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Liquid eternity perpetuat our liv
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Abstract

Protoplanetary discs are the fundamental channel to peer into both star formation and planet for-
mation: their study through the combination of theory, observations and numerical simulations is
essential to unveil still unanswered questions about their structure and the processes that rule them.
ALMA and SPHERE are among the most powerful instrumentation for observations of the cold
universe, which open up the opportunity of studying objects like dust discs surrounding young stars.
This new generation of imaging has led to major changes in the understanding of protoplanetary
discs, which are now acknowledged to have different, complex structures. The mutual interaction
between gas, dust, planets and their surroundings leads to deviations from axisymmetric shapes, like
gaps, spirals and warps.

In my thesis I investigated via numerical simulations the effects of two giant planets locked in reso-
nance on the dust distribution of the circumstellar disc around a young star, in order to gather if such
systems are able to leave peculiar features such as a common gap, which is an essential requirement
for outward migration — invoked to explain the observed position of several giant exoplanets with
respect to their host star (Walsh et al. 2011). Inmywork I tested the outcome of the variations of some
parameters, i.e. the eccentricity of the planets, the scale height of the disc and the equation of state: in
particular, I aimed to show the differences produced by the inclusion of viscous heating and radiative
transfer. I used the tridimensional code PLUTO (Mignone et al. 2007) and tested its efficiency in
simulating the gaseous and dusty components of the disc. The main results I obtained are that gaps
in both gas and dust are more easily formed in a locally isothermal disc with a lower scale height and
with planets on eccentric orbits: radiative transfer acts as an obstruction for gap forming and dust
accretion.

I dischi protoplanetari sono il tramite fondamentale per lo studio della formazione di stelle e pianeti:
combinando teoria, osservazioni e simulazioni numeriche è possibile trarre informazioni sulla loro strut-
tura e i sui processi che li gonvernano. ALMA e SPHERE sono tra gli strumenti più potenti per le
osservazioni di o etti freddi nell’universo, come i dischi di polvere attorno a stelle giovani: questa nuova
generazione di acquisizione di immagini ha condotto a grandi cambiamenti nell’interpretazione dei
dischi protoplanetari, che ora sappiamo essere caratterizzati da strutture complesse e differenti fra loro.
L’interazione reciproca tra g , polvere, pianeti e i loro dintorni porta alla formazione di strutture come
cavità, spirali e distorsioni, che deviano dal profilo assisimmetrico che si attribuiva precedentemente ai
dischi.

Nella mia tesi ho effettuato simulazioni numeriche per investigare gli effetti di due pianeti giganti in
risonanza sulla distribuzione della polvere di un disco circumstellare attorno a una stella giovane, con
lo scopo di capire se sia possibile osservare delle caratteristiche riconoscibili, come una cavità comune,
requisito necessario perché avvenga una migrazione verso l’esterno, che permetterebbe di motivare la
distanza di alcuni esopianeti giganti dalla loro stella (Walsh et al. 2011). Nel mio lavoro ho analizzato
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l’effetto della variazione di alcuni parametri: l’eccentricità dei pianeti, l’altezza di scala del disco e
l’equazione di stato. In particolare mi sono occupata di esaminare le differenze dovute all’inserimento
del riscaldamento viscoso e del trasporto radiativo. Ho utilizzato il codice tridimensionale PLUTO
(Mignone et al. 2007) e ne ho collaudato l’efficienza nel simulare le componenti di g e polvere nel
disco. Il risultato principale che ho ottenuto consiste nel fatto che cavità in g e polvere si formano
più facilmente in dischi localmente isotermi con un’inferiore altezza di scala e con pianeti su orbite
eccentriche: il trasporto radiativo risulta un deterrente per la formazione di cavità e per l’accrescimento
di polvere sui pianeti.
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1
Introduction

1.1 Protoplanetary Discs

Protoplanetary discs (PPDs) of gas and dust surrounding young stars are the cradle of planet forma-
tion. They originate from diffuse gas characterised by high angular momentum and are observed for
the first few million years of a star’s life. Eventually, PPDs are partially accreted onto the star and
partially dissipated on timescales much longer than the orbital or dynamical ones.

Star formationprocesses in galaxies happenwithin relatively dense and coolmolecular cloudswhich
determine a PPD’s initial mass, size and chemical composition. A cloud’s inhomogeneity in terms of
density and velocity fields due to turbulence (Larson 1981) causes its collapse to introduce nonzero
angular momentum.

1.1.1 Structure of Accretion Discs

In most cases the disc flow is confined in the proximity of the orbital plane, so that a series of approx-
imations can be made and we can now refer to them as thin discs. If we neglect the disc self-gravity
and its internal pressure gradients, matter will move approximately with Keplerian angular velocity

ΩK(R) =

√
GM∗

R3
(1.1)

and thus circular velocity
vϕ = RΩK(R). (1.2)

In addition, the gas is assumed to possess a radial velocity vR, which has to be negative near the central
star to allow accretion. The disc is characterised by its surface density

Σ(R, t) =

∫ +∞

−∞
ρ(R, t, z)dz (1.3)

i.e. the mass per unit surface area of the disc. With regard to the vertical structure, it is considered
to be strongly decoupled to the radial structure, so it can be treated separately (Figure 1.1). For an
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Figure 1.1: Ver cal geometry of a PPD in hydrosta c equilibrium: the balancing forces are the ver cal component of stellar
gravity and the ver cal pressure gradient. Credits: Armitage 2015.

isothermal z-structure with z ≪ R, the hydrostatic equation leads to

ρ(R, z) = ρmid(R) e
− z2

2H2 (1.4)

where ρmid(R) is the density on the midplane z = 0 and it can be expressed as

ρmid(R) =
1√
2π

Σ

H
(1.5)

with H = cs/ΩK being the thickness of the disc, or vertical scale height, and cs the sound speed.
For values of the mean molecular weight of a gas of cosmic composition, µ ≈ 2.3, the sound speed
cs =

√
kBT/(µmH) ≈ 0.6 km s−1 gives an aspect ratioH/R ≈ 0.02 at 1 AU around a Solar mass

star, where the temperature is reasonably around 100 K.
The disc itself also contributes to the vertical component of gravity: approximating the disc as an

infinite sheet with constant surface densityΣ, according to Gauss’ theorem the gravitational accelera-
tion above the sheet is equal to 2πGΣ and dominates on the vertical component of the star’s gravity
if

Mdisc

M∗
>

1

2

(
H

R

)
. (1.6)

1.1.2 Viscosity

To accrete onto the star, gas in the disc must lose angular momentum, thus converting orbital kinetic
energy into heat: the mechanism that governs this process is one of the unsolved problems of the
physics of accretion discs. Unless the disc experiences the same Ω at each radial distance, the motion
takes place through differential rotation, like in the case of Keplerian rotation, where adjacent rings
of material generate viscous stresses due to chaotic thermal motions or turbulent motions. Thus,
momentum is transferred orthogonally with respect to the gas motion (shear viscosity). The critical
part is to determine thenature andmagnitude of the viscosity. We can compare the intensity of inertial
and viscous forces via the Reynolds number in the case of molecular transport:

Re =
Rvϕ
λṽ

(1.7)

2



whereλ and ṽ are respectively themean free path and the thermal speedof themolecules. For expected
values of such quantities in accretion discsRemol > 1014 (Frank 1986), whichmeansmolecular viscos-
ity is too weak to be effective as a dissipative force. Furthermore, at such elevated Reynolds numbers,
turbulence sets in: hence it is currently believed that these chaotic motions are the source of the vis-
cosity, characterised by spatial scale λturb and velocity of the eddies vturb. Assumptions can be made
about the magnitude of these quantities: largest turbulent eddies cannot exceed the disc thicknessH
and the motion is likely subsonic, such that

ν = αcsH. (1.8)

We then expect α ≲ 1: this is the so called Shakura & Sunyaev (Shakura and Sunyaev 1973) α-
prescription.

1.1.2.1 Turbulence

The origin of turbulence in PDDs is still unknown but there are several candidates which could ex-
plain the occurrence of turbulent motions. The linear stability of a shear flow against axisymmetric
perturbations is given by Rayleigh’s criterion (Pringle and King 2007)

dl

dR
=

d

dR
(R2Ω) > 0 (1.9)

i.e. the flow is stable if the specific angular momentum increases with radius, as happens for a Keple-
rian disc in which l ∝

√
R.

Vertical Shear Instability

Vertical shear instability (VSI) (Nelson et al. 2013) is a so called entropy-driven instability, i.e. it relies
on the existence of a non-trivial temperature structure. If a disc has a radial temperature gradient,
then there is vertical shear (Takeuchi and Lin 2002). To access the free energy in the vertical shear
requires vertical fluid displacements, which are strongly dependent on the radiative properties of the
disc: under the right conditions,Nelson et al. 2013 andStoll andKley 2014 found thatVSI can generate
an α of a few 10−4.

Self-Gravity

A disc is self-gravitating if it is unstable to the growth of surface density perturbations when the grav-
itational force between different fluid elements cannot be ignored. The Toomre parameter (Toomre
1964) is defined as

Q ≡ csΩ

πGΣ
: (1.10)
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a disc is self-gravitating ifQ < Qcrit ∼ 1. For a stationary disc we can write

Q =
3αc2s
GṀ

, (1.11)

where Ṁ is the mass accretion rate, so self-gravity is most likely to be important at lower cs, i.e. at
larger distances from the star, where the temperature is lower. The disc mass required for self-gravity
is

Mdisc

M∗
>
H

R
. (1.12)

The outcomes of self-gravity in a disc can either be spiral overdensities which lead to gravitational
torques transporting angularmomentum outwards or fragmentation into bound objects due to pres-
sure and tidal forces.

Magneto-Rotational Instability

In PPDs magnetic fields are mostly relevant in the thermally ionized region close to the star. The
magneto-rotational instability (MRI) (Balbus and Hawley 1991) is due to cylindrical shear flows that
contain a weak magnetic field. The condition for instability is that

dΩ2

dR
< 0 (1.13)

which is always satisfied in discs. What happens is that a vertical field is slightly perturbed radially, so
that it links fluid elements in the disc at different radii: because of the shear in the disc, the fluid closer
to the star orbits faster than the fluid further out, creating a toroidal field component. The tension in
themagnetic field linking the two elements imparts azimuthal forces to both the inner fluid (opposite
to its orbital motion) and the outer fluid (along its orbital motion). The tension force thus reduces
the angular momentum of the inner fluid element and increases that of the outer element: the inner
fluid then moves further inward and the outer fluid further outward, thus resulting in instability.
Simulations show that the MRI saturates to a turbulent state with α ≈ 0.02.

1.1.3 Evolution of Accretion Discs

The equation governing the time evolution of surface density in a Keplerian disc was obtained by
Pringle 1981:

∂Σ

∂t
=

3

R

∂

∂R

[√
R
∂

∂R

(
νΣ

√
R
)]

, (1.14)

which is a nonlinear diffusion equation. A simplifiedmodel which assumes a constant ν and an initial
ring-like matter distribution (Figure 1.2) allows to infer that viscosity has the effect of spreading the
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Figure 1.2: A ring of ma er of mass m placed in a Keplerian orbit atR = R0 spreads out under the ac on of viscous torques.
The surface densityΣ is shown as a func on of x = R/R0 and the dimensionless me variable τ = 12νtR−2

0 (Credits:
Frank 1986).

original ring in radius on a typical viscous timescale

tvisc ∼
R2

ν
. (1.15)

The outer parts of the matter distribution move outwards, taking away the angular momentum of
the inner parts, whichmove towards the accreting star and the radius at which vR changes signmoves
outwards itself:

vR = −3ν
∂

∂R
log (R1/2Σ). (1.16)

Eventually,most of the originalmass has accreted onto the central star andmost of the original angular
momentum has been carried to very large radii by a very small fraction of the mass.

1.1.4 Emission Spectra of Accretion Discs

1.1.4.1 Stellar Irradiation

Adisc whose temperature is determined by stellar irradiation is called passive and can be considered as
flat disc that absorbs all incoming stellar radiation and re-emits it locally as a blackbody. For a starwith
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effective temperature T∗ and brightness I∗ = σT 4
∗ /π, where σ is the Stefan-Boltzmann constant,

(
Tdisc
T∗

)4

=
1

π

arcsin(R∗

R

)
−
(
R∗

R

)√
1−

(
R∗

R

)2
 , (1.17)

which can be approximated as Tdisc ∝ R−3/4.

1.1.4.2 Viscous Heating

If we ignore irradiation, the temperature profile of a PPD is dominated by the dissipation of gravita-
tional potential energy associated with accretion. Assuming that the vertical energy transport mech-
anism is exclusively radiative and that the disc medium can be treated as plane-parallel, the flux of
radiant energy through a surface z = const is given by

F (z) = −16σT 3

3κRρ

∂T

∂z
(1.18)

where σ is the Stefan-Boltzmann constant and κR is the Rosseland mean opacity, thus assuming that
the disc is optically thick in the z-direction. With these assumptions, each element of the disc face
radiates as a blackbody with temperature

Tdisc =

[
3GMṀ

8πR3σ

(
1−

√
R∗

R

)]1/4
=

(
9νΣGM

8R3σ

)1/4

(1.19)

whereR∗ is the stellar radius and Ṁ is the accretion rate

Ṁ =
3πνΣ

1−
√

R∗
R

. (1.20)

The specific intensity of each element can be approximated as

Iν = Bν [T (R)] =
2hν3

c2
1

e
hν

KT (R) − 1
(1.21)

i.e. neglecting the atmosphere of the disc. The integral of this quantity gives the actual flux

Fν =
2π cos i

D2

∫ Rout

R∗

IνRdR, (1.22)

whereD is the observer’s distance whose line of sight makes an angle i to the normal to the disc plane
andRout is the outer boundary of the disc. This results in a stretched-out blackbodywith a flat∝ v1/3
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Figure 1.3: The con nuum spectrum of a steady op cally thick accre on disc radia ng locally as a blackbody for discs with
different ra os between the outer and inner radius (credits: Frank 1986).

part (Figure 1.3). For optical depths τ ≫ 1 the midplane temperature Tc is much larger than the
photosphere temperature Tdisc:

T 4
c

T 4
disc

≃ 3

4
τ. (1.23)

Usually both stellar irradiation and accretional heating are significant to the thermal balance of the
disc. For τ ≫ 1:

T 4
c ≃ 3

4
τT 4

visc + T 4
irr. (1.24)

1.2 Dust

Dust composes about 1% of a PPD and consists of the indispensable solid material needed for the
formation of planets and minor bodies around a star. Dust is fundamental for the evolution of a
PPD since it dominates the opacity and as a consequence the temperature by absorbing the stellar
electromagnetic radiation and re-emitting it in the infrared. Circumstellar dust distribution also al-
lows to obtain insights about the gas dynamics thanks to its dependence to changes in the gas disc.
Dust evolves both via transport processes and via collisional processes, which will be analysed below.
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1.2.1 Drag Forces
Because of pressure support, the gas is orbiting the star at speeds smaller than the Keplerian velocity:
usually this difference is of 50 − 100 m s−1. The phenomenon of aerodynamic drag occurs when
there is a difference in velocity between an object and the surrounding gas. Let us consider a particle
of solid material of radius s and material density ρs which moves at a velocity v relative to the local
velocity of the gas disc. It is necessary to distinguish between two different regimes based on the
relative dimensions of s and the mean free path of gas molecules λ, given by:

λ =
µmH√
2ρgσmol

(1.25)

whereµ is themeanmolecular weight,mH is the protonmass, ρg is the gas density and σmol = πd2mol

is the molecular cross section, with dmol effective molecular diameter, of the order of a few Å.

Epstein drag

If s ≲ λ, the fluid on the scale of the particle is collisionless and its velocity distribution isMaxwellian
with mean thermal speed

vth =

√
8kBT

πµmH

(1.26)

where kB is the Boltzmann constant. The drag effect is due to the different frequency at which each
dust particle is hit by a gas molecule from the ‘front’ or the ‘back’ side. The resulting net drag force is
(Weidenschilling 1977)

FEp = −4π

3
ρgs

2vthv (1.27)

where ρg is the gas density. The key parameter describing the aerodynamic coupling between dust
and gas is the stopping time:

tstop =
mv

FEp

=
ρss

ρgvth
, (1.28)

or the Stok number:
St = tstopΩK. (1.29)

Particles with the same Stokes number have the same aerodynamic behaviour. For a vertically isother-
mal gas disc with scale height H = cs/ΩK and gas surface density Σg, the Stokes number on the
midplane is equal to (Birnstiel et al. 2009)

St =
sρs
Σg

π

2
, (1.30)

assuming a gas midplane density of ρg,mid = Σg√
2πHg

. Therefore the Stokes number is linearly depen-
dent on the particle size: a small particle adapts to the gas velocity below an orbital timescale, while

8



for a bigger particle it may take several orbits.

Stokes drag

If s ≳ λ, the drag force scales with the ram pressure experienced by the particle:

FD = −CD

2
πs2ρgvv (1.31)

whereCD is the drag coefficient and depends on the shape of the particle and on the fluid’s Reynolds
number.

1.2.1.1 Dust Drift

Dust particles embedded in a gaseous disc migrate towards the star as a consequence of aerodynamic
drag. Large bodies with St ≫ 1 have speeds close to the Keplerian one and experience gas drag as a
‘headwind’ by the sub-Keplerian disc. This leads to a change in the orbital energy−GM∗m/2a, with
a radius of the orbit, of a quantity given by the work of the drag force

Ė ≃ −|F|vK, (1.32)

which gives a radial velocity equal to

vr = − 2

St
v. (1.33)

Bodies with St ≪ 1 are forced to orbit at the gas speed instead since they are strongly coupled to
the gas: particles do not feel the pressure gradient, so their non-Keplerian orbital motion results in a
net radial force

Fr

m
=

(vK − v)2

a
− GM∗

a2
, (1.34)

which gives a radial velocity equal to
vr = −2Stv. (1.35)

To understand the regime of intermediate-sized particles we must consider the evolution of the
velocities of dust and gas (Nakagawa et al. 1986)

dud

dt = − 1

tstop
(ud − ug)−

GM∗

r3
r (1.36)

dug

dt = − ϵ

tstop
(ug − ud)−

GM∗

r3
r − ∇P

ρg
(1.37)

with ϵ = ρd/ρg and P gas pressure. Solving for the first deviation from the Keplerian velocity (v =

9



u − vK) in cylidrical coordinates leads to the dust drift speed

vr ≃ − 2

St + St−1
ηvK (1.38)

vϕ ≃ − 1

1 + St2
ηvK, (1.39)

where

η = −1

2

(
H

r

)2
∂ logP

∂ log r
(1.40)

describes the factor bywhich the orbital gas velocity is smaller than theKeplerian one, i.e. vϕ,g = ηvK.
This holds as long as a low dust-to-gas ratio in assumed, i.e. there is no back reaction of the dust on
the gas velocity. The consequences are that:

• particleswith a Stokes number< 1drift inwardwith a speed of vr ≃ −2StηvK: small particles
move slowly, larger particles move faster;

• for a typical disc η is of the order of a few per mille, which means the orbit of a dust particle
decays on a timescale of a few hundred orbits;

• the drift speed of particles with St > 1 tends to zero, so they move on Keplerian orbits;

• the direction of the radial drift is towards higher pressure, whichmeans inwards in a disc denser
and hotter closer to the star.

In addition to the drift motion, dust is also carried along with the radial gas flow as long as St < 1
(Takeuchi and Lin 2002)

ur,dust =
1

1 + St2
ur,gas. (1.41)

Solids that experience significant radial drift tend to pile up closer to the star: this concentration
in the inner disc translates into a varying ratio between dust and gas surface densities as a function of
radius. Assuming the surface density of solids has reached a steady state:

Σd

Σg

∝
(
H

R

)−2

R−1/2. (1.42)

This trend can bemore realistically estimated by considering the flaring * of the disc. Figure 1.4 shows
the mechanism of radial drift and the dependence of the drift timescale on the Stokes number.

*a disc is described as flared if the ratioH/R is an increasing function of radius
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Figure 1.4: Le : par cles dri inwards in a disc due to the imbalance between the radial forces. Right: the radial dri mescale
is plo ed in units of the local orbital period as a func on of the Stokes number. The fastest dri occurs for St = 1. The values
are referred to a disc withH/R = 0.03. Credits: Armitage 2015.

1.2.2 Dust Growth
Dust grains need to grow several orders of magnitude from sub-micrometer to > km sizes, and they
can eventually be called planetesimals, which are gravitationally bound. The collisional timescale for
two particles with relative velocity∆vij is

τcol =
l

∆vij
=

1

njσij∆vij
(1.43)

where l is the mean free path of a particle i, nj is the number density of particles j and σij is the cross
section of particles i and j. Then the rate of collision between particles i and j, potentially forming a
new species k, is

Rij = ninjσij∆vij. (1.44)

For example, for a process of pure sticking,mk = mi +mj :

ṅk =
1

2

∑
i,j

Ri,jδi,j−k −
∑
i

Ri,k. (1.45)

Collisional outcomes depend on impact velocities, dimensions of grains and compositional prop-
erties of grains, such as porosity and chemical composition. Possible outcomes are (Birnstiel et al.
2016):

• sticking: hit-and-stick collisions
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• bouncing: particles bounce off each other without changing their mass

• erosion: a smaller projectile removes mass from a larger target

• mass transfer: a smaller projectile fragments upon collision with a target and deposits some
fraction of its mass

• fragmentation: one or both particles are completely destroyed.

1.2.2.1 Streaming Instability

Figure 1.5 shows that collisions are unlikely to result in coagulation over a wide rage of sizes, frommm
to km, since available binding energies (chemical or gravitational) are negligible comparable to kinetic
energies (Chokshi et al. 1993, Youdin and Shu 2002), thus some alternative planetesimal formation sce-
narios have been suggested. Safronov and Zvjagina 1969, Goldreich and Ward 1973 proposed that in
a laminar disc planetesimal formation can derive from gravitational instability of the dust as it set-
tles towards the disc midplane: the dust would flatten in a thin layer until it gravitationally collapses
and planetesimals are formed. Weidenschilling 1980 showed that this would cause the generation of
turbulence due to Kelvin-Helmholtz instability, which would prevent dust overdensities needed for
gravitational instability to occur. However, if the relative densities between gas and dust are simi-
lar, dust will exert a feedback on the gas (Youdin and Goodman 2005), that would translate into a
streaming instability (Johansen et al. 2007) caused by drag effects, which could explain the formation
of planetesimals from smaller solids with St ∼ 1 that concentrate into clumps which can gravitation-
ally collapse. The streaming instability depends on the particle stopping time, the local solid-to-gas
ratio, or metallicity Z , and the magnitude of the deviation from Keplerian velocity ηvK/cs. Using
two-dimensional simulations Carrera et al. 2017, Yang et al. 2016 found that strong clumping occurs
forZ > Zcrit: {

Zcrit = 0.10(log St)2 + 0.20 log St− 1.76 if St < 0.1

Zcrit = 0.30(log St)2 + 0.59 log St− 1.57 if St > 0.1.
(1.46)

1.2.3 Structure of Dust Discs

1.2.3.1 Vertical Structure

Particles sediment towards themidplane due to the vertical component of the star’s gravitational force
|Fgrav| = mΩ2

Kz that cannot be counterbalanced by pressure gradients, as happens for the gas com-
ponent. Thus particlesmove towards themidplane until the drag force balances gravity in the vertical
direction and the settling time can be obtained as

tsett =
z

vsett
= (ΩKSt)

−1. (1.47)
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Figure 1.5: Collisional outcomes for silicate grains fromWindmark et al. 2012. Green regions denote growth of the larger colli-
sion partner, red mass loss and orange mass-neutral bouncing collisions.
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For large z this is usually a short timescale since the low density of the disc atmosphere implies a large
Stokes number for most grain sizes: for a 1 µm particle at z ∼ H at 1 AU, reasonable assumptions
give a settling time of about 105 years. If the particles do not grow, their Stokes number tends to
decrease while approaching higher densities, thus slowing down their motion. On the other hand, if
the particles constructively collide and grow in size, their Stokes numbermanages to stay large enough
to allow them to keep settling towards themidplane, so they can continue to increase their dimensions
up to macroscopic sizes.

1.2.3.2 Turbulent Mixing

Since it is believed that the gas experiences turbulent viscosity, itmust also affect the dustmotion. The
random motion induced by the turbulence acts as a diffusivity on the dust and varies with the grain
size. The ratio of the dust diffusivity to the gas diffusivity — the latter being usually assumed to be
equal to the gas viscosity ν — is the Schmidt number (Youdin and Lithwick 2007)

Sc =
Dg

Dd

≃ 1 + St2. (1.48)

The main effects of turbulent mixing are preventing the settling process of solid particles into a
thin layer on the midplane and smoothing of concentrations of dust grains. In order to evaluate
whether turbulence is able to counteract the vertical settling, wemust compare the settling time to the
turbulence timescale tdiff = z2/Dd, whereDd is the turbulent diffusion coefficient of the particles.
It is useful to define the Péclet number:

Pe =
tdiff
tsett

=
St

α

(
z
Hg

)2

(1.49)

where Hg is the gas scale height. For Pe > 1 the settling timescales are shorter than the diffusion
timescales; approaching the midplane, Pe < 1 and diffusion is dominating, so we can expect the
vertical dust-to-gas ratio to drop significantly within a dust scale height given by

Hd = Hg

√
α

St + α
. (1.50)

After a few settling timescales, the system reaches an equilibrium between the sedimentation and
the diffusion fluxes: the dust density distribution can be calculated as

ρd(z) = ρd,mid(z) exp

{
−Stmid

α

[
exp

(
z2

2H2
g

)
− 1

]
− z2

2H2
g

}
. (1.51)
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1.2.3.3 Radial Structure

Themechanisms that need to be considered are dust drift, turbulentmixing and radial flow of the gas
which transports dust particles. By comparing the timescales of growth and local drift, it is possible
to define the drift size limit (Birnstiel et al. 2012) as

adrift ≃ 0.35
Σd

ρs

∣∣∣∣ d log rd logP

∣∣∣∣ (Hg

r

)−2

. (1.52)

Particles below this curve will grow faster than they drift and vice versa. We must also consider that
above a certain size particles increase their relative velocities and more easily fragment:

afrag ≃ 0.08
Σg

ρsα

(
vfrag
cs

)2

. (1.53)

Birnstiel et al. 2012 found that fragmentation dominates in the inner regions of the disc, while in
regions with low dust-to-gas ratio radial drift has more relevant effects. This allows to derive the max-
imum particle size as a function of distance to the star. It is generally valid to assume that the whole
mass of the dust component is contained in the largest grains, whose transport therefore dominates
the mass flux. The dust mass accretion rate is

Ṁd = 2πrΣdv(r) = const, (1.54)

fromwhich thedust density profile canbeobtained. Dependingon themaximumparticle size present
in each area of the disc, the profile can be expressed as a combination power-laws. For typical assump-
tions (Σg ∝ r−1) this gives Σd ∝ r−0.75 in the outer zones of the disc and Σd ∝ r−1.5 in the inner
zones where fragmentation dominates.

1.2.4 Opacity

Dust is the main opacity source in PPDs except for the innermost regions, where the high temper-
atures (T ≃ 1500 K) account for the destruction of dust particles and only molecular opacity is
left. The cross section of a single dust grain to radiation of a certain wavelength depends on the
particle size, structure and composition. The main dust constituents include amorphous pyroxene
([Fe, Mg]SiO3), olivine ([Fe, Mg]2SiO4), volatile and refractory organics (CHON), amorphous wa-
ter ice, troilite (FeS) and iron. Dust aggregates are usually of two kinds: particle-cluster a regation,
which are sphere-like particles with a compact core and a rarefied mantle, and cluster-cluster a re-
gation, which are filamentary grains. However, these can be modified by the evolution of the disc
through chemical and physical processes. The total opacity κν is therefore related to the chemical
composition of the disc and the size distribution of the particles. As previously seen, the radiation
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Figure 1.6: The Rosseland mean opacity for dusty gas in PPDs calculated by Semenov et al. 2003 for a gas density of
10−9 g cm−3, assuming that the dust is composed of homogeneous spherical par cles whose size distribu on follows a modi-
fied Mathis et al. 1977 law. Credits: Armitage 2009.

field can be considered as a blackbody, hence the Rosseland mean opacity is:

κR =

(∫ +∞
0

1
κν

∂Bν

∂T
dν∫ +∞

0
∂Bν

∂T
dν

)−1

, (1.55)

whereBν is the Planck function.
In the coldest regions beyond the snowline (T ≲ 150 K) water ice and volatile organic materials

dominate and the Rosseland mean opacity rises as T 2 towards smaller radii, where different kinds of
materials gradually evaporate: first water ice, then organics, troilite, iron and silicates. Approaching
the centre, opacity grows due to H− scattering so bound-free and free-free absorption dominates,
until electron scattering sets in (Figure 1.6).

1.3 Observations of PPDs

Discs around stars are rare to observe, since they last about 10−3 − 10−4 times the lifetime of a main
sequence star. Most of these can be found in star forming regions, such as Orion, about 400 pc away
from the Sun: assuming dimensions of the order of the Solar System, ∼ 102AU, spatially resolved
imaging of such objects requires sub-arcsecond resolution.
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Figure 1.7: The figure shows the sta s cs from the Spitzer c2d Legacy survey for the frac on of sources falling into each class
of YSO, which represent an evolu onary sequence. Credits: Armitage 2015.

1.3.1 Young Stellar Objects
The spectrum of a young stellar object (YSO) allows to infer the presence of dust in the vicinity of the
star by showingmore emission in the infrared (IR) thanwould be expected from apre-main-sequence
star’s photosphere. In order to perform a classification of YSOs it is useful to define the slope of the
spectral ener distribution (SED) between near-IR and mid-IR wavelengths (Armitage 2015)

αIR ≡ d log νFν

d log ν
. (1.56)

Based on this parameter, different classes of YSOs are identified:

• Class 0: heavily obscured sources with no optical or near-IR emission

• Class 1: αIR > 0.3, which corresponds to discs being fed by gas falling in from envelopes of
the molecular cloud

• Flat spectrum sourc : −0.3 < αIR < 0.3

• Class 2 or T-Tauri: −1.6 < αIR < −0.3, which corresponds to pre-main-sequence stars with
surrounding discs

• Class 3: αIR < −1.6, which corresponds to pre-main-sequence stars with little or no primor-
dial gas remaining.

Figure 1.7 shows graphic reproductions of the different classes and the appearance of their spectra.
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1.3.2 Dust Content

1.3.2.1 SED

At disc temperatures T < 1500 K the opacity in PPDs is dominated by the contribution from dust
composed of rocky or icy grains. Dust is a reliable indicator of the temperature distribution, the disc
mass and the size of dust particles. For example, assuming a gas surface density distributionΣ ∝ R−p

and a dust temperature distribution Td ∝ R−q, with a frequency dependent opacity κν = κ0ν
β , the

optical depth through the disc is τν = Σκν . For a face-on disc the radiative transfer equation allows
to estimate the flux density

Fν =
1

D2

∫ Rout

Rin

Bν(Td)(1− e−τν )2πRdR (1.57)

withD distance to the source,Rin andRout inner and outer radii of the disc andBν Planck function.
Atwavelengths where the disc is optically thick, τν ≫ 1, i.e. near- andmid-IR, the previous equation,
assuming e−τν = 0, gives

νFν ∝ ν4−2/q (1.58)

which provides a constraint on the radial variation of the dust temperature.
In themm/sub-mm region of the spectrummost of the emission comes fromoptically thin regions

of the disc, since the bulk of dust particles are smaller. The information obtained from this range of
wavelengths can be used as a proxy for the total amount of material in discs because it allows to probe
the dust content at lower temperatures. The radiative transfer equation, setting 1− e−τν ≈ τν , gives

Fν =
Bν(T d)κν

D2

∫ Rout

Rin

2πRΣdR, (1.59)

where T d is the weighted average of the temperature of the emitting material. The quantity identi-
fied by the integral is the disc mass, that can be inferred once the distance, the opacity and the disc
temperature are known. The Rayleigh-Jeans approximation leads to

νFν ∝ νβ+3 (1.60)

and thus allows to determine the frequency dependence of the opacity.

1.3.2.2 Resolved Imaging

Direct imaging of PPDs shows a multitude of structures which may be the imprint of planet forma-
tion, presence of a binary, disc dissipation and instabilities. Resolved images of dust may be obtained
by observation of different wavelength ranges: dust emits light as a blackbody in the mm/sub-mm
and reflects optical and near-IR light from the star. Images taken at different wavelengths probe a
variety of dust components and therefore may show different shapes of the disc, like gaps, holes and
spiral density waves. The scattered light images probe the disc surface which directly receives the star
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light, so it is dominated by small grains that have not yet settled on the midplane. This technique re-
lies on the fact that scattered light has a recognisable polarisation as opposed to the light coming from
the central star. The spatial and wavelength dependence of the intensity distribution allows to derive
information about the surface density distribution of the gas disc and about the size distribution of
the grains and their albedo.

ALMA and SPHERE

ALMA and SPHERE are the most promising instruments for the study of planet formation via re-
solved imaging of PPDs. ALMA(AtacamaLargeMillimeter/ submillimeterArray) is a ground-based
facility for observations in themillimitre/submillimitre regime composed of an array of fifty 12m an-
tennas on a baseline up to 16 km. This instrument allows to study the coldest matter in the universe
like dust: its main achievements include imaging of PPDs like HL Tau, which represents a new start-
ing point for planetary science (ALMA Partnership 2015).
SPHERE (Spectro-PolarimetricHigh-contrast ExoplanetREsearch) is an adaptive optics systemat the
VLT (Very Large Telescope array) capable of performing imaging and low-resolution spectroscopy of
extra-solar planetary systems at optical and near-IR wavelengths.

Polarimetric differential imaging with SPHERE is sensitive to micron-sized dust grains at the disc
surface, which are usually very well coupled to the gas, while ALMA observations probe mm/sub-
mm wavelengths: images with comparable angular resolution can potentially reveal the different
morphologies of different disc components (Figure 1.8), since many disc processes are expected to
differentiate the distribution of different grain sizes.

1.3.3 Gas Content

Spectra of PPDs revealed the presence of several molecules and molecular ions that show lines in the
mm/sub-mmrange, such as carbonmonoxide (CO) (and its isotopologues† 13CO andC18O), carbon
monosulfide (CS), hydrogen cyanide (HCN) and diazenylium (N2H

+) (Semenov et al. 2018). The
bulk of the mass of a PPD is observationally inaccessible since H2 does not produce rotational or
vibrational lines in dipole approximation. Therefore CO is the most used molecule to estimate gas
masses, by observationally constraining processes such as photo-dissociation and freezing of gaseous
CO (Qi et al. 2015). Molecular line observations also provide a wealth of kinematic information, like
the measurement of the rotation profile of the disc gas and thus the central star mass. Thermal and
turbulent broadening of a line profile may provide important information about the disc viscosity.

†molecules that differ only in their isotopic composition: the isotopologue of a chemical species has at least one atom
with a different number of neutrons than the parent
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Figure 1.8: Comparison of ALMA and SPHERE images for two discs shown at the same spa al scale. For TW Hya, the ALMA
image is from Andrews et al. 2016 and the SPHERE image and radial profiles from Van Boekel et al. 2017. For HD 135344B, the
ALMA image is from Van der Marel et al. 2016 and the SPHERE image is from Stolker et al. 2016. Credits: Garufi et al. 2017.

1.4 Orbital Dynamics

1.4.1 Two-Body Problem

The two-body problem is an integrable problem that studies the interaction of two point masses sub-
ject tomutual gravitational attraction according toNewton’s universal law of gravitation, for example
the motion of a single planet around a star. Ifm0 andm1 are the twomasses with position vectors r0
and r1, r = r1 − r0 indicates the relative position ofm1 with respect tom0. The forces experienced
by the two masses are

F0 = G
m0m1

r3
r = m0r̈0 and F1 = −Gm0m1

r3
r = m1r̈1 (1.61)

so:
m0r̈0 +m1r̈1 = 0. (1.62)

We can write the equation of relative motion

d2r
dt2

+ µ
r
r3

= 0 (1.63)

where µ = G(m0 + m1). A constant of motion can be found by taking the vector product and
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integrating:
r ∧ ṙ = h (1.64)

which is referred as the angular momentum integral. Since r and ṙ lie on the same plane, we can use a
polar coordinate system in the orbit plane and obtain a scalar equation for the relative motion:

r̈ − rθ̇2 = − µ

r2
(1.65)

which gives
r =

p

1 + e cos (θ −ϖ)
(1.66)

with e eccentricity,ϖ longitude of pericentre and p = h2/µ. For the case considered, assuming that a
is the semi-major ax , e = 0 and p = a for a circle, while 0 < e < 1 and p = a(1− e2) for an ellipse.
In the latter case the semi-major axis and eccentricity are related by:

b2 = a2(1− e2) (1.67)

where b is the semi-minor ax of the ellipse. It is usually more useful to work with the true anomaly
f = θ −ϖ. Therefore for an ellipse:

r =
a(1− e2)

1 + e cos f
. (1.68)

If T is the orbital period, we can define the average angular velocity as

n =
2π

T
(1.69)

also calledmean motion. We can write µ = n2a3 and h =
√
µa(1− e2).

We can also define an angle which is both 2π-periodic and a linear function of the time: that is the
mean anomaly

M = n(t− τ) (1.70)

where τ is the time of pericentre passage. M has no actual geometrical equivalent, but can be related
to an angle that does, the eccentric anomalyE, i.e. the angle between the major axis of the ellipse and
the radius from the centre of the intersection point on the circumscribed circle. With some algebra
we obtainKepler’s equation

M = E − e sinE (1.71)

whose solution is fundamental to establish the orbital position of a body at a given time. Another
parameter that can be introduced is themean longitude λ =M +ϖ. If we want to treat the general
case of an orbit in three dimensions, we need to consider the inclination I of the orbital plane, which
intersects the reference plane in the line of nod : this allows to define the ascending node (point where
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Figure 1.9: Le : rela on between the true anomaly f and the eccentric anomalyE . Right: orbital mo on with respect to the
reference plane in three-dimensional space. Credits: Murray and Dermo 2000.

the orbit crosses the reference plane moving ‘upwards’), the longitude of the node Ω (angle between
the reference line and the radius vector to the ascending node) and the argument of the pericentre ω
(angle between this same radius vector and the pericentre of the orbit). We now have defined the full
set of orbital elements: a, e, I ,Ω, ω, f (Figure 1.9).

1.4.2 Restricted Three-Body Problem

A special case of the three-body problem is the configuration inwhich an infinitesimally small particle
moves in a plane under the influence of the gravitational attraction of two finite particles of masses
m1 > m2 that revolve around each other in a circular orbit with mean motion n. In the case of
interest for my thesis, the most massive body is a star, the secondary body is a planet and the massless
body is a dust particle. A proper derivation of the equations of motion can be found in Murray and
Dermott 2000, where the unit of mass are chosen such that µ = G(m1 +m2) = 1, µ1 = Gm1 =
1−m2/(m1+m2) andµ2 = Gm2 = m2/(m1+m2). Considering the rotating coordinate system
referred to the centre of mass, where the x axis is chosen such that the two masses always lie along it
with coordinates (x1, y1, z1) = (−µ2, 0, 0) and (x2, y2, z2) = (µ1, 0, 0), the potential (Figure 1.10)
can be expressed as

U =
n2

2
(x2 + y2) +

µ1

r1
+
µ2

r2
(1.72)

where the term inx2+y2 is the centrifugal potential and the term in 1/r1 and 1/r2 is the gravitational
potential.

The only conserved quantity for the circular restricted three-body problem is the Jacobi constant
defined as

CJ = 2U − v2 (1.73)

with v2 = ẋ2 + ẏ2 + ż2 square of the velocity of the particle in the rotating frame. It is possible to
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Figure 1.10: Le : loca on of the Lagrangian equilibrium points and associated zero-velocity curves. Right: Three-dimensional
surface defined byCJ = 2U and loca on of the Lagrangian equilibrium points. Credits: Murray and Dermo 2000.

construct curves in the plane on which the velocity vanishes: if a zero-velocity curve is closed, then the
particle cannot escape from inside the curve, unless an external force operates. The equilibriumpoints
of the potential are represented in Figure 1.10: these are the points where the particle has zero velocity
and zero acceleration in the rotating frame, also known as Lagrangian points. The solutions of the
equations for perturbed motion around L4 and L5 in the vicinity of these points are represented by
tadpole orbits; if we increase the initial radial separation from these equilibria, the particle will follow
horseshoe orbits (Figure 1.11). It is possible to define an area surrounding the secondary mass, called
Hill sphere, with an approximately circular shape above which L1 and L2 lie (Figure 1.11). Bodies in
the proximity of the secondary mass are under the influence of its gravity field and cannot escape if
their distance is less than

RHill = a(1− e)

(
m2

3m1

)1/3

. (1.74)

1.4.3 N-Body Systems

Formultiple planetsmi around a starm0, the overall potential has contribution from all thenmasses
present. The motion of the i-th body is subjected to the attraction of the other n− 1 bodies:

r̈i = −G(m0 +mi)
ri
r3i

+
n∑

j=1,j ̸=i

Gmj

(
rj − ri
|rj − ri|3

− rj
|r3j |

)
(1.75)

where the first is the Keplerian term, the second term contains the direct contribution, due to planet-
planet interaction, and indirect contribution, due to the fact that the systemof coordinates is centered
in the star and not in the centre of mass, so the reference frame is not inertial.
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Figure 1.11: Le : examples of tadpole and horseshoe orbits aroundL4 and L5. Right: zero-velocity curves in the vicinity ofL1

and L2. Credits: Murray and Dermo 2000.

1.4.4 Mean Motion Resonances
Amean motion resonance (MMR)occurswhen the orbital periods of twoplanets are close to a ratio of
small integers. A significant number of exoplanets are close to low-order resonances, like the 2 : 1 or
3 : 2, for example HD 45364 (Rein et al. 2010), KOI 55 (Charpinet et al. 2011), Gliese 876, HD 82943
and HD 37124 (Wright et al. 2011). A resonant configuration may be either the outcome of planetary
formation or a consequence of trapping during a migration process. Resonances can be the source of
both stability and instability, and play an important role in shaping the configuration of a planetary
system.

Two planets are in a mean motion resonance when the ratio of their mean motions n1 and n2 is
close to

n1

n2

=
p+ q

p
(1.76)

where p ̸= 0 and q ≥ 0 are small integers and q is the order of the resonance. When this occurs, the
planets periodically line up at the same points in their orbits, which introduces a repetitive force that
cannot be assumed to average to zero over long timescales. The geometry is described by the libration
of a resonant angle, which is a linear combination of the angular variables:

ϕ1 = (p+ q)λ2 − pλ1 − qϖ1, ϕ2 = (p+ q)λ2 − pλ1 − qϖ2. (1.77)

For the full Hamiltonian formulation see appendix A.
In order to consider a planet pair resonant, the range ofmeanmotion values allowed is about (Mal-

hotra 2012)
∆n

n
≃ µ

q+1
3 (1.78)

for nearly circular orbits, whereµ is the planet-star mass ratio and 0 ≤ q ≤ 2. In Keplerian orbits the
resonant condition for two planets implies a ratio of their semi-major axes of a2/a1 = (n1/n2)

2/3.
For a 2 : 1 resonance, if both anglesϕ1 and ϕ2 librate, then the system is said to be in a state of apsidal
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corotation resonance, where the two lines of periapse rotate with the same average speed; if only one
of the angles librates and the other circulates, the system is still in resonance but it is less tight. The
formation of resonant planetary systems is generally the outcome of a differential migration process
(see Section 1.5) when the drift speeds of the planets are not identical. Whenever the location of a
resonance is crossed, the mutual interaction becomes stronger due to the periodic perturbations and
the planets can be trapped in a resonance for the rest of their migration.

1.5 Migration
To justify most currently known exoplanets’ orbits it has become imperative to adjust the classical
theory of planet formationwhich predicts circular orbits with radii of a fewAU or beyond (Armitage
and Rice 2005). The extremely short orbital periods of many hot Jupiters pose a problem for planet
formation, since such systems are significantly different to the Solar System: furthermore, high tem-
peratures expected at such small radii would prevent the possibility of in situ formation by destroying
ices and dust. Therefore, the cores of these hot Jupiters must have formed elsewhere before being
moved inward. There are certain physical mechanisms which allow to reconcile observation and the-
ory: the most important is migration in the early stages of a gaseous disc, which enables planets to
lose angular momentum by means of three kinds of processes.

1.5.1 Type I Migration
The presence of a planet in a PPD generates a non-axisymmetric time varying gravitational potential:
the gas reacts to this perturbation by forming density waves that in turn affect the planet by changing
its angular momentum (Figure 1.12). Type I migration involves the interaction between the planet
and the gas in the PPD and is efficient for planet massesMp ≲ 0.1MJ which are not able to carve a
gap.

Given a planet orbiting a star with rotation frequencyΩp equal to the Keplerian frequency, we can
identify zones in the disc where the gas and the planet are in a resonant relation. These correspond to

• Corotation resonanc at Ω = Ωp: if the disc is Keplerian the corotation resonance is found at
the planet’s orbital radius;

• Lindblad resonanc atm(Ω−Ωp) = ±κ, wherem is an integer and the epicyclic frequency‡

κ is such that
κ2 =

(
R
dΩ2

dR
+ 4Ω2

)
. (1.79)

For a Keplerian potential κ = Ω. The positions of these resonances are given by

rILR = rp

(
m

m− 1

)−2/3

(1.80)

‡frequency at which a radially displaced fluid parcel will oscillate
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for the inner Lindblad resonance (faster than the planet) and

rOLR = rp

(
m

m+ 1

)−2/3

(1.81)

for the outer Lindblad resonance (slower than the planet).

A circular Keplerian disc therefore has a single corotation resonance and a series of Lindblad res-
onances piling up close to the planet. The rate of migration is controlled by the sum of the torques
arising from the inner and outer Lindblad and corotation resonances. Generally, for Lindblad reso-
nances, the dominant torque arises fromwavenumbersm ≃ rp

H
, withH disc scale height (Korycansky

and Pollack 1993). Corotation torques arise from the exchange of angular momentum at the horse-
shoe orbit and may be dominant when the region is not saturated§, thus reversing the sign of the
torque.

The torques at non-resonant locations in the disc do not interfere constructively and therefore
cancel out when averaged. According to the study of Tanaka et al. 2002 the net torque scales with the
planet mass asΓtot ∝ m2

p, so that themigration timescale at a given radius scales as τI ∝ m−1
p , i.e. the

migration becomes increasingly important as the planet mass increases, and is fastest just prior to gap
opening. The conservation of angular momentum implies

dJp
dt

= Γtot (1.82)

where the angular momentum of the planet is Jp = mp(GM∗rp)
1/2. The migration velocity can be

obtained as
drp
dt

= −2rp
Γtot

Jp
(1.83)

Depending on the sign of the torque, the migration can proceed inwards or outwards: for most PPD
models, migration is inwards and rapid, with timescales of∼ 104 years. These results seem to indicate
that the planet falls quickly into the host star, so some changes to the current theory are required to
conciliate observations. Some processes that are believed to be crucial for more reliable estimates are,
for example, turbulence and non-isothermal migration.

1.5.2 Type II Migration
At higher masses, Mp ≳ 0.1 MJ , the angular momentum removal/deposition at the planet’s in-
ner/outer Lindblad resonances is strong enough to repel gas from an annular region surrounding the
planet’s orbit, forming a gap in which the surface density is reduced (Figure 1.12).

The conditions for a planet to be able to open a gap are of two kinds:

§the material gets mixed and the torques decline on timescales of the libration time τlib = 4apPp/(3xs) with, xs

half-width of the horseshoe region (Kley et al. 2009)
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Figure 1.12: Interac on between a planet on a fixed circular orbit with a laminar PPD computed from a two-dimensional hy-
drodynamic simula on with a locally isothermal equa on of state. Le : example of type I migra on in which a low mass planet
excites a wave in the disc gas but does not significantly perturb the surface density profile (shown in the lower le corner).
Right: example of a massive planet which clears an annular gap in the disc within which the surface density is a small frac on of
its unperturbed value. Credits: Armitage and Rice 2005.

• Thermal condition: the Hill sphere of a planet must be comparable to the disc scale height, or
else the gas will fill the gap away from the midplane. For circular orbits:

RHill = rp

(
mp

3M∗

)1/3

≥ Hp (1.84)

or

q = mp/M∗ ≥ 3

(
Hp

rp

)3

, (1.85)

with Hp

rp
aspect ratio at the planet radius.

• Visco condition: the boundaries of the gap are determinedby thebalancebetween angularmo-
mentum exchange with the planet, which tends to widen the gap, and internal viscous stresses
in the PPD, which tend to close it. By equating the timescale for type I torques to open a gap
to the timescale for viscous diffusion to fill it in we obtain:

q ≥ 243π

8
α

(
Hp

rp

)2

. (1.86)

Once the planet is massive enough to open a gap, the gas is being pushed away from the planet and
the torques diminish, so that the planet remains locked into the long term viscous evolution of the
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disc and migrates on a timescale of

τII =
r2p
ν

=
1

α

(
rp
Hp

)2

Ω−1
p . (1.87)

This means the rate of migration is independent of the planet mass: however this is only valid if the
planet is not too massive. This condition can be parametrised by the value (Syer and Clarke 1995)

B =
3πΣr2p
mp

. (1.88)

For B ≪ 1, the timescale previously obtained must be multiplied by this quantity, i.e. migration
slows down for very large masses.

1.5.3 Type III Migration
An additional migration mechanism was introduced by Masset and Papaloizou 2003 known as type
III or runaway migration. This process is associated to coorbital torques acting on a partially opened
gap: this results in very fast migration for Saturn-like planets embedded in massive discs. However,
this type of mechanism is still just hypothesized.
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2
State of the Art and Aims

PPDs are the key to understand the process of planet formation. The mechanisms that lead to the
birth of planetary systems are still quite obscure and their insight requires extensive work by com-
bining theory, observations and numerical simulations. The new frontier for investigation of planet
formation is the study of the dust distribution, since instruments like ALMA and SPHERE allow
to observe the coldest objects of the universe. On the other hand, it is necessary to combine reliable
numerical simulations able to put constraints on theoretical quantities.

2.1 State of the Art

There is observational evidence that imposes to revise the assumption of axisymmetric distribution
of gas and dust in PPDs with smooth radial profiles. A variety of structures has been observed, such
as rings, gaps, spirals and warps, like the examples in Figure 2.1. Some of these structures are believed
to be either a consequence or a precursor to planet formation: embedding a planet into the disc leads
to disturbances in the density of the disc, like spiral waves or, if the planet is massive enough, a gap.
However, the disc does not simply undergo structural changes due to the planets, but the opposite is
also true, and in fact its effects on theplanetaryorbits play a fundamental role in the final configuration
of the system. The observed semi-major axes distribution of extrasolar planets does not match the
one of the Solar System, potentially consistent with the in situ formation scenario: a large amount of
planets — like the first one to be discovered, 51 Peg (Mayor and Queloz 1995) — are too close to the
star to have been formedwith the solids available at such distance. This has led to the conclusion that
planetary migration (Section 1.5) must have taken part for most currently observable systems.

This explanation still does not lack of inconsistencies, even in our own Solar System: masses such
as the ones of Jupiter and Saturnwould have been able to open a gap in the disc and trigger inner type
II migration on timescale of∼ 100Kyr, so why are they currently so far away from the Sun? That is
where theGrand Tack theory (Walsh et al. 2011) comes to the aid: this model proposes that the inner
Solar System was sculpted by the giant planets’ orbital migration in the PPD. Jupiter first migrated
inward then Jupiter and Saturn migrated back outward together within about 105 years through the
following steps:

1. the cores of Jupiter and Saturn formed by accretion of planetesimals and migrated due to type
I interaction with the disc;
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Figure 2.1: Gallery of high angular resolu on con nuum observa ons of planet forming discs obtained with ALMA. From le to
right and from top to bo om: TW Hya (Andrews et al. 2016), V883 Ori (Cieza et al. 2016), HD 163296 (Isella et al. 2016), HL Tau
(ALMA Partnership 2015), Elias 2-27 (Pérez et al. 2016), and HD 142527 (Kataoka et al. 2016).

2. Jupiter and Saturn’s cores accreted gas, at first slowly, then more rapidly: this began to stop
when the planets opened annular gaps in the disc and transitioned to type II migration;

3. once fully formed, Saturn migrated faster, caught up to Jupiter and was trapped in a 2 : 1 or
3 : 2 resonance;

4. the gaps carvedby the twoplanets overlapped and the torque balance caused Jupiter and Saturn
to migrate outwards while remaining trapped in resonance, until the disc dissipated.

Since a significant number of exoplanets are close to low-order resonances (Wright et al. 2011) it
is believed that this mechanism might be recurring in planetary systems potentially observable with
ALMAandSPHEREviadust blackbodyor scattered emission. The shapeof the commongap strongly
depends on the disc and planet parameters (e.g. D’Angelo and Marzari 2012, Masset and Snellgrove
2001), thus allowing to compare observational andnumerical data. Recent2Dsimulations byMarzari
et al. 2018 of gas anddust discs including radiative transfer show that outwardmigrationhappens both
for 3 : 2 and 2 : 1 resonant configurations, where the latter leads to high orbital eccentricities (Figure
2.2). The setups result in the formation of a common gap (Figure 2.2) in the dust distribution for
all grain sizes considered (from 10 µm to 1 cm), with the exception of some particles trapped in the
coorbital regions. The gap in the dust progressively broadens as the planets migrate outward while
that of the gas remains approximately constant (Figure 2.3).
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Figure 2.2: Le : orbital eccentricity evolu on of a Jupiter-Saturn mass pair converging into the 2 : 1MMR and then migra ng
outwards. Right: common dust gap for the planet pair locked in the 3 : 2 and 2 : 1MMR. Credits: Marzari et al. 2018.

Figure 2.3: Le : Dust distribu on of 10 µm and 10 cm at two different evolu onary mes for the 3 : 2MMR. The edges
of the common gas gap are shown in black. The larger grains also dri inward increasing the extent of the dust gap. Right: gas
density distribu on and dust par cles (10 µm) in the inner region of the disc a er 30 Kyr of the 2 : 1MMR. Credits: Marzari
et al. 2018.

2.2 Aims
The purpose of my thesis is to investigate the effects of two planets locked in resonance on the dust
distribution of a PPD via a set of numerical simulations. What my work aims to offer additionally to
previous results is a tridimensional approach to the numerical simulations to check whether this kind
of setup will lead to major changes compared to the results of a bidimensional configuration. The
relevance of the third dimension has not been properly investigated in recent literature: given the in-
creasing quantity of scientific data provided by powerful instrumentation like ALMA and SPHERE
it has become crucial to developmore realistic simulations to accurately interpret the process of planet
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formation thatwe are able to observe through these images. The code I used, PLUTO (Mignone et al.
2007), is very promising for the modelling of PPDs and is being currently updated to properly simu-
late a large variety of scenarios: in particular, my simulations include a freshly implemented module
for the reproduction of dust particles which is still being tested in different environments. My simula-
tions, albeit limited in space and time due to themassive computational time required for a 3D setup,
aim to provide a ‘snapshot’ of the long process of resonant migration in order to closely analyse the
early formation of a gap in both gas and dust.

My thesis is going to be structured this way: Chapter 3 will introduce PLUTO code and show the
initial conditions of my simulations; Chapter 4 will explain the results obtained with the simulations;
Chapter 5 will summarise the work done, highlight the main inferences and present how I aim going
to improve and expand this thesis in the future.
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3
Numerical Simulations

3.1 Computational Fluid Dynamics

Computational fluid dynamics is the analysis of systems involving fluid flow, heat transfer and associ-
ated phenomena by means of computer-based simulations.
The first steps for approaching a flow problem are the definition of the geometry of the region of in-
terest— the computationaldomain—, the grid ormesh generation—the sub-division of the domain
into a number of smaller sub-domains, cells—, followed by the selection of the physical phenomena
that need to be modelled, the definition of fluid properties and the specification of boundary condi-
tions at cells which coincide with the domain boundary. The solution to a flow problem is defined
at nod inside each cell. The number of cells in the grid affect both the accuracy of a solution and
its cost in terms of necessary computer hardware and calculation time. Once determined the settings
and the initial conditions of the problem, the code must now use a solver. The finite volumemethod
is structured into the following steps: integration of the governing equations of fluid flow over the
finite volumes of the domain, dicretisation — i.e. conversion of the resulting integral equations into
a system of algebraic equations — and solution of the algebraic equations by an iterative method.

3.2 PLUTO Code

PLUTO (Mignone et al. 2007) is a tridimensional Eulerian code designed to integrate a system of
conservation laws

∂U

∂t
= −∇ ·T(U) + S(U) (3.1)

where U is a vector of conservative quantities, T(U) is a rank-2 tensor, whose rows are the fluxes
of each component ofU, and S(U) is the source term. Although the components ofU are the pri-
mary variables being updated, fluxes aremore conveniently computed using a different set of physical
quantities, the primitive vectorV. The finite volume formalism is composed of an interpolation rou-
tine followed by the solution of Riemann problems at zone edges and a final evolution stage. The
standard two-points difference one-dimensional operator is

Ld = − 1

∆Vd
(Ad

+F
d
+ − Ad

−F
d
−) + Sd (3.2)
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where d = 1, 2, 3 is a given direction,Ad
± andVd are respectively the cell’s right and left interface areas

and cell volume in that direction. The numerical flux functions F± = R(V+,L,V+,R) follow the
solution of 1DRiemann problems at cell interfaces, whereR is the Riemann solver andV+,L,V+,R

are left and right states at the zone edges.

3.2.1 Reconstruction

Interpolation routines are designed to reconstruct a piecewise polynomial approximationP(x) toV
inside each cell starting from its cell averages:

V±,S = I(P ,V) (3.3)

where S=L (S=R) at x = x+ (x = x−). I is an interpolation routine designated to provide left and
right edge interpolated values inside each cell:

V+,L = lim
x→x+

P(x) (3.4)

V−,R = lim
x→x−

P(x). (3.5)

3.2.2 Riemann Solver

Computation of the numerical flux function F+ at a zone edge (x+) requires the solution U(x, t),
for t > t0, to the initial value problem

U(x, t0) =

{
U+,L if x < x+

U+,R if x > x+.
(3.6)

The solution to the Riemann problem, known as Godunov scheme, can be obtained analytically but
generally different levels of approximations are introduced in order to reduce the computational time
required.

3.2.3 Temporal Evolution

In the simplest case of forward Euler dicretisation

Un+1 −Un

∆t
= L2. (3.7)
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The time step∆t is limited by the Courant-Friedrichs-Lewy (Courant et al. 1928) condition:

∆t = Ca min
d

(
∆ldmin

|λdmax|

)
, (3.8)

with∆ldmin and λdmax respectively the smallest cell length and largest signal velocity in the d direction,
whileCa is the Courant number.
The time-marching schemes provided by PLUTO are of two kinds: zone-edge extrapolated and semi-
discrete. Zone-edge extrapolated methods are based on a single step:

Un+1 = Un +∆tLn+ 1
2 . (3.9)

Examples of semi-discrete method are the total variation diminishing Runge-Kutta schemes: the
second-order method advances the system of conservation laws as

U∗ = Un +∆tLn (3.10)

Un+1 =
1

2
[Un +U∗ +∆tL∗] . (3.11)

3.2.4 Hydrodynamics Module

In this work I used the hydrodynamics module, which means I neglected relativistic corrections and
magnetohydrodynamics. This module solves the Euler or Navier-Stokes equations of gas dynamics:

∂

∂t

 ρ
m

E + ρΦ

+

 ρv
m · v + pI

(E + p+ ρΦ)v

T

=

 0
−ρ∇Φ + ρg

m · g

 , (3.12)

wherem = ρv is the momentum density, v is the velocity and I is the unit 3 × 3 tensor. The total
energy densityE is related to the thermal pressure p:

E =
p

Γ− 1
+

|m|2

2ρ
. (3.13)

The source term on the right includes contributions from body forces and depends on the gravita-
tional potential Φ and the acceleration vector g. The vector of primitive quantitiesV = (ρ,v, p)T

follows the equations:
∂ρ

∂t
+ v · ∇ρ+ ρ∇ · v = 0 (3.14)
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∂v

∂t
+ v · ∇v +

∇p
ρ

= −∇Φ + g (3.15)

∂p

∂t
+ v · ∇ρ+ ρc2s∇ · v = 0. (3.16)

Where cs =
√
Γp/ρ is the adiabatic speed of sound for an ideal equation of state.

3.2.4.1 Viscosity

The presence of viscosity requires to add the viscous stress tensorΠ to the original conservation law:

∂U

∂t
+∇ ·T = ∇ ·Π+ S. (3.17)

(Π)ij = 2
ν1
hihj

(
vi;j + vj;j

2

)
+

(
ν2 −

2

3
ν1

)
∇ · vδij. (3.18)

Coefficients ν1 and ν2 are the shear and bulk parameters of viscosity, vi;j and vj;j denote the covariant
derivatives and hi, hj are the geometrical elements of the respective direction.

3.2.5 Radiation Module
Radiative effects play a very important role in most astrophysical fluid flows. The complete set of
equations for the evolution of the gas is (Kolb et al. 2013):

∂ρ

∂t
+∇ · (ρv) = 0 (3.19)

∂ρ

∂t
v +∇ · (ρv × v) +∇p = ρ(aext + arad) (3.20)

∂e

∂t
+∇ · [(e+ p)v] = ρv · (aext + arad)− κPρc(aRT

4 − E) (3.21)

with e = ρϵ + 1/2ρv2 total energy density of the gas without radiation, aext acceleration caused
by external forces and arad acceleration induced by the radiation field. Finally, the ideal gas relation
imposes

p = (γ − 1)ρϵ = ρ
kBT

µmH

(3.22)

where γ is the ratio of specific heats, T the gas temperature, kB the Boltzmann constant, µ the mean
molecular weight andmH the mass of hydrogen. The specific internal energy can be written as ϵ =
cVT , with the specific heat capacity cV = kB/[(γ − 1)µmH]. The evolution of the radiation energy
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densityE is given by
∂E

∂t
+∇ · F = κPρc(aRT

4 − E) (3.23)

where F denotes the radiative flux, κP the Planck mean opacity, c the speed of light and aR the radi-
ation constant. The radiation affects the fluid in two ways: first, the radiation may be absorbed or
emitted by the fluid, leading to variation of its energy density; the second effect is radiation pressure,
which acts as an additional acceleration to the momentum equation, arad = κP

c
F. Further assump-

tions must be made for the radiative fluxF in order to solve the system of equations: the flux-limited
diffusion approximation is used, where

F = −λ c

κRρ
∇E (3.24)

with κR Rosseland mean opacity. The flux-limiter λ describes the transition from optically thick to
thin regions. We must define

R =
|∇E|
κRρE

(3.25)

such that

λ(R) =

{
1
3
, R → 0

1
R
, R → ∞.

(3.26)

3.2.5.1 Opacity

For the calculation of the opacities the code is based on Semenov et al. 2003. It is assumed that in
the temperature range 0 < T < 1500 K the opacity is dominated by dust grains, whereas for higher
temperatures gas is the only source of opacity. The solar composition of the elements is adopted from
Anders and Grevesse 1989. Dust grains are supposed to consist of silicates, iron, troilite, organics and
ice (Pollack et al. 1994, Henning and Stognienko 1996). The size distribution adopted is a modified
version of Mathis et al. 1977: {

dn
ds

∝ s−3.5 for 5 nm <s< 1 µm
dn
ds

∝ s−5.5 for 1 µm <s< 5 µm
(3.27)

The silicates are considered to be three various types, depending on their iron content. However, the
absolute amount of solid metallic iron in the model is kept unchanged:

• iron-poor silicates, Fe/(Fe +Mg) = 0.0

• iron-rich silicates, Fe/(Fe +Mg) = 0.4

• normal silicates, Fe/(Fe +Mg) = 0.3
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The dust grains are modelled as aggregates or spherical particles with different distribution of the
dust constituents:

• homogeneous dust particles, where each particle consists of the only one dust material

• composite particles, where each particle includes all dust materials according to their mass frac-
tion

• porous composite particles, where half of the particle volume consists of all dust materials ac-
cording their mass fraction the other half is vacuum.

For gas temperatures between 1500 and 10000 K, where all the dust grains have evaporated, the
gas opacity is computed according to Helling et al. 2000.

3.2.6 Dust Dynamics
Dust particles are treated as Lagrangian particles immersed in the gaseous disc (Picogna et al. 2018).
The forces acting on dust grains are of different kinds:

• gravitational force of the central star and the planets

• drag force due to the difference between the particles’ Keplerian velocity and the gas’ sub-
Keplerian velocity

• gas turbulent motion that spreads particles.

Other effects include photophoretic * gas pressure, radiation pressure and growth/fragmentation
due to collisions between grains, but they will be neglected.

3.2.6.1 Drag Force

The particles are considered of spherical shapes. The drag force experienced can be described by three
parameters:

• the Knudsen number K = λ/(2s): ratio of the mean free path of the gas molecules and the
particle’s diameter

• the Mach number M = vr/cs: ratio of the relative velocity between dust and gas and the
sound speed

*photophoresis is a physical phenomenon consisting in the motion of microscopic particles suspended in gas when
illuminated by an intense beam of light
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• the Reynolds number Re = 2vrs/νm, where the gas molecular viscosity is defined as

νm =
1

3

(
m0vth
σmol

)
, (3.28)

withm0 and vth =
√
π/8cs mass and mean thermal velocity of the gas molecules and σmol

their collisional cross section.

To be able to represent a broad range of Knudsen numbers, the intermediate regime between Ep-
stein and Stokes drag has been taken into account as well and it is modelled with the approach of
Woitke and Helling 2003, which uses a quadratic interpolation between the two regimes:

Fdrag =

(
3K

3K + 1

)2

Fdrag,E +

(
1

3K + 1

)2

Fdrag,S. (3.29)

3.2.6.2 Turbulence

While the gas is treated as if in a laminar regime, thus neglecting the origin of the turbulence, turbulent
transport has been simulated ondustwith a stochastic term in the equation of dustmotion to account
for the kicks induced by the turbulent gas velocity field. The kick is modelled as a random Gaussian
variable δrd,T with mean ⟨δrd,T⟩ and variance σ2

d,r depending on the dust diffusion coefficient:

δrd,T =

{
⟨δrd,T⟩ = Dd

ρg

∂ρg
∂x

dt

σ2
d,r = 2Dddt

(3.30)

where dt is the time step and ∂/∂x is the spatial derivative along the considered direction.

3.2.6.3 Integrators

The particles are evolved with two different integrators depending on their Stokes numbers: a semi-
implicit leapfrog-like integrator for larger particles and a fully implicit integrator for particles well
coupled to the gas. If the particles have stopping times much smaller than the numerical timestep,
the drag term can dominate the gravitational force term, causing the integrator to becomenumerically
unstable, so a fully implicit integrator is used (Bai and Stone 2010, Zhu et al. 2014).

3.3 Simulations Setup
For my simulations I employed the hydrodynamics module to solve the Navier-Stokes equations of
a tridimensional gaseous PPD and I inserted Lagrangian particles using the module developed by
Picogna et al. 2018 to simulate the dust component. The aim is to model a system with two planets
in a 2 : 1 resonance and study the formation of gaps in the PPD. The analysis will be performed
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Table 3.1: Iden fiers of the four simula ons characterised by different se ngs. The values underlined are the ones that differ
from the reference simula on A.

Simulation Radiation Orbits Aspect Ratio
A No Elliptical 0.02
B No Circular 0.02
C No Elliptical 0.05
D Yes Elliptical 0.02

on a set of simulations characterised by different setups and initial conditions. The first simulations
are reduced in complexity by considering a locally isothermal equation of state, which does not re-
quire the solution of the equations of energy. The parameters changed were the scale height and the
eccentricity of the planets. Then, I introduced viscous heating and radiative cooling to understand
their effect on the dust distribution, by employing the radiation module previously described. The
aforementioned simulations are going to be identified throughout this work by the letters indicated
in table 3.1.

For these simulations I chose the piecewise parabolic method implemented by Mignone 2014 for
reconstruction, since it is the fittest for non-uniform grid spacing and curvilinear coordinates. The
time stepping chosen is a Runge-Kutta 2nd order total variation diminishing algorithm:{

U∗ = Un +∆tnLn

Un+1 = 1
2
(Un +U∗ +∆tnL∗) .

(3.31)

The Riemann solver used for flux computation is the Harten Lax Van Leer Contact solver (Harten
et al. 1983, Toro et al. 1994).

3.3.1 Domain

The three spatial coordinates are arranged in spherical geometry, such that {x1, x2, x3} = {r, θ, ϕ},
where r is the distance to the centre of the coordinate system, θ is the polar angle andϕ is the azimuthal
angle. The mesh is composed of 128 cells in the r direction, from 0.5 to 8 AU, 42 in the θ direction,
from 82◦ to 90◦†, and 360 in the ϕ direction, from 0◦ to 360◦. The domain is therefore limited
in the radial and vertical direction to reduce the computational time required: this is an acceptable
compromise since I deal with thin discs and the main focus of the system is in the inner area. For this
reason, the grid was set to logarithmic along the r axis, i.e. themesh size increases with the coordinate.
During the following discussion I will also refer to a set of Cartesian coordinates {x, y, z} obtained

†meaning that only half the disc is simulated and symmetry with respect to the midplane is assumed, for a total θ
amplitude of 16◦
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Table 3.2: Boundary condi ons at the edge of the domain.

r θ ϕ
Beginning reflective reflective periodic

End reflective eqtsymmetric periodic

according to the transformation 
x = r sin θ cosϕ

y = r sin θ sinϕ

z = r cos θ

(3.32)

and to the cylidrical radius R = r sin θ. The boundary conditions applied in the ‘ghost zones’ of
the computational domain are listed in Table 3.2. A reflective boundary consists of a ‘rigid wall’ at the
edge of the domain, where variables are symmetrised across the boundary and normal components
of vectors fields flip signs; an eqtsymmetric boundary sets equatorial symmetry with respect to a given
plane; periodic boundaries imply that variables passing through one side of the domain reappear on
the opposite side with the same components.

3.3.2 Gravitational Potential
The system considered is a PPD surrounding a star withmassM∗ = 1M⊙ placed at the centre of the
reference frame, so the body force inserted into themomentum and energy equations is derived from
a scalar potential ρa = −ρ∇Φ. The expression of the global potentialΦ = Φ(r, θ, ϕ) is the sum of
the contribution due to the star, the planets and the non-inertial frame, since the system is centered
in the star and not in the centre of mass. This gives:

Φ = −G ·M∗

|r|
− G ·m1

|r− r1|
− G ·m2

|r− r2|
+
G ·m1

|r1|3
(x · x1 + y · y1)+

G ·m2

|r2|3
(x · x2 + y · y2) (3.33)

3.3.3 Gas Component
The initial disc profile is axisymmetric and the gas moves with azimuthal velocity given by the Ke-
plerian speed around the central star. We assume no initial radial motion of the gas. The density
distribution, deriving from the force equilibrium, is given by Nelson et al. 2013

ρg = ρg,0

(
R

R0

)p

exp

[
GM∗

c2s

(
1

r
− 1

R

)]
(3.34)

where in this case p = −1 andR0 = 1AU. R is the cylindrical coordinate and ρg,0 = 10−9 g cm−3

(Figure 3.1). Integrating over the domain, this gives a gas mass ofMdisc ≈ 0.008M⊙ andMdisc ≈
0.020M⊙ for a disc with H/R = 0.02 and H/R = 0.05 respectively. These values need to be
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multiplied by two to obtain the actual mass of the disc, since the domain is limited to positive values
of the z coordinate. These mass values allow to neglect self-gravity, which starts to become relevant
for

Mdisc

M∗
>
H

R
. (3.35)

The surface density is obtained by vertically integrating the density distribution: for the chosen
profiles, ρg,mid = ρg,0 [R/(1 AU)]

−1 ∝ R−1 and H ∝ R, the resulting surface density Σ is a
constant:

Σ =
√
2πHρg,mid = const (3.36)

which gives approximately 750 g cm−2 forH = 0.02 and 1875 g cm−2 forH = 0.05, considering
the whole disc.

The initial temperature profile is

T = T0

(
R

R0

)q

(3.37)

where in this case q = −1 andR0 = 1 AU. T0 is the temperature corresponding to the distance of
1 AU and is obtained from the scale height

H(R) =

√
R3kBT (R)

GM∗µmH

(3.38)

assuming that the disc is vertically isothermal. In these simulations I haveworkedwith constant aspect
ratiosH/R of 0.02 and 0.05 (Figure 3.2), which correspond to T0 of 100 K and 640 K respectively
(Figure 3.3). The mean molecular weight assumed is µ = 2.35 and the viscosity is parametrised by
Shakura & Sunyaev’s α = 0.01. The mean free path is obtained as

λ =
µmH√
2ρgσmol

(3.39)

where σmol = 2 · 10−15 cm−2 (Chapman and Cowling 1970): this gives a lower limit of λ ≈ 0.7 cm
in the densest regions, i.e. the inner midplane.

The angular velocity throughout the domain is obtained from the force balance equations as well:

Ω = ΩK

[
(p+ q)

(
H

R

)2

+ (1 + q)− qR

r

]1/2
(3.40)

with p and q indices of the density and temperature distribution.
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Figure 3.1: Ini al gas midplane density distribu on.
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Figure 3.2: Gas density of a slice of gas at ϕ = 0 for the different values of the aspect ra o: H/R = 0.02 for runs A, B and D;
H/R = 0.05 for run C.
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Figure 3.3: Ini al gas temperature distribu on for the two aspect ra os used in the simula ons.

3.3.4 Dust Component

The dust component of the disc is modelled with 4 · 105 Lagrangian particles divided into four size
bins, from 10 µm to 1 cm, with internal density ρs = 1 g cm−3. The Stokes number identifies the
aerodynamic behaviour of a dust particle in the disc as explained in Section 1.2.1:

St =
ρss

ρgvth
ΩK. (3.41)

Particles are injected randomly in equal number per each radial ring, so the initial surface density
profile of the dust particles follows (Figure 3.4)

Σd(r) ∝ R−1. (3.42)

The vertical distribution of the particles is obtained by computing the dust scale height for each grain
size’s midplane Stokes number as a function of the gas scale height:

Hd = Hg

√
α

St + α
, (3.43)

where α, the viscous coefficient, approximates the vertical diffusion of the gas (Youdin and Lithwick
2007): this means that for small St the particles are well coupled to the gas and the two scale heights
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Table 3.3: Conversion factors for dust: each Lagrangian par cle represents a certain number of dust grains.

10 µm 100 µm 0.1 cm 1 cm
H/R = 0.02 2 · 1031 2 · 1028 2 · 1025 2 · 1022
H/R = 0.05 6 · 1031 6 · 1028 6 · 1025 6 · 1022
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Figure 3.4: Le : ini al dust par cles distribu on projected on the x-y plane. The colorbar indicates the decimal logarithm of the
number of par cles in each bin. A bin corresponds to 0.04 AU. Right: ini al dust surface density radial profile converted into
physical units.

agree.

To have an idea of the number of grains of dust that each Lagrangian particle actually represents in
the disc, I considered that the dust mass equals about 1% of the gas mass. Assuming that to each size
range corresponds the same amount of mass, I estimated conversion factors for a disc of aspect ratios
H/R = 0.02 andH/R = 0.05 (Table 3.3). This gives the dust profile in Figure 3.4, where I already
accounted for the fact that my domain is representative of half a disc.

In Figure 3.5 I plotted the Stokes number distribution at the beginning of the simulations for dif-
ferent grain sizes for each aspect ratio: smaller particles are strongly coupled to the gas in the whole
domain, while cm-size particles approach larger values at higher z, especially for the lowest aspect ra-
tio, where the disc is less dense. On the midplane, St remains a constant for each grain size, since in
this setup ρmid ∝ R−1, vth ∝

√
T ∝ R−0.5 andΩK ∝ R−1.5. Dust particles are merely investigated

under the dynamical aspect: they are subject to the gravitational potential of the star and planets, to
the drag force of the gas and to the turbulent kicks, but they do not exert a back reaction on the gas
and do not interact with each other.
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Figure 3.5: Ini al Stokes number of the dust par cles for the two aspect ra os.

3.3.5 Planets

The planets embedded have masses ofm1 = 10−3M⊙ andm2 = 2.99× 10−4M⊙, in analogy with
the masses of Jupiter and Saturn. They are put on 2 : 1 resonant orbits, such that

n2

n1

=
1

2
→ a1

a2
=

(
n2

n1

) 2
3

≃ 0.63. (3.44)

Their semi-major axes are a1 = 3 AU and a2 = 4.76 AU, which correspond to orbital periods of
about 5 and 10 years. In run B these orbits are circular, while they have eccentricities of e1 = 0.1
and e2 = 0.18 in the other runs (Figure 3.6): these values are the outcome of long term simulations
obtained considering the effect of gas, dust and the planets’ mutual interaction on the orbits (Marzari
et al. 2018).
In my simulations these orbits are fixed, meaning planets do not migrate and do not modify their
orbital elements as an effect of gas, dust or mutual interaction. The gravitational potential due to
the planets needs to be treated differently close to the planet location to prevent a singularity: the
potential is smoothed with a cubic expansion inside a sphere centered on the planet location with a
radius given by the smoothing length rg = ϵRHill (Klahr andKley 2006, Stoll et al. 2017), whereRHill
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Figure 3.6: Orbits of the planets for the different choices of eccentrici es.

is the radius of the Hill sphere

RHill = a(1− e)

(
m

3M∗

) 1
3

. (3.45)

The critical distance chosen is half the Hill radius, ϵ = 0.5, such that inside this area each planet’s
potential is multiplied by

β =
|r− rp|
rg

[(
|r− rp|
rg

)3

− 2

(
|r− rp|
rg

)2

+ 2

]
. (3.46)

Also, the planets are not inserted abruptly into the system, but their masses are modulated to increase
smoothly during the first 20 years of evolution, afterwhich the planets are assigned their actualmasses.
The factor by which the planet masses have to be multiplied prior to t = 20 yr is

γ = sin

(
2π · t[yr]

80

)
. (3.47)
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3.3.5.1 Planet Positions

Given the value of the eccentric anomalyE as defined in Section 1.4.1, we can obtain the projections
of r, i.e. the coordinates

x = a(cosE − e) and y = a
√
1− e2 sinE. (3.48)

To find the value forE wemust solveKepler’s equation, starting from the value of the mean anomaly
M :

M = E − e sinE (3.49)

which is a transcendental equation, so it requires iterative techniques. Taking E0 = M as the first
approximation, we get

Ei + 1 =M + e sinEi i = 0, 1, ... (3.50)

This process is repeated until the difference between two steps is sufficiently small. In these simula-
tions, the tolerance value was set to 10−10.

3.3.6 Equation of State
In runs A, B and C the equation of state is isothermal: the temperature is locally constant and the
pressure is obtained as p = ρc2iso, where the sound speed was chosen according to c2iso = c2iso,0/R

with ciso,0 =
√

kBT
µmH

isothermal sound speed at 1 AU.
In run D the equation of state is ideal and the ratio of specific heats Γ = cP/cV is constant and
equal to 1.4. The sound speed is locally calculated as c2s = Γp/ρ. While previously the temperature
distribution could be neglected, in run D it is necessary to introduce an ideal equation of state since
radiative effects significantly change the internal energy of the system.
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4
Results

The following analysis will include the study of the behaviour of both gas and dust in the PPD. In
particular, I want to understand how different initial conditions affect the formation of a gap in both
components of the disc and whether it is likely that a common gap may open. Given the massive
computational time required, I was able to run the simulations up to 600 years, or ∼ 120 orbits of
the inner planet.
The data obtained from the simulations have been analysed through Python and C++ scripts.

4.1 Gas Component

4.1.1 Gas Gap

Disc and planet interact through the exchange of angular momentum caused by the tidal toque ex-
erted by the planet’s gravitational field of the circumstellar material, which alters the disc surface den-
sity. In the simplest case of a single planet on a circular orbit, a circular gap is opened in the gas, whose
shape carries information about both the planet’s and disc’s properties. According to the criteria ex-
plained in Section 1.5, a planet is able to carve a gap ifq ≥ 3

(
Hp

rp

)3
q ≥ 243π

8
α
(

Hp

rp

)2
.

(4.1)

In the simulations considered, this is true for the two planets (q1 = 0.001 and q2 = 0.000299)
for both values of the aspect ratio. The depth of the gap is defined as the ratio between the surface
densities at the bottom of the gap and at the edge Σmin/Σ0. The width of the gap is defined as the
distance between the outer and the inner edge of the gap. The relation between the gap depth and
the planetary mass is (Duffell and MacFadyen 2013):

Σmin

Σ0

=
1

1 + 0.04K
(4.2)
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Figure 4.1: Gas surface density profile normalised to the ini al value. The density is plo ed as a func on of the cylindrical ra-
diusR. The black dots represent the semi-major axes of the planets. The ver cal lines represent the gap boundaries according
to Varnière et al. 2004 or Kanagawa et al. 2016 , depending on the value of (mp/M∗)

2
(Hp/rp)

−2
α−1. From le to right:

run A, B, C, D. From top to bo om: t = 200, 400 and 600 years.
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Figure 4.2: Midplane gas density normalised to the ini al value in a decimal logarithmic scale. The density is represented by the
colormap as a func on of the x and y coordinates. From le to right: run A, B, C, D. From top to bo om: t = 200, 400 and 600
years.
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Figure 4.3: Surface gas density integrated along the z-axis normalised to the ini al value in a decimal logarithmic scale. The
density is represented by the colormap as a func on of the x and y coordinates. From le to right: run A, B, C, D. From top to
bo om: t = 200, 400 and 600 years.
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whereK is a dimensionless parameter defined by

K ≡
(
mp

M∗

)2(
Hp

rp

)−5

α−1, (4.3)

wheremp,M∗, rp,Hp andα are themasses of the planet and the central star, the orbital radius of the
planet, the scale height at the location of the planet and the viscous parameter. Varnière et al. 2004
found that for values of (

mp

M∗

)2(
Hp

rp

)−2

α−1 ≳ 0.3 (4.4)

the gap edges roughly correspond to the locations of them = 2 Lindblad resonances. For smaller
values, Kanagawa et al. 2016 found a relation for the gas width:

∆gap

rp
= 0.41K ′1/4 (4.5)

whereK ′ is another dimensionless parameter

K ′ ≡
(
mp

M∗

)2(
Hp

rp

)−3

α−1. (4.6)

The only case where the gap widthmust be computed with Equation 4.4 is relative to the gap formed
by the most massive planet in the discs whereH/R = 0.02. According to Kanagawa et al. 2016 the
time required to obtain a steady gap is of the order of ∼ 104 planetary orbits, so these simulations
are not adequate for a proper estimate of these parameters. However, the different shapes of gaps
obtained in the four runs allow to have an idea of the behaviour of these quantities as a function of the
different initial conditions. The challenges for the gap evaluation in my simulations include the fact
that the aforementioned estimates refer to single planets on circular orbits: thismeans the effects of the
presence of another planet and of their orbits’ eccentricities are neglected, therefore the possibility of
the formationof a commongap is not considered. Furthermore, the values from literature are referred
to simulations run in two dimensions: the addition of a third dimension surely affects these estimates.
From what can be seen in the plots, it is clear that the four setups lead to very different outcomes in
terms of the shape of the gaps (Figure 4.1). Run B, the setup with the circular orbits, shows quite
regular gaps that maintain their initial shape and width and increase their depth with time: in the
middle of the gap there is some material that cannot be swept away by the planet at the location of
the horseshoe orbits. Run A’s gaps do not have a classical ‘U’ shape in the surface density profile due
to the eccentricities of the planets that break the axis-symmetry of the disc: the inner planet carves a
gap that is deeper and wider near the planets’ apocentres (Figures 4.2, 4.3) and the horseshoe gas is no
longer present. RunC,with the higher aspect ratio, shows that the gap for the inner planet is less easily
formed, both in the midplane density and in the integrated surface density, while the outer planet
hardly shows signs of gap formation. In run D, where radiative effects were considered, the gaps are
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visible in the midplane: however, it can be noticed that the whole disc tends to move towards higher
z, since themidplane hasmostly negative values of log ρ/ρ0, while the integrated density distribution
remains globally constant. The inner planet’s gap is much less deep compared to the surface density
profile of the isothermal case, while the outer planet does not show any recognisable feature at all. The
values found for the gapwidth are compatiblewith the ones found in literature. In particular, runB is
themost easily comparable to the predictions, since the orbits are circular and the interaction between
the gaps is reduced. As for the depths, some of the ones obtained in the simulations (Figure 4.4) are
significantly less prominent than the predicted values: as previously mentioned, those are referred to
a steady gap, whichwould require∼ 105 years for this planetary system. The formation of a common
gap needs the peaked density in-between the two gaps to lower: considering the simulations where
the two gaps are well defined, A and B, the eccentric system shows a central peak that is gradually
lowering faster than the circular system.

4.1.2 Gas Temperature

While run A, B and C are locally isothermal during the simulation, in run D it is possible to study
the temperature evolution. PLUTO solves radiative transport inside the disc as a function of the
radiation energy density, i.e. the radiant energy per unit volume [erg cm−3]. This quantity is related
to the temperature through the equation

E = aRT
4 (4.7)

with

aR =
4σ

c
=

8π5kB
4

15c3h3
= 7.5657 · 10−15 erg cm−3 K−4 (4.8)

whereσ is the Stefan–Boltzmann constant, kB is theBoltzmann constant andh is the Planck constant.
The initial∝ R−1 profile with T0 = 100K at 1 AU is heavily modified by the viscous heating inside
the disc. This is mostly evident in the area affected by the orbital motion of the planets. The disc
reaches∼ 400 K in the midplane and∼ 200 K in the top layer: in the very proximity of the planets,
the midplane gas temperature reaches∼ 700 K (Figure 4.5), while the gap zones remain cooler with
averages of∼ 150K. As it is shownbyFigure 4.6, after200 years the temperature has almost stabilised
and shows a profile consistent with the theoretical midplane temperature obtained by

Tmid =

[
9GM∗Ṁτ

32πσR3

(
1−

√
R∗

R

)]1/4
. (4.9)

The accretion rate for a stationary disc is

Ṁ =
3πνΣ

1−
√

R∗
R

(4.10)
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Figure 4.4: Depth of the gaseous gap for each planet in the four runs. The horizontal black lines indicate the values predicted
for a steady gap by Duffell and MacFadyen 2013 for the two planet masses and the two values of the aspect ra o.
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with ν = αH2ΩK viscosity, which gives a value of the order of 10−7 M⊙ yr−1 at 1 AU. The optical
depth on themidplane τ depends on theRosselandmean opacity: I chose a value ofκR = 1cm2 g−1,
in agreement with the results of Semenov et al. 2003, which gives τ = ΣκR = 750. This is consistent
with the assumption of an optically thick disc for z = 0. The figure shows that the profile obtained
is partially compatible with the theoretical temperature: the deviations are attributed to the presence
of the planets and to the boundary conditions which impose cooling at the edge of the domain.

4.1.3 Scale Height

The scale height of a PPD is a parameter which describes the vertical geometric structure of a disc as a
function of radius: solving the vertical hydrostatic balance equation leads to

ρ(R, z) = ρmid(R) exp

(
− z2

2H2

)
(4.11)

withH(R) = cs/ΩK. This means that the scale height corresponds to the value of z at which the
density decreases by a factor exp(−0.5) ≈ 0.6with respect to themidplane density at a certain radius.
This quantity is also related to the thermal structure of the disc, considering that the sound speed is a
function of the temperature cs ∝ T 1/2. The initial conditions of my simulations imposedH ∝ R,
which translates into a constant aspect ratioH/R at t = 0. Since temperature and scale height are
strictly related, it is interesting to study the aspect ratio trend in run D, where radiative transport is
included. On the other hand, I expect the scale height to remain unchanged in run A, which has a
locally isothermal profile and the same initial aspect ratio as D. By comparing Figures 4.2 and 4.3 it
was already possible to realise that in runD themidplane layer gets gradually depleted so the material
must have moved upwards to maintain the surface density constant. Figure 4.7 confirms that in run
D the aspect ratio increases as a function of time especially where the planets orbit, between 3 and
5 AU, consistently to the temperature rise. In run A the aspect ratio slightly deviates from the initial
value but oscillates about 0.02. As a consequence, it is possible to see that the top layer becomes
significantly denser in run D (Figure 4.8).

4.1.4 Gas Velocity

In Figure 4.9 I represented the velocity components of the gas on themidplane at the end of the simu-
lation. The radial component vr has values very close to zero for run B, with the circular planet orbits,
while for the rest of the simulations the gas acquires a non-zero eccentricity for most of the radial
extent (Figure 4.10) and thus the gas shows motion along r. In the polar direction, the velocities vθ
are almost null for all simulations. The azimuthal component vϕ is faithful to the Keplerian velocity
(Equation 1.2).

56



Figure 4.5: Gas temperature distribu on for the radia ve run D represented by the colormap as a func on of the x and y coor-
dinates in a decimal logarithmic scale. Le panels: temperature distribu on on the midplane. Right panels: temperature distribu-
on on the top layer (θ = 82◦). From top to bo om: t = 20, 100 and 600 years.
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Figure 4.6: Gas temperature profile of the midplane for the radia ve run D as a func on ofR, averaged on the ϕ coordinate.
The con nuous black line represents the ini al profile, while different colors represent different ages. The dash-do ed line
indicates the theore cal value of the midplane temperature.
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Figure 4.7: Scale height evolu on in a slice of gas for the radia ve run D. The density is represented by the colormap as
a func on of the radius and the z coordinate at ϕ = 0 in a decimal logarithmic scale. The white line corresponds to
the ini al scale height, i.e. it is the line of equa on z = 0.02R. The black line connects the points for eachR where
ρ(R, z) = ρ(R)mid exp (−1/2). Le panels: run A; right panels: run D. From top to bo om: t = 100, 200, 300, 400,
500 and 600 years.
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Figure 4.8: Gas density distribu on on the top layer (θ = 82◦) represented by the colormap as a func on of the x and y
coordinates in a decimal logarithmic scale. Le panels: run A; right panels: run D. From top to bo om: t = 200, 400 and 600
years.
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Figure 4.9: Midplane velocity distribu on in r, θ and ϕ direc ons a er 600 years. From le to right: vr , vθ and vϕ. From top to
bo om: runs A, B, C and D.
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Figure 4.10: Midplane gas eccentricity distribu on averaged over all ϕ for the four simula ons a er 100 (le ) and 600 (right)
years as a func on ofR. The dashed lines indicate the eccentricity of the planets.

4.2 Dust Component
Observations of PPDs probe mostly the dust content of the disc, instead of the gas: the two phases
are not necessarily coupled and may show different features in their distribution. The primary effect
which may introduce differences in gas and dust evolution is the drag between the two fluids due to
the fact that gas is partially supported against gravity by the pressure gradient and rotates more slowly
than the Keplerian value.

4.2.1 Dust Gap
A planet can open a gap in the dust disc even if the gas gap is not fully shaped yet (e.g. Paardekooper
and Mellema 2004, Fouchet et al. 2010, Zhu et al. 2014, Picogna and Kley 2015, Dipierro et al. 2015).
Gap opening is more effective in the dust since it is considered to be an almost collisionless fluid and
there are no intrinsic pressure and viscosity able to close the gap. In Figure 4.11 I plotted the dust
density profiles at different times, while Figure 4.12 shows the distribution at the end of the simulation
for the different gran sizes. In Figure 4.11 I removed the particles inside the Hill sphere of the planet
since they would interfere with the profile of the gap by showing a peaked feature at the planets’
positions. Analogously to the gas gap, runs A to D show very different features. The gaps are more
easily carved in the isothermal runs withH/R = 0.02 (A and B): the gap of the inner planet is clearer
for the elliptical case while the opposite happens for the less massive planet; the eccentric orbit in run
A facilitates the removal of dust material inside the primary gap but perturbs the formation of the
outer gap which remains rather irregular. The barrier between the two gaps is less high in run A and
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is more likely to lower towards the formation of a common gap. In runs C and D there is no trace
of a second gap forming, as noticed for the gas. There is no obvious difference in the behaviour of
the particles of different dimension, except for a slight increase in the depth of the gap for larger grain
radii: although the Stokes numbers span several orders of magnitude, the quite elevated value of the
viscosity parameter α = 0.01 has a smoothing action and the majority of the particles with St < 1
are well coupled to the gas and thus show analogous dynamics. Some of the 1 cm particles, with the
highest Stokes number, deviate from the global trend and tend to carve a deeper gap in the lowdensity
zones, since they are less coupled to the gas and more ‘free’ to pile up at the pressure maxima.

4.2.2 Dust Eccentricity
The shape of the dust disc, hence the particles’ eccentricities, may have a crucial role in the early stages
of planetary formation, where planetesimals are potentially prone to collide.

To obtain the orbital elements I have performed a transformation starting from the Cartesian state
vectors, assuming that the motion of each dust particle is purely Keplerian, so I treated the system as
a two-body problem. Knowing that v = ṙr̂+ rθ̇θ̂+ r sin θϕ̇ϕ̂ and h = r∧ v, the conservation of
energy and angular momentum leads to

1

2
v2 − µ

r
= − µ

2a
(4.12)

and
h =

√
µa(1− e2), (4.13)

which allow to calculate the semi-major axis a and the eccentricity e of each particle.
The eccentricity of the dust grains is affected by the planetary orbits (Figure 4.13): run B has values

of e closer to zero since the planets are on circular orbits. In runs A, C and D the eccentricities ap-
proach the ones of the planets between approximately 3 and 5 AU, more clearly for dust rather than
gas. The radiative disc in runD shows less prominent eccentricities in both gas and dust, as was found
by Marzari et al. 2012. There are no noticeable differences between the eccentricity distribution for
the various grain size.

In the zones surrounding the planets, dust particles get scattered on orbits of higher eccentricities
(Figure 4.14) following trajectories that respect the conservation of the Tisserand parameter for each
particle (Tisserand 1896), which is obtained starting from the integrals of motion of the restricted
circular planar three body problem:

T =
ap
a

+ 2

√
(1− e2)a

ap
cos i (4.14)

where a, e and i are the particle’s semi-major axis, eccentricity and inclination and ap is the planet’s
semi-major axis. It is possible to neglect the inclination of the particle, whichmust be below 0.14 due
to the limits imposed on the domain, giving values of 0.99 ≲ cos i ≤ 1.
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Figure 4.11: Surface density profile of the gas and dust par cles at different mes as a func on ofR in the proximity of the
planets normalised to the ini al profile. Par cles inside the Hill sphere of the planets were removed from the plot. Different
colors indicate par cles of different size, while the gray fill represents the gas profile. From le to right: runs A, B, C and D. From
top to bo om: t = 200, 400, 600 years.
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Figure 4.12: Surface density distribu on of the dust par cles a er 600 years for the different grain sizes and setups as a func-
on of the azimuthal angle ϕ and the cylindrical radiusR. Each radial bin corresponds to 0.08 AU, while each azimuthal bin

corresponds to 2π/100 rad. From le to right: runs A, B, C and D. From top to bo om: par cles with radii of 10 µm, 100 µm,
0.1 cm and 1 cm.
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In runs C and D, this effect is reduced, compatibly with the fact that a less deep gap is carved and
gas has a damping action on the eccentricities; planets in run D scatter particles even less, due to the
fact that the bulk of the gas rises in height and less particles are in the influence zone of the planets, as
will be shown in Section 4.2.5.

4.2.3 Radial Drift

A consequence of aerodynamic drag is the phenomenon of radial drift, which acts on a wide range
of Stokes numbers. Large bodies with St ≫ 1 orbit at Keplerian speed and the gas flow acts as
a ‘headwind’ and therefore introduces a radial motion that causes the orbit to decay at lower radii.
Small particles with St ≪ 1 are aerodynamically coupled to the gas and forced to orbit at the gas
speed: since the particles do not experience the pressure gradient, their non-Keplerian orbital motion
translates into a net radial force. The final expression for the radial velocity is given by (see Section
1.2.1.1)

vdrift,r ≃ − 2

St + St−1
ηvK. (4.15)

In Figure 4.15 I plotted the Stokes numbers of each grain size after 600 years: the distribution follows
the gas surface density profile as in Figure 4.1. For the isothermal run, where the density drops quickly
after a few scale heights, the distribution of St shows a cutoff around z = 0.5 that is not present for
the radiative run in which the gas rises (Figure 4.7) andmaintains quite high values even at large z, so
St remains below unity for the great majority of the particles. In Figure 4.16 I plotted the theoretical
drift velocities of each grain size obtained from Equation 4.15 with the Stokes numbers in Figure 4.15
after 600 years: for the same reasons as before, drift velocities are globally verymodest, but increase for
the isothermal run at larger z andR. Since these values are estimated for a system in equilibrium and
unperturbed by planets, it was not possible to obtain a match with the simulated dust: particles are
subject to non-stationary motions induced by the planets and their semi-major axis and eccentricity
undergo major changes which conceal the effect of the radial drift (Figure 4.17). Furthermore, the
simulated discs are limited in radial extent which prevents to analyse an area unaffected by the planets.
The variation of the particles’ semi-major axes is displayed in figure 4.18: in the first hundred years
the dust is largely rearranged, while the distribution becomes more stationary towards the end of the
simulation.

4.2.4 Dust Settling

The gas component above themidplane is supported against the vertical component of stellar gravity
by the vertical pressure gradient. Solid particles however accelerate towards the midplane until the
stellar force is balanced by drag. The dust settling velocity is given by

vsettle =
ρs
ρg

s

vth
Ω2

Kz (4.16)
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Figure 4.13: Dust eccentricity distribu on as a func on of the semi-major axis a er 600 years for the different grain sizes
and setups. The semi-major axes of the planets are represented by black dots, while their eccentrici es are represented by
horizontal dashed lines: in run B the eccentrici es are null. The black line represents the eccentricity profile of the gas on the
midplane. From le to right: runs A, B, C and D. From top to bo om: par cles with radii of 10 µm, 100 µm, 0.1 cm and 1 cm.
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Figure 4.14: Example of the dust eccentricity distribu on as a func on of the semi-major axis in run A a er 100 (top) and 600
(bo om) years for par cles of 10 µm. The dashed lines indicate the eccentrici es of the two planets (the less massive is the
most eccentric); green dots indicate the semi-major axes of the planets; the yellow dots indicate the radii of the planets at the
specific epoch; the blue and red lines represent the points at constant Tisserand parameter assuming that before being scat-
tered the par cles have the same semi-major axes and eccentrici es as the corresponding planet.
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Figure 4.15: Stokes numbers for par cles with radii of 10 µm, 100 µm, 0.1 cm and 1 cm at t = 600 yr as a func on ofR
and z. Le panels: run A; right panels: run D.
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Figure 4.16: Theore cal dri veloci es for par cles with radii of 10 µm, 100 µm, 0.1 cm and 1 cm at t = 600 yr as a
func on ofR and z. Le panels: run A; right panels: run D.
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Figure 4.17: Histograms of the dust velocity distribu on a er 600 years for the four simula ons and four grain sizes. The total
number of par cles for each dimension is 105, divided into 100 bins. From le to right: vr , vθ and vϕ. From top to bo om: runs
A, B, C and D.
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Figure 4.18: Varia on of the semi-major axis of the dust par cles (here, as an example, the ones with 10 µm radius) as a func-
on of the ini al semi-major axis for runs A and D: from the beginning to 100 years on the le and from 500 to 600 years on

the right. The boundaries of the disc are indicated with a blue con nuous line, while the posi ons of the planets are indicated
with red dashed lines. The par cles with ini al a very close to the star that escape the domain are re-inserted from the outer
disc to maintain the total number of par cles.

which results in a settling time equal to

tsettle =
z

vsettle
=

1

StΩK

. (4.17)

However, the effect of the turbulence in discs is to counteract the tendency of dust particles to set-
tle towards the midplane and it leads to a vertical spreading of the particles instead. The predicted
settling times obtained with 4.17 for the dust particles at 600 years are represented in Figure 4.19 for
the isothermal and radiative runs. Since the distribution depends on the Stokes number, the features
of the plot are justified by the same reasons of Figure 4.15: particles in low-density zones have higher
settling velocities and thus settle more rapidly. However the system is not in a steady state yet and the
randommotions (Figure 4.17) still prevail over the settling speed. Nonetheless, it is possible to gather
a hint of the settling of the biggest particles at high z (Figure 4.20).

4.2.5 Captured Dust

If the star-planet-particle were an isolated three-body system, every dust particle falling into the Hill
sphere (Equation 1.74) of a planet would not be able to leave and would be considered captured by
the planet’s gravitational field. However, there are several factors that prevent this system from being
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Figure 4.19: Theore cal se ling mes for par cles with radii of 10 µm, 100 µm, 0.1 cm and 1 cm at t = 600 yr as a
func on ofR and z. Le panels: run A; right panels: run D.
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Figure 4.20: Ver cal dust distribu on of the dust par cles a er 600 years for the different grain sizes for the isothermal and ra-
dia ve setups as a func on ofR and z. Each bin corresponds to 0.02 AU. From Top to bo om: par cles with radii of 10 µm,
100 µm, 0.1 cm and 1 cm. Le panels: run A; right panels: run D.
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Table 4.1: Number of ‘captured’ par cles a er 600 years, listed in radius-increasing order: 10 µm, 100 µm, 0.1 cm and 1 cm.

Planet 1 Planet 2
Isothermal 1392 82

1285 68
1197 46
894 26

Radiative 58 13
50 19
64 12
37 13

treated as the restricted planar circular three-body problem described in Section 1.4.2. The main devi-
ations are the presence of a second planet with non-negligible mass and the drag force exerted by the
gas (see Ormel and Klahr 2010). In Figure 4.21 I show the dust distribution around the planets and
highlight the particles inside theirHill sphere after 600 years for the isothermal and radiative runs (Ta-
ble 4.1). The global trend suggests that smaller particles are more easily captured: this is in agreement
with the fact that larger particles ‘stream’ more easily, being less coupled to the gas, thus moving at
larger drift speed. Furthermore, the gas crossing the planet location supplies the Hill sphere with the
particles which are most coupled to it.
This calculations only aim to give an idea of the relative abundance of captured particles as a function
of the planet mass, the dust size and the choice of an isothermal or radiative setting, since it is a very
rough estimate: the removal of particles after capture is not implemented in PLUTO, so an accurate
approach should include the evaluation of the gravitational attraction by the planet compared to the
drag (for smaller particles) or the kinetic energy (for larger particles), thus flagging the particles as ac-
creted if they fulfill the criteria. However this was not possible with the time interval chosen between
the outputs, since I would not have been able to oversee the required amount of time for a reliable
estimate.
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Figure 4.21: Zoom on the dust distribu on on the x − y plane in the proximity of the planets for the different grain sizes a er
600 years for runs A and D. The planet is represented in yellow, the red circle indicates the volume delimited by the Hill sphere
and the captured par cles are plo ed in green (if a par cle is inside the circle but not colored, it means its z is too elevated to
be part of the sphere). Upper panels: dust captured by planet 1 (a = 3AU,m = 0.001M⊙,RHill,1 = 0.187 AU). Lower
panels: dust captured by planet 2 (a = 4.76 AU,m = 0.000299M⊙,RHill,2 = 0.181 AU). From le to right: par cles
with radii of 10 µm, 100 µm, 0.1 cm and 1 cm.
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5
Conclusions and Future Developments

5.1 Summary and Conclusions

During this thesis work I had the chance to study the early formation of gaps due to the presence
of a couple of resonant planets, focusing on the dust distribution, in view of comparing my results
to previous simulations, theory and observations. I performed four tridimensional hydrodynamic
simulations characterised by different values of planet eccentricities, aspect ratio and equation of state,
with the aim of looking for differences in their outcomes. Furthermore, I had the possibility to run
one of the first radiative simulations including Lagrangian particles tomimic dust with PLUTOcode,
thus testing its effectiveness and validity.

Themain conclusion I can infer is that the inclusion of radiation takes longer to put the disc into a
stationary state, thus requiring more time to show characteristic features of PPDs like gaps and rings,
as seen in ALMA and SPHERE observations: this must be taken into account when evaluating the
constraints on the parameters describing the planets (e.g. mass and eccentricity) and the disc (e.g. scale
height, viscosity and density profile). The results concerning the gas gap opening show good agree-
ment with previous simulations (e.g. Varnière et al. 2004, Kanagawa et al. 2016) for the isothermal
runs, while the radiative run shows features which better resemble an isothermal disc with greater as-
pect ratio: this is straightforward considering that scale height and thermal structure are strictly related
due to the dependence of the sound speed on the temperature. Dust mostly follows the behaviour of
the gas, since the two components are rather coupled: only bigger particles are slightly decoupled and
would show noticeably different features given longer integration times, such as radial drift and verti-
cal settling. Dust capture is more difficult in the radiative run, meaning further accretion by planets
may be significantly slower without the isothermal approximation.

5.2 Comparison with Observations

A potential observational counterpart of my simulations can be found in the system HD 163296,
detected by ALMA, which is thought to host two giant planets. Isella et al. 2016 studied both the
distribution of dust and CO and identified two gaps at 100 AU and 160 AU around a ∼ 5 Myr
old 2M⊙ star. Although these are unlikely to form a common gap due to their distance, the initial
formation of gaps in my simulations resemble the one in Figure 5.1.
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Figure 5.1: ALMA image of the protoplanetary disc surrounding the young star HD 163296 as seen in the dust con nuum.

5.3 Future Developments
Future work include the extension in time and computational domain of these simulations, so that
the formation of a common gap could actually be obtained. More parameters could be varied in
order to have a larger set of simulations to compare, e.g. theα viscosity parameter, the surface density
profile, the masses of the planets and the order of the resonance.

The main inaccuracy in my simulations was the choice of fixed orbits, which prevent the conserva-
tion of linear and angular momentum and do not include interaction with the gas component, the
planets’ mutual interaction nor migration: this was reasonable for such short timescales, but varia-
tions in the orbital parameters need to be considered for reliable results after 104 − 105 years. A new
module by Thun and Kley 2018 which allows to integrate planetary orbits has been recently imple-
mented for PLUTO: I will soon be able to relaunch my simulations with this adaptation.

In order to have a solid comparison with observations, it is necessary to continue my work using a
radiative transfer code, which allows to convert simulated values of density, temperature and opacity
into column density and eventually flux. For instance, with a code like RADMC-3D developed by
Dullemond et al. 2012 I would be able to compare synthetic observations of dusty PPDs to ALMA
and SPHERE observations.

Furthermore, comparisons with SPH * codes, e.g. PHANTOM (Price et al. 2017), would show the
advantages or limits of a grid code like PLUTO to model non-axisymmetric structures in PPDs.

*Smoothed-Particle Hydrodynamics
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A
Hamiltonian Formulation

The following analysis is taken from Murray and Dermott 2000 and Malhotra 2012.

A.1 Two-Body Problem

This different mathematical approach is useful in the following discussion of the dynamics of reso-
nance. We now use the variables

r = rxi + ry j + rzk and p = pxi+ py j + pzk, (A.1)

where r is the relative position vector and p = m0m1/(m0 + m1)ṙ is the linear momentum of the
system, i.e. the reference frame is centered in the center ofmass, thus reducing the degrees of freedom
from six to three.

We can write the vector equations of motion in the form

ṙ = ∇pHKepler and ṗ = −∇rHKepler (A.2)

with
∇p = i

∂

∂px
+ j

∂

∂py
+ k

∂

∂pz
, ∇r = i

∂

∂rx
+ j

∂

∂ry
+ k

∂

∂rz
(A.3)

and
HKepler =

p2

2µ∗ − µµ∗

r
(A.4)

is theHamiltonian of the two-body problem, where µ∗ = m0m1/(m0 +m1) is the reduced mass of
the system. We now get {

ṙ = p
µ∗

ṗ = −µµ∗

r3
r

(A.5)

where r and p form a conjugate set, while the orbital elements do not. So we need to find some func-
tions of the orbital elements which can form conjugate sets.
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Delaunay Variables

The three degrees of freedom can be described by three angular variables, one of which measures the
motion of the planet in its elliptical orbit and the other two describe the orientation of the orbit in
space. Theorbital elements are related to the set of action-angle variables knownasDelaunay variables:
the coordinates and corresponding conjugate momenta are

l =M

g = ω

h = Ω


L = µ∗√µa
G = µ∗

√
µa(1− e2)

H = µ∗
√
µa(1− e2) cos I

(A.6)

and the Hamiltonian is
HKepler = −µ

2µ∗3

2L2
. (A.7)

Since H is only a function of L, g and h must be constants. The momenta are also constants since
L = L(a),G is the angular momentum andH is the vertical component of the angular momentum
vector. The variation of l is:

dl

dt
=
∂H
∂L

=
µ2µ∗3

L3
=

√
µ

a3
. (A.8)

Poincaré Variables

For the case of nearly co-planar and nearly circular orbits the Delaunay variables can be conveniently
modified to obtain the Poincaré variables: the coordinates and corresponding conjugate momenta
are 

λ =M + ω + Ω

γ = −ω − Ω

z = −Ω


Λ = µ∗√µa
Γ = µ∗√µa(1−

√
1− e2)

Z = µ∗
√
µa(1− e2)(1− cos I)

(A.9)

and the Hamiltonian is
HKepler = −µ

2µ∗3

2Λ2
. (A.10)

The following relationship holds between the two sets:

Λλ+ Γγ + Zz = Ll +Gg +Hh (A.11)

which is a contact transformation, i.e. it preserves the canonical nature of the equations and does not
change the Hamiltonian.
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A.2 N-Body Systems

Formultiple planets around a star, the system canbe described as a sumof two-bodyKeplerianHamil-
tonians plus the potential energy of the planet-planet interactions. To do so, we must renounce the
astrocentric approach and adopt a coordinate system in which we first use the coordinates of the cen-
tre ofmass and then, successively, the coordinates of the first planet relative to the star, the coordinates
of the second planet relative to the centre of mass of the star and the first planet, and so on. For a sys-
tem of N planets orbiting a star, ri(i = 0, 1, ..., N) denote the coordinates of the star and the N
planets in an inertial reference frame and we define

r̃0 =

∑N
j=0mjrj∑N
j=0mj

, r̃i = ri −Ri−1, with Ri =

∑i
j=0mjrj∑i
j=0mj

(A.12)

and

p̃i = m̃i
˙̃ri, with m̃i =

mi

∑i−1
j=0mj∑i

j=0mj

. (A.13)

The final Hamiltonian is given by

H =
N∑
i=1

[
p̃2i
2m̃i

− Gm0mi

r̃i

]
−
∑
0<i<j

Gmimj

rij
+

N∑
i

[
Gm0mi

r̃i
− Gm0mi

ri0

]
=

N∑
i=1

H(i)
Kepler+Hinteraction.

(A.14)
The Delaunay variables are no longer action-angle variables, but they provide a useful canonical set.

A.3 Mean Motion Resonance

The simplest case of ameanmotion resonance can be studied considering the planar circular restricted
three-body problem in which a single planetmp orbits a starm∗ in a circular orbit and a test particle
m orbits the star with an orbital period close to a ratio of small integers with respect to the planet. In
terms of the Poincaré variables:

H(λ, γ,Λ,Γ, t) = −(Gm∗)
2

2Λ2
+Hp. (A.15)

Let us consider a first order meanmotion resonance, i.e. q = 1. In order to reach a useful form of the
Hamiltonian we must perform a series of changes in coordinates:{

ϕ = (p+ 1)λp − pλ+ γ

ψ = λ− λp

{
Φ = Γ

Ψ = Λ + pΓ
(A.16)
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Close to the resonance, ψ is a fast variable so we can neglect the ψ-dependent terms andΨ becomes a
constant of the motion. We define

n∗ =
(Gm∗)

2

Ψ3
, a∗ =

Ψ2

Gm∗
(A.17)

which are the osculating mean motion and semi-mejor axis of the test particle when its eccentricity is
zero and are constants of motion as well. We define

β = −3p2n∗

2Ψ
, ϵ = −Gmp

ap

fp√
Ψ

(A.18)

where fp is a coefficient. Finally, we define a dimensionless canonical momentumR and a modified
canonical coordinate θ as

R =

∣∣∣∣2βϵ
∣∣∣∣2/3 Φ, θ =

{
−ϕ if ϵ > 0

π − ϕ if ϵ > 0.
(A.19)

The dimensionless Hamiltonian in the canonical variables (θ, R) is then given by

K = −3∆R +R2 − 2
√
2R cos θ (A.20)

where the dimensionless parameter∆ is a measure of the closeness to the exact resonance,

∆ =
(p+ 1)np − pn∗

sν
(A.21)

where n∗ is the unperturbed mean motion and sν is a frequency scale equal to

sν =

∣∣∣∣27βϵ24

∣∣∣∣1/3 . (A.22)
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