, the

discount factor is a way to consider with the same importance 1− λ dollars
today and one dollar tomorrow. This is pretty natural way considering that
maybe a player prefers to get 1− λ dollars today to invest those somewhere
else and get a dollar tomorrow.

Lower values of λ represent that players care more about the future rather
than the present. Bigger values of λ represent that players care only about
the present.

This method is relevant when the play continues indefinitely and usually
when λ is small.

Definition 2.1. For every discount factor λ ∈ (0, 1], every player i ∈
I, every initial state s ∈ S and every strategy profile σ ∈ Σ the λ-
discounted payoff under strategy profile σ at the initial state s for player
i is

γi
λ(s; σ) := Es,σ

[

λ

∞∑

k=1

(1− λ)k−1
ri(sk, ak)

]

Remark 2.1. The λ in front of the sum is the renormalization factor
so that a player that recives a constant payoff of 1 at each stage, has
the discounted payoff equals to 1 as well. Since there are finitely many
stages and actions, for every player i ∈ I the payoff function ri is
bounded and therefore γi

λ obeys to the same bound that is idependent
of λ thanks to the renormalizing factor.
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Using dominated convergence theorem (recall that the measure Ps,σ

is finite and the boundedness of ri) one gets:

γi
λ(s; σ) = λ

∞∑

k=1

(1− λ)k−1
Es,σ

[
ri(sk, ak)

]

2.2 The T -stage payoff

This is another natural method to deal with the divergent nature of the
payoff. This evaluation, conversely to the previous one, is relevant when the
process lasts T stages and the main interest is for T big.

Definition 2.2. For every positive integer T ∈ N, every player i ∈ I,
every initial state s ∈ S, every strategy profile σ ∈ Σ, the T -stage payoff
is:

γi
T (s; σ) := Es,σ

[

1

T

T∑

k=1

ri(sk, ak)

]

Remark 2.2. The T -stage payoff is the mean of the payoffs the player
got in the first T stages. If a player recives a constant payoff of 1 at
each stage, she has the T -stage payoff equals to 1 as well. Since there
are finitely many stages and actions, for every player i ∈ I the payoff
function ri is bounded and therefore γi

T obeys to the same bound that
is idependent of T .

Since the sum is finite by linearity of Es,σ one has:

γi
T (s; σ) =

1

T

T∑

k=1

Es,σ

[
ri(sk, ak)

]

2.3 The θ-payoff

This is a generalization of the previous two method that could be useful in
some cases. Given a sequence θ = (θk)

∞
k=1 of real non-negative numbers that

sums up to 1, every player i ∈ I, every initial state s ∈ S, every strategy
profile σ ∈ Σ, the θ-payoff is:

γi
θ(s; σ) := Es,σ

[
∞∑

k=1

θkr
i(sk, ak)

]
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As done before we can assume that the number θk is the weight of interest
given by the players to the stage k. If a player recives a constant payoff of
1 at each stage, she has the θ-payoff equals to 1 as well. Since there are
finitely many stages and actions, for every player i ∈ I the payoff function
ri is bounded and therefore γi

θ obeys to the same bound that is idependent
of θ.

2.4 Uniform equilibrium

2.4.1 ε-equilibria

Roughly speaking, an ε-equilibrium in a stochastic game is a strategy profile
such that if a player deviate from that strategy cannot gain more than ε

considering any of the previous possible payoffs.

Definition 2.3. Let Γ = (I, S, (Ai(s))
i∈I
s∈S, q, (r

i)i∈I) be a stochastic game,
let ε ≥ 0, let s ∈ S and let λ ∈ (0, 1]. A strategy profile σ∗ is a λ-
discounted ε-equilibrium at the initial state s if for each player i ∈ I

and every strategy σi ∈ Σi one has:

γi
λ(s; σ

i, σ−i
∗ ) ≤ γi

λ(s; σ∗) + ε

Definition 2.4. Let Γ = (I, S, (Ai(s))
i∈I
s∈S, q, (r

i)i∈I) be a stochastic game,
let ε ≥ 0, let s ∈ S and let T ∈ N. A strategy profile σ∗ is a T -stage
ε-equilibrium at the initial state s if for each player i ∈ I and every
strategy σi ∈ Σi one has:

γi
T (s; σ

i, σ−i
∗ ) ≤ γi

T (s; σ∗) + ε

Definition 2.5. Let Γ = (I, S, (Ai(s))
i∈I
s∈S, q, (r

i)i∈I) be a stochastic game,
let ε > 0 and let s ∈ S. A strategy profile σ∗ = (σi

∗)i∈I is a uniform ε-
equilibrium at the initial state s if there exist λ0 ∈ (0, 1] and T0 ∈ N such
that the following conditions hold:

• For every λ ∈ (0, λ0) the strategy profile σ∗ is a λ-discounted ε-
equilibrium at the initial state s.

• For every T ≥ T0 the strategy profile σ∗ is a T -stage ε-equilibrium
at the initial state s.

A strategy profile σ∗ that is uniformly ε-optimal at all initial states
is a uniform ε-equilibrium.
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The main interest in the concept of uniform equilibrium comes from its
robustness. If a uniform equilibrium exists, then by playing this strategy
profile the players ensure that no player can gain more than ε by deviat-
ing, regardless the length of the game (provided it is sufficiently long) and
regardless of the value of the discount factor (provided it is sufficiently low).

2.4.2 One condition implies the other

In this section we will see that the second condition in the definition of
uniform ε-equilibrium implies the first one, there exist some examples proving
the other implication is false.

Now fix ε > 0 and assume that there exists a strategy profile σ∗ and
T0 ∈ N that for every T ≥ T0 is a T -stage ε-equilibrium at the initial state
s ∈ S, this means that for each player i ∈ I and every strategy σi ∈ Σi one
has:

γi
T (s; σ

i, σ−i
∗ ) ≤ γi

T (s; σ∗) + ε

for the purpose of clearness for a fixed player i and a fixed strategy σi ∈ Σi

define:
xk := Es,σ∗

[ri(sk, ak)] yk := Es,σi,σ−i
∗

[ri(sk, ak)]

Then thanks previous remarks one can write:

‖yk‖ ≤ ‖r‖∞ ‖xk‖ ≤ ‖r‖∞

γi
λ(s; σ

i, σ−i
∗ ) = λ

∞∑

k=1

(1− λ)k−1
yk γi

λ(s; σ∗) = λ

∞∑

k=1

(1− λ)k−1
xk

γi
T (s; σ

i, σ−i
∗ ) =

1

T

T∑

k=1

yk γi
T (s; σ∗) =

1

T

T∑

k=1

xk

So the hypothesis becomes that for every T ≥ T0 one gets:

1

T

T∑

k=1

yk ≤
1

T

T∑

k=1

xk + ε

we should prove the existence of a λ0 ∈ (0, 1] such that for every λ ∈
(0, λ0) it holds:

λ

∞∑

k=1

(1− λ)k−1
yk ≤ λ

∞∑

k=1

(1− λ)k−1
xk + ε

Let’s start noticing that one can rewrite yk in the following way:
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yk =
k∑

l=1

yl −
k−1∑

l=1

yl

Then, we get:

γi
λ(s; σ

i, σ−i
∗ ) =

∞∑

k=1

λ(1− λ)k−1
yk =

=
∞∑

k=1

λ(1− λ)k−1
k∑

l=1

yl −
∞∑

k=1

λ(1− λ)k−1
k−1∑

l=1

yl =

=
∞∑

k=1

λ(1− λ)k−1
k∑

l=1

yl − (1− λ)
∞∑

k=0

λ(1− λ)k−1
k∑

l=1

yl =

=
∞∑

k=1

λ(1− λ)k−1
k∑

l=1

yl − (1− λ)
∞∑

k=1

λ(1− λ)k−1
k∑

l=1

y=

= (1− (1− λ))
∞∑

k=1

λ(1− λ)k−1
k∑

l=1

yl =

=
∞∑

k=1

λ2(1− λ)k−1
k∑

l=1

yl =

=
∞∑

k=1

λ2(1− λ)k−1
k

(

1

k

k∑

l=1

yl

)

=

=
∞∑

k=1

λ2(1− λ)k−1
k γi

k(s; σ
i, σ−i

∗ ) =

=

T0−1∑

k=1

λ2(1− λ)k−1
k γi

k(s; σ
i, σ−i

∗ ) +
∞∑

k=T0

λ2(1− λ)k−1
k γi

k(s; σ
i, σ−i

∗ )

But, using the hypothesis in the second term of the sum we obtain:

T0−1∑

k=1

λ2(1− λ)k−1
k∑

l=1

yl +
∞∑

k=T0

λ2(1− λ)k−1
k γi

k(s; σ∗)
︸ ︷︷ ︸

( 1

k

∑k
l=1

xl)

+
∞∑

k=T0

λ2(1− λ)k−1
k ε

Now, let’s add and subctract the term

T0−1∑

k=1

λ2(1− λ)k−1
k

(

1

k

k∑

l=1

xl

)
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To deduce that:

γi
λ(s; σ

i, σ−i
∗ ) ≤

γi
λ
(s;σ∗)

︷ ︸︸ ︷
∞∑

k=1

λ(1− λ)k−1
xk + ε

≤ 1
︷ ︸︸ ︷
∞∑

k=T0

λ2(1− λ)k−1
k+

+

T0−1∑

k=1

λ2(1− λ)k−1
k

(

1

k

k∑

l=1

yl −
1

k

k∑

l=1

xl

)

︸ ︷︷ ︸

≤ 2λ2(T0−1)2‖r‖
∞

The estimate on the last term is obtained thanks to those on xl and yl, thus
if λ in small enought such that λ2(T0 − 1)2 ‖r‖∞ < ε then we have that:

γi
λ(s; σ

i, σ−i
∗ ) ≤ γi

λ(s; σ∗) + 3ε

The reasoning holds for every player i ∈ I and every strategy σi ∈ Σi at the
initial state s. This is exactly what we were looking for.
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Quitting games

Quitting games are one of the easiest class of stochastic games, in this chapter
we restrict all previous definition to this subclass of stochastic games. They
are stochastic games in which players have only two possible actions: to
continue or to quit. If all of them decide to continue then the game repeats;
otherwise, if at least one player quits the game ends and every player recives
a payoff depending on the quitting set that is the set of player that decided
to quit at that stage.

3.1 The model

Let’s start giving a more specific definition of quitting game. Notice that it
is a restriction of the one given for stochastic games, as it will be for all the
following definitions.

Definition 3.1. A quitting game is a pair

(
I, (rS)∅⊂S⊆I

)

where:

• I = {1, . . . , N} is a finite set of players.

• for every ∅ ⊂ S ⊆ I called the quitting set there is a corresponding
payoff rS ∈ R

N .

The game is a sequential game that proceeds as follows. The set of stages is
N that is the set of all positive integers. At every stage, each player chooses
an action: either to continue or to quit. Let’s denote with S the subset of
the players who decide to quit. If S 6= ∅, then the game terminates and each
player i recives the payoff riS. If S = ∅, the games continues to the next stage
and repeats. If the game never terminates, each player gets 0.
Let’s denote the two actions of player i by {ci, qi}. A strategy for player i

is a function xi = (xi
n)n∈N where xi

n is the probability for player i quits at
stage n, provided the game has not terminated before that stage. If xi

n = 0,
then at stage n player i plays the pure action ci, that is to continue, while if
xi
n = 1, then at stage n player i plays the pure action qi, that is to quit. In

particular, we will denote with ci (resp. qi) the strategy of player i by which
she always continues (resp. quits).
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Remark 3.1. As for general stochastic games, a strategy profile x is a
vector of strategy, one for each player. A profile x = (xn)n≥1 induces a
probability distribution Px and then the expected operator Ex. Notice
that this probability distribution does not depend of the initial state
since for quitting games, and for absorbing game in gerneral, is natural
to start from the non absorbing state.
In quitting games the set of states is given by Z = P(I) while the space
of actions is A = {0, 1}N for the non absorbing state. If the game
reaches an absorbing state (that means that at least one player quits)
then we can assume that every player have only one possible action and
that every player is forced to play the last action chosen so that every
player will get the same payoff in every following stage. We will usually
say that the game ends because when an absorbing state is reached the
game becomes a simple repeated game.
As for absorbing games the transition probabilities are even determin-
istic.
The payoff function is given by r̃ : A→ R

N that maps aS 7→ r̃(aS) := rS
where the profile aS is the profile where players in the quitting set S

chose to quit.
Notice that there is no discounting in this model.

Example 3.1. A tipical quitting game form is the one in the example
1.1. The tipical quitting quitting game reprersentation (for a two player
quitting game) is the following:

Player 1

Player 2

c2 q2

c1 	 r1{2}, r
2
{2}

q1 r1{1}, r
2
{1} r1{1,2}, r

2
{1,2}

Figure 3 – The standard representation of a two players quitting game

Definition 3.2. Let x = (xi
n)

i∈I
n≥1 be a strategy profile in a quitting

game. The strategy xi = (xi
n)n≥1 for player i is said to be:

• pure if xi
n ∈ {0, 1} for every n.

• cyclic if there exists a k0 ∈ N such that xi
n+k0

= xi
n for every n.

• stationary if xi
n = xi

1 for every n.
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3.2 The underlying stochastic process

Given a quitting game Γ =
(
I, (rS)∅⊂S⊆I

)
, Z = P(I) the corrisponding state

space and A = {0, 1}N where N is the number of players one obtains a
measurable space

(Ω,A)

where
Ω := (Z × A)N

and the sigma algebra is given by

A := P(Z)⊗ P(A)⊗ P(Z)⊗ P(A)⊗ . . .

As noticed before we can assume that the initial state is S = ∅, then given
a strategy profile x one obtains a unique probability measure Px (defined
on cylinders and then extended) on (Ω,A). One also obtains a stochastic
process (Xn, Yn)n∈N with values in (Z × A), where:

Xn(ω) = Xn((S1, a1, S2, a2, . . . )) := Sn

Yn(ω) = Xn((S1, a1, S2, a2, . . . )) := an

Xn denotes the random state of the system at time n ∈ N, ω ∈ Ω. Yn denotes
the random action taken at time n ∈ N, ω ∈ Ω.
Starting from the strategy profile one can also define a stopping time

τ : Ω→ N ∪ {+∞}

defined by
τ(ω) := inf{n ∈ N : Yn(ω) 6= (0, . . . , 0)}

concerning the filtration (Un)n∈N with Un := σ{Yk : 1 ≤ k ≤ n}
The stopping time identifies the state at which the game stops.

3.3 Expected payoff and equilibria

Definition 3.3. Let Γ =
(
I, (rS)∅⊂S⊆I

)
be a quitting game and x a

strategy profile. The expected payoff of the game is given by:

γ(x) := Ex

[
r̃(Yτ )1{τ<∞}

]
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Remark 3.2. Using the definition of Px one gets:

γ(x) =
∑

n∈N

Px(τ = n)Ex [ r̃(Yn) | τ = k ]

=
∑

n∈N

Px(τ > n− 1)Ex [ r̃(Yn) ]

=
∑

n∈N






n−1∏

k=1
j∈I

(1− x
j
k) ·

∑

∅6=S⊆I

(
∏

h∈S

xh
k

) 


∏

l∈I\S

(1− xl
k)



 rS






This means that under the strategy profile x player i will get the i-th
component of that vector, this means γi(x).

Remark 3.3. Notice that if the strategies chosen by each player are
stationary and we denote the strategy profile as x = (x1, . . . , xN) then
the formula simplifies into:

γ(x) =
1

1−∏j∈I(1− xj)

∑

∅6=S⊆I

(
∏

h∈S

xh

) 


∏

l∈I\S

(1− xl)



 rS

This is exactly the formula one would obtain using the implicit tech-
nique, indeed if the strategies are stationary one may write:

γ(x) =

(
∏

j∈I

(1− xj)

)

γ(x) +
∑

∅6=S⊆I

(
∏

h∈S

xh
k

) 


∏

l∈I\S

(1− xl
k)



 rS

Definition 3.4. Let Γ =
(
I, (rS)∅⊂S⊆I

)
be a quitting game. A strategy

profile x = (xk)k∈N is called ε-equilibrium (for ε ≥ 0) if for every player
i ∈ I and every strategy yi of player i it does hold:

γi(yi,x−i) ≤ γi(x) + ε

The strategy profile x is a Nash equilibrium or just an equilibrium if
it is an ε-equilibrium with ε = 0. A game has got an approximate
equilibrium if for every ε > 0 there exists an ε-equilibrium.
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3.4 Relation between equilibria in quitting games and

uniform equilibria in stochastic games

There is not a general existence theorem for uniform ε-equilibria in undis-
counted stochastic games (for games with three or more players). Since
quitting games are the easiest example of stochastic games for which the
existence of an ε-equilibrium is still an open question, it is interesting to
find some characterization for (eventually stationary) ε-equilibria in quitting
games or find some example in which there are no (eventually stationary)
ε-equilibria at all.

Proposition 3.1. A uniform ε-equilibrium in a quitting game Γ =
(
I, (rS)∅⊂S⊆I

)
is also an ε-equilibrium.

Sketch of Proof. This follows from the fact that in a quitting game for any fixed
strategy profile σ and for every player i ∈ I the T -stage payoff γiT (σ) converges to
some γi∞(σ) as T → +∞; indeed under the strategy profile σ we have only two
possible cases:

• For every stage n ∈ N we have Sn = ∅ so the game is never ending and
γiT (σ) = 0 for every T ∈ N so it converges trivially to γi∞(σ) = 0 for every
player i ∈ I.

• There exists a stage T̂ ∈ N such that the quitting set is S
T̂
6= ∅ then from

that stage on every player i ∈ I will recive a constant payoff riS
T̂

then we

have:

γiT (σ) =
1

T

T̂−1∑

n=1

Eσ [r(Yn)] +
1

T

T∑

n=T̂

Eσ [r(Yn)]

=
const

T
︸ ︷︷ ︸

→0

+
T − T̂

T
︸ ︷︷ ︸

→1

ri
Ŝ
−−−−−→
T→+∞

ri
Ŝ

Then γiT (σ) converges to γi∞(σ) = ri
Ŝ
.

This has important applications. For instance, if one proves the non ex-
istence of (stationary) ε-equilibria in a quitting game this means that for
general stochastic games there does not need to exist (stationary) uniform
ε-equilibria. One may also prove a reverse implication that is: any undis-
counted ε-equilibrium in a quitting game is also a uniform ε′-equilibrium with
ε′ > ε.
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3.5 What’s known about stochastic games

For discounted games there is a foundamental theorem that can be proved
using Kakutani’s fixed point theorem (see [3]):

Theorem 3.1. Any stochastic game admits a stationary λ-discounted
equilibrium for every λ ∈ (0, 1]

The basic difficulty with undiscounted stochastic games is that the undis-
counted payoff is not continuous over the strategy space. Indeed; in general,
there does not need to exist a stationary undiscounted equilibrium even for
quitting games.
Anyway, the existence of a uniform equilibrium for two-player non-zero-sum
stochastic games was proved by N. Vieille in [4]. E. Solan in [2] extended
it to three-player absorbing games: any 3-player absorbing game has an
undiscounted equilibrium payoff.
Moreover, for quitting games E. Solan and N. Vieille [1] proved that:

Theorem 3.2. For every ε > 0 and every quitting game with at most
three players, there exists an ε-equilibrium x = (xi

n)
i∈I
n∈N such that either

x is a stationary profile or xi
n ≤ ε for every n ∈ N and i ∈ I.

The existence of a uniform ε-equilibrium for general stochastic games with
three or more players is still an open question.
In the next chapter we will see an example by E. Solan and N. Vieille of a four-
players quitting game that does not admit a stationary ε-equilibrium proving;
thus, that a general stochastic game does not need to admit a stationary
uniform ε-equilibrium.
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An example

In this section we will see an important example by E. Solan and N. Vieille
[1] of a quitting game with 4 players that does not admit a stationary ε-
equilibrium.

4.1 The example

Consider the 4-player quitting game:

4
2 2

3

1
	 4,1,0,0

1
0,0,4,1 1,1,0,1

1,4,0,0 1,1,1,1 1,0,1,1 0,1,0,0

1
0,0,1,4 0,1,1,1

1
1,1,1,1 0,0,1,0

1,1,1,0 1,0,0,0 0,0,0,1 -1,-1,-1,-1

Table 1 – Representation of the four player game

In this game player 1 chooses a row (top row means to continue), player 2
chooses a column (left column means to continue), player 3 chooses either
the top two matrices or the two bottom ones (top two matrices means to
continue) and player 4 chooses either the two left matrices or the right two
ones (two left matrices means to continue).
Notice first the simmetry of the payoff matrix that will avoid lots of compu-
tations: for every tuple of actions (a, b, c, d) one has:

• r1(a, b, c, d) = r2(b, a, d, c)

• r1(a, b, c, d) = r4(c, d, b, a)

• r2(a, b, c, d) = r3(c, d, b, a)

where ri(a, b, c, d) is the payoff of player i if the action combination is
(a, b, c, d).
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We will see that:

Proposition 4.1. The game does not admit a stationary equilibrium.

Proposition 4.2. For every ε > 0 small enough the game does not
admit an ε-equilibrium such that ‖xn − c‖ < ε for every n ∈ N

With Proposition4.1 and Proposition4.2 it follows that:

Theorem 4.1. The game does not admit a stationary ε-equilibrium
provided ε > 0 small enough.

Proof. Assume by contradiction that for every ε > 0 small enough there exists
a stationary ε-equilibrium xε. By compactness of the set of stationary strategy
profiles, let x∗ be the stationary strategy profile that is the accumulation point of
(xε)ε>0 as ε→ 0. Now let’s split the discussion into two cases.
Assume first that x∗ 6= c. Let’s start studying the right hand side. By the property
of ε-equilibrium, for every ε > 0 small enough, for every player i ∈ I and every
strategy yi of player i, one gets that:

γi(yi, x−i
ε ) ≤ γi(xε) + ε (1)

Thanks Kuhn’s theorem we can consider yi to be ci or qit for t ∈ N, where qit is the
action of player i where she decides to quit at time t.
Then, by continuity of the payoff (that is continuous up to the action c) one has
that

γi(xε) + ε
ε→0−−−→ γi(x∗)

For the left hand side; if x−i
∗ 6= c

−i for the same reason one has:

γi(yi, x−i
ε )

ε→0−−−→ γi(yi, x−i
∗ )

So, provided x∗ 6= c taking the limit in 1, one gets that if x−i
∗ 6= c

−i:

γi(yi, x−i
∗ ) ≤ γi(x∗)

Now, let’s check what happens if x−i
∗ = c

−i. In this case, since x∗ 6= c, it is
forced xi∗ 6= c

i. Then γ(x∗) = γ(xi∗, c
−i) = γ(qit, c

−i) = rii for every t ∈ N. But, we
have that rii ≥ 0 for every player i. This gives what we were looking for, that is:
for every i ∈ I, for every strategy yi of player i we have:

γi(yi, x−i
∗ ) ≤ γi(x∗)

But, this means that x∗ is a stationary equilibrium of the game and this is
forbidden by Proposition 4.1.

Let’s now investigate the case x∗ = c. This means that for ε > 0 small enough
there is an ε-equilibrium x such that ‖xn − c‖ < ε for every n ∈ N that is ruled
out by Proposition 4.2.
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4.2 Non-existence of stationary equilibria

Let’s check that the game does not admit a stationary equilibrium. We
organize the discussion according to the number of players who play both
actions (continue and quit) with positive probability.

4.2.1 No non-fully mixed stationary equilibrium

It’s easy to check (watch at the matrix) that there does not exists a stationary
equilibrium where all 4 players are playing pure strategies. With the same
reasoning it is immediate that there is no stationary equilibrium in which 3
players are playing pure strategies. Let’s verify that there is no stationary
equilibrium where two players play pure stationary strategies. Using the
symmetries of the payoff function it is enough to consider the cases where
either player 3 and player 4 play pure strategies, or player 2 and player 4
play pure strategies.
Assume first that there is an equilibrium in which players 3 and 4 play pure
syrategies. The strategies of player 1 and 2 will then form an equilibrium of
a 2× 2 game.

1. Players 3 and 4 play (q3, q4): the induced game is:

c2 q2

c1 1, 1 0, 0
q1 0, 0 −1,−1

Figure 4 – The unique equilibrium in the induced game is (c1, c2).

2. Players 3 and 4 play (c3, q4): the induced game is:

c2 q2

c1 0, 0 1, 1
q1 1, 0 0, 1

Figure 5 – The unique equilibrium in the induced game is (c1, q2).
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3. Players 3 and 4 play (q3, c4): the induced game is:

c2 q2

c1 0, 0 0, 1
q1 1, 1 1, 0

Figure 6 – The unique equilibrium in the induced game is (q1, c2).

4. Players 3 and 4 play (c3, c4): the induced game is:

c2 q2

c1 	 4, 1
q1 1, 4 1, 1

Figure 7 – The equilibria in the induced game are only (q1, c2) and (c1, q2)

But in each case the equilibria in the induced game are pure, that would give
an equilibrium for the four-player game in pure stationary strategies that is
a contradiction.

In a similar way we will investigate that there is no stationary equilibrium
where players 2 and 4 play pure actions. By analyzing the induced game
between players 1 and 3 one gets:

1. Players 2 and 4 play (c2, c4): the induced game is:

c3 q3

c1 	 0, 1
q1 1, 0 1, 1

Figure 8 – The unique equilibrium in the induced game is (q1, q3).

So, as in the previous cases the four-player game will have a stationary
equilibrium in pure strategies that is a contradiction.
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2. Players 2 and 4 play (q2, c4): the induced game is:

c3 q3

c1 4, 0 0, 1
q1 1, 1 1, 0

Figure 9 – The unique equilibrium in the induced game is
(
1

2
c1 + 1

2
q1, 1

4
c3 + 3

4
q3
)
.

In this case Player 2 would recive 5
8

while he would get 1 by playing c2.

3. Players 2 and 4 play (c2, q4): the induced game is:

c3 q3

c1 0, 4 1, 1
q1 1, 1 0, 0

Figure 10 – The unique equilibrium in the induced game is (q1, c3).

So, as in the previous cases the four-player game will have a stationary
equilibrium in pure strategies that is a contradiction.

4. Players 2 and 4 play (q2, q4): the induced game is:

c3 q3

c1 1, 0 0, 1
q1 0, 0 −1,−1

Figure 11 – The unique equilibrium in the induced game is (c1, q3).

So, as in the previous cases the four-player game will have a stationary
equilibrium in pure strategies that is a contradiction.

Now, we need to check that there in no stationary equilibrium where one
player (by symmetry say player 4) plays a pure strategy and all other play-
ers play a fully mixed strategy. Let’s denote with (x, y, z) the fully mixed
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Let’s state two useful fact:

Lemma 4.3. β is separately increasing in each variable in (0, 1)3

Proof.

β(y, z, t) = t+ (1− t)(y + z − 1)

Obviously this affine function in y (resp z) is increasing since the slope is (1−t) > 0.
A similar observation holds for the variable t rewriting it as:

β(y, z, t) = (2− y − z
︸ ︷︷ ︸

>0

)t+ (y + z − 1)

Lemma 4.4. ∆1 is decreasing in y and increasing in z on the set
{y ≤ min{z, t}}.

Proof.

∆1(y, z, t) = yzt(β(y, z, t)− 2)− 2yz + 3zt− yt+ y + z − β(y, z, t)

Computing the derivatives and using the fact that we are working on {y ≤ min{z, t}}
one gets:

∂∆1

∂y
(y, z, t) = z (t(t− 2) + t(1− t)(2y + z − 1)− 2) ≤ z(0 + 2− 2) ≤ 0

This proves that, in the set we are working on, ∆1 is decreasing in y.

∂∆1

∂z
(y, z, t) ≥ 3y3 − 3y2 + 2y ≥ 0

This proves that, in the set we are working on, ∆1 is increasing in z.

Let’s proceed proving that there is no (x, y, z, t) satisfying lemma 4.1.

Lemma 4.5. ∆1 > 0 on {y ≤ t ≤ z}

Proof. Thank to the monotonicity of ∆1 one has:

∆1(y, z, t) ≥ ∆1(t, z, t) ≥ ∆1(t, t, t) > 0

Lemma 4.6. ∆4 > 0 on
{
y ≤ z ≤ 1

2

}
∩ {γ4 ≥ 0}
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Proof. Computing ∆4 one gets:

∆4(x, y, z) = α4(β4;x, y, z)− β4(x, y, z)

where
α4(x, y, z) = xyz(γ4(x, y, z, t)− 2) + 3xy − 2xz − yz + x+ y

β4(x, y, z) = y + (1− y)(x+ z − 1)

If γ4 ≥ 0 then:
∆4(x, y, z) ≥ (4x− 2xz − 2)y + 1− 2xz

that is an affine function in y and in y = 0 is equal to 1− 2xz > 0 while in y = z

is equal to (1− 2z) + 2xz(1− z) > 0 thus is positive on
{
y ≤ z ≤ 1

2

}
.

Lemma 4.7. ∆1 > 0 on the set
{
max

{
y, 1

2

}
≤ z ≤ t

}

Proof. It is convenient to split the proof in several steps.

Step 1: ∆1 > 0 on
{
y < 1

2 ≤ z ≤ t
}
.

Indeed, by monotonicity of ∆1 we have

∆1(y, z, t) ≥ ∆1

(
1

2
,
1

2
, t

)

=
1

2
− t

2
+ β

t

4
> 0

Step 2: ∆1 > 0 on
{
1
2 ≤ y ≤ z ≤ t ≤ 2

3

}
.

Indeed, by monotonicity of ∆1 we have ∆1(y, z, t) ≥ ∆1(z, z, t). Notice that
∆1(z, z, t) is decreasing in z since:

∂

∂t

∂

∂z
∆1(z, z, t) = 2z(β − 2) + 2zt(2− y − z) + 2z2(1− t)− 2z2t+ 4

This means that ∂
∂z
∆1(z, z, t) is increasing in t and so:

∂

∂z
∆1(z, z, t) ≤

∂

∂z
∆1

(

z, z,
2

3

)

=
4

3
z(β − 2) +

4

9
z2 − 4z +

8

3

The right-hand side is decreasing in z. It is therefore maximal for z = 1
2 , it

is then equal to 2
3(β − 1) + 1

9 < 0 that is negative thanks monotonicity of β:
β(y, z, t) ≤ β(23 ,

2
3 ,

2
3) =

7
9 .

Since ∆1(z, z, t) is decreasing in z we have:

∆1(y, z, t) ≥ ∆1(z, z, t) ≥ ∆1(t, t, t) > 0
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Step 3: ∆1 > 0 on
{
1
2 ≤ y < 2

3 ≤ z ≤ t
}
.

By monotonicity of β one has β(23 ,
2
3 , t) ≥ β(23 ,

2
3 ,

2
3) ≥ 3

4 . Hence, by mono-
tonicity of ∆1:

∆1(y, z, t) ≥ ∆1

(
2

3
,
2

3
, t

)

=
4

9
t

(

β

(
2

3
,
2

3
, t

)

− 2

)

+
1

9
+

2

3
t ≥ t+ 1

9

Step 4: ∆1 > 0 on
{
2
3 ≤ y ≤ z ≤ t

}
.

By monotonicity of β we have β ≥ 3
4 . Then:

∂∆1

∂t
= (β − 2)yz + yzt(2− y − z) + 4z − 2 ≥ (β − 2)yz + 4z − 2

The right-hand side is decreasing in z. Therefore, it is minimal when z = y then
it is at least −5

4y
2 + 4y − 2. This last expression is minimized when y = 2

3 and in
this case it equals 1

9 . This proves that ∆1 is increasing in t. By monotonicity of
∆1 one obtains ∆1(y, z, t) ≥ ∆1(z, z, z) > 0.

Step 5: ∆1 > 0 on
{
1
2 ≤ y ≤ z ≤ 2

3 ≤ t
}
.

By monotonicity of β and ∆1 we have β(y, z, t) ≥ 2
3 and ∆1(y, z, t) ≥ ∆1(z, z, t).

Therefore,

∆1(y, z, t) ≥ −
4

3
z2t− 2z2 + 4zt+ 1− 2t

For t ≥ 2
3 the right-hand side is a quadratic concave function in z that is positive

on the boundary of the interval
[
1
2 ,

2
3

]
and thus on the whole interval.

4.2.3 No perturbated ε-equilibrium - Preliminaries

We need to check that there is no ε-equilibrium that is near to the continuing
action of every player.
Let ρ = 2 ‖r‖∞ = 8, twice the maximum value attained by the payoff and
N = 4, the number of players. We will denote the quitting set at the stage
k ∈ N with Sk. Denote with t the stage at which the game terminates (the
stopping time).
It is convenient to consider strategy profiles where at most one player has
a positive probability to quit at each stage. In order to prove that we can
restrict the discussion to this case consider the following construction:
Given a strategy profile x = (xi

n)
i∈I
n∈N consider the associated strategy profile

y = (yin)
i∈I
n∈N defined by:
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yi(n−1)N+j =

{

xi
n if i = j

0 if i 6= j

for every n ∈ N and for every i, j ∈ I

To represent what kind of strategy it is, assume

x = (x1,x2,x3,x4) = ((x1
1, x

1
2, . . . ), (x

2
1, x

2
2, . . . ), (x

3
1, x

3
2, . . . ), (x

4
1, x

4
2, . . . ))

Then the strategy profile y = (y1,y2,y3,y4) splits the strategy profile x into
4 blocks in which (at most) one player has positive probability to quit at
each stage:

y1 =(x1
1, 0, 0, 0 | x1

2, 0, 0, 0 | x1
3, 0, 0, 0, . . . )

y2 =(0, x2
1, 0, 0 | 0, x2

2, 0, 0 | 0, x2
3, 0, 0, . . . )

y3 =(0, 0, x3
1, 0 | 0, 0, x3

2, 0 | 0, 0, x3
3, 0, . . . )

y4 =(0, 0, 0, x4
1 | 0, 0, 0, x4

2 | 0, 0, 0, x4
3, . . . )

The following lemma will allow to consider only the case in which at most
one player quits with positive probability at each stage.

Lemma 4.8. Let ε ≤ 1
8

and x be an ε-equilibrium such that ‖xn − c‖ <
ε for every n ∈ N.
Then there exists a 12Nρε-equilibrium y such that for every n ∈ N we
have:

• ‖yn − c‖ < ε

• |{i ∈ I : yin > 0}|≤ 1

Proof. Define the strategy profile y = (yin)
i∈I
n∈N as above:

yi(n−1)N+j =

{

xin if i = j

0 if i 6= j

for every n ∈ N and for every i, j ∈ I.
The aim is to prove that there are no profitable deviation; but, we will first compare
the payoffs given by this two strategy profiles: γi(x) and γi(y).
Notice that :

Py(St = {i} | (n− 1) < t ≤ nN) =
xin
∏

j<i(1− x
j
n)

1−∏j∈I(1− x
j
n)

Px(St = {i} | t = n) =
xin
∏

j 6=i(1− x
j
n)

1−∏j∈I(1− x
j
n)
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Their difference is bounded by:

∣
∣
∣
∣
∣

xin
∏

j<i(1− x
j
n)− xin

∏

j 6=i(1− x
j
n)

1−∏j∈I(1− x
j
n)

∣
∣
∣
∣
∣
≤

xin

(
∏

j<i(1− x
j
n)−

∏

j 6=i(1− x
j
n)
)

1− xin − (1− xin)
∏

j 6=I(1− x
j
n)

≤ xin
1− xin

≤ 2ε

Now, let’s compute the following:

Px(St = {i} | t <∞) =
Px(St = {i}, t <∞)

Px(t <∞)
=

∞∑

n=1

Px(t = n)

Px(t <∞)
Px(St = {i} | t = n)

A similar computation for y brings to:

Py(St = {i} | t <∞) =
Py(St = {i}, t <∞)

Py(t <∞)

=
∞∑

n=1

Py((n− 1)N < t ≤ nN)

Py(t <∞)
Py(St = {i} | (n− 1)N < t ≤ nN)

Then, notice that:

Px(t = n) =
n−1∏

k=1
j∈I

(1− x
j
k)



1−
∏

j∈I

(1− xjn)



 = Py((n− 1)N < t ≤ nN)

Px(t <∞) =
∞∑

n=1

Px(t = n) =
∞∑

n=1

Py((n− 1)N < t ≤ nN) = Py(t <∞)

This implies that

Px(t = n)

Px(t <∞)
=

Py((n− 1)N < t ≤ nN)

Py(t <∞)
=: an ≥ 0 with

∑

n

an = 1

Now, estimate the following:
∣
∣
∣
∣
Py(St = {i}, t <∞)− Px(St = {i}, t <∞)

∣
∣
∣
∣
≤

≤
∞∑

n=1

an

∣
∣
∣
∣
Py(St = {i} | (n− 1) < t ≤ nN)− Px(St = {i} | t = n)

∣
∣
∣
∣

≤
∞∑

n=1

an 2ε = 2ε

Since under strategy profile y two players cannot quit simultaneously, summing
the previous equation over i ∈ I one gets:

1− Px(|St| = 1 | t <∞) ≤ 2nε =⇒ Px(|St| > 1 | t <∞)
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Finally, we can compare the two payoffs:
∣
∣γi(y)− γi(x)

∣
∣ ≤ ρ

∑

S⊆I

∣
∣Py(St = S)− Px(St = S)

∣
∣ ≤

≤ ρ




∑

j∈I

[Py(St = {i})− Py(St = {i})] +
∑

|S|>1

Px(St = S)





One can estimate this with the following:

ρ



Px(|St| > 1 | t <∞) +
∑

j∈I

[Py(St = {i} | t <∞)− Py(St = {i} | t <∞)]



 Px(t <∞)
︸ ︷︷ ︸

≤1

This brings to the final:
∣
∣γi(y)− γi(x)

∣
∣ ≤ ρ [2Nε+ 2Nε] ≤ 4Nρε

This will help us to prove that there is no unilateral profitable deviation from
y. Thanks to Kuhn’s theorem we just need to check the ε-equilibrium property
only for pure deviations. Notice first that the previous reasoning does not involve
the property of x to be an ε-equilibrium but just his property to be ε-near the
continuing strategy profile. Then, if player i deviates from y by picking ci, the
previous computation brings to:

γi(ci,y−i)− γi(ci,x−i) ≤ 4Nρε

By using the ε-equilibrium property for x one obtains:

γi(ci,y−i) ≤ γi(ci,x−i) + 4Nρε ≤ γi(x) + ε+ 4Nρε ≤ γi(y) + 4Nρε+ ε+ 4Nρε

Now consider the pure deviation qi(n−1)N+k
, this means that player i decides to

continue until stage (n− 1)N + k in which she quits with probability 1. Fix n ∈ N

and k = 1, 2, 3, 4. We will use a similar reasoning as before, let’s compare the
payoffs γi(qin,x

−i) and γi(qi(n−1)N+k
,y−i). Define q̃i := qi(n−1)N+k

γi(q̃i,y−i) =Pq̃i,y−i(t ≤ (n− 1)N)Eq̃i,y−i

[
riSt
| t ≤ (n− 1)N

]
+

+ Pq̃i,y−i((n− 1)N < t ≤ nN)Eq̃i,y−i

[
riSt
| (n− 1)N < t ≤ nN

]

γi(qin,x
−i) =Pqin,x

−i(t ≤ (n− 1)N)Eqin,x
−i

[
riSt
| t ≤ (n− 1)N

]
+

+ Pqin,x
−i((n− 1)N < t ≤ nN)Eqin,x

−i

[
riSt
| (n− 1)N < t ≤ nN

]

So, following the previous reasoning we are interested in computing:

Pq̃i,y−i(St = {i} | t ≤ (n− 1)N) =

n−1∑

k=1

Pq̃i,y−i((k − 1)N < t ≤ kN | t ≤ (n− 1)N)Pq̃i,y−i(St = {i} | (k − 1)N < t ≤ kN)
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Pqi
n
,x−i(St = {i} | t ≤ (n− 1)N) =

n−1∑

k=1

Pqi
n
,x−i(t = k | t ≤ n− 1)Pqi

n
,x−i(St = {i} | t = k)

But, notice that:

Pq̃i,y−i((k − 1)N < t ≤ kN | t ≤ (n− 1)N) = Pqin,x
−i(t = k | t ≤ n− 1) =: bk ≥ 0

with
∑

k bk = 1.
Then, as before, we can estimate the difference between the two following proba-
bilities:

|Pq̃i,y−i(St = {i} | (k − 1)N < t ≤ kN)− Pqin,x
−i(St = {i} | t = k)| ≤ 2ε

In a similar way, if t ≤ (n − 1)N two player cannot quit simultaneously then by
summing over i ∈ I the previous equation we get:

Pqin,x
−i(|St| > 1 | t ≤ n− 1) ≤ 2Nε

Now, consider the contribution given by the fact that someone may quit in the first
k− 1 substages of stage n and that some other player other that i may quit in the
substage k:

If i 6= j =⇒ Pq̃i,y−i(St = {j} | (n− 1)N < t ≤ nN) ≤ (N − 1)ε

Pq̃i,y−i(St = {i} | (n− 1)N < t ≤ nN)− Pqin,x
−i(St = {i} | t = n) ≤ ε

Collecting all those information we finally deduce that:

γi((qi(n−1)N+k,y
−i)) ≤ γi(qin,x

−i) + 6Nρε ≤ γi(x) + 7Nρε ≤ γi(y) + ε+ 11Nρε

This proves that y is a 12Nρε-equilibrium.

Therefore, from now on we may assume that x is an ε-equilibrium such that
|{i ∈ I : yin > 0}|≤ 1 and ‖yn − c‖ < ε for every n ∈ N. We will refer to
such a profile as a perturbated ε-equilibrium.

Lemma 4.9. For every perturbated ε-equilibrium x one has:

1. Px(t <∞) ≥ 1− ε.

2. γi(x) ≥ 1− ρε− ε for every i ∈ I and γi(x) ≥ 5
4
− 2ε for some i ∈ I.

3. Px(St = {i}) ≥ 2
15
− ρε for every i ∈ I.
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Proof. Given n ∈ N consider the strategy yi,n for player i that coincides with xi

the first n stages and quits with probability 1 at stage n+ 1. Then,

γi(yi,n,x−i) =
n∑

k=1

∑

S⊆I

riS Px(t = k, St = S) +
∑

S⊆I
S3i

riSPyi,n,x−i(Sn+1 = S)Px(t > n)

Considering the subsequence yi,nk for nk such that player i is not quitting with
other players, in the limit along these subsequences we have that the fist term of
the sum converges to γi(x) while the second one to Px(t =∞), using ε-equilibrium
property we get:

γi(x) + Px(t =∞)← γi(yi,nk ,x−i) ≤ γi(x) + ε

That implies
Px(t <∞) ≥ 1− ε

This proves 1.

W.l.o.g. assume that there exists j ∈ I such that x
j
1 > 0. By quitting at the first

stage player i will recive 1 if i = j, otherwise if i 6= j:

γi(qi1,x
−i) = (1− xjn)r

i
{i} + x

j
1r

i
{j,i}

= ri{i}
︸︷︷︸

=1

+x
j
1(r

i
{j,i} − ri{i})

≥ 1− ρε

Then, by ε-equilibrium property we get:

1− ρε ≤ γi(qi1,x
−i) ≤ γi(x) + ε

Since the quitting set can only be a singleton under a perturbated ε-equilibrium
the total payoff sums up to 5 = 0 + 0 + 1 + 4 in any case, thus:

∑

i∈I

γi(x) = 5Px(t <∞) ≥ 5− 5ε

So, at least one term of the sum must be greater that 5
4 − 5

4ε. This proves 2.

Set
pi := Px(St = {i})

we can write:

γ1(x) = p1 + 4p2 γ3(x) = p3 + 4p4

γ2(x) = p2 + 4p1 γ4(x) = p4 + 4p3

40



By 2. we have that summing up the first column:

p1 + p2 ≥ 2

5
− 4

5
ρε ≥ 2

5
− ρε

p3 + p4 ≥ 2

5
− ρε

But we have that p1 + p2 + p3 + p4 + Px(t =∞) = 1.
Then p1 + p2 ≤ 1− p3 − p4 ≤ 3

5 + ρε. But, any solution to the system







p1 + 4p2 ≥ 1− 2ρε

4p1 + p2 ≥ 1− 2ρε

p1 + p2 ≤ 3
5 + ρε

Will satisfy p1, p2 ≥ 2
15 − ρε, a symmetric reasoning will work for other players

proving 3.

Let’s introduce a notation. Given a strategy profile x, i ∈ I, n ∈ N we denote
by

xi(n) := (ci1, . . . , c
i
n−1, x

i
n, x

i
n+1, . . . )

the strategy for player i that coincides with the strategy xi after stage n and
with

xn :=
(

(xi
n)

i∈I
, (xi

n+1)
i∈I

, (xi
n+2)

i∈I
, . . .

)

the stretegy profile induced by x after stage n, this is like to let the game
start from stage n.
Then, define:

pin := Px(t < n, St = {i})↗ pi := Px(St = {i})

Notice that with this notation we lose the dependence of the strategy profile
x. If there will be any possible misunderstanding the strategy profiles will
be specified by denoting it with pin(x) or pi(x).

Definition 4.1. We say that players 1 and 2 (resp. 3 and 4) are
partners. The partner of player i is denoted by ı̃.

Remark 4.1. Notice that this structure of partners helps the analysis
of the game, the definition is pretty natural since the best outcome for
player i is obtained when her partner ı̃ quits alone.

Now, we will prove that under a perturbated ε-equilibrium while the expected
payoff of a player i ∈ I exceeds 1 its contribution in the probability of
termination is small.
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Lemma 4.10. Let x be a strategy profile such that |{i ∈ I : yin > 0}|≤ 1
for every n ∈ N. If γi(xn) ≥ 1 +

√
ε for some i ∈ I, for every n ≤ n0,

then
γi(xi(n),x−i) ≥ γi(x) +

√
ε pin ∀n ≤ n0

If x is an ε-equilibrium, then

pin ≤
√
ε ∀n ≤ n0

Proof. By induction over n.
Base step: if xi1 = 0 the result obviously holds. If xi1 > 0, since nobody else can
quit in the first stage we have:

γi(x) = xi1 · 1 + (1− xi1)γ
i(xi(1),x−i)

Rewriting this we get:

γi(xi(1),x−i) = γi(x)+
xi1

1− xi1
(γi(x)−1) ≥ γi(x)+

xi1
1− xi1

√
ε ≥ γi(x)+xi1

√
ε (2)

Then obviously γi(xi(1),x−i) ≥ γi(x) + 0 · √ε, since pi1 = 0 the thesis holds.
Induction step: assume the tesis holds for n − 1, we will prove it for 1 < n ≤ n0.
Let’s apply equation 2 to the strategy profile xn−1 to get:

γi(xin−1(1),x
−i
n−1) = γi(xi(n)n−1,x

−i
n−1) ≥ γi(xn−1) + (xn−1)

i
1 ·
√
ε

≥ γi(xn−1) + xin−1 ·
√
ε (3)

since (xn−1)
i
1 = xin−1.

Now, notice that using the relation 3

γi(xi(n),x−i) = 4pı̃n−1 + Pci,x−i(t ≥ n− 1) γi(xi(n)n−1,x
−i
n−1)

≥ 4pı̃n−1 + Pci,x−i(t ≥ n− 1)(γi(xn−1) + xin−1

√
ε)

= γi(xi(n− 1),x−i)
︸ ︷︷ ︸

use induction hypothesis

+xin−1

√
ε Pci,x−i(t ≥ n− 1)

≥ γi(x) +
√
ε(pin−1 + xin−1 Pci,x−i(t ≥ n− 1))

Notice that:

Pci,x−i(t ≥ n− 1) =
∏

j 6=i

n−2∏

k=1

(1− x
j
k)

Pxi,x−i(t ≥ n− 1) =
∏

j∈I

n−2∏

k=1

(1− x
j
k)

42



that gives:
Pci,x−i(t ≥ n− 1) ≥ Px(t ≥ n− 1)

then, resuming the previous computations:

γi(xi(n),x−i) ≥ γi(x) +
√
ε(pin−1 + xin−1 Pci,x−i(t ≥ n− 1))

≥ γi(x) +
√
ε(pin−1 + xin−1 Px(t ≥ n− 1))

≥ γi(x) +
√
ε(Px(t < n− 1, St = {i}) + Px(t = n− 1, St = {i}))

= γi(x) +
√
ε Px(t < n, St = {i})

= γi(x) +
√
ε pin

If we add the hypothesis that x is an ε-equilibrium we get:

γi(x) +
√
ε pin ≤ γi(xi(n),x−i) ≤ γi(x) + ε

for every n ≤ n0, that gives:

pin ≤
√
ε ∀n ≤ n0

We will now prove that under a perturbated ε-equilibrium whenever a player
i ∈ I gets a payoff higher than one, player i will not contribute to the
probability of termination, while the partner ı̃ will contribute, until a stage
in which the continuation payoff of player i is close to one is reached.

Lemma 4.11. Let a > 0, ε ∈ (0, 1
900

) and i ∈ I. Let x be a perturbated
ε-equilibrium such that γi(x) ≥ 1 + a. Then there exists a stage n1 > 1
such that:

(A) γi(xn1
) < 1 +

√
ε

(B) pin1
≤ 2
√
ε

(C) 3pı̃n1
≥ a−√ε

Proof. Assume w.l.o.g. i = 1. By lemma 4.9 pi = Px(St = {i}) ≥ 2
15 − ρε for

every i ∈ I, this means that it is bounded away from 0 for every i ∈ I. To avoid
contradiction with lemma 4.10 there exists a stage ñ ∈ N such that γ1(xñ) < 1+

√
ε.

Define
n1 := inf{n ∈ N : γ1(xn) < 1 +

√
ε}

that is well posed. Obviously, n1 > 1 since γ1(x1) = γ1(x) ≥ 1 + a. By definition
condition (A) holds.
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Moreover, γ1(xn) ≥ 1+
√
ε for every n ≤ n1 − 1, using lemma 4.10 we obtain that

p1n1−1 ≤
√
ε. But, then:

p1n1
≤ p1n1−1 + x1n1

≤ √ε+ ε ≤ 2
√
ε

Then, also condition (B) is satisfied.
Since γ1(xn1

) < 1 +
√
ε one has that:

1 + a ≤ γ1(x) = p1n1
+ 4p2n1

+ (1− p1n1
− p2n1

− p3n1
− p4n1

)γ1(xn1
)

≤ p1n1
+ 4p2n1

+ (1− p1n1
− p2n1

)γ1(xn1
)

≤ 3p2n1
+ 1 +

√
ε

Then, with the above definition of n1 also condition (C) is satisfied.

Now, it’s time to prove that there does not exist an ε-equilibrium in which
two partners get both a payoff substantially higher than 1.

Proposition 4.3. Let ε ∈ (0, 1
900

) and a > 7
√
ε. There is no pertur-

bated ε-equilibrium x such that

γi(x), γ ı̃(x) ≥ 1 + a for some i ∈ I

Proof. Assume, by contradiction, that there exists i ∈ I such that

γi(x), γ ı̃(x) ≥ 1 + a

W.l.o.g. we can assume i = 1. Applying lemma 4.11 to players 1 and 2 we obtain
two stages n1 and n2 respectively. Assume w.l.o.g. that n1 ≤ n2, this implies that
p2n1
≤ p2n2

. By condition (C) of lemma 4.11 applied to player 1 we get:

p1̃n1
= p2n1

≥ a

3
−
√
ε

3

On the other hand, by condition (B) of lemma 4.11 applied to player 2 we obtain:

p2n2
≤ 2
√
ε

But, since p2n1
≤ p2n2

we have a ≤ 7
√
ε that is a contradiction.

4.2.4 No perturbated ε-equilibrium - Proof

Finally, we are ready to prove the non existence of a perturbated ε-equilibrium.

Theorem 4.2. For every ε > 0 small enough the game in Table 1 does
not admit an ε-equilibrium such that ‖xn − c‖ < ε for every n ∈ N
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Proof. Let ε > 0 small enough, assume w.l.o.g. γ1(x) ≥ 5
4 − 2ε.

The aim is to find a stage n2 such that:

• xn2
is an 8ε-equilibrium

• γ3(xn2
), γ4(xn2

) ≥ 1 + 1
12

In such a way this contraddicts proposition 4.3 proving the non existence of a
ε-equilibrium.
Let’s apply lemma 4.11 to x with i = 1 to get a stage n1 such that:

p1n1
≤ 2
√
ε

p2n1
= p1̃n1

≥ 1

3

(
1

4
− 3
√
ε

)

≥ 1

12
−√ε

Here, to avoid contradictions with lemma 4.10, since p2n1
is bounded away from 0,

we have the existence of a stage ñ ≤ n1 such that γ2(xñ) < 1 +
√
ε.

Set
n2 := max{n ≤ n1 : γ

2(xn) ≤ 1 +
√
ε}

By definition n2 ≤ n1, this implies

p1n2
(x) ≤ p1n1

(x) ≤ 2
√
ε

Thanks lemma 4.9 p1 ≥ 2
15 − ρε. So, we obtain:

Px(t < n2) = 1− Px(t ≥ n2)

= 1− Px(t ≥ n2, St = {1})
︸ ︷︷ ︸

=p1(x)−p1n2
(x)

= 1 + p1n2
(x)− p1(x)

≤ 1− 2

15
+ ρε+ 2

√
ε

≤ 7

8
for ε > 0 small enough

Then, since x is an ε-equilibrium, xn2
is an 8ε-equilibrium; indeed: consider any

possible deviation yi for player i ∈ I and denote with ỹi the extended strategy that
coincides with xi in the first n2 − 1 stages and ỹin2

= yi, then

ε ≥ γi(ỹi,x−i)− γi(x) = Px(t ≥ n2)
(
γi(yi,x−i

n2
)− γi(xn2

)
)

≥ 1

8

(
γi(yi,x−i

n2
)− γi(xn2

)
)

Now, the aim is to prove that p2n2
(x) ≥ 1

12 − 17
√
ε.

If n2 = n1 it is trivial since p2n2
(x) = p2n1

(x) ≥ 1
12 −

√
ε.

If n2 < n1, by definition of n2 this implies that γ2(xk) > 1 +
√
ε for every n2 < k ≤ n1.
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Let’s apply lemma 4.10 to the strategy profile y := xn2
at the stage n = n1 − n2.

In this way, mimicking the last step in the proof of lemma 4.10 we obtain:

γ2(xn2
) +
√
ε p2n(y) ≤ γ2(xn2

) + 8ε =⇒ p2n(y) ≤ 8
√
ε

Let t be the stopping time associated to the strategy profile x and t̃ = t−n2 be the
translated stopping time for y. Rewriting in another form p2n(y) we notice that:

p2n(y) = Py(t̃ < n1 − n2, St̃ = {2})
Pxn2

(t < n1, St = {2} | t ≥ n2) ≤ 8
√
ε

Therefore, one may deduce that:

p2n1
(x)− p2n2

(x) = Px(n2 ≤ t < n1, St = {2}) ≤ 8
√
ε

This gives:

p2n2
(x) ≥ p2n1

(x)− 8
√
ε ≥ 1

12
− 9
√
ε

Now, we will use this result to prove that γ3(xn2
), γ4(xn2

) ≥ 1 + 1
12 . As before,

since γi(x) ≥ 1− 2ρε for every i ∈ I, we have:

1−2ρε ≤ γ2(x) = 4p1n2
(x)+p2n2

(x)+(1−p1n2
(x)−p2n2

(x)−p3n2
(x)−p4n2

(x))γ2(xn2
)

Since γ2(xn2
) ≤ 1 +

√
ε and p1n2

≤ p1n1
≤ 2
√
ε we can deduce that:

1− 2ρε ≤ 3p1n2
(x) + 1 +

√
ε− p3n2

(x)− p4n2
(x)

p3n2
(x) + p4n2

(x) ≤ 2ρε+ 6
√
ε ≤ 8

√
ε

But, on the other hand we get:

1−2ρε ≤ γ3(x) = 4p4n2
(x)+p3n2

(x)+(1−p1n2
(x)−p2n2

(x)−p3n2
(x)−p4n2

(x))γ3(xn2
)

using the fact that p2n2
≥ 1

12 − 17
√
ε we obtain:

1− 2ρε ≤ 4(p3n2
(x) + p4n2

(x)) +

(

1− 1

12
+

25

3

√
ε

)

γ3(xn2
)

Finally, rewriting it we notice that:

γ3(xn2
) ≥ 1− 2ρε− 32

√
ε

1− 1
12 + 25

3

√
ε

ε→0−−−→ 1

1− 1
12

=
1 + 1

12

1− 1
122

> 1 +
1

12

Then for ε > 0 small enough, it holds γ3(xn2
) ≥ 1 + 1

12 . A symmetric reason-
ing proves the same for γ4(xn2

). But, xn2
is a 8ε-equilibrium, this contraddicts

proposition 4.3.
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An example of a two player generalized

quitting game

The aim of this section is to introduce a new class of games that generalizes
quitting games and to prove the existence of a stationary 0-equilibrium for a
subclass of this new type of games.
The initial aim of this section was to find a 2-player game that does not admit
a stationary ε-equilibrium, because moving out from the class of quitting
games (for example adding other possible quitting actions for the players we
still obtain a 2-player absorbing game for which it is well known the existence
of a ε-equilibrium but nothing about the existence of a stationary one). Then,
it may be helpful to add even other kind of continuing actions in order to
move out from the class of absorbing games (or add at least two more players
keeping the structure of an absorbing game but; in this case, at the moment,
there are no theorem about the existence of ε-equilibria) but still keeping the
game simpler than a general stochastic game. It this direction one may find
some example that does not admit an uniform ε-equilibrium.

Generalized quitting games

A generalized quitting game is a quitting game in which each player have
two different set of actions avaiable. One of continuing actions and one of
quitting actions. That means that the set of actions at the starting state
(the non absorbing one) of each player is:

Ai = C i ∪Qi

where C i is the continuing actions set while Qi is the quitting one.
The game proceeds exactly as a quitting game but in this case the game ends
as soon as at least one player i chooses an action in Qi, while if every player
i ∈ I choose an action in their continuing set C i the game proceeds.

The example

Consider the following two player generaized quitting game:
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A

B

cB qB

cA 	 2, 1

qA 1, 2 3,−1

q̃A 4, 0 −2, 1

Figure 12 – Generalized quitting game

In this example player A have only one continuing action denoted by cA

and two quitting actions denoted by qB and q̃B while player B have just one
continuing action and one quitting one that are denoted as usual with cB

and qB.

Equilibria of the game

4.2.5 Equilibria near the continuing action

The theorem 4.1 can be generalized even to this game provided proposition
4.2 ask in addition the non existence of an equilibrium in which player B

plays ε-near to the continuing action.
This is the case of this game, indeed if player B plays near the continuing

action then player A can ensure almost 4 by picking q̃A, in that way player
B would recive slightly more than 0 but by choosing qB he would obtain 1.

4.2.6 Stationary equilibria

One can check that the only stationary equilibria in this game are (cA, y)
where y ∈

[
1
3
, 1
2

]
. Let’s reason in general, with this geometric approach, to

check what happens if one tries to avoid a stationary equilibrium of this kind.
To avoid an equilibrium of the form (cA, y) for some y > 0 we need that

for every y ∈ (0, 1] there exists an action between qA and q̃A for player A

that guarantees rA
cA,qB

= 2. Let’s draw the payoffs γA(qA, y), γB(q̃A, y) as
functions of y:
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