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Abstract
Dipartimento di Ingegneria Industriale

MSc in Aerospace Engineering

Support an S-duct optimization design study using state-of-the-art

Machine Learning techniques

by Mattia Marcello Longato

With the advent of CFD tools, the computer-aided flow analysis has become a

trustful and cheap alternative to wind tunnel experiments, however, much time is

required by the code to be run even the increasing computational power available

in our days.

Alternately to this calculation method, different state-of-the-art machine learning

techniques are explained and implemented in the following work. The purpose is

to build confidential ML models learning from given input data about a specific

problem allowing the computer to predict solutions with the smallest error. Deep

learning methods are applied like the Extreme Gradient Boosting (XGBoost) to

make predictions about new aero-engine intakes S-duct geometries.

Several optimization problems have been executed using a Multi-Objective op-

timization algorithm for the design space investigation followed by the specific

trained machine learning model. The results obtained running the ML optimiza-

tions are shown with the corresponding parallel coordinate geometry plot.

The best results are later evaluated using some CFD simulations to confirm and

validate the machine learning models built before. The CFD evaluations will be

done only for the pareto front points using firstly Ansys Fluent, which is a RANS

model and secondly implementing the Lattice Boltzmann Method, which is a LES

simulation.

iii



iv
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Sommario
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MSc in Aerospace Engineering
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Machine Learning techniques

by Mattia Marcello Longato

Con l’avvento delle nuove tecniche di simulazione CFD oggigiorno si è in grado

di risparmiare una considerevole quantità di tempo e denaro rispetto alle vecchie

tecniche di simulazione basate esclusivamente su esperimenti in galleria del vento.

Il progredire della tecnologia consente di avere a disposizione strumenti sempre

più performanti, come nel caso delle tecniche di machine learning implementate

in questo elaborato di tesi. Questi codici innovativi consentono alle macchine di

apprendere e classificare seguendo specifici criteri l’informazione in elaborazione.

Lo scopo di questa tesi è quello di utilizzare lo stato dell’arte dei sopracitati codici

di machine learning con lo scopo di analizzare le caratteristiche aerodinamiche di

un condotto di prediffusione applicato in aeronautica. Il condotto in questione è

un S-duct introdotta nell’esperimento di Wellborn nel 1993 dove le variabili da

vagliare corrispondono al coefficiente di recupero di pressione (Cp) fra ingesso ed

uscita assieme al coefficiente di distorsione del flusso denominato angolo di swirl.

Diverse ottimizzazioni di questo condotto sono state messe a punto sfruttando

l’algoritmo chiamato Multi-Objective Tabu Surch per la ricerca del design space

seguito dall’implementazione della specifica tecnica di machine learning. I risultati

cosi ottenuti sono stati verificati attraverso delle analisi CFD per convalidare i

codici di ML implementati precedentemente. Le classiche tecniche di Spalart-

Allmaras, conosciute meglio come RANS sono state condotte a termine in un

primo momento per poi proseguire la trattazione sfruttando un modello LES il

quale implementa l’innovativo metodo CFD delle Lattice Boltzmann.
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Introduction 1

In this MSc thesis, a machine learning code is developed and presented to investi-

gate an aerodynamic S-duct intake problem. Five-month were needed to develop

the work, which was followed by Dr. Timoleon Kipouros at Cranfield University

(UK). The topics studied are all focusing on the unsteady flow distortion inside an

S-duct aero-engine intake, which is the duct that connects the external ambient

flow to the fan inlet (AIP). The previous studies were done by D’Ambros [1], Delot

[2], and Wellborn [3]; they had the goal to find out a duct with an S shape that

allowed to increase the static pressure for the fan. Further studies developed by

Tridello [4], Rigobello [5] and DalMagro [6] were centred on optimizing the duct

shape to improve the performance, minimizing the loss.

The aim of this work consists of collecting the results obtained from the above

studies and generate a model using state-of-the-art machine learning techniques

to calculate and compare the aerodynamic coefficients we want to study. Un-

til now, the S-duct shape has always been analyzed using Computational Fluid

Dynamics programs, which are the only way that engineers have to solve fluid

dynamics models. As we know, the CFD approach takes a long time to be run

because we need to generate a new mesh every time and reinitialize the solver on

the new geometry implemented. Machine learning techniques allow computers to

learn from experience and understand the influence of complex variables. We can

use the S-Duct problem we want to analyze as an example; we should now think in

terms of a hierarchy of concepts, where each idea is defined through some relations

to more straightforward concepts.

Explaining this idea, we can say that: by gathering knowledge from experience

(previous studies), a machine learning approach avoids the need for human oper-

ators to specify all the knowledge that computer needs formally. The hierarchy

of concepts enables the computer to learn complicated concepts by building them

out from simpler ones. If we draw a graph showing how these concepts are built

on top of each other, the graph is deep, with many layers. For this reason, we call

this approach to artificial intelligence deep learning.
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In the first chapter, the state-of-the-art about the S-duct will be explained together

with previous studies about the geometry shape that has been drawn in the last

works. Going through the chapter, the aerodynamics variables like the pressure

recovery and the swirl angle will be illustrated together with the Gauss distribution

introduced from a statistic point of view. The further explanations are regarding

the CFD results coming out from the previous approach that has all been analyzed

and classified to build the machine learning models as robust as possible. Different

types of machine learning configurations will be used and developed in the further

chapters through the thesis. The purpose is to find out which is the model that

fits in the best way possible the data. This allows us to predict very fast and

confidentially, the coefficients we want to study instead of using the CFD approach.

In chapters two and three, the machine learning technique will be explained ex-

haustively going through some algorithms. The introduction of some algorithms

examples like the logistic regression algorithm can help to understand the way

the computer used to think about problems given in input. Other parameters

explained in these two chapters are also regarding another machine learning algo-

rithm called Naive Bayes that can, for example, separate legitimate e-mail from

spam e-mail. The main algorithm parameters will be illustrated with some prob-

lems afforded by the mathematical developers of the machine learning software.

In chapter number three, the machine learning algorithm used in this S-duct opti-

mization called XGBoost will be explained in-depth, showing which is the way the

code interprets the data and organizes them by building different decision trees.

Going through chapter four, we have the explication about all the machine learning

XGBoost models built, going through how each one works, and how the setup

was made. Five different ML models are generated, each of which with a different

configuration. The models learning and testing processes explained in this chapter

are all done using the same CFD database .txt containing the S-duct simulations

results given by DalMagro’s previous work. [6] Comparisons between how each

model fits the data will be made looking for the best one that has to minimize the

mean squared error between the data learned and the predicted number.
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Chapter number five will show the optimization loop results done with each model

built before. An introduction about the Multi-objective Tabu search is done to

explain how this optimizer works to find out the optimal Pareto front, moving

throw the S-duct design space specified. Two optimization loops are made with

every machine learning model to minimize the pressure recovery coefficient and

minimize the swirl angle of the duct at the AIP. Every optimization has 500

iterations, so we have 1000 results for every ML method implemented, and in each

case, the Pareto front will be plotted. The design space analyzed by the Multi-

objective Tabu search (MOTS) gives us the S-duct geometries which are evaluated

by the ML in the optimization loop, predicting the Cp and the swirl values. The

next step shown in chapter five consists of assessing only the ML Pareto front

geometries, with a CFD simulation and plot the results on the same graphic; this

allows us to validate our ML predicted points.

Chapter number six goes through a different CFD approach called Lattice Boltz-

mann method (LBM) which is a Large Eddy Simulation (LES). This new

method consists of build-up fictive particles and such particles perform consecu-

tive propagation and collision processes over a discrete lattice mesh. The difference

between the traditional CFD method consists in the numerical solution method

because the traditional CFD code integrates the conservation equations of the

macroscopic fluid properties numerically.

The idea is to study with LBM the Pareto front geometries that had the best

results between the Cp and the swirl. Because time, only the first Wellborn [3] S-

duct configuration will be analyzed. This configuration will be used as an example

of lattice mesh implementation, showing the first 4.2285e-3s of the LES solution

reported in chapter six. Furthers works should pick up this point and continue

with the Lattice Boltzmann simulations on the rest of the S-duct geometries.





Chapter 1

S-duct

1.1 S-duct state-of-the-art

The aero intake duct is a turbomachinery component that allows the static pressure

to increase before reaching the fan inlet plane called AIP. In nowadays, many types

of ducts intakes are built and study, like the one we are interested in, the S-duct

shape. Starting from a review by the Wellborn experiment [3] in 1993 and going

through the further CFD analysis conducted by Delot [2], which both have been

the milestones for this topic, we will introduce the S-duct shape bellow.

1.1.1 Wellborn experiment

The experimental investigation performed by Wellborn had the goal of providing a

comprehensive benchmark dataset for the compressible flow through a representa-

tive diffusing S-duct. The details of the flow separation region and the mechanisms

which drive this complicated flow phenomenon were both deeply investigated and

reported in [3]. The facility used by Wellborn is shown in figure 1.1. Three main

parts characterize the experiment: the settling chamber, the test section and the

exhaust region. In the settling chamber, we can find a perforated spreader cone

that mixes the flow coming in.

5
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Going through the duct, the flow finds a coarse mesh conditioning screen that re-

duces the non-uniformities. At this point the flow finds a honeycomb-screen, that

removes the large scale turbulence fluctuations, a reduction of the area follows that.

Figure 1.1: Wellborn facility [3].

The second part is the test section. It can be divided into three parts: the S-duct,

and two additional components with a constant area, that are located before and

after the S-shape.

The last section called the exhaust region is composed of a circular pipe, a mass

flow plug and a sub-atmospheric plenum. The purpose of this component is to

delete the influences of the exhaust plenum on the test section.

Figure 1.2 illustrates the S-duct geometry, which has circulars cross-sections; ev-

eryone is normal to the common centerline. This centerline is built by a function

of two planar circles with have the same geometrical shape, the duct parameters

are written in Table 1.1.

Table 1.1: S-duct domain dimensions

parameters values

R 102.1 [cm]
θmax

2
30 [°]

Inlet radius (r1) 10.21 [cm]
Exit radius (r2) 12.57 [cm]
A2

A1
1.52
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Figure 1.2: Wellborn S-duct geometry [3]

All the data were computed on five planes, using 220 static pressure taps spread

on the duct surface. This experiment has discovered several behaviours of the

flow; the presence of a separated region in correspondence to the first band, that

develop in vortexes in the symmetry plane and two counter-rotating vortices at

the AIP surface. These counter-rotating vortices in the flow create several total

pressure losses. In Figure 1.3, it’s evident how the boundary layer detaches from

the duct walls. Very clear is shown in Plane E, the two vortices converge the fluid

with the low momentum towards the duct centre. From these results, it is easy

to conclude, highlighting the drop in pressure and, as a consequence, the velocity

magnitude changes.
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1.1.2 CFD analysis

In the following section, the CFD analysis that deeply examinated the S-duct with

Wellborn’s geometry is illustrated. There are a series of researches made by: En-

rico Manca [7], Marco Barison [8], Aurora Rigobello [5], Riccardo Tridello [4] and

Alessio D’Ambros [1]. The most important and recent work is the one performed

by Alessio D’ Ambros, precisely, his research is based on the optimization of the

Wellborn’s geometry considering two objective functions: the pressure losses and

the swirl angle.

It is important to remind how this author proceeded: the geometry management

has been controlled with the Free-Form Deformation (FFD) technique, whereas

the analysis of the flow has been performed using the steady-state computational

fluid dynamics (CFD).

Furthermore, the design space exploration has been achieved using the heuristic

optimization algorithm Tabu Search (MOTS) [? ]. Davide DalMagro [6] imple-

mented the same technique, where using the same Multi-Objective Tabu Search

algorithm he went through new design spaces founding new geometries and new

results for the pressure recovery and the swirl angle.

The data coming from DalMagro [6] CFD optimization are the ones that will be

used in chapter number four to set up the ML models and through all the train

and test process.

1.2 Objectives functions Cp, Swirl

The CFD simulations done using the optimization code by DalMagro [6] investi-

gates the physics inside the S-Duct giving as output from the loop the pressure

recovery coefficient and the swirl angle of the specific geometry studied. The model

inputs in the optimization loop were thirty-six numbers corresponding to the ge-

ometry control points coordinates given by the Free-Form Deformation (FFD)

technique used to control the S-duct shape.
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1.2.1 Input ML optimization function

� Model input Thirty-six numerical parameters are representing the geom-

etry control points from the Free-Form Deformation algorithm. These pa-

rameters will be used to know the duct shape we are working with. The

machine learning model built should be able to recognize and interpret these

36 geometry variables and predict the pressure recovery together with the

swirl angle.

1.2.2 Outputs ML optimization function

� Model output As we explained before, in the S-duct aero intake, we have

total pressure losses caused by the S bending, which creates some flow sep-

arations regions.

These losses are numerically associated with the total pressure value through

the duct. The total pressure parameter in a generic flow region can be defined

as equation 1.1.

Ptot = Pstatic +
1

2
∗ ρ ∗ v2 (1.1)

Using the pressure recovery (PR) parameter, defined by equation 1.2, it is

easy to know the losses amount in the duct.

PR =
PTot,Out
PTot,In

(1.2)

In figure 1.3, the flow separation region is visible after the first bend of the

duct shape. Where this event happens, the total pressure value decreases.
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Figure 1.3: Vortex in the S-duct through the bending S shape.

� Model output The second parameter used to investigate the duct is the

Swirl number. The swirl determines the flow distortion inside the duct. As

we explained before, considering the geometry with cylindrical coordinates,

it’s defined by equation 1.3.

α = arctan
Vθ,AIP
Vz,AIP

(1.3)

In figure 1.4 are reported different Swirl types considering the flow distortion

in the duct.

Figure 1.4: Swirl directivity (SD) spectrum for multiple pre-revolution swirl
distortion.
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1.3 Statistic Gauss distribution

In this section, some statistics concepts will be introduced because the Gaussian

distribution of the two variables investigated by DalMagro [6] in the duct is cal-

culated. The variables investigated are the Cp and the swirl, both analyzed by

the Gaussian distribution, which is given like: P (x(i)) = N(x(i);µ, σ2), where

i ∈ {1, ...,m}.

Recall that Gaussian probability density function is given by:

p(x(i);µ, σ2) =
1√

2πσ2
exp(−(x(i) − µ)2

2σ2
) (1.4)

The typical estimator of the Gaussian mean parameter is known as the sample

mean:

µm =
1

m

m∑
i=1

x(i) (1.5)

The other parameter that characterizes our Gaussian distribution is the standard

deviation from the mean value:

σ2
m =

1

m

m∑
i=1

(x(i) − µm)2 (1.6)

At the end of this implementation, we will have two different Gaussian distribution

of DalMagro’s CFD data, one distribution for each parameter (Cp, Sw). This work

is done to understand later how many machine learning predicted values, coming

from the model’s predictions, are inside the following ranges:

µ− σ & µ+ σ

µ− 2σ & µ+ 2σ

µ− 3σ & µ+ 3σ

(1.7)
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Figure 1.5: Example of a Gaussian distrubution.

The machine learning models done and explained with their performance in chap-

ter four, have to be as stronger as possible learning from a certain amount of CFD

data called training dataset given by DalMagro’s optimization loop [6]. When the

ML model is built, we have to check it, making predictions using the rest of ge-

ometries already studied by the CFD, remaining in the dataset file; this is called:

data test.

This learning and testing process will be iterated and rerun to build similar models

every time until we get the smallest error between the real value and the predicted

one of the same variable. Another check can be done using the Gaussian distri-

bution, and it consists in: When the most of the new predicted data from the

remaining examples in the database not used during the training process, fall in-

side the µ−σ&µ+σ space under the Gaussian curve means the model is accurate.

In this way, we can check how many predicted values are close to the centre of the

gaussian curve, and it means that the value predicted is next to the average.

Let’s start to discover how the Gaussian distribution looks like for the two variables

we are studying in the DalMagro’s CFD dataset used to train the ML models.
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� CP Gaussian distribution:

Figure 1.6: DalMagro’s Gaussian distrubution for the CP.

Calculating the distribution we find that:

Cp mean = 0.0461

Cp standard deviation = 0.0035

� Swirl Gaussian distribution:

Calculating the distribution, we find that:

Swirl mean = 3.2600

Swirl standard deviation = 0.6099
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Figure 1.7: DalMagro’s swirl Gaussian distrubution

Figure 1.8: DalMagro’s Pareto front optimization.



Chapter 1. S-duct state-of-the-art 15

1.4 The input format database

The following section will explain how the variables dataset should be written to

allow the model to learn on the fastest and the best way possible. The correct

order and position of the data given to the training model is crucial. To do that,

precise rules must be followed because the model is susceptible to it.

The database has to be structured neatly to learn from it. An example will be

shown to understand better how computers can learn from the correct data given.

For example, a person in everyday life has an immense amount of knowledge about

the world. Much of this knowledge is subjective and intuitive and therefore dif-

ficult to articulate formally. Computers need to capture this same knowledge to

behave intelligently.

One of the critical challenges in artificial intelligence is how to get this informal

knowledge into a computer; that is why we need to focus on the database input.

The difficulties faced by systems relying on hard-coded knowledge suggest that

artificial intelligence (AI) systems need the ability to acquire their knowledge by

extracting patterns from raw data. This capability, as we said, is known as ma-

chine learning. The introduction of machine learning enabled computers to tackle

problems involving knowledge of the real world and make decisions that appear

subjective.

For training the machine learning model, the code takes an instance file with the

format shown below:

1 5 : 0.235 6 : 0.784 7 : 0.248

0 5 : 0.257 6 : 0.697 7 : 0.478

0 5 : 0.781 6 : 0.617 7 : 0.819

1 5 : 0.753 6 : 0.961 7 : 0.759

0 5 : 1.025 6 : 0.473 7 : 0.429

(1.8)
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Each line represents a single instance. The first line is the first instance label;

5, 6, 7 are the feature indices of the first instance; 0.235, 0.784, 0.248 are the feature

values. In the binary classification case, 1 is used to indicate positive samples, and

0 is used to indicate negative samples. ML model also supports probability values

in [0, 1] as a label, to indicate the probability of the instance being positive.

On the instances in the training data, we may assign some weights to differentiate

the relative importance of the variables. For example, if we provide an instance

weight file for the training dataset like the example below:

1

0.5

0.5

1

0.6

(1.9)

It means that the code will emphasize more on the first and fourth instances while

training. If this file exists, the instance weights will be extracted and used at the

time of training the features. The following section will explain how the dataset

of the variables should be built to allow the model to learn in the fastest way

possible, also because XGBoost allows us to have many ways to give input data.



Chapter 2

Machine Learning basics

2.1 Introduction

When programmable computers were first conceived, people wondered whether

such machines might become intelligent. Today, artificial intelligence (AI) is a

thriving field with many practical applications and active research topics. We

look to intelligent software to automate routine labour, understand speech or im-

ages, make diagnoses in medicine and support basic scientific research.

In the early days of artificial intelligence, the field rapidly tackled and solved prob-

lems that are intellectually difficult for human beings but relatively straightforward

for computers; that solve problems that can be described by a list of formal, math-

ematical rules. The real challenge to artificial intelligence proved to be solving the

tasks that are easy for people to perform but hard for people to describe formally,

problems that we solve intuitively, that feel automatic, like recognizing spoken

words or faces in images. This solution is to allow computers to learn from ex-

perience and understand the world in terms of a hierarchy of concepts, with each

concept defined through its relation to simpler concepts. This capability is known

as machine learning.

17
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2.2 Artificial Intelligence with Machine Learn-

ing

The performance of a simple machine learning algorithm depends heavily on the

representation of the data they are given. Many artificial intelligence tasks, for

example, can be solved by designing the right set of features and then providing

these features to a simple machine learning algorithm. For example, a useful

feature for speaker identification from the sound is to estimate the size of the

speaker’s vocal tract. This feature gives a strong clue as to whether the speaker

is a man, woman, or child. [9]

For many tasks, it is difficult to know what features should be extracted. For

example, suppose that we would like to write a program to detect cars in pho-

tographs. We know that cars have wheels, so we might want to use the presence of

a wheel as a feature. Unfortunately, it is difficult to describe exactly what a wheel

looks like in terms of pixel values. A wheel has a simple geometric shape, but its

image may be complicated by shadows falling on the wheel, the sun glaring off

the metal parts of the wheel, the fender of the car or an object in the foreground

obscuring part of the wheel, and so on.

One solution to this problem is to use machine learning to discover not only the

mapping from representation but also the representation itself. This approach is

known as representation learning. Learned representations often result in much

better performance than can be obtained with hand-designed representations.

They also enable AI systems to adapt to new tasks, with minimal human in-

tervention rapidly. A representation learning algorithm can discover a good set

of features for a simple task in minutes, or a complex task in hours to months.

Manually designing features for a complex task requires a great deal of human

time and effort; it can take decades for an entire community of researchers. Figure

2.1 illustrates the relationship between different artificial intelligence disciplines.
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Figure 2.1: The diagram is showing how deep learning is a kind of representa-
tion learning, which is, in turn, a kind of machine learning. Each section of the
diagram includes an example of artificial intelligence (AI) technology. Source:

[9]

When designing features or algorithms for learning features, our goal is usually

to separate the factors of variation that explain the observed data. Such factors

are often not quantities that are directly observed. Instead, they may exist as

either unobserved objects or unobserved forces in the physical world that affect

observable quantities. They may also exist as constructs in the human mind that

provide useful simplifying explanations or inferred causes of the observed data.

They can be thought of as concepts or abstractions that help us make sense of the

rich variability in the data. A significant source of difficulty in many real-world

artificial intelligence applications is that many of the factors of variation influence

every single piece of data we can observe. Most applications require us to disen-

tangle the factors of variation and discard the ones that we do not care about. Of

course, it can be very difficult to extract such high-level, abstract features from

raw data.
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Deep learning solves this central problem in representation learning by introducing

representations that are expressed in terms of other, more straightforward repre-

sentations. Deep learning enables the computer to build complex concepts out of

more straightforward ideas. Networks with greater depth can execute more in-

structions in sequence.

Sequential instructions offer high power because the following instructions can refer

back to the results of earlier instructions. There are two main ways of measuring

the depth of a model.

� The first view is based on the number of sequential instructions that must

be executed to evaluate the architecture.

� The depth of a model as being not the depth of the computational graph but

the depth of the graph describing how concepts are related to each other.

In the second case, the depth of the flowchart of the computations needed to com-

pute the representation of each concept may be much deeper than the graph of the

concepts themselves. This is because the system’s understanding of the simpler

concepts can be refined given information about the more complex concepts.

Because it’s not always clear which of these two views: the depth of the compu-

tational graph or the depth of the probabilistic modelling graph is most relevant,

and because different people choose different sets of smallest elements from which

to construct their graphs, there is no single correct value for the depth of architec-

ture, just as there is no single correct value for the length of a computer program.

Nor is there a consensus about how much depth a model requires to qualify as

“deep.” However, deep learning can be safely regarded as the study of models that

involve a more considerable amount of composition of either learned functions or

learned concepts than traditional machine learning does.
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2.3 Deep Learning

Deep learning dates back to the 1940s. Deep learning only appears to be new, be-

cause it was relatively unpopular for several years preceding its current popularity,

and because it has gone through many different names, only recently being called

“deep learning.” The field has been rebranded many times, reflecting the influence

of different researchers and different perspectives. Some essential context is useful

for understanding deep learning. There have been three waves of development:

deep learning known as cybernetics in the 1940s–1960s, deep learning known as

connectionism in the 1980s-1990s, and the current resurgence under the name deep

learning begins in 2006.

2.3.1 Historical Trends in Deep Learning

It is easiest to understand deep learning with some historical context. Rather than

providing a detailed history of deep learning, we identify a few key trends:

� Deep learning has had a long and rich history, but has gone by many names,

reflecting different philosophical viewpoints, and has waxed and waned in

popularity.

� Deep learning has become more useful as the amount of available training

data has increased.

� Deep learning models have grown in size over time as computer infrastructure

(both hardware and software) for deep learning has improved.

� Deep learning has solved increasingly complicated applications with increas-

ing accuracy over time.
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2.3.2 Fundamentals of Deep Learning

Some of the earliest learning algorithms we recognize today were intended to be

computational models for biological learning. Such models help us to understand

how learning happens or could happen in our brain. As a result, one of the names

that deep learning has gone by is artificial neural networks (ANNs). The corre-

sponding perspective on deep learning models is that they are engineered systems

inspired by the biological brain (whether the human mind or the brain of another

animal). The neural perspective on deep learning is motivated by two main ideas.

One idea is that the brain provides a proof by example that intelligent behaviour

is possible, and a conceptually straightforward path to building intelligence is to

reverse engineer the computational principles behind the brain and duplicate its

functionality.

Next figure 2.2 will show a simple Flowchart in which we can observe the different

ways to build a Machine Learning code starting from a simple hand-designed pro-

gram. From the past, all the codes written by humans were built to solve singles

math problems where we are forced to do iterations to solve the problem. To

proceed with the iterations inside the loops, peoples were building features that

working together were proceeding straight to the solution. Classic Machine Learn-

ing methods were born just making all these features communicating together to

get the outputs. All these features inside the code are not static but are always

growing up to interpret in every iteration better the data we give in the input.

This kind of strategy allows the computer to learn the problem in every iteration

regenerating new features starting from the previous one.
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Figure 2.2: Flowcharts showing how the different parts of an AI system relate
to each other within different artificial intelligence disciplines. Source: [9]
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The earliest predecessors of modern deep learning were simple linear models mo-

tivated from a neuroscientific perspective. These models were designed to take a

set of n input values x1,...,xn and associate them with an output y. These mod-

els would learn a set of weights ω1,...,ωn and compute their output f(x, ω) = x1

ω1,...,xn ωn. This first wave of neural networks research was known as cybernetics.

The McCulloch-Pitts neuron, for example, (McCulloch and Pitts, 1943) was an

early model of brain function. This linear model could recognize two different

categories of inputs by testing whether f(x, ω) is positive or negative. Of course,

for the model to correspond to the desired definition of the categories, the weights

needed to be set correctly. The human operator could set these weights. In the

1950s, the perceptron (Rosenblatt, 1958, 1962) became the first model that could

learn the weights that defined the categories given examples of inputs from each

category. The adaptive linear element (ADALINE), which dates from about the

same time, returned the value of f(x) itself to predict a real number and could also

learn to predict these numbers from data.

These simple learning algorithms greatly affected the modern landscape of ma-

chine learning. The training algorithm used to adapt the weight of the ADALINE

was a special case of an algorithm called stochastic gradient descent. Slightly

modified versions of the stochastic gradient descent algorithm remain the domi-

nant training algorithms for deep learning models today.

Models based on the f(x, ω) used by the perceptron and ADALINE are called lin-

ear models. These models remain some of the most widely used machine learning

models, though in many cases they are trained in different ways than the original

models were trained.

Media accounts often emphasize the similarity of deep learning to the brain. While

it is true that deep learning researchers are more likely to cite the brain as an in-

fluence than researchers working in other machine learning fields, such as kernel

machines or Bayesian statistics, one should not view deep learning as an attempt

to simulate the brain.
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New deep learning draws inspiration from many fields, especially applied math

fundamentals like linear algebra, probability, information theory, and numerical

optimization. While some deep learning researchers cite neuroscience as an essen-

tial source of inspiration, others are not concerned with neuroscience at all.

2.3.3 Increasing Dataset Sizes

One may wonder why deep learning has only recently become recognized as a cru-

cial technology even though the first experiments with artificial neural networks

were conducted in the 1950s. Deep learning has been successfully used in com-

mercial applications since the 1990s but was often regarded as being more of an

art than technology and something that only an expert could use, until recently.

Some skill is indeed required to get excellent performance from a deep learning

algorithm. Fortunately, the amount of skill required reduces as the amount of

training data increases. The learning algorithms reaching human performance on

complex tasks today are nearly identical to the learning algorithms that strug-

gled to solve toy problems in the 1980s, though the models we train with these

algorithms have undergone changes that simplify the training of very deep ar-

chitectures. The most important new development is that today we can provide

these algorithms with the resources they need to succeed. The increasing digiti-

zation of society drives this trend. As more and more of our activities take place

on computers, more and more of what we do is recorded. As our computers are

increasingly networked together, it becomes easier to centralize these records and

curate them into a dataset appropriate for machine learning applications. The age

of Big Data has made machine learning much more useful in our life. At the same

time, the machine learning algorithm has to work successfully also with smaller

datasets, this is an important research area, focusing in particular on how we can

take advantage of small quantities of unlabeled examples, with unsupervised or

semi-supervised learning.
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2.3.4 Increasing Model Sizes

Another key reason that neural networks are wildly successful today after enjoy-

ing comparatively little success since the 1980s is that we have the computational

resources to run much larger models today. One of the central insights of con-

nectionism is that animals become intelligent when many of their neurons work

together. An individual neuron or small collection of neurons is not particularly

useful. Since the introduction of hidden units, artificial neural networks have dou-

bled in size roughly every 2.4 years.

Faster computers drive this growth with more significant memory and by the

availability of more massive datasets. More extensive networks can achieve higher

accuracy on more complex tasks. This trend looks set to continue for decades.

The increase in model size over time, due to the availability of faster CPUs, the

advent of general-purpose GPUs, speedier network connectivity and better soft-

ware infrastructure for distributed computing, is one of the most important trends

in the history of deep learning. This trend is generally expected to continue well

into the future.

2.3.5 Increasing Accuracy, Complexity and Real-World Im-

pact

Since the 1980s, deep learning has consistently improved in its ability to provide

accurate recognition and prediction. Moreover, deep learning has consistently been

applied with success to broader and broader sets of applications. Deep networks

have also had spectacular successes for pedestrian detection and image segmen-

tation and yielded superhuman performance in traffic sign classification. At the

same time that the scale and accuracy of deep networks have increased, so has the

complexity of the tasks that they can solve.
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Figure 2.3: Decreasing error rate over time. Source: [9]

Another crowning achievement of deep learning is its extension to the domain of

reinforcement learning. In the context of reinforcement learning, an autonomous

agent must learn to perform a task by trial and error, without any guidance from

the human operator. DeepMind demonstrated that a reinforcement learning sys-

tem based on deep learning is capable of learning to play Atari video games,

reaching human-level performance on many tasks. Deep learning has also signifi-

cantly improved the performance of reinforcement learning for robotics.

Many of these applications of deep learning are highly profitable. Deep learning is

now used by many top technology companies, including Google, Microsoft, Face-

book, IBM, Baidu, Apple, Adobe, Netflix, NVIDIA, and NEC.

Deep learning has also made contributions to other sciences. Deep learning also

provides useful tools for processing massive amounts of data and making useful pre-

dictions in scientific fields. It has been successfully used to predict how molecules

will interact to help pharmaceutical companies design new drugs and to search for

subatomic particles. We expect deep learning to appear in more and more scien-

tific fields in the future. In summary, deep learning is an approach to machine

learning that has drawn heavily on our knowledge of the human brain, statistics

and applied math as it developed over the past several decades. In the next sec-

tion, we will explain how Deep learning works and which are the fundamentals of

how computers can think.





Chapter 3

Machine Learning algorithms,

XGBoost

Deep learning is a specific kind of machine learning. To understand deep learning

well, one must have a solid understanding of the basic principles of machine learn-

ing. This chapter provides a brief course in the most important general principles

that are applied throughout the rest of the thesis.

Most machine learning algorithms have settings called hyperparameters, which

must be determined outside the learning algorithm itself; we discuss how to set

these using additional data. Machine learning is essentially a form of applied

statistics with increased emphasis on the use of computers to statistically esti-

mate complicated functions and a decreased focus on proving confidence intervals

around these functions. Most machine learning algorithms can be divided into

categories of supervised learning and unsupervised learning. Most deep learning

algorithms are based on an optimization algorithm called stochastic gradient de-

scent. We describe how to combine various algorithm components, such as an

optimization algorithm, a model, and a dataset, to build a machine learning al-

gorithm. All these particular characteristics will be explained in the following

chapter because they are the basis of XGBoost. This type of Machine Learning

with some specific parameters set up will be used to predict the aerodynamics

variables we need to find for our S-Duct problem, as explained in the first chapter.

29
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3.1 Learning Algorithms

A machine learning algorithm is an algorithm that can learn from data. But

what do we mean by learning? Mitchell (1997) provides a succinct definition:

“A computer program is said to learn from experience E with respect to some

class of tasks T and performance measure P, if its performance at tasks in T, as

measured by P, improves with experience E.” [9] One can imagine a wide variety

of experiences E, tasks T, and performance measures P. In the following sections,

we provide intuitive descriptions and examples of the different kinds of tasks,

performance measures, and experiences that can be used to construct machine

learning algorithms.

3.1.1 The T Task

From a scientific and philosophical point of view, machine learning is interesting

because developing our understanding of it entails developing our understanding

of the principles that underlie intelligence. Machine learning tasks are usually

described in terms of how the machine learning system should process an example.

An example is a collection of features that have been quantitatively measured from

some object or event that we want the machine learning system to process. We

typically represent an example as a vector x ∈ <n where each entry xi of the vector

is another feature. For example, the features of an image are usually the values of

the pixels in the image. Many kinds of tasks can be solved with machine learning.

Some of the most common machine learning tasks are the following:

� Classification: The computer program is asked to specify which of k cat-

egories some input belongs to. To solve this task, the learning algorithm

is usually asked to produce a function f : <n → 1, ..., k. When y = f(x),

the model assigns an input described by vector x to a category identified by

numeric code y.
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An example of this classification task is like in our case where different num-

bers inside the data identify one geometry for our S-Duct and the output

from the classification process inside the program is a numeric code identi-

fying the specific geometry we are taking into consideration to analyze.

� Classification with missing inputs: To solve the classification task, the

learning algorithm only has to define a single function mapping from a vector

input to a categorical output. When some of the inputs may be missing,

rather than providing a single classification function, the learning algorithm

must learn a set of functions. One way to efficiently define such a broad set of

functions is to learn a probability distribution over all the relevant variables,

then solve the classification task by marginalizing out the missing variables.

With n input variables, we can now obtain all 2n different classification

functions needed for each possible set of missing inputs, but the computer

program needs to learn only a single function describing the joint probability

distribution.

� Regression: In this type of task, the computer program is asked to predict a

numerical value given some input. To solve this task, the learning algorithm

is asked to output a function f : <n → <. This type of task is similar to

classification, except that the format of the output is different.

� Transcription: In this task, the machine learning system is asked to observe

a relatively unstructured representation of some data and transcribe the

information into a discrete textual form. Google Street View, for example,

uses deep learning to process address numbers in this way.

� Machine translation: In a machine translation task, the input already

consists of a sequence of symbols in some language, and the computer pro-

gram must convert this into a series of symbols in another language. This is

commonly applied to natural languages, such as translating from English to

French. Deep learning has recently begun to have a substantial impact on

this kind of task.
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� Structured output: Structured output tasks involve any task where the

output is a vector (or other data structure containing multiple values) with

essential relationships between the different elements. This is a broad cate-

gory and subsumes the transcription and translation tasks described above,

as well as many other tasks. This task is used frequently in the XGBoost it-

erations because the program must output several values that are all tightly

interrelated together.

� Anomaly detection: In this type of task, the computer program sifts

through a set of events or objects and flags some of them as being unusual

or atypical. An example can be done with the XGBoost Machine Learning

method we are using to predict our aerodynamic variables when the program

has to automatically detect the input data that has no sense to build the

model with.

� Synthesis and sampling: In this type of task, the machine learning al-

gorithm is asked to generate new examples that are similar to those in the

training data. In some cases, we want the sampling or synthesis procedure

to create a specific kind of output given the input. In our case, the num-

bers inside the data set that has no sense for the model must be deleted

automatically by this Machine Learning task.

� Imputation of missing values: In this type of task, the machine learning

algorithm is given a new example x ∈ <n , but with some entries xi of

X missing. The algorithm must provide a prediction of the values of the

missing entries. In XGBoost, when some part of the training data seems

to be wrong, is deleted automatically by the code, then the missing values

have to be replaced with a new number. The capacity of this task is that:

interpreting the rest of the data, Machine Learning can provide a prediction

of the values that are missing.
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� Denoising: In this type of task, the machine learning algorithm is given

as input a corrupted example a ∈ <n obtained by an unknown corruption

process from a clean example A ∈ <n The learner must predict the clean

example A from its corrupted version a. This kind of task is used in the

XGBoost Deep Learning code when we have one predicted value for a vari-

able we are calculating thas has been discarded because far away from the

considerable range. When a predicted value is deleted because it is not con-

sidered reliable, the Machine Learning code sees the value as a corrupted

one, and its purpose will be to replace it with a new one.

� Density estimation or probability mass function estimation: In the

density estimation problem, the machine learning algorithm is asked to learn

a function pmodel : <n → <, where pmodel(x) can be interpreted as a proba-

bility density function (if x is continuous) or a probability mass function (if

x is discrete) on the space that the examples were drawn from.

To implement the task well, the algorithm needs to learn the structure of the

data it has seen. It must know where examples cluster tightly and where they

are unlikely to occur. Most of the tasks described above require the learn-

ing algorithm to at least implicitly capture the structure of the probability

distribution. Density estimation enables us to capture that distribution ex-

plicitly. In principle, we can then perform computations on that distribution

to solve the other tasks.

Of course, many other tasks and types of tasks are possible. The types of functions

we list here are intended to provide examples of what is running inside my Machine

Learning code built up with XGBoost.
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3.1.2 The Performance Measure, P

To evaluate the abilities of a machine learning algorithm, we must design a quanti-

tative measure of its performance. Usually, this performance measure P is specific

to the task T being carried out by the system. For tasks such as classification with

missing inputs, and transcription, we often measure the accuracy of the model.

Accuracy is just the proportion of examples for which the model produces the

correct output. We can also obtain equivalent information by measuring the error

rate, the proportion of examples for which the model produces incorrect output.

We often refer to the error rate as the expected 0-1 loss. The 0-1 loss on a partic-

ular instance is 0 if it is correctly classified and 1 if it is not.

Usually, we are interested in how well the machine learning algorithm performs

on data that the code has never seen before since this determines how well it will

work when deployed in the real world. We, therefore, evaluate these performance

measures using a test set of data that is separate from the data used for train-

ing the machine learning system. The choice of performance measure may seem

straightforward and objective, but it is often difficult to choose a performance

measure that corresponds well to the desired behaviour of the system. In some

cases it is difficult to decide what should be measured. When performing a regres-

sion task, for example, should we penalize the system more if it frequently makes

medium-sized mistakes or if it rarely makes huge mistakes?

These kinds of design choices depend on the application. In other cases, we know

what quantity we would ideally like to measure, but measuring it is impractical.

In our case, we use a part of the data set to validate the Machine Learning model to

verify how far away were the predicted values from the real values almost existing

inside the data set.
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3.1.3 The Experience, E

Machine learning algorithms can be broadly categorized as unsupervised or su-

pervised by what kind of experience they are allowed to have during the learning

process. Most of the learning algorithms, like the one used to predict our aero-

dynamic variables, can be understood as being allowed to experience an entire

dataset. A dataset is a collection of many examples, and sometimes we call the

examples data points.

� Unsupervised learning algorithms: Experience a dataset containing

many features, then learn useful properties of the structure of the dataset.

In the context of deep learning, we usually want to learn the entire proba-

bility distribution that generated a dataset, whether explicitly, as in density

estimation, or implicitly, for tasks like synthesis or denoising. Some other un-

supervised learning algorithms perform different roles, like clustering, which

consists of dividing the dataset into clusters of similar examples.

� Supervised learning algorithms: Experience a dataset containing fea-

tures, but each example is also associated with a label or target. This kind

of operation way is the one XGBoost has implemented inside the code to

build the model to predict the values of the variables we are asking for.

Unsupervised learning involves observing several examples of a random vector x

and attempting to implicitly or explicitly learn the probability distribution p(x), or

some interesting properties of that distribution; while supervised learning involves

observing several examples of a random vector x and an associated value or vector

y, then learning to predict y from x, usually by estimating p(y | x). The term

supervised learning originates from the view of the target y being provided by

an instructor who shows the machine learning system what to do.

In unsupervised learning, there is no instructor or teacher, and the algorithm must

learn to make sense of the data without this guide. Unsupervised learning and

supervised learning are not formally defined terms.
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The lines between them are often blurred. Many machine learning technologies

can be used to perform both tasks. For example, the chain rule of probability

states that for a vector x ∈ <n, the joint distribution can be decomposed as:

p(x) =
n∏
i=1

p(xi | x1, ..., xi−1). (3.1)

This decomposition means that we can solve the unsupervised problem of mod-

elling p(x) by splitting it into n supervised learning problems. Alternatively, we

can solve the supervised learning problem of learning p(y | x) by using tradi-

tional unsupervised learning technologies to learn the joint distribution p(x, y),

then inferring:

p(y | x) =
p(x, y)∑
y′ p(x, y

′)
(3.2)

Though unsupervised learning and supervised learning are not wholly formal or

distinct concepts, they do help roughly categorize some of the things we do with

machine learning algorithms. Traditionally, people refer to regression, classifica-

tion and structured output problems as supervised learning.

Some machine learning algorithms do not just experience a fixed dataset. For

example, reinforcement learning algorithms interact with an environment, so

there is a feedback loop between the learning system and its experiences, but this

is something we will not go through because is not used in the XGBoost code.

Most machine learning algorithms experience dataset. A dataset can be described

in many ways. In all cases, a dataset is a collection of examples, which are, in turn,

collections of features. For us, these features will be some numerical parameters

identify the S-Duct geometry we want to study with the machine learning model

in XGBoost.

One common way of describing a dataset is with a design matrix. A design matrix

is a matrix containing a different example in each row. Each column of the matrix

corresponds to a different feature. For example, in our case, we have thirty-six

different numerical variables that identify one S-Duct geometry.
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Every column of the matrix that XGBoost builds inside the code means a different

variable, and in our case, every variable means a different control point coming

out from an early parametrization of the S-Duct geometry. Every row of the same

matrix inside XGBoost means a different parametrization of the Duct geometry.

Very important is to order all the parameters that every variable needs to stay in

the correct row and column, if not the machine learning will confuse everything

and build a model completely wrong. We will talk about it later when XGBoost

is explained in more details.

To continue the explanation on the dataset we need, we can look at the data file

we have below in Figure 3.1. It contains almost 900 S-Duct geometries examples

with thirty-six features for each sample. This means we can represent the dataset

with a design matrix X ∈ <900x36, where Xi,1 is the first variable of the i Duct

geometry parametrization, Xi,2 is the second parameter of the same Duct, etc. Of

course, to describe a dataset as a design matrix, it must be possible to describe

each example as a vector, and each of these vectors must be the same size. This

is not always possible.

Figure 3.1: S-duct database geometry
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3.1.4 Linear Regression

All the above features and tasks explained are the heart of the Deep Learning

algorithms working in our days, especially inside XGBoost, the code used to solve

the S-Duct problem in this work.

To make all these concepts more concrete, we present an example of a machine

learning algorithm implemented in the XGBoost code specified as: linear regres-

sion. We will return to this example repeatedly as we introduce more machine

learning concepts that help to understand the algorithm’s behaviour.

As the name implies, linear regression solves a regression problem. In other words,

the goal is to build a system that can take a vector x ∈ <n as input and predict

the value of a scalar y ∈ < as its output. The output of linear regression is a linear

function of the input. Let ŷ be the value that our model predicts y should take

on. We define the output to be:

ŷ = ωᵀx (3.3)

where ω ∈ <n is a vector of parameters.

Parameters are values that control the behaviour of the system. In this case, ωi is

the coefficient that we multiply by feature xi before summing up the contributions

from all the features. We can think of ω as a set of weights that determine how

each element affects the prediction. If a feature xi receives a positive weight of

ωi, then increasing the value of that feature increases the value of our prediction

ŷ. If a feature gets a negative weight, then increasing the value of that feature

decreases the value of our prediction. If a feature’s weight is large in magnitude,

then it has a large effect on the prediction. If a feature’s weight is zero, it has no

effect on the prediction.
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We thus have a definition of our task T : to predict y from x by outputting

ŷ = ωᵀx. Next, we need a definition of our performance measure, P . Suppose

that we have a design matrix of m example inputs that we will not use for training,

only for evaluating how well the model performs. We also have a vector of regres-

sion targets providing the correct value of y for each of these examples. Because

this dataset will only be used for evaluation, we call it the test set. We refer to

the design matrix of inputs as X(test) and the vector of regression targets as y(test).

One way of measuring the performance of the model is to compute the mean

squared error of the model on the test set. If ŷ(test) gives the predictions of the

model on the test set, then the mean squared error is given by:

MSEtest =
1

m

∑
i

(ŷ(test) − y(test))2i . (3.4)

Intuitively, one can see that this error measure decreases to 0 when ŷ(test) = y(test).

We can also see that:

MSEtest =
1

m
‖ ŷ(test) − y(test) ‖22, (3.5)

so the error increases whenever the Euclidean distance between the predictions

and the targets increases.

To make a machine learning algorithm, we need to design an algorithm that will

improve the weights ω in a way that reducesMSEtest when the algorithm is allowed

to gain experience by observing a training set (X(train), y(train)). One intuitive way

of doing this is to minimize the mean squared error on the training set, MSEtrain.
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To minimize MSEtrain, we can simply solve for where its gradient is 0:

∇ωMSEtrain = 0 (3.6)

⇒ ∇ω
1

m
‖ ŷ(train) − y(train) ‖22= 0 (3.7)

⇒ 1

m
∇ω ‖ X(train)ω − y(train) ‖22= 0 (3.8)

⇒ ∇ω(X(train)ω − y(train))ᵀ(X(train)ω − y(train)) = 0 (3.9)

⇒ ∇ω(ωᵀX(train)ᵀX(train)ω − 2ωᵀX(train)ᵀy(train) + y(train)ᵀy(train)) = 0 (3.10)

⇒ 2X(train)ᵀX(train)ω − 2X(train)ᵀy(train) = 0 (3.11)

ω = (X(train)ᵀX(train))−1X(train)ᵀy(train) (3.12)

The system of equations whose solution is given by equation 3.12 is known as

the normal equations. Evaluating equation 3.12 constitutes a simple learning

algorithm. For an example of the linear regression learning algorithm in action,

see figure 3.2.

It is worth noting that the term linear regression is often used to refer to a

slightly more sophisticated model with one additional parameter, an intercept

term b. In this model:

ŷ = ωᵀx+ b (3.13)

the mapping from parameters to predictions is still a linear function, but the map-

ping from features to predictions is now an affine function.
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Below we can see an example of a linear regression way to proceed.

A linear regression problem, with a training set consisting of ten data points, each

containing one feature. Because there is only one feature, the weight vector ω

includes only a single parameter to learn, ω1. (Left) Observe that linear regression

learns to set ω1 such that the line y = ω1x comes as close as possible to pass

through all the training points. (Right) The plotted point indicates the value of

ω1 found by the standard equations, which we can see minimizes the mean squared

error on the training set.

Figure 3.2: The linear regression problem

This extension to affine functions means that the plot of the model’s predictions

still looks like a line, but it need not pass through the origin. Instead of adding

the bias parameter b, one can continue to use the model with only weights but

augment x with an extra entry that is always set to 1. The weight corresponding

to the extra 1 entry plays the role of the bias parameter.

The intercept term b is often called the bias parameter of the affine transformation.

Linear regression is, of course, a straightforward and limited learning algorithm,

but it provides an example of how a learning algorithm can work.
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3.2 Overfitting and Underfitting

The central challenge in machine learning is that our algorithm must perform

well on new, previously unseen inputs, not just those on which our model was

trained. The ability to perform well on previously unobserved inputs is called

generalization.

Typically, when training a machine learning model, we have access to a training

set; we can compute some error measure on the training set, called the training

error, and we reduce this training error. So far, what we have described is simply

an optimization problem. What separates machine learning from optimization is

that we want the generalization error, also called the test error, to be low as

well. The generalization error is defined as the expected value of the error on new

input.

We typically estimate the generalization error of a machine learning model by

measuring its performance on a test set of examples that were collected separately

from the training set. In our linear regression example, we trained the model by

minimizing the training error:

1

mtrain
‖ X(train)ω − y(train) ‖22, (3.14)

but we actually care about the test error,

1

mtest
‖ X(test)ω − y(test) ‖22, (3.15)

How can we affect performance on the test set when we can observe only the

training set? The field of statistical learning theory provides some answers.

If we are allowed to make some assumptions about how the training and test set

are collected, then we can make some progress. The training and test data are

generated by a probability distribution over datasets called the data-generating

process.
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We typically make a set of assumptions known collectively as the independent

and identically distributed variables (i.i.d.) assumptions. These assumptions are

that the examples in each dataset are independent from each other, and that

the training set and test set are identically distributed, drawn from the same

probability distribution as each other. This assumption enables us to describe

the data-generating process with a probability distribution over a single example.

The same distribution is then used to generate every training example and every

test example. We call that data-generating distribution, denoted pdata. This

probabilistic framework and the Independent and identically distributed assump-

tions enables us to study the relationship between training error and test error

mathematically.

Of course, when we use a machine learning algorithm, we do not fix the parameters

ahead of time, then sample both datasets. We sample the training set, then use

it to choose the parameters to reduce training set error, then sample the test

set. Under this process, the expected test error is greater than or equal to the

expected value of training error. The factors determining how well a machine

learning algorithm will perform its ability to:

1. Make the training error small.

2. Make the gap between training and test error small.

These two factors correspond to the two central challenges in machine learning:

underfitting and overfitting.

Underfitting occurs when the model is not able to obtain a sufficiently low error

value on the training set. Overfitting occurs when the gap between the training

error and test error is too large. These phenomena will be shown in Figure 3.3.

We can control whether a model is more likely to overfit or underfit by altering its

capacity.
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Informally, a model’s capacity is its ability to fit a wide variety of functions. Models

with low capacity may struggle to fit the training set. Models with high capacity

can overfit by memorizing properties of the training set that do not serve them

well on the test set.

Machine learning algorithms will generally perform best when their capacity is

appropriate for the real complexity of the task they need to perform and the

amount of training data they are provided with. Models with insufficient capacity

are unable to solve complex tasks. Models with high capacity can solve complex

tasks, but when their capacity is higher than needed to solve the present task,

they may overfit.

Figure 3.3 shows this principle in action. We compare a linear, quadratic and

degree-9 predictor attempting to fit a problem where the right underlying function

is quadratic.

Figure 3.3: Underfitting and overfitting

Explaining Figure 3.3, we can say the following.

We fit three models to this example training set. The training data was generated

synthetically by randomly sampling x values and choosing y deterministically by

evaluating a quadratic function. Left A linear function fit to the data suffers from

underfitting. It cannot capture the curvature that is present in the data. Center

A quadratic function fit to the data generalizes well to unseen points. It does not

suffer from a significant amount of overfitting or underfitting. Right A polynomial

of degree 9 fit to the data suffers from overfitting.
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The solution passes through all the training points correctly, but we have not

been lucky enough for it to extract the correct structure. It now has a deep valley

between two training points that do not appear in the real underlying function.

It also increases sharply on the left side of the data, while the actual function

decreases in this area.

The linear function is unable to capture the curvature in the real underlying prob-

lem, so it underfits. The degree-9 predictor is capable of representing the correct

function, but it is also capable of representing infinitely many other functions that

pass precisely through the training points, and it is not valid. In this example,

the quadratic model is perfectly matched to the actual structure of the task, so it

generalizes well to new data.

Another essential thing to say is that there are many ways to change a model’s

capacity. Capacity is not determined only by the choice of model. The model

specifies which family of functions the learning algorithm can choose from when

varying the parameters in order to reduce a training objective. This is called the

representational capacity of the model. In many cases, finding the best func-

tion within this family is a difficult optimization problem. In practice, the learning

algorithm does not find the best function, but merely one that significantly reduces

the training error.

Figure 3.4: Capacity and error relationship
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Typically, generalization error has a U-shaped curve as a function of model ca-

pacity. This is illustrated in figure 3.4, where training and test error behave

differently. At the left end of the graph, training error and generalization error are

both high. This is the underfitting regime. As we increase capacity, training

error decreases, but the gap between training and generalization error increases.

Eventually, the size of this gap outweighs the decrease in training error, and we en-

ter the overfitting regime, where capacity is too large, above the optimal capacity.

The ideal model is an oracle that knows the true probability distribution that gen-

erates the data. Even such a model will still incur some error on many problems,

because there may still be some noise in the distribution. In the case of super-

vised learning, the mapping from x to y may be inherently stochastic, or y may

be a deterministic function that involves other variables besides those included in

x. The error incurred by an oracle making predictions from the true distribution

p(x, y) is called the Bayes error. Training and generalization errors vary as the

size of the training set varies. Expected generalization error can never increase as

the number of training examples increases. Note that it is possible for the model

to have the optimal capacity and yet still have a large gap between training and

generalization errors. In this situation, we may be able to reduce this gap by

gathering more training examples.

3.2.1 Regularization

The idea behind everything is that we must design our machine learning algorithms

to perform well on a specific task. We do so by building a set of preferences into

the learning algorithm. When these preferences are aligned with the learning prob-

lems that we ask the algorithm to solve, it performs better.

So far, the only method of modifying a learning algorithm that we have dis-

cussed concretely is to increase or decrease the model’s representational capacity

by adding or removing functions from the hypothesis space of solutions the learn-

ing algorithm can choose from.
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We can also give a learning algorithm preference for one solution over another

in its hypothesis space. This means that both functions are eligible, but one is

preferred. The unpreferred solution will be chosen only if it fits the training data

significantly better than the preferred solution.

For example, we can modify the training criterion for linear regression to include

weight decay. To perform linear regression with weight decay, we minimize a

sum J(ω) comprising both the mean squared error on the training and a criterion

that expresses a preference for the weights to have smaller squared L2 norm. Es-

pecially, where λ is a value chosen ahead of time that controls the strength of our

preference for smaller weights. When λ = 0, we impose no preference, and larger

λ forces the weights to become smaller.

J(ω) = MSEtrain + λωᵀω (3.16)

Minimizing J(ω) results in a choice of weights that make a tradeoff fitting the

training data. This gives us solutions that have a smaller slope, or that put weight

on fewer of the features. As an example of how we can control a model’s tendency

to overfit or underfit via weight decay, we can train a high-degree polynomial re-

gression model with different values of λ.

More generally, we can regularize a model that learns a function f(x; θ) by adding

a penalty called a regularizer to the cost function. In the case of weight decay,

the regularizer is Ω(ω) = ωᵀω.

There are many other ways of expressing preferences for different solutions, both

implicitly and explicitly. Together, these different approaches are known as reg-

ularization. regularization is any modification we make to a learning algorithm

that is intended to reduce its generalization error but not its training error. Reg-

ularization is one of the central concerns of the field of machine learning, rivalled

in its importance only by optimization.
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3.3 Hyperparameters and Validation Sets

Most machine learning algorithms have hyperparameters, settings that we can

use to control the algorithm’s behaviour. The learning algorithm itself does not

adapt to the values of hyperparameters. Though we can design a nested learning

procedure in which one learning algorithm learns the best hyperparameters for

another learning algorithm. The polynomial regression example in figure 3.5 has

a single hyperparameter: the degree of the polynomial, which acts as a capacity

hyperparameter. The λ value used to control the strength of weight decay is

another example of a hyperparameter.

Figure 3.5: The hyperparameter effect

We fit a high-degree polynomial regression model from figure 3.5. The real function

is quadratic, but here we use only models with degree 9. We vary the amount of

weight decay to prevent these high-degree models from overfitting.

Left With very large λ, we can force the model to learn a function with no slope

at all. This underfits because it can only represent a constant function. Center

With an average value of λ, the learning algorithm recovers a curve with the right

general shape. Right With weight decay approaching zero, the degree-9 polynomial

overfits significantly, as we saw in figure 3.3.
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For example, we can always fit the training set better with a higher-degree poly-

nomial and a weight decay setting of λ = 0 than we could with a lower-degree

polynomial and a specific weight decay setting, in fact, To solve this problem, we

need a validation set of examples that the training algorithm does not observe.

3.3.1 Cross-Validation

Dividing the dataset into a fixed training set and a fixed test set can be problem-

atic if it results in the test set being small. A small test set implies statistical

uncertainty around the estimated average test error, making it difficult to claim

that algorithm A works better than algorithm B on the given task.

When the dataset has hundreds of thousands of examples or more, this is not a

serious issue. When the dataset is too small, alternative procedures enable one

to use all the examples in the estimation of the mean test error, at the price of

increased computational cost. These procedures are based on the idea of repeat-

ing the training and testing computation on different randomly chosen subsets or

splits of the original dataset.

3.4 Supervised Learning Algorithms

Supervised learning algorithms are, roughly speaking, learning algorithms that

learn to associate some input with some output, given a training set of examples

of inputs x and outputs y. In many cases, the outputs y may be difficult to collect

automatically and must be provided by a human “supervisor,” but the term still

applies even when the training set targets were collected automatically.
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3.4.1 Probabilistic Supervised Learning

Most supervised learning algorithms used are based on estimating a probability

distribution p(y | x). We can do this simply by using maximum likelihood estima-

tion to find the best parameter vector θ for a parametric family of distributions

p(y | x; θ).

We have already seen that linear regression corresponds to the family:

p(y | x; θ) = N(y; θᵀx, I). (3.17)

We can generalize linear regression to the classification scenario by defining a

different family of probability distributions. If we have two classes, class 0 and

class 1, then we need only specify the probability of one of these classes. The

probability of class 1 determines the probability of class 0 because these two values

must add up to 1.

The normal distribution over real-valued numbers that we used for linear regression

is parametrized in terms of a mean. Any value we supply for this means valid. A

distribution over a binary variable is slightly more complicated because its mean

must always be between 0 and 1. One way to solve this problem is to use the logistic

sigmoid function to squash the output of the linear function into the interval (0, 1)

and interpret that value as a probability:

p(y = 1 | x; θ) = σ(θᵀx). (3.18)

This approach is known as logistic regression.

In the case of linear regression, we were able to find the optimal weights by solving

the standard equations. Logistic regression is somewhat more difficult. There is

no closed-form solution for its optimal weights. Instead, we must search for them

by maximizing the log-likelihood.
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This same strategy can be applied to essentially any supervised learning problem,

by writing down a parametric family of conditional probability distributions over

the right kind of input and output variables.

3.4.2 Other Simple Supervised Learning Algorithms

Another type of learning algorithm that also breaks the input space into regions

and has separate parameters for each region is the decision tree and its many

variants. As shown in figure 3.6, each node of the decision tree is associated with a

region in the input space, and internal nodes break that region into one subregion

for each child of the node; typically using an axis-aligned cut.

Space is thus subdivided into nonoverlapping regions, with a one-to-one correspon-

dence between leaf nodes and input regions. Each leaf node usually maps every

point in its input region to the same output. Decision trees are usually trained

with specialized algorithms. The learning algorithm can be considered nonpara-

metric if it is allowed to learn a tree of arbitrary size, though decision trees are

usually regularized with size constraints that turn them into parametric models

in practice.

Diagrams are describing how a decision tree works. (Top)Each node of the tree

chooses to send the input example to the child node on the left (0) or to the

child node on the right (1). Internal nodes are drawn as circles and leaf nodes

as squares. Each node is displayed with a binary string identifier corresponding

to its position in the tree, obtained by appending a bit to its parent identifier

(0 = chooseleftortop, 1 = chooserightorbottom). (Bottom) The tree divides space

into regions. The 2 − D plane shows how a decision tree might divide <2. The

nodes of the tree are plotted in this plane, with each internal node drawn along

the dividing line it uses to categorize examples, and leaf nodes drawn in the centre

of the region of examples they receive. The result is a piecewise-constant function,

with one piece per leaf. Each leaf requires at least one training example to define,

so the decision tree can’t learn a function that has more local maxima than the

number of training examples.
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Figure 3.6: Decision tree Diagrams
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3.5 Unsupervised Learning Algorithms

Unsupervised algorithms are those that experience only “features” but not a su-

pervision signal. The distinction between supervised and unsupervised algorithms

is not formally and rigidly defined because there is no objective test for distinguish-

ing whether a value is a feature or a target provided by a supervisor. Informally,

unsupervised learning refers to most attempts to extract information from a dis-

tribution that do not require human labour to annotate examples.

A classic unsupervised learning task is to find the “best” representation of the

data. By “best” we can mean different things, but generally speaking, we are

looking for a representation that preserves as much information about x as possi-

ble while obeying some penalty or constraint aimed at keeping the representation

simpler or more accessible than x itself.

There are multiple ways of defining a more straightforward representation. Three

of the most common include lower-dimensional representations, sparse represen-

tations, and independent representations.

� Low-dimensional representations attempt to compress as much information

about x as possible in a smaller representation.

� Sparse representations embed the dataset into a representation whose entries

are mostly zeros for most inputs. The use of sparse representations typically

requires increasing the dimensionality of the representation, so that the rep-

resentation becoming mostly zeros does not discard too much information.

This results in an overall structure of the representation that tends to dis-

tribute data along the axes of the representation space.

� Independent representations attempt to disentangle the sources of variation

underlying the data distribution such that the dimensions of the representa-

tion are statistically independent.
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Of course, these three criteria are certainly not mutually exclusive. Low- dimen-

sional representations often yield elements that have fewer or weaker dependencies

than the original high-dimensional data. This is because one way to reduce the

size of a representation is to find and remove redundancies.

Identifying and removing more redundancy enables the dimensionality reduction

algorithm to achieve more compression while discarding less information. The

notion of representation and classification is one of the central themes of deep

learning and, therefore, one of the central themes in my thesis. In this section,

we develop examples of representation learning algorithms that XGBoost will use

inside the predicting code. The remaining chapters introduce and explain the

principles features and functions of the XGBoost deep learning method I use in

my thesis.

3.6 XGBoost

3.6.1 Introduction to Boosted Trees

XGBoost stands for “Extreme Gradient Boosting”. The gradient boosted trees

have been around for a while, and there are many materials on the topic. This

chapter will explain boosted trees in a self-contained and principled way using the

elements of supervised learning explained before.

3.6.2 Elements of Supervised Learning

XGBoost is used for supervised learning problems, where we use the training data

(with multiple features) xi to predict a target variable yi. Before we learn about

trees specifically, so just start to recall some basic elements in supervised learning.
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3.6.3 Model and Parameters

The model in supervised learning usually refers to the mathematical structure

of by which the prediction yi is made from the input xi. A typical example is a

linear model, where the prediction is given as a linear combination of weighted

input features.

ŷi =
∑
j

θjxij (3.19)

The prediction value can have different interpretations, depending on the task,

i.e., regression or classification. For example, it can be logistically transformed to

get the probability of positive class in logistic regression, and it can also be used

as a ranking score when we want to rank the outputs.

The parameters are the undetermined part that we need to learn from data. In

linear regression problems, the parameters are the coefficients θ. Usually, we will

use θ to denote the parameters, but there are many other parameters inside a

model.

3.6.4 Objective Function: Training Loss + Regularization

With judicious choices for yi, we may express a variety of tasks, such as regression,

classification, and ranking. The task of training the model amounts to finding

the best parameters θ that best fit the training data xi and labels yi. To train the

model, we need to define the objective function to measure how well the model

fits the training data. A salient characteristic of objective functions is that they

consist two parts: training loss and regularization term:

obj(θ) = L(θ) + Ω(θ) (3.20)

where L is the training loss function, and Ω is the regularization term.
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The training loss measures how predictive our model is with respect to the training

data. A common choice of L is the mean squared error , which is given by

L(θ) =
∑
i

(yi − ŷi)2 (3.21)

Another commonly used loss function is logistic loss, to be used for logistic regres-

sion:

L(θ) =
∑
i

[yi ln(1 + e−ŷi) + (1− yi) ln(1 + eŷi)] (3.22)

The regularization term controls the complexity of the model, which helps us

to avoid overfitting. This sounds a bit abstract, so I will consider the following

problem in the following figure 3.7. Try to fit visually a step function given the

input data points on the upper left corner of the image. Which solution among

the three is the best fit?

Figure 3.7: Example of a step function
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The correct answer is marked in red. The general principle is we want both a

simple and predictive model. The tradeoff between the two is also referred to as

bias-variance tradeoff in machine learning.

3.6.5 Decision Tree Ensembles

Now that we have introduced the elements of supervised learning, let’s start with

real trees. To begin, it is necessary to learn about the model choice of XGBoost:

decision tree ensembles. The tree ensemble model consists of a set of classifica-

tion and regression trees (CART). Below in Figure 3.8, there is a simple example

of a CART.

Figure 3.8: classification example

We classify the members of a family into different leaves and assign them the score

on the corresponding leaf. A CART is a bit different from decision trees, in which

the leaf only contains decision values. In CART, a real score is associated with

each of the leaves, which gives us richer interpretations that go beyond classifi-

cation. This also allows for a principled, unified approach to optimization, as we

will see in a later part of this chapter.
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Usually, a single tree is not strong enough to be used in practice. What is actually

used is the ensemble model, which sums the prediction of multiple trees together.

Figure 3.9: Multiple decision trees

In figure 3.9, there is an example of a tree ensemble of two trees. The prediction

scores of each individual tree are summed up to get the final score. If you look

at the example, an important fact is that the two trees try to complement each

other. Mathematically, we can write our model in the form:

ŷi =
K∑
k=1

fk(xi), fk ∈ F (3.23)

where K is the number of trees, f is a function in the functional space F, and F is

the set of all possible CARTs. The objective function to be optimized is given by:

obj(θ) =
n∑
i

l(yi, ŷi) +
K∑
k=1

Ω(fk) (3.24)
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Now we can understand the type of model used in XGBoost when we refer to

random forests. Tree ensembles methods are used. So we understand that

random forests and boosted trees are the same models. The difference arises from

how we train them. This means that, if you write a predictive service for tree

ensembles, you only need to write one, and it should work for both random forests

and gradient boosted trees.

3.7 Tree Boosting

Now that the models are introduced, the next step is to train them. The way

to proceed is, as always for all supervised learning models: we should define an

objective function and optimize it!

The objective function will be defined as the following one. The function has to

contain the training loss and the regularization term:

obj =
n∑
i=1

l(yi, ŷ
(t)
i ) +

t∑
i=1

Ω(fi) (3.25)

3.7.1 Additive Training

The first issue we need to fix is the parameters of the trees. It’s easy to un-

derstand that what we need to learn are those functions fi, each containing the

structure of the tree and the leaf scores. Learning tree structure is much harder

than a traditional optimization problem where you can take the gradient. It is

intractable to learn all the trees at once. Instead, we use an additive strategy: fix

what we have learned, and add one new tree at a time. We write the prediction

value at step t as ŷ
(t)
i .
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Then we have:

ŷ
(0)
i = 0 (3.26)

ŷ
(1)
i = f1(xi) = ŷ

(0)
i + f1(xi) (3.27)

ŷ
(2)
i = f1(xi) + f2(xi) = ŷ

(1)
i + f2(xi) (3.28)

... (3.29)

ŷ
(t)
i =

t∑
k=1

fk(xi) = ŷt−1i + ft(xi) (3.30)

During this iteration, we have to understand which tree do we want at each step.

The natural thing is to add the one that optimizes our objective function.

obj(t) =
n∑
i=1

l(yi, ŷ
(t)
i ) +

t∑
i=1

Ω(fi) (3.31)

=
n∑
i=1

l(yi, ŷ
(t−1)
i + ft(xi)) + Ω(ft) + constant (3.32)

If we consider using mean squared error (MSE) as our loss function, the objective

becomes:

obj =
n∑
i=1

l(yi, ŷ
(t−1)
i + ft(xi)) + Ω(ft) + constant (3.33)
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The form of MSE is friendly, with a first-order term (usually called the residual)

and a quadratic term. For other losses of interest (for example, logistic loss), it is

not so easy to get such a gentle form. So in the general case, we take the Taylor

expansion of the loss function up to the second-order:

obj(t) =
n∑
i=1

[l(yi, ŷ
(t−1)
i ) + gift(xi)) +

1

2
hif

2
t (xi)] + Ω(ft) + constant (3.34)

where the gi and hi are defined as:

gi = ∂
ŷ
(t−1)
i

l(yi, ŷ
(t−1)
i ) (3.35)

hi = ∂2
ŷ
(t−1)
i

l(yi, ŷ
(t−1)
i ) (3.36)

After we remove all the constants, the specific objective at step t becomes:

n∑
i=1

[gift(xi) +
1

2
hif

2
t (xi)] + Ω(ft) (3.37)

This becomes our optimization goal for the new tree. One important advantage

of this definition is that the value of the objective function only depends on gi and

hi. This is how XGBoost supports custom loss functions. We can optimize every

loss function, including logistic regression and pairwise ranking, using the same

solver that takes gi and hi as input.

3.7.2 Model Complexity

We have introduced the training step, but there is one crucial thing, the regular-

ization term. We need to define the complexity of the tree Ω(f). To do so, let us

first refine the definition of the tree f(x) as:
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ft(x) = ωq(x), ω ∈ <T , q : <d → {1, 2, ..., T} (3.38)

Here ω is the vector of scores on leaves, q is a function assigning each data point

to the corresponding leaf, and T is the number of leaves. In XGBoost, we define

the complexity as:

Ω(f) = γT +
1

2
λ

T∑
j=1

ω2
j (3.39)

Of course, there is more than one way to define the complexity, but this one

works well in practice. The regularization is one part that usually people are less

carefully, or ignore. This is because the traditional treatment of tree learning only

emphasized improving impurity, while the complexity control was left to heuristics.

By defining it formally, we can get a better idea of what we are learning and obtain

models that perform well in the wild.

3.7.3 The Structure Score

Here is the central part of the derivation. After re-formulating the tree model, we

can write the objective function as:

obj(t) ≈
n∑
i=1

[giωq(xi) +
1

2
hiω

2
q(xi)] + γT +

1

2
λ

T∑
j=1

ω2
j (3.40)

=
T∑
j=1

[(
∑
i∈Ij

gi)ωj +
1

2
(
∑
i∈Ij

hi + λ)ω2
j ] + γT (3.41)

Where Ij = {i|q(xi) = j} is the set of indices of data points assigned to the jth

leaf. Notice that in the second line we have changed the index of the summation

because all the data points on the same leaf get the same score. We could further

compress the expression by defining Gj =
∑
i∈Ij

gi and Hj =
∑
i∈Ij

hi:
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obj(t) =
T∑
j=1

[Gjωj +
1

2
(Hj + λ)ω2

j ] + γT (3.42)

In this equation, ωj are independent with respect to each other, the form Gjωj +

1
2
(Hj + λ)ω2

j is quadratic and the best ωj for a given structure q(x) and the best

objective reduction we can get is:

ω∗j = − Gj

Hj + λ
(3.43)

obj∗ = −1

2

T∑
j=1

G2
j

Hj + λ
+ γT (3.44)

The last equation measures how good a tree structure q(x) is.

Figure 3.10: XGBtree tree classification score.

If all this sounds a bit complicated, let’s take a look at the picture and see how

the scores can be calculated. Basically, for a given tree structure, we push the

statistics gi and hi to the leaves they belong to, sum the statistics together, and

use the formula to calculate how good the tree is. This score is like the impurity

measure in a decision tree, except that it also takes the model complexity into

account.
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3.7.4 Learn the tree structure

Now that we have a way to measure how good a tree is, ideally we would enumerate

all possible trees and pick the best one. In practice, this is intractable, so we will

try to optimize one level of the tree at a time. Specifically, we try to split a leaf

into two leaves, and the score it gains is:

Gain =
1

2
[

G2
L

HL + λ
+

G2
R

HR + λ
− (GL +GR)2

(HL +HR + λ
]− γ (3.45)

This formula can be decomposed as:

1. The score on the new left leaf

2. The score on the new right leaf

3. The score on the original leaf

4. The regularization on the additional leaf

We can see an important fact here: if the gain is smaller than y, we would do

better not to add that branch. This is precisely the pruning technique in tree-

based models! By using the principles of supervised learning, we can naturally

come up with the reason these techniques work.

For real-valued data, we usually want to search for an optimal split. To efficiently

do so, we place all the instances in sorted order, like the following picture.

Figure 3.11: structure score of possible split solutions.
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3.7.5 Limitation of additive tree learning

Since it is intractable to enumerate all possible tree structures, we add one split

at a time. This approach works well most of the time, but some edge cases fail

due to this approach. For those edge cases, training results in a degenerate model

because we consider only one feature dimension at a time.

In conclusion, XGBoost is precisely a tool motivated by the formal principle in-

troduced before. More importantly, it is developed with both deep learning con-

sideration in terms of systems optimization and principles for machine learning.

The goal of this discussion is to understand and improve until the extreme of the

computation limits of machines to provide a scalable, portable and accurate full

ML code.

3.8 DART booster

XGBoost mostly combines a huge number of regression trees, as we saw with a

small learning rate. In this situation, trees added early are significant, and trees

added late are unimportant. Vinayak and Gilad-Bachrach proposed a new method

to add dropout techniques to boosted trees and reported better results in some

situations.

This new method implemented inside XGBoost is an instruction of a new tree

booster called Dart Booster.

3.8.1 Features

� Drop trees are built to solve the over-fitting problem.

� Trivial trees, to correct trivial errors, may be prevented.
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Because of the randomness introduced in the training model, we expect the fol-

lowing few differences while the code is running:

� training can be slower than gbtree because the random dropout prevents

the usage of the prediction buffer.

� The early stop might not be stable due to the randomness considered data

for the building model.

3.8.2 How it works

In mth0 training round, suppose k trees are selected to be dropped.

Let D =
∑
i∈K

Fi be the leaf scores of dropped trees and Fm = ηF̃m be the leaf scores

of a new tree.

The objective function is as follows:

Obj =
n∑
j=1

L(yj, ŷ
m−1
j −Dj + F̃M) + Ω(F̃m) (3.46)

D and Fm are overshooting, so using a scale factor like:

ŷmj =
∑
i∈κ

Fi + a(
∑
i∈κ

Fi + bFm). (3.47)
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3.8.3 Parameters

The booster dart inherits gbtree booster, so it supports all parameters that gbtree

does, such as eta, gamma, max depth that we will explain in the next chapter.

For example, some additional parameters for the concrete use for Dart Booster

are noted below:

� sample type: type of sampling algorithm.

uniform: dropped trees are selected uniformly.

weighted: dropped trees are selected in proportion to weight.

� normalize type: type of normalization algorithm.

tree: New trees have the same weight of each of dropped trees.

a(
∑
i∈κ

Fi +
1

k
Fm) = a(

∑
i∈κ

Fi +
η

k
F̃m)

∼ a(1 +
η

k
)D

= a
k + η

k
D = D,

a =
k

k + η
(3.48)

forest: New trees have the same weight of sum of dropped trees (forest).

a(
∑
i∈κ

Fi + Fm) = a(
∑
i∈κ

Fi + ηF̃m)

∼ a(1 + η)D

= a(1 + η)D = D,

a =
1

1 + η
. (3.49)

� rate drop: dropout rate, range: [0.0 , 1.0].

� skip drop: probability of skipping dropout if a dropout is skipped, new

trees are added in the same manner as gbtree. Parameter Range: [0.0 , 1.0].





Chapter 4

XGBoost models

4.1 Introduction

In the previous chapters, we learned about machine learning techniques used in our

days to solve daily problems in our life. As introduced in the first chapter, we will

investigate the aerodynamic inside an S-Duct with the machine learning method.

During the previous studies done by DalMagro [6], many CFD simulations were

made on the geometry we already have shown before. These CFD simulations are

considered inside the optimization loop as a high fidelity model. The variable’s

values coming out from the CFD optimization loop will be all taken as the most

reliable one.

As we know, a complex CFD optimization loop will take months to be run; this

is why we want to set up and run machine learning models built from CFD data.

As we can imagine, the results coming out from these models has less reliability

than the CFD ones. The ML (Machine Learning) techniques will be used to learn

from the CFD data we give in input to predict results, always reducing the model

Mean Squared Error.

69
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4.2 Machine Learning models

Different machine learning models have been built inside the code to predict the

most reliable as possible the variables inside our S-Duct; the Cp and the swirl. To

do this, XGBoost allows us to set many parameters inside the code to fit better

the data we are given. We will discuss through the chapter about why we choose

some parameters instead of others. Many parameters have values correlated; this

allows us to control how the model will be built. Different configurations of the

same model also have been run during the code test to find the best model for our

dataset with the smallest Mean Squared Error.

Many different variables will be taken into account, building the models because

every single one has to fit the variable we want to learn in the best way possible.

The models will be trained with a certain amount of random data from the CFD

dataset and then tested on the remaining one. A precise number of data will

be used to train the models because we want the smallest error possible on the

prediction process. This part will be explained further in the chapter going through

the conclusions of which model is the best to run the optimization loops with. Once

the model has been built, we have to know how good it is in terms of how well the

specific configuration fits the data we give in the input. This validation process

has been done looking at the smallest MSE but also from a statistic point of view.

Assuming the dataset from the CFD simulation the most reliable, we calculated

the average and the standard deviation for the two variables we are studying (Cp,

Swirl). These numbers calculated are used to build a gaussian distribution of our

training data. When the model is done, we have to test it predicting the two

variables (Cp, Swirl), giving in input the geometries we already have in the same

training dataset file. The point now is to verify how close are the predicted values

from the one we already have inside the test dataset file. The test dataset is made

splitting the original CFD data; some random geometries are used to build the

model and the rest to test it. After this step, we can change the number of random

training geometries used to build the model to decrease the MSE.
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To implement this idea, firstly, we split the original CDF dataset with 911 ge-

ometries examples using 451 random geometries to train the Cp and the Swirl

model. The remaining geometries from the CDF dataset (460) are used to test the

above models. This splitting number came out doing different iterations, always

reducing the MSE increasing the prediction precision.

4.3 First Machine Learning Configuration (reg:tweedie)

The first model built is the simplest one; only five parameters will be set to control

it. We will explain these parameters to be able to compare the other models built

below.

4.3.1 Model parameters

� parameters: reg:tweedie, tweedie variance power, gbtree, num parallel tree,

max depth

The objective regression function use in the first model is called reg:tweedie.

This parameter specifies the learning task and the corresponding learning

objective of the model.

The second parameter used is called Tweedie variance power. What

it does is to control the data variance var(y) with the tweedie distribution

statistic variance in the model as follow:

var(y) ∼ E(y)tweedie variance power (4.1)

The next configuration parameter used to set the booster code inside the

model is the gbtree. This parameter, as we spoke in the previous chapters,

allows the model to classify the data as a tree, growing it up and splitting the

data classification into branches through different ways, also giving weights

to the leaves.
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The number of parallel trees parameter is another function very use-

ful; it allows the model to be built with more than one classification tree.

Every classification tree is built in similar ways, but everyone will be different

due to the random choice of training geometries from the CFD database.

The last parameter used in this model is the max depth number. In-

creasing this value will make the model more complex but also more likely

to overfit. It can also be set to 0, but it indicates we have no limit on the

depth of the model. Beware that XGBoost aggressively consumes memory

when training a deep tree. This parameter can be set from 1 → inf.

4.3.2 Improving trained model

When the configuration is done, we need to check the model built. In other words,

we need to test the model and see how reliable it is. To do this, in Figure 4.1 is

shown in red, the S-duct pressure recovery coefficient calculated during the opti-

mization process done by DalMagro.[6]. On the same plot, in black, we can find

the values predicted with this machine learning method (reg:tweedie). We can

observe that the black line can interpolate the Cp geometry’s values smoothly.

The CFD Cp value change in a range between 0.04 and 0.065, and because of the

geometries random choice, it can vary from one example to the next one. The ML

interpolates the Cp cutting out the peaks trying to stay stable in a central range.

On the second plot show in Figure 4.2, we can figure out how many Cp values

predicted with the ML method are close to the real ones calculated in the opti-

mization process with the CFD. In this model, the test is essential to remember

that the geometries used to predict the Cp with the ML are the ones recorded

inside the CDF dataset not used for the training model process. This evaluation

comparison is made using formula 4.2, taking the same geometry from the dataset

and evaluate the difference between the CFD result and the ML prediction in

percentage (prediction accuracy).
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Figure 4.1: In red is shown the pressure recovery coefficient predicted by the
CFD simulations for 460 geometries. In black is shown the pressure recovery

coefficient for the same 460 geometries predicted by the ML model.

To calculate how close are the values in percentage form each other we use:

accuracy(%) =
CpCFD − CpML

CpCFD
∗ 100 (4.2)

All the values calculated with formula 4.2 are plotted in Figure 4.2. The consid-

eration we can do is that more than 250 of 460 testing geometries have the ML

predicted value very close to the real one (CFD) with an accuracy close to 100%.

Only 100 geometries have a ML Cp prediction with an accuracy between 96% and

98%.

The second variable we want to test the model with is the Swirl angle. Following

in Figure 4.3, we can observe how this model fits this variable. Like in the last

case, we have in red from the test dataset the CFD Swirl angle and in black, the

ML predicted one on the same geometry.
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Figure 4.2: The model accuracy checking the differece between the Cp values
ML predicted and the CFD one.

We can observe that the black line interpolates the Swirl geometries values. The

CFD Swirl value change in a range between 2.5 and 5. Because of the random

geometry choice, the Swirl number can vary from one example to the next one.

Now the same model fits differently this new variable producing a different range

of accuracy for the testing geometries we are analyzing. In figure 4.4, we can

appreciate this result.

As done before for the pressure recovery coefficient, in Figure 4.4 is plotted the

model accuracy that allows us to see how many geometries are fitted reaching the

highest accuracy possible.

Observing figure 4.4, we can say that fewer geometries are fitted due to the less

precision of the model fitting the CFD Swirl angle. As we saw, this model can fit

very well the Cp but in a less precise way the swirl. In this case, the error value

between the ML predicted value and the CFD one is higher. Only 100 geometries

rich the 100% of accuracy and 150 geometries are fitted for the Swirl angle by the

90%. The rest of the testing geometries are fitted with an accuracy less than 90%.
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Figure 4.3: In red is shown the Swirl angle calculated by the CFD simulations
for 460 geometries. In black is shown the Swirl angle for the same 460 geometries

predicted by the ML model.

Figure 4.4: In this Figure, we can see the model accuracy checking the Swirl
values precision between the ML predictions and the CFD ones.
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4.3.3 Model test

Analyzing the model precision we built, we can check the values of the different

errors introduced in the previous chapters. The training loss function measures

how predictive our model is with respect to the training data. A common choice

for the error estimation is the mean squared error, or another commonly used loss

function is the logistic loss.

� Mean Squared Error (MSE) calculated for the two variables we are predict-

ing:

L(θ) =
∑
i

(yi − ŷi)2 (4.3)

Pressure recovery MSE = 0.0041

Swirl MSE = 39.259

(4.4)

� logistic loss (Logloss) calculated for the two variables we are predicting:

L(θ) =
∑
i

[yi ln(1 + e−ŷi) + (1− yi) ln(1 + eŷi)] (4.5)

Pressure recovery Logloss = 256.1596

Swirl Logloss = 329.1983

(4.6)
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This error is a dimensionless number that must be minimized as much as possible

because we want the model as strong as possible. The mean squared error tells

us the sum of the distances between all the data test and the predicted one. This

calculation allows us to know how close are the predicted ML data from the CFD

one during the test.

As we can see in List 4.4, we have the minimal MSE for the Cp and the Swirl

model we implemented now. Comparisons will be made with the subsequent mod-

els. For now, we can check that from this error numbers this model will be used to

predict the Cp and Swirl for new geometries in our Machine Learning optimization

process explained later in chapter five.

Another study through the prediction results made from the model is to check

which kind of Gaussian distribution this testing result has. The goal is to see the

distance between the CFD gaussian distribution curves calculated from the CFD

data and from the ML predictions. The reason for this calculation is to discover

where is the average from the CFD data and the ML predictions. In other words,

we will discover how many predicted ML data would be inside the 3σ, 2σ, and σ

range of the above Gaussian distribution built from the CFD data test.

In the next two figures, 4.5 and 4.6, we can discover the ML distribution.

σ → µ− σ & µ+ σ

2 σ → µ− 2σ & µ+ 2σ

3 σ → µ− 3σ & µ+ 2σ

(4.7)
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Figure 4.5: Observing in blue the pressure recovery gaussian distribution from
the CFD data . In red, we can observe the Cp ML prediction distribution.

Figure 4.6: In blue, we have the Swirl gaussian distribution from the CFD
data. In red, we can observe the Swirl angle ML prediction distribution.
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Following the discussion is interesting to see how the effective numbers of geome-

tries are fitted under the CFD gaussian curves. As we explained before, the test

dataset is made by 460 geometries for the Cp and Swirl.

In table 4.1 is shown in percentage the amount of ML predicted geometries that

are fitted under the CFD gaussian curve. For example, on the first line, we can

see that all the 100% Cp values predicted from the ML are inside the CFD range

(µ − 3σ&µ + 3σ), where µ is the average value, and σ is the standard deviation.

Going through the Cp predictions, we can observe that in the CDF (µ−2σ&µ+2σ)

range we have the 95.349% of the 460 geometries predicted with the ML are inside.

The last range (µ − σ&µ + σ) under the CFD curve, just the 94.398% of the ML

predictions are fitted. As we analyze the Cp case, we can do the same thing with

the swirl. Looking the table 4.1 below is easy to observe that this model fits very

well the CFD Swirl number and also the Cp one. The 93.732% of the test geome-

tries are fitted under the CFD gaussian distribution inside the (µ − σ & µ + σ)

range for the Swirl case.

Table 4.1: ML geometries percentage fitted under the CFD gaussian distribu-
tion.

Variable 3σ 2σ σ

Cp 100% 95.349% 94.398%
Swirl 100% 98.095% 93.732%
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4.4 Second Machine Learning Configuration

booster:dart

The second model built runs a new method to split the data organization trees

implemented by Vinayak and Gilad-Bachrach. As we introduce it in chapter three,

the big difference now is that trees added earlier during the model building process

are more significant than trees added later that becomes unimportant. This new

method implemented inside XGBoost is an instruction of a new tree booster called

booster:dart.

4.4.1 Model parameters

� parameters: reg:gamma, normalize type, rate drop, skip drop, dart, max

depth.

The objective regression function use in this second model is called

reg:gamma. This parameter, like the one in the first model, specifies the

learning task and the corresponding learning objective of this new model.

This second parameter normalize type means the type of normalization

algorithm we have in the model building process. If this parameter is set

to ”Tree”, it means that the new trees built through the iterations have the

same weight for each of the dropped trees during the drop out process.

This parameter called rate drop can manage the drop out process ob-

serving the learning rate during the model learning process. This parameter

is set at the beginning to 0, but it can be changed in a range between 0→ 1.

This parameter called skip drop can change skipping the dropout prob-

ability procedure during a boosting iteration. If a dropout is skipped, new

trees are added in the same manner as gbtree.

The Dart booster parameter we already show and explained in the last

chapter.
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The parameter Max depth means the maximum depth of a tree dur-

ing the iteration process. Increasing this value will make the model more

complex and more likely to overfit.

4.4.2 Improving trained model

With this second configuration done, we need again to check how reliable the

model is. To do this, we have to test it with the remaining data in the dataset

file. The number of examples used to build, train and test the model is always the

same explained in this chapter introduction. The choice for the dataset splitting

is made doing different iterations between the same model in the training process.

This iteration is done until testing the model; we get to a good prediction accuracy

minimizing the MSE.

Following the same treatment did for the first model, in Figure 4.7 is shown in red

the pressure recovery coefficient for the S-duct geometry found during the CFD

optimization process done by DalMagro.[6] On the same plot, we can find in black

the values calculated with this machine learning method (Dart booster).

On the second plot shown in Figure 4.8, always about the S-duct Cp, we can figure

out how many Cp predicted values calculated with ML are close to the real one

calculated with the optimization process using CFD. In this model, the test is

essential to remember again that the geometries used to predict the Cp with the

ML are the ones recorded inside the CDF dataset not used for the training model

process. This evaluation comparison is made always using formula 4.8.

To calculate how close are in percentage the values form each other we use:

accuracy(%) =
CpCFD − CpML

CpCFD
∗ 100 (4.8)
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Figure 4.7: Drawn in red is shown the pressure recovery coefficient predicted
by the CFD simulations for 460 geometries. In black is shown the pressure
recovery coefficient for the same 460 geometries predicted by the ML model.

All the values calculated with formula 4.8 are plotted in Figure 4.8. The consider-

ation we do is that almost 200/460 testing geometries have the ML predicted value

very close to the CFD, one with an accuracy close to 100%. Only 100 geometries

have a Cp accuracy prediction from the ML between 94 and 98%.

Figure 4.8: In this Figure, we can see the accuracy of the model checking the
Cp values precision between the predicted one (ML) and the real one (CFD).
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The next two Figures, 4.9 ana 4.10, will show the Swirl features calculated and

observed from the machine learning model during the testing process. In Figure

4.9 is shown in red the Swirl angle from the CDF predictions, and in black is

shown the ML predictions for the same geometries.

Figure 4.9: In red is shown the Swirl angle estimated by the CFD simulations
for 460 geometries. In black is shown the Swirl angle for the same 460 geometries

predicted by the ML model.

Figure 4.10: In this Figure, we can see the accuracy of the model checking
the Swirl values precision between the predicted ones (ML) and the real ones

(CFD).
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As done for the pressure recovery coefficient before, we will plot in Figure 4.10 the

model accuracy to see how many geometries are fitted in the correct way reaching

the highest accuracy possible.

Observing figure 4.10, we observe that fewer geometries have the highest accuracy.

This model can fit the Cp but also the Swirl angle. In this case, the error between

the ML predicted value and the CFD one is bigger for the swirl. We have only

40 geometries riching the 100% of accuracy and 100 geometries are fitted for the

swirl angle by the 90% → 95%. The rest of the testing geometries are fitted with

an accuracy value less than 90%.

4.4.3 Model test

Analyzing the model precision, we can check the values for the Mean Squared

Error and the logistic loss introduced in the last section. The training loss error

measures again how predictive our model concerns the training data. The numbers

from Formula 4.9 tell us the sum of the distances between all the data test and

the predicted one, so we can know how close are the one from the others during

the test.

� Mean Squared Error (MSE) calculated for the three variables we are pre-

dicting:

L(θ) =
∑
i

(yi − ŷi)2 (4.9)

Pressure recovery MSE = 0.0038

Swirl MSE = 65.2727

(4.10)
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This error is a dimensionless number that must be minimized as much as possible

because we want the model as strong as possible. Different models were trained

with different random input geometries, and as we can see in List 4.10, we have

the minimal MSE for the Cp and the swirl we implemented now.

We can check that this model is more precise than the first one for the Cp pre-

dictions because it has the smallest MSE error; we have 0.0038 instead of 0.0041.

Looking at the Swirl MSE number, we have 39.25 in the first model and 65.27 in

the second one. Because of this, we can say that this second model is less precise

on the predictions than the first one. Both models will be used to predict both

values during the ML optimization process. Obviously, we will have less precise

predictions for the swirl in the ML optimization but higher precision estimating

the Cp.

The last study, through the prediction results made from the model, is to check

which kind of Gaussian distribution these results have. The goal is to see the

distance between the CFD gaussian distribution curves calculated from the CFD

database and from the ML predictions. The reason for this calculation is to dis-

cover where are the CFD average values and the ML predictions ones. In other

words, we will find how many predicted ML data would be inside the range of 3σ,

2σ, and 1 σ of the CFD gaussian distribution built from the CFD database. In

the next two figures, 4.11 and 4.12, we can discover the ML distribution.
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Figure 4.11: Observing in blue the gaussian distribution of the pressure re-
covery from the CFD data. In red, we can observe the Cp ML prediction

distribution.

Figure 4.12: In blue, we have the gaussian distribution of the Swirl from the
CFD data. In red, we can observe the Swirl angle ML prediction distribution.
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In table 4.2 is shown in percentage the amount of ML predicted geometries fitted

under the CFD gaussian curve. For example, looking to the first line, we can

see that all the 100% of Cp predicted from the ML are inside the CFD range

(µ − 3σ&µ + 3σ), where µ is the average value, and σ is the standard deviation.

Going through the Cp predictions, we can observe that in the CDF (µ−2σ&µ+2σ)

range just the 96.525% of the 460 geometries predicted with the ML are inside.

The last range tighter (µ − σ&µ + σ) under the CFD curve, just the 95.059% of

the ML predictions are in this range. Concluding we can say that: comparing the

MSE, this model is more precise on the Cp predictions than the first one, but on

the other hand, we can say that this second model is less precise with the Swirl

interpolations than the first one.

Table 4.2: ML geometries percentage fitted under the CFD gaussian distribu-
tion.

Variable 3σ 2σ σ

Cp 100% 96.525% 95.059%
Swirl 100% 94.349% 80.368%



Chapter 4. XGBoost models 88

4.5 Third Machine Learning Configuration booster:gbtree

The third model implemented runs a classic method to split the data organized

into different trees to be able to classify the S-duct geometries. As we introduce

and explained the tree’s structure in chapter three, I will go straight through

the model’s parameters. This method implemented inside XGBoost runs the tree

booster instruction called booster:gbtree. Many parameters have already been ex-

plained before, and some of them will be just mentioned.

4.5.1 Model parameters

� parameters: reg:tweedie, tweedie variance power, gbtree, max depth.

The objective regression function used in this third model is again reg:tweedie.

This parameter specifies the learning task and the corresponding learning

objective of the ML model.

The second parameter used is called Tweedie variance power. It

controls the statistic variance of the Tweedie data distribution in the model.

It goes from 1 → 2 and by default is set equal to 1, 5.

The other configuration parameter used to set the booster code inside the

model is the gbtree. This parameter, as we spoke in the above paragraph,

allows the model to organize the data as a tree during the classification

process giving weights to the tree leaves.

The parameter Max depth means the maximum depth of a tree dur-

ing the iteration process. Increasing this value will make the model more

complex and heavy. The range of this parameter goes from 0→ inf.
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4.5.2 Improving trained model

With this third configuration done, we need again to check how reliable the model

will be. To do this, we have to test it as always with the remaining CFD data we

already have in the CFD database file.

Following the same treatment did for the last two models before, now in the next

Figure 4.13 will be shown respectively in red and black the S-duct pressure recovery

coefficient found during the optimization process done by DalMagro [6] and the

machine learning values calculated with this new configuration method (gbtree).

In the second plot shown in Figure 4.14, we can figure out how many Cp ML

predicted values are close to the real ones calculated with the optimization process

using CFD.

Figure 4.13: Drawn in red is shown the pressure recovery coefficient predicted
by the CFD simulations for 460 geometries. In black is shown the pressure
recovery coefficient for the same 460 geometries predicted by the ML model.

To calculate how close are the values in percentage form each other, we use the

same mathematical equation explained in the last two models.



Chapter 4. XGBoost models 90

The consideration we can do now is that almost 200/460 testing geometries have

the ML predicted values with an accuracy close to 100%. Only 120 and 100

geometries have an accuracy Cp prediction from the ML between 94% and 98%.

Figure 4.14: In this Figure, we can see the accuracy of the model checking the
Cp values precision between the predicted one (ML) and the real one (CFD).

The next two Figures, 4.15 and 4.16, will show the Swirl features during the testing

process. In Figure 4.15 is shown in red the Swirl angle from the CDF predictions

and in black, the ML predictions for the same testing geometries.

We will plot in Figure 4.16 the Swirl model accuracy to see how many geometries

are fitted in the correct way reaching the highest accuracy.

This model can fit the Swirl angle with a good approximation. In this case, only

35 geometries rich the 100% accuracy. After that, we have 100 and 90 geometries

fitted by 93% → 98%. The rest of the testing geometries are fitted with an

accuracy of less than 93% as shown below in Figure 4.16.
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Figure 4.15: Drawn in red is shown the Swirl angle estimated by the CFD
simulations for 460 geometries. In black is shown the Swirl angle for the same

460 geometries predicted by the ML model.

Figure 4.16: In this Figure, we can see the accuracy of the model checking
the Swirl values precision between the ML predicted ones and the CFD ones.
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4.5.3 Model test

Analyzing the model precision again, we can check the values for mean squared

error introduced in the previous chapters. This error tells us the sum of the

distances between all the data test and the predicted one after that will make a

comparison between the three models done until now.

� Mean Squared Error (MSE) calculated for the two variables we are predicting

Cp and Swirl:

Pressure recovery MSE = 0.0030

Swirl MSE = 86.9376

(4.11)

This error is a dimensionless number that must be minimized. This model can

provide a precise fitting of the two variables, and it will be used again in the ML

optimization process in the next chapter number six.

Let’s go through the last study checking which kind of Gaussian distribution this

new result has. We want to find the average again from the CFD data and from

the ML predictions values. In other words, we will discover how many predicted

ML data would be inside the range of 3σ, 2σ, and σ of the CFD gaussian distri-

bution built with the original database file.

In the next two figures, 4.17 and 4.18, we can discover the ML gaussian distribu-

tion.
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Figure 4.17: Observing in blue the gaussian distribution of the pressure re-
covery from the CFD data. In red, we can observe the Cp ML prediction

distribution.

Figure 4.18: In blue, we have the gaussian distribution of the Swirl from the
CFD data. In red, we can observe the Swirl angle ML prediction distribution.
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On the last step is interesting to see the effective numbers of geometries fitted

under the CFD curve.

In table 4.3 is shown in percentage the amount of ML predicted geometries fitted

under the CFD gaussian curve. Looking to the first line, we can see that all the

100% of Cp predicted from the ML are inside the CFD range (µ − 3σ&µ + 3σ),

where µ is the average value, and σ is the standard deviation. Going through the

Cp predictions, we can observe that in the CDF (µ − 2σ & µ + 2σ) range the

99.602% of the 460 geometries predicted with the ML are inside. The last range

tighter (µ − σ & µ + σ) under the CFD gaussian curve, the 98.456 % of the

ML predictions are in this range. As we analyze the Cp case, we can do the same

thing with the swirl. Looking at table 4.3 and to the MSE error before it is easy

to observe that this model fits very well with the CFD Cp from the database. We

can also observe that it has the smallest MSE error for the Cp predictions but also

the biggest MSE value until now for the Swirl predictions. The conclusion is that

this is the best model until now to predict the Cp, but its also the less precise one

for the Swirl predictions.

Table 4.3: ML geometries percentage fitted under the CFD gaussian distribu-
tion.

Variable 3σ 2σ σ

Cp 100% 99.602% 98.456%
Swirl 100% 92.658% 78.854%
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4.6 Fourth Machine Learning Configuration tree

method:hist

The fourth model implemented runs a very similar classification method for the

data organization. The CFD geometries are all split inside the different trees

ramifications, and the model parameters will be shown below. This method im-

plemented inside XGBoost also runs the tree booster instruction introduced before

called booster:gbtree but with some other additionals parameters.

4.6.1 Model parameters

� parameters: reg:tweedie, eta, gbtree, max delta step, tree method, max

bin, num paralel tree, max depth.

The objective regression function used in this fourth model is again

reg:tweedie. This parameter specifies the learning task and the correspond-

ing learning objective of the ML model.

The second parameter used is called eta. This parameter controls the

step size shrinkage used in the model update loop to prevents overfitting.

After each boosting step, we can directly get the weights of new features,

and eta shrinks the feature weights to make the boosting process more con-

servative. It goes from 0 → 1 and by default is set equal to 0.3.

The other parameter used for the booster configuration code inside the

model is the gbtree. This parameter, as we spoke in the last chapter, allows

the model to organize the data as a tree during the classification process

giving weights to the tree leaves.

The parameter max delta step is used for the maximum delta step; we

allow each leaf output to be. If the value is set to 0, it means there is no

constraint. If it is set to a positive value, it can help to make the update

step more conservative.



Chapter 4. XGBoost models 96

Usually, this parameter is not needed in the model configuration, but if it is

set between 1 → 10 might help to control the update loop inside the model

iterations.

The parameter tree method is the tree construction algorithm used

inside XGBoost.

The parameter max bin is only used if the tree method is running.

It is the maximum number of discrete bins to bucket continuous features.

Increasing this number improves the optimality of splits at the cost of higher

computation time.

The number of parallel trees parameter is another function explained

in the first model very useful. It allows the model to be built with more than

one classification tree.

The parameter max depth means the maximum depth of a tree dur-

ing the iteration process. Increasing this value will make the model more

complex and more likely to overfit. The range of this parameter goes from

0→ inf.

4.6.2 Improving trained model

With this fourth configuration done, we need again to check how reliable the model

will be. To do this, we have to test it as always with the remaining CFD data we

already have in the CFD database file.

Following the same treatment did for the last two models before, in Figure 4.19

will be shown respectively in red and black the S-duct pressure recovery coefficient

found during the optimization process done by DalMagro [6] and the machine

learning values calculated with this new ML tree configuration method called hist.

On the second plot shown in Figure 4.20, we can figure out how many Cp ML

predicted values are close to the real ones calculated with the optimization process

using CFD.
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Figure 4.19: Drawn in red is shown the pressure recovery coefficient predicted
by the CFD simulations for 460 geometries. In black is shown the pressure
recovery coefficient for the same 460 geometries predicted by the ML model.

To calculate how close the values are in percentage form each other, we use the

same mathematical equation explained in the last two models.

The consideration we can do now is that almost 250/460 testing geometries have

the ML predicted values with an accuracy close to 100%. Only 100 and almost 50

geometries have an accuracy Cp prediction from the ML between 94% and 98%.

Figure 4.20: In this Figure, we can see the accuracy of the model checking the
Cp values precision between the predicted one (ML) and the real one (CFD).
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The next two Figures, 4.21 and 4.22, will show the Swirl features during the testing

process. In Figure 4.21 is shown in red the Swirl angle from the CFD predictions

and in black, the ML predictions for the same testing geometries.

Figure 4.21: Drawn in red is shown the Swirl angle estimated by the CFD
simulations for 460 geometries. In black is shown the Swirl angle for the same

460 geometries predicted by the ML model.

Figure 4.22: In this Figure, we can see the accuracy of the model checking
the Swirl values precision between the ML predicted ones and the CFD ones.

We will plot in Figure 4.22 the Swirl model accuracy to see how many geometries

are fitted in the correct way reaching the highest accuracy.



Chapter 4. XGBoost models 99

This model can fit the Swirl angle with a considerable approximation. In this case,

almost 120 and 100 geometries rich the 90% → 100% range of accuracy. After

that, we decrease the accuracy having from 80 and 60 geometries fitted by the

80% → 90% accuracy range. The rest of the testing geometries are fitted with

an accuracy less than 80% as shown in Figure 4.22.

4.6.3 Model test

Analyzing the model precision again, we can check the values for mean squared

error introduced in the previous chapters. This error tells us the sum of the

distances between all the data test and the predicted one after that will make a

comparison between the three models done until now.

� Mean Squared Error (MSE) calculated for the two variables we are predicting

Cp and Swirl:

Pressure recovery MSE = 0.0033

Swirl MSE = 117.2373

(4.12)

This error is a dimensionless number that must be minimized. This model will be

used in the ML optimization process in the next chapter number five.

Let’s go throw the last study checking which kind of Gaussian distribution this

new ML has. We want to find the average again from the CFD data and the ML

predictions values. In other words, we will discover how many predicted ML data

would be inside the range of 3σ, 2σ, and σ of the CFD gaussian distribution built

with the original database file. In the next two figures, 4.23 and 4.24, we can

discover the ML gaussian distribution.
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Figure 4.23: Observing in blue the gaussian distribution of the pressure re-
covery from the CFD data. In red, we can observe the Cp ML prediction

distribution.

Figure 4.24: In blue, we have the gaussian distribution of the Swirl from the
CFD data. In red, we can observe the Swirl angle ML prediction distribution.
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On the last step is interesting to see the effective numbers of geometries fitted

under the CFD curve.

In table 4.4 is shown in percentage the amount of ML predicted geometries fitted

under the CFD gaussian curve. Looking to the first line, we can see that all the

100% of Cp predicted from the ML are inside the CFD range (µ − 3σ&µ + 3σ),

where µ is the average value, and σ is the standard deviation. Going through the

Cp predictions, we can observe that in the CDF (µ − 2σ & µ + 2σ) range the

97.831% of the 460 geometries predicted with the ML are inside. The last range

tighter (µ − σ & µ + σ) under the CFD gaussian curve, the 97.125 % of the

ML predictions are in this range. As we analyze the Cp case, we can do the same

thing with the swirl. Looking at table 4.4 and to the MSE error before it is easy

to observe that this model can fit both variables. With this fourth model, we have

the Cp MSE error bigger than the third model, but it is less than the first and the

second one. Speaking about the Swirl angle, we can observe that the model error

is much bigger now than the last three models. After this conclusion, we can say

that this model will also be used inside the optimization loop to make comparisons

between the other models looking at the type of Pareto front coming out from all

of them on the optimization ML process explained in chapter five.

Table 4.4: ML geometries percentage fitted under the CFD gaussian distribu-
tion.

Variable 3σ 2σ σ

Cp 100% 97.831% 97.125%
Swirl 100% 90.445% 74.165%
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4.7 Fifth Machine Learning Configuration deep

method

The fifth model implemented runs a deep method for the data organization. The

CFD geometries are all split inside the ramifications of different deep trees, and the

model parameters will be shown below. This method implemented inside XGBoost

runs the deepest tree the booster can build introduced in the last section.

4.7.1 Model parameters

� parameters: reg:tweedie, dart, max depth.

The objective regression function used in this fourth model is again

reg:tweedie. This parameter specifies the learning task and the correspond-

ing learning objective of the ML model.

The Dart booster parameter we already showed and explained in chap-

ter number 3, but we can say that this booster object type will perform the

dropouts trees. During the evaluations, we have that only some of the trees

will be taken into account. To obtain correct results, the parameter number

tree limit must be set on a nonzero value.

The parameter max depth means the maximum depth of a tree dur-

ing the iteration process. Increasing this value will make the model more

complex and more likely to overfit. The range of this parameter goes from

0→ inf. In this case, it will be set to inf.
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4.7.2 Improving trained model

With this fourth configuration done, we need again to check how reliable the model

will be. To do this, we have to test it as always with the remaining CFD data we

already have in the CFD database file. Following the same treatment did for the

last two models before, in the next Figure 4.25 will be shown respectively in red

and in black the S-duct pressure recovery coefficient found during the optimization

process done by DalMagro [6] and the machine learning values calculated with this

new tree configuration method.

In the second plot shown in Figure 4.26, we can figure out how many Cp ML

predicted values are close to the real ones calculated with the optimization process

using CFD.

Figure 4.25: Drawn in red is shown the pressure recovery coefficient predicted
by the CFD simulations for 460 geometries. In black is shown the pressure
recovery coefficient for the same 460 geometries predicted by the ML model.

To calculate how close the values are in percentage form each other, we use the

same mathematical equation explained in the first model.
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The consideration we can do now is that almost 200/460 testing geometries have

the ML predicted values with an accuracy close to 100%. After that, only 150 and

almost 100 geometries have an accuracy Cp prediction from the ML between 94

and 98%. The next two Figures 4.27 and 4.28 will show the Swirl features during

the testing process. In Figure 4.27 is shown in red the Swirl angle from the CDF

predictions and in black, the ML predictions for the same testing geometries. We

will plot in Figure 4.28 the Swirl model accuracy to see how many geometries are

fitted in the correct way reaching the highest accuracy possible for the model.

Figure 4.26: In this Figure, we can see the accuracy of the model checking the
Cp values precision between the predicted one (ML) and the real one (CFD).

This model can fit the Swirl angle with a considerable approximation. In this case,

40 geometries rich the 100% range of accuracy. After that, we decrease the accu-

racy having from 100 and almost 80 geometries fitted by 90% → 98% accuracy

range. The rest of the testing geometries are fitted with an accuracy less than

90% as shown in Figure 4.28.
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Figure 4.27: Drawn in red is shown the Swirl angle estimated by the CFD
simulations for 460 geometries. In black is shown the Swirl angle for the same

460 geometries predicted by the ML model.

Figure 4.28: In this Figure, we can see the accuracy of the model checking
the Swirl values precision between the ML predicted ones and the CFD ones.
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4.7.3 Model test

Analyzing the model precision again, we can check the values for mean squared

error introduced in the previous chapters. This error tells us the sum of the

distances between all the data test and the predicted one.

� Mean Squared Error (MSE) calculated for the two variables we are predicting

Cp and Swirl:

Pressure recovery MSE = 0.0032

Swirl MSE = 62.8713

(4.13)

This error is a dimensionless number that must be minimized. This model can

provide precise fitting for the two variables, and it will be used again in the ML

optimization process showed in chapter five.

Let’s go through the last study checking which kind of Gaussian distribution this

new ML has. We want to find the average again from the CFD data and the ML

predictions values. In other words, we will discover how many predicted ML data

would be inside the range of 3σ, 2σ, and σ of the CFD gaussian distribution built

with the original database file.

In the next two figures, 4.29 and 4.30, we can discover the ML gaussian distribu-

tion.
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Figure 4.29: Observing in blue the gaussian distribution of the pressure re-
covery from the CFD data. In red, we can observe the Cp ML prediction

distribution.

Figure 4.30: In blue, we have the gaussian distribution of the Swirl from the
CFD data. In red, we can observe the Swirl angle ML prediction distribution.
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In table 4.5 is shown in percentage the amount of ML predicted geometries fitted

under the CFD gaussian curve. Looking to the first line, we can see that all the

100% of Cp predicted from the ML are inside the CFD range (µ − 3σ&µ + 3σ),

where µ is the average value, and σ is the standard deviation. Going through the

Cp predictions, we can observe that in the CFD (µ − 2σ & µ + 2σ) range the

98.937% of the 460 geometries predicted with the ML are inside. The last range

tighter (µ − σ & µ + σ) under the CFD gaussian curve, the 97.542 % of the ML

predictions are in this range. As we analyze the Cp case, we can do the same thing

with the Swirl angle. Looking at table 4.5 and to the MSE error before it is easy

to observe that this model fits very well the CFD Cp and also the swirl angle from

the database. We can observe that it has the second smallest MSE error between

all the models introduced for the Cp. This model predictions are less precise than

the third one, but it is more accurate than all the other three models for the Cp.

Looking at the swirl, we can see that this model is less accurate than the first one

but more precise on the predictions than the other three. The conclusion is that

this model is not the best one between the other, but it is the second looking at

the precision of the predictions interpolating the test data in the CFD database

we have for the Cp but also for the swirl.

Table 4.5: ML geometries percentage fitted under the CFD gaussian distribu-
tion.

Variable 3 σ 2 σ σ

Cp 100% 98.937% 97.542%
Swirl 100% 94.496% 82.538%
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4.8 Conclusions

After introducing all the models, bellow is written the table containing the machine

learning Mean Squared Error, to be able to compare them and see which one is

the more precise and the one with less accuracy.

Table 4.6: Machine learning models Mean Squared Error.

Models Cp Swirl

Reg:Tweedie 0.0041 39.259
booster:dart 0.0038 65.2727
booster:gbtree 0.0030 86.9376
tree method:hist 0.0033 117.2373
method:deep 0.0032 62.8713

Looking at Table 4.6, we can notice the model with the smallest error for the Cp

predictions and also for the Swirl number. Model number three has the smallest

MSE score for the Cp, so we aspect from it the best results on the optimization

S-duct loop. Model number four and five have a similar Cp MSE value to number

three, so the three models predictions will be equivalent. With these motivations,

we aspect of having similar values ranges between model three four and five. Con-

cluding the Cp case, we can say that models one and two have the MSE error

higher than the others so we will aspect less precise results, and we will get num-

bers that are outside from the more precise model’s range.

Analyzing the Swirl angle, we can notice that the smallest MSE error number

belongs to the first machine learning configuration. We aspect excellent results

from the optimization loop when this model will run. The error increases in model

numbers two and five; this is because the model configuration is changed. The

prediction range will be similar for both models. The last consideration Table

number 4.6 allows us to do is about model three and four for the swirl. The pre-

dictions will not be as precise as the other models, but we will use these models

as a comparison tool to verify the outputs also from the other models.





Chapter 5

Multi-Objective Optimization

using Machine learning

5.1 Introduction

The following chapter will face up to the Multi-Objective optimization problem for

the S-duct with the machine learning codes introduced before. This introduction

will start to explain what an optimization process is.

Optimization is a procedure employed in many different fields of application, for

example, in engineering. The fundamental idea behind this is to increase the

performance of the object we are analyzing. To do that, the first step is to model

the subject of the analysis as a mathematical function. The second step you have

to do is to maximize or minimize it, always having constraints to respect. However,

in many situations, we can also have in the software the opportunity to optimize

minimizing the function of different objective functions at the same time. It may

usually happen that there are two o three objectives functions to minimize and

many constraints around.

111
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5.2 Multi-Objective Optimization

As we can imagine in the optimization process can happen that a solution might

be optimal for one objective function but not for another. In the S-duct machine

learning optimization, we will take into account as objective function, the pressure

recovery coefficient and the Swirl angle. The ML models are all trained and tested

on the same aerodynamics variables because the goal of all the work is to optimize

the S-duct ranging a big design space without using CFD.

As introduced in DalMagro’s work, [6], we can see in Figure 5.1 on the x and

y-axis the two objective functions, respectively. The lines called side constraints,

behaviour constraints are the constraints of the objective function, absolutely fun-

damental since they impose the boundaries conditions for each project parameter.

Figure 5.1: Objective functions optimization range with the side and the
behavior constraints.

It is essential now to introduce the dominance concept. The definition of domi-

nance, as reported in [10], is the following: in a minimization problem, the solution

A dominates a solution B. These statements have to bee verified:

� Solution A is not worst than solution B in each objective function. This

means that fj(A) ≤ fj(B) ∀ j = 1, ...,m where m is the number of the

objective functions.
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� The solution A is strictly better then the solution B, in at least one objective

function. As a consequence, this means that fk(A) < fk(B) for at least one

k in 1, ...,m.

If solution A dominates solution B, this means that both solutions are non-

dominated. Figure 5.2 helps to clarify the comprehension of what just said. f1

and f2 are the objective functions. The points chosen are non dominated and con-

sidered optimal; in fact, all these points have the peculiarity that if one objective

function improves, the other has to become worst.

Figure 5.2: Pareto front example.

There are other two fundamental parameters deeply linked to the dominant con-

cept explained:

� Pareto Optimal Set: is the decision variable subspace, it is the set of

non-dominated solutions.

� Pareto Front: is the Pareto optimal set image; it contains all the non-

dominated solutions.
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5.2.1 Tabu Search

The Multi-objective Tabu Search was born in 1989 thanks to the work of Glover

[11]. This strategy is implemented to explore the design space given between the

boundaries conditions using three types of memories as it is represented in Figure

5.3. Moreover, this method has already been tested in previous works such as

[1] and [5] with accurate results, and at the same time, the method was efficient.

Many Tabu search variants are available, but in this work, the alternative proposed

by Dr. Kipouros [12] with the software he developed called Multi-objective Tabu

search (MOTS).

Figure 5.3: Pareto optimal set.

On the optimization loop, every time that an iteration is realized, 2nvar new

points are created systematically by the optimizer with nvar as design variables.

To originate new points, the MOTS optimizer uses a step that is decided by the

user, to increase (xi + δi) or decrease (xi − δi) the variable value. Once the new

point inside the design space is made, the code proceeds through the evaluations

of all the objective functions. The point xi+1 that results better than the others,

it will be the new starting point for the following step.
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5.3 Machine learning using MOTS optimization

5.3.1 Introduction

This section will go through the optimization results given by all the five different

machine learning methods created before using the Multi-objective Tabu search.

When a new point is created in the design space by Tabu search, the current ML

model implemented will predict the pressure recovery and the Swirl angle values

for the new geometry built by the optimizer.

This loop is made twice with 500 iterations each, so every model will run 1000

iterations. The model results will be analyzed, looking for the dominated and non

dominated points on the Pareto front.

With the Pareto front built from every ML model optimization, we will look for

the optimized geometry that has the best results between the Cp and Swirl angle.

Going through my work, I decided to analyze only the ML Pareto front points with

the CFD fluent verifying and checking the values the machine learning has pre-

dicted. The corresponding parallel coordinates with only the Pareto front points

will be plot for every ML model that shows which design space range we studied

in the optimization.

The ML Pareto points evaluations are done using the Ansys fluent code, but the

further idea is to analyze them using Lattice Boltzmann’s approach to predict the

unsteady characteristics of the flow in the S-duct. This approach will be introduced

better in chapter number six.
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5.4 First ML optimization (reg:tweedie)

As explained in the introduction, two optimizations loops are made with this first

machine learning method. Two different starting points are given as different start-

ing inputs to the Multi-objective Tabu search (MOTS), one for each optimization.

A problem that happens when the code runs is that: if the MOTS does a little

change on the geometry control points values in the design space, the same ML

prediction will be calculated for the variables by the model. To solve this problem,

we have to improve the model forcing the ML algorithm to split up deeper and

bigger trees at the expense of the model heaviness.

In Figure 5.4 is shown the first machine learning Pareto front build from the MOTS

iterations. With the blue points is shown, the fist Pareto front calculated with the

first ML optimization loop. With the red points is showed the second machine

learning Pareto front containing the geometries predictions. We can observe we

have one geometry with the best Swirl number in each iteration and also other

geometries with the best pressure recovery value. Between these two extreme val-

ues, we have the trade-off geometries for each iteration.

Implementing the last CFD evaluation step, we get the green points. The geome-

tries from the first optimization Pareto front (blue) are reevaluated with the CFD

fluent code to check and confirm the ML results. We can observe that the green

points are much close to the blue ones predicting the swirl number. This fact is

confirmed because this first model is the most precise predicting the Swirl values.

After all, it has the smallest MSE error but is not the best for the Cp evaluations.

To continue on the machine learning analysis, in figure 5.5, the original CFD data

from where the models are built (the original CFD training and testing data from

DalMagro’s work. [6]) are plotted in black. Thanks to that, on the same figure, we

can observe the comparison between the CFD obtained in this Thesis Pareto front

points plotted in green evaluated from the ML optimization and again DalMagro’s

[6] Pareto front data in black.
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Figure 5.4: Machine learning optimization Pareto front. First machine learn-
ing optimization in blue. Second machine learning optimization in red. The

CFD fluent evaluation in green.

Figure 5.5: In green, we observe the machine learning Pareto front evaluated
with CFD. In black is shown the CFD Pareto front done by DalMagro. [6]
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Only the Pareto front points evaluated with the machine learning are shown on

the following parallel coordinates plot in Figure 5.6 because this plot is handy to

understand the design space analyzed. This interpretation helps to understand

the design space range studied with the first optimization loop. In this way, it

is possible to modify the starting point for the second ML optimization loop.

Changing the geometries range, we force the optimizer to move through other

areas where the Tabu search has to slip to study new geometries configurations.

But as is shown in figure 5.4, even if the optimizer begins the cycle from a second

starting point, it will always move through the same area because it is the only

region where we have the minimum values for the Cp and the swirl.

Figure 5.6: Paralel coordinates first optimization model

5.5 Second ML optimization (booster:dart)

As explained before, two optimizations loops are made again with this second

machine learning method. Two different starting points are given as different in-

puts to the Multi-objective Tabu search (MOTS), one for each optimization. The

different starting points in the iterations again allows the Tabu search to move

through other geometries that have not been studied yet.

In Figure 5.7 is shown the two iterations loop Pareto front with this second ma-

chine learning model. In blu is shown the Pareto front points calculated with in

the first ML optimization loop. With the red points is showed the second machine

learning optimization loop Pareto front containing the geometries predictions.
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We can observe again we have geometries with the best Swirl number in each itera-

tion and also other geometries with the best pressure recovery value. Between the

two extreme position’s values, we have the trade-off geometries for each iteration.

Implementing the CFD fluent evaluation step we had the green points.

The geometries from the first optimization loop (in blue) are reevaluated with the

CFD fluent code to check and confirm the ML results. We can observe that in

this case, the green points are close again to the red and to the blue ones like in

the first model. The difference in the distances between the green and the blue

points is due to the less precision the ML model has compared to the CFD results.

As we said in chapter number four, the second model has a higher Mean Squared

Error predicting the Swirl angle but a lower error predicting the Cp values. So we

aspect of having the predicted blu points closer to the CFD ones looking at the

pressure recovery values but not for the swirl. This is confirmed by Figure number

5.7.

Figure 5.7: Machine learning optimization Pareto front. First machine learn-
ing optimization in blue. Second machine learning optimization in red. The

CFD fluent evaluation in green.

In figure 5.8, the comparison is provided between CFD obtained in this Thesis

Pareto front points in green, evaluating the ML predictions, and in black the

DalMagro’s [6] Pareto front data (the CFD data file from where I built and trained

the ML models).
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Figure 5.8: In green we observe the machine learning Pareto front evaluated
with CFD. In black is shown the CFD Pareto front done by DalMagro. [6]

Just like with the first model before, only the Pareto front points evaluated with

the machine learning are plotted in the following parallel coordinates in Figure

5.9. This plot helps to understand the design space range studied with the first

optimization loop. In this way, it is easy to change the investigated range varying

the starting point for the second ML optimization loop. Swapping the geometries

range, we force the optimizer to move through other areas where the Tabu search

has to slip to study new geometries configurations.

Figure 5.9: Paralel coordinates second optimization model.
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5.6 Third ML optimization (booster:gbtree)

Two other optimizations loops are made with this third machine learning method.

Two different starting points are always given as different input to the Multi-

objective Tabu search (MOTS), one for each optimization.

In Figure 5.10 is shown the two iterations loop Pareto front with this third machine

learning model. In blu, as always, is shown the Pareto front points calculated with

the first ML loop. With the red points is showed instead of the second machine

learning optimization loop Pareto front containing the geometries predictions. We

can observe again we have geometries with the best Swirl number in each iteration

penalizing the Cp and also other geometries with the best pressure recovery value

penalizing the swirl instead. Between the two extreme positions values, we have

the trade-off geometries for each iteration.

The geometries from the second Pareto front (red) are reevaluated with the CFD

fluent code to check and confirm the ML results; the green points represent the

CFD results. We can observe this case in Figure 5.10, where it is easy to notice

that green points are again close to the blue ones but also to the red ones. The

differences between the two Pareto fronts are due firstly because we have two dif-

ferent starting points for both the loops and secondly because the model precision

we have, as we spoke in chapter number four, is different from the other models.

This third model is the most precise predicting the Cp values because it has the

smallest MSE error, but is not the best one for the Swirl predictions. Because

that, we aspect to have the green points very close to the red ones looking for the

Cp.

In figure 5.11 the comparison is provided between CFD obtained in this Thesis

Pareto front points plotted in green evaluating the ML predictions, also shown on

Figure 5.10, and in black the DalMagro [6] Pareto front data (the CFD data file

from where the ML models are built and trained).
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Figure 5.10: Machine learning optimization Pareto front. First machine learn-
ing optimization in blue. Second machine learning optimization in red. The

CFD fluent evaluation in green.

As we can observe, we have the green Pareto front, which is the machine learning

CFD evaluations, and in black, we can observe the CFD optimization original

Pareto front.

Figure 5.11: In green we observe the machine learning Pareto front evaluated
with CFD. In black is shown the CFD Pareto front done by DalMagro. [6]
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Just like with the first two models before, only the Pareto front points evaluated

with the machine learning are plotted in the following parallel coordinates in Figure

5.12.

Figure 5.12: Paralel coordinates third optimization model.

5.7 Fourth ML optimization (tree method:hist)

Two other optimizations loops are made with this fourth machine learning method.

Two different starting points are always given as input to the Multi-objective

Tabu search (MOTS), one for each optimization. In Figure 5.13 is shown the two

iterations loop Pareto front with this fourth machine learning model. In blu, as

always, is shown the Pareto front points calculated with the first ML loop. With

the red points is showed the second machine learning optimization loop Pareto

front instead. We can observe again like in the last models we have geometries with

best Swirl number in each iteration penalizing the Cp and also other geometries

with the best pressure recovery value penalizing the swirl instead. Between the

two extreme position’s values, we have the trade-off geometries for each iteration.

The geometries from both Pareto front are reevaluated with the CFD fluent code

to check and confirm the ML results; the green points plot the CFD results. We

can observe this case in Figure 5.13, where it is easy to notice that green points

are now closer to the red ones and also very close to the blue ones. This fourth

model seems to be very precise predicting both values because all points are close

to the green CFD ones even if this ML model has not the smallest MSE error, as

shown in chapter four.
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Figure 5.13: Machine learning optimization Pareto front. First machine learn-
ing optimization in blue. Second machine learning optimization in red. The

CFD fluent evaluation in green.

In figure 5.14 the comparison is provided between CFD obtained in this Thesis

Pareto front points plotted in green evaluating the ML predictions and in black the

DalMagro’s [6] Pareto front data (the CFD data file from where the ML models

are built and trained).

Figure 5.14: In green we observe the machine learning Pareto front evaluated
with CFD. In black is shown the CFD Pareto front done by DalMagro. [6]
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Just like with the other models before, only the Pareto front points evaluated with

the machine learning are plotted in the following parallel coordinates in Figure

5.15.

Figure 5.15: Paralel coordinates fourth optimization model.

5.8 Fifth ML optimization (deep method)

Two optimizations loops are also made with this fifth machine learning method.

Two different starting points are always given as input to the Multi-objective

Tabu search (MOTS), one for each optimization. In Figure 5.16 is shown the

two iterations loop Pareto front with this fifth machine learning model. In blu,

as always, is shown the Pareto front points calculated with the first ML loop.

With red points is shown the second machine learning optimization loop Pareto

front instead. We can observe again like in the last cases we have geometries

with best Swirl number and also other geometries with the best pressure recovery

value. Between the two extreme position’s values, we have the trade-off geometries

for each iteration. The geometries from the fist optimization Pareto front are

reevaluated with the CFD fluent code to check and confirm the ML results; the

green points plot the CFD results. We can observe this case in Figure 5.16, where

it is easy to notice that green points are now very close to the blue ones and also

very close to the red ones. This fifth model, like the fourth one, seems to be very

powerful, predicting Cp and Swirl values because all points (ML) are close to the

green ones (CFD). As we show in chapter four, this ML model has the second

smallest MSE error for both variables. With this clarification, we can explain the

proximity of the blue and red points to the green ones.
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Figure 5.16: Machine learning optimization Pareto front. First machine learn-
ing optimization in blue. Second machine learning optimization in red. The

CFD fluent evaluation in green.

In figure 5.17 the comparison is provided between CFD obtained in this Thesis

Pareto front points in green evaluating the ML predictions and in black the Dal-

Magro’s [6] Pareto front data (the CFD data file from where the ML models are

built and trained).

Figure 5.17: In green we observe the machine learning Pareto front evaluated
with CFD. In black is shown the CFD Pareto front done by DalMagro. [6]
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Just like with the other models before, only the Pareto front points evaluated with

the machine learning are plotted in the following parallel coordinates in Figure

5.18. This plot helps to understand again the design space range studied with the

optimization loops.

Figure 5.18: Paralel coordinates fifth optimization model.





Chapter 6

S-duct study using Lattice

Boltzmann method

In chapter number five, the Pareto front points were all evaluated with the CFD

fluent approach, which is a powerful tool to analyze the aerodynamic problems.

The following idea is to analyze the same Pareto geometries with a second approach

called the Lattice Boltzmann method.

The principal numerical methodologies investigated so far with the CFD fluent

were the classical finite volume and finite element methods, based on the Navier-

Stokes equation. However, even though those methods have been widely investi-

gated, they still face essential drawbacks limiting their application to real industrial

problems. Alternative particle-based methods are now emerging and consist of a

real alternative to overcome these drawbacks. Among them, the lattice-Boltzmann

method (LBM) is becoming one of the most interesting alternatives, and the de-

velopment of new commercial LBM codes such as XFlow provides new alternatives

for companies to solve complex engineering problems.

This chapter aims to introduce and investigate the capabilities of a modern Lattice

Boltzmann method (LBM) implementation to characterize the unsteady features

of the distorted flow field within S-duct aero-engine intakes.

129
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The main features that potentially make such an approach attractive for unsteady

flow predictions are the low computational cost and the minimum meshing require-

ments compared to conventional LES (large eddy simulation) or DES (Detached

eddy simulation) approaches.

6.1 Turbulence modeling

The turbulence is a complex mechanism of fluid dynamics, and its modelling has

always been a real challenge in CFD. In practice, almost all engineering applica-

tions are turbulent nowadays, and it is, therefore, a vital issue to accurately model

the turbulence.

The Navier-Stokes equations have no analytic solution unless you are consider-

ing substantial simplifications and assumptions and their direct resolution (Direct

Numerical Simulation, known as DNS) is therefore almost impossible on real en-

gineering cases due to computational limitations and is limited to academic ap-

plications only. The turbulence modelling first started with Joseph Boussinesq,

who proposed to introduce the concept of turbulent viscosity to relate turbulence

stresses to mean flow. Many turbulence models have been developed based on this

hypothesis to solve the Reynolds-Averaged Navier-Stokes equations and are known

as RANS turbulence models. The most common ones are the Spalart-Allmaras, k

- ε, k - ω. The RANS models are nowadays widely applied in the industry, mostly

because of their low computational cost and their reasonable accuracy. However,

they are empirical models and thus face the drawback of relying on a large number

of constants that one must carefully calibrate to model the turbulence correctly.

Each of those models may include different sets of constants and may predict a

considerably different solution as separation prediction depends strongly on the

turbulence. Also, the RANS turbulence models are modelling all eddy scales with-

out distinction and filter all instantaneous variations induced by the turbulence

since based on time-averaged equations. They are mostly limited to steady-state

analysis.
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An intermediate class of turbulence models was first proposed by Joseph Smagorin-

sky in 1964 to generalize the use of the turbulent viscosity applied on subgrid scales

that are unresolved. This turbulence modelling approach is named the Large

Eddy Simulation (LES) and proposes an excellent intermediate solution between

the RANS and DNS since most of the turbulence is directly resolved. However,

smaller scales are modelled to reach accessible computation times, as illustrated

in Figure 6.1.

Figure 6.1: Turbulence modeling approaches comparison.

The LES turbulence models are not widely employed because the computation

cost is relatively high compared to RANS models with the Navier-Stokes solvers.

They are used for high-end applications or in industries that require transient

simulations with highly turbulent and separated flows, where the RANS models

tend to have weak predictions.
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6.2 Particle-Based Method

Particle-based methods have been developed for several decades now and start to

be emerging recently. Among them, the Lattice-Boltzmann Method (LBM) can

solve many of the drawbacks presented by the traditional CFD methods. The

meshing process is removed as the simulation relies on an automatically generated

lattice, which is organized in an Octree structure, the LBM scheme allows the use

of Large Eddy Simulation (LES) turbulence model at a low computational cost.

6.2.1 Lattice scheme

Some of the particle-based methods like LBM works on a spatial discretization

named lattice, consisting of a Cartesian distribution of discrete points with a

discrete set of velocity directions. The discrete set of velocities has a common

terminology referred to the dimension of the problem and the number of velocity

vectors DnQm, where n represents the dimension of a problem and m refers to the

number of velocities direction.

For a three dimensional model, the most scheme is the D3Q19 model illustrated

in Figure 6.2 and involves 19 velocity vectors defined by:

Other LBM implementations use the scheme D3Q27, which provides a higher

number of velocity directions, and this provides a higher-order scheme despite a

slightly higher computational cost. Indeed, the more velocity directions and the

more equations are to solve.

6.2.2 Octree lattice structure mesh

The pre-processor generates the initial octree lattice structure based on the input

geometries, the user-specified lattice resolution for each geometry, as well as the

farfield resolution.
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Figure 6.2: D3Q19 Lattice model of velocities discretization.

User-defined regions (sphere, box, cylinder, etc.) can also be created to refine

arbitrary regions at the specified lattice resolution. The different spatial scales

employed are hierarchically arranged. Each level solves spatial and temporal scales

twice smaller than the previous level, thus forming the octree mentioned above

structure Figure 6.3. Finite volume and elements usually use a global time step,

which is inefficient for the coarser mesh cells, whereas the local time step approach

in XFlow allows having always an adapted time step for every lattice size of your

fluid domain.

Figure 6.3: Octree lattice structure with different lattice resolution.



Chapter 6. S-duct study with Lattice Boltzmann method 134

This initial lattice structure can be modified during the simulations by the XFlow

solver based on several criteria. First, if the computational domain changes due

to the presence of moving geometries, the lattice can dynamically be refined to

follow the new position of the geometry every time step. Other adaptive refinement

criteria to adapt the flow physics are also available. A refinement algorithm based

on the level of vorticity is effective to dynamically refine the wake region Figure

6.4, characterized by high vorticity. Also, the free surface and multiphase flows

can be refined dynamically at the free surface or interface, and therefore have an

efficient tracking of the interface, including droplets and splashing.

Figure 6.4: Example of lattice structure with adaptive wake refinement.
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6.3 Lattice-Boltzmann CFD modelling

For the CFD simulations, the commercial software XFlow was employed based

on the Lattice Boltzmann method (LBM). The CFD software XFlow developed

by Next Limit Technologies provides a fully Lagrangian particle-based kinetic ap-

proach, based on the lattice-Boltzmann method. The turbulence modelling and

near-wall treatment are based on a state-of-the-art Wall-Modeled Large Eddy Sim-

ulation (WMLES) that offers advanced turbulence prediction.

The common characteristic to all the LBM models is their time-stepping model,

based on a propagate-collide scheme, on top of a lattice discretization. The prop-

agation step performed on a lattice enforces a constant timestep dt and a discrete

set of velocities (eii = 1, ..., b) that ensure that the positions of the motion of

the simulated particles are restricted to lattice sites. The set of velocities thus

generates the lattice and for each lattice site, b probability distribution functions

(PDFs) fi(r, t) are stored. Where fi(r, t) are the particle distribution function at

time t and position r.

The three-dimensional lattice structure used by XFlow includes 27 velocity direc-

tions, providing a higher-order spatial discretization scheme than the traditional

LBM codes. In the continuous space (with discrete velocities), the Boltzmann

transport equation can be written as follows:

∂fi
∂t

+ ei · ∇fi = Ωi, i = 1, ..., b (6.1)

Where Ωi is the collision operator that computes a post-collision state conserving

mass and linear momentum. This equation is discretized on the lattice as:

fi(r + ei, t+ dt) = fi(r, t) + Ωi(f1, ..., fb), i = 1, ..., b (6.2)
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The stream-and-collide scheme of the LBM can be interpreted as a discrete ap-

proximation of the continuous Boltzmann equation. The propagation step models

allow the motion of the particle distribution functions along with discrete direc-

tions. At the same time, most of the physical phenomena are modelled by the

collision operator, which also has a substantial impact on the numerical stability

of the scheme.

6.4 Wellborn’s S-duct LBM simulation

Due to the short time left only the Wellborn [3] S-duct shape simulation will be

shown and explain below.

For the LBM simulations, the computational domain is created from Wellborn’s

work reported in Figure 6.5. The geometry analyzed with Xflow using the Lattice

Boltzmann method has the following dimensions and parameters:

Figure 6.5: Definition of the S-duct shape.

The velocity inlet boundary condition was imposed in the inlet plane of the S-duct

to prescribe a velocity of V = 250m/s. That is combined with the pressure outlet

by the exit plane of the S-duct equal to 0. This configuration of the duct shape is

shown in Figure 6.7.
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Figure 6.6: S-duct symmetry plane.

Table 6.1: S-duct domain dimensions

parameters values

R 2.0811 [m]
θmax

2
30 [°]

Inlet radius (r1) 0.2081 [m]
Exit radius (r2) 0.2566 [m]
S-duct total length 5.2857 [m]
A2

A1
1.52
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Figure 6.7: S-duct shape with boundaries inlet (velocity) and outlet conditions
(pressure).

6.4.1 Lattice mesh

In Figure 6.8, a non-uniform lattice resolution mesh is shown as it is implemented

with a local refinement near the walls.

Figure 6.8: Lattice mesh structure.

The lattice mesh structure through a cutting plane is shown in figure 6.9. Three

types of refinement are appreciable. The duct centre volume has meshed with a

precision of 0.0025m, the second refinement going near the wall is meshed with a

cell length of 0.000625m, and next to the wall, a precision of 0.0003125m is used.

The last refinement next to the wall has to be smaller than the wall roughness set

to 0 in this case.



Chapter 6. S-duct study with Lattice Boltzmann method 139

Figure 6.9: Lattice refinement.

Figure 6.10: File output mesh size.
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6.4.2 Lattice Boltzman simulation

To establish the full unsteady solution, a total simulation time of 0.0845712 s was

set, which corresponds to approximately 4 through-flow times calculated based on

the mean axial velocity and the length of the S-duct mean line. A time step dt,

of 8.45712e-07 s, is needed to maintain a low instability parameter.

An amount of 100000 iterations will be calculated with a total simulation time of

21 days using 128 cores. We should consider only the last cycle of iterations for

the post-processing to avoid the initial transient part of the simulation from the

steady to the established unsteady solution.

Due to the long time the full simulation takes, only the first 4.2285e-6s will be

shown in the next six figures. In this period, the fluid only has run 1.0571m

through the duct. The velocity magnitude will be plotted in the figures below.

Figure 6.11: Velocity scale.

Figure 6.12: S-duct at initial time 0s (0m).
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Figure 6.13: S-duct at time 8.4571e-4s (0.2114m).

Figure 6.14: S-duct at time 1.6914e-3s (0.4228m).

Figure 6.15: S-duct at time 2.5371e-3s (0.6342m).

Figure 6.16: S-duct at time 3.3828e-3s (0.8457m).

Figure 6.17: S-duct at time 4.2285e-3s (1.0571m).





Chapter 7

Conclusions & future works

This work aims to set up and run an optimization loop using state-of-the-art ma-

chine learning techniques. As shown in chapter four, five different configurations

of machine learning codes were written using the python libraries of XGBoost.

The purpose of these models is to predict the aerodynamics coefficients (pressure

recovery and swirl angle) of an S-duct aero-engine intake.

Many analysis using CFD techniques were implemented in the last works on the

same intake geometry, discovering the physical characteristics of this duct. The

results coming from the above studies were all collected in a single file from where

the machine learning techniques implemented are being built and tested. During

the test process, for every model prediction, the sum of the mean squared error

between the real value of the variable and the ML prediction is calculated. In

this way, we can have an estimation of the most precise and reliable model. The

scores we had in these calculations are reported in chapter four, in table 4.6. We

can discover that the best two models for the pressure recovery predictions are

models number three and number five with an MSE value of 0.0030 and 0.0032,

respectively. Looking at the swirl number, we can find the lowest MSE reached

by model number one and model number five.

143
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Two differents optimizations were run with each model built before using two dif-

ferent starting points for the Tabu search optimizer. From each optimization loop,

two different Pareto fronts were plotted and showed in chapter five with the red

and the blue points.

To test the model’s reliability again, only the Pareto front points were re-analyzed

with the conventional CFD techniques. The result of this study is that every

model worked precisely on the Cp and swirl predictions because all the points

from the CFD fluent are very close to the ML ones. This point should be picked

up in the furthers works where the CFD analysis can be applied with the LBM

method investigating deeply the unsteady features of the distorted flow field going

through the S-duct of an aero-engine intake.

We found that every ML model has a smaller MSE, and as a consequence, the

highest reliability as much randomly we choose the data during the learning and

the testing process. Starting from here, furthers work should use the codes runned

and improve them, adding more constraints parameters available in the python

packages. A more significant learning database should be made for the ML models;

this will help on the random geometry choice form where the code learns.
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