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Abstract

Asmachine-learning algorithms proliferate, there are growing concerns regarding their fairness.
Can we stop AI, trained on real-world data, from reproducing and exacerbating real-world bi-
ases? There exists a growingbodyofwork on fairness inAI, but often focussing rather narrowly
on classi昀椀cation problems. Online advertising and job-candidate rankings, for example, utilize
ranking algorithms instead of classi昀椀cation algorithms. The objectives of this work are to (a)
describe the theoretical basis of fairness in ranking and the metrics used to evaluate it, (b) ex-
plore several existing post-processing algorithms for fairness in ranking, (c) introduce a novel
randomized algorithm based on Mallows distribution that o昀昀ers a tradeo昀昀 between fairness
and accuracy, and (d) compare its performance in terms of obtained fairness and loss of rank-
ing accuracy to such of existing deterministic algorithms.
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1
Introduction

1.1 Motivation for fairness

Today, it is no secret that machine learning (ML) algorithms are not always impartial decision-
makers. From the widely known case of the COMPAS recidivism risk prediction software in
the USA being heavily biased against black o昀昀enders [2], to sexist biases in word2vec embed-
dings [3], there have been numerous precedents for AI models exhibiting prejudices.

Biases in ML algorithms can have di昀昀erent origins, but mainly, they can be divided into:

• Pre-existing: biases that are reproduced bymodels learning frombiased data. The bias in
the data can be representative of real-world prejudices (e.g. re昀氀ecting the wage disparity
betweenmen andwomen), or it can be produced by a 昀氀awed data collection process (e.g.
picking a non-representative sample for a group of the population);

• Technical: biases that arise from technical constraints. These may be caused by the algo-
rithm itself adding bias that was absent from the training data, or by the conditions in
which the algorithm is used. An example of the latter may be the size of a web page that
displays the results of a ranking algorithm (e.g. a web search); limited space allows the
user to look only at the several highest-scoring results.

• Emergent: biases that arise from user interaction. Coming back to the example above,
the users clicking more on the highest-scoring results will only increase their perceived
relevance, and thus push the lower-scoring ones even deeper into obscurity.
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Among those, arguably themost dangerous one is pre-existingbias, as it reinforces real-world
injustices. An important point to state is that it can not be recti昀椀ed through ”unawareness”:
we can not eliminate bias by simply removing the sensitive information from the data. This
is because, in most cases, it can still be inferred from the other attributes. For example, an
individual’s race may be highly correlated with their address, their media preferences, their po-
litical views and so on. A very recent example of a related phenomenon comes from the GPT4
large language model. The model was given several texts in standard English and in African
American Vernacular English (AAVE) – a dialect used predominantly by the black population
of the US. When asked its thoughts on the authors of the texts, the model’s responses to the
AAVE speakers were overwhelmingly negative. At the same time, when asked openly about
race, GPT4 did not exhibit any harmful prejudices [4]. It is not known whether explicit race
markers were removed from ChatGPT4 training process, but this illustrates the correlation
between ”innocent” and impossible to remove attributes - in this case, the text itself - and the
protected attribute.

In addition to themoral argument for fairness, there exists a legal one. The EuropeanUnion
”Arti昀椀cial IntelligenceAct” adopted inMarchof 2023 is partly concernedwith possible discrim-
inationperformedbymachine learningmodels [5]. As such, it is likely that futureMLproducts
developed or deployed in the EUwill have to comply with some kind of non-discrimination or
fairness regulations.

The existingworks on the topic of algorithmic fairnesswill be discussed shortly in subsection
1.2 and in more depth in chapter 3.

1.1.1 Blind fairness

In algorithmic fairness, we divide the data entries into groups de昀椀ned by some attributes – race,
gender, etc. However, what happens if we do not know which attributes to select?

In some cases, the de昀椀nitionsmay seem obvious – for example, race, gender, age bracket and
so on. However, often the bias can come from an unexpected angle: take, for example, the
International Baccalaureate incident of 2020, where, due to COVID-19 restrictions, the 昀椀nal
school exam was substituted with an automatic grade-prediction algorithm. After the grades
have been issued, the algorithm was found to overwhelmingly discriminate based on which
school each student attended [6].

Another issuewith choosing the protected attributes is that of intersectionality: the discrim-
inationmay take place over several factors at once. For example, an algorithmmay produce fair
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results for white adults, white children, and black adults, but not for black children. As such,
a fairness intervention with an insu昀케cient group de昀椀nition (in this case, only race or only age)
is not guaranteed to remove discrimination.

Finally, there is a privacy concern: individualsmaynotwant their sensitive information, such
as race, gender, address, etc. to be available to a third party – even if it is, supposedly, to ensure
fairness.

This leads us to the problemof “fairnesswithout demographics” – or ensuring fairnesswhen
the group de昀椀nitions or individual groupmembership is not known – and a relaxed version of
this task, when information about group membership is noisy. This topic has attracted some
attention in recent years, but the focus of most of those works is on classi昀椀cation tasks [7], [8],
[9]. In [10], the authors introduce an algorithm to detect groups with biased representation in
ranking; I will discuss this work shortly.

1.2 Ranking: preliminaries and notation

In a fair learning-to-rank (LtR) setting, we are given a set C of “candidates” or “individuals”
– items to be ranked. Each candidate is described by a setX of attributes (or “features”) and
a score s. Each candidate belongs to a group de昀椀ned by a combination of sensitive features
(sensitive attributes) A ⊆ C . These may be binary (e.g. “income greater than $35000”), or
multinary (e.g. race, non-binary gender identity, city). The protected group is the one we
suspect the algorithm is biased against – often a historically disadvantaged demographic or a
minority (in the latter case, the bias may come from lack of data). We denote item at position
i in the ranking π with πi (sometimes also seen as π(i)) and use π−1(i) to denote the position
of item i in π.

A common metric used to measure fairness in rankings is the Spearman footrule distance.
Given two rankings π and σ, |π| = |σ| = k, it measures the total number of positions the
elements of π were moved in σ:

F (π, σ) =
∑

i∈(π∩σ)

|π−1(i)− σ−1(i)|

Another metric is the Kendall-Tau (Kendall Tau, Kendall’s Tau, KT) distance, which mea-
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sures the number of discordant pairs between π and σ:

dKT (π, σ) =
∑

i,j≤k,i<j

1{(π(i)− π(j))(σ(i)− σ(j)) < 0}

As the goal of many rankings is to put the most ”relevant” results on top, a measure of rele-
vance, or utility, is required. The most widespread is the Discounted Cumulative Gain:

DCG(π) =
k∑

i=1

s(π(i))

log(1 + i)
,

It can also be normalized against the DCG of a “perfect” ranking – one where items are
sorted according to their descending scores. The latter is called the Ideal DCG (IDCG), and
the Normalized DCG is de昀椀ned as:

NDCG(π) =
DCG(π)

IDCG(π)

1.3 Existing solutions

1.3.1 ...for ranking

The task of learning-to-rank itself is not the focus of this work because, as I will show shortly,
many FairML algorithms are focused on either modifying the data or modifying the output of
the machine learning model. However, it is useful to give a short overview of this task and the
models used for solving it.

The core components of an LtR problem are [11]:

• A set of queriesQ = qi
|Q|
i=1;

• A set of documentsDq = dq,i
nq

i=1 associated with each query q;

• A set of feature vectors xq,j = ⟨ψ1(q, dq,j), ..., ψM(q, dq,j))⟩ ∈ R
M associated with

each query-document pair; each elementψi(...) is usually a score produced by a simpler
ranking algorithm, e.g. cosine similarity between the tf-idf encondings of the query and
the document, BM25 score of the pair, etc.;

• A set of relevance labels lq,j associated with each query-document pair.

4



Thisway, a dataset for such a problem consists of a set of feature vectorsxq,j and correspond-
ing labels lq,j .

The goal of LtRmodels is to learn a function f that minimizes the loss functionL over the
training set. The choice of the loss function divides the models into three main categories:

• Pointwise: the loss function is calculated on each query-document pair individually;

• Pairwise: for each query, the model learns to predict pairwise preferences between pairs
of documents, transforming theproblem into a classi昀椀cationone; examples areMicrosoft’s
RankNet [12], LambdaRank [13] and LambdaMART [14];

• Listwise: for each query, the loss function is calculated on the entire list: for an example,
consider ListNet [15] or SoftRank [16].

The loss function usually, in some way, aims to optimize NDCG of the resulting ranking.
Comparing the models is beyond the scope of this thesis; in previous research, however, list-

wise [17] and pairwise [12] models have been shown to outperform pointwise ones.

1.3.2 ...for fairness in ranking

There is a growing body of work on fair ranking. The methods used for this task are classi昀椀ed
into pre-processing, in-processing, and post-processing. Pre-processing algorithms focus on
eliminating bias in the data by learning (or otherwise producing) a “fair” representation of
each individual that eliminates information about their group membership, like ifair [18]. In-
processing approaches introduce regularization to the algorithm’s loss function that penalizes
discrimination: DELTR [19] and Fair-PG-Rank [20] for listwise rankingmodels, andBeutel et
al. [21] introduced a regularization term for pairwise ones. Finally, post-processing algorithms
rerank the model’s output to make it more fair [22], [23].

This thesis focuses on post-processing; I justify this choice in more detail in section 2. Some
advantages include explainability of post-processing algorithms, ease of implementation into
existing pipelines, and good performance in terms of fairness.

However, the overwhelming majority of FairML algorithms assume perfect information
about group membership of candidates. A notable exception is the work of Moskovitch et
al. [10], in which the authors attempt to achieve fairness without group information, improv-
ing on a previous work by Pastor et al. [24]. The algorithm they introduce aims to detect the
widest collection of sensitive attribute values such that a group de昀椀ned by those values is un-
derrepresented in top-k; the lower bound of acceptable representation, as well as k, are de昀椀ned
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by the user. These group de昀椀nitions may then be used as input to a post-processing algorithm,
or otherwise utilized in order to improve fairness.

Yet this work, in turn, assumes that the user knows the values of the sensitive attributes of
each candidate – and, as discussed earlier, that information is not always available. In the next
subsection, I will describe our approach to completely group-oblivious fairness.

1.4 Our contribution

1.4.1 A group-oblivious fairness algorithm

Our approach to fairness without demographics is inspired by work on Di昀昀erential Privacy by
Dwork et al. [25], where noise is admixed into database records to protect the users’ privacy.
Similarly, we “mix up” a ranking (which may be the output of an ML model) by sampling
the Mallows’ distribution [26]; by changing the variance of the latter, we can achieve di昀昀erent
results in terms of fairness.

This does not require any information on group membership; in fact, the only necessary
information is the order in which the candidates are ranked. Furthermore, this process is com-
putationally fast: it just needs one sample from a random distribution.

The research this thesis is based on is due to be presented at the 1st International Workshop
on Fairness in AI (https://fairnessinai.github.io/); the workshop paper preprint is
available at https://arxiv.org/abs/2403.19419v1.

1.4.2 Contribution to AIF360

As part of my internship and thesis work, I implemented one of the state-of-the-art algorithms
for fairness in rankings used in this thesis, DetConstSort [22], as well as 3 other algorithms de-
scribed in the paper (DetGreedy, DetConservative, andDetRelaxed), and contributed them to
the IBM-sponsored AI Fairness 360 Python package (https://github.com/Trusted-AI/
AIF360/pull/461). I also implemented unit tests and a usage demo in Jupyter Notebook for
the algorithms, several metrics for dealing with fairness in rankings, and added other support-
ing code. AI Fairness 360 is a widely-used open-source Python package that provides tools for
detecting and eliminating algorithmic bias with over 1000 citations [27].

6



1.5 Thesis structure

This thesis is organized as follows:

• In Chapter 2, I will describe the theoretical basics of algorithmic fairness, as well as the
metrics for quantifying it.

• In Chapter 3, I will lay out two state-of-the-art algorithms used for achieving fairness,
and then introduce our Mallows algorithm.

• In Chapter 4, I will present an experimental comparison of the algorithms from Section
3 in a setting with perfect, noisy, and absent group information.

1.6 Code availability

The full code used for the Experiments section of this thesis can be accessed at https://
github.com/andrewklayk/fairness_with_mallows_distribution.
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2
Background on Fairness in Rankings

Asdiscussed in the Introduction, the goal of algorithmic fairness is tomake sure that thedecision-
making algorithm does not discriminate against protected subgroups of the population. But
that is a rather nebulous de昀椀nition: what do we mean by «discriminate»? How do we tell if
an algorithm is «fair» or not?

In section 2.1, I will attempt to answer these questions with arguments based mainly the
work of Friedler et al. and Zehlike et al. [28], [29]. Then, in section 2.2, I will describe and
contrast the two approaches that divide the 昀椀eld of FairML: Individual vs. Group Fairness.
Finally, in section 2.3, I will lay out the mathematical formulation of some metrics used to
quantify fairness in ranking.

2.1 Worldviews

As we shall see in the next section of this chapter, there are many quantitative measures of algo-
rithmic fairness. However, [1] notes that they are oftentimes introduced «ad-hoc», without
stating the assumptions underlying them. The authors introduce the idea of three spaces, such
that any measure of fairness may be classi昀椀ed according to the assumptions it makes about in-
teractions between them.

Those are theConstruct space (CS), theObserved space (OS) and theDecision space (DS).A
representation of them is shown on Fig. X. The Construct space represents the true properties
of an individual in which the decision-maker is interested –e.g., their intelligence. However,
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Figure 2.1: An illustra琀椀on of worldviews from Frieder et al. [1]. WYSIWYG worldview assumes minimal disor琀椀on between
the construct space (CS), that contains actual quan琀椀tes of interest ‐ e.g. intelligence and the observed space (OS), that
contains observa琀椀ons ‐ e.g. test scores. WAE worldview assumes that the mapping from the CS and OS treats di昀昀erent
groups di昀昀erently to a non‐negligible degree ‐ e.g. women’s test scores being ar琀椀昀椀cially lowered compared to men’s.

those properties are unobservable directly – in the real world, we have to rely on proxies, like,
for example, test scores; those lie in the Observed space. The Decision space is made up of the
decisions made by the model – binary «yes/no» in case of classi昀椀cation, a number in case of
regression, and the individual’s position in case of ranking.

As the paper notes, any fairness metric implies assumptions about how those spaces interact.
Those can be divided into two worldviews: «What You See Is What You Get» (WYSIWYG)
and «We are All Equal» (WAE).
WYSIWYG denotes the belief that the di昀昀erences between the OS and the CS are mini-

mal, thus it is possible to accurately compare each candidate’s true quantity of interest (e.g. a
university applicant’s ability) using just the observations (their exam scores).
WAE worldview, on the other hand, assumes that in the CS, all groups look essentially the

same – all qualities relevant to the decision-making process are distributed nearly identically
within each group. The reason WAE gives for observed di昀昀erences is that the transformation
from the CS to the OS is inaccurate and treats di昀昀erent groups in di昀昀erent ways. In this world-
view, OS is an unreliable representation of the CS: for example, a physics exam taken in English
may be representative of the physics knowledge of an English-speaking student, but not of a
non-English-speaking one.

When designing a fairness-oriented algorithm, it is necessary to choose between the two
worldviews. In some ways, they correspond to di昀昀erent concerns a model designer might have:
roughly speaking, WYSIWYG means that we trust the data to provide an accurate represen-
tation of the CS, and are concerned with the model itself learning to discriminate on the un-
wanted attributes from data; while WAE means that we think the data is biased due to real-
world issues and want the model to correct for that.

While the question of worldviews may seem purely theoretical, it is necessary for a deeper
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understanding of amuchmore practical choice in the 昀椀eld of FairML: Individual versusGroup
fairness.

2.2 Individual vs. Group Fairness

The 昀椀rst de昀椀nition to arise in the 昀椀eld of FairMLwas group fairness. Group fairness is simple:
it asks for the model output to be independent of groupmembership; given the model output
R and group membershipA, it requires that

P (R = 1|A = a) = P (R = 1|A = b)

It is also known as demographic parity, statistical parity, or disparate impact. Under the last
name, and with a relaxed formulation, it is widely employed in legal settings - take, for exam-
ple, the “four-昀椀fths” rule in the USA that requires the job acceptance rate for each signi昀椀cant
protected group to be at least 4/5 of that of the most frequently accepted group.
Individual fairness, on the other hand, aims for similar individuals to be treated similarly.

It was introduced into the 昀椀eld of Fair ML in [30]; there, the similarity between individuals is
measured with a user-de昀椀nedmetric. The authors recognize that designing a «fair»metric is a
di昀케cult problem, as there might be structural bias present in the data.

A widespread set of fairness criteria that aims for individual fairness is equalized odds and
equality of opportunity, which require, respectively, equal error rates and equal false positive
rates across groups. They are based on either full or relaxed statistical notion of separation: the
outputR is separated from the group membership A by the ground truth Y ifR ⊥⊥ A|Y . It
makes intuitive sense in a classi昀椀cation setting if we consider Y as a measure of merit: equally
quali昀椀ed individuals should be accepted or refused with equal rates, regardless of their group
membership.

It is easy to see how the individual and group fairness notions map closely to the WYSI-
WYG vs. WAE worldviews, respectively. More accurately, as pointed out in [1], individual
fairness requires the user to assume the WYSIWYG worldview to guarantee fairness, and vice
versa (note that, unlike the paper, in this thesis I do not make a distinction between “fairness”
and “non-discrimination”, because this section is intended only to provide a basic theoretical
background).

There are apparent tradeo昀昀s to choosing between individual and group fairness, which have
roots in the con昀氀ict betweenWYSIWYG andWAE. Using our running example, if we assume
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that the students’ test scores accurately represent their intelligence (WYSIWYG), adhering to
individual fairness criteria would make sure that students with similar scores would have the
same probability of acceptance, regardless of race; on the other hand, if we know the tests to
favor one group over the others (WAE), individual fairness would just reinforce that di昀昀erence.

Similarly, the disadvantages of group fairness underWYSIWYGare apparent: by forcing the
model to produce similar outputs regardless of groupmembership, it would unfairly «elevate»
black students with lower scores. Group fairness constraints can even be used insidiously: a
recruiter may hire candidates from the privileged and protected groups at the same rate, but
purposefully select less quali昀椀ed members of the latter; this would lead to worse performance
from the protected group, which can be used to justify further discrimination [31]. In the real
world, this is known as the «glass cli昀昀» phenomenon.

2.3 Measuring Fairness in Rankings

Having established the theoretical basis behind di昀昀erent fairness criteria, we can 昀椀nally move
on to their mathematical formulation. As stated already, most work on fairness focuses on the
problem of classi昀椀cation, and thus, a wide range of metrics has been introduced for this task,
focusingonboth group (positive classi昀椀cation rate) and individual (false positive rate ratio, false
negative rate ratio, error rate ratio, and so on) fairness [32].

Much less work has been put into the problemof rankings, however. Biega et al. [33] choose
the individual approach (WYSIWYG) and aim to ensure that the user attention received by
each item is proportional to the item’s relevance to a given query. As a proxy for attention, they
use position-based discounts – a quantity that decreases as the item is placed further down in
the ranking, e.g. p(1−p)(j−1) for a user-set parameter p and position j. The authors argue that
their constraints are unlikely to be achieved in any single ranking, so they attempt to optimize
cumulative attention receivedby items overmultiple successive rankings (e.g. multiple repeated
responses to the same internet search query, or even to di昀昀erent queries – in which case the
items’ relevance scores will change depending on the query):

∑m

l=1 a
l
i1∑m

l=1 r
l
i1

=

∑m

l=1 a
l
i2∑m

l=1 r
l
i2

, ∀ui1, ui2.

, where ui1, ui2 are a pair users, ali1, ali2 are the normalized attention values received by the two
users in ranking l, and rli1, rli2 are the normalized relevance values of the twousers in the ranking
l.
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In [34], the authors introduce constraints for both individual and group fairness based on
the notion of exposure:

Exposure(di|P) =
N∑

j=1

Pi,jvj

WhereXa is the item, P τ
a,i is the probability of the model placing the candidate a at rank i

in ranking τ , and v(i) is the position discount.
The average exposure of a groupGk is de昀椀ned as:

Exposure(Gk|P) =
1

|Gk|

∑

di∈Gk

Exposure(di|P),

In the individual case (WYSIWYG), the aim is to guarantee that the average exposure of each
group is proportional to the average utility of its items; in the group case (WAE), the average
exposure is required to be equal across all groups.

Finally, [35], [22] and [23] place 昀椀rm constraints on the group structure of the rankings.
These works aim to achieve equal representation of groups in the top k entries – also known as
proportional, or proportionate, fairness.

For each position i and protected group g, [35] introduces a lower bound αi such that the
proportion of members of protected groups does not fall too far below a user-set percentage p.
As the main contribution of the paper is an algorithm that constructs a sub-ranking of size k
out of a larger set of scored candidates, the fairness of the result is evaluated using the percent of
protected candidates in the sub-ranking. While this approach is intuitive, it does not account
for the positions of the candidates: for example, all individuals belonging from the protected
group may be situated at the bottom.

[22] introduced the InfeasibleIndexmetric, de昀椀ned as the number of positions at which the
lower representation bound is violated:

InfeasibleIndex(π) =
|π|∑

k=1

1(∃Gi ∈ G, s.t. countk(Gi, π) < ⌊αi · k⌋). (2.1)

where τr is the ranking,G is the set of groups, αi is the lower constraint on the proportion
of items of groupGi in the ranking set by the user.

[23] improved on that by also considering the upper bound in the “Percentage of P-Fair
Positions” – or the percentage of positions in the ranking at which none of the requirements
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are violated. The authors claim that introducing anupper representation constraint in addition
to the lower one provides for more robust fairness guarantees.

In this work, I use the latter metric, as well as a modi昀椀cation of InfeasibleIndex that also
counts the upper bound violations:

LowerViol(π) =
|π|∑

k=1

1(∃Gi ∈ G, s.t. countk(Gi, π) < ⌊αi · k⌋

UpperViol(π) =
|π|∑

k=1

1(∃Gi ∈ G, s.t. countk(Gi, π) > ⌈βi · k⌉

where countk(Gi, π) is the number of elements of groupGi in the top k positions of ranking
π; αi, βi are the lower and upper constraints on the proportion of items of that group in the
ranking. Then,

TwoSidedInfInd(π) = LowerViol(π) + UpperViol(π)

Depending on the choice of the proportions for each group, thesemetrics can describe both
individual and group fairness, as noted in [22] and [23]. In this thesis, the focus will be placed
on group fairness.
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3
Algorithms

There are several ways to classify algorithms used for mitigation of bias in rankings. Most com-
monly, they are categorized into pre-, in-, and post-processing. Pre-processing methods seek
to mitigate bias in the data before it is used for training a ranking model. In-processing meth-
ods modify the ranking model (usually, by altering the loss function) so that the outcome is
bias-free. Post-processing methods reorder the output ranking so that it satis昀椀es fairness con-
straints.

In this thesis, I focus on post-processing algorithms. Such methods o昀昀er several advantages,
as noted in [29]:

• Most of them come with 昀椀rm theoretical guarantees on the fairness of the output –
which is not the case with in-processing algorithms that are intended to produce a trade-
o昀昀 between fairness and accuracy;

• Their e昀昀ect ismuchmore clear than that of othermethods: while pre- and in-processing
algorithms intervene in somewayon the trainingdata or the loss function, post-processing
methods «simply» reorder the output, usually according to easily understandable rules.
This makes themmore easily analyzable and explainable – the latter being a very impor-
tant property of decision-making algorithms, as noted in chapter WHICH of [31].

Those advantages, however, come with greater loss in accuracy than that of pre- and in-
processing methods. On the other hand, if bias is present in the scoring function, the decrease
in accuracy may not be at all representative of the real-life impact [29].
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In addition to those points, I suggest another quite apparent bene昀椀t: most post-processing
algorithms do not require access to either the training data or the rankingmodel; just the scores
produced by the latter. As such, they are easy to introduce into the pipeline of a ranking system
– as it was done, for example, at LinkedIn [22].

The same paper also classi昀椀es algorithms according to their underlying worldview – either
WYSIWYG or WAE, described in Chapter 2, and the type of bias the algorithm can mitigate
(pre-existing, technical, or emergent).

3.1 State-of-the-art post-processing algorithms

3.1.1 DetConstSort

Geyik et al. in [22] introduce four post-processing ranking algorithms that intervene on the
ranked output: DetGreedy, DetCons, DetRelaxed andDetConstSort. Among those, the only
algorithm the authors prove the theoretical feasibility for is DetConstSort. Every algorithm
introduced in the paper intervenes on the output ranking by introducing minimum andmaxi-
mum representation constraints for each group at each k:

∀k ≤ |τr|& ∀ai ∈ A, countk(ai) ≤ ⌈pai · k⌉ , and, (3.1)

∀k ≤ |τr|& ∀ai ∈ A, countk(ai) ≥ ⌊pai · k⌋ , (3.2)

where pai represents the proportion of the group de昀椀ned by the protected attribute value
ai; this value is set by the user.

The DetConstSort algorithm is presented in Algorithm 3.1. In a nutshell, the algorithm
does the following:

1. Increase the value of the counter k until the minimum representation requirement at
position k is increased for at least one group; pick one candidate from each group with
the best score and order them according to their descending score;

2. For each such candidate:

(a) insert the candidate into the last empty position in the recommendation list;

(b) swap the candidate towards the top position until either:

• The score of the candidate above is greater than the score of the inserted can-
didate, or
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• Theminimum representation requirement for the candidate above would be
violated due to the swap.

Algorithm 3.1 FeasibleMitigationAlgorithmBased on Interval Constrained Sorting (DetConstSort)

1: foreach ai ∈ a, counts[ai] := 0
2: foreach ai ∈ a, minCounts[ai] := 0
3: rankedAttList := []; rankedScoreList := []; maxIndices := []
4: lastEmpty := 0; k := 0
5: while lastEmpty≤ kmax

6: k++
7: foreach ai ∈ a, tempMinCounts[ai] := ⌊k · pai⌋
8: changedMins := {ai : minCounts[ai] < tempMinCounts[ai]}
9: if changedMins ̸= ∅
10: ordChangedMins := sort changedMins by sai, counts[ai] descending
11: for ai ∈ ordChangedMins (chosen in the sorted order)
12: rankedAttList[lastEmpty] := ai
13: rankedScoreList[lastEmpty] := sai, counts[ai]
14: maxIndices[lastEmpty] := k
15: start := lastEmpty
16: while start > 0 and maxIndices[start - 1] ≥ start and rankedScoreList[start-1] < ranked-

ScoreList[start]
17: swap(maxIndices[start - 1], maxIndices[start])
18: swap(rankedAttList[start - 1], rankedAttList[start])
19: swap(rankedScoreList[start - 1], rankedScoreList[start])
20: start−−
21: end while
22: counts[ai]++
23: lastEmpty++
24: end for
25: minCounts := tempMinCounts
26: end if
27: end while
28: return [rankedAttList, rankedScoreList]

Any algorithm that allows the user to set the desired proportion of groups seemingly per-
mits a continuous shift betweenWAE andWYSIWYG worldviews. However, [29] notes that
the DetGreedy algorithm from [22] is incompatible with WAE, as it always picks the highest-
scoring available candidate at each step, and in this way introduces a measure of utility into
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the fairness constraints. Evidently, DetConstSort does this as well, choosing higher-scoring
candidates when ties in the representation constraints are present.

3.1.2 ApproximateMulti-Valued IPF

The paper [23] introduces three algorithms to solve the problem of constructing a fair ranking
fromapossible unfair one of the same size –what the authors call the Individual p-FairRanking
problem (IPF). The 昀椀rst algorithm, GrBinaryIPF, is only viable for the case of 2 groups and
follows the same principle as the DetGreedy algorithm from [22]. Like with DetGreedy from
the last paper, the authors provide a proof that GrBinaryIPF produces a fair ranking in the
case of ≤2 groups; moreover, the latter is proven to produce the optimal solution to the IPF
problem in the case of ≤2 groups.

Here I consider the algorithm the authors call Approximate Multi-Valued IPF. As this algo-
rithm is based on minimum weight perfect matching in graphs, let me give a brief overview of
the necessary concepts:

A graphG(Vt, E) consists of a set of vertices Vt and a set of pairs of vertices called ”edges”E.
An edge evy = (v, y), v, y ∈ Vt is called incident to the vertices v and y; v and y are called its
endpoints. A graph is called bipartite if Vt can be divided into two sets V and Y such that no
edge inE has both endpoints in either V or Y . Such a graph is also denoted asG(V, Y, E). A
matchingM ⊆ E is a collection of edges s.t. every vertex in Vt is incident to at most one edge
inM . A perfect matching is a matching where every vertex in Vt is incident to exactly one edge
inM .

ApproximateMulti-Valued IPF exploits the fact that a perfect matching in a bipartite graph
produces a one-to-one correspondence between the vertices of the two partition sets. First, the
algorithm calculates the lower and upper bound of positions for each candidate of the ranking
based on their group membership. It then represents the original score-based ranking π0 and
the output fair ranking π (to be found) as two parts V and Y of a bipartite graphG(V, Y, E):
the nodes inV represents the items and the nodes inY represent their potential position. Each
edge evy represents an assignment of a candidate v ∈ V to a position y ∈ Y ; as y is supposed
to be a fair ranking, an edge evy exists only if y lies between the lower and upper position bound
for that candidate. The edges are then given weights w(evy) equal to the Spearman’s footrule
distance between y and the position of v in π.
The algorithm then 昀椀nds a minimumweight perfect matching between V and Y - a match-

ingM that minimizes the sum of the weights of the edges in it. This is a well-researched prob-
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lem that can be solved in polynomial time [36].

The pseudocode of Approximate Multi-Valued IPF, as it is given in the original paper, is
given in Algorithm 3.2.

Algorithm 3.2 ApproxMultiVauedIPF(G)
1: for evy ∈E
2: w(evy)← |π0(v)− y|
3: end for
4: M ← find_minimum_weight_perfect_matching(G)
5: for evy ∈M

6: π(y) = π0(v)
7: end for
8: return π

This algorithmwas not analyzed in [29], but it is evident that it also conforms to theWYSI-
WYG worldview for the same reason as DetConstSort: aiming to minimize the distance be-
tween the initial score-based ranking and a fair one, itwill placehigher-scoring candidates higher
in the ranking. The authors prove thatApproximateMulti-Valued IPFadmits a 2-approximation
factor for the IPF problem in terms of the Kendall-Tau distance to the initial ranking.

3.2 Baseline: Integer Linear Programming

Inorder toprovide an additional baseline,we introduced an integer linear problemformulation
of the p-fair ranking problem. Given a set of lower and upper representational bounds αg, βg

for each groupg ∈ G, the optimal p-fair top-k ranking canbe computed froman initial ranking
π0 as follows:
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max
∑

i∈[k]

∑

j∈[k]

s(i)c(j)xij

s.t.
∑

i∈[k]

xij = 1 ∀j ∈ [k]

∑

j∈[k]

xij ≤ 1 ∀i ∈ [k]

⌊αgℓ⌋ ≤
∑

i:π0(i)∈g

ℓ∑

j=1

xij ≤ ⌈βgℓ⌉ ∀ℓ ∈ [k], ∀g ∈ G

xij ∈ {0, 1}

3.3 Mallowsalgorithmforgroup-obliviousfairness

In this section I will introduce the algorithm developed and analyzed by us for fairness without
group information in top-k rankings. This algorithm is simple: starting from a central ranking,
it ”shu昀툀es” the candidates randomly according to the Mallows distribution. This, however,
produces impressive results in terms of fairness, and addresses more than one fairness concern,
as will be discussed later. The pseudocode is given in Algorithm 3.3

The Mallows distribution was introduced in [26] for the problem of modelling rankings.
Given a center ranking π0, a decay parameter θ, and a distance metric d the model is:

IPπ∼M(π0,θ)[π] =
e−θd(π,π0)

Zk(θ)

whereZk(θ) is a normalization constant.
The probability of obtaining a given ranking π decreases with increasing KT-distance be-

tween π and π0.
This distribution belongs to the location-scale family; its expectation is the center ranking

π0 and its variance is θ.

Algorithm 3.3Mallows Algorithm

1: π0 ← choose_central_ranking()
2: π ←M(π0, θ)
3: return π
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The choice of π0 and θ is a crucial point of this method. With θ = 0, equal probability
is given to all possible permutations; higher values means less changes in the ranking. Varying
this parameter allows the user to achieve a tradeo昀昀 between fairness and utility.

Similariy, choosing the way in which the central ranking is constructed will also impact the
results. The most intuitive approach is to use the score-based ranking of top-k highest-scoring
candidates; this allows to achieve the highest utility and puts the method 昀椀rmly in the WYSI-
WYG worldview. Another way is to produce a ranking in which each group is represented to
some desired degree; this is the approach I use in Chapter 4 4, as it produces a certain tradeo昀昀
between the individual and group fairness approach. Finally, one may sample a permutation
on the entire dataset and take the top-k candidates: with θ = 0, this would fully conform to
theWAE worldview.

Along with not requiring information about group membership, another advantage of this
approach over many other reranking methods is the randomization, which helps combat po-
sition bias. Studies show that top-ranked candidates tend to receive disproportionately more
attention than even slighty lower ranked ones [37] [38]. In deterministic algorithms, items
with lower scores will always be presented below higher-scoring ones, bar fairness constraints.
This, in turn, may lead to emergent bias - less clicks on a lower-scoring search result will further
lower its perceived relevance. Alleviating these e昀昀ects was the primary concern in the work of
Biega et. al. [33]; here it is a useful side e昀昀ect.

21



22



4
Experiments

In this chapter, I will describe the experiments we conducted to evaluate our randomized ap-
proach to group-oblivious fairness in rankings and compare it to the aforementioned state-of-
the-art algorithms, and lay out their results.

4.1 Implementation

All algorithms were implemented in Python. The implementation of ApproximateMultiVal-
uedIPF was the one provided with the original paper. The implementation of DetConstSort
was based on the AI Fairness 360 toolkit with minor adjustments.

Sampling from the Mallows distribution was done using the code provided with [39] at
https://github.com/ekhiru/top-k-mallows/. All code is available athttps://github.
com/andrewklayk/fairness_with_mallows_distribution.

4.2 Experimental results

4.2.1 Mallows model and Infeasible Index

The 昀椀rst experiment aims to evaluate the impact of Mallows randomization on the Infeasible
Index of a ranking. The experimental setup and results follow.
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Experiment 1: Setup

I analyze a scenario of ten candidates, whobelong to two equal-sized groups and createmultiple
rankings, denoted asσII , by adjusting the placement of candidates from each group to produce
diverse values of the Infeasible Index (II). I then sample rankings from aMallows distribution
using theσII ranking as the central permutation andvarying values of θ, observing the resulting
Infeasible Index in the samples.

Experiment 1: Results

Fig. 4.1 shows that as the dispersion parameter increases, the Infeasible Index of samples drawn
fromMallows model converges to the Infeasible Index of the central permutation. When the
central permutation’s Infeasible Index is small, and as θ → 0, the Infeasible Index of the sam-
ples drawn from Mallows’ model is higher, but without a signi昀椀cant di昀昀erence. However,
when the central permutation’s Infeasible Index is large, there is a signi昀椀cant drop in the In-
feasible Index of the samples drawn from theMallows’ model as θ → 0.

Figure 4.1: Mallows distribu琀椀on and Infeasible Index (Experiment 1, Subsec琀椀on 4.2.1). Each subplot corresponds to a di昀昀er‐
ent value of the central ranking’s Infeasible Index, which is shown as a red line. The bar plots depict the mean value of the
Infeasible Index of the samples from the Mallows distribu琀椀on centered on the ini琀椀al ranking with two groups. Con昀椀dence
intervals were obtained via bootstrapping (n = 1000).

4.2.2 Mallows model andNDCG

The aimof the second experiment is to evaluate the impact ofMallow’s randomization on both
fairness and ranking utility in a simple ranking setup.
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Experiment 2: Setup

I consider two equal-sized groups of 昀椀ve individuals each, where the candidates in the 昀椀rst
group are assigned scores S1 ∼ U(0, 1), and the candidates in the second group are assigned
scores S2 ∼ U(0 + δ, 1 + δ), where δ = {0.0, 0.1, . . . , 0.9, 1.0}. I then sort the candi-
dates according to their descending scores and sample the Mallows distribution centered on
the sorted rankings with di昀昀erent values of θ, and evaluate the Infeasible Index andNDCG of
the samples.

Experiment 2: Results

Figs. 4.3 and 4.4 depict the experimental results in terms of evaluating how the Infeasible Index
and the NDCG change as we start from the corresponding Infeasible Index values as depicted
in a rankings Fig. 4.2. As for the Infeasible Index, we notice similar behavior as in the Fig. 4.2.1.
We can see that as the dispersionparameter increases theNDCGconverges to that of the central
ranking, which is 1. This illustrates that there is a trade-o昀昀 between the NDCG and the Infea-
sible Index when sampling fromMallow’s distribution with di昀昀erent values of the dispersion
parameter.

Figure 4.2: The Infeasible Index of the Central Ranking, as constructed by sampling from score distribu琀椀ons for each of
the two groups (Experiment 2, Subsec琀椀on 4.2.2). Speci昀椀cally, the x‐axis depicts the di昀昀erence in means between the score
distribu琀椀ons of the two groups. Con昀椀dence intervals were obtained via bootstrapping (n = 1000).

4.2.3 A real-world application: German Credit Dataset.

In the third experiment, we utilized a real-world dataset to evaluate how well the Mallows ran-
domization method performs in a practical scenario, where we have partial knowledge regard-
ing some of the protected attributes and aim to evaluate the result in terms of an unknown
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Figure 4.3: Mallows distribu琀椀on and Infeasible Index in a simple score‐based ranking setup (Experiment 2, Subsec琀椀on 4.2.2).
Each subplot corresponds to a di昀昀erence in means between the score distribu琀椀ons of the two groups. We sample 昀椀ve
individuals for each group, where the candidates in the 昀椀rst group are assigned scores S1 ∼ U(0, 1), and in the second
group ‐ S2 ∼ U(0 + δ, 1 + δ), where δ is the di昀昀erence in means. The subplots depict the mean value of the Infeasible
Index of the samples from the Mallows distribu琀椀on centered on the ini琀椀al ranking. Con昀椀dence intervals were obtained via
bootstrapping (n = 1000).

Figure 4.4: Mallows distribu琀椀on and NDCG in a simple score‐based ranking setup (Experiment 2, Subsec琀椀on 4.2.2). Each
subplot corresponds to a di昀昀erence in means between the score distribu琀椀ons of the two groups. We sample 昀椀ve individuals
for each group, where the candidates in the 昀椀rst group are assigned scores S1 ∼ U(0, 1), and in the second group ‐
S2 ∼ U(0+δ, 1+δ), where δ is the di昀昀erence inmeans. The subplots depict themean value of NDCGof the samples from
the Mallows distribu琀椀on centered on the ini琀椀al ranking. Con昀椀dence intervals were obtained via bootstrapping (n = 1000).
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protected attribute. We conduct a thorough experimental analysis with several state-of-the-art
postprocessing algorithms that are designed to ensure fairness in rankings regarding speci昀椀c at-
tributes. To emulate real-world conditions, we introduce noise into their fairness constraints
to simulate imperfect knowledge about group membership.

Dataset Description

We utilize the German Credit dataset [40], following the work of [41, 23]. For the ranking of
the candidates, we use the Credit Amount attribute. We aggregate the binary attributes Sex
andAge into theSex−Ageprotected attributewith four values and consider the information
of this attribute as known, with little or no noise. We evaluate the fairness of the algorithms
in terms of a third attribute, namedHousing, with three values. We regarded theHousing
attribute as unknown; therefore, it could not be used as information for any algorithm. The
distribution of the groups de昀椀ned by these attributes is shown in Table 4.1.

Age-Sex Housing Totalfree own rent
< 35 - female 2 131 80 213
< 35 - male 23 261 51 335
≥ 35 - female 17 65 15 97
≥ 35 - male 66 256 33 355

Total 108 713 179 1000

Table 4.1: Distribu琀椀on of groups de昀椀ned by Age, Sex, and Housing in the German Credit dataset.

Experiment 3: Setup

We executed the state-of-the-art ApproxMultiValuedIPF [23], DetConstSort [22] aswell as the
ILP algorithm, using as input aweakly-p-fair rankingwith respect to the combinedSex−Age
protected attribute. The algorithms were run in their vanilla version and with some noisy rep-
resentation constraints on the combinedSex−Age protected attribute. Speci昀椀cally, we intro-
duced noise into the calculations of the constraints by each of the aforementioned algorithms
in the following ways:

• ApproxMultiValuedIPF: we added an independent sample fromN(0, σ) to each of the
weights at the weight calculation step ( Algorithm 2, line 2 of [23])

• DetConstSort: we added an independent sample from N(0, σ) to each of tempMin-
Counts ( Algorithm 3, line 7 of [22])
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• ILP: given Xij, Yij ∼ |N(0, σ)|, we modi昀椀ed the calculation of constraints for each
groupGp such that:

⌊βpℓ⌋ −Xij ≤
∑

i∈Gp

ℓ∑

j=1

xij ≤ ⌈αpℓ⌉+ Yij ∀ℓ ∈ [k]

This was done to lessen the probability of making the problem infeasible, while still re-
taining noise.

We repeate this step 15 times to reliably measure the e昀昀ect of the noise.
We also run the Mallows algorithm on the same weakly-p-fair ranking, using the weakly-p-

fair ranking as a central ranking and dispersion parameters of 0.5 and 1, taking 1 or the best of
15 samples.

We evaluate the fairness of the output rankings using the Infeasible Index with respect to
theHousing attribute and the utility of the output rankings using NDCG. The experiment
is repeated for rankings of size 10, 20, 30, 40, 50, 60, 70, 80, 90, 100.

Experiment 3: Results

The experimental results are presented in Figs. 4.5, 4.6 and 4.7. Fig. 4.6 shows the median
percentage of positions satisfying P-fairness with respect to theHousing protected attribute.
Since DetConstSort, ApproxMultiValuedIPF and the ILP use the Age − Sex protected at-
tribute to create the fair ranking, the resulting ranking fairness has todowith another attribute’s
distribution, therefore we cannot have any guarantees. For comparison only, we include Fig.
4.5, so that it is clear how the same ranking can have di昀昀erent fainress scores according to dif-
ferent attribute. We argue that the addition of noise can improve the results regarding di昀昀erent
protected attributes, leading to a more balanced output, regardless of the target protected at-
tribute. This approach seems like a compromise among all the di昀昀erent protected attributes
that may be present and about which we have no knowledge.

As shown in Fig. 4.5, under noisy conditions, the Mallows algorithm performs well com-
pared to state-of-the-art algorithms (DetConstSort andApproxMultiValuedIPF). Fig. 4.7 shows
themeanNDCG (as a solid line) and a 95% con昀椀dence interval (shaded region). We can notice
that as the number of items increase, the NDCG score increases for Mallows, and the perfor-
mance of the best sample fromMallows approaches the NDCG curve for the ILP.
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(a) θ = 0.5, No noise (b) θ = 1, No noise

(c) θ = 0.5, σ = 1 (d) θ = 1, σ = 1

Figure 4.5: Rankings constructed with noisy representa琀椀on constraints on the combinedAge − Sex protected a琀琀ribute
from an ini琀椀al weakly‐p‐fair ranking with respect to the combined Age − Sex protected a琀琀ribute. The plots show the
median percentage of posi琀椀ons sa琀椀sfying P‐fairness w.r.t. theAge− Sex protected a琀琀ribute. Con昀椀dence intervals were
obtained via bootstrapping (n = 1000). In Sub昀椀gure (a) the θ parameter of the Mallows distribu琀椀on is set to 0.5, and no
noise is added to the constraints. In Sub昀椀gure (b) θ = 1 and no noise is added to the constraints. In Sub昀椀gure (c) θ = 0.5
and Gaussian noise ξ ∼ N (0, 1) is added to the constraints. In Sub昀椀gure (d) θ = 1 and Gaussian noise ξ ∼ N (0, 1) is
added to the constraints.
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(a) θ = 0.5, No noise (b) θ = 1, No noise

(c) θ = 0.5, σ = 1 (d) θ = 1, σ = 1

Figure 4.6: Rankings constructed with noisy representa琀椀on constraints on the combinedAge − Sex protected a琀琀ribute
from an ini琀椀al weakly‐p‐fair ranking with respect to the combined Age − Sex protected a琀琀ribute. The plots show the
median percentage of posi琀椀ons sa琀椀sfying P‐fairness w.r.t. theHousing protected a琀琀ribute. Con昀椀dence intervals were
obtained via bootstrapping (n = 1000). In Sub昀椀gure (a) the θ parameter of the Mallows distribu琀椀on is set to 0.5, and no
noise is added to the constraints. In Sub昀椀gure (b) θ = 1 and no noise is added to the constraints. In Sub昀椀gure (c) θ = 0.5
and Gaussian noise ξ ∼ N (0, 1) is added to the constraints. In Sub昀椀gure (d) θ = 1 and Gaussian noise ξ ∼ N (0, 1) is
added to the constraints.
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(a) θ = 0.5, No noise (b) θ = 1, No noise

(c) θ = 0.5, σ = 1 (d) θ = 1, σ = 1

Figure 4.7: MeanNDCG (solid line) and a 95%con昀椀dence interval (shaded region) of the output rankings. Con昀椀dence intervals
were obtained via bootstrapping (n = 1000). In Sub昀椀gure (a) the θ parameter of the Mallows distribu琀椀on is set to 0.5, and
no noise is added to the constraints. In Sub昀椀gure (b) θ = 1 and no noise is added to the constraints. In Sub昀椀gure (c) θ = 0.5
and Gaussian noise ξ ∼ N (0, 1) is added to the constraints. In Sub昀椀gure (d) θ = 1 and Gaussian noise ξ ∼ N (0, 1) is
added to the constraints.
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5
Conclusion

In thiswork, I have described anovel randomizedpost-processing algorithm for fairness in rank-
ings that does not use any information about the group membership of the candidates or the
values of the protected attributes. The algorithm demonstrated its ability to balance fairness
across multiple protected attributes and achieved comparable performance to state-of-the-art
when the information about groupmembership is corrupted by noise. It may be implemented
into a ranking pipeline or serve as a proof of concept for achieving fairness through noise injec-
tion.

One direction for future work is a rigorous theoretic analysis of the e昀昀ects ofMallows noise
injection on fairness, providing a bound for the values of the most common fairness metrics.
This would allow users to tune the parameters of the model depending on the distribution of
the values of the protected attributes, improving the algorithm’s performance without requir-
ing information about individual candidates’ group membership.

33



34



References

[1] S. A. Friedler, C. Scheidegger, and S. Venkatasubramanian, “On the (im)possibility of
fairness,” 2016.

[2] J. Angwin, J. Larson, S. Mattu, and P. Lauren Kirchner, “Machine bias,” https :
//web.archive .org/web/20240322030010/https ://www.propublica .org/article/
machine-bias-risk-assessments-in-criminal-sentencing, [Online; Accessed: 2024-25-
03].

[3] T. Bolukbasi, K.-W. Chang, J. Zou, V. Saligrama, and A. Kalai, “Man is to computer
programmer as woman is to homemaker? debiasing word embeddings,” 2016.

[4] V. Hofmann, P. R. Kalluri, D. Jurafsky, and S. King, “Dialect prejudice predicts ai deci-
sions about people’s character, employability, and criminality,” 2024.

[5] European Parliament, “European Parliament legislative resolution of 13 March 2024
on the proposal for a regulation of the European Parliament and of the Council on
laying down harmonised rules on Arti昀椀cial Intelligence (Arti昀椀cial Intelligence Act)
and amending certain Union Legislative Acts (COM(2021)0206 – C9-0146/2021 –
2021/0106(COD)),” 2024.

[6] N. Y. T. Meredith Broussard, “When algorithms give real students imaginary grades,”
https : / /web . archive . org /web / 20240223090531 / https : / /www . nytimes . com /
2020/09/08/opinion/international-baccalaureate-algorithm-grades.html, [Online; Ac-
cessed: 2024-25-03].

[7] A. A. Cabrera, W. Epperson, F. Hohman, M. Kahng, J. Morgenstern, and D. H. Chau,
“Fairvis: Visual analytics for discovering intersectional bias inmachine learning,” in2019
IEEE Conference on Visual Analytics Science and Technology (VAST). IEEE, 2019.

[8] Z. Jin,M.Xu,C. Sun, A.Asudeh, andH.V. Jagadish, “Mithracoverage: A system for in-
vestigating population bias for intersectional fairness,” in Proceedings of the 2020 ACM

35



SIGMODInternationalConference onManagement ofData, ser. SIGMOD’20. New
York, NY, USA: Association for ComputingMachinery, 2020, p. 2721–2724.

[9] J. Li, Y. Moskovitch, and H. V. Jagadish, “Denouncer: Detection of unfairness in clas-
si昀椀ers,” Proc. VLDB Endow., vol. 14, pp. 2719–2722, 2021.

[10] ——, “Detection of groups with biased representation in ranking,” 2023.

[11] T. Qin, T.-Y. Liu, J. Xu, and H. Li, “Letor: A benchmark collection for research on
learning to rank for information retrieval,” InformationRetrieval, vol. 13, pp. 346–374,
2010.

[12] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, and
G. Hullender, “Learning to rank using gradient descent,” in Proceedings of the 22nd
International Conference on Machine Learning, ser. ICML ’05. New York, NY,
USA: Association for Computing Machinery, 2005, p. 89–96. [Online]. Available:
https://doi.org/10.1145/1102351.1102363

[13] C. Burges, R. Ragno, and Q. Le, “Learning to rank with nonsmooth cost functions,”
in Advances in Neural Information Processing Systems, B. Schölkopf, J. Platt, and
T.Ho昀昀man, Eds., vol. 19. MIT Press, 2006. [Online]. Available: https://proceedings.
neurips.cc/paper_files/paper/2006/file/af44c4c56f385c43f2529f9b1b018f6a-Paper.
pdf

[14] Q. Wu, C. J. C. Burges, K. M. Svore, and J. Gao, “Adapting boosting for information
retrieval measures,” Information Retrieval, vol. 13, no. 3, pp. 254–270, Jun 2010.
[Online]. Available: https://doi.org/10.1007/s10791-009-9112-1

[15] Z. Cao, T. Qin, T.-Y. Liu, M.-F. Tsai, and H. Li, “Learning to rank: from pairwise ap-
proach to listwise approach,” inProceedings of the 24th International Conference onMa-
chine Learning, ser. ICML ’07. New York, NY, USA: Association for Computing
Machinery, 2007, p. 129–136.

[16] M. Taylor, J. Guiver, S. Robertson, and T. Minka, “Softrank: Op-
timising non-smooth rank metrics,” in WSDM 2008, February 2008.
[Online]. Available: https://www.microsoft.com/en-us/research/publication/
softrank-optimising-non-smooth-rank-metrics/

36



[17] M. Ibrahim and M. Carman, “Comparing pointwise and listwise objective functions
for random-forest-based learning-to-rank,” vol. 34, no. 4, aug 2016.

[18] P. Lahoti, K. P. Gummadi, and G. Weikum, “ifair: Learning individually fair data rep-
resentations for algorithmic decision making,” 2019.

[19] M. Zehlike, T. Sühr, C. Castillo, and I. Kitanovski, “Fairsearch: A tool for fairness
in ranked search results,” in Companion Proceedings of the Web Conference 2020, ser.
WWW ’20. ACM, Apr. 2020. [Online]. Available: http://dx.doi.org/10.1145/
3366424.3383534

[20] A. Singh and T. Joachims, “Policy learning for fairness in ranking,” 2019.

[21] A. Beutel, J. Chen, T. Doshi, H. Qian, L. Wei, Y. Wu, L. Heldt, Z. Zhao, L. Hong,
E. H. Chi, and C. Goodrow, “Fairness in recommendation ranking through pairwise
comparisons,” 2019.

[22] S. C. Geyik, S. Ambler, and K. Kenthapadi, “Fairness-aware ranking in search &
recommendation systems with application to linkedin talent search,” in Proceedings of
the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, ser. KDD ’19. New York, NY, USA: Association for ComputingMachinery,
2019, p. 2221–2231. [Online]. Available: https://doi.org/10.1145/3292500.3330691

[23] D. Wei, M. M. Islam, B. Schieber, and S. Basu Roy, “Rank aggregation with
proportionate fairness,” in Proceedings of the 2022 International Conference on
Management of Data, ser. SIGMOD ’22. New York, NY, USA: Association for
Computing Machinery, 2022, p. 262–275. [Online]. Available: https://doi.org/10.
1145/3514221.3517865

[24] E. Pastor, L. de Alfaro, and E. Baralis, “Identifying biased subgroups in ranking and
classi昀椀cation,” 2021.

[25] C. Dwork, A. Roth et al., “The algorithmic foundations of di昀昀erential privacy,” Foun-
dations and Trends® in Theoretical Computer Science, vol. 9, no. 3–4, pp. 211–407,
2014.

[26] C.L.Mallows, “Non-null rankingmodels. I,”Biometrika, vol. 44, no. 1/2, pp. 114–130,
1957.

37



[27] R. K. E. Bellamy, K. Dey, M. Hind, S. C. Ho昀昀man, S. Houde, K. Kannan, P. Lohia,
J. Martino, S. Mehta, A.Mojsilović, S. Nagar, K. N. Ramamurthy, J. Richards, D. Saha,
P. Sattigeri, M. Singh, K. R. Varshney, and Y. Zhang, “Ai fairness 360: An extensible
toolkit for detecting andmitigating algorithmic bias,” IBM Journal of Research andDe-
velopment, vol. 63, no. 4/5, pp. 4:1–4:15, 2019.

[28] M. Zehlike, K. Yang, and J. Stoyanovich, “Fairness in ranking, part i: Score-based
ranking,” ACM Comput. Surv., vol. 55, no. 6, dec 2022. [Online]. Available:
https://doi.org/10.1145/3533379

[29] ——, “Fairness in ranking, part ii: Learning-to-rank and recommender systems,”ACM
Comput. Surv., vol. 55, no. 6, dec 2022. [Online]. Available: https://doi.org/10.1145/
3533380

[30] C. Dwork, M. Hardt, T. Pitassi, O. Reingold, and R. Zemel, “Fairness through aware-
ness,” 2011.

[31] S. Barocas, M. Hardt, and A. Narayanan, Fairness andMachine Learning: Limitations
and Opportunities. MIT Press, 2023.

[32] A. Chouldechova and A. Roth, “The frontiers of fairness in machine learning,” 2018.

[33] A. J. Biega, K. P. Gummadi, andG.Weikum, “Equity of attention: Amortizing individ-
ual fairness in rankings,”The 41st International ACMSIGIRConference on Research&
Development in Information Retrieval, 2018.

[34] A. Singh and T. Joachims, “Fairness of exposure in rankings,” in Proceedings
of the 24th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, ser. KDD ’18. ACM, Jul. 2018. [Online]. Available: http:
//dx.doi.org/10.1145/3219819.3220088

[35] M. Zehlike, F. Bonchi, C. Castillo, S. Hajian, M. Megahed, and R. Baeza-Yates,
“Fa*ir: A fair top-k ranking algorithm,” in Proceedings of the 2017 ACM on Conference
on Information and Knowledge Management, ser. CIKM ’17. ACM, Nov. 2017.
[Online]. Available: http://dx.doi.org/10.1145/3132847.3132938

[36] W.Cook andA.Rohe, “Computingminimum-weight perfectmatchings,” INFORMS
Journal on Computing, vol. 11, no. 2, pp. 138–148, 1999. [Online]. Available:
https://doi.org/10.1287/ijoc.11.2.138

38



[37] N. Craswell, O. Zoeter, M. Taylor, and B. Ramsey, “An experimental comparison
of click position-bias models,” in Proceedings of the 2008 International Conference
on Web Search and Data Mining, ser. WSDM ’08. New York, NY, USA:
Association for Computing Machinery, 2008, p. 87–94. [Online]. Available: https:
//doi.org/10.1145/1341531.1341545

[38] T. Joachims and F. Radlinski, “Search engines that learn from im-
plicit feedback,” Computer, vol. 40, no. 8, pp. 34–40, August 2007.
[Online]. Available: https://www.microsoft.com/en-us/research/publication/
search-engines-that-learn-from-implicit-feedback/

[39] C. Fabien and I. Ekhine, “Concentric mixtures of mallows models for top-k rankings:
sampling and identi昀椀ability,” 2020.

[40] H. Hofmann, “Statlog (German Credit Data),” UCI Machine Learning Repository,
1994, DOI: https://doi.org/10.24432/C5NC77.

[41] K. Yang and J. Stoyanovich, “Measuring fairness in ranked outputs,” 2016.

39



40



Acknowledgments

First of all, I would like to thank my wonderful parents, who gave me the support I needed
to reach this point in my life, andmywonderful cats - Daphne, Josephine, and Chili (although
I doubt they will read this). I am also incredibly grateful to my partner, who helped me im-
mensely through my last year in the University.

I am thankful to the people Imet duringmy internship, withwhomI conducted the research
presented in this thesis - Jakub, Dimitris, and Eleni, as well as my colleague Illia.

Lastly, I would like to thank all my friends in Padova and across the world, who made the
toughest episodes of my life just a little easier.

41


