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Summary

Diabetes is a worldwide problem and the number of people with diabetes is

constantly increasing due to several reasons including population growth, age,

and increasing prevalence of obesity and physical inactivity. In particular, the

long-term complications make diabetes a social and economical problem, since

they have great impact on subject daily life and its management is financially

expensive. As a consequence, considerable efforts have been made to control this

disease also by using engineering technologies.

During the last decade, it has been proven that diabetes therapy can be im-

proved by monitoring blood glucose levels by means of the so-called Continuous

Glucose Monitoring (CGM) sensors. Different types of sensors, with different de-

grees of invasiveness, have been already developed in the literature and, at present

time, new technologies are also under investigation. Among them, new comple-

tely Non-Invasive CGM sensors (NICGM) are very appealing for obvious practical

reasons (Chapter 1). In particular, Solianis Monitoring AG (Zurich, Switzerland)

has recently proposed a NICGM sensor based on the multi-sensor concept, i.e. a

system that includes several sensors (for impedance, optics, temperature, accele-

ration, ..) on one single substrate, which can be attached to the human body, in

order to allow a broad characterisation of the skin and the underlying tissues (Ca-

duff et all, Biosensors and Bioelectronics, pp. 2778-2784, 2009). Such Multisensor

signals allow the indirect measurement of glucose level in the blood through a

mathematical model (Chapters 2 and 3).

The present work is performed under the aegis of a research agreement bet-

ween the Department of Information Engineering of the University of Padova

and Solianis Monitoring AG. The scope of the project is the development and

the assessment of a model for estimating glucose level from the Solianis Multisen-

sor data. Specifically, in the present thesis three different methods for building

a linear regression model to describe glucose data from Multisensor signals will



be investigated, assessed and compared: Ordinary Least Squares (OLS), Par-

tial Least Squares (PLS) and Least Absolute Shrinkage and Selection Operator

(LASSO). In particular, we will first review the methodological and algorithmical

issues connected with the three methods and offer a survey of their implementa-

tion through the exploitation of tutorial examples (Chapters 4, 5, and 6). Then,

we will apply them to a data base consisting of 32 sets of Solianis data (Chap-

ter 7). Results show that LASSO has the best performance in predicting glucose

level from unseen Multisensor data, while OLS suffers from overfitting and PLS

is too sensitive to the noise in data (Chapter 8). Some new developments are

also proposed to further improve the accuracy of glucose estimates through the

exploitation of a few finger-prick glucose samples per day (Chapter 9).
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Sommario

Il diabete è un problema diffuso a livello mondiale e il numero di persone affette

da diabete è in costante aumento a causa di diversi fattori come la crescita della

popolazione, l’invecchiamento, l’obesità e l’inattività fisica. In particolare, le com-

plicazioni altamente invalidanti fanno del diabete un problema socio-economico,

poiché esse rappresentano un aggravio della qualità di vita del paziente ed im-

pongono, per la loro diagnosi e cura, un notevole impegno finanziario. Per questo

motivo, notevoli risorse sono state investite nelle tecnologie ingegneristiche volte

al controllo di questa patologia.

Nel corso degli ultimi decenni, è stato dimostrato che la terapia dei pazienti

diabetici può essere migliorata grazie a sistemi di monitoraggio continuo del glu-

cosio (Continuous Glucose Monitoring, CGM). In letteratura si trovano differenti

tipologie di sensori con diversi gradi di invasività e tuttora nuove tecnologie sono

in via di sviluppo. Tra queste, i nuovi sensori completamente non invasivi sono

molto interessanti per ovvie ragioni pratiche (Capitolo 1). In particolare, Solia-

nis Monitoring AG (Zurigo, Svizzera) ha recentemente proposto un sensore non

invasivo basato sul concetto di multi-sensore. Tale concetto corrisponde ad un

sistema composto da differenti sensori (per misure di impedenza, ottiche, di tem-

peratura, di accelerazione, . . . ) su uno stesso substrato, che può esser posizionato

sul paziente permettendo una più ampia caratterizzazione della pelle e dei tessuti

sottostanti (Caduff et all, Biosensors and Bioelectronics, pp. 2778-2784, 2009). I

segnali del Multisensore Solianis consentono, attraverso l’utilizzo di un modello

matematico, una misura indiretta della glicemia (Capitoli 2 e 3).

Questo lavoro di tesi si inserisce all’interno di un progetto di collaborazione

tra il Dipartimento di Ingegneria dell’Informazione dell’Università di Padova e

Solianis Monitoring AG. Lo scopo del progetto di ricerca consiste nello sviluppo

e nella valutazione di un modello per la stima della glicemia a partire da dati del

Multisensore Solianis. Nello specifico, in questo lavoro di tesi tre differenti metodi



per la stima di un modello di regressione lineare saranno valutati e comparati:

Ordinary Least Squares (OLS), Partial Least Squares (PLS) and Least Absolute

Shrinkage and Selection Operator (LASSO). In particolare, prima verranno de-

scritti i tre metodi dal punto di vista metodologico e algoritmico, presentando

le loro caratteristiche attraverso l’utilizzo di esempi dimostrativi (Capitoli 4, 5 e

6). Successivamente, i tre metodi saranno applicati ad un database comprendente

32 serie di dati Solianis (Capitolo 7). I risultati ottenuti dimostrano che LASSO

presenta la migliore performance nel predire la glicemia a partire da dati indipen-

denti del Multisensore, mentre OLS risulta affetto da overfitting e PLS è troppo

sensibile al rumore contenuto nei dati (Capitolo 8). Infine saranno proposti alcuni

metodi, basati sull’utilizzo di pochi campioni di glicemia da sangue capillare al

giorno, per un ulteriore miglioramento delle stime(Capitolo 9).

XIV



Chapter 1

Diabetes and Continuous Glucose

Monitoring Sensors for its

Therapy

This introductory Chapter has the aim to outline the context within the pre-

sent thesis is embedded. Therefore, a brief description about metabolic processes

connected with regulation of glucose concentration will be first presented in order

to define diabetes. Then, starting from the characterisation of diabetes therapies,

different kind of glucose monitoring systems will be illustrated. In particular, we

will describe glucose sensors with different degrees of invasiveness. Among the

so-called non invasive sensors, the Solianis Multisensor[1] will be later described

in detail in Chapter 2, in order to better understand the characteristics and the

origin of the data that will be used in this thesis.

1.1 General Overview of the Diabetes Disease

The human body is a complex system that is controlled in an extremely accu-

rate way; its regulatory system produces many substances, which have the aim to

keep parameters, like body temperature, blood pressure and substrate concentra-

tion, in a physiological range. A defect in this organization causes different kinds

of disease. Glucose is a substrate that is essential for the correct working of many

organs and tissues, since it is their principal energy provider.
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1.1.1 The Glucose Regulatory System

Thanks to a complex regulatory mechanism, glucose concentration in blood,

the glycaemia, is tightly kept in a limited rage, i.e. 70-120 mg/dl. Different hor-

mones are involved in this regulation. The most important is insulin, which is pro-

duced by the beta-cells of pancreas. Insulin is physiologically secreted at every

meal, in order to bring glycaemia within the euglycaemic range. It is also the

principal control signal for conversion of glucose to glycogen for internal storage

in liver[2].

Glucose is used by many organs, tissues and cells in different ways. Some,

like brain or red blood cells, consume glucose continuously and independently

of insulin and the interruption of this supplying may cause severe damages. For

muscles, fatty tissue and liver the absorption of glucose is proportional to insulin

concentration. In fact, in order to transport glucose from bloodstream into cells,

where it is used for growth and energy, insulin must be present.

Glucose in blood derives both from intestinal absorption of carbohydrates and

from internal production. In particular, the latter consists in the conversion to

glucose of glycogen stored in the liver or in gluconeogenesis (the “re-construction”

of glucose using substrate derived from glucose degradation).

Figure 1.1: Scheme of the glucose regulatory system
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The concentration of glucose in blood is subject to fluctuations due to its

utilization, by organs and tissues, and its production. Nevertheless, as said before,

it is tightly kept in a limited rage, thanks to a complex regulatory system, in which

glucose itself is involved (see Figure 1.1).

An increase in blood glucose concentration causes an increase in insulin se-

cretion. Glucose and insulin concentration have the same effect on the glucose

production and utilization: an increase in insulin (or glucose) concentration cau-

ses a decrease of glucose production and an increase of glucose utilization by

muscle, while there is no influence on glucose utilization by brain.

1.1.2 Types of Diabetes

However, in people with diabetes, either the pancreas produces little or no

insulin (type 1 diabetes), or the cells do not respond appropriately to the insulin

that is produced (type 2 diabetes).

“Type 1 diabetes” or Insulin Dependent Diabetes Mellitus (IDDM) is charac-

terized by loss of the insulin-producing beta cells or the islets of Langherhans

in the pancreas leading to insulin deficiency. In most cases type 1 diabetes has

an autoimmune origin and affects children or young adults, and in fact it is also

called “juvenile diabetes”.

“Type 2 diabetes” or Non-Insulin Dependent Diabetes Mellitus (NIDDM) is

characterized by insulin resistance which may be combined with relatively reduced

insulin secretion. Insulin resistance corresponds to a loss of efficacy of insulin

action, in particular, its effect on the glucose transport from the bloodstream

into the cells is reduced. It is frequently associated with obesity and a sedentary

lifestyle. Type 2 is the most common diabetes type (90 % of cases) and mostly

affects adult people.

1.1.3 Diabetes-Related Complications

Fail of the glucose counter regulatory system in diabetic people causes Blood

Glucose Levels (BGL) to exceed the correct range. This situation might lead to

short (hypoglycaemia) and long (hyperglycaemia) term complications.

Hyperglycaemia has not an immediate damaging consequence on organism,

but, if this state is frequent and persist for long time, it can lead to several
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invalidating complications. These long term complications include micro-vascular

complications (involving small blood vessels) and macro-vascular complications

(involving large blood vessels)[3]. The former, like neuropathy, nephropathy and

retinopathy can lead to nerves damage, renal failure and blindness respectively,

the latter to coronary heart disease, strokes and peripheral vascular disease.

In order to prevent the onset of these complications, diabetes therapies at-

tempt to keep BGL as close to euglycemia as possible undue patient danger. This

can usually be done with close dietary management, physical activity and use of

appropriate medications, like insulin injections before meals. The association of

the faulty glucose regulatory system and the scrupulous therapy that may not

always be applied tightly could cause, principally during sleep hours or physical

activity, an even more dangerous unfavorable effect, i.e. hypoglycemia (i.e. too

low blood glucose level).

The main problem caused by hypoglycemia affects the brain, given its con-

tinuous glucose demand. Therefore, when glucose levels fall, brain functions di-

minish and people may lose cognitive abilities and even enter a coma condition.

Hypoglycemia, at the opposite of hyperglycemia, has short-term effects[4] and

could be classified according to how much low the glucose level is:

• mild hypoglycemia (blood glucose levels between 55 and 70 mg/dl) is charac-

terized by palpitations, extreme hunger, trembling, cold or excessive swea-

ting and visual paleness, due to blood redirection to the vital organs and

minimization of the peripheral blood circulation. In this case a small amount

of carbohydrates eaten or drunk could restore normal levels;

• moderate hypoglycemia (between 55 and 40 mg/dl), whose symptoms in-

clude mood changes, irritability, confusion, blurred vision, weakness and

drowsiness since it affects the central nervous system;

• severe hypoglycemia less than 40 mg/dl) is characterized by convulsions,

loss of consciousness, coma, and hypothermia. If this condition is prolon-

ged in time could cause irreversible brain damages and heart problems, or

even death. In this case, intravenous dextrose or an injection of glucagon is

required.
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1.1.4 Diabetes Therapies and Monitoring

Diabetes is a worldwide problem and the number of people with diabetes is

increasing due to population growth, aging, and increasing prevalence of obesity

and physical inactivity. Besides its large diffusion, the long-term complications

make diabetes a social and economical problem, since they have great impact on

subject daily life and its diagnosis and management are financially expensive. As

a consequence, considerable efforts have been made to control this disease also

by using engineering technologies[5].

For type 1 diabetes, conventional therapies consist in insulin injection, that

compensates the lack of insulin secretion and have the goal to restore euglycae-

mic levels. A suitable dosage is determined using information on food intakes

and current BGL. In the early stage of type 2 diabetes, a diet modification and

physical exercise, associated with medications improving insulin sensitivity, may

be sufficient to control glycaemic levels. If diabetes proceeds, exogenous insulin

injections may be needed.

In both cases, monitoring of BGL is important. In this regard, the traditional

system is Self-Monitoring Blood Glucose (SMBG), i.e. patients have to take a

finger-prick blood sample on specific strips and measure BGL with the dedicated

device 3-4 times a day.

Self Monitoring Blood Glucose

The most common test for measuring BGL involves pricking a finger with a

lancet device to obtain a small blood sample, applying a drop of blood onto a rea-

gent test-strip, and determining the glucose concentration by inserting the strip

into a measurement device for an automated reading. Different manufacturers use

different technology, but most systems measure an electrical characteristic and

use this to determine the glucose level in the blood[6].

There is also a painless alternative to blood sample, using other fluids in

substitution like saliva, urine, sweat or tears. However, in these cases, delay in

the appearance of glucose in these fluids must be taken into account.

These systems make also a direct measure, i.e. they measure a specific property

of glucose. This means that if the same property is investigated for another kind

of substance, a significantly different output is produced than the one obtained

from glucose. Signals generated measuring a specific property of glucose comprise
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its spectral, chemical and competitive binding profiles.

Direct measurements tend to be more stable than indirect ones because the

signal being measured is usually unique and interferences more predictable. In

fact, indirect measurements are affected by the presence of other chemicals and

substances within the body that may produce the same signal, since they measure

glucose effect on some secondary process[7].

Efforts have been made in order to reduce the level of SMBG invasiveness by

decreasing the blood sample volume and measuring areas of body less sensitive

to pain than fingertips.

Self Monitoring Blood Glucose

The main drawback of SMBG is the lack of glucose measures during sleeping

or daily activity, or the excessive insulin dosage that can lead to hypoglycaemia

episodes. The only way to prevent these episodes is to monitor glucose fluctua-

tions during all day, and this is the reason why in the last decade many devices

for Continuous Glucose Monitoring (CGM) have been developed. CGM systems

obviously require to limit device invasiveness and to improve device portability.

The main advantage of CGM is the possibility to monitor BGL in a nearly con-

tinuous way, providing data about the direction, magnitude, duration, frequency

and potential causes of fluctuations in blood glucose levels. In the last years, seve-

ral algorithms have been developed for glucose prediction and alarm generation,

with the aim of rendering glucose sensors “smart”[8].CGM is also required to

develop the so-called artificial pancreas, which implements a closed-loop control

that has the aim to normalize BGL. This device infuses the necessary amount

of insulin subcutaneously using a micro-infusor driven by a control algorithm,

which, in turn, exploits the measurements provided by a CGM sensor[9].

CGM provides much more information than SMBG (i.e. 3/4 times per day).

Nevertheless, at the time of writing, the finger-prick systems, that measure ca-

pillary blood glucose, are still predominantly used to adjust diabetes treatment

given their accuracy.
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1.2 A Classification of Continuous Glucose Mo-

nitoring Sensors

In the previous Sections, the diabetes disease and its management were de-

scribed with particular attention to the reasons calling for a tight and accurate

monitoring of blood glucose levels by CGM sensors.

There are many ways to classify CGM sensors. For instance CGM sensors

could be divided according to the kind of measure (direct or indirect), to the level

of invasiveness or to the physical principle the sensor is based on. A classification

of CGM sensors divided according to their level of invasiveness and their physical

principle is shown in Figure 1.2.

1.2.1 Invasive CGM Sensors

As shown in Figure 1.2, a direct measurement of BGL could be obtained, in

a rather invasive manner, by using sensors implanted into the body[10]. Most

of these sensors are based on the glucose-oxidase principle. Other sensors are

based on competitive binding of glucose with other molecules or glucose spectral

properties[7].

Intravenous Implantable Sensors

Glucose oxidase-based sensors technology depends on the reaction of glucose

with oxygen in presence of glucose oxidase to create gluconic acid. The limita-

tion of using this method is that the reaction requires one oxygen molecule for

each glucose molecule. Since glucose is more present in the body than oxygen,

the limiting reagent results to be the oxygen. For this reason, the sensor would

measure oxygen levels instead of glucose levels. To avoid this problem, sensors

must give oxygen an advantage over glucose, using alternative electron donors,

called mediators.

The competitive binding-based sensors measures fluorescence of a binding

molecule: the more glucose is bound to this molecule, the less intense is the

fluorescent signal so that if glucose levels increase the measure decreases.

This technique has still problems related to biocompatibility and to the risk

inherent to surgical placement of these devices in blood vessels, hence it is not

wide applied.
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Figure 1.2: Classification of sensors for continuous glucose monitoring

A new intravascular continuous glucose monitoring system is under develo-

pment, using a glucose-sensitive hydrogel. When this hydrogel is bound with

glucose, it changes in volume. The result is a measurable change in the hydrogel

impedance that is correlated to glucose concentration. Preliminary studies have

been made on a prototype of the sensor, integrated with stents as antennas for

wireless data transfer from within the body[11].

Subcutaneous Sensors

Instead of implanting the sensor into the body, a subcutaneous needle may

be used to sense glucose. Usually these systems are based on enzyme electro-
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des, which use enzymes like glucose-oxidase. The measure is not exactly conti-

nuous, because these sensors typically provide data every 3-5 minutes. However

subcutaneous needles provide much more information if they are compared to

a finger-prick system. These sensors require frequent calibration to compensate

drifts attributable to protein and cell coating of the sensor, variable tissue oxy-

gen tension and wound response to the sensor, which alters local blood flow. To

perform the periodic recalibration of the sensor a traditional measurement using

SMBG systems is needed.

Example of available subcutaneous sensor are: FreeStyle Navigator, MiniMed

Guardian and Dexcom.

Figure 1.3: FreeStyle Navigator CGM System[12].

The FreeStyle Navigator CGM System (Abbott) consists of four components:

a miniature electrochemical sensor placed in the subcutaneous adipose tissue, a

disposable sensor delivery unit, a radiofrequency transmitter connected to the

sensor, and a hand-held receiver to display continuous glucose values. The sensor

can be used for 5 days, the glucose data on the receiver are updated once a minute

and include a trend arrow to indicate the direction and rate of change averaged

over the preceding 15 min. The user interface of the receiver allows the threshold

alarms to be set at different glucose levels. The receiver contains a built-in Free-

Style blood glucose meter for calibration of the sensor as well as for confirmatory

blood glucose measurements. The sensor requires four calibrations over the 5-day

wearing period at 10, 12, 24, and 72 h after sensor insertion. It was approved by

FDA in 2008[13][14].
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Figure 1.4: DexCom SEVEN. Left : the receiver. Right : subcutaneous sensor

and transmitter[15].

DexCom SEVEN (DexCom) consists of 3 part: a small sensor placed in the

subcutaneous adipose tissue, a wireless transmitter and a receiver. It performs a

new measure every 5 minutes for 7 days. The receiver displays the sensor glucose

value along with a graph showing glucose trend of the last 1, 3 or 9 hours. The

receiver contains memory up to 30 days of continuous glucose information and

has programmable high and low glucose alerts and a non-changeable low glucose

alarm set at 55 mg/dL. It must be calibrated every 12 hours. It was approved by

FDA in 2007[16].

Figure 1.5: The Guardian REAL-Time[17].

The Guardian REAL-Time (MiniMed) device is similar to FreeStyle Naviga-

tor. It performs a new measure every 5 minutes for 3 days. The receiver contains

memory up to 21 days of continuous glucose information and has alerts if a glu-

cose level falls below or rises above preset values. It must be calibrated every 12
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hours either manually or automatically via telemetry. It was approved by FDA

in 2005. This sensor, integrated with an insulin delivery device composes the

MiniMed Paradigm REAL-Time system, that was launched in 2006[18].

Microdialysis

Another type of subcutaneous sensor is based on a microdialysis systems,

which use a fine, hollow microdialysis fibre placed subcutaneously. This probe

is perfused with isotonic fluid from an external pool, while glucose, present in

the interstitial fluid, freely diffuses into the fibre, where it is pumped out of

body to a glucose-oxidase based sensor[19]. The main problem related to this

kind of sensor consists in modifications of chemical and physical properties of the

membrane, caused by modifications in tissues characteristics such as pressure,

volume, temperature and hydration. These modifications affect flow rate and

composition of perfusate, which may influence glucose concentration.

GlucoDay-S (Menarini) is a microdialysis-based glucose monitoring system.

It is based on enzymatic-amperometric measurement analyzing the fluid coming

from the subcutis of the abdominal region. The system comprises s Walkman-

size apparatus, and a sensor fibre as well as two plastic bags (one for the buffer

solution, one for the waste products) as disposables. The apparatus contains

also a measurement cell and a peristaltic pump. The buffer solution is pumped

from a bag into the subcutaneous tissue through the microfibre and rinses the

interstitial fluid, from which the measures are obtained every 3 min and stored

in memory. Data are downloaded after monitoring (maximum monitoring time,

48 h) via a serial or infrared connection to a standard PC for further analysis. It

incorporates safety alarms form hypo or hyperglycaemia events and requires one

daily calibration only[20].

1.2.2 Minimally Invasive Sensors for CGM

There is no agreement in literature about which kind of sensors should be

considered as minimally invasive. In our review, this category will include all the

sensors that need the creation of even microscopic holes in the skin to perform

the measurement.
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Micropores and Microneedle Techniques

For example micropores techniques perforate the stratum corneum without

penetrating the full thickness of the skin. A pulsed laser or the local application

of heat are considered to form micropores allowing the collection of interstitial

fluid applying vacuum. A measure of glucose concentration is then derived from

this sample.

SpectRx is made mainly of two units. The first unit is a handheld laser, which

creates micropores (size of a hair) in the stratum corneum of the skin. The inter-

stitial fluid, containing glucose, flows through the micropores and is collected by a

patch. Then, it reaches a traditional glucose sensor, which is the second unit. The

meter also includes a transmitter that sends wirelessly the glucose measurements

to a handheld display device[21].

Similarly capillary blood could be sampled using a hollow microneedle, which

is almost sensation-less and analyses blood using an enzyme-based system.

Iontophoresis and Sonophoresis

Among minimally invasive sensors, we also include transdermal methods,

which stimulate the skin from outside in different manners in order to extract

glucose from the skin for its direct measures. This group comprises different tech-

niques like reverse iontophoresis and sonophoresis[21].

The first method is based on the flow of a low electrical current applied across

the skin between an anode and a cathode positioned on the skin surface. The

application of an electrical potential causes the migration of sodium and chloride

ions from beneath the skin towards the cathode and anode respectively, at rates

significantly grater than passive permeability. The convective flow induced by this

technique carries out neutral molecules, including glucose, along with sodium.

Thus, interstitial glucose is transported across the skin towards the cathode,

where it is collected and measured by a glucose oxidase-based electrode. The

concentration of glucose is low so oxygen is not a limiting factor to glucose oxidase.

This technique tends to generate skin irritation and cannot be used if the subject

is sweating significantly; in addition it needs a long warm-up and calibration.

Skin irritation may be limited by shortening the time interval of the electrical

potential application. However, a minimum duration is required to get sufficient

amount of glucose for measurement.
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GlucoWatch (no more available) device is based on reverse iontophoresis tech-

nology. It has a wrist-watch format and measures glucose through the skin using

a disposable pad, which clips into the back of the meter. The pad uses an ad-

hesive to stick to the skin allowing it to come in contact with a small electrical

current, which causes the reverse iontophoresis, and then the glucose levels in the

interstitial fluid can be estimated.

Compared with finger-stick readings, the meter measurements have a 15-min

lag time. The meter is intended for use to supplement, but not to replace, informa-

tion obtained from a standard blood glucose meter. The meter has 2-3 h warm-up

period, to remove the glucose on the superficial epidermis and to onset a conti-

nuous convective flow. A single-point calibration, performed using a fingerstick

blood glucose measurement, accounts for variability in both biosensor sensitivity

and skin permeability and is used to convert subsequent biosensor measurements

into glucose readings. Afterwards, the meter provides readings every 10 min: 3

min of electrical stimulation (glucose extraction), then 7 min of glucose measure-

ment. The meter has a memory that can store up to 8500 records and the data

can be download to a PC for a subsequent analysis.

An alarm also occurs in the case of a rapid change is seen in the blood sugar,

in the case of sweating, and for any measurements above or below the patient’s

target levels. A trend indicator appears to show the direction of the blood sugar

when the current measurement is more than 18 mg/dl higher or lower than the

previous measurements. Event markers can be recorded for activities like meals,

insulin intake and exercise.

However, the meter had several limitations. In fact, the measurements could

fail or be inaccurate, if the patient was sweating, or in cases of rapid temperature

changes, excessive movement of the meter, or strenuous exercise. Most users re-

ported that the electrical discharge is quite noticeable during the first use of the

meter, although it becomes less noticeable on subsequent use. Moreover the dispo-

sable pad must be replaced every 12-13 h of monitoring time to ensure continued

accuracy; the meter must then go through the warm-up period and calibration

again. In addition, it may take more than one try to calibrate the meter, thus

requiring additional finger-stick tests. Finally, the meter causes skin irritation to

some extent, which limits reuse of the same site to a week or two[22][23].

It has received FDA approval for adults in 1999, and for children aged 7-17
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years in 2002. Animas Corporation has withdrawn it from the market since 2007,

in preparation for the development of future diabetes management products.

A new Reverse Iontophoresis based Glucose Monitoring Device (RIGMD) has

been developed in Korea[24]. It measures a weak electric current that is dependent

on glucose concentration in the interstitial fluid, by using an electrochemical

enzymatic sensor located on the forearm skin. The sensor is made up of electrodes

and a gelatinous material which contains glucose oxidase. A current is produced

between the electrodes causing reverse iontophoresis[23].

In [25], it is described the results of preliminary experiments for the develo-

pment of a mediated glucose biosensor incorporated with reverse iontophoresis

function for noninvasive glucose monitoring, using an optimum combination of

glucose oxidase and ferrocene.

The sonophoresis uses low-frequency ultrasounds to create an array of mi-

croscopic holes on human skin which increase its permeability and allow the

migration of glucose contained in interstitial fluid through the skin to a glucose

sensor placed in contact with the skin. Thus a direct measure is feasible.

Echo Therapeutics produces a device based on sonophoresis technique. The

meter is made essentially of two units: an ultrasonic device (SonoPrep), coupled

with the skin through an aqueous medium, which increases skin permeation, and

a glucose biosensor (Symphony), which measure glucose in the interstitial fluid

reaching the sensor through the micropathways generated on the skin.

SonoPrep is an ultrasonic skin preparation generator, controlled by a mi-

croprocessor. This device delivers low-frequency ultrasound (53-56 kHz), which

creates a cavitating force at the point of contact with the skin surface. This force

reduces transiently the normally robust lipid barrier of normal intact skin, cau-

sing the outermost layer of skin to become increasingly conductive and permeable.

Since the relationship between skin conductance and skin permeability, the ac-

tive ultrasound is terminated when the skin reaches the predetermined level of

permeability by continuously measuring skin conductance. This ensures that the

site is properly prepared without pain, trauma (such as burn), or irritation. It is

claimed that the application of the ultrasonic device for 15 s is enough to make

the skin permeable for several hours (between 12 and 24 hours)[26].

Prelude SkinPrep System is a new skin preparation device under development,

that can be used in alternative to SonoPrep. The system consists of a disposable
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Figure 1.6: Left:Prelude SkinPrep System. Right: Symphony [27].

abrasive end driven by an electrical motor in a standalone hand piece. Instead

of ultrasound,Prelude utilizes a mechanical means to remove stratum corneum,

with the process controlled by the same conductance-based feedback mechanism

used in SonoPrep[28].

The Symphony is a fully functional prototype biosensor instrument designed

to measure glucose through permeated skin. The biosensor is able to maintain

reliable fluid contact with the skin through a proprietary biocompatible hydrogel,

which utilizes glucose oxidase to measure glucose concentration. The biosensor is

housed in a wireless transmitter, which acquires, stores, and transmits coded data

to the receiver/monitor to display a reading every minute in addition to trends

and alarms for excessively high and low BGL[28].

A common limitation of all these methods is the delay between plasma and in-

terstitial glucose concentration. This phenomenon is due to the glucose transport

from plasma to interstitium that act as a low pass filter.

1.2.3 Non Invasive CGM Sensors

Non invasive CGM sensors measure glucose concentration through the skin

without extracting blood or interstitial fluid or without a needle penetrating

the skin for reaching these fluids. Hence, these sensors are very comfortable for

the patient and do not cause displeasing physiological reactions. However, the
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measure is affected by different confounding factors, making more difficult to

perform an accurate measurement.

These sensors are based on different physical properties of the skin and un-

derlying tissues (optical, thermal, acoustic and electrical) which are influenced

by glucose concentration. Given the special importance of these sensors in the

present thesis, in the next Chapter, the physical principles of these sensors will

be described in detail. For each technique, an example of its application for CGM

will be presented, with particular attention to the Solianis Multisensor.



Chapter 2

Non Invasive Continuous Glucose

Monitoring: Principles, Open

Problems and Aim of the Thesis

A review of Non Invasive Continuous Glucose Monitoring (NICGM) systems

will be presented in this Chapter. We will start with the optical ones, based on the

interaction of light with skin and then we will move toward the thermal-, acoustic,

electric-based ones. For each method, principle and an example of application will

be described. Finally, in Section 2.2, particular attention will be used to report

the features of the Solianis Multisensor and an example of Multisensor signals

will be shown, along with the problems connected with its modeling.

2.1 Physical Principles

NICGM sensors measure glucose concentration without extracting blood or

interstitial fluid or without a needle penetrating the skin for reaching these fluids.

Thus, the measure is performed through the skin that is a particular multi-layer

biological tissue. Consequently, to understand the characteristics of these sen-

sors is opportune to describe the skin morphology and the non-uniform blood

distribution within the layers.

2.1.1 Skin Properties

The skin is composed by several distinctive layers as illustrated in Figure 2.1.
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Figure 2.1: Representation of the skin layered structure highlighting the

distribution of blood vasculature [29].

The uppermost skin layer is the stratum corneum of epidermis, composed of

dead keratinized cells, followed by the living epidermis and the connective tissue

of the dermis. The subcutaneous tissue is composed by an underlying fat layer

and muscle. The dermis can be subdivided into three different layers: the upper

vascular plexus, the reticular dermis and the deep vascular plexus. The epidermis

does not have its own vasculature. The volume fraction occupied by blood vessels

in the dermis is in the range of 1-20% and is concentrated in the upper and deep

vascular plexus.

Most of NICGM sensors, e.g. Diasensor[23], TANGTEST[30], OrSense[31],

Sentris-100[32] and other prototypes in development, are optical transducers that

use light in variable frequencies to track glucose. Indeed, they exploit different

properties of light to interact with glucose molecules in a concentration-dependent

manner. These optical sensors monitor glucose variations in the dermal blood;

hence the radiation needs to penetrate at least through the epidermis to reach the

vascularised compartments of the dermis. Along with these optical sensors, other

non-invasive approaches exploit on thermal, acoustic and electrical properties.

This classification is reflected into the scheme of Figure 1.2.



2.1. Physical Principles 19

2.1.2 Optical Techniques for NICGM

A beam of light interacts in different manners when it passes through a tis-

sue like skin. A part of the beam is reflected by the stratum corneum, another

part is absorbed from the tissue and the remaining part is scattered (i.e. it is

deviated from the straight trajectory) and diffused into a number of different di-

rections. Figure 2.2 shows a general scheme that summarizes the different kinds

of interaction of light with skin.

Light
source

Reflection

Scattering

Stratum
corneum

Absorption

Figure 2.2: Optical properties of light utilized in glucose detection[33].

Spectroscopy analyses the optical properties of light in relation to the wave-

length of the radiation. Spectroscopy also provides a precise analytical method for

finding the constituents (and their concentration) in materials having unknown

chemical composition, since each substance exhibit characteristic spectra, which

may be interpreted as the “fingerprint” of that substance. The different types of

spectroscopy may be classified according to which optical properties of the light

is employed.

Absorption (MIR/NIR spectroscopy)

Infrared absorption spectroscopy is based on absorption phenomena: changes

in glucose concentration can influence the absorption coefficient of tissues and

thus the absorption bands[21].

In particular, the so called Near InfraRed spectroscopy (NIR) uses light in

the near infrared range (750-2000 nm). Specific spectra are chosen in order to
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minimize background absorption, in particular by water. The light in these wave-

lengths passes through the stratum corneum and epidermis into the subcutaneous

space, allowing to measure in the deep tissues (in the range of 1 to 100 mm of

depth). Perturbing factors that may interfere with glucose measurement include

all the variables that influence absorption coefficient, like blood pressure, body

temperature and skin hydration. Errors can also occur due to environmental

variations such as changes in temperature, humidity, carbon dioxide, and atmo-

spheric pressure. The absorption coefficient of glucose in the NIR band is low and

is much smaller than that of water by virtue of the large disparity in their respec-

tive concentrations. Thus, in the NIR, the weak glucose spectral bands not only

overlap with the stronger bands of water, but also those of hemoglobin, proteins,

and fats.

Changes in glucose may affect the measurement process also in other indirect

ways: for example, hyperglycaemia causes increased perfusion, which influences

the spectrum and can be considered as a confounding factor. Furthermore, dia-

betic subjects can exhibit “thick skin” and “yellow skin”[34]. Thus light reflected

from skin of a diabetic patient may differ from that of a healthy subject at equal

level of glycaemia.

In contrast to NIR, Mid InfraRed spectroscopy (MIR) utilizes light at a

wavelength between 2500-10000 nm. With respect to NIR, MIR exhibits less

scattering phenomena and greater absorption. Hence the tissue penetration of

light in MIR can reach only the stratum corneum.

The TANGTEST Blood Glucose Meter seems to be based on NIR techno-

logy. It is a prototype, which measures glycemia by analyzing intensity variations

in the spectrum of a weak light (about 0.1 W) transmitted through the tested

finger (middle or index finger). The authors claim that the signal noise due to

other tissues is avoided by using the optical signal of pulsatile microcirculation:

the signal obtained by the meter is in fact divided into a pulsatile and a direct

component. The pulsatile component, which is synchronized with heart rate, is

used to monitor blood glucose[23][30].

The Diasensor device is based on the near infrared (NIR) spectroscopy tech-

nology. It operates by placing the patient’s forearm on the arm tray of the meter.

The dimensions of the meter are relevant compared with other meters, but it

is still sufficiently compact to be used in a domiciliary environment. The blood
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glucose test is obtained in less than 2 minutes. However, it is not intended as a

replacement for the traditional invasive blood glucose meter. It seems that the

distributor was EuroSurgical Ltd., UK. However, the web site of the company

does not currently mention Diasensor, and hence it can be concluded that it is

not on sale anymore[23].

InLight Solutions is developing a device based on NIR spectroscopy and multi-

variate analysis to make quantitative and qualitative measurements. Appropriate

optic and software have been develop to clearly distinguish glucose molecules from

water molecules. The devices are made up of three components: a light source,

an optical detector, and a spectrometer. The measures are performed using the

differences between the light that was sent into the skin and the light that the

detector collects[35].

Scattering(Raman Spectroscopy)

Raman spectroscopy measures scattering of single wavelength light and is ba-

sed on the fact that a small fraction of scattered light shows wavelengths different

from the one of the exciting beam. This fraction is dependent on rotational or

vibrational energy states within a molecule. Raman spectroscopy shows highly

specific absorption bands and, compared with MIR and NIR spectroscopy, it has

the benefit of suffering of less interferences from water. However, the Raman si-

gnal is weaker than its counterpart in other technologies due to the fact that

measured photons normally have lower intensity than the original light and thus

requires powerful detectors[36].

Recently, an improvement in traditional Raman spectroscopy has been propo-

sed (surface-enhanced Raman spectroscopy), which may increase the sensitivity

of the acquisition. It has only been tested in rats[37].

A prototype of sensor based on Raman spectroscopy has been described and

tested. Raman spectra were collected by means of a specially designed instrument,

optimized to collect Raman light emitted from a scattering medium (tissue) with

high efficiency and a diode laser as the Raman excitation source[38].

Scattering(Occlusion Spectroscopy)

Another technique that measures scattered light is occlusion spectroscopy[33],

which is based on the property of glucose to decrease the diffusion coefficient and
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on the enhanced transmission of light due to erythrocyte aggregation that can be

reproduced in vivo by applying a pressure to the fingertip for 2-3 seconds, greater

than the systolic one. One signal is collected when no pressure is applied and it

is combined with the occlusion signal in order to calculate glucose concentration

thanks to a specific algorithm. The advantage of this method is that it measures

arterial glucose level. However, intrinsic erythrocyte aggregation and free fatty

acid concentration may interfere with the measure. Calibration is needed for

glucose predicting parameters using four blood glucose reference points in the

first three hours, and an additional reading after 8 hours.

Figure 2.3: OrSense NBM-200G [39].

OrSense NBM-200G is based on Occlusion Spectroscopy. European CE mark

was granted in 2007. The measurement is performed using an annular probe,

which is positioned on the finger’s root and contains light sources, detectors and

pneumatic cuffs producing oversystolic pressure to occlude blood flow. The opti-

mization of sensitivity and specificity is achieved by the following:

• Transmission mode. In the transmission mode the light traverses the whole

organ (finger), and the photons typically encounter many more glucose mo-

lecules along their paths than in the reflection mode. This strategy enhances

the sensitivity to glucose and reduces the influence of local factors such as

skin morphology and pigmentation.

• Dynamic signal. Occlusion spectroscopy is based on generation of an optical

signal that changes with time. The signal is induced by oversystolic occlu-

sion at the finger’s root, which causes cessation of blood flow throughout
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the finger. This strategy allows us to collect not only one data point per wa-

velength, but rather a whole function. It results in a better signal-to-noise

ratio.

• Multispectral data. Multiple wavelengths of light sources are used. This is

beneficial for specificity/selectivity, as the different behaviour of the op-

tical signal among wavelengths allows cleaning the influence of unwanted

interferences, such as the absorption of hemoglobin and changes of oxygen

saturation.

• Sophisticated algorithms. The data are processed with sophisticated algori-

thms, which use only a small number of parameters, hence avoiding over-

fitting and false correlations.[31]

Optical Coherence Tomography

Other types of glucose sensors are based on Optical Coherence Tomography

(OCT) that was originally developed to perform the tomographic imaging of the

eye. An OCT system uses a low-power laser source, an interferometer with two

arms (reference and sample) and a photodetector to measure the interferometric

signal[33].

The skin is irradiated with a low coherence light (light in which the emit-

ted photons are synchronized in time and space). Backscattered radiations from

tissues are combined with light returned from reference arm and the resulting

interferometric signal is detected by the photodetector. Basically, it measures the

delay correlation between the two original signals. Using this technique, glucose

concentration in the dermis can be determined, since an increase of glucose con-

centration in the interstitial fluid causes an increase in the refractive index, thus

determining a decrease in the refractive index mismatch.

This technique is affected by motion artefacts. In addition, while small changes

in skin temperature have negligible effects, changes of several degrees have a

significant influence on the signal.

The Sentris-100 device is based on optical coherence tomography technology.

It uses an infrared light to scan a cylindrical volume of skin in several steps

from the skin surface down to the subcutaneous tissue. Acute changes in protein

(collagen and myosin) conformation occur in response to glucose concentration
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Figure 2.4: The Sentris-100.

changes and creates a high sensitivity in the optical coherence tomography signal;

localization of signal detection to blood vessel walls minimizes any observed signal

lag[23][32].

Fluorescence Technology

Fluorescence technology has also been proposed for glucose monitoring and is

based on the generation of fluorescence by human tissue when excited by lights at

specific frequencies. These sensors are able to measure glucose levels exploiting the

dependence between fluorescence intensity and glucose concentration in the solu-

tion. Other fluorescence-based glucose sensors are based upon the affinity sensor

principle, where glucose and a fluorescein-labelled analogue bind competitively

with a receptor site specific for both ligands. Thus, an increase in glucose con-

centration causes a decrease in the binding of receptor with fluorescein-labelled

analogue resulting in a decreased light emission[33].

A glucose-sensing contact lens has been developed using boronic acid to mea-

sure lachrymal glucose concentration[40]. The main drawback of this system is

that it requires a hand-held external light source/detector. Thus, even if theo-

retically the lens is able to monitor continuously the glucose concentration, the
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information is carried out only with the detector usage.

Recently an injectable hydrogel microbeads has been developed for fluorescence-

based in vivo continuous glucose monitoring. A fluorescent monomer based on

diboronic acid has been developed. It enables reversible responsiveness to glucose

without any reagents and enzymes. The fluorescent monomer has long, hydro-

philic spacers and polymerization sites to bind flexible supports. The fluorescent

monomer has sufficient intensity for in vivo transdermal monitoring; even when

it is immobilized in a solid support (microbeads). Due to the virtue of their small

size, the fluorescent microbeads are injectable, minimally invasive, and rapidly

respond to glucose change. The microbeads have been tested with success in

rats[41].

Polarimetry

Polarimetry is based on the optical properties of glucose, due to its chemical

structure that makes glucose a chiral molecule. When polarized light (light with

all waves oscillating in the same plane) passes through a solution containing op-

tically active solutes, such as chiral molecules, its polarization plane is rotated by

a certain angle, which depends on solutes concentration. Measuring the rotation

angle with a polarimeter allows calculating glucose concentration. This techni-

que is sensitive to scattering properties of tissues that depolarizes light. However,

skin cannot be investigated by polarimetry since it shows high scattering due in

particular to the stratum corneum. For this reason the preferential measurement

site is the eye, in particular the aqueous humor beneath the cornea, which has

low scattering properties. However, this particular measurement site raise a se-

cond problem: a time delay between glucose concentration in aqueous humor and

blood. Other general sources of errors are variations in temperature and pH of

the solution[36].

A new real-time optical polarimetric approach for glucose sensing utilizing two

wavelengths is presented in [42]. Only in vitro experiments have been reported.

In fact an efficient eye coupling mechanism has not been developed yet, allowing

in vivo experiments on rabbits eyes.



26 2. Non Invasive Continuous Glucose Monitoring

2.1.3 Thermal Emission Spectroscopy

Thermal emission spectroscopy measures IR signals generated in the human

body as a result of glucose concentrations changes. The tympanic membrane is

used as measuring site, since this membrane shares the blood supply with the

centre of temperature regulation in the hypothalamus[43]. Body movements and

ambient temperature are the most significant sources of noise in this method[36].

2.1.4 Photoacoustic Spectroscopy

Photoacoustic spectroscopy uses the principle that absorption of a laser light

causes consequent acoustic response. Tissue is illuminated by a short laser pulse,

at a specific wavelength, and the absorbed radiation causes localised heating.

The small temperature increase is dependent on the specific heat capacity of the

tissue irradiated. Volumetric expansion due to heating generates an ultrasound

pulse, which can be detected by a microphone. Increasing tissue glucose concen-

trations reduce the specific heat capacity of tissue and thus increase the velocity

of the generated pulse making photoacoustic spectroscopy an indirect technique

for glucose estimation[21].

Besides this, the photoacoustic spectrum considered as a function of laser

light wavelength mimics the absorption spectrum in clear media (i.e. optically

thin) and has the advantage to present higher sensitivity in the determination of

glucose, thanks to the poor photoacoustic response of water.

The main limitation of this technique is its sensitiveness to chemical interfe-

rences from some biological compounds and to physical interferences from tem-

perature and pressure changes.

The Aprise device is based on photoacoustic technology. It exploits in fact

the photoacoustic properties of the blood and tissues to estimate the prevailing

glucose levels. The sensor is attached to the skin above a blood vessel, and it

generates ultrasound waves by illuminating the tissue with laser pulses. Analy-

sis of the acoustic signals provides information on the absorbance of light in the

tissue at different depths, which is influenced by glucose concentration. An ul-

trasonic image of the optical properties of tissue directly beneath the sensor is

obtained. The ultrasonic image resolves the blood vessel from the tissue layers

around it, enabling separated analysis of changes in optical properties of blood
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and surrounding tissues[23][44].

2.1.5 Electromagnetic Sensing

Another technique for investigating dielectric parameters of blood utilizes the

electromagnetic coupling between two inductors turned around the medium under

study. Indeed, the coupling is influenced by variations in the dielectric parameters

of the solution, which are modified by glucose. This method is based on the

application of a voltage signal with proper frequency to the primary inductor and

for electromagnetic coupling a signal will be produced on the secondary inductor.

There exists an optimal frequency, where the sensitivity to glucose change is

maximal, but it is significantly influenced by temperature. The main problem of

this technique is that several other components may have an influence upon the

blood dielectric parameters and not only upon glucose[21].

A new electromagnetic sensor is described in [45]. Its in vitro ability to esti-

mate variations in glucose concentration of different solutions with similarities to

blood (sodium chloride and Ringer-lactate solutions) has been tested, differing

though in the lack of any cellular components. The sensor was able to detect the

effect of glucose variations over a wide range of concentrations.

The Glucoband is a non-invasive glucose monitor that uses bio-electromagnetic

resonance to measure the blood glucose levels of the human body. This device is

worn like a wrist watch and displays results of the test on an LCD screen. The

initial measurement process takes only a few minutes. However, in the monito-

ring mode, measurements can be continuous. Since each concentration of glucose

has its unique electromagnetic molecular self-oscillation signature-wave, the Glu-

coband perform the measure matching the self-oscillation frequencies of glucose

molecules with those of hundreds of reference solutions with different levels of

glucose stored in an internal database of “signatures”.

2.1.6 Impedance Spectroscopy

Another kind of spectroscopy investigates the dielectric properties of a tissue

using a current flow instead of a light beam. It is called Dielectric Spectroscopy

(DS) or Impedance Spectroscopy (IS).

The impedance of one tissue can be estimated by applying current of known
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intensity. The experiment is repeated with low alternating currents at different

frequencies in order to measure the dielectric spectrum (the impedance as a func-

tion of frequency). Glucose is indirectly measured by its interaction with red blood

cells. In particular, variations in plasma glucose concentration induce in red blood

cells a decrease in sodium and an increase in potassium ion concentration. These

variations cause changes in the red blood cells membrane potential, which can be

measured by determining the permittivity and conductivity of the cell membrane

through the dielectric spectrum[21]. The different sources of error include tem-

perature variations, sweating and motions. Furthermore, this technique requires

calibration.

The IS technology has been used for many years to investigate the dielectric

properties of cells and organelles. Before going into the details of this technology

it is worth having a review of dielectric properties of biological materials.

DISPERSION FREQUENCIES ORIGIN

α low(10-100Hz) electrical double layers and electrolytes

at membrane boundaries

β radio(100kHz-10MHz) cell suspension(blood)

δ radio(10MHz-1GHz) water bound to proteina and internal

protein motion

γ microwave(1-100GHz) reorientation of free water molecules

Table 2.1: Dielectric properties of biological materials.

The dielectric properties of biological materials are characterized by four

major dispersions, which are termed α, β, δ, and γ. Different mechanisms ac-

count for low frequency (α), radiofrequency (β), and microwave frequency (γ)

dispersions[46]. The α-dispersion is generally considered to be associated with

interfacial polarization linked with electrical double layers and surface ionic con-

duction effects of electrolyte at membrane boundaries. The β-dispersion has es-

sentially two components arising from two different mechanisms: the capacitive

shorting out of membrane resistances and rotational relaxations of biomolecules.

Cell suspensions such as blood will typically exhibit a significant β-dispersion in

the radiofrequency range between 100 kHz and 10 MHz. In addition, reorientation

of free water molecules causes γ-dispersion. Water bound to protein and internal

protein motion will also cause a subsidiary process, called the δ-dispersion, that
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is observed in the frequency region between the β- and γ-dispersion. All these

processes are summarized in Table 2.1.

Thus, IS can investigate the relaxation processes of complex systems in an

extremely wide range of time constants, ranging from 10−12 to 104 seconds. In

particular, it is sensitive to intramolecular interactions and it is able to monitor

cooperative processes.

IS-based techniques cannot measure glucose concentrations directly, since

changes in glucose levels do not directly affect the dielectric properties of skin

and the underlying tissue in the kHz and MHz frequency band. However, varia-

tions in plasma glucose lead to changes in the electrolyte balance in blood, cells

and interstitial fluid. An increased concentration of glucose in blood involves a

cellular biochemical response, which leads to changes of membrane components,

nucleotide and ionic rearrangement. In particular, as a consequence of water mo-

vement, there is a decrease of sodium and an increase of potassium inside the

erythrocyte. This variation of the electrolyte balance has an influence over the

erythrocyte membrane potential and capacitance, which causes changes in the ac

and dc conductivity and tissue permittivity that can be measured using IS[47]. A

sensor based on IS uses electromagnetic waves in the selected frequency band that

interact with the skin and the underlying tissue for monitoring these electrical

properties.

In [48] and [49], clinical experiments in controlled conditions using IS showed

promising results in monitoring changes in blood glucose levels. But, as soon as

environmental conditions become less favourable, going towards a routine use

for daily life, this technique exhibits its limitations, resulting in a significant

reduction in signal quality. This is a direct consequence of the deleterious effects

of many perturbing factors, such as temperature fluctuations, variations of skin

moisture and sweat, changes in cutaneous blood perfusion and body movements

affecting the sensor-skin contact surface[50]. Consequently, all these perturbations

affecting the main glucose related signals have to be identified, characterised and

compensated for. As better discussed in the following, this suggested in [1] the

development of a Multisensor Glucose Monitoring System, where the multi-sensor

concept means a system that includes several sensors on one substrate attached

to the human body to allow broader bio-physical characterization of the skin and

underlying tissues.
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2.2 The Solianis Multisensor Approach to NI-

CGM

This section will focus on the Solianis Multisensor approach to NICGM. After

the description of the different sensors, an example of Multisensor data will be

presented, along with its analysis procedure.

2.2.1 Description of the Sensor

Solianis Monitoring AG (Zurich, Switzerland) has proposed a system for NI-

CGM based on the multi-sensor concept. The Solianis Multisensor is mainly based

on a combination of dielectric and optical sensors, as well as temperatures and

others, for the characterisation of the skin with the aim of monitoring blood

glucose changes.

The Multisensor performs a continuous glucose monitoring collecting one set

of signals, containing the information from each sensor every 20 seconds. As shown

in Figure 2.5 the Multisensor is attached to the upper arm of the patient with a

flexible band and it is powered with a battery pack.

IS electrodes

As described in Section 2.1.6, changes in blood glucose levels cause dielectric

changes of skin and underlying tissues within the frequency range of 0.1-100 MHz,

which is measured utilizing particular capacitive fringing-field electrodes[1]. In

order to achieve different penetration depths of the electromagnetic field into

the various tissue layers, three electrodes with different characteristic geometries

are used in the Solianis Multisensor. In fact, the interaction between an applied

electromagnetic field and the skin depends not only on the frequency band, but

also on the geometric properties of the electrode. The differences between the

three IS electrodes consist in the distance between the active electrode and the

ground potential. In particular, a distance of 0.3, 1.5 and 4 mm is associated with

shallow, mid and deep penetration respectively and the sensors are referred as

short, middle and long, respectively (see Figure 2.5) .
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Figure 2.5: Left : Optical and dielectric sensors composing the Solianis

Multisensor. Right : Solianis Multisensor attached to the upper arm with a

flexible band.

The short electrode penetrates only the upper skin layers, thus it cannot

yield information about glucose levels, but it may still contain information about

perturbing effects related to the uppermost layers. Data from long and middle

electrodes are regarded as primary signals, since they penetrate also the lower

skin layers that are well micro-vascularised (see Figure 2.1) and hence particularly

affected by glucose variations.

Optical sensors

As mentioned before, other sensors are used with the aim of obtaining use-

ful information to compensate the perturbing factors: two optical sensors are

embedded within the Multisensor substrate for the measurement of skin blood

perfusion, which is a perturbing factor for dielectric signals[29]. Each optical sen-

sor features 3 LEDs, located closely to each other, with the following wavelength:

green (568 nm), red (660 nm) and infrared (798 nm). Light reflected back from

the skin is detected by two photo-detectors (signal diodes), while the variation

of emitted LEDs intensity are monitoring by two reference diodes (monitoring

diodes) located near the LEDs.
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Sweat sensors

An interdigitated electrode is used to measure the dielectric response at lower

frequencies in the range of 1-200 kHz for obtaining information about sweating

events and superficial hydration levels. An other sensor exploits the frequencies

in the range of GHz to estimate hydration levels of the underlying skin layers,

since GHz excite free water molecules (see Table 2.1).

Acceleration sensors

An integrated accelerometer has the aim to monitor continuously the accele-

ration and the position relative to the centre of gravity of the device.

Other sensors

Finally, others sensors monitor skin and housing temperature, and ambient

humidity close to the device.

2.2.2 Example of Solianis Multisensor Data

As described in the previous Section, the Solianis device includes several sen-

sors on one substrate in contact with the human body. Each sensor provides its

specific set of signals. However, in order to obtain glucose readings, this set of mea-

sures needs to combined in a proper way through a relationship, namely a model

linking what is measured with glucose levels. Learning this relationship involves

also the use of some glucose references (one approximately every 15 minutes) that

are collected using finger-stick methods, while the Multisensor is attached to the

patient’s arm.
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Figure 2.6: Example of normalised impedance signals (continuous lines) vs.

normalised reference BGL (star).

In Figure 2.6, representative time series collected from the same electrode at

different frequencies are shown. In particular, the impedance at different frequen-

cies is represented using its magnitude (Figure 2.6, top) and its phase (Figure 2.6,

bottom). As shown in the top panel the magnitude signals at different frequencies

are similar but not identical, thus they show a strong correlation. The same is

for the phase signals, which are also correlated with the magnitude signals. Since

the impedance channels, as mentioned in the previous section, contain glucose

information, they are referred as the primary “glucose signals”[1].
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Figure 2.7: Example of normalised impedance signals (continuous lines) vs.

normalised reference BGL (star).

In Figure 2.7 we plot the time series from channels associated with other

sensors embedded within the Solianis device. In the top panel the skin and the

housing temperature are plotted, along with ambient humidity. In the bottom

panel an example of optical channels is shown. Some of them are correlated with

the glucose reference. However, they are noisier then impedance channels.



2.2. The Solianis Multisensor Approach to NICGM 35

2.2.3 From Multisensor Data to Glucose: Necessity of a

Model

In the previous Section the Multisensor data have been described. This section

has the aim to illustrate how to “link” these measurements with BGL.

As explained in Section 2.2 some signals contain the glucose information, while

the other are used to characterise the perturbations affecting the primary signals,

allowing their compensation. Hence, the Multisensor signals have to be combined

to estimate BGL correctly through a relationship between the measured variables

and the concentration of glucose in blood.

Representing with S(t) the Multisensor signals at the t-th time instant, the

unknown relationship can mathematically be expressed as:

BGL(t) = f(S(t),θ)

where f represents a generic function used to convert the signals into BGL values

and θ is an unknown vector containing the parameters that characterise this

conversion.

To fully express this relationship, first of all one has to select what kind

of function f suits best for the specific sensor (e.g. linear or not). Then, once

the mathematical model for the connection between the signals is chosen, there

are different methods to estimate its parameters. To perform this parameters

estimation some BGL samples, collected using finger-stick method, along with

the corresponding sensor signals are needed.

At the end of this estimation process, the sensor is calibrated, i.e. the measured

signals S can be automatically converted to glycaemic values, which is the output

to be displayed.

2.2.4 Open Problems

The principal Multisensor signals are those that mostly contain the informa-

tion about glucose fluctuations. However, in the everyday life, these signals are

affected by different perturbing factors (temperature fluctuations, skin moisture,

sweat, blood perfusion . . . ). The multi-sensor concept derives from the neces-

sity of compensate these perturbations. Hence, the other signals have the aim to

quantify the perturbation allowing a better estimation of BGL.
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As said before, there are different ways to combine the signals with the view

of estimating BGL accurately. It is difficult to evaluate which is the exact effect

of the perturbing factors on the principal signals and how the auxiliary signals

are connected to the perturbing factors. Hence, different mathematical models

and different estimation techniques have to be evaluated in order to determine

which is the best way of combining the signals.

The context, in which this thesis is part, focus on the definition of a multiva-

riate linear regression model for combining the Multisensor measures in order to

estimate glucose profiles. In particular, the intrinsic Multisensor signals’s features

may cause the learning algorithm to fail in estimating good model parameters.

This is because each learning technique has its own advantage and drawbacks

that will be fully and deeply described in the next Chapters.

2.3 Aim of the Thesis and Outline

The thesis concerns the development of a model for estimating glucose level

from the Solianis Multisensor data. In particular, different methods for estimating

a linear regression model will be applied to the data in order to perform glucose

levels estimation.

Three different methods have been compared: Ordinary Least Squares (OLS),

Partial Least Squares (PLS) and LASSO. OLS uses all the signals and make a

linear combination of them in order to obtain the best fit. PLS constructs new

orthogonal predictors, starting from the original signals and makes a linear com-

bination of a selected number them to calculate the regression. Finally, LASSO

makes a linear combination of the signals, but penalizes the sum of absolute coef-

ficients to prevent the multiplication coefficients from assuming too large values.

In addition, LASSO has the characteristic to yield to sparse solutions, which

means that some coefficients will be exactly zero.

The aim of the thesis is to evaluate the performance of these methods and

highlight their advantages and drawbacks in modelling Solianis Multisensor data.

After a theoretical presentation of the regression problem (Chapter 3) and of
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the parameter estimation methods (Chapters 4, 5 and 6), they will be applied to

real data and results will be compared in order to select the best technique (Chap-

ters 7 and 8). Finally, further topics and margins of improvement for modeling

Solianis Multisensor data will be described (Chapter 9).





Chapter 3

Fundamental Concepts of Linear

Regression for High-Dimensional

Data

This chapter reports an introduction to the regression problem, with particular

regard to high-dimensional datasets. The notation used throughout this thesis will

be also introduced.

3.1 Problem Formulation and Used Notation

In general, the regression problem can be stated as the estimation of a variable

(which is not easily measurable in practice, e. g. glucose in our case), from a set of

measured variables (the Solianis Multisensor data). The unknown variable to be

predicted is called output or target, while the measured variables are called inputs,

or regressors (because they contain the information for the regression model) or

predictors (because they are used to predict the output).

Thus the aim of regression is to build and identify a prediction model. This

model can be later used for estimating the outcome for new unseen data. In our

case study, our aim is to model the relationship between BGL and Solianis Mul-

tisensor data. The relationship is mathematically expressed using a model, which

can be used to combine new Solianis Multisensor data in order to predict glucose

concentration. A good prediction model accurately predicts such an outcome.

In the general case, the output variable (i.e. the target that should be described
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by the model through a combination of the inputs) consists of a multi-dimensional

vector. However, since our purpose is to estimate glucose, throughout this thesis,

only the case of a single output variable will be considered. Hence, the output

will be represented by a column vector y of dimension N x 1, where N is the

number of available samples. In symbols:

y = [y1 y2 . . . yN ]T (3.1)

where yi denotes the i-th sample of the reference.

The input variables are contained in the matrix X of dimension N x p, where

the element xij represents the i-th sample of the j-th variable.

X =










x11 x12 . . . x1p

x21 x21 . . . x2p

...
...

. . .

xN1 xN2 xNp










(3.2)

While each row of the matrix X is formed by a set of p variables relative

to the same i-th time instant (represented by the row vector X ip (1 x p)), each

column contains the N samples of the j-th variables (symbolized using the column

vector XjN (N x 1)). Hence, while subscript i ∈ [1, 2 . . . N ] indicates the sample,

subscript j ∈ [1, 2 . . . p] identifies the variable. To distinguish for example, X1

the set of p variables at the first time instant from X1 the N samples of the first

variable, a second subscript is added, indicating the dimension of the vector.

X =













x11 . . .|x1j |. . . x1p

... |
... |

...

xi1 . . .| xij |. . . xip

... |
... |

...

xN1 . . .|xNj|. . . xNp













⇒X ip

⇓

XjN

(3.3)

After having introduced some notation and basic concepts, the general re-

gression problem can be mathematically expressed as finding the function f that

defines the relationship between the input X and the target y:

y = f(X) (3.4)
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The relationship, described by f , is not deterministic, since the measured

input variables are affected by random noise (zero mean and uncorrelated).

Throughout this thesis only linear model are considered. Therefore, eq. (3.4)

turns into:

y = Xβ + β0 (3.5)

where the output is given by a linear combination of the inputs weighted by the

column vector β = [β1, β2, . . . βp]
T . The vector β0 (N x 1) describes the data offset

and can be dropped if the data have zero mean. Hence, the aim of regression is

to find an estimate β̂ of the unknown coefficients β, given the knowledge of the

reference vector y and of the causally related inputs X. The set of data used to

estimate the coefficients is called training set. After β̂ is determined, it can be

used to calculate the correspondent model prediction of the target ŷ and, more

important, to predict the unseen output from inputs.

It is worth saying that the real data, which will be described in Chapter 7 and

analysed in Chapter 8, are composed by a glucose reference, obtained using finger-

stick method, that corresponds to the vector y and by all Solianis Multisensor

signals, which are included in the input matrix X. As a consequence, the aim of

the analysis is to predict blood glucose levels from the signals measured by the

Solianis Multisensor.

3.2 Issues of High-Dimensional Regression

It could seem reasonable that, if the training set is large enough, it would be

easy to generalize data behaviour and identify a good prediction model. However

this it not true dealing with high-dimensional data. This is exactly our case

since we have to deal with more than 150 input variables (Multisensor signals).

The algorithms for solving regression problems suffer from the so called curse of

dimensionality [51] when applied to high-dimensional datasets.

3.2.1 Curse of Dimensionality

Consider a p-dimensional unit hypercube and suppose the N regressors sam-

ples to be uniformly distributed in it. The fraction of samples included in a

hypercube with side r(< 1) is:

frac = rp
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Extracting the side of the hypercube as a function of the desired fraction and the

dimension p, one gets:

r = frac1/p

Hence, for example, to include 10% of the samples, we need a hypercube with

side 0.1 for p=1, and a hypercube with side 0.8 for p=10. The different curves

plotted in Figure 3.1 show the side of the hypercube as a function of the fraction

of included samples for different values of dimension p.
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Figure 3.1: side of the cube as a function of the fraction of included samples

for different values of dimension p.

As shown in the Figure 3.1 the hypercube side needed for a given fraction

increases even more as the dimension p increases. Hence, as the number of the

regressors increases, it becomes more difficult to generalized data behaviour. In

fact, the samples are more distant to each other and, in particular, they tend to

be close to an edge of the sampling area, because the prediction is much more

difficult near the edges of the training sample.

One can also formulate the problem considering that the sampling density is

proportional to N1/p. In high dimensions all feasible training samples sparsely

populate the input space. In fact, the density rapidly decreases to zero as p

increases.
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3.2.2 Overfitting

In addition, high-dimensional regression algorithms have to deal with overfit-

ting, namely the risk of fitting a predictive model not only to the information yield

by training set but also to the noise contained in it. To overcome this problem,

regression techniques implements different tricks like: a)dimensionality reduction,

which uses M(≤ p) new regressors calculated from a linear combination of the

original ones, or b) regularisation, putting a price on the values of the unknown

coefficients β of model 3.5.

An example of regression technique using dimensionality reduction is Partial

Least Squares (PLS), which will be described in detail in Chapter 5, while an

example of regression technique using regularisation is Least Absolute Shrinkage

and Selection Operator (LASSO), which will be widely discussed in Chapter 6.

Both these methods require the setting of one parameter related to the model

complexity (i.e. describing the new dimensionality M in PLS and the amount of

regularisation in LASSO). The next Section will illustrate the parameter selection

procedure of this parameter in the general case.

3.3 Criteria for Selection of Model Complexity

Model complexity should be selected such that the best performance of the

chosen identification method is achieved. Now the problem is: which is the right

way to evaluate the performance of one method? Through this section it will be

described the logic and the steps for selection of the model complexity.

3.3.1 The Bias-Variance Dilemma

Considering the training set, it seems reasonable to assume that if model

complexity increases the model will better describe the target. Hence, Residual

Sum of Squares (RSS) on training data (describing the distance between the

reference y and its model prediction ) will decrease as model complexity increases.

RSS =
N∑

i=1

(yi − ŷi)
2 = ‖y − ŷ‖ (3.6)

This is a key aspect of the so called internal validation. RSS of eq. (3.6) is

expected to have a monotonic decreasing behaviour (see Figure 3.2).
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This means that we cannot use it to determine model complexity, since we can

always obtain, for sufficiently complex models, zero residuals. The so-determined

model usually fails in predicting new data, different from those of the training

set. In fact, a too complex model normally fits the reference data but also the

noise (overfitting) and is thus not able to generalize the data behaviour properly.

As a consequence, the performance of the learning method has to be deter-

mined using independent test data. Suppose the measurement model to be a

combination of a deterministic part and a random part due to the noise (zero

mean, uncorrelated and homoscedastic noise ǫ affecting each measure y):

y = f(X) + ǫ ǫ ∼ N(0, σ2) (3.7)

The Mean Square Error (MSE) can be defined for measuring errors between

the true value ytrue and the model prediction ŷ :

MSE(ŷ) = E
[
(ŷ − ytrue)

2
]

(3.8)

The equation (3.8) can be divided in two terms, one representing the estima-

tion variance and the other the bias (difference between the expected value of the

estimation and the true value ytrue):

MSE(ŷ) = E
[
(ŷ − E [ŷ])2

]
+ (E [ŷ]− ytrue)

2 = Var(ŷ) + Bias(ŷ)2 (3.9)

Generally, the variance term increases as model complexity gets higher. This

can be explained observing that the more complex the model is, the more is the

adherence to the data and thus the sensitivity of the model parameter estimation

to the particular realization used to identify them (learning). On the other hand,

the bias term decreases as model complexity increases. As a consequence, even if

estimates are influenced by noise, its effects tend to be eliminated by averaging

different estimates.

Summarizing, the training error tends to decrease when model complexity

is increased. If the model overfits the data (too high complexity), it will not

generalize well and the estimates will have too high variance. On the other side,

if the model is not complex enough, it may underfit the data and have large bias.

This brief discussion highlights the dilemma of fixing the bias-variance tradeoff

and suggests that model complexity should be chosen in such a way to minimize

the error on independent test data.
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Figure 3.2: Test and training error as a function of model complexity [52].

As shown in Figure 3.2, the prediction error has a monotonic decreasing beha-

viour as model complexity increases, when calculated on the training set. Hence,

it can not be used to select the correct amount of model complexity. In Figure

3.2 the prediction error behaviour when calculated on the test set is also plotted.

Usually, it has concave behaviour, due to the bias-variance tradeoff. In this case,

having the curve a minimum, it can be used to fix the model complexity. In the

next Section a method to construct the test error curve is described.

3.3.2 The Cross-Validation Principle

As far as we observed that the training set is not useful to select the model

complexity, another set of data has to be considered (test set). As a consequence,

before describing how to calculate the prediction error curve on the test set, we

have to discuss how to handle the available data.

In a data-rich situation, the best way to divide the available dataset is in three

parts: a training set, a validation set and a test set. The training set is used to

fit the model, the validation set is used to select the complexity parameter and

the test set is used for assessing the generalization error of the final chosen model

(Section 3.3). However, the data are often scarce (as in our case), and thus the

previous approach is not applicable.
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K-fold cross-validation is a method to estimate test error, using the training

set. In particular, K-fold cross-validation splits the data into K parts of appro-

ximately equal size. Iteratively, one part is left aside to calculate the test error

(using MSE), while the other K − 1 parts are used to “learn” the coefficients

of the model. In this way a test error upon each K-th part is calculated and,

averaging these values, an estimation of the test error is obtained.

For example, suppose that a training set of 100 samples is available and that

we want to perform 5-fold cross-validation. The 100 samples are randomly and

equally divided in 5 parts, each of about 25 samples as shown in Figure 3.3.

25 sample ca
︷ ︸︸ ︷

Part 1 Part 2 Part 3 Part 4 Part 5

︸ ︷︷ ︸

100 samples

Figure 3.3: example of dataset division for 5-fold cross-validation.

At the first iteration part 2-3-4-5 of the training set are used to estimate the

coefficients of the model, obtaining β̂
−1

, where the superscript indicates the part

that was not used in the learning procedure. The estimated coefficients β̂
−1

are

used to predict the reference of part 1 (y1) from the inputs variable of part 1

(X1):

ŷ1 = X1β̂
−1

(3.10)

The RSS is then used to calculated the test error on part 1, where the residuals

denote the distance between the model predictions ŷ1 and the available reference

points y1:

RSS1 =

N1∑

i=1

(ŷ1 − y1)
2 = ‖ŷ1 − y1‖

2 (3.11)

where N1 is the number of samples included in part 1.

At the second iteration, part 2 is left aside to calculate the RSS2, using the

coefficients estimated from part 1-3-4-5. Similarly, the procedure is iterated for
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other three times in order to calculate RSS3, RSS4 and RSS5. These five values

of RSS are then averaged in order to estimate the test error.

Etest = RSS =

5∑

i=1

RSSi

5
(3.12)

The whole procedure is repeated for different values of the complexity para-

meter in order to estimate the test error as a function of the model complexity

(see Figure 3.2). Usually, this function has a minimum corresponding to the bias-

variance tradeoff.

Cross-validation, averaging the RSS calculated on different datasets, allows

also to estimate the confidence interval for the estimated test error. Using the

previous example the confidence interval for a given model complexity can be

calculated as follows:

SD =

√
√
√
√

5∑

i=1

(RSSi − RSS)2

/

5 (3.13)

As a consequence, instead of choosing the complexity parameter at the mi-

nimum of the test error function, usually “one-standard error” rule is used to

choose the model.
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Figure 3.4: Example of test error curve in K-fold cross-validation. Black star is

the minimum of the test error. Black dashed line is the upper limit.
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The upper limit of the test error is placed at the level correspondent to the

minimum of the test error plus its standard deviation. It is represented by the

black dashed line in Figure 3.4. The selected model is the most parsimonious

one, whose error is less then the limit fixed as explained before. In Figure 3.4 the

chosen model complexity is 9.

3.4 Models Assessment (External Validation)

In this Section how to describe the performance of the selected model will be

presented.

3.4.1 Principles for External Validation

In the previous Section we described how the training set is used in cross-

validation to choose model complexity. Once model complexity is determined

the coefficients of the model can be estimated from the whole training set using

different techniques. For instance, Ordinary Least Squares (Chapter 4), Partial

Least Squares (Chapter 5) or Least Absolute Shrinkage and Selection Operator

(Chapter 6). The further step is to determine which learning method best suits for

our particular problem. As a consequence, some indicators have to be defined to

evaluate model performance on a test set of data. Since the error estimated from

data used to learn the coefficients of the model tend to underestimate the real

error, the test set must be composed by unseen data, i.e. data that are not used in

cross-validation procedure nor in the learning procedure. Hence, this procedure

is called external validation.

In formal terms, in external validation the coefficients of the linear model

estimated from the training set β̂train are used to predict the target of the test

data ytest:

ŷtest = X testβ̂train (3.14)

the subscript “train” denotes what is calculated from the training set, while the

subscript “test” is appended to test set quantities through the equations.

To quantify the prediction quality, different indicators can be taken into ac-

count. These key indicators measure in different ways how well the prediction

given by the linear model ŷtest approximates the reference target ytest. The most

commonly used indicators for evaluating the performance of the models are: Root
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Mean Square Error (RMSE), Mean Absolute Difference (MAD), Mean Absolute

Relative Difference (MARD), Pearson coefficient of determination (R2) and FIT.

They are formally defined in the following Section.

3.4.2 Key-Indicators Definition

The indicators defined before can be used to evaluate the performance of the

identified model on unseen data (i.e. when the test data set is considered). Hence,

they allow the comparison between different models.

The Mean Square Error (MSE) was defined as a stochastic quantity in (3.8).

However, a realization can be observed as normalized distance between prediction

ŷtest and reference data ytest :

MSE =
N∑

i=1

(yitest − ŷitest)
2

/

N (3.15)

Root Mean Square Error (RMSE) is the square root of (3.15) and thus has the

same units as the quantity being estimated.

The Mean Absolute Difference (MAD) is defined as follows:

MAD =
N∑

i=1

|yitest − ŷitest|

/

N (3.16)

which differs from the (3.15) since, instead of summing the square of the difference,

its absolute value is summed up.

The Mean Absolute Relative Difference (MARD) is the same as (3.16), but

it is an absolute indicator, since every difference (yitest − ŷitest) is divided for the

reference value yitest:

MARD =
N∑

i=1

∣
∣
∣
∣

yitest − ŷitest

ŷitest

∣
∣
∣
∣

/

N (3.17)

While these three key indicators are based only upon the distance between the

test reference data ytest and its prediction ŷtest , others like R2 and FIT measure

how much the prediction is a good approximation of the reference variation.

The Pearson correlation coefficient R measures the linear dependence between

two variables y and x (test reference ytest and prediction ŷtest in our case). The
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general formula for its calculation is:

R =

N

N∑

i=1

xiyi −

N∑

i=1

xi

N∑

i=1

yi

√
√
√
√N

N∑

i=1

xi
2 −

(
N∑

i=1

xi

)2
√
√
√
√N

N∑

i=1

yi
2 −

(
N∑

i=1

yi

)2
(3.18)

The correlation coefficient R ranges from -1 to +1 included. A value of +1 or -1

implies a linear relationship between the two variables. In the case R equals +1

it means that if y increases, x increases too (correlation); in the case R equals -1

a decrease in x will correspond to an increase of y (anticorrelation). A value of 0

implies that there is no correlation between the variables.

The square of correlation coefficient, R2, ranges from 0 to +1. Hence, it does

not distinguish negative from positive correlation. This indicator turns out to be

useful when interested to the connection between the variables and not to the

sign of the relation.

A key mathematical property of the correlation coefficient is that it is invariant

to changes in location and scale, i.e. if one of the variables is transformed linearly

as a + bx (with a and b constants) the correlation coefficient does not change

its value. This can be useful to determine if the prediction ŷtest has the same

fluctuations of the reference ytest, without having the same scale. In this case R2

would assume a high value (good correlation), even if the distance between the

reference and test sample is high, causing bad values for RMSE, MAD or MARD.

Finally, FIT quantifies the percentage of the output variation that is explained

by the model. The total variance of the target (SStot) can be seen as the sum

of two terms: the variance explained by the prediction SSreg(variance of the

prediction referred to the reference mean) and the variance not explained by the

prediction SSerr (residual sum of squares).

SStot = SSreg + SSerr (3.19)

where:

SStot = ‖ ytest −mean(ytest)‖

SSreg = ‖ ŷtest −mean(ytest)‖ (3.20)

SSerr = ‖ ŷtest − ytest‖
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Hence the ratio between the explained variance and the total one, which corre-

spond to the definition of FIT, is:

FIT =
SSreg

SStot

= 1−
SSerr

SStot

(3.21)

then, substituting (3.20) into (3.21) and expressing in percent:

FIT = 100 ∗

(

1−
‖ ŷtest − ytest‖

‖ ytest −mean(ytest)‖

)

(3.22)

If the estimated model has a good performance, then RMSE, MAD and

MARD will assume low values, while R2 and FIT will take high values.

While, by visual inspection of the estimated profiles versus reference data,

one can guess which model has the best performance, these indicators will allow

a quantitative assessment of how much one method works better than the others

in estimating linear model for regression.

3.5 Conclusions

This Chapter presented an introduction to the regression problem. First of

all the notation used throughout this thesis was introduced. Then, starting with

the consideration that algorithms dealing with high-dimensional data suffer from

the curse of dimensionality and overfitting, a general introduction to the methods

trying to solve these problems was also presented. As these algorithms usually

require the setting of a parameter to adjust the model complexity, the general

estimation procedure of this parameter was illustrated. In particular it was descri-

bed how to construct a test error curve as a function of model complexity, using

K-fold cross-validation. This curve is used to fix the model complexity. Hence,

at the end of this Chapter, some indicators for the performance comparison of

different models were presented.

As a consequence this Chapter has described the different steps to solve the

regression problem: using the internal validation, we may check that as the model

complexity increases, it better describes the training set; then, the cross-validation

can be used to set the correct level of model complexity; finally, the external

validation allows to compare different models. This whole procedure is used in

this thesis to evalute the performance of the regression methods presented in

the next Chapters, when applied to the Solianis Multisensor data. In particular,
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different estimation methods for regression will be described in the next Chapters

4, 5 and 6, while the results of their application to the data of Chapter 7 will be

presented in Chapter 8.



Chapter 4

Ordinary Least Squares

While in the previous Chapter we defined and stated the theoretical aspects

of the notations that will be used throughout this thesis, Chapters 4, 5 and 6 will

present some techniques for estimating linear regression models. Then, Chapter

8 will discuss the application of these methods to Multisensor data.

The goal of regression is to describe a target variable at the i-th time instant

yi given a set of p available input variables X ip (1 x p) at the same i-th time

instant. The previous sentence can be expressed in mathematical terms as:

yi = f(X ip) (4.1)

where f is any function modeling the relationship between the input variables

X ip and the target yi. If the model is linear, eq. (4.1) turns into:

yi = β0 +

p
∑

j=1

xijβj = β0 + X ipβ (4.2)

In model (4.2), p input variables X ip are weighted using the p time-constant

coefficients β1 . . . βp, while the coefficient β0 plays the role of describing the data

offset. These coefficients are unknown and represent the parameters that comple-

tely define and characterise the linear model. The p inputs in X ip are also called

predictors, since the target is fitted by a linear combination of them.

Consider now a training set consisting of a reference vector y (N x 1), con-

taining N samples of the target at different time instants, and the corresponding

input matrix X (N x p), whose rows represent the input variables X ip at the

same time instants, while each column XjN contains all the samples referred to

the j-th variable (see Section 3.1).
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The most easy and well-known method for finding an estimate of the column

vector β = [β0, β1 . . . , βp], β̂, given the reference vector y and the corresponding

inputs X, is Ordinary Least Squares (OLS). OLS makes no assumption about the

validity of the model, but simply finds the best set of parameters β by adjusting

them in order to minimize the error in the description of the training data. The

errors are quantified through the Residual Sum of Squares (RSS) between the

target and the model estimates. This function has a quadratic form, allowing a

closed form solution for the model parameters.

This Chapter will present the characterization of the OLS estimation proce-

dure. Then, with the support of two simple examples, advantages and drawbacks

of OLS will be shown.

4.1 Definition of OLS

The model (4.2) for a training set can be written in matrix form, adding a

column of ones at the beginning of the input matrix X, obtaining matrix X(p+1)

; this allow a more compact notation including the bias parameter β0:

y =







1 X1p

...
...

1 XNp







β = X(p+1)β (4.3)

alternatively, the bias parameter β0 could be dropped if a preliminary centring of

the data is performed. In order to simplify the notation, for the time being any

superscript to the matrix X will be omitted and the matrix itself will represents

both cases (i.e. including or not the bias parameter β0), and its form will be clear

from the context.

OLS determines the estimate β̂ by minimizing the Residual Sum of Squares

(RSS), where the residuals denote the distance between the model predictions

(4.2) and the available reference points yi:

RSS(β) =
N∑

i=1

(

yi − β0 −

p
∑

j=1

xijβj

)2

(4.4)

that can be written in matrix form as:

RSS(β) = (y −Xβ)T (y −Xβ) (4.5)
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where X is the same as in eq. (4.3). It is easy to see that RSS is a quadratic

function of the unknown parameter vector β. Minimizing RSS in (4.5) can thus

be done by setting to zero the first derivative of (4.5) with respect to β:

∂RSS

∂β
= −2XT (y −Xβ) (4.6)

XT (y −Xβ) = 0 (4.7)

The matrix equation (4.7) collects the so called normal equations. If the matrix

XT X is not singular, a close formula for the solution β̂ can be computed. In this

case, the solution is unique and takes the form:

β̂ = (XT X)−1XT y (4.8)

The estimated parameter vector β̂ could then be placed into (4.3) to obtain

an estimate of the target ŷ, also termed “model prediction”:

ŷ = Xβ̂ = X(XT X)−1XT y (4.9)

Once the model parameters β̂ are estimated from the training set, the linear

model of eq. (4.3) can thus be used to predict unseen data through a linear

combination of the inputs.

4.2 Properties of OLS

This Section will present some insight into the OLS technique for estimating

linear regression models.

4.2.1 Geometrical Properties

OLS has also a geometrical interpretation as seen in Figure 4.1, that represents

the case of two different input variables X13 and X23, each having three time

samples.

Each input Xj3 could be considered as a vector in the three-dimensional space,

where the vector y is also defined.

Supposing that X has full column rank and since the number of different

inputs (two) is smaller than the number of data points of the training dataset
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Figure 4.1: geometrical interpretation of OLS. Target vector y, estimation of

target vector ŷ, input vectors X13 and X23 and in yellow the linear subspace S

[1].

(three), the inputs span a linear subspace S (a plane in this case), called columns

space of X.

Using the linear model, the estimation ŷ could be any linear combination

of the inputs Xj3. For this reason the estimate could lie anywhere in the bi-

dimensional subspace S and the RSS represents the squared euclidean distance

between the reference y and its estimation ŷ.

Since OLS adjusts the parameters β of the linear model to minimize the RSS,

the OLS model prediction ŷ is the particular vector lying in the subspace S,

which is the closest as possible to the reference y. For this reason, ŷ corresponds

to the orthogonal projection of y onto the subspace S, which is described mathe-

matically by:

XT (y − ŷ) = 0 (4.10)

(4.10) represents the orthogonality condition of the vector (y − ŷ) with respect

to the subspace S defined by X.
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Substituting (4.9) into (4.10) one gets:

XT (y −Xβ̂) = 0 (4.11)

This condition corresponds to the normal equations in (4.7) and is satisfied by

the OLS solution.

4.2.2 Singularity Condition

If the regressors XjN are not linearly independent, XT X is singular and can

not be inverted to calculate the parameters in (4.8) yielding to a not uniquely

defined β̂. However, the multiple solutions are still the projection of y onto the

column space of X, though there are more ways to express this projection, as

there are more ways to define the subspace S.

The linear dependency of the columns of X is a consequence that one or more

qualitative inputs XjN are coded in a redundant fashion. If a couple of columns

are nearly to be linearly dependent, the correlation between the two variables is

high and the matrix X is not full rank. In this case the problem of inverting

XT X is ill-conditioned leading to low accuracy of the estimated vector β̂. A

typical solution for this problem is recoding and/or dropping redundant columns

in X. Other methods, as explained in the next Chapters, provide a regularization

term to cope with this low rank issue.

The most common method to recode redundant columns is the QR decompo-

sition of X:

X = QR (4.12)

where Q is an orthogonal matrix (QT Q = I) of dimension (N x p), while R is

an upper triangular matrix of dimension (p x p). Without going into the details,

these matrices are obtained by recursive orthogonalisation of the inputs, leading

to an orthonormal basis for the column space of X.

The QR decomposition is used to transform model (4.2) in a simpler, more

stable triangular system. From (4.7) we have:

XT Xβ = XT y (4.13)

then, substituting (4.12) in (4.13) we get:

RT QT Q
︸ ︷︷ ︸

I

Rβ = RT QT y

Rβ = QT y

(4.14)
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Using QR decomposition the OLS solution is given by:

β̂ = R−1QT y

ŷ = QQT y
(4.15)

The number of the estimated coefficients that are not zero is equal to the rank

of matrix X and the solution coincide to (4.8) and (4.9) if X has full column

rank.

4.2.3 Statistical Properties

Now suppose the measurement model to be a combination of a deterministic

part (linear combination of regressors) and a random part (zero mean, uncorre-

lated and homoscedastic noise ǫi affecting each measure yi):

yi = X iβ + ǫi ǫ ∼ N(0, σ2)

yi = ytrue + ǫi

(4.16)

The Mean Square Error (MSE) of an estimation ŷ in estimating the true value

ytrue is:

MSE(ŷ) = E
[
(ŷ − ytrue)

2
]

(4.17)

The equation (4.17) can be divided in two terms, one representing the esti-

mation variance and the other the bias (difference between the expected value of

the estimation and the true value ytrue):

MSE(ŷ) = E
[
(ŷ − E [ŷ])2

]
+ (E [ŷ]− ytrue)

2 = Var(ŷ) + Bias(ŷ)2 (4.18)

The Gauss-Markov theorem tells us that the OLS estimator of the parameter

vector β has the smallest variance among all linear unbiased estimators, namely

it presents the lowest possible MSE of the estimate. For this reason OLS is also

known as Best Linear Unbiased Estimator (BLUE).

However, it may well exist a biased estimator with smaller MSE. Since this

estimator is biased it must have a very small variance in order to have smaller

MSE than OLS (that is unbiased). Any method that shrinks or sets to zero some

of the coefficients of the linear combination may result in a biased estimate but

in a lower variance.
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4.3 Implementation of OLS

The OLS estimator can be implemented by the following (Matlab-like nota-

tion) pseudo-code:

load X, y

β̂ ← inv(XT X)XT y;

(or using QR decomposition)

β̂ ← X\y;

ŷ ← Xβ̂







parameter estimation

} target estimation

The Matlab code used in this thesis to implement OLS is reported in Appendix

A.1.

4.4 Tutorial Examples

In this Section we will present a couple of examples that will help us to

highlight the features of OLS in estimating linear regression models.

4.4.1 Example 1 (Diabetes data)

The data for this first example are taken from [53]. They examine the corre-

lation between a number of clinical measures in diabetes patients and a measure

of “diabetes progression” (dp). To model this connection, 442 samples referred

to different subjects are available.

The data have been randomly split in two sets: one form the training set,

which is used to learn the parameters of the model and the other is used to

estimate the prediction error. In particular, the training set contains two thirds

(294 sample) of the total available samples.
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Considering the linear model (4.2):

y = Xβ

the measure of “diabetes progression” represents our target vector y:

y =










dp(1)

dp(2)
...

dp(294)
















dp

while the clinical measures, including age, sex, body mass index (bmi), average

blood pressure (bp), and six serum measurements (sm1,. . .,sm6), represent our

input variables XjN , which compose the matrix X:

X =










age(1) sex(1) | bmi(1) | bp(1) . . . sm6(1)

age(2) sex(2) | bmi(2) | bp(2) . . . sm6(2)
...

... |
... |

...
...

age(294) sex(294)|bmi(294)|bp(294) . . . sm6(294)










⇒ subject 1

⇒ subject 2

⇒subject 294

⇓

bmi

Thus each column of the matrix X contains one of the ten input variables,

while the rows correspond to 294 samples referred to different subjects, forming

the training set.

Our aim is to determine the coefficients vector β that describes the influence

of the clinical variables upon the “diabetes progression”. Since the training data

have been standardised (mean=0 and standard deviation=1), the offset parameter

β0 can be dropped and the unknown vector β has dimension ten:

β =










β1

β2

...

β10










First of all it can be useful to calculate the correlation between the different

input variables.
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sex bmi bp sm1 sm2 sm3 sm4 sm5 sm6

age 0.174 0.185 0.335 0.260 0.219 -0.075 0.204 0.271 0.302

sex - 0.088 0.241 0.035 0.143 -0.379 0.332 0.150 0.208

bmi - - 0.395 0.250 0.261 -0.367 0.414 0.446 0.389

bp - - - 0.242 0.186 -0.179 0.258 0.393 0.390

sm1 - - - - 0.897 0.052 0.542 0.516 0.326

sm2 - - - - - -0.196 0.660 0.318 0.291

sm3 - - - - - - -0.738 -0.399 -0.274

sm4 - - - - - - - 0.618 0.417

sm5 - - - - - - - - 0.465

Table 4.1: correlation between the different input variables. Highlighter the

most elevated correlations.

Sm1 and sm2 are the most correlated variables, while the variables sm3 and

sm4 show a high negative correlation. This can be checked visually plotting the

variables together (see Figure 4.2)

The OLS coefficients have been estimated using the closed form solution (4.8),

obtaining the following coefficients:

age sex bmi bp sm1 sm2 sm3 sm4 sm5 sm6

coeff 0.009 -0.167 0.318 0.190 -0.765 0.498 0.157 0.184 0.485 0.063

Table 4.2: Estimated OLS coefficients.

The highest coefficient absolute value is the one associated with the variable

sm1. However, its contribute to the estimation is not so high, since the coefficient

of sm2 (the most correlated variable with sm1) tends to compensate the sm1

effect. This phenomenon occurs when OLS deals with highly correlated variables:

their coefficients tend to grow large in opposite directions compensating each

others.

This happens with sm3 and sm4 too, but in this case the coefficients are both

positive given the negative correlation between the variables.
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Figure 4.2: Top: Plot of the most correlated variables sm1(blue) and sm2

(green). Bottom: Plot of the most anticorrelated variables sm3 (grey) and sm4

(magenta). Only the first 100 samples are shown.
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4.4.2 Example 2 (Simulated data)

The reference data for this second example were generated by simulating glu-

cose profiles with different time trends. From these profiles, twenty-seven input

variables were obtained simulating Multisensor data, therefore exhibiting high

correlation and including confounding processes such as body temperature. In

particular, twenty-five signals were chosen for modeling MHz data (MHz1,. . . ,

MHz25 which contain glucose information and are highly correlated), one signal

was selected to mimic optical data (Opt very noisy and measures different kinds of

confounding processes), and finally one signal for the effects of body temperature

(Temp) on MHz signals.

The training data were simulated by using a sequence of three glucose profiles,

each having a length of eight hours and showing one or two glycaemic peaks. While

input variables had an elevated sampling frequency (3 sample/minute), reference

data were collected approximately every 15 minutes.

Considering the linear model (4.2):

y = Xβ

and indicating with tend, the time instant associated with the last available sam-

ple, the target vector y contains the simulate glucose samples (SG), collected as

explained before:

y =












SG(0)

SG(16.33)

SG(32.66)
...

SG(tend)


















SG

while matrix X is formed using the Multisensor data (MHz-like, optical and

temperature data); each column of the matrix X contains one of the input va-

riables, while the rows correspond to the time-samples. The number of available

input samples is greater than the number of reference samples, since the first

are collected with higher frequency. However, only the input samples that have a
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corresponding reference can be included in matrix X:

X =












MHz1(0) . . .| MHz25(0) | Temp(0) Opt(0)

MHz1(16.33) . . .|MHz25(16.33)|Temp(16.33) Opt(16.33)

MHz1(32.66) . . .|MHz25(32.66)|Temp(32.66) Opt(32.66)

... |
... |

...
...

MHz1(tend) . . .|MHz25(tend) | Temp(tend) Opt(tend)












⇒time 0

⇒time 16.33

⇒time 32.66

⇒time tend

⇓

MHz25

Our aim is to determine the coefficients vector β that describes the influence

of the simulated Multisensor data upon the glucose profile. Since the training

data have been standardized (mean=0, sd=1), the offset parameter β0 can be

dropped and the unknown vector β has dimension twenty-seven:

β =










β1

β2

...

β27










Since some MHz-simulated data were linear dependent, the matrix X, contai-

ning the input variables, did not present full column rank, in particular its rank

was 22 (< 27 columns). Consequently, the OLS solution was not unique and the

closed form solution (4.8) did not exist. To solve this low rank issue the OLS

estimation was calculated using QR decomposition.

Table 4.3 shows the estimated OLS coefficients.

MHz1 MHz2 MHz3 MHz4 MHz5 MHz6 MHz7 MHz8 MHz9

coeff 39.974 0.000 0.000 0.000 0.000 3.381 -8.656 -1.951 -6.151

MHz10 MHz11 MHz12 MHz13 MHz14 MHz15 MHz16 MHz17 MHz18

coeff -14.849 40.897 26.916 -24.356 2.557 -5.082 -23.234 54.732 -53.089

MHz19 MHz20 MHz21 MHz22 MHz23 MHz24 MHz25 Temp Opt

coeff -4.424 -27.901 0.000 1.410 4.014 1.543 -12.167 2.397 0.071

Table 4.3: Estimated OLS coefficients.

As discussed for the previous example, the coefficients associated to high cor-

related variables (MHz) show elevate magnitude with opposite signs.
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In the following Figure two variables that compensate each others are shown.
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Figure 4.3: Highly correlated variables of second simulated glucose profile:

MHz12 (blue) vs. MHz13 (green) - first 250 minutes only.

4.5 Concluding Remarks

OLS is the most popular estimation method for linear regression models. The

OLS solution is mathematically achieved by minimizing the residual sum of squa-

res. This loss function has a quadratic form that allows to calculate the solution

in a closed form in a very efficient way.

All these advantages make OLS an attractive estimator for linear models.

However, it can lead to unsatisfactory results in several cases. First of all, the

solution can not be calculated or could be calculated only with a small precision,

when there is a strong correlation between two, or more, inputs variables. In this

case, the most common solution is to remove the redundant variables. In addition,

it may happen that a coefficient associated with a variable results very large, while

another coefficient (associated with a variable correlated with the previous one)

compensates it in the opposite direction (canceling the first variable’s effect). As

a consequence, the information carried by one variable is deleted by the other.
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However, it may happen that the noise contained in each variable, instead of

being canceled, adds up leading to an increased variance in the estimation.



Chapter 5

Partial Least Squares

As said in Chapter 3, algorithms for solving linear regression generally suffer

from overfitting when they deal with high-dimensional datasets. This is the case

of the OLS method described in the previous Chapter.

There are different kinds of estimation methods that try to deal with the

overfitting problem. In this Chapter, we will present a regression technique based

on the dimensionality reduction, i.e. it uses M (≤ p ) new regressors zk calculated

from a linear combination of the original ones XjN . These new regressors are

combined, using a linear model, to estimate the target y:

ŷ = Zθ (5.1)

where Z is a (N x M) matrix, whose columns contain the regressors zk and θ is

the M dimensional vector of the related coefficients, which have to be estimated

along with the new regressors zk.

This technique, which goes under the name of Partial Least Squares (PLS),

can be implemented in several ways, depending on how the linear combinations

are constructed and is usually suitable when data in matrix X include a large

number of very correlated inputs. Since the value of M , describing how many new

predictors are used in the regression problem, is fixed by the user, these methods

can allow to tune model complexity according to the problem.

As the new regressors zk are linearly related to the original ones, the model

of (5.1) can still be expressed as a function of the original inputs XjN :

ŷ = Xβ̂
PLS

(5.2)

where β̂
PLS

is the vector of coefficients estimated using the PLS technique.
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This Chapter will present the characterisation of PLS construction of the new

regressors zk and the related coefficients estimation procedure. Then, with the

support of the same two simple examples of Chapter 4, advantages and drawbacks

of PLS will be shown and the results will be compared with those obtained by

using OLS. Part of this material can be referred to [52].

5.1 Definition of PLS

In this Section we will described the PLS estimation procedure. First its clas-

sical derivation will be present, followed by an alternative implementation.

5.1.1 Derivation of the PLS estimator

Consider a training set consisting of a reference vector y (N x 1), containing

N samples of the target at different time instants, and the corresponding input

matrix X (N x p), whose rows represent the input variables X ip at the same

time instants, while each column XjN contains all the samples referred to the

j-th variable (see Section 3.1).

Since PLS is not scale invariant, i.e. the estimates depend on the scaling of

the inputs, before starting the construction of the M new regressors z1, z2,. . . ,

zM , the input variables XjN have to be normalized, i.e. zero mean and unitary

variance. To avoid the introduction of a new symbol below, we assume that each

input variable XjN is normalized.

As mentioned before, PLS iteratively constructs a set of linear combinations

of the inputs, using both X and y. For this construction the original inputs XjN

are weighted according to their univariate effect on y.

Since PLS is an iterative procedure in which the input variables XjN are

updated at every iteration, it is useful to add a superscript to the notation indi-

cating the iteration number. Hence, X
(k)
jN represent the j-th input variables at the

k-th iteration and X
(0)
jN correspond to the original input variables XjN . The same

superscript is added to the estimated target variable ŷ, as it is also updated at

every iteration. In particular, at first, ŷ equals the mean of the reference, repre-

sented using ȳ (ŷ(0) = ȳ). Then, the estimate ŷ is adjusted during each iteration,
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in which a new direction zk is constructed.

PLS begins by computing the correlation ϕ̂1j between the current input va-

riables X
(0)
jN and the reference y:

ϕ̂1j = X
(0)
jNy (5.3)

where the first value of the subscript of ϕ̂ indicates the iteration, while the second

stands for the variable j.

Each current input variable X
(0)
jN is weighted by its corresponding correlation

ϕ̂1j in (5.3) to construct the first “derived” input z1 (N x 1):

z1 =

p
∑

j=1

ϕ̂1jX
(0)
jN (5.4)

where z1 is called the first partial least squares direction.

Subsequently, the reference y is regressed on z1, obtaining the scalar coefficient

θ̂1:

θ̂1 =
zT

1 y

zT
1 z1

(5.5)

which is the OLS solution to the regression problem where y is the reference and

z1 is the (only) input variable, compare eq. (5.5) with eq. (4.8).

The coefficient θ̂1 in (5.5) is used as the multiplier of z1 in (5.4) to update the

reference estimate ŷ:

ŷ(1) = ŷ(0) + θ̂1z1 (5.6)

Using the coefficient θ̂1, each current input variables x
(0)
jN is orthogonalized

with respect to z1, i.e. its contribution to z1 is subtracted from it:

X
(1)
jN = X

(0)
jN − γjz1 where γj =

zT
1 X

(0)
jN

zT
1 z1

(5.7)

Then, the process continues until M ≤ p directions have been obtained.

Since the zk’s, with k = [1, 2, . . . ,M ], are linear in the original inputs (see eq.

(5.4) and (5.7)), the reference estimation after M steps ŷ(M) can be also computed

as:

ŷ(M) = Xβ̂
PLS

(5.8)

recovering the coefficients β̂
PLS

from the sequence of PLS transformation.

As for OLS, once the coefficients β̂
PLS

are estimated from the training set,

they can be used in the linear model to predict unseen data through a linear
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combination of the inputs. It is worth noting that, if M = p (i.e. the number of

the PLS directions zk equals the number of the original input XjN), the PLS

solution is equivalent to the OLS estimates.

5.1.2 Alternative implementation of PLS

Other algorithms have been developed allowing a direct estimation of the

coefficients β̂
PLS

. Without going into details, it is worth mentioning the SIMPLS

algorithm [54] based on the input approximation using score and loading matrices:

X = ZXT
l + E (5.9)

In this case, Z is the (N x M) matrix of the M extracted score vectors (PLS

directions zk), the (p x M) matrix X l represents the matrix of loadings and E

the matrix of residuals. The approximation of the target is like in (5.1):

y = Zθ + e (5.10)

The key of this algorithm is that it directly estimates a matrix of weights W ,

representing the relationship between the PLS direction in Z with the original

matrix X:

XW = Z (5.11)

Then, substituting (5.11) into (5.10), one gets:

y = XWθ + e (5.12)

the approximation of the reference y is directly related to the original inputs

X. Hence, ignoring the contribution of the residual matrix e, the PLS reference

estimation ŷ is obtained as:

ŷ = XWθ (5.13)

Comparing (5.13) with (5.8), one gets:

β̂
PLS

= Wθ (5.14)

Hence, the matrix of weight W allows to calculate directly the estimation of

the PLS coefficients β̂
PLS

, without recovering them from the sequence of PLS

transformation by a back tracking. In fact, W describes how to combine the

coefficients of the new regressors zk, contained in the matrix θ.
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5.2 Geometrical Properties of PLS

It can be shown that PLS seeks directions that have high variance and high

correlation with the response variable. Hence, the k-th PLS direction solves the

problem:

max
α

corr2(y,Xα)var(Xα) (5.15)

with the two constraints:

‖α‖ = 1 (5.16)

αSϕ̂l = 0 with l = 1, 2, . . . , k − 1 (5.17)

where S is the sample covariance matrix of XjN . The condition (5.17) ensures

that the next direction zk is uncorrelated with all the previous ones.

From (5.15), it can be observed that the first chosen PLS direction z1 coincides

with the particular vector that lies in the X space, represented using S, and

makes a compromise between its variation and its correlation with the response

y. Similarly, from (5.7) we notice that the next space S(1), spanned by the updated

input variables X
(1)
jN , is the subspace of S orthogonal to the first PLS direction z1.

As before, the second PLS direction z2 is that maximising the (5.15) and lying in

this subspace S(1). Successive directions zk’s are calculated in a similar manner,

with the residual subspace S(k−1) determined by removing from the space S, the

space defined by the previous PLS directions.

Example

In the simple case of two different input variables, i.e. X13 and X23, each

having three time samples, they span a plane S in the three-dimensional space.

The first PLS direction z1 is that vector that lies on S and maximizes (5.15).

Once this first direction has been estimated, the second one lies on the subspace

of S orthogonal to z1. In this particular case, the previously defined subspace

correspond to the line orthogonal to z1.
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5.3 Implementation of PLS

The PLS estimator can be implemented by the following (Matlab-like nota-

tion) pseudo-code:

load X, y

normalize X,y

ŷ(0) ← 0

X(0) ← X

for k = 1 to M do

ϕ̂kj ← X
(k−1)T
jN y

zk ←

p
∑

j=1

ϕ̂kjX
(k−1)T
jN

θ̂k ←
zT

k y

zT
k zk

ŷ(k) ← ŷ(k−1) + θ̂kzk

γj ←
zT

k X
(k−1)
jN

zT
k zk

X
(k+1)
jN ← X

(k)
jN − γjzk

end for

→ load data

→ normalize data

}

initialization







main loop

The Matlab code used in this thesis to implement PLS is reported in Appendix

A.2.
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5.4 Tutorial Examples

The same examples used in the Chapter 4 will be used below to highlight the

features of PLS in estimating linear regression models and to compare it with

OLS estimation.

5.4.1 Example 1 (Diabetes data)

As said in Chapter 4, the data for this example examine the correlation bet-

ween a number of clinical measures in diabetic patients and a measure of “diabetes

progression” (dp). In Section 4.4.1, it was described how to form matrix X and

vector y involved in the regression problem. In addition, OLS estimates were pre-

sented and commented. Here the PLS estimation will be illustrated and compared

with OLS’s. Hence, the division of the data into training and test set is the same

as in Section 4.4.1.

As PLS estimation is not scale invariant, before applying the algorithm, the

matrices X and y have to be normalized. Since in Section 4.4.1 the data were

normalized as well, a direct comparison of the estimated coefficients will be pos-

sible.

Before estimating the PLS coefficients we have to choose model complexity,

as fully described in Chapter 3. Briefly, the test error curve as a function of the

model complexity (for PLS the number of new regressors or directions) has to

be estimated. Hence, the model complexity is selected using the “one-standard

error” rule (Section 3.3.2), which indicates as best model the most parsimonious

one, whose error is less then the minimum plus one time its standard deviation.

The test error curve is estimated using 7-fold cross-validation, described in

Section 3.3.2. Briefly, the training data are randomly split in 7 parts of appro-

ximately equal size (in this case sets of 40 samples are formed). Iteratively, one

part is left aside to calculate the test error (using MSE), while the other 6 parts

are used to “learn” the coefficients of the model. In this way a test error upon

each 7-th part is calculated and, averaging these values, an estimation of the test

error is obtained.
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In Figure 5.1 the test curve is shown. In this case, instead of using the mean

operator to average the MSE values obtained during the cross-validation, the

median operator was used. This choice allows to obtain a better estimation of

the MSE average, as only 7 sample of MSE are calculated during the 7-fold

cross-validation. Similarly, the mean absolute deviance1 was used instead of the

standard deviation.

In this case, the selected model correspond to the minimum value of the test

error curve at two PLS directions. Hence, the value of M is set to 2.
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Figure 5.1: In blue the test error curve with its confidence intervals, obtained

using 7-fold cross-validation. The red cross indicates the minimum value and the

magenta dashed line represents the one standard error rule limit.

The training error curve cannot be used to estimate model complexity, given

its monotonically decreasing behaviour. This can be seen in Figure 5.2, where

training vs. test error curves are plotted allowing a direct comparison. However,

the training error curve for this particular dataset has a L-form with an edge at

M = 2, which agrees with the results obtained with the test error curve.

After having estimate M , the PLS estimates were computed. In Table 5.1 the

1Median Absolute Deviation of X corresponds to this formula: median(abs(X-median(X)))



5.4. Tutorial Examples 75

2 4 6 8 10
0.45

0.5

0.55

0.6

0.65

0.7

0.75

# PLS directions

m
se

Figure 5.2: In green the training error curve, and in blue the test error curve

with its confidence intervals, obtained using 7-fold cross-validation. The red

cross indicates the minimum value and the magenta dashed line represents the

one standard error rule limit.

values of the estimated W matrix (10 x 2) are shown. This matrix connects the

original input X with the PLS direction Z, using eq (5.11).

-0.005 -0.006

0.000 -0.025

-0.015 0.026

-0.011 0.014

-0.005 -0.024

-0.005 -0.027

0.011 -0.009

-0.011 -0.007

-0.014 0.013

-0.010 0.002

Table 5.1: Estimated values of the matrix W .

However, instead of analysing the PLS directions, it is interesting to compare
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the estimated OLS coefficients β̂
OLS

with the PLS ones β̂
PLS

, as reported in

Table 5.2:

age sex bmi bp sm1 sm2 sm3 sm4 sm5 sm6

OLS 0.009 -0.167 0.318 0.190 -0.765 0.498 0.157 0.184 0.485 0.063

PLS 0.022 -0.126 0.297 0.192 -0.069 -0.088 -0.163 0.084 0.216 0.119

Table 5.2: Estimated OLS coefficients vs estimated PLS coefficients.

In Chapter 4 we noticed that, using the OLS estimator, the coefficients of the

high correlated variables tend to grow large in opposite directions compensating

each others. It was the case of sm1 and sm2, which are positively correlated, and

of sm3 and sm4, which are negatively correlated. This is not the case using the

PLS estimator, since the contributions of the previously mentioned variables add

up.

From Table 5.2, we can also notice that the estimated PLS coefficients have,

on average, a smaller absolute value of the OLS ones. This means that, using two

PLS directions, some kind of regularisation has been performed.

As described in Chapter 3, to evaluate the performance of the two different

methods, it is convenient to analyse their behaviour in predicting unseen data.

Hence, the previously estimated coefficients are applied on inputs of the test

set and the result is compared with the test reference. The predictions for both

methods are plotted in Figure 5.3.

Visually, the methods have similar performances. However, it must be noted

that PLS achieves results similar to OLS by using only two directions.

To quantify the performance of the two methods, some indicators must be

used, as described in Chapter 3. In this case, to summarize how well the estimators

predict the output, MSE indicator was used as shown in Table 5.3, confirming

that the two estimators have similar performances.

MSE

OLS 2842

PLS 2873

Table 5.3: MSE indicator for OLS and PLS on test data.
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Figure 5.3: External validation using OLS and PLS (first 76 samples). In black

the reference values, in red OLS predictions and in blue PLS predictions.

5.4.2 Example 2 (Simulated data)

As said in Chapter 4, the reference data for this second example were gene-

rated simulating glucose profiles with different time trends. From these profiles,

twenty-seven input variables were obtained simulating Multisensor data, there-

fore exhibiting high correlation and including confounding processes such as body

temperature.

The training data were simulated using a sequence of three glucose profiles,

each having a length of eight hours and showing one or two glycaemic peaks.

While input variables had an elevated sampling frequency (3 sample/minute),

reference data were collected approximately every 15 minutes.

In Section 4.4.2 was described how to form the matrix X and the vector y

involved in the regression problem. In addition, the OLS estimate was presented

and commented. Here the PLS estimation will be illustrated and compared with

OLS’s.



78 5. Partial Least Squares

As PLS algorithm is not scale invariant, before applying the algorithm, the

matrices X and y have to be normalized. In Section 4.4.2 the data has been also

normalised, allowing a direct comparison of the estimated coefficients.

Before estimating the PLS coefficients we have to choose model complexity.

The model complexity was fixed using the test error curve, estimated from 3-fold

cross-validation. Dividing the training set into 3 groups, each contains the same

number of samples as one glucose profiles.

Figure 5.4 shows the test curve. As in Example 1, instead of using the mean

operator to average the MSE values obtained during the cross-validation, the

median operator was used. Similarly, the mean absolute deviance was used instead

of the standard deviation.
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Figure 5.4: In blue the test error curve with its confidence intervals, obtained

using 3-fold cross-validation. The red cross indicates the minimum value and the

magenta dashed line represents the one standard error rule limit.

Notably, the maximum number M of PLS directions in Figure 5.4 is 22 and

does not correspond to the number p (27) of original input variables. The reason

of this choice lies in the rank of matrix X. In this case this rank is 22, which means
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that the space spanned by its columns has not dimension 27, but 22. As said in

Section 5.2, the 23-th PLS direction lies in the subspace obtained removing from

the column space of X, the space spanned by the previous 22 PLS directions.

Since the column space of X has dimension 22, removing the space spanned by

the previous 22 PLS directions, one gets a subspace of dimension 0. Hence, it has

not sense to calculate further PLS directions.

Going back to the choice of the model complexity, from Figure 5.4 it can be

deduced that cross-validation selects 7 as the best value of M .

As for Example 1, instead of analysing the PLS directions, it is interesting

to compare the estimated OLS coefficients β̂
OLS

against the PLS ones β̂
OLS

, as

reported in Table 5.4:

MHz1 MHz2 MHz3 MHz4 MHz5 MHz6 MHz7 MHz8 MHz9

OLS 39.974 0.000 0.000 0.000 0.000 3.381 -8.656 -1.951 -6.151

PLS -0.250 0.398 0.438 0.137 -0.636 -0.583 -0.337 0.002 1.471

MHz10 MHz11 MHz12 MHz13 MHz14 MHz15 MHz16 MHz17 MHz18

OLS -14.849 40.897 26.916 -24.356 2.557 -5.082 -23.234 54.732 -53.089

PLS 2.235 0.411 -0.168 -0.210 0.046 0.595 0.485 0.322 0.110

MHz19 MHz20 MHz21 MHz22 MHz23 MHz24 MHz25 Temp Opt

OLS -4.424 -27.901 0.000 1.410 4.014 1.543 -12.167 2.397 0.071

PLS -0.748 -1.357 -0.250 0.398 0.438 0.137 -0.636 2.429 0.074

Table 5.4: Estimated OLS coefficients vs estimated PLS coefficients.

As discussed in the previous example, the OLS coefficients associated to high

correlated variables (MHz) show elevate magnitude with opposite signs. In ad-

dition, using the PLS estimator, a sort of regularisation is performed and PLS

coefficients show significantly smaller magnitude.

The performance of the two different methods was evaluated using a test

set, composed by two simulated glucose profiles. Hence, the previously estimated

coefficients are applied on inputs of the test set and the result is compared with

the test reference. The predictions for both methods are plotted in Figure 5.5.

Combining the measured inputs of the test set using the estimated coefficients,

the prediction can be also calculated in the time instants that have not the cor-

responding reference. However, the prediction at these time instants cannot be

used for calculating the indicators for the model assessment described in Chapter
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Figure 5.5: External validation using OLS and PLS. In black stars the

reference values, in red OLS predictions and in blue PLS predictions.

3. In fact, each prediction value, used to calculate those indicators, must have the

corresponding reference, since they quantify in different manners how well the

prediction approximates the reference.

Visually, the methods have similar performances. However, it must be taken

into account that PLS achieves results similar to OLS by using only 7 directions.

In this case, even if each PLS direction is estimated combining all the original

inputs, PLS is less noisy than OLS. This may be due to the shrinkage of the

coefficients or to the fact that there is only one very noisy component, the optical

one, and it has less influence on the construction of the PLS directions. This last

observation is confirmed by observing the last row of the matrix W :

W (end, :) =
[

−0.0009 0.0003 −0.0034 0.0488 −0.1094 0.0014 0.0016
]

which represents the weight of the optical component in the 7 PLS directions.
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To quantify the performance of the two methods the MSE indicator was used

as shown in Table 5.5.

MSE

OLS 0.0032

PLS 0.0030

Table 5.5: MSE indicator for OLS and PLS on test data.

In this case, PLS has a better performance of the OLS. This confirms that

probably OLS suffers from overfitting and PLS has partially solved the problem.

5.5 Concluding Remarks

PLS is a regression technique based on dimensionality reduction, which uses

M new regressors, called PLS directions, calculated from a linear combination of

the original input variables depending on their univariate influence on the target.

The PLS solution is iteratively obtained and at each iteration a new PLS direction

is estimated.

This technique for estimating linear model tries to avoid the OLS problem

of overfitting, building orthogonal PLS direction. A further feature of the PLS

directions is that they are estimated maximizing both their variance and the cor-

relation with the reference. In this way, the PLS directions try to include the

informative components of the original inputs, considering also their relation-

ship with the reference. This may be an advantage, since, as noticed from the

examples, much less PLS directions are sufficient to obtain similar or even bet-

ter performance than OLS. However, since all the original input variables are

included in each PLS direction, also some noise may affect it.





Chapter 6

Least Absolute Shrinkage and

Selection Operator

In this Chapter we will present a regression technique that uses regularisation,

adding a term to the function that has to be minimized. The methods using this

technique are commonly called regularisation methods or shrinkage methods.

This Chapter will present the characterisation of the LASSO method. Then,

the same two examples of Chapter 4 and 5 will be used to show advantages and

drawbacks of LASSO. The use of the same examples allows a direct compari-

son with OLS estimation procedure presented in Chapter 4 and PLS estimation

procedure presented in Chapter 5.

6.1 Definition of LASSO

In this Section we will described the LASSO estimation procedure. First the

LASSO formulation will be presented, followed by an explanation of its proble-

matic calculation.

6.1.1 Rationale

It is useful to recall that OLS estimates the coefficients of the linear regression

model:

yi = β0 +

p
∑

j=1

Xijβj = β0 + X ipβ (6.1)
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by minimising the RSS:

β̂
OLS

= arg min
β

N∑

i=1

(

yi − β0 −

p
∑

j=1

Xijβj

)2

(6.2)

see eqs. (4.4), (4.8).

To avoid overfitting, shrinkage methods add a regularisation term F (β) to

the minimization term present in the cost function of (6.2), putting a price on β

in order to avoid the coefficients to become, in absolute value, too big, as may

happen with OLS (see Chapter 4). Hence, the function to minimise turns into:

L(β) = RSS(β) + F (β) (6.3)

and the estimated coefficients become:

β̂
REG

= arg min
β

(RSS(β) + F (β)) (6.4)

The result is that some coefficients (associated with less informative variables)

shrink to zero. Typical regression techniques exploiting regularisation are Ridge

Regression and Least Absolute Shrinkage and Selection Operator (LASSO)[52].

For example, Ridge Regression shrinks the coefficients β by imposing a penalty

on their size, using a regularization term consisting in the coefficients sum of

squares:

β̂
RIDGE

= arg min
β

(

RSS(β) + λ

p
∑

j=1

β2
j

)

(6.5)

while the regularization term of LASSO consists in the sum of coefficients absolute

value:

β̂
LASSO

= arg min
β

(

RSS(β) + λ

p
∑

j=1

|βj|

)

(6.6)

λ(≥ 0) is a complexity parameter that controls the amount of shrinkage; in parti-

cular, the larger λ, the greater the amount of shrinkage and the coefficients tend

to zero.

The regularisation terms added in (6.5) and (6.6) are very similar. However,

while in the case of ridge regression the minimisation function L(β) has still a

quadratic form allowing a closed form solution, in the case of LASSO the regu-

larisation term introduces a non linearity that does not allow to recover a closed

form expression for the solution.
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6.1.2 Calculation of LASSO estimates

From eq. (6.6), LASSO estimate is:

β̂
LASSO

= arg min
β





N∑

i=1

(

yi − β0 −

p
∑

j=1

Xijβj

)2

+ λ

p
∑

j=1

|βj|



 (6.7)

Problem (6.7) can also be formulated as a constrained optimization problem

as follows:

β̂
LASSO

= arg min
β

N∑

i=1

(

yi − β0 −

p
∑

j=1

Xijβj

)2

subject to

p
∑

j=1

|βj| ≤ t

(6.8)

where t is inversely related to λ.

Because of the nature of the constrains, making t sufficiently small will cause

some of the coefficients to be exactly zero, leading to a sparse solution.

To calculate the OLS solution in Chapter 4 we have set the first derivative

of RSS to zero, in order to find the minimum of that function; thus, it seems

reasonable to make the same for finding the LASSO solution. However, equation

(6.7) is not differentiable when β contains zero values. Hence, an exact solution

in closed form is not available and iterative methods are needed to compute the

solution. As a consequence, computing the LASSO solution is a quadratic pro-

gramming problem. This has lead to a wide variety of approaches proposed in the

literature to solve the LASSO problem. In the next section, some algorithms for

computing LASSO solution in an efficient way will be briefly described; particular

attention will be given to the algorithm that has been chosen to analyze our data.
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6.2 Some Numerical Methods for Computing

LASSO Estimates

All the methods presented in this section compute the LASSO solution using

Newton’s method for unconstrained optimization. This method updates the vec-

tor of coefficients β at each iteration using a descent direction of the form:

βk+1 ← βk − α∇L(βk)/∇
2L(βk) (6.9)

where the subscript indicates the iteration.

Since the gradient ∇L(βk) does not exist if some coefficients βi are zero,

different strategies were proposed to solve this problem. Here we propose a brief

review of these methods, giving only the general flavour (see the references for

the mathematical details). In Section 6.3, we will describe a modification of the

Least Angle Regression (LAR) procedure for the LASSO implementation along

with its interpretation.

6.2.1 Sub-gradient Methods

The optimization strategies of this kind use sub-gradients of the function at

non-differentiable points. The absolute value function is differentiable everywhere

except in zero. Its differential is given by the sign function sgn(x), which takes

on the sign of x. Hence, the minimisation function for LASSO:

L(β) =
N∑

i=1

(

yi − β0 −

p
∑

j=1

Xijβj

)2

+ λ

p
∑

j=1

|βj| (6.10)

is differentiable except in zero. Considering that the sign function in zero can take

any value between -1 and +1, the stationarity conditions (first derivative sets to

zero) turns into:
{

∇iRSS(β) + λsgn(βi) = 0 |βi| > 0

|∇iRSS(β)| ≤ λ βi = 0
(6.11)

and the steepest descent direction, which is used as sub-gradient in iteratively

finding the best solution, becomes:

∇
s
iL(β) =







∇iRSS(β) + λsgn(βi) |βi| > 0

∇iRSS(β) + λ βi = 0,∇iRSS(β) < −λ

∇iRSS(β)− λ βi = 0,∇iRSS(β) > λ

0 βi = 0,−λ ≤∇iRSS(β) ≤ λ

(6.12)
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Without going into details, we simply mention that the algorithms based on

sub-gradient can be classified in three different strategies, according to which

variables are optimized at every iteration: coordinate descent methods[55][56],

that optimize over one variable at a time, active set methods[57][58][59], that

optimize all the non-zero variables at every iteration and orthant-wise descent

methods[60], that are similar to the previous but adds two projection operators.

6.2.2 Unconstrained approximation methods

These methods replace the minimization function L(β) with a twice differen-

tiable surrogate objective function, whose minimiser is sufficiently close to the

minimiser of L(β). The main advantage of this approach is that, since the re-

placed function is twice differentiable, we can directly apply an unconstrained

optimization method to minimize the function. For example, in [61] the L1-norm

constrained is replaced with the multi-quadratic functions:

G(β) = RSS(β) + λ

p
∑

i=1

√

β2
i + ǫ (6.13)

whose limit for ǫ → 0+ correspond to the function L(β). Rather than replacing

the regulariser with a fixed smooth function, at each iteration bound optimiza-

tion methods replace it with a convex upper bounding function. For example,

the absolute value function can be approximated using the upper bound of this

inequality:

|βi| ≤
1

2

β2
i

|γi|
+

1

2
|γi| (6.14)

where γi represent the value of βi at the previous iteration. However, this appro-

ximation is undefined if γi is zero. To solve this problem, the algorithm must be

initialised with non-zero coefficients and a variable is typically removed from the

problem if it becomes sufficiently close to zero [62][63].

6.2.3 Constrained optimization methods

These methods re-formulate problem (6.7) as a differentiable one with con-

straints. In this case, each variable βi is represented as the sum of two variables:

βi = β+
i − β−

i (6.15)
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where β+
i ≥ 0 and β−

i ≥ 0. In this formulation the absolute value function

becomes:

|βi| = β+
i + β−

i (6.16)

An obvious drawback of this approach is that it doubles the number of variables

in the optimization problem.

Different methods are based on this approach, for instance: log-barrier[64],

interior-point[65], projected Newton[66] and two-metric projection[67].

6.3 Least Angle Regression Method for Compu-

ting LASSO Estimates

LAR is an iterative method intimately connected with LASSO. In fact it pro-

vides an extremely efficient algorithm for computing the entire LASSO path, i.e.

the behaviour of the coefficients β for different values of the complexity parameter

λ.

Since this optimisation method will be later used to find the LASSO solution

in our dataset, it will be described in detail. First the LAR procedure will be

presented, then, the modification for the LASSO implementation along with its

interpretation will also be illustrated.

6.3.1 The LAR procedure

It is useful to define the active set Ak (of dimension m) as the set of the

non-zero coefficients at the k-th step. When it is used as a subscript for a matrix

or a vector, it selects the values connected to the active variables at the k-th step.

Hence, XAk
is the sub-matrix of X composed by the active variables and βAk

is

the coefficient vector for these variables. To simplify the notation, the subscript

k will be dropped, if it is clear that we are referring to the k-th step.

The LAR solution is computed following these steps:

1. set all the coefficients βi to zero;

2. choose the variable XjN most correlated with the reference y;
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3. move the correspondent coefficient βj from zero towards its OLS value βOLS
j

(in this way the correlation of the variable XjN with the current residual

r = y −XjNβj decreases);

4. the process continues until another variable X lN has as much correlation

with the current residual as XjN has;

5. the variable X lN is added to the active set Ak;

6. move the coefficients βAk
towards their OLS values, in such a way that their

correlation with the current residual r = y −XAk
βAk

continues to be the

same;

7. repeat steps 4-6 until Ak has reached the desired dimension or until all

the variables have been included to Ak (in this case the OLS solution is

obtained).

Figure 6.1 shows an example of the progression of the absolute correlations

during each step of the LAR procedure. The labels at the top of the plot indicate

which variable enters the active set at each step.

By construction, the coefficients in LAR change in a piecewise linear fashion.

Note that we do not need to take small steps and re-check the correlation in

step 4. In fact, using the knowledge of the covariance of the predictors and the

piecewise linearity of the algorithm, the exact step length can be calculated at

the beginning of each step.

6.3.2 The LAR implementation

Now that we have understood the guidelines of the LAR algorithm, we can

go into its mathematical details. First of all, let us define some useful notation.

XsA is the same as XAk
, but each regressor is multiplied by the sign sj of its

correlation with the current residual r:

XsA =
[

. . . sjXjN . . .
]

(6.17)

where XjN ∈ Ak. For simplicity, let’s define GA (m x m) as:

GA = XT
sAXsA (6.18)
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Figure 6.1: Progression of the absolute correlations during each step of the

LAR procedure [52].

and the scalar AA as:

AA =
(
1T
AGA1A

)−1/2
(6.19)

where 1A (m x 1) is a column vector of ones.

Since the LAR procedure is not scale invariant, data have to be normalized

before starting the iterative procedure. Hence, the initial target estimation ŷ0 is

set to zero. Let ŷk the current target estimation at the k-th step, the current

correlation c (m x 1) of the predictors with the current residual can be written

as:

c = XT (y − ŷk) (6.20)

The current active set Ak includes all the variables, whose absolute correlation

correspond to the maximum of all the absolute correlations Cmax:

Ak = {j : |cj| = Cmax} where Cmax = maxj {|cj|} (6.21)

The solution at the next step updates as follows:

ŷk+1 = ŷk + γuA (6.22)
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where uA is a versor (‖uA‖ = 1) defining the direction to which the current

target estimation ŷk is moved. This direction is calculated in such a way that

the correlation of each active variables with the current residual vector equals the

correlation of the other active variables. Hence, it seem reasonable that the versor

uA makes equal angles with the columns of XsA. The versor uA is calculated as

follows:

uA = XsAwA where wA = AAG−1
A

1A (m x 1) (6.23)

and, since it is an equiangular vector, it enjoys this property:

XT
sAuA = AA1A (6.24)

Instead, the coefficients updates as follows:

β̂k+1 = β̂k + γdA (6.25)

where dA (m x 1) is the vector equaling sjwAj for j ∈ Ak (note the connection

with the versor uA in (6.23) ) and zero elsewhere.

As said before, γ can be exactly computed as to update the variables to the

point in which another variable enter the active set. In particular, γ is calculated

as follows:

γ = min
j∈Ac

+

{
Cmax − cj

AA − aj

,
Cmax + cj

AA + aj

}

where aj = XT
jNuA (6.26)

where min + indicates the minimum between the positive values, being γ > 0.

The explanation of (6.26) is obtained by equalling the current correlation of a

variable that is not in the active set with the correlation of the active variables.

In particular, the current correlation of the j-th variable is:

cj(γ) = XT
jN(y − ŷk+1) (6.27)

then, substituting (6.22) in (6.27) one gets:

cj(γ) = XT
jN(y − ŷk − γuA) (6.28)

which using (6.20) and (6.26), becomes:

cj(γ) = cj − γaj (6.29)

If the absolute value of (6.29) is referred to an active set variable, using (6.21)

and (6.24), it becomes:

|cj(γ)| = Cmax − γAA (6.30)
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then, equalling (6.29) with (6.30) one gets:
{

Cmax − γAA = cj − γaj

−Cmax + γAA = cj − γaj

(6.31)

Solving the set of equations in (6.31) for γ, one obtains the values of γ for which

the correlation of a variable that is not in the active set equals the correlation of

the active variables. Since we search the minimum positive value of γ, correspon-

ding to the step of the first non active variable equalling the correlation of the

active ones, we get the (6.26).

6.3.3 LAR vs. LASSO

In Figure 6.2 the coefficient profiles are plotted as model complexity increases

for both LAR (left) and LASSO (right). It can be noticed that the profiles are

similar to each other, except when a non-zero variable hits zero (highlighted by

a red circle in Figure 6.2). In fact, a small modification in LAR procedure allows

implementing the LASSO path. The modification is the following: if a non-zero

coefficient hits zero, drop its variable from the active set and recomputed the

current joint least squares direction.

Figure 6.2: Left : LAR coefficients profile as the model complexity increases.

Right : LASSO coefficients profile as the model complexity increases [52].

Below we explain why LAR and LASSO are so similar.
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The correlation of an active set variable with the current residual can be

expressed as:

XT
jp(y −Xβ) = γsj ∀j ∈ Ak (6.32)

where sj ∈ {−1, 1} indicates the sign of the correlation and γ is the absolute

value of the correlation.

Since the non-active variables are less correlated to the current residual than

the active variables, we can write:

∣
∣XT

lp(y −Xβ)
∣
∣ ≤ γ ∀k /∈ Ak (6.33)

The LASSO minimisation function:

L(β) =
1

2
‖y −Xβ‖2 + λ |β| (6.34)

is differentiable for the active variables. For these variables the stationarity con-

ditions (first derivative sets to zero) are:

XT
jp(y −Xβ) = λsgn(βj) ∀j ∈ Ak (6.35)

which correspond to (6.32) if the sign of the correlation sj matches the sign of

the coefficients βj. That is why the LAR algorithm and the LASSO start to differ

when an active coefficient passes through zero. The LASSO condition (6.34) is

violated for that variable, which is, thus, kicked out of the active set.

Finally, the stationarity conditions for the non-active variables are:

∣
∣XT

lp(y −Xβ)
∣
∣ ≤ γ ∀k /∈ Ak (6.36)

which correspond to the LAR equation (6.33).

6.3.4 LASSO Implementation by a LAR modification

The only modification of the LAR procedure for implementing LASSO is a

checking of the γ value calculated in (6.26). In fact, we have to make sure that

during the LAR step none of the coefficients β changes its sign. In particular,

starting from the updating of the coefficients in (6.26), here reported:

β̂k+1 = β̂k + γdA

a βj will change sign at:

γj = −
β̂j

dj

(6.37)
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The first change occurs at:

γ̃ = min
γj>0
{γj} (6.38)

corresponding to the j̃-th variable.

Hence, if γ̃ > γ calculated in (6.26), no sign change will occur and the LAR

step does not violate any LASSO condition. Contrarily, if in (6.26) γ̃ ≤ γ , the up-

dated coefficients β̂k+1 cannot be a LASSO solution. To avoid this, the LAR step

is not completed, but it is stopped at γ̃ = γ . Then, the j̃-th variable is removed

from the active set and a new equiangular direction in (6.23) is calculated.

6.4 Properties of LASSO

6.4.1 Geometrical Properties

As for OLS in Chapter 4, we now consider the case of two different input

variables X13 and X23, each having three time samples.

As described in the previous section, LAR builds up the estimates in successive

steps, each step adding one regressor to the model, according to the value of its

correlation with the target variable. In the case of two input variables, the current

correlations c depend only on the projection ȳ of y into the plane spanned by

X13 and X23:

c = XT y = XT ȳ (6.39)

As show in Figure 6.3, makes a smaller angle with X13 than with X23, that

corresponds to a greater correlation with X13 than with X23. Hence, the variable

X13 enters the active set (step 2) and the solution moves in direction of X13,

indicated in Figure 6.3 by the equiangular unit vector u1 (step 3-eq. (6.23)).

Representing the moving solution of this first iteration with ~y1, the current cor-

relations c with the current residual becomes:

c = XT (ȳ − ~y1) (6.40)

From the Figure 6.3, we can see that the correlation of X13 with the current

residual decreases. This process stops when the current residual is equally corre-

lated with X13 and X23 (step 4), that happens when the residual vector (ȳ−~y1)

bisects the angle between X13 and X23. Hence, the variable X23 is added to the

active set (step 5). Now the solution moves in such a direction as to keep equal
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Figure 6.3: Geometrical interpretation of LASSO solution using LAR

modification. Projection of the target vector ȳ, input vectors X13 and X23 .

Versor u1 and u2 indicating the equiangular vectors [53].

the two correlations (step 6). This direction is represented in Figure 6.3 by the

equiangular unit vector u2 (eq. (6.23)), that corresponds to the bisector of the

two vectors X13 and X23.

In this case all the variables were added to the active set, hence at the next

iteration the OLS solution is reached. Note that the OLS solution corresponds

to ȳ (Section 4.2.1). In the general case, subsequent iterations are taken along

equiangular vectors, generalizing the concept of the bisector u2.

6.4.2 Sparse Solution

As said in the Section 6.1.2, the regularisation term added to the minimisation

function in LASSO yielded to a sparse solution. In this Section it will be described

the reason why such a constraint lead to a sparse solution, using, for simplicity,

the same example of two input variables X13 and X23.

From (6.8) the constraint region defined by LASSO is:

|β1|+ |β2| ≤ t (6.41)

which is represented by a diamond area in the Cartesian space of the coefficients
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(blue region in Figure 6.4). As a consequence, all the possible solutions of LASSO

lie in this region.

Plotting in the same Cartesian space the OLS solution (β̂ in Figure 6.4) we

can see how the OLS estimates, minimizing the RSS, falls in the center of the

elliptical contours which represent the RSS behaviour for different estimates of

β.

Figure 6.4: Interpretation of the sparse solution of LASSO. β̂ represents the

OLS solution, the red ellipses are the contours of the residual sum of squares

and the blue areas correspond to the constraint region |β1|+ |β2| ≤ t (taken

from [52]).

The LASSO solution is the first point where the elliptical contour hits the

constraint region. Since the diamond region has got corners, it is probable that

the solution occurs at a corner. In this case, one coefficient is exactly zero, in

particular β1 in Figure 6.4. In addition, when there are more predictors, the

diamond becomes a rhomboid, and has got many more corners and flat edges. As

a consequence, there are many more opportunities for the estimated parameters

to be zero.

A comparison with the Ridge constraints, mentioned in the introduction of
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this Chapter, may help to understand the particularity of LASSO.

Figure 6.5: Ridge Regression regularised solution. As in 6.4, but here the blue

area corresponds to the constraint β2
1 + β2

2 ≤ t (taken from [52]).

From (6.5) the constraint region defined by Ridge Regression is:

β2
1 + β2

2 ≤ t (6.42)

which is represented by a disk area in the Cartesian space of the coefficients (blue

region in Figure 6.5). In this case, as the disk has no corners, there are fewer

opportunities for one coefficient to be exactly zero.

6.5 LAR modification for the implementation of

LASSO

The LASSO path can be estimated using the LAR modification. It can be

implemented by the following (Matlab-like notation) pseudo-code (the updates

of uA, dA and AA has not been reported):
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load X, y

normalize X, y

ŷ0 ← 0;

β̂0 ← 0;

c← XT y;

Cmax ← max(c);

j ← find(c = Cmax);

A← xj

while active variables< p do

a = XT uA

γ = min
l∈Ac

+

{
Cmax − cl

AA − al

,
Cmax + cl

AA + al

}

(associated with Xl)

γ̃ = minj(−β̂k/dA)

if γ̃ < γ then

γ = γ̃;

end if

ŷk+1 = ŷk + γuA

β̂k+1 = β̂k + γdA

Cmax = Cmax − γAA

if γ̃ < γ then

drop Xj from A

end if

A← Xl

update uA, dA and AA

c = XT (y − ŷk+1);

end while

→ load data

→ normalize data







initialization







main loop







γ estimation

(LASSO constraint)







estimates update







active set update

The Matlab code used in this thesis to implement LASSO is reported in Appendix A.3.
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6.6 Tutorial Examples

The same examples used in the previous Chapters will be used below to hi-

ghlight the features of LASSO in estimating linear regression models and to com-

pare it with the OLS and PLS estimator.

6.6.1 Example 1 (Diabetes data)

The data for this example examine the correlation between a number of clinical

measures in diabetes patients and a measure of “diabetes progression” (dp). In

Section 4.4.1 it was described how to form the matrix X and the vector y involved

in the regression problem. In addition, in the previous Chapters OLS and PLS

estimates were presented and commented. Here the LASSO estimation will be

illustrated and compared with OLS and PLS.

As described before, the LAR procedure allows to create the entire LASSO

path, i.e. the behaviour of the coefficients β as the model complexity increases.
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Figure 6.6: LASSO path for diabetes data in example 1.

As shown in Figure 6.6, at first all the parameters β are set to zero and enter

in the active set according to their correlation with the current residual.
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Hence, it may be useful to plot the behaviour of the correlation during the

different iterations, as shown in Figure 6.7.
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Figure 6.7: absolute correlations of the regressors with the current residual. At

the top the name of the variable that are added (or dropped) from the active set

is indicated.

Before describing how to choose the complexity of the model, it is worth to

analyse the characteristics of the LASSO path.

As seen in the previous Chapter, the main problem of the OLS estimator was

that the coefficients of highly correlated variables tend to grow large in opposite

directions compensating each others. It is interesting to analyse the behaviour of

such coefficients along the LASSO path. For convenience, the correlations between

the variables are reported in Table 6.1.

To allow a direct comparison, we analyse the behaviour along the LASSO

path of the variables, which were described in the previous Chapter.

The variables sm3 and sm4 show a high negative correlation. Sm3 enters the

active set before sm4; it is interesting to notice that, when sm4 enters the active

set, the coefficient of sm3, instead of growing larger, becomes smaller (see the

big red ellipse in Figure 6.8 (left)). Hence, the compensation effect, detected in

the OLS solution is avoided at that level of model complexity. However, as the

model complexity increases (i.e. the solution moves towards the OLS one), the
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sex bmi bp sm1 sm2 sm3 sm4 sm5 sm6

age 0.174 0.185 0.335 0.260 0.219 -0.075 0.204 0.271 0.302

sex - 0.088 0.241 0.035 0.143 -0.379 0.332 0.150 0.208

bmi - - 0.395 0.250 0.261 -0.367 0.414 0.446 0.389

bp - - - 0.242 0.186 -0.179 0.258 0.393 0.390

sm1 - - - - 0.897 0.052 0.542 0.516 0.326

sm2 - - - - - -0.196 0.660 0.318 0.291

sm3 - - - - - - -0.738 -0.399 -0.274

sm4 - - - - - - - 0.618 0.417

sm5 - - - - - - - - 0.465

Table 6.1: correlation between the different input variables. Highlighter the

most elevated correlations.

compensation problem reappears (see the small red ellipse in Figure 6.8 (left)).

The variables sm1 and sm2 show a high positive correlation. Sm1 enters the

active set before sm2. In this case the compensation problem affects the whole

LASSO path (see Figure 6.8 (right)). However, we have to notice that these

variables enter the active set after sm3 and sm4. Hence, at that point we are

nearer to the OLS than in the previous case.
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Figure 6.8: Left : LASSO path for sm3 and sm4 (remarkable point are

highlighted by red ellipses). Right : LASSO path for sm1 and sm2.

After this overview of the LASSO path, we move to the choice of the model

complexity, as fully described in Chapter 3. In Figure 6.9 the “cross-validation”
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curve is shown as a function of model complexity, obtained using 7-fold cross-

validation as in Section 5.4.1. In short, the training data are randomly split in

7 parts of approximately equal size (in this case sets of 40 samples are formed).

Iteratively, one part is left aside to calculate the test error (using MSE), while the

other 6 parts are used to “learn” the coefficients of the model. In this way a test

error upon each 7-th part is calculated and, averaging these values, an estimation

of the test error is obtained.
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Figure 6.9: In blue the test curve with its confidence intervals, obtained using

7-fold cross-validation. The red cross indicates the minimum value and the

magenta dashed line represents the one standard error rule.

As in the previous two Chapters, instead of using the mean operator to average

the MSE values obtained during the cross-validation, the median operator was

used. Similarly, the mean absolute deviance was used instead of the standard

deviation.

The test curve is plotted as a function of the number of the active variables,

instead of the most obvious λ (the complexity parameter). However, the number

of the active variables is intuitively connected to the model complexity, but also

to the degrees of freedom of the model (see [68] for more details).

The test error curve in Figure 6.9 has not a distinct minimum but it is very flat
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in its correspondence. Since each point is estimated with an error, the minimum is

not the best choice. The “one-standard error” rule (Section 3.3.2) is usually used

in this case. It selects the most parsimonious model, whose error is less then the

minimum plus its standard deviation. However, if the curve exhibits a well defined

L-shape, it seems reasonable to select the model at its edge. However, if the curve

shows a well defined elbow, it seems reasonable to select the model corresponding

to this point. Hence, the final chosen model has four active variables.

It is interesting to compare the behaviour of the cross-validation curve using

the LASSO estimator with the one obtained using the PLS estimator (see Section

5.4.1).
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Figure 6.10: LASSO (left) vs PLS (right) test error curve. In blue the test

curve with its confidence intervals, obtained using 7-fold cross-validation. The

red cross indicates the minimum value and the magenta dashed line represents

the one standard error rule limit.

From Figure 6.10, it can be noticed that LASSO error curve starts with an

higher value then the OLS ones. The reason is that, while the LASSO only com-

ponent is one of the original input variables, the first PLS direction may include

the information contained in all the original input variables. With a similar rea-

soning, the LASSO curve is slower and need more steps to reach the minimum

than the PLS curve.

A LASSO estimation of the vector parameters with four active variables has
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been computed and its value shown in Table 6.2.

age sex bmi bp sm1 sm2 sm3 sm4 sm5 sm6

OLS 0.009 -0.167 0.318 0.190 -0.765 0.498 0.157 0.184 0.485 0.063

PLS 0.022 -0.126 0.297 0.192 -0.069 -0.088 -0.163 0.084 0.216 0.119

LASSO 0 0 0.301 0.097 0 0 -0.091 0 0.210 0

Table 6.2: Estimated OLS, PLS and LASSO coefficients.

As said before, using the OLS estimator, the coefficients of the high correlated

variables tend to grow large in opposite directions compensating each others. It

was the case of sm1 and sm2, which are positively correlated, and of sm3 and

sm4, which are negatively correlated. Using the LASSO estimation technique,

sm1 and sm2 are not active variables, while only sm3 is. Hence, we can conclude

that LASSO selects the variables in such a way to avoid the inclusion of redundant

information. Now that OLS (Chapter 4), PLS (Chapter 5) and LASSO estimator

has been described, their performance on the test set may be compared.

As shown in Figure 6.11, there is not a significant difference between the

predictions. This may be due to the small dimension of the data set and to the

absence of strong correlated variables. However, it must be observed that LASSO

has almost the same performance of OLS, using only four regressors (the active

variables), while OLS uses all the variables. In the detail of the same Figure,

we show an example of the regularisation introduced by LASSO, that usually

exhibits smoother and flatter profiles then OLS and PLS.

To quantify the performance of the three methods, the MSE indicator is con-

sidered, as shown in Table 6.3. Table 6.3 confirms that the estimators have similar

performances.

MSE

OLS 2842

PLS 2873

LASSO 3021

Table 6.3: MSE indicator for OLS, PLS and LASSO on test data.
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Figure 6.11: External validation using OLS, PLS and LASSO (first 76 samples

and a detail in top right edge). In black the reference values, in red OLS

predictions, in blue PLS predictions and in green LASSO predictions.

6.6.2 Example 2 (Simulated data)

As said in Chapter 4, the reference data for this second example were gene-

rated simulating glucose profiles with different time trends. From these profiles,

twenty-seven input variables were obtained simulating Multisensor data, there-

fore exhibiting high correlation and including confounding processes such as body

temperature.

The training data were simulated using a sequence of three glucose profiles,

each having a length of eight hours and showing one or two glycaemic peaks.

While input variables had an elevated sampling frequency (3 sample/minute),

reference data were collected approximately every 15 minutes.

In Section 4.4.2, we described how to form the matrix X and the vector y

involved in the regression problem. In the previous Chapters, OLS and PLS were

presented and commented. Here the LASSO estimation will be illustrated and
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compared with OLS and PLS.

As described before, the LAR procedure allows to create the entire LASSO

path, i.e. the behaviour of the coefficients β as a function of the model complexity.

In Figure 6.12, the first part of the LASSO path is shown.
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Figure 6.12: LASSO path for simulated data in example 2 (first 18 variables

that enter the active set).
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In the previous example, it were already noticed that the highly correlated

variables are alternatively present, i.e. when the variable that enter the active

set is highly correlated with another active variable, the absolute value of the

coefficient associated with the last variable decreases, while the coefficient of the

new active variable grows large. In Figure 6.12 some examples of this phenomenon

are highlighted in the red ellipses.

As LASSO estimation is not scale invariant the matrices X and y have to be

normalised before applying the algorithm. In the previous Chapters, the data has

been also normalised, allowing a direct comparison of the estimated coefficients.

Before estimating the LASSO coefficients we have to choose the model com-

plexity, as in Example 1. Model complexity was fixed by using the test error

curve, estimated from 5-fold cross-validation.
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Figure 6.13: LASSO (left) vs PLS (right) test error curve. In blue the test

curve with its confidence intervals, obtained using 5-fold cross-validation, the

red cross indicates the minimum value and the magenta dashed line represents

the one standard error rule limit.

In Figure 6.13 cross-validation curve is shown. As in Example 1, instead of

using the mean operator to average the MSE values obtained during the cross-

validation, the median operator and the mean absolute deviance are used.

Figure 6.13 compares the LASSO error curve with the PLS ones. In this case

the two curves are very similar. However, while the LASSO curve presents a

significant decrease when the fifth variable enters the active set, the PLS has a
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more regular decreasing behaviour. Using the LASSO test error curve in Figure

6.13, the finally chosen model has six active variables.

A LASSO estimated vector with six active variables has been computed and

its coefficients are shown in Table 6.4.

MHz1 MHz2 MHz3 MHz4 MHz5 MHz6 MHz7 MHz8 MHz9

OLS 39.974 0.000 0.000 0.000 0.000 3.381 -8.656 -1.951 -6.151

PLS -0.250 0.398 0.438 0.137 -0.636 -0.583 -0.337 0.002 1.471

LASSO 0.000 0.000 0.000 0.000 -0.887 0.000 0.000 0.000 0.000

MHz10 MHz11 MHz12 MHz13 MHz14 MHz15 MHz16 MHz17 MHz18

OLS -14.849 40.897 26.916 -24.356 2.557 -5.082 -23.234 54.732 -53.089

PLS 2.235 0.411 -0.168 -0.210 0.046 0.595 0.485 0.322 0.110

LASSO 3.702 -0.363 0.000 0.000 0.000 0.000 0.000 0.000 0.000

MHz19 MHz20 MHz21 MHz22 MHz23 MHz24 MHz25 Temp Opt

OLS -4.424 -27.901 0.000 1.410 4.014 1.543 -12.167 2.397 0.071

PLS -0.748 -1.357 -0.250 0.398 0.438 0.137 -0.636 2.429 0.074

LASSO 0.000 -0.556 0.000 0.000 0.000 0.000 0.000 2.262 0.052

Table 6.4: Estimated OLS, PLS and LASSO coefficients. Highlighted the six

active variables found by LASSO.

As discussed in the previous example, the OLS coefficients associated to high

correlated variables (MHz) show elevate magnitude with opposite signs. As noti-

ced in the previous example, only few of these variables enter the active set with

LASSO (four in our case). Using LASSO, the variables describing the confoun-

ding processes enter the active set as well. This observation proves that LASSO

selects the variables avoiding to include unnecessary highly correlated variables

and preferring those containing independent information.

The performance of the three different methods was evaluated using a test

set, composed by two simulated glucose profiles. Hence, the previously estimated

coefficients are applied on inputs of the test set and the result is compared with

the test reference. The predictions for all methods are plotted in Figure 6.14.

The prediction can also be calculated in the time instants that have not the

corresponding reference, combining the measured inputs of the test set using the
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Figure 6.14: External validation using OLS (red), PLS (cyan) and LASSO

(green). In black stars the reference values.

estimated coefficients. However, the prediction at these time instants cannot be

used for calculate the indicators described in Chapter 3 for model assessment.

Visually, the methods have similar performances. However, it must be taken

into account that LASSO achieves results similar to the other methods, using

only 6 variables, even less than PLS (which employs 7 directions). In addition,

LASSO is less noisy than OLS and fits the fist peak better than the other two

methods.

To quantify the performance of the two methods the MSE indicator was used,

as shown in Table 6.5.

MSE

OLS 0.0032

PLS 0.0030

LASSO 0.0029

Table 6.5: MSE indicator for OLS, PLS and LASSO on test data.
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In this case, LASSO has the best performance. This confirms that OLS li-

kely suffers from overfitting, while LASSO seems to select the correct number of

variables, allowing a better generalisation of the estimated model on unseen data.

6.7 Concluding Remarks

LASSO is a technique for the estimation of multivariate linear regression mo-

dels based on regularisation In particular, the term added to the function that

has to be minimized, prevents the model coefficients from assuming large values,

since it penalises the sum of the coefficient absolute values. This particular kind

of regularisation causes some of the coefficients to be exactly zero, leading both

to sparse solutions and to an intrinsic method for variables selection.

Since the LASSO minimisation function is not differentiable, the solution can-

not be computed in closed form. Hence, the solution has to be estimated using ite-

rative methods. Different algorithms have been developed to compute the LASSO

solution in an efficient way. In particular, with a small modification of the LAR

algorithm, the entire LASSO path can be obtained in an extremely efficient way,

making this algorithm an attractive method for solving the LASSO problem.

This regularisation technique tries to avoid the OLS problem of overfitting. As

observed in the previous examples, in the initial part of the LASSO path, the can-

cellation effect of highly correlated variables is avoided. Using the OLS estimation

technique, the coefficients of highly correlated variables tends to become large in

opposite directions, cancelling their contribution to the target estimation. Con-

trarily, using LASSO estimator, the coefficient of the new active variable grows,

while the coefficient of the correlated active variable tends to decrease to zero.

At this point the variable is taken out from the active set. Hence, there is an

exchange of the highly correlated variables. This advantage disappears as the

complexity parameter λ moves to zero (i.e. the coefficients are less shrunk and

more variables are allowed to enter the active set), approaching the OLS solution.



Chapter 7

Modeling the Solianis

Multisensor Data: Experimental

Protocol and Dataset Description

In Chapter 2 we introduced the Solianis Multisensor data and highlighted the

necessity of a model for estimating glucose from Multisensor signals. In the succes-

sive Chapters, the regression problem and three candidate regression techniques,

OLS, PLS and LASSO, for solving it were illustrated. In Chapter 8, these re-

gression techniques will be applied for modeling Solianis Multisensor data, whose

features are described in the present Chapter.

7.1 Acquisition Protocol and Dataset Composi-

tion

Data was acquired during an experimental clinical study that included four

patients with Type 1 Diabetes Mellitus (T1DM), identified in our whole data

analysis using the following labels: “AA06”, “AA14”, “AA17” and “AA18”. Each

subject performed four study visits. During each study visit, a different glucose

profile was measured in controlled conditions using two different Solianis Mul-

tisensors, one attached to the upper left arm and the other to the upper right

arm. Along with the Multisensor signals, some BGL references, collected using

finger-stick methods, were recorded. Hence, for each subject, a total of 8 glucose

profiles (“runs” of a duration of approximately 8/9 hours) were acquired. These



112 7. Modeling the Solianis Multisensor Data

runs are somehow coupled, having the same reference but different Multisensor

signals (one from right arm and the other from the left arm). While the Mul-

tisensor acquires the signals every 20 second, the BGL reference are collected

approximately every 15 minutes and whenever necessary for medical purposes.

The measurements in the first 75 minutes after the Multisensor was attached to

the skin are not taken into account in our analysis since they suffer from artefacts

due to physiological adjustment of the skin to the presence of the sensor.

As mentioned in Chapter 2, the Multisensor provides a set of measurements

of different nature, mainly based on dielectric and optic sensors, for a total of

more than 150 measured signals. Most of the signals come from the dielectric

electrodes, showing a high correlation and exhibiting similar but not identical

behaviour. Hence, there are two important characteristics of this dataset: it is a

high-dimensional dataset and there are many correlated variables in it. Another

feature to be taken into account for dataset handling is the presence of doubled

references, i.e. the same reference is connected to two different Multisensor signals

sets.

7.2 Organization of Data for Training and Vali-

dation

As said in Chapter 3, it is a good choice to evaluate the performance of

the different methods using unseen data. Hence, it is worth describing how the

available data have been handled.

Our choice was to use 16 runs as training set and the other 16 as test set.

Since each experiment is present twice (with same reference BGL but different

Multisensor signals), it may sound a good choice to use the left arm data in the

training set and the right arm data in the test or viceversa. However, in this way a

bias in the results would be introduced, since the data forming the test set would

not be truly unseen. As a consequence, the runs from the Multisensors measured

during the same experiment have been mostly assigned to the same set.

In this case, a global model is “learned” from 16 runs forming the training set.

After this procedure, we obtain an estimation of the coefficients characterising

the model, which is the same for every subject (global model). These coefficients

are then used on the test set to predict the BGL values and to evaluate the
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performance of the estimators.

A further analysis has been performed in order to assess if a global model is

a good choice. In particular, the model is learned using the run associated with

three patients (for a total of 24 runs) and the estimated model is applied on the

fourth patient (8 runs), which is thus used as test set. In this way, we want to

determine if the estimated model can be used for data of a totally new, unseen,

subject. In the next Chapter, we will refer to this combination of training/test

set as “cross-validation” with leave one subject out, see in particular Section 9.1.

7.3 Rationale of the Analysis

After having described how the data will be handled, in this Section we want to

briefly illustrate the rationale of the procedure, which will be followed to analyse

data and compare the results reported in Chapter 8.

In order to compare directly the coefficients estimated using the different me-

thods, data have been normalized, since both PLS and LASSO are not scale

invariant. Supposing that there exist a true value of the mean and the standard

deviation of the signals measured by the Multisensor, they are estimated by con-

sidering only the training set, and will then be used to standardise both the

training and the test set. In this way, the model prediction of the test set can be

calculated without knowing the entire test signals, allowing an on-line prediction.

For the OLS method, the training set have been used to learn the model

coefficients, which are then applied on the test set to estimate the BGL.

For both PLS and LASSO an additive step is needed, since before the learning

procedure, the model complexity has to be selected. As a consequence, the trai-

ning set is also used in K-fold cross-validation to estimate the model complexity

(see Section 3.3.2). It is worth saying that our choice was to select K equal to

the number of runs forming the training set. In this way, each group in the cross-

validation procedure contained approximately the same number of samples as a

single run. After having estimated the model complexity, both PLS and LASSO

coefficients have been learned from the training set and applied on the test set

for predicting the BGL values.

After this preliminary analysis, which is mainly used for comparing the perfor-

mance of the different estimation techniques, an additional analysis is performed
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in order to determine if a global model is sufficient or a specific model for each

subject is needed. This further analysis is performed by using the best of the

three previously considered techniques only and is implemented using the cross-

validation with leave-one-subject-out.

Finally, we anticipate that two different calibration techniques, which may

be used to improve the glucose estimates accuracy, will be also described and

evaluated in Chapter 9.



Chapter 8

Application of OLS, PLS and

LASSO to the Solianis

Multisensor Data

In this Chapter the results of the application of OLS (Chapter 4), PLS (Chap-

ter 5) and LASSO (Chapter 6) in modeling the Solianis Multisensor data will be

shown, commented and compared.

8.1 OLS Results

In this Section we will discuss the results obtained applying the OLS estimator

to the Solianis Multisensor data.

8.1.1 Internal Validation (Model Learning)

In Figure 8.1 and 8.2 is shown the target and the model estimates in inter-

nal validation. We can notice that the glucose estimate obtained with OLS well

approximates the target. However, it is easy to see that estimates result very

unstable and exhibit a lot of oscillations. Figure 8.3 shows a representative run

where we can appreciate how the prediction reproduces the glucose profile and

its oscillation between two target points. This phenomenon can be explained if

we take into account that we are considering the training set, where the OLS

coefficients are estimated to minimise the distance of the prediction from the

reference.
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Figure 8.1: Internal validation for the OLS estimator. OLS model

prediction(red) vs. reference BGL(blue circles). The first 8 runs of the training

set are shown.
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Figure 8.2: Internal validation for the OLS estimator. OLS model

prediction(red) vs. reference BGL(blue circles). The last 8 runs of the training

set are shown.
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Figure 8.3: Representative run showing OLS in internal validation. OLS model

prediction(red) vs. reference BGL(blue circles).

Since the Multisensor data are composed by a large number of variables, it is

not convenient reporting all the estimated OLS coefficients. It is more meaning-

ful to consider only those whose absolute values are greater then an arbitrary

threshold. In this way, we can check to which variables are associated the larger

coefficients. In Table 8.1 are reported the coefficients whose absolute values are

larger then 10.

GHz el2 3 GHz el2 4 GHz el2 7 GHz el2 8 MHz el1 7

OLS -44.113 47.876 -41.308 51.912 15.168

MHz el1 9 MHz el1 10 MHz el1 21 MHz el1 25 MHz el1 26

OLS -32.792 29.433 -10.352 -10.515 13.524

MHz el2 8 MHz el3 5 MHz el3 8 MHz el3 9

OLS 11.373 -10.471 11.208 -10.990

Table 8.1: OLS coefficients whose absolute values are greater then 10.

As shown in Table 8.1 the largest OLS coefficients have opposite signs and

are associated to signals of the same type. This behaviour of the estimated model
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coefficients obtained with OLS was observed in the tutorial examples in Chapter

4. Indeed, it was noticed that this behaviour arises when OLS deals with highly

correlated variables.

An example of such compensation is reported in Figure 8.4, where MHz el1 10

and MHz el1 9 are plotted along with the BGL reference. In the Figure all the

signals have been centered and normalised to allow a better visual comparison.

As it can be noticed from Figure 8.4, the two Multisensor variables are almost

identical and from Table 8.1 one can verify that their corresponding OLS esti-

mated coefficients assume large absolute value and opposite sign, causing the

cancellation of their contribution to the target estimation.
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Figure 8.4: Example of (normalised) highly correlated variables(continuous

lines), having OLS estimated coefficients with large absolute value and opposite

sign.

8.1.2 External Validation (Model Test)

Another characteristic of OLS, which is more remarkable when dealing with

high dimensional dataset, is the overfitting. In this case, the estimated predictive

model fits not only the information yielded by the training set, but also to the
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noise contained in it. To prove the predictive performance of the model, a test

set is used and the results are shown in Figure 8.5 and 8.6.
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Figure 8.5: External validation of OLS. OLS model prediction(red) vs.

reference BGL(blue circles). The first 8 runs of the training set are shown.

From Figure 8.5 and 8.6 it can be noticed that the model estimates using
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Figure 8.6: External validation of OLS. OLS model prediction(red) vs.

reference BGL(blue circles). The last 8 runs of the training set are shown.

OLS fails in most cases in predicting unseen data, proving that probably OLS

estimated coefficients are too much fitted to the training set.
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8.2 PLS Results

In this section we will discuss the results obtained applying the PLS estimator

to the Solianis Multisensor data.

8.2.1 Internal Validation (Model Learning)

In this case, the PLS cannot directly be applied since model complexity, re-

presented by the number of PLS directions (i.e. M), has to be determined by

using the cross-validation procedure. Before analysing the test error curve obtai-

ned using cross-validation, it is worthwhile to analyse the training error curve

(internal validation).
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Figure 8.7: MSE on the training set as a function of the number of PLS

directions (internal validation).

In Figure 8.7 we plot the behaviour of the training error as a function of the

number of PLS directions. A considerable decreasing of the error in the initial part

of the curve, followed by an almost flat zone can be noticed. As a consequence,

it seems reasonable that only few PLS are sufficient to obtain an acceptable

approximation of the training set. Hence, it may be sufficient to estimate the test

error curve between 1 and 60 PLS directions.
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Figure 8.8: MSE on the test set as a function of the number of PLS directions

(cross-validation). The red cross indicates the minimum value and the magenta

dashed line represents the one standard error rule limit.

In Figure 8.8 the test error curve is shown, built using 16-fold cross-validation.

In this case, the curve is similar to the one of Figure 8.7 (internal validation). The

minimum is placed at 54. However, since the curve is very flat, it is reasonable

to use the “one-standard error” rule, whose limit is represented by the magenta

line. Hence, the most parsimonious model, whose error is less than the minimum

plus its standard deviation, is positioned at 10.

Once the model complexity parameter has been fixed, its parameters can be

estimated using PLS.

8.2.2 External Validation (Model Test)

To evaluate the performance of such model, we consider its capability in pre-

dicting unseen data. Hence, using the previously estimated parameters, the model

is used to predict the test set target and the results are shown in Figure 8.9 and

8.10.
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Figure 8.9: External validation of PLS. PLS model prediction(M=10,

magenta) vs. reference BGL(blue circles). The first 8 runs of the training set are

shown.
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Figure 8.10: External validation of PLS. PLS model prediction(M=10,

magenta) vs. reference BGL(blue circles). The last 8 runs of the training set are

shown.
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From Figure 8.9 and 8.10 it can be observed that, while some runs (for example

# 6, 8 and 32) are properly predicted by PLS, other predicted profiles are very

noisy (for example # 7, 12 and 27) or have an increasing trend (for example #

16, 21 and 2), demonstrating that selecting M =10 (number of PLS directions)

does not allow to generalise over unseen data well.

In addition, for the same reasons explained in the previous Section, Table

8.2 shows the variables and their corresponding coefficients, whose absolute value

are greater than 0.1. However, in this case the compensation effect between the

variables is not present.

GHz el1 3 GHz el1 7 MHz el3 22 Opt 10 Opt 11 Opt 12

PLS 0.206 -0.227 -0.136 -0.117 0.141 -0.221

Opt 16 Opt 26 Opt 27 Ms Hum Ms Temp Skin Temp

PLS 0.101 -0.308 0.117 -0.206 0.117 0.600

Table 8.2: PLS coefficients whose absolute values are greater then 0.1.

8.3 LASSO Results

In this section we will discuss the results obtained applying LASSO estimator

to the Solianis Multisensor data.

8.3.1 Internal Validation (Model Learning)

As for PLS, the LASSO estimator cannot directly be applied, since the model

complexity, represented by the number of active variables, has to be determined

using the cross-validation procedure. Before analysing the test error curve obtai-

ned using cross-validation, it is worthwhile to analyse the training error curve

(internal validation).

In Figure 8.11 we plot the behaviour of the training error as a function of the

number of active variables. As it happened for PLS, the initial part of the curve is

characterised by a considerable decreasing of the error, followed by an almost flat

zone. This phenomenon may be due to the presence of many highly correlated

variables in the dataset. In fact, many variables bring similar information (as they

are highly correlated). Hence, if another variable of this family is included in the

active set, it is not able to improve the target approximation. As a consequence, it
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seems reasonable that only few variables will be sufficient to obtain an acceptable

approximation of the training set and the LASSO procedure may help in selecting

the best ones.
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Figure 8.11: MSE on the training set as a function of the number of active

variables (internal validation).

For the previous discussion, it seems reasonable to estimate the test error

curve between 1 and 60 active variables.

In Figure 8.12 the test error curve, built using 16-fold cross-validation, is

shown. In this case, the curve is similar to the one of internal validation (Figure

8.11). The minimum is placed at 55 active variables. However, since the curve

is very flat, it is reasonable to use the “one-standard error” rule, whose limit is

represented by the magenta line. Using this rule, the best model is the one having

27 active variables. However, at that point the curve is still very flat. Hence, it can

be supposed that the best model is even more parsimonious, considering the error

in estimating the cross-validation curve. For instance, since the curve exhibits an

L-shape, its edge (near 9) can be a good choice.

At this point, it is convenient to consider the LASSO path till 27 variables

have entered the active set. The result is shown in Figure 8.13.
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Figure 8.12: MSE on the test set as a function of the number of active

variables (external validation). The red cross indicates the minimum value and

the magenta dashed line represents the one standard error rule limit.

Along this initial part of the LASSO path, it can be noticed the exchange

of highly correlated variables, highlighted in the red ellipses. In particular, this

happens when the new variable, which enters the active set, is highly correlated

with another of the active variables. In this case, the absolute value of the coef-

ficient associated with the old active variable tends to zero, while the coefficient

of the new active variable grows largely. This particularity of the LASSO path

avoids the OLS problem, where highly correlated variables have the tendency to

assume large absolute values with opposite signs, causing the cancellation of their

contribute to the target estimation.
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Figure 8.13: LASSO path till 27 variables have entered the active set. For

simplicity, the path has been splitted in three subfigures, each containing 11

variables. The remarkable points are highlighted in the red ellipses.
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In Figure 8.14 we show the time evolution for the representative run 14 of

the variables highlighted in the first red ellipse in Figure 8.13, along with the

corresponding BGL references. To allow a more direct comparison, all the signals

have been centered and scaled. From Figure 8.14, it can be shown that the two

MHz variables are almost identical and bring the same information about the

BGL reference. Hence, their exchange along the LASSO path corresponds to a

desirable behaviour of their coefficients.
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Figure 8.14: Example of highly correlated variables entering (MHz el3 9) and

exiting (MHz el3 12) the active set during the LASSO path.

After having analysed the LASSO path, we move back to the choice of the

best value for the model complexity parameter. Using LASSO, the parameters

of both models (with 27 active variables and with 12 active variables) have been

estimated and the results are shown in Figure 8.15 and 8.16.

It can be noticed that, with 27 active variables, the prediction is noisier than

with 12. This proves that, in all likelihood, with 27 active variables the estimated

model still suffers from overfitting. With 12 active variables, the estimated glucose

profiles are very smooth and this may be due to the selection of the less noisy

variables and to the greater amount of regularisation introduced in the model

with 12 variables than in the model with 27.
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Figure 8.15: External validation for LASSO estimates. Glucose estimates with

27 active variables(green) and with 12 active variables(red). The first 8 runs of

the test set are shown.
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Figure 8.16: External validation for LASSO estimates. Glucose estimates with

27 active variables(green) and with 12 active variables(red). The last 8 runs of

the test set are shown.
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As a consequence, it seems reasonable to choose 12 as the optium number of

active variables.

Once model complexity has been fixed, its parameters can be estimated using

the LASSO procedure.

8.3.2 External Validation (Model Test)

To evaluate the performance of such model, we consider its ability in predicting

unseen data. Hence, using the previously estimated parameters, the model is used

to predict the test set target and the results are shown in Figure 8.18 and 8.18.

In this case, the estimated profiles with the LASSO model exhibit better

performances by visual inspection, since the BGL estimates are rather smooth

and are able to mimic the glucose fluctuations although their flatness.

GHz el1 2 GHz el2 8 KHz el1 9 MHz el2 12

LASSO 0.032 0.002 -0.089 0.367

MHz el2 16 MHz el3 9 MHz el3 13 Opt 10

LASSO 0.023 0.211 0.113 -0.074

Opt 12 Opt 16 Opt 26 Skin Temp

LASSO -0.044 0.015 -0.114 0.504

Table 8.3: LASSO coefficients of the active variables.

In Table 8.3 the estimated LASSO coefficients of the active variables are

shown. Notably, no large absolute values are present.
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Figure 8.17: External validation of LASSO. LASSO model prediction(12 active

variables, green) vs. reference BGL(blue circles). The first 8 runs of the training

set are shown.
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Figure 8.18: External validation of LASSO. LASSO model prediction(12 active

variables, green) vs. reference BGL(blue circles). The last 8 runs of the training

set are shown.
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8.4 Performance Comparison for the three Me-

thods

In this Section, we will compare the previously illustrated results obtained by

applying OLS, PLS and LASSO in estimating linear regression models from the

Solianis Multisensor data.

First of all it may be worthwhile to compare the estimated coefficients. In

particular, since there are many different variables involved in our regression

problem, we will focus our attention to those variables whose coefficients have

the largest absolute value. Such variables are displayed in Table 8.4, along with

their corresponding coefficients.

OLS PLS LASSO

var name coefficient var name coefficient var name coefficient

GHz el2 3 -44.113 GHz el1 3 0.206 GHz el1 2 0.032

GHz el2 4 47.876 GHz el1 7 -0.227 GHz el2 8 0.002

GHz el2 7 -41.308 MHz el3 22 -0.136 KHz el1 9 -0.089

GHz el2 8 51.912 Opt 10 -0.117 MHz el2 12 0.367

MHz el1 7 15.168 Opt 11 0.141 MHz el2 16 0.023

MHz el1 9 -32.792 Opt 12 -0.221 MHz el3 9 0.211

MHz el1 10 29.433 Opt 16 0.101 MHz el3 13 0.113

MHz el1 21 -10.352 Opt 26 -0.308 Opt 10 -0.074

MHz el1 25 -10.515 Opt 27 0.117 Opt 12 -0.044

MHz el1 26 13.524 Ms Hum -0.206 Opt 16 0.015

MHz el2 8 11.373 Ms Temp 0.117 Opt 26 -0.114

MHz el3 5 -10.471 Skin Temp 0.600 Skin Temp 0.504

MHz el3 8 11.208

MHz el3 9 -10.990

Table 8.4: OLS, PLS and LASSO coefficients with greatest absolute value.

From Table 8.4, we can notice that the OLS coefficients are those presenting

the largest absolute values. In addition, it is worth noting that these variables all

belong to the dielectric type, which contains the most correlated variables. In fact,

as observed several times throughout this thesis, using OLS on highly correlated

variables results in large absolute values of the coefficients with opposite sign,

leading to compensations among variables with the cancellation of their relative

contribution to the target estimate. PLS and LASSO present significantly smaller
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coefficients, due to their specific estimation procedure that, in different way, sh-

rinks the number of variables included in the regression problem. However, there

is a substantial difference in which variables provide the greater contribution to

the target estimation. In fact, while in PLS there are many optical variables,

more dielectric variables are selected by using LASSO . In particular, there are

four impedance signals, which contain glucose information and are referred as the

primary “glucose signals”. Nevertheless, in both cases the largest absolute value

is associated with the skin temperature.

The estimated coefficients have been used to predict the test BGL references.

To allow a direct comparison, all the target estimates are plotted together in

Figure 8.19 and 8.20. Visually, it can be noticed that the OLS predictions are

the most sensitive to the noise contained in the data and are the most affected

by increasing/decreasing trends. This proves that probably the OLS estimation

suffers from overfitting. In fact, as observed in Section 8.1, the estimated coeffi-

cients allow a very good approximation of the training set, but fail in predicting

unseen data. This is a typical consequence that the model during the learning

procedure fits not only the informative part contained in the training set, but

also the noise. This is not surprising if we consider the features of the dataset

we are dealing with. In fact, as said in the previous Chapter, we are facing a

high-dimensional dataset containing a lot of correlated variables, which tend to

amplify the overfitting problem of OLS.

In the light of the previous observations, the choice of investigating the per-

formance of other methods, trying to avoid the overfitting problem, seems reaso-

nable.

The first presented method was PLS, which, through a linear combination

of the original variables, forms a new set of regressors. Its main advantage is

that the construction of the new regressors is based, not only on the information

contained in each variables, but also on the correlation of the original variables

with the target. Besides this, usually less new regressors are needed to obtain

satisfactory approximations of the reference, introducing a sort of shrinkage. In

this case, as it can be seen from Figure 8.19 and 8.20, the PLS estimator has a

better performance than OLS. However, in some points the PLS predictions are

still too noisy to be considered accurate (see for example run 3 and run 25).

The second presented method was LASSO, whose regularisation term prevents
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Figure 8.19: External validation for methods comparison. OLS(red),

PLS(M=10, magenta) and LASSO(12 active variables, green) vs. reference

BGL(blue circles). First 8 runs of the test set are shown.
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Figure 8.20: External validation for methods comparison. OLS(red),

PLS(M=10, magenta) and LASSO(12 active variables, green) vs. reference

BGL(blue circles). Last 8 runs of the test set are shown.
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the estimated coefficients to assume too large values. Its main characteristic is

to encourage sparse solutions, namely, if the regularisation term is appropriately

weighted, some of the estimated coefficients are exactly zero. Selecting the model

complexity using the cross-validation procedure, the best model results to have

12 active variables. In this case, as can be seen from Figure 8.19 and 8.20, the

LASSO estimator is the one with the best performance, since its prediction are

not very noisy proving that it selects in the proper way the active variables. Its

good performance is due to different reasons: first, the regularisation term cause a

prediction less sensitive too the noise and second, the correlated variables are not

affected by the cancellation problem, even with more active variables. To prove

this last statement, an example with 27 active variables is shown in Figure 8.21.

All the variables have been centered and normalised, allowing a direct comparison.
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Figure 8.21: Example of highly correlated variables, which add up,

compensating their effects on the target(blue circles).

Using the OLS estimator, the coefficients associated with the highly correlated

variables tend to assume opposite signs, cancelling their contribution to the target

estimates. With LASSO, the three variables shown in Figure 8.21 add up, when

combined in the target estimation. In fact, as indicated in the legend, the light
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blue variables have a positive coefficient, while the others(yellow and magenta

lines) have a negative coefficient, as they are negative correlated to the first

variable.

At this point, only a visual comparison between the methods have been per-

formed. To quantify the performance of the different methods, some indicators

are needed to summarise the behaviour of the predictions, as defined in Section

3.4.2.

INDICATOR OLS PLS LASSO

RMSE 248.20 123.30 74.50

MAD 158.00 76.80 55.90

MARD 112.80 60.80 42.40

R2 0.54 0.58 0.67

Table 8.5: Key-indicators for the external validation of OLS, PLS and LASSO.

The first three indicators represent a measure of how distant is the estimate

from the reference. Hence, if the estimated model has a good performance, they

will assume small values. While the last indicator, representing the squared Pear-

son correlation coefficient, denotes the approximation of the prediction in corre-

spondence of the target oscillations and assumes values between 0 and +1. Hence,

if the estimated model has a good performance, it will assume a value near +1.

In this case, all the indicators select LASSO as the best model estimator,

which is in agreement with our visual observations.

In the next Chapter a deeper analysis of the LASSO performance will be

performed. In particular, the performance of the so-called global model will be

deeply evaluated. Then, two calibration methods, which have the aim to improve

the glucose estimates accuracy, will be described.





Chapter 9

Further Topics and Margins of

Improvement for Modeling

Solianis Multisensor Data

In the previous Chapter we compared three different estimators (OLS, PLS

and LASSO) for our linear regression problem and LASSO turned-out to be the

one with the best performance. In this Chapter, a further analysis on the LASSO

estimation ability is performed, using 12 active variables. First, it will be analysed

if the global model is a good choice or if it is worth to investigate a subject-

specific model to improve the glucose estimation. Then,two different calibration

techniques, which may be used to improve the glucose estimates accuracy will be

described and evaluated.

9.1 Assessment of the Global Model

In the previous Chapter the model was learnt from data including all the

subjects and was tested on independent data from all the subjects. Hence, the

performance of a “global” model was evaluated.

In this Section we want to determine if a global model is sufficient or a specific

model for each subject is needed. The learning of a specific model would require to

collect subject-specific data, on which to train the model, or, at least, to performe

some kind of analysis on the subject to adapt the model to specific case. Hence,

a global model has the advantage that, once it is estimated, it can be applied to
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different subjects, without the necessity to adjust it to the specific subject.

For this purpose, we will evaluate if a model estimated from data of three

subjects is suitable for predicting the BGL of another subject (the fourth subject

of our dataset). Hence, a sort of cross-validation can be performed by leaving,

iteratively, one subject out.

Implementing the previously described procedure, we obtain four different

predictions, one for each subject, used as the test set. The results are summarized

using the indicators shown in Table 9.1. The values obtained from the previous

analysis are reported as a reference to assess the results.

AA06 AA14 AA17 AA18 ref values

RMSE 54.70 144.30 59.20 47.20 74.50

MAD 43.60 121.50 44.20 38.10 55.90

MARD 36.50 78.70 31.90 21.90 42.40

R2 0.57 0.33 0.48 0.73 0.67

Table 9.1: Indicators for cross-validation with leave one subject out. The last

column is the reference values of the previous analysis in external validation.

From Table 9.1, we can notice that the model estimated on three subjects is

able to well predict the glucose values of the fourth unseen subject, except for

subject AA14. As representative example of the lucky case, the model predic-

tions of subject AA18 are shown in Figure 9.1, from which we can observe that

the model is able to mimic the glucose fluctuations and to approximate the glu-

cose profiles correctly when applied on unseen subjects. Hence, in this case the

estimated model has proved to generalise well. On the contrary, the bad model

predictions in subject AA14 are shown in Figure 9.2, which demonstrate that in

this case, a “global” model fails in approximating the glucose profiles. However,

even in this unlucky case, the “global” model is still able to reproduce the glu-

cose trends. From Figure 9.2 one can observe that a decreasing trend seems to be

the common problem in the model predictions. Hence, it can be supposed that

the generalisation failure of the estimated model may be due to a specific and

common feature of the signals of subject AA14, instead of the model itself. To

determine if the previous hypothesis is correct, further analysis on the signals of

subject AA14 are needed.

However, from the previous observations we can conclude that, on average, a
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Figure 9.1: Cross-validation with leave subject AA18 out. LASSO

predictions(12 active variables, green) vs. reference BGL(blue circles).
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Figure 9.2: Cross-validation with leave subject AA14 out. LASSO

predictions(12 active variables, green) vs. reference BGL(blue circles).

global model could be sufficient for predicting with acceptable accuracy glucose

profile in “unseen” subjects.
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9.2 Calibration Methods for Glucose Estimates

Accuracy Improvement

The LASSO estimation procedure is not scale invariant. Hence, before apply-

ing the estimator for obtaining the linear model, the data have to be normalised.

Then, to obtain the target estimate of unseen data (external validation), also the

Multisensor data have to be normalised. However, since in the real application

we do not have the entire Multisensor signals available, but only the sample at

the current time step, we cannot obtain the normalisation parameters (mean and

standard deviation) from the whole run. Hence, we can estimate the mean and the

standard deviation from the training set and use them to normalise the unseen

data of the test set.
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Figure 9.3: Representative run showing unsatisfactory predictions. LASSO

model prediction(green) vs. reference BGL(blue circles).

Then, the model prediction has to be brought back to the original measuring

units. For doing this, the reference mean and standard deviation, estimated from

the training set, may be used. However, often this procedure leads to unsatisfac-

tory results (see Figure 9.3).

In this Section we will describe two calibration methods, trying to improve

the glucose estimates accuracy.
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9.2.1 Calibration Method 1: Initial Baseline Adjustment

The initial baseline adjustment is a calibration technique, which uses only a

glucose reference to set the estimation offset.

As said before, to re-convert the model estimation to the original measuring

scale a reference sample may be helpful. Supposing that the estimated LASSO

coefficients are available and we want to use them to predict new data. In this

case, an initial BGL sample, obtained using finger-stick methods, may be used

as a reference to set the prediction offset. In particular, indicating with ŷ(t) the

model prediction at the t-th time instant and supposing that the BGL sample is

collected at the same time instant, the distance between the two can be used as

the offset estimate:

offset = BGL(t)− ŷ(t)

and, adding such an offset to the model prediction ŷ(t) we obtain the displayed

value yd(t) (which coincides with the BGL sample):

yd(t) = ŷ(t) + offset = ŷ(t) + BGL(t)− ŷ(t) = BGL(t)

The same offset is added to the successive model predictions ŷ(t+1), ŷ(t+2), . . .

and has the aim to improve the accuracy of the displayed data. Hence:

yd(t + 1) = ŷ(t + 1) + offset

This method has been used in the previous section to display the target estima-

tes. In the next section, another simple method to calibrate the sensor will be

described. Its application will concern only the glucose estimates obtained with

LASSO and the results will be compared to those obtained using the simpler

base-line adjustment.

9.2.2 Calibration Method 2: Offset Adjustment and Re-

scaling

This second type of calibration technique uses an additional glucose reference

compared to the base line adjustment described in the previous section.

This procedure uses two parameters to calibrate the estimated glucose pro-

files. While one parameter represents the offset, as in the previous case, the
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other denotes a “stretch quantity”, introduced to suitably adjust the scale of

the estimates[69][70].

As before, indicating with ŷ(t) the model prediction at the t-th time instant

and with yd(t) the corresponding transformed value, the calibration equation is:

yd(t) = aŷ(t) + b

where a is the above mentioned stretch parameter, used for changing the scale of

the data, and b is the offset parameter.

In this case, as two different parameter have to be estimated, at least two BGL

samples are needed. Indicating with n the number of BGL used in the calibration

procedure, the parameter a and b are calculated using the OLS estimator, for

solving the following system of equations:









BGL(t1)

BGL(t2)
...

BGL(tn)










︸ ︷︷ ︸

R

=










ŷ(t1) 1

ŷ(t2) 1
...

...

ŷ(tn) 1










︸ ︷︷ ︸

S

[

a

b

]

︸ ︷︷ ︸
p

Representing with R (n x 1) the vector of the BGL samples, with S (n x 2)

the matrix containing in the first column the model estimates and in the second

a vector of ones and indicating with p (2 x 1) the parameters vector. The OLS

solution for this problem is:

p =
(
ST S

)−1
ST R

Once the parameters have been estimated they can be used to improve the accu-

racy of the successive target estimates.

At this point we have not specified the suitable position for the second BGL

reference. Suppose, as for the base line adjustment, that an initial BGL sample

is available. To extract the information about the range of the possible BGL

values, it seems reasonable to place the second BGL reference near a glycaemic

peak. This can be easily reproduced quiet well in a practical context, collecting

one sample before a meal and the second some time after the meal (typically 90

minutes).

For each run in the test set a different vector of parameters has been estimated

and the LASSO predicted values have been calibrated. In Figure 9.4 and 9.5 the

glucose prediction before and after the calibration are shown.
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Figure 9.4: Calibration Method 2(magenta) vs. Calibration Method 1(green)

for LASSO estimates. The red starts indicate the BGL samples used for the

calibration procedure in Section 9.2.2. First 8 runs of the test set are shown.
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Figure 9.5: Calibration Method 2(magenta) vs. Calibration Method 1(green)

for LASSO estimates. The red starts indicate the BGL samples used for the

calibration procedure in Section 9.2.2. Last 8 runs of the test set are shown.

As shown in Figure 9.4 and 9.5, the performance of this calibration procedure

is not the same for all the runs. In fact, in some cases (for example runs 4, 7,

15 and 31) the Calibration Method 2 significantly improves the accuracy of the

glucose estimates, in other cases (for example runs 6, 11 and 23) the calibrated
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estimates have the same performance of the Calibration Method 1. In the remai-

ning cases (for example runs 8 e 21) the glucose estimates are worst than using

the Calibration Method 1. For completeness, the use of a third BGL sample don’t

cause a further improvement in the accuracy, compared to the case of only two

BGL samples. Hence, we limit our analysis to the case of two BGL samples.

We can conclude that in most cases Calibration Method 2 improves the accu-

racy of glucose estimates. When bad results occur, addictional problems affect in

all likelihood the predictions. To verify it, we can focus our attention to the run

21 (shown in Figure 9.6).
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Figure 9.6: Representative run of Calibration Method 2(magenta) vs.

Calibration Method 1(green) for LASSO estimates. The red starts indicate the

BGL samples used for the calibration procedure in Section 9.2.2.

This specific run presents the minimum value after the glycaemic peak, which

is lower with respect to the first BGL reference. In the prediction with the initial

base line adjustment (green) we cannot notice the same characteristic feature.

In particular, it seems that an increasing trend is overlapped to the true glucose

profile. As a consequence, no calibration procedure can improve the estimates

accuracy, unless the trend is removed. Hence, further analyse are needed to in-

vestigate the cause of this trend, in order to compensate it in order to allow a

subsequent improvement of the glucose estimates by using the calibration proce-

dure.
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Conclusions

Diabetes is a worldwide problem and the number of people with diabetes is

constantly increasing due to several reasons including population growth, age,

and increasing prevalence of obesity and physical inactivity. In particular, the

long-term complications make diabetes a social and economical problem, since

they have great impact on subject daily life and its management is financially

expensive. As a consequence, considerable efforts have been made to control this

disease also by using engineering technologies.

During the last decade, it has been proven that diabetes therapy can be im-

proved by monitoring blood glucose levels by means of the so-called Continuous

Glucose Monitoring (CGM) sensors. Different types of sensors, with different de-

grees of invasiveness, have been already developed in the literature and, at present

time, new technologies are also under investigation. Among them, new comple-

tely Non-Invasive CGM sensors (NICGM) are very appealing for obvious practical

reasons. In particular, Solianis Monitoring AG (Zurich, Switzerland) has recently

proposed a NICGM sensor based on the multi-sensor concept, i.e. a system that

includes several sensors (for impedance, optics, temperature, acceleration, . . . ) on

one single substrate which can be attached to the human body in order to allow a

broad characterisation of the skin and the underlying tissues (Caduff et all, Bio-

sensors and Bioelectronics, pp. 2778-2784, 2009). Such Multisensor signals allow

the indirect measurement of glucose level in the blood through a mathematical

model.

The present work was performed under the aegis of a research agreement bet-

ween the Department of Information Engineering of the University of Padova and
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Solianis Monitoring AG. The scope of the project was the development and the

assessment of a model for estimating glucose level from the Solianis Multisen-

sor data. Specifically, in the present thesis three different methods for building a

linear regression model to describe glucose data from Multisensor signals were in-

vestigated, assessed and compared: Ordinary Least Squares (OLS), Partial Least

Squares (PLS) and Least Absolute Shrinkage and Selection Operator (LASSO).

OLS results suffered from overfitting, i.e. the estimated regression model fits

not only the information yield by the data but also to the noise contained in

them. Hence, the model was not able to generalize the data properly and failed

in predicting unseen data.

PLS constructs new orthogonal predictors, starting from the original signals

and makes a linear combination of a selected number them to calculate the re-

gression. However, for the Solianis Multisensor data, the PLS estimate resulted

too sensitive to the noise in the data. This phenomenon was probably due to the

fact that the new regressors are constructed from a linear combination of all the

original signals (also the noisier ones).

Finally, LASSO makes a linear combination of the signals, but penalizes the

sum of absolute coefficients to prevent the multiplication coefficients from as-

suming too large values. In addition, LASSO has the characteristic to yield to

sparse solutions, which means that some coefficients will be exactly zero. By

applying LASSO to the Multisensor data, rather satisfactory estimates of the

glucose profiles were obtained. In particular, LASSO, selecting only some of the

original signals by means of the regularisation term, avoided the OLS overfitting

problem.

Summarising, LASSO has shown the best performance in predicting the BGL

from unseen Multisensor data.

Further analysis was then performed, by using the LASSO method, to assess

if a global model could be a viable choice for the Solianis Multisensor. The global

model would have the advantage that, once it is estimated, it can be applied

to different subjects, without the necessity to adjust it to the specific subject.

Hence, it was evaluated the capability of the model in predicting the glucose

profiles of a subject, which was not used in the model learning. In this case, we

concluded that on average, a global model was sufficient for predicting properly

the glucose profile of new subjects. A second investigation concerned with the
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possible usefulness of two calibration methods to improve the accuracy of glucose

estimates. The so-called calibration method 2 showed, in most cases, a remarkable

improvement of the accuracy of the estimated glucose profiles.

Future developments

From the previously described analysis, LASSO gave the best results in pre-

dicting the BGL from unseen Multisensor data, as it avoids overfitting which may

easily occur with the ordinary techniques. Hence, it will be worthwhile to ana-

lyse the LASSO performance in modeling Solianis Multisensor data on a wider

dataset, in order to obtain a deeper insight into its capability of generalising the

data.

During the analysis a common limitation of LASSO estimates was due by

the presence of some trends, which caused a reduction in the accuracy of the

model in predicting the glucose profiles. Future analysis should have the aim of

investigating the cause of these trends, in order to compensate them allowing a

subsequent improvement of the glucose estimates.





Appendix A

Matlab code

In this Section we report the Matlab code for the implementation of the linear

regression techniques presented in this thesis.

A.1 OLS

beta=X\y;

or

beta=inv(X’*X)*X’y

A.2 PLS

function [Xload,Yload,Xscores,Yscores,beta] = plsregress(X,Y,ncomp,varargin)

[n,dx] = size(X);

ny = size(Y,1);

% Center both predictors and response, and do PLS

meanX = mean(X,1);

meanY = mean(Y,1);

X0 = bsxfun(@minus, X, meanX);

Y0 = bsxfun(@minus, Y, meanY);

if nargout <= 2

[Xload,Yload] = simpls(X0,Y0,ncomp);
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elseif nargout <= 4

[Xload,Yload,Xscores,Yscores] = simpls(X0,Y0,ncomp);

else

% Compute the regression coefs, including intercept(s)

[Xload,Yload,Xscores,Yscores,Weights] = simpls(X0,Y0,ncomp);

beta = Weights*Yload’;

beta = [meanY - meanX*beta; beta];

end

%-----------------------------------------------------------------------

%SIMPLS Basic SIMPLS. Performs no error checking.

function [Xload,Yload,Xscores,Yscores,Weights] = simpls(X0,Y0,ncomp)

[n,dx] = size(X0);

dy = size(Y0,2);

% Preallocate outputs

outClass = superiorfloat(X0,Y0);

Xload = zeros(dx,ncomp,outClass);

Yload = zeros(dy,ncomp,outClass);

if nargout > 2

Xscores = zeros(n,ncomp,outClass);

Yscores = zeros(n,ncomp,outClass);

if nargout > 4

Weights = zeros(dx,ncomp,outClass);

end

end

% An orthonormal basis for the span of the Xload to make successive deflation

% X0’*Y0 simple - each new basis vector can be removed from Cov separately.

V = zeros(dx,ncomp);

Cov = X0’*Y0;

for i = 1:ncomp

% Find unit length ti=X0*ri and ui=Y0*ci whose covariance,ri’*X0’*Y0*ci,

% is jointly maximized, subject to ti’*tj=0 for j=1:(i-1).

[ri,si,ci] = svd(Cov,’econ’); ri = ri(:,1); ci = ci(:,1); si = si(1);

ti = X0*ri;
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normti = norm(ti); ti = ti ./ normti; % ti’*ti == 1

Xload(:,i) = X0’*ti;

qi = si*ci/normti; % = Y0’*ti

Yload(:,i) = qi;

if nargout > 2

Xscores(:,i) = ti;

Yscores(:,i) = Y0*qi; % = Y0*(Y0’*ti)

if nargout > 4

Weights(:,i) = ri ./ normti; % rescaled

end

end

% Update the orthonormal basis with modified Gram Schmidt,(more stable),

% repeated twice (ditto).

vi = Xload(:,i);

for repeat = 1:2

for j = 1:i-1

vj = V(:,j);

vi = vi - (vi’*vj)*vj;

end

end

vi = vi ./ norm(vi);

V(:,i) = vi;

% Deflate Cov, i.e. project onto the ortho-complement of the X loadings.

% First remove projections along the current basis vector, then remove

% any component along previous basis vectors that’s crept in as noise from

% previous deflations.

Cov = Cov - vi*(vi’*Cov);

Vi = V(:,1:i);

Cov = Cov - Vi*(Vi’*Cov);

end

if nargout > 2

% By convention, orthogonalize the Yscores w.r.t. the preceding Xscores,

% i.e. XSCORES’*YSCORES will be lower triangular. This gives, in effect,

% only the "new" contribution to the Y scores for each PLS component. It

% is also consistent with the PLS-1/PLS-2 algorithms, where the Yscores

% are computed as linear combinations of a successively-deflated Y0.
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for i = 1:ncomp

ui = Yscores(:,i);

for repeat = 1:2

for j = 1:i-1

tj = Xscores(:,j);

ui = ui - (ui’*tj)*tj;

end

end

Yscores(:,i) = ui;

end

end

A.3 LASSO

function [history, stopReason] = lars(yin, xin, XTX, type, ...

stopCriterion, regularization, trace, quiet)

global USING_CLUSTER;

global LARS_RESOL;

global REGULARIZATION_FACTOR;

lars_init();

regularization_factor = REGULARIZATION_FACTOR;

stopReason = {};

%%% Check parameters

if length(yin)==0 | length(xin)==0

warning(’\nInput or Output has zero length.\n’);

history.active_set = [];

stopReason{1} = ’Parameter error’;

stopReason{2} = 0;

return;

end

if size(yin,1) ~= size(xin,1)

warning(’\nSize of y does not match to that of x.\n’);

history.active_set = [];

stopReason{1} = ’Parameter error’;

stopReason{2} = 0;

return;

end
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if ~strcmp(type,’lasso’)&~strcmp(type,’lars’)&~strcmp(type,’forward_stepwise’)

warning(’\nUnknown type of regression.\n’);

history.active_set = [];

stopReason{1} = ’Parameter error’;

stopReason{2} = 0;

return;

end

if strcmp(type, ’forward_stepwise’)

warning(’\nForward_stepwise is not implemented.\n’);

history.active_set = [];

stopReason{1} = ’Parameter error’;

stopReason{2} = 0;

return;

end

if exist(’regularization’,’var’) & ~isempty(regularization)

regularization = 10;

else

regularization = 0;

end

if ~exist(’trace’,’var’) | isempty(trace)

trace=0;

end

if ~exist(’quiet’,’var’) | isempty(quiet)

quiet=0;

elseif quiet==1

trace=0;

end

%-----------------------------------------------------------------------------

% Data preparation

% Program automatically centers and standardizes predictors.

if ~exist(’XTX’,’var’)

XTX=[];

end

no_xtx = 0;

if ~isempty(XTX)

if ~quiet & trace >=0
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fprintf(’\nLars is using the provided xtx.\n’);

end

elseif size(xin,2)^2 > 10^6

if ~quiet & trace >=0

fprintf(’Too large matrix (size(x,2)^2 > 10^6)’);

end

no_xtx = 1;

XTX = lars_getXTX(xin,no_xtx);

else

% fprintf(’\nCalculating xtx.\n’);

XTX = lars_getXTX(xin);

end

x = XTX.x; % normalized xin

mx = XTX.mx; % mean xin

sx = XTX.sx; % length of each column xin

ignores = XTX.ignores; % indices for constant terms

all_cand = XTX.all_cand; % indices for all columns

if ~no_xtx

xtx = XTX.xtx; % xtx matrix

dup_columns = XTX.dup_columns; % duplicated columns ignored

end

my = mean(yin);

y = yin-my;

n = size(x,1); % # of samples

m = size(x,2); % # of predictors

% Now, we can determine the maximum number of kernels.

existMaxKernels = 0;

existMSE = 0;

for is = 1:size(stopCriterion,1)

if strcmp(stopCriterion{is,1},’maxKernels’)

existMaxKernels = 1;

stopCrit{is,2}=min(stopCrit{is,2},...

min(rank(xin),length(all_cand)));

if stopCrit{is,2}<1

warning(’Max Kernel is less than 1.\n’);

stopCrit{is,2} = 1;

end



A.3. LASSO 163

end

if strcmp(stopCrit{is,1},’MSE’)

existMSE = 1;

if stopCrit{is,2}<1.0e-10

warning(’Maximum MSE is too small.’);

stopCrit{is,2} = 1.0e-10;

end

end

end

if ~existMaxKernels

is = size(stopCrit,1);

stopCrit{is+1,1} = ’maxKernels’;

stopCrit{is+1,2} = min(rank(xin), length(all_cand));

% Stop when size of active set is data.maxKernels.

end

if ~existMSE

is = size(stopCrit,1);

stopCrit{is+1,1} = ’MSE’;

stopCrit{is+1,2} = 1.0e-10;

end

%----------------------------------------------------------------------------

% Initialization

active = []; % active set

inactive = all_cand; % inactive set

mu_a = zeros(n,1); % current estimate

mu_a_plus = 0; % next estimate

mu_a_OLS = 0; % OLS estimate

beta = zeros(1,size(x,2));

beta_new = beta;

beta_OLS = beta;

history.active_set = [];

history.add = [];

history.drop = [];

history.beta_norm = [];

history.beta = [];

history.b = my;
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history.mu = my;

history.beta_OLS_norm = [];

history.beta_OLS = [];

history.b_OLS = my;

history.mu_OLS = my*ones(size(yin));

history.MSE = sum(y.^2)/length(y);

history.R_square = 0;

history.resolution_warning = [];

if var(yin)==0

stopReason{1} = ’zeroVarY’;

stopReason{2} = var(yin);

return;

end

%--------------------------------------------------------------------------

% Main loop

%--------------------------------------------------------------------------

c = 0; % correlation vector

C_max = max(abs(c));

C_max_ind = [];

C_max_ind_pl = [];

drop = []; % used for ’lasso’

k = 1; % iteration index

if ~quiet & trace >= 0

fprintf(’Active predictors/total : Current iteration\n’);

end

while 1

%---------------------------------------------------------------

% Exit Criterions

%---------------------------------------------------------------

if exist(’stopCrit’,’var’)% If there is stop criterion

% Any of these is satisfied, algorithm stops.

for is = 1:size(stopCrit,1)

% Default Criterions.Maximum number of consecutive drops.

if strcmp(stopCrit{is,1},’maxDrops’)

drop_window = stopCrit{is,2}(1);

if drop_window==0
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drop_window=k;

end

drop_n = min(drop_window,stopCrit{is,2}(2));

drop_vector = [];

for z = max(k-drop_window+1,1):k

drop_vector=[drop_vector, history(z).drop];

end

if length(drop_vector)>=drop_n

stopReason{1} = ’maxDrops’;

stopReason{2} = drop_n;

break;

end

end

% Maximum number of kernels.

if strcmp(stopCrit{is,1},’maxKernels’)

if length(active) >= min(stopCrit{is,2},...

min(size(xin,1)-1, length(all_cand)))

stopReason{1} = ’maxKernels’;

stopReason{2} = length(active);

break;

end

end

% Maximum number of iterations.

if strcmp(stopCrit{is,1},’maxIterations’)

if k >= stopCrit{is,2}

stopReason{1} = ’maxIterations’;

stopReason{2} = k;

break;

end

end

% MSE.

if strcmp(stopCrit{is,1},’MSE’)

if history(k).MSE <= stopCrit{is,2}

stopReason{1} = ’MSE’;

stopReason{2} = history(k).MSE;

break;

end

end

% User defined stop criterion.

if strcmp(stopCrit{is,1},’userDefinedCriterion’)

fhandle = stopCrit{is,2}.fhandle;
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r_fhandle = fhandle(history, stopCrit{is,2}.data);

if r_fhandle.stop

stopReason{1} = ’userDefinedCriterion’;

stopReason{2} = r_fhandle;

break;

end

end

end

end % end of stop criterion checking

if length(stopReason)>0 % if there is any reason exit loop.

break;

end

%------------------------------------------------------------------------

% LARS Algorithm

%------------------------------------------------------------------------

c = x’*(y-mu_a);

[C_max,C_max_ind] = max(abs(c(inactive)));

C_max_ind = inactive(C_max_ind);

% But because of machine limit, there can be multiple new predictors.

% This improves the overall precision of the result,

% and speeds up the whole process.

C_max_ind_pl = abs(c(inactive))>C_max-LARS_RESOL;

C_max_ind_pl = inactive(C_max_ind_pl);

active = sort(union(active,C_max_ind_pl));

inactive = setdiff(all_cand, active);

if strcmp(type,’lasso’)

if ~isempty(drop)&length(find(drop==C_max_ind))==0%If there is a drop

if ~quiet & trace >=0

fprintf(’\n’);

warning(’Dropped item and index of maximum corr’);

fprintf(’\n ’);

end

active(find(active==C_max_ind))=[];

end

if ~isempty(drop)

C_max_ind = [];

C_max_ind_pl= [];

end

active = setdiff(active,drop);
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inactive = sort(union(inactive,drop));

end

s = sign(c(active));

xa = x(:,active).*repmat(s’,n,1);

if ~no_xtx

ga = xtx(active,active).*(s*s’);

else

ga = xa’*xa;

end

if regularization > 2

ga = ga+eye(length(ga))*regularization_factor;

% This routine will make the test below

end

invga = ga\eye(size(ga,1));

aa = sum(sum(invga))^(-1/2);

wa = aa*sum(invga,2);

ua = xa*wa;

test_1 = xa’*ua;

test_2 = aa*ones(size(test_1));

test_1_2 = sum(sum(abs(test_1-test_2)));

test_3 = norm(ua) - 1;

history(k+1).resolution_warning=0;

if test_1_2>LARS_RESOL*100|abs(test_3)>LARS_RESOL*100

if regularization <=2

if ~quiet & trace>0

fprintf(’\n’);

warning(’test failure.’);

fprintf(’\n ’);

end

regularization = regularization + 1;

if regularization > 2

if ~quiet & trace>0

fprintf(’\n’);

warning(’Regularization be applied from now’);

fprintf(’\n ’);

end

end

end
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history(k+1).resolution_warning=1;

end

a = x’*ua;

tmp_1 = (C_max - c(inactive))./(aa - a(inactive));

tmp_2 = (C_max + c(inactive))./(aa + a(inactive));

tmp_3 = [tmp_1, tmp_2];

tmp = tmp_3(find(tmp_3>0));

gamma = min(tmp);

if length(gamma)==0

%if this is the last step (i.e. length(active)==maxKernels)

gamma = C_max/aa;

end

d = zeros(1,m);

d(active) = s.*wa;

if length(find(d(active)==0))

fprintf(’\n’);

warning(’Something wrong with vector d:’);

fprintf(’\n ’);

end

tmp = zeros(1,m);

tmp(active) = -1*beta(active)./d(active);

tmp2 = tmp(find(tmp>0));

drop = [];

gamma_tilde = inf;

if ~isempty(tmp2) & gamma >= min(tmp2)

gamma_tilde = min(tmp2);

drop = find(tmp==gamma_tilde);

end

if strcmp(type, ’lars’)

mu_a_plus = mu_a + gamma*ua;

beta_new = beta + gamma*d;

drop = [];

elseif strcmp(type, ’lasso’)

mu_a_plus = mu_a + min(gamma, gamma_tilde)*ua;

beta_new = beta + min(gamma, gamma_tilde)*d;
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active = setdiff(active,drop);

inactive = setdiff(all_cand,active);

beta_new(drop) = 0;

elseif strcmp(type, ’forward_stepwise’)

drop = [];

error(’forward.stepwise has not been implemented yet.’);

return;

end

mu_a_OLS = mu_a + C_max/aa*ua;

beta_OLS = beta + C_max/aa*d;

MSE = sum((y - mu_a_OLS).^2)/length(y);

%---------------------------------------------------------------

% update and save

mu_a = mu_a_plus;

beta = beta_new;

% history with scale correction

k = k+1;

history(k).active_set = active;

history(k).drop = drop;

history(k).add = C_max_ind_pl;

history(k).beta_norm = beta(active);

history(k).beta = beta(active)./sx(active);

history(k).b = my - sum(mx./sx.*beta);

history(k).mu = xin * (beta./sx)’ + history(k).b;

history(k).beta_OLS_norm= beta_OLS(active);

history(k).beta_OLS = beta_OLS(active)./sx(active);

history(k).b_OLS = my - sum(mx./sx.*beta_OLS);

history(k).mu_OLS = xin*(beta_OLS./sx)’+ history(k).b_OLS;

history(k).MSE = MSE;

history(k).R_square = 1-var(yin-history(k).mu_OLS)/var(yin);

% exit if exact mathing is achieved.

if abs(C_max/aa - min(gamma,gamma_tilde)) < LARS_RESOL

stopReason{1} = ’ExactMatching’;

stopReason{2} = 0;

break;

end

end % end of while loop

return;





List of Abbreviations

BGL Blood Glucose Levels

CGM Continuous Glucose Monitoring

IDDM Insulin Dependent Diabetes Mellitus

IS Impedance Spectroscopy

LAR Least Angle Regression

LASSO Least Absolute Shrinkage and Selection Operator

MAD Mean Absolute Difference

MARD Mean Absolute Relative Difference

MSE Mean Square Error

NICGM Non Invasive Continuous Glucose Monitoring

NIDDM Non-Insulin Dependent Diabetes Mellitus

OCT Optical Coherence Tomography

OLS Ordinary Least Squares

PLS Partial Least Squares

RMSE Root Mean Square Error

RSS Residual Sum of Squares

SMBG Self-Monitoring Blood Glucose
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