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1. Introduction  

In the widespread world of asset management, the asset allocation refers to investment 

strategies that aim to balance risk and return by apportioning a portfolio's assets according to a 

given goals, risk tolerance and investment horizon. In simple terms, asset allocation is investing 

money in different categories of assets, called asset classes, which typically are equity, fixed-

income, commodities and cash equivalents, in order to well diversify the investment. An 

investment strategy should be appropriate for answering the research objective is called for, 

thus, there is not a unique and optimal approach defined to manage or construct a portfolio 

because the allocation of assets fluctuates according to the investment objective. 

The aim of a good asset allocation plan is to develop an investment portfolio that allows 

to reach a certain financial objective with a degree of risk suited for the investor. A well-

diversified plan will not outperform the top asset class in any given year, but over time, it may 

be one of the most effective ways to realize long-term goals. The asset allocation is then, one 

of the most important step in the portfolio construction, which has been always stimulating a 

strong interest in in both the academic and operative world. The need to support asset managers 

in the performance of this exercise has generated a vast literature on the topic, focusing on 

mathematics and statistical interpretation of asset allocation.  

Nevertheless, the empirical evidence suggests that the production of formal models of 

portfolio construction appears huge in comparison with their actual use. In fact, it is more 

frequent to come across portfolio managers who develop qualitative investment strategies, 

rather than asset managers that follow rigorous mathematical procedures. This might depend 

not only from company specific characteristics, such as its investment volume, the market in 

which it invests, the level of technology and so on, but mainly from the very specific portfolio 

manager’s choices: they usually are reluctant to delegate investment decisions to mathematical 

models that lead to portfolio compositions often unreasonable, or simply not in line with their 

modus operandi. A mathematical model, even if well structured, it is based on naive 

assumptions that make the portfolio construction process unable to incorporate all of the 

operational issues related to the asset allocation choices. 

However, even if it looks like a simple and intuitive process, the financial literature 

includes the asset allocation within a mathematical framework, which requires the estimation 

of statistical parameters and the development of optimizations aimed at maximizing the 
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investors’ preferences. The financial markets, despite the simple concepts of benefits and 

rewards, is a complexly volatile industry which requires critical analysis to adequately evaluate 

risk factors and take decisions about investments. Thus, through a quantitative approach it is 

possible to develop models that, even if they suffer from being an ex-post analysis or back 

testing, they might still be a solid starting point for investigating this topic. Upon such premises, 

this research work is an academic insight into different techniques adopted by investors all over 

the world to build equity portfolios. 

In the investment world as of today, there are many different purposes for investment. 

Certainly, the return on investment is the most striking one, but picking investments based on 

return alone is not enough. Since, in simple terms, no one can predict the future, investors not 

only look at the returns but also at the risk associated with it.  Thus, financially speaking, 

performance is an important issue for portfolios and it is often used to rank them, but the ranking 

procedure takes into consideration different criteria having a significant impact on the allocation 

decisions. For what concern the last decade, the risk management has become just as important 

as overall performance and the pressure for more transparency has modified the relationships 

between investors and portfolio managers: “the time is over when a fund manager could 

promise the moon. Today, the job of a fund manager is first of all to manage risk” (Bruder, B., 

& Roncalli, T.  2012, Managing Risk Exposures using the Risk Budgeting Approach). The 

peculiarity of this historical period makes investors reluctant to undertake excessive risks more 

than ever. In this context, a new risk-based investment style has emerged since the subprime 

crisis, which is not based anymore on mean-variance optimization as described in the classical 

portfolio theory and where the minimization of risks is not only simplified in the minimization 

of volatility. The classic theory leads, in fact, to the construction of portfolios concentrated in 

terms of weights, very sensible to inputs changes, and with higher transactions costs. Moreover, 

optimizing the volatility does not necessarily mean optimizing the risk diversification. 

It is not the first time that mean-variance portfolio optimization encounters criticisms 

from investors. What is new today is that some investors do not use optimization methods and 

may prefer some heuristic solutions based on risk concentration, where diversification is the 

central parameter to manage. Among these solutions, we consider in this work the Most 

Diversified and the Equally Risk Contribution portfolios (ERC), with a particular focus on the 

latter, which belongs to the so-called risk budgeting techniques. Both of these methods benefit 

from being independent by any forecasts about returns, however it can be shown that the ERC 

has a better performance overall. In a risk budgeting approach, the investor only chooses the 

risk repartition between assets of the portfolio, while in the ERC portfolio, the risk contribution 
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from each portfolio asset is made equal. This portfolio has been extensively studied by Maillard 

et al. (2010) who had derived several interesting properties such as that this portfolio is located 

between minimum variance and equally-weighted portfolios. When risk exposures are not 

managed in a uniform way, risk budgets are made not equal to each other: this could be the case 

of long-term institutional investor could invest a small part of his strategic portfolio in 

alternative investments like commodities. 

For the purpose of this work, we consider only the Equally Risk Contribution, as it is, 

by all means, the key model of Risk Budgeting techniques. Only equity markets are taken into 

account, and, since the sample is composed by 90 large-cap stocks overall, the application of 

the different models is made a single-stock level. 

In the first part of the thesis, a brief theoretical background about Modern Portfolio 

theories based on Markowitz work is presented. Some of the classic well-known portfolio 

construction methods, such as the Minimum Variance and the Maximum Sharpe ratio, are 

investigated. Finally, it will be given a particular attention to market portfolio obtained with the 

Capital Asset Pricing Method, corresponding in the Empirical Evidence section to the market 

capitalization weighted portfolio.  

In the following part, some alternative and more recent asset allocation techniques are 

proposed, including the equally weighted, the Most Diversified portfolio developed by 

Choueifaty and Coignard, and primarily, the Risk Budgeting methods, which find their bases 

in the work ok Thierry Roncalli.  

Finally, The Data and the Empirical Evidence sections represent the heart of this work. 

Taking large-cap stocks, in well-known equity markets from three different geographical areas, 

as the sample of this research, we investigate and compare each method on the basis of some 

pre-defined performance indicators. The goal of this work is to show the benefits and trade-off 

between the different strategies, demonstrating that, especially in very volatile periods, the risk 

parity techniques might capture the equity risk premium more effectively than the standard 

allocation methods. 
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2. Modern Portfolio Theory 

In the 1950s Harry Markowitz (born August 24, 1927), today professor of finance at the 

Rady School of Management at the University of California, developed a theory of portfolio 

construction, which allows investors to analyze risk relative to their expected return. For this 

work, Markowitz shared the 1990 Nobel Memorial Prize in Economic Sciences with William 

Sharpe and Merton Miller. Markowitz’s theory is best known as the Modern Portfolio Theory. 

The MPT is a theory of investment which attempts to maximize portfolio expected return for a 

given amount of portfolio risk, or equivalently minimize risk for a given level of expected 

return, by carefully choosing the proportions of various assets. Markowitz concluded that there 

is not only one optimal portfolio, but also a set of optimal portfolios laying on the so-called 

efficient frontier. 

In 1958, James Tobin (March 5, 1918 – March 11, 2002) showed that the efficient 

frontier becomes a straight line in the presence of a risk-free asset. In this case, the optimal 

portfolio corresponds to the tangency portfolio (or maximum Sharpe ratio portfolio), a 

particular combination of risky and riskless assets. 

Given the difficulties to accurately define the expected returns of risky assets and their 

covariance needed to compute the tangency portfolio, in 1964 William Sharpe (born June 16, 

1934) developed the CAPM theory, which does not need any assumptions about expected 

returns, volatilities and correlations. Indeed, by assuming that the market is in equilibrium, he 

showed that the prices of assets are such that the tangency portfolio is the market portfolio, 

which is composed of all risky assets in proportion to their market capitalization. This 

significant contribution of Sharpe brought to the large development of index funds and passive 

management.  
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2.1. The Mean–Variance analysis and the Efficient Frontier 

Approximately sixty years ago, Markowitz introduced the first mathematical 

formulation of optimized portfolios. In his opinion ”the investor does (or should) consider 

expected return a desirable thing and variance of return and undesirable thing” (Markowitz, 

1952). The fundamental goal of Modern Portfolio Theory is to optimally allocate your 

investments between different assets. Mean variance optimization (MVO) is a quantitative tool 

that allow this allocation by considering the trade-off between risk and return. 

A simple multi-asset investment problem could be as follows. Consider a universe of 𝑛 

assets and a vector of weights in the portfolio 𝑥 = (𝑥1, … , 𝑥𝑛) and assume that the portfolio is 

fully invested1: 

∑ 𝑥𝑖
𝑛

𝑖=1
= 𝟏T𝑥 = 1 (1) 

If the vector of asset returns is 𝑅 = (𝑅1, … , 𝑅𝑛), then the return of portfolio is equal to: 

𝑅(𝑥) = ∑ 𝑥𝑖
𝑛
𝑖=1 𝑅𝑖 = 𝑥

T𝑅                           

Supposing that 𝜇 and Σ are respectively the vector of asset returns and the variance-

covariance matrix of asset returns: 

𝜇 = 𝔼[𝑅] 

      Σ = 𝔼[(𝑅 − 𝜇)(𝑅 − 𝜇)T] 

then it can be proved2 that the expected return and the variance of the portfolio are as 

follows: 

              𝜇(𝑥) =  𝔼[𝑅(𝑥)] = 𝑥T𝜇                                    

                       𝜎2(𝑥) =  𝔼[(𝑅(𝑥) − 𝜇(𝑥))(𝑅(𝑥) − 𝜇(𝑥))T] = 𝑥TΣ𝑥                       

 

In this way, we can define the mean – variance optimization problem as two sides of the 

same coin: 

 Maximizing the expected return of the portfolio under a volatility constraint: 

                                                 
1 𝟏T is the transpose of a vector of ones (a row vector). 
2 Roncalli, T. (2014). Introduction to Risk Parity and Budgeting.  
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max𝜇(𝑥)    s. t.     𝜎(𝑥) ≤ 𝜎∗ 

 Minimizing the volatility of the portfolio under a return constraint: 

min 𝜎(𝑥)     s. t.       𝜇(𝑥) ≥ 𝜇∗ 

 

 

Approximately sixty years ago, Markowitz introduced the concept of the efficient 

frontier, the set of all efficient portfolios. Any rational investor using mean variance analysis 

would choose some portfolio on the efficient frontier that suit their risk preferences.  

The Efficient frontier is a visual representation of all possible and optimal sets of 

portfolios generated by mean-variance analysis. For any preferred risk/return, the 

corresponding point on efficient frontier denotes the portfolio, which has max return at specified 

risk or min volatility at given expected return. By repeatedly solving the optimization problems 

(e.g. with a “for” loop using Matlab or Excel VBA), we can obtain the efficient frontiers as 

illustrated below.  

The area below and to the right of efficient frontier is the feasible area including all 

portfolios that can be constructed yet not efficient, while portfolios above and to the left are 

impossible by construction. 

0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24 0.25
0.1

0.11

0.12

0.13

0.14

0.15

0.16

Risk (Standard Deviation)

E
x
p

e
c
te

d
 R

e
tu

rn

Figure 2.1 - Simulated efficient frontier and sub-optimal portfolios. 
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An important result to bear in mind is given by the two-fund separation theorem, which 

says that the efficient frontier of risky assets can be formed by any two risky portfolios. All 

portfolios on the mean-variance efficient frontier can be formed as a weighted average of any 

two portfolios or funds on the efficient frontier. Thus, having any two points of the portfolio 

combinations, allows drawing an entire efficient frontier of the risky assets. For example, given 

the expected return of the minimum variance portfolio and the max Sharpe portfolio, is possible 

to generate the entire efficient frontier, since both portfolios lie on it. 

 

 

2.1.1. The Global Minimum Variance portfolio 

 

The global minimum variance portfolio corresponds to the following optimization 

program: 

𝑥∗ = argmin
1

2
𝑥T Σ𝑥 

u. c.  𝟏T𝑥 = 1 

The solution is:  

 𝑥∗ = 
Σ−1𝟏

𝟏TΣ−1𝟏
 

 

The GMV portfolio is the only portfolio located on the efficient frontier that is not 

dependent on any assumptions about expected returns. It is also the tangency portfolio, as 

defined later on, if and only if expected returns are equal for all stocks.  

When the correlation is uniform, the weights may be negative and to define the 

constrained GMV portfolio (GMVc) we need to impose the long-only constraint: 

𝟎 ≤ 𝑥 ≤ 𝟏 

The unconstrained GMV (GMVu) portfolio on the other hand, envisages the possibility 

of going short on assets; therefore, it has a better performance in terms of expected return and 

volatility compared to the GMVc. Nonetheless, it has higher costs in terms of turnover rate and 

transaction costs that will be presented aftwerwords. 

Graphically the GMV corresponds to the portfolio on the efficient frontier with the 

lowest volatility. To just have a hint regarding the graphic representations of different GMVu 
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portfolios and efficient frontiers, the next figures3 show three portfolios belonging to three 

different geographical areas (Europe, United States, Japan), each one composed by a sample of 

30 large-cap stocks from the main equity indexes of each area4.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
3 Expected return and standard deviation are annualized. 
4 This sample of 90 stocks is the one used in our research, their historical prices charts are shown in Appendix 
6.4 For the purpose of the efficient frontier plots, the stock returns and standard deviations are simply 
obtained from the stock prices over the past five years.  
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Figure 2.2 – Efficient Frontier (Europe stocks) 
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2.1.2. The Maximum Sharpe Ratio portfolio 

Lying on the efficient frontier there is a set of optimized portfolios and one is no better 

or worse than the other in terms of performance, hence the choice would be based simply on 

the investor risk aversion. However, in 1958 Tobin showed that, introducing a risk-free asset in 

this framework, one optimized portfolio dominates all the others. Therefore, investors who wish 

to optimize the trade off between expected return and risk in their portfolios should combine 

the portfolio with the risk-free asset such as a Treasury Bonds for U.S. or a German Government 

Bonds for Europe.  

Combining a risk-free asset, with return equal to 𝑟𝑓, with a general portfolio 𝑥 composed 

by 𝑛 risky assets we obtain a new portfolio 𝑦 made of 𝑛 + 1 assets with the following expected 

return and variance: 

 

𝜇(𝑦) =  𝔼[𝑅(𝑦)] = (1 − 𝛼)𝑟𝑓 + 𝛼𝜇(𝑥) = 𝑟𝑓 + 𝛼(𝜇(𝑥) − 𝑟𝑓) 

          𝜎2(𝑦) = 𝛼2𝜎2(𝑥) + (1 − 𝛼)2𝜎2𝑟𝑓 + 2𝛼(1 − 𝛼)𝜎𝑟𝑓𝜎(𝑥)𝑐𝑜𝑟𝑟(𝑥, 𝑟𝑓) 

 

where 𝛼 is the proportion of money invested in the risky portfolio 𝑥 and (1 − 𝛼) the 

proportion invested in the risk-free asset. 

Figure 2.4 - Efficient Frontier (U.S. stocks) 
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Since 𝜎𝑟𝑓 , the standard deviation of 𝑟𝑓, is equal to zero, the variance of portfolio 𝑦 

trivially becomes: 

𝜎2(𝑦) = 𝛼2𝜎2(𝑥) 

From which we have: 

𝜇(𝑦) = 𝑟𝑓 +
𝜇(𝑥) − 𝑟𝑓

𝜎(𝑥)
 𝜎(𝑦) 

 

In other words, the risk-free asset is a pure interest-bearing instrument; its inclusion in a 

portfolio corresponds to lending or borrowing cash at the risk-free rate: lending (such as the 

purchase of a bond) corresponds to the risk-free asset having a positive weight, whereas 

borrowing is equal to have a negative weight for it. From last equation, which is a linear function 

between the volatility and expected return of the portfolio 𝑦, we can derive a commonly used 

risk-adjusted performance measure for portfolios: the Sharpe ratio (SR) developed by Nobel 

laureate William Sharpe in 1966. 
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The Sharpe ratio is calculated by subtracting the risk-free asset from the rate of return 

for a portfolio and dividing the result by the standard deviation of the portfolio returns.  

     𝑆𝑅(𝑥|𝑟𝑓) =
𝜇(𝑥)−𝑟𝑓

𝜎(𝑥)
  

 

The Sharpe ratio tells us whether a portfolio's return is due to a smart investment 

decisions or a result of excess risk. Although one portfolio or fund can reach higher returns than 

its peers can, it is only a good investment if those higher returns do not come with too much 

additional risk. The greater a portfolio's Sharpe ratio, the better its risk-adjusted performance 

has been. A negative SR indicates that a risk-free asset would perform better than the security 

analyzed.  

 

The Capital Market Line 

As shown in figure 5, the SR corresponds to the slope of the so-called Capital Market 

Line (CML), which dominates all possible choices on the efficient frontier except the tangency 

portfolio, located at the point where the CML drawn from the point of risk-free asset return is 

tangent to itself. We deduce that the tangency portfolio is the one that maximizes the slope of 

the CML, or equivalently, the Sharpe Ratio. Hence, the tangency portfolio is also the risky 

portfolio on the efficient frontier corresponding to the maximum SR. 

Built on Markowitz mean-variance framework, Sharpe Ratio assumes that the mean and 

standard deviation of the distribution of one-period return are sufficient statistics for evaluating 

the prospects of an investment portfolio.  

The MSR portfolio shares the same drawback of the GMV: the portfolio is concentrated 

in relatively few stocks that bear all the risk of the portfolio. 

To mitigate this problem one can introduce some type of constraints relatively to its 

diversification. For instance one can set a boundary on volatility, diversification ratio or stocks’ 

risk contributions (measuring how much a single stock or asset affects the total volatility of the 

portfolio) directly in the maximization function of the MSR portfolio, and this is precisely what 

has been done in this work: we added a maximum stocks’ risk contribution constraint of 6% 

and 12% to the pure MSR portfolio. The results, which are going to be shown in the Empirical 

Evidence section, are two additional portfolios with a lower SR, but diversified in a wider range 

of stocks.  
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2.2. The CAPM 

Assuming that all the investors apply the mean-variance criterion, that all agree on the 

probabilistic structure and also that there is a single risk-free rate to pay and receive loans, 

accessible to everyone without transaction costs, then everyone will invest in only one fund of 

risky assets using at the same time the the riskless one to borrow and lend money.  

The proportion between the weights fiven to the two funds depend from the specific risk 

appetite of the investor: the ones which are more risk-adverse will give a greater weight to the 

risk-free asset and viceversa. Supposing that everyone purchases this only one fund of risky 

asset, and the sum of them constitute the whole market, then the fund corresponds to the market 

portfolio. Thus, the weight of a single security in the market is equal to the proportion between 

the market capitalization of that secutity and the market capitalization of the whole market.  

In this framework, the Capital Market Line becomes the new efficient frontier, which is 

a linear combination between the market portfolio 𝑀 and the risk free asset and it is given by: 

 

�̅� =  𝑟𝑓 +
𝑟𝑀̅̅ ̅̅ − 𝑟𝑓 

𝜎𝑀
𝜎 

 

Where 𝑟𝑀̅̅ ̅ and 𝜎𝑀 are the expected return and standard deviation of the market portfolio, 

while �̅� and 𝜎 are the expected return and standard deviation of any efficient portfolio along the 

Capital Market Line. 

The CML relates the expected rate of return of an efficient portfolio to its standard 

deviation, but it does not show how the expected rate of return of an individual asset relates lo 

its individual risk.  This relation is expressed by the Capital Asset Pricing Model, developed in 

the early 1960s by William Sharpe (1964)5, Jack Treynor (1962)6, John Lintner (1965)7 and Jan 

Mossin (1966)8. The CAPM is based on the idea that not all risks should affect asset prices. 

                                                 
5 Sharpe, William F. (1964). "Capital Asset Prices – A Theory of Market Equilibrium Under Conditions of 
Risk". Journal of Finance XIX. 
6 Treynor, Jack L. (1962). "Toward a Theory of Market Value of Risky Assets" 
7 Lintner, Jhon (1965). "The Valuation of Risk Assets and the Selection of Risky Investments in Stock Portfolios 
and Capital Budgets". Review of Economics and Statistics. 47:1, pp. 13–37. 
8 Mossin, Jan (1966) "Equilibrium in a Capital Asset Market ". Econometrica Vol.34 pp.768-783. 



15 

 

 In particular, a risk that can be diversified away when held along with other investments 

in a portfolio is, in a very real way, not a risk at all. The specific assumptions on which the 

CAPM relies, are as follows: 

 Investors are rational wealth maximizers who select investments based on 

expected return and standard deviation (mean - variance criterion).  

 Investors can borrow or lend unlimited amounts at a risk-free rate.  

 There are no restrictions on short sales of any financial asset.  

 All investors have the same expectations related to the market.  

 All financial assets are fully divisible (it is possible to buy and sell as much or as 

little as preferred) and can be sold at any time at the market price.  

 There are no transaction costs.  

 There are no taxes.  

 No investor's activities can influence market prices.  

 The quantities of all financial assets are given and fixed.  

According to the CAPM, if the market portfolio 𝑀 is efficient, the expected return 𝑟𝑖 of 

any asset satisfies: 

𝑟𝑖 − 𝑟𝑓 = 𝛽𝑖(𝑟𝑀̅̅ ̅ − 𝑟𝑓) 

Where 

𝛽𝑖 =
𝑐𝑜𝑣(𝑟𝑖, 𝑟𝑀̅̅ ̅)

𝜎𝑀2
 

𝛽𝑖 is the so-called beta coefficient and it measures the systematic risk of a security in 

comparison to the market as a whole. A beta of 1 indicates that the security's price will move 

with the market. A beta of less than 1 means that the security will be less volatile than the 

market. A beta of greater than 1 indicates that the security's price will be more volatile than the 

market. For example, if a stock's beta is 1.2, it's theoretically 20% more volatile than the market. 

Many utilities stocks have a beta of less than 1. Conversely, most high-tech, Nasdaq-based 

stocks have a beta of greater than 1, offering the possibility of a higher rate of return, but also 

posing more risk9. 

 

                                                 
9 http://www.investopedia.com/terms/b/beta.asp 
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The value of 𝑟𝑖 − 𝑟𝑓 is the excess return of the security 𝑖 with respect to the risk free 

asset and, similarly, 𝑟𝑀̅̅ ̅ − 𝑟𝑓 is the excess return for the market portfolio. In this way, the CAPM 

claims that the excess return of any asset is proportionally to the excess return of the market 

portfolio and the proportionality factor is the beta of the asset.  

Moreover, it is very easy to calculate the beta of a portfolio, since it corresponds to the 

weighted average of the beta’s assets that compose the portfolio where the weights (𝑥𝑖) are the 

same as the ones which define the portfolio itself: 

𝛽𝑃 =∑𝑥𝑖𝛽𝑖

𝑛

𝑖=1

 

 

The Security Market Line 

As shown in figure 6 the CAPM can be expressed graphically by the Security Market 

Line. Both graphs show the linear variation of 𝑟𝑖. The first expresses it in covariance terms with 

the market portfolio: 𝑐𝑜𝑣(𝑟𝑖, 𝑟𝑀̅̅ ̅) corresponds to the horizontal axis and  𝜎𝑀
2 defines the market 

portfolio (M). The second graph  

The second graph shows the relation in beta form, with 𝛽 being the horizontal axis. In 

this case the market portfolio matches the point where 𝛽 = 1.  Both of these lines highlight the 

essence of the CAPM formula: the SML expresses the risk-reward structure of assets according 

to the CAPM emphasizing that the risk of an asset is a function of its covariance wilt the market 

or, equivalently, a function of its beta10 

 

 

  

 

 

 

 

 

                                                 
10 Luenberger, D. (1998). Investment Science. Oxford Universily Press. 



17 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   1 0       𝛽 

 

𝑟𝑖 

�̅� 

M 

𝜎𝑀
2 0 𝑐𝑜𝑣(𝑟𝑖, 𝑟𝑀̅̅ ̅) 

 

𝑟𝑖 

�̅� 

M 

Figure 2.6 - Security Market Line 
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2.3. Drawbacks 

The main drawbacks of the Markowitz mean-variance framework and of the CAPM 

derive from the assumption which they relies on. In particular, these assumptions are based on 

the belief that markets are mostly, but not completely, efficient. If markets were completely 

efficient, investors cannot earn excess returns without bearing extra risk. In an efficient market 

all information is reflected in current stock price and, for example, any news or relevant 

information about some company would not allow arbitrage opportunities by anyone in the 

market.  In an efficient market, stock prices move randomly, but when stock prices do move in 

some predetermined fashion, then investor can make money by trading around the pattern, 

which means that there is an inefficiency in the market. 

In the reality, many investment professionals and academics have observed patterns in 

historical financial data that contradict the theory of efficient markets (these patterns are well 

known anomalies such as the calendar effects, size effect, price-to-earning effect and so on). 

An anomaly suggests that investors habitually fail to consider and correctly interpret all the 

information relevant to the investment decision, or that institutional barriers prevent them from 

acting on certain information, or that, even with all the relevant information staring them in the 

face, they persist in making irrational choices.  

This is the essential reason why markets are not perfectly efficient, which is, of course, 

to the benefit of quantitative equity portfolio managers and other arbitrageurs which otherwise 

would just prefer passively mirror market indexes. 

Moreover, there are many studies and empirical researches that prove the non-

consistency of the model: the failure of the markets to satisfy CAPM constraints is explored at 

great length in many ways in the book Financial Econometrics by Campbell, Lo, and 

McKinley. Other researchers (J.Linter, “Security Prices, Risk, and Maximal Diversification,” 

Journal of Finance, 1965; M. H. Miller and M. Scholes, “Rate of Return in Relation to Risk: A 

Reexamination of Some Recent Findings,” Studies in the Theory of Capital Markets, 1972) 

have conducted empirical tests of the CAPM with results that are far from satisfying.  

Nevertheless this apparently fatuous model influences the way people think about 

markets. For example, there are many investment funds (hedge funds mostly) that claim to be 

“beta neutral”. This means that their returns are uncorrelated with some overall market index. 

In the Gaussian world, this would mean that the fund returns are independent of the market 

index. If there were many such funds, and if they were independent of each other, this would 
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be a wondrous investment opportunity. “Just put a little money in each one and (through 

diversification) earn a high return at very low risk. It is highly unlikely that there are many 

brilliant investors with secret and independent high yield beta neutral investment strategies11”. 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
11 Risk and Portfolio Management with Econometrics, Courant Institute, Fall 2009 
http://www.math.nyu.edu/faculty/goodman/teaching/RPME09/index.html 
Jonathan Goodman1, goodman@cims.nyu.edu 



20 

 

3. Heuristic Portfolio Construction 

Techniques 

 

3.1. Equally Weighted Portfolio 

Equal weighting is simply assigning the same weight to every stock. This asset 

allocation strategy is perhaps the most basic one: the investor simply puts equal capital weights 

on the different assets and rebalances when appropriate. If there are  𝑛 stocks, each stock 𝑖 will 

have the weight of:  

            𝑥𝑖 = 
1

𝑛
  

The idea of equally weighted portfolio (EW) is to define a portfolio independently from 

the estimated statistics and properties of stocks. 

On the negative side, this method does not take into account any information regarding 

the individual assets’ characteristics: return, volatility and correlation with other assets. This 

means that the portfolio probably is not well diversified and therefore the investor takes on risk 

that he or she is not paid for. Equal weighting makes sense only when the portfolio manager 

has very poor information about the expected return and the risk of stock selected. 

On the positive side, it is so simple that almost anyone can do it, and it ensures very low 

transaction costs due the minimum turnover rate that it requires by construction.  Another 

appealing property is that the EW (or 1/n portfolio) is the least concentrated portfolio in terms 

of weights; therefore, the Herfindahl index12 and Gini coefficient13 applied to weights reach 

their minimum for this portfolio. The EW in the technical analysis corresponds to a contrarian 

strategy with a take-profit scheme, because if one stock has a substantial return between two 

rebalancing dates, its weight will reset to  
1

𝑛
 . 

                                                 
12 For a probability distribution 𝜋 the Herfindahl index is defined as 𝐻(𝜋) = ∑ 𝜋𝑖

2𝑛
𝑖=1  where 𝜋𝑖for 𝑖 = 1,… , 𝑛 are 

the observations. The Herfindhal index takes value of 1 for a perfectly concentrate probability distribution and 
1

𝑛
 

for the least concentrated distribution with uniform probabilities. 
13 Similarly to the Herfindahl index, the Gini coefficient measures the concentration among values of a probability 
distribution. It is based on the famous Lorenz curve of inequality, which is used also in asset management to 
measure the weight concentration. A Gini coefficient of zero expresses zero concentration where all values are 
equal, whereas a Gini coefficient of one (or 100%) expresses maximal concentration among values. 
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From a purely theoretical point of view, the EW portfolio coincides with the Markowitz 

efficient portfolio if the expected returns and volatilities of stocks are assumed to be equal and 

correlation is uniform (DeMiguel, Garlappi, & Uppal, 2009). 

 

3.2. Most Diversified Portfolio 

The Most Diversied Portfolio (MDP) was introduced by Choueifety and Coignard 

(2008) and builds upon a measure called the Diversication Ratio (DR). The DR is defined as 

the ratio between the portfolio's weighted average volatility and the portfolio's overall volatility. 

Since assets are not perfectly correlated, this ratio will typically be greater than one. Thus, the 

DR measures the diversification gained by holding non-perfectly correlated assets. By 

maximizing this measure, one can obtain the Most Diversied Portfolio.  

Choueifaty and Coignard (2008) introduce the concept of diversification ratio, which 

corresponds to the following expression:  

𝐷𝑅(𝑥) =
∑ 𝑥𝑖𝜎𝑖
𝑛
𝑖=1

𝜎(𝑥)
=

𝑥T𝜎

√𝑥TΣ𝑥
 

The numerator is then the portfolio’s volatility ruling out the diversification effect 

induced by the correlations. By construction a portfolio which is perfectly concentrated in one 

asset has a diversification ratio equal to one, whereas in general 𝐷𝑅(𝑥) ≥ 1. 

The MDP is then defined as the portfolio which maximizes the diversification ratio or 

equivalently its logarithm:  

𝑥∗ = argmax ln𝐷𝑅(𝑥) 

u. c.       {  𝟏
T𝑥 = 1  

   𝟎 ≤ 𝑥 ≤ 𝟏
 

 

The second constraint  𝟎 ≤ 𝑥 ≤ 𝟏 is added when we consider long-only portfolios. 

It can be shown show that if 𝑥∗ is the long-only MDP, then: 

𝜌(𝑥, 𝑥∗) ≥
𝐷𝑅(𝑥)

𝐷𝑅(𝑥∗)
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The last inequality is considered by the authors to be the ‘core property’ of the MDP:  

“The long-only MDP is the long-only portfolio such that the correlation between any 

other long-only portfolio and itself is greater than or equal to the ratio of their diversification 

ratios.”  

Moreover, Choueifaty (2011) concludes that: 

“Any stock not held by the long-only MDP is more correlated to the MDP than any of 

the stocks that belongs to it. Furthermore, all stocks belonging to the MDP have the same 

correlation to it. […] This property illustrates that all assets in the universe are effectively 

represented in the MDP, even if the portfolio does not physically hold them. […] This is 

consistent with the notion that the most diversified portfolio is the un-diversifiable portfolio.” 

Finally yet importantly, Choueifaty and Coignard (2008) find another interesting 

property concerning the optimality of the MDP. If all assets have the same Sharpe Ratio: 

𝜇𝑖 − 𝑅𝐹

𝜎𝑖
= 𝑆𝑅 

the diversification ratio of portfolio 𝑥 is proportional to its Sharpe ratio: 

𝐷𝑅(𝑥) =
1

𝑆𝑅
 
∑ (𝜇𝑖 − 𝑟)
𝑛
𝑖=1

𝜎(𝑥)
=
1

𝑆𝑅
 
𝑥T𝜇 − 𝑟

𝜎(𝑥)
=
𝑆𝑅(𝑥|𝑟)

𝑆𝑅
  

Maximizing the diversification ratio is then equivalent to maximizing the Sharpe ratio. 

Therefore, the MDP (in the case of uniform SR along all the assets) is the tangency portfolio. 

This is why the MDP is synonymous with the MSR portfolio presented by Martellini (2008).  

The lack of an underlying economic theory, or an underlying utility function of the DR, 

makes it a bit unclear to why investors should maximize this measure. Also, for the MDP to 

end up on the efficient frontier, all assets must have identical Sharpe ratios. The assets are 

typically not required to be identically correlated, but the lack of this assumption at the efficient 

frontier implies arbitrage opportunities. However, when assets are identically correlated, it can 

be shown that the MDP and ERC portfolios are the same (Gunnvald & Lagerqvist, 2013). 
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3.3. Risk Parity Approach 

The Risk Parity is a new risk-based investment style that has emerged right after the 

subprime crisis in a period where investors were lowering their risk tolerance. Although the 

importance of risk considerations in asset allocation is widely supported even in the classic 

theories, the idea is often simplified to volatility minimization as described in the GMV case. 

Even so, it is proved by many authors that mean-variance optimization, generally leads to 

portfolios concentration in terms of weights. Slight differences in inputs can lead to dramatic 

changes in allocations and create portfolios heavily invested on very few assets. There is also 

confusion between optimizing the volatility and optimizing the risk diversification that could 

be naively described by the general “don’t put all your eggs in one basket” concept14. These 

ones, together with other problems related to the mean-variance optimization method will be 

empirically investigated later on and specifically compared with the risk parity strategy. 

This new heuristic solution based on risk concentration, is today preferred by many 

investors that do not want to use optimization methods because it puts diversification as the 

base of the investment process and, in addition, the corresponding strategies share the property 

that they do not use any performance forecasts as inputs of the model. In a risk budgeting 

approach, the investor only chooses the risk repartition between assets of the portfolio, without 

any consideration of returns. Unfortunately, even if risk budgeting techniques are widely used 

by market practitioners, there are few results about the behavior of such portfolios in the 

academic literature. 

3.3.1. Risk Budget portfolio 

Given a portfolio of 𝑛 assets, 𝑥𝑖  is defined as the weight of the 𝑖th asset and 

𝑅𝑀(𝑥1, … , 𝑥𝑛) as a risk measure for the portfolio 𝑥 = (𝑥1, … , 𝑥𝑛).  If the risk measure is 

coherent and convex, meaning that it satisfies the properties of monotonicity, sub-additivity, 

homogeneity, and translational invariance15, then it verifies the following Euler decomposition: 

𝑅𝑀(𝑥1, … , 𝑥𝑛) =∑ 𝑥𝑖
𝜕𝑅𝑀(𝑥1, … , 𝑥𝑛)

𝜕𝑥𝑖

𝑛

𝑖=1
 

                                                 
14 Bruder, B., & Roncalli, T. (2012). Managing Risk Exposures using the Risk Budgeting Approach. 
15 Philippe Artzner, F. D.-M. (1998, July 22). Coherent Risk Measure of Risk. 
More information available at http://www.math.ethz.ch/~delbaen/ftp/preprints/CoherentMF.pdf 
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The risk measure is then the sum of the product of the weight by its marginal risk. 

Therefore the risk contribution is define for the  𝑖th asset as follows: 

𝑅𝐶𝑖(𝑥1, … , 𝑥𝑛) = 𝑥𝑖
𝜕𝑅𝑀(𝑥1, … , 𝑥𝑛)

𝜕𝑥𝑖
 

Considering a set of given risk budgets (𝑏1, … , 𝑏𝑛), where 𝑏𝑖 is an amount of risk 

measured, the risk budgeting portfolio is then defined by the following constraints:  

{
 
 

 
 

  

 𝑅𝐶1(𝑥1, … , 𝑥𝑛) = 𝑏1
⋮

 𝑅𝐶𝑖(𝑥1, … , 𝑥𝑛) = 𝑏𝑖
⋮

    𝑅𝐶𝑛(𝑥1, … , 𝑥𝑛) = 𝑏𝑛 

 

Choosing the volatility as the risk measure we obtained from equation                          

in section 2.1 (√𝑥TΣ𝑥): 

𝑅𝑀(𝑥) = 𝜎(𝑥) = √𝑥TΣ𝑥 

Since the vectorial derivative of 𝜎(𝑥) with respect to the weights 𝑥𝑖 is equal to: 

𝜕𝑅𝑀(𝑥)

𝜕𝑥𝑖
=
𝜕𝜎(𝑥)

𝜕𝑥𝑖
=
(Σ𝑥)𝑖

√𝑥TΣ𝑥
 

Thus, it comes that the marginal risk and the risk contribution of the 𝑖th asset are respectively:  

𝑅𝐶𝑖(𝑥1, … , 𝑥𝑛) = 𝑥𝑖
𝜕𝜎(𝑥)

𝜕𝑥𝑖
= 𝑥𝑖

(Σ𝑥)𝑖

√𝑥TΣ𝑥
 

 Since the system is too general to define an interesting portfolio from the asset 

management point of view, the authors (Roncalli et al. 2012) add some constraints to specify 

the right Risk Budget portfolio. In particular they impose that risk budgets are strictly positive 

(specifying that some assets have a negative risk contribution implies that the risk is highly 

concentrated in the other assets of the portfolio), that weights are all positive (long-only 

constraint), and that budgets and weights are defined in relative value. Thus, the new system 

will result as follow: 
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{
 
 
 

 
 
 

  

𝑥𝑖  (Σ𝑥)𝑖 = 𝑏𝑖 √𝑥TΣ𝑥
𝑏𝑖 > 0
𝑥𝑖 ≥ 0

∑ 𝑏𝑖
𝑛

𝑖=1
= 1

∑ 𝑥𝑖
𝑛

𝑖=1
= 1

 

It must be noted that if a portfolio manager would like to impose some risk budgets are 

equal to zero, he first has to reduce the universe of assets by excluding the assets corresponding 

to these zero risk contributions, because in practice he does not expect to have the corresponding 

asset in his portfolio. That’s why it is important to impose the strict constraint 𝑏𝑖 > 0. To 

summarize, the RB portfolio is the solution of the following mathematical problem: 

𝑥∗ = {𝑥 𝜖 ⌈0,1⌉𝑛:∑ 𝑥𝑖
𝑛

𝑖=1
= 1,  𝑥𝑖 (Σ𝑥)𝑖 = 𝑏𝑖 √𝑥TΣ𝑥} 

Where 𝑏 𝜖 ]0,1]𝑛 and ∑ 𝑏𝑖
𝑛
𝑖=1 = 1 

  3.3.3. Comparison with the mean-variance optimized portfolios  

Allocating a certain budget or equal share of risk (e.g. ERC) to each asset class is the 

idea of risk parity, whose returns have outstripped conventional approaches to strategic asset 

allocation in the past years16. The key concept is the uncertainty inherent in the return forecasts 

used in asset allocation, which is additional to standard asset price risks. When this uncertainty 

is large, ignoring forecasts, as risk parity does, is the optimal response. With less uncertainty, 

there is useful information in forecasts, and risk parity’s advantage recedes. 

Apart from that, a crucial drawback of the mean-variance optimized portfolios (MVO) 

is its sensitivity to the inputs due to the fact that the model are based on optimization techniques. 

Bruder and Roncalli (2012) empirically prove this result, revealing also that the RB portfolio is 

more robust and less sensitive. In a dynamic investment strategy, the input parameters (i.e. asset 

returns, volatilities and correlations) will change from one period to another. In particular, this 

lack of robustness penalizes so much MVO portfolios because it implies higher transaction 

costs in rebalancing the portfolio each period, so that they are not used in practice without 

                                                 
16 Nottebohm, P. R. (2012, October). Improving on risk parity - Hedging forecast uncertainty. Retrieved from 

http://cameronmckenna.jpmorganassetmanagement.co.uk/Institutional/_documents/JPM5372_Improving_on

_Risk_Parity_UK_MINI.pdf 
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introducing some constraints. As it will be seen in the section 5, the weights of the ERC (a 

particular type of RB strategy) are much more uniform along the time for every portfolio than 

any other strategy (excluding, of course the equally weighted). 

“The indifference of many investment practitioners to mean-variance optimization 

technology, despite its theoretical appeal, is understandable in many cases. The major problem 

with MV optimization is its tendency to maximize the effects of errors in the input assumptions. 

Unconstrained MV optimization can yield results that are inferior to those of simple equal-

weighting schemes” (Michaud, 1989). 

For MVO portfolios, the risk approach is marginal and the quantity of interest to study 

is the marginal volatility. For RB portfolios, the risk approach becomes global by mixing the 

marginal volatility and the weight.  

Comparing the risk budgeting portfolio with the weight budgeting portfolio, which is a 

naïve interpretation of the RB where the budgets set by the portfolio manage weights directly 

define the asset weights instead of their risk contribution. Roncalli and Bruder (2012) show that 

the RB portfolio is located between the global minimum variance portfolio and weight 

budgeting portfolio. If  𝑥𝑤𝑏 is the weight budgeting (WB) portfolio, that is 𝑥𝑖 = 𝑏𝑖 for 𝑖 =

1, … , 𝑛 it can be prove that: 

𝜎𝐺𝑀𝑉 ≤ 𝜎𝑅𝐵 ≤ 𝜎𝑊𝐵 

3.3.4. Equally Risk Contribution Portfolio 

As written by Clifford S. Asness, A. F. (2012) in Leverage Aversion and Risk Parity, 

the idea of the ERC can be resumed sum in the concept of “Diversify, but diversify by risk, not 

by dollars–that is, take a similar amount of risk in equities and in bonds”  

In a Risk Budgeting portfolio construction method, as we have just seen, an investor 

determines asset class weights based on their contribution to portfolio risk, which is mostly 

represented by its volatility. In the special case where the investor wants the assets to contribute 

equally much to the portfolio risk, an asset allocation approach known as risk parity or equal 

risk contribution (ERC) is obtained. This portfolio has been extensively studied by Maillard et 

al. (2010) who had derived several interesting properties. In particular, they have shown that 

this portfolio is located between minimum variance and equally-weighted portfolios. 
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Equal risk contribution has over the past decade gained attention since it has shown to 

outperform several classical types of asset allocation strategies. One of the reasons that the ERC 

approach emerged was that in the standard institutional portfolio consisting of 60 % equity and 

40 % bonds/fixed income, the equity part stands for over 90 % of the risk17. This, combined 

with the fact that e.g. a minimum variance approach is based on forecasts of future returns from 

historical data give rise to a lack of robustness that the ERC approach seems to mitigate. 

However, the underlying economic theory supporting an ERC approach is somewhat vague18.  

The ERC portfolio corresponds to the portfolio in which the risk contribution from each 

stock is made equal.  

𝑅𝐶𝑖 = 𝑥𝑖 ∙  
𝜕𝜎(𝑥)

𝜕𝑥𝑖
= 𝑥𝑗 ∙

𝜕𝜎(𝑥)

𝜕𝑥𝑗
= 𝑅𝐶𝑗 

It is the simplest risk budgeting rule. If we assume volatilities and correlations can 

reasonably be forecasted but that it is impossible to predict asset returns, then attributing an 

equal budget of risk to all the portfolio components seems natural. The main advantages of the 

ERC allocation are the following: 

 It defines a portfolio that is well diversified in terms of risk and weights  

 Like the previous methods, it does not depend on any expected return 

hypothesis  

 It is less sensitive to small changes in the covariance matrix than the 

GMV or MDP portfolios 

 

Like the equally weighted portfolio, it is difficult to locate the ERC portfolio on the 

mean-variance framework, but it corresponds to the optimal portfolio when the correlation is 

uniform and the assets have the same Sharpe ratio. This is the reason why the ERC portfolio 

coincides with the MDP when the correlation is uniform. 

 

                                                 
17 Yazann Romahi, K. S. (2012, July). J.P. Morgan Asset Management. Diversification – still the only free lunch? 
Retrieved from jpmorgan.com: https://am.jpmorgan.com/gi/getdoc/1383169204306 
18 Maillard, S., Roncalli, T., & Teiletche, J. (2009). On the properties of equally-weighted risk contributions 
portfolios. 
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3.3.5. Recent Views on ERC 

The risk parity approach and, in particular, the equal risk contribution have become 

progressively popular because of the properties just seen, getting the attention of both 

academics and the practitioners. For instance, Romahi and Santiago (2012) from J.P. Morgan 

in “Diversification – still the only free lunch?” have investigated data in various time periods 

from 1927 to the present day, suggesting that a factor premium risk parity approach outperforms 

the traditional ERC approach. This risk factor approach is based on the diversification among 

specific risk factors such as value premia, size and momentum, instead on traditional asset 

classes (equity, bonds, commodities etc.) defined in a more traditional way. In so doing, risk 

factors (and their premia) are systematic exposures that are rewarded with a return above the 

risk free rate uncorrelated to equity returns. 

Actually, one concern with the traditional ERC is the increasing correlation between 

asset classes. In their analysis of U.S. markets from 1927 till 2011, Romahi and Santiago (2012) 

show that the rolling correlation between risk factors are much lower when compared to 

traditional asset classes in almost every period. 

On the other hand, they claim that some of the risk factors might be difficult to capture 

and/or illiquid for investors to access, and besides that, much of the benefits may be not 

achieved if the investor does not have mandate to use leverage or short sell. Nonetheless, 

according to Romahi and Santiago, the market should be moving in a direction that makes the 

risk factors more liquid, and that a long-only risk factor approach still would be more beneficial 

than a traditional equal risk contribution approach.  

Furthermore, other authors, Lee (2010)19 and Rappoport and Nottebohm (2012)20, see 

the risk parity, and specifically the ERC, as a starting point for an investor without a clear view 

of the markets. Rappoport and Nottebohm find out that equal risk contribution approach has 

performed well during the recent periods of great uncertainty, but allocating equal shares of risk 

is meaningless as an objective itself. They claim that if an investor has useful information in 

forecasting returns, it would not be wise to ignore a model built on those estimate but if the 

investor is a bit uncertain, then he or she might tone down his or her reliance on this forecast, 

                                                 
19 Lee, W. (2010). Risk-Based Asset Allocation: A New Answer to An Old Question? The Journal of Portfolio 
Management. 
20 Nottebohm, P. R. (2012, October). Improving on risk parity - Hedging forecast uncertainty. Retrieved 
http://cameronmckenna.jpmorganassetmanagement.co.uk/Institutional/_documents/JPM5372_Improving_on
_Risk_Parity_UK_MINI.pdf 
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which is exactly what the risk parity approach does, and hence consider it to be a starting point, 

just as Lee (2010) does. In their work, the two authors introduce a new asset allocation rule that 

calibrates the amount of uncertainty in forecasts and weights risk parity and traditional asset 

allocations accordingly. This new approach called "Forecast Uncertainty Hedge" outperforms 

both in their tests the traditional ERC in 70 % of the cases. In their view, this forecast hedge 

rule, and the discipline it places on forecasts, should become integral to strategic asset allocation 

decisions. 

In the case of Lee, the author tries to shed some light on what risk parity approaches 

attempt to achieve and on the characteristics of the investment universe, as long as these 

approaches are meant to approximate mean-variance efficiency. Rather than adding to the 

already large collection of simulation results, Lee uses some simple examples to compare and 

contrast the portfolio and risk characteristics of these approaches. He also claims that any 

portfolio which deviates from the market capitalization–weighted one is an active portfolio, 

concluding that there is no theory to predict, ex ante, that any of these risk-based approaches 

should outperform the other ones, and this new method should be applied as a starting point for 

investors which are no well-informed. 

 

3.4. Capitalization Weighted Indexation versus Risk Based   

Indexation 

One of the fastest growing types of mutual fund in the last twenty years are the index 

funds. One of the largest index fund – the Vanguard 500 Index Fund – has grown in size from 

about 1 billion dollar in 1988 to more than 75 billion dollars in 2001, reaching now more than 

142 billion in terms of total Net Asset Value (NAV). Index Funds are designed to closely track 

the performance of a stock or bond market index. The most popular index funds are designed 

to track the S&P500 stock index. The case for index funds can be quite compelling. For one 

thing, index funds have much lower expenses than actively managed funds. For another, index 

funds often outperform actively managed mutual funds21. The failure of many active managers 

to generate value has caused investors to shift their focus from active management to passive 

exposure to the market. This encourages investors to study the alternative ways in which they 

can gain equity market exposure. 

                                                 
21 Hearth Douglas, J. K. (2001). Contemporary Investiments: Security and Portfolio Analysis. Harcourt College 
Publishers. 
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Among all the possible allocation method that can be employed by index funds, the most 

popular is the capitalization weight (CW) or value weight. Value weighted indexes are the most 

common way to gain access to broad equity market performance because they provide two main 

advantages: simplicity of management (low turnover and transaction costs) and ease of 

understanding and replication. The most important ones are probably the MSCI Value 

Weighted Indexes, present in almost every geographical areas of the world, they usually are the 

primary benchmarks used by fund managers for performance comparison.  

Nevertheless these portfolios are generally concentrated in a few stocks and present some lack 

of diversification. In order to avoid this drawback or to simply diversify market exposure, 

alternative indexation methods have recently prompted great interest, both from academic 

researchers and market practitioners. Fundamental indexation computes weights with regard to 

economic measures, while risk-based indexation focuses on risk and diversification criteria.  

3.4.1. Value Weighting 

Value weighting consists in assigning weights proportional to the stock’s market 

capitalizations. For example, if the market capitalizations of the 𝑛 stocks are 𝑚𝑐1, 𝑚𝑐2, … ,𝑚𝑐𝑛, 

then the weight 𝑥𝑖 of stocks 𝑖, is 

𝑥𝑖 = 
𝑚𝑐𝑖

∑ 𝑚𝑐𝑖
𝑛
𝑖=1

 

Just like the equal weighting, value weighting does not reflect the expected returns or 

the risks of the selected stocks, so it is also not the best method when there is good information 

about stock returns and risks. In the absence of such information, value weighting may be an 

improvement on equal weighting. The performance of the value-weighted portfolio is at least 

guaranteed to match the market average performance because market capitalizations are the 

weights, so to speak, that the market assigns to stocks. There are also a number of variations on 

value weighting: for instance, many portfolios and indices can be float-weighted, which has the 

same sort of characteristics as value weighting, except stocks are weighted by their floating 

shares, not their shares outstanding.  

There are several arguments supporting capitalization-weighted indexation. First, a CW 

index is comprehensible and data-independent; closing prices and the number of shares are 

available without any measurement errors. Second, trading costs are low, because it 

corresponds to a buy-and-hold strategy if the number of shares remains unchanged. The CW 
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index may be also easily hedged and replicated because liquidity is highly correlated with 

market capitalizations.  

From the theoretical point of view, under the efficient market hypothesis assumed by 

the CAPM, the theory states that the tangency portfolio is the unique risky portfolio owned by 

investors, identified by the CW one. 

However, value weighting presents some drawbacks. For example, CW indexation is by 

definition a trend-following strategy where momentum bias leads to bubble risk exposure as 

weights of best performers increase and the weight of the worst performers decreases: the larger 

the return of the stock, the greater its weight. In this context, the concept of alternative-weighted 

indexation emerged after the dot.com bubble.  A CW index generally contains a growth bias, 

because high-valuation multiple stocks weigh more than low valuation multiple stocks with 

equivalent realized earnings. Moreover, the absence of portfolio construction rules leads to 

concentration issues (in terms of sectors or stocks) and the index may suffer from a high 

drawdown risk and a lack of risk diversification. 

Finally, instead of equal weighting or value weighting, portfolio managers can also use 

price weighting. In the price-weighting scheme, the managers buy the same number of shares 

in each stocks so that the weights are proportional to the prices stocks. If the share price of a 

stock is high, this stock will have relatively more weight in the portfolio. This is the way the 

Dow Jones Industrial Avarage and the Nikkei 225 Index are calculated. 

 

3.4.2. Risk Based Indexation 

While traditional market cap indexes remain the most efficient tools for capturing 

market beta as defined in the CAPM, investors are increasingly aware that there are additional 

sources of return associated with particular investment styles and strategies. Alternatively 

weighted (AW) indexes, are designed to offer alternative beta exposures, from which the name 

of “smart beta”, such as the Risk Parity ones.   

An alternative weighted index is defined as an index in which assets are weighted 

differently than in the market capitalization approach. Generally they are distinguished in two 

forms of indexation: fundamental and risk-based. Fundamental indexation defines the weights 

as a function of economic metrics like dividends or earnings, whereas risk-based indexation 

defines the weights as a function of individual and common risks and they aim to capture a 
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broad equity opportunity set with lower risk attributes than comparable market cap weighted 

indexes.  

In some sense, the difference between the two methods comes from the opinion of 

modifying the risk-adjusted return ratio. In other words, in the case of fundamental indexes, 

one expects to have superior returns with respect to the CW index. In the case of risk-based 

indexes, one expects to decrease the risk of the portfolio in either absolute or relative value. 

In the particular case of risk budgeting, for a very long time, this technique has been 

applied to a universe of multi-assets classes to manage and monitor the portfolio risk of large 

and sophisticated institutional investors like pension funds (Sharpe, 2002). More recently, 

instead, it has been used to build alternative indexes in order to provide new benchmarks than 

the traditional market-cap indexes. 

In this section, we compare four risk-based indexation methods based on EW, GMV, 

MDP and ERC portfolios that we have previously seen. Although the four methods are based 

on different approaches, they present similarities. First, we can compare them in terms of 

weights and risk contributions and recap what already presented: 

 𝑥𝑖 = 𝑥𝑗                                 𝑓𝑜𝑟 𝑖, 𝑗 = 1, … , 𝑛          (𝐸𝑊) 

 
𝜕𝜎(𝑥)

𝜕𝑥𝑖
= 

𝜕𝜎(𝑥)

𝜕𝑥𝑗
                                    " "                      (𝐺𝑀𝑉) 

 𝑥𝑖
𝜕𝜎(𝑥)

𝜕𝑥𝑖
= 𝑥𝑗

𝜕𝜎(𝑥)

𝜕𝑥𝑗
                           " "                      (𝐸𝑅𝐶) 

 
1

𝜎𝑖

𝜕𝜎(𝑥)

𝜕𝑥𝑖
= 

1

𝜎𝑗

𝜕𝜎(𝑥)

𝜕𝑥𝑗
                           " "                      (𝑀𝐷𝑃) 

 

The weights are equal in the EW portfolio whereas the marginal risk is equal in the MV 

portfolio. In the case of the ERC portfolio, this is the product of the weight times the marginal 

which is equal. For the MDP/MSR portfolio, the equality is on the marginal risk divided by the 

volatility (this measure may be interpreted as relative or scaled marginal risk). We notice that 

the equalities are verified in the case of the MV or the MDP portfolio only for the assets with a 

non-zero weight. In fact, these methods can be group into two groups: one where all weights 

are strictly positive, and the other where some weights may be negative: 

 

 ∀ 𝑖: 𝑥𝑖 > 0                 (𝐸𝑊/𝐸𝑅𝐶) 

 ∃ 𝑖: 𝑥𝑖 = 0                 (𝑀𝐷𝑃/𝐺𝑀𝑉) 
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Another important result, which will be empirically verified later on, is that the volatility 

of the MV, ERC and EW portfolios may be ranked in the following order (Maillard et al., 2008): 

𝜎𝐺𝑀𝑉 ≤ 𝜎𝐸𝑅𝐶 ≤ 𝜎𝐸𝑊 

The ERC portfolio may then be viewed as a portfolio between the GMV and the 1/n  

portfolios. The volatility of the MDP/MSR portfolio may be either greater or lower than the 

volatility of the ERC and 1/n portfolios.  

It is important to mention that the ERC and MDP/MSR portfolios coincide when the 

correlation is uniform across assets returns. In this case, the weight of stock 𝑥𝑖 is inversely 

proportional to its volatility 𝜎𝑖. The MDP portfolio corresponds to the GMV portfolio when the 

individual volatilities 𝜎𝑖 are equal. Finally, the ERC and GMV portfolios are the same when the 

correlation is uniform and is equal to the lower bound 𝜌 =  −
1

𝑛−1
  meaning that the 

diversification obtained with the simply correlation is maximum. 
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4. Data description 

4.1. Stocks 

The dataset used in this work contains time series, of weekly stock prices for the past 

25 years, starting from the 3rdof October 1989 to the 29th of September 2014, for a total of 

1305 weeks. Thirty among the most capitalized stocks in well-known equity indices for three 

different geographic area (United States, Europe and Japan) constitute the investment universe.  

In particular, for the United States, stocks belonging to the Standard & Poor’s 500 and 

the Dow Jones Industrial are taken into account, whereas ten stocks from each of the following 

indices are selected for Europe: CAC40 (France), DAX30 (German), FTSE100 (UK). Finally, 

stocks are selected from the Nikkei225 constituents for Japan.  

The stock prices correspond exactly to the weekly, dividend adjusted, market closing 

price, and all the data have been obtained from DataStream - Thomson Reuters. 

It is widely claimed by practitioners and researchers that daily prices are mostly used to 

study trends for the past year. For longer range analysis, going back five, ten years or twenty-

five as in our case, weekly and monthly charts may be better to employ. Using weekly charts 

instead of daily or intraday has the advantage of focusing on the predominant longer-term trend, 

while ignoring the “noise” and volatility of the day-to-day fluctuations. In appendix 1 the price 

evolution of each single stock in the time considered are presented. 

 

4.2. Methodology 

4.2.1. Estimating Returns, Risk and Weights  

We first describe the data used to build each portfolio, i.e. how the historical 

performance indicators have been calculated in order to define the stock weights to each 

portfolio. The analytical procedures used to calculate the weights instead, are illustrated in the 

Appendix 2.  

The standing point here is to consider the perspective a portfolio manager (PM) who 

wants to build a mid-long term stock portfolio using different criteria which can be related 

either to performance optimization (i.e. maximum Sharpe), risk minimization (i.e. minimum 

variance) or risk parity measures (i.e. equal risk contribution, most diversified portfolio etc.). 
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In so doing the PM would first focuses on a certain basket of stocks which can be defined by 

an index, a geographical area, a sector or some common fundamentals. Then he would analyze 

the historical performances of the assets and find the weights to assign to them accordingly to 

the rational of the specific portfolio. 

For the purpose of this work, the strategy used to build the different portfolios follows 

the same logic as above. The basket of stocks considered are differentiated on a geographical 

basis and on their market capitalization. In regards to the analysis of the historical performances, 

the starting point is the end of September 1989 with a rolling time window of 5 years. In other 

words, we assess the first portfolio weights in October 1994 using the weekly prices of the 

stocks in the prior 5 years. From that date onward, the weights are computed on a weekly basis, 

moving on the 5 years rolling window until the end of September 2014. 

Estimating the Expected Returns 

Whichever model is used, estimation of the model provides important information about 

a stock’s expected returns. Concerning this purpose, the first step is to consider weekly 

percentage returns of historical stock prices, where for every stock we have that: 

 

𝑟𝑡 =
𝑃𝑡 − 𝑃𝑡−1
𝑃𝑡−1

=
𝑃𝑡
𝑃𝑡−1

− 1 

 

Where  𝑃𝑡  is the price of a stock at time 𝑡. The percentage return is then computed for 

each stock, 30 per geographical area, and for every week along the 25 years. 

In the second step a time window of 5 years (corresponding to 260 weeks) is defined, in 

which computing the mean (𝜇) of  𝑟, with a weekly frequency, as follow: 

 

𝜇𝑖 = 
∑ 𝑟𝑗
𝑡+𝑗−1
𝑗=1

𝑡
 

 

Where  𝑡  is equal to 260 weeks,  𝑗  goes from the week 1 to 1044, and  𝑖  that goes from 

the 261th week to the 1304th corresponding to the 29th of September 2014, date of the last 

observation. 
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In other words, the expected return (𝜇) is calculated every week, for the following 

period, as the average of the past 260 weekly logarithmic returns. This computation has been 

developed through a Matlab iteration presented in Appendix 2. 

In this way, for each single stock, we end up having a vector of 1304  𝑟 out of the 1305 

weekly (25 years) prices, and 1044 weekly (20 years) expected returns since the first 𝜇 is 

determined after the initial 5 years which, in this analysis, corresponds to the 3rd of October 

1994.  

The variance - covariance matrix 

The relevant inputs for the allocation models presented previously in section 2 (Modern 

Portfolio Theory) and 3 (Heuristic Portfolio Construction Techniques), are constituted by 

expected returns and risk measures.  By calculating the variance or the standard deviation of 

stock returns, it is possible to naively estimate the stock’s total risk. The first thing to do is to 

compute the variance-covariance matrix (𝚺), analytically: 

 

𝚺 =

[
 
 
 
 
𝜎1
2  …  𝜎1,𝑗…   𝜎1,𝑛

⋮
 𝜎𝑖,1…   𝜎𝑖

2…  𝜎𝑖,𝑛
⋮

 𝜎𝑛,1…  𝜎𝑛,𝑗 …   𝜎𝑛
2]
 
 
 
 

 

 

Where  

𝑖, 𝑗 = 1,… , 𝑛 indicates each different stock (𝑛 is equal to 30 in our case); 

The diagonal of 𝚺 is composed by the variance of the log returns for each stock (𝜎𝑖
2), 

meanwhile the other elements constitute their covariance (𝜎𝑖,𝑗). For each week, these two 

fundamentals are computed as follow:  

 

𝜎𝑖
2 = 

1

𝑡
∑ (𝑟𝑘,𝑖 − 𝜇𝑖)

2𝑡
𝑘     

𝜎𝑖,𝑗 = 
1

(𝑡−1)
∑ (𝑟𝑘,𝑖 − 𝜇𝑖)(𝑟𝑘,𝑗 − 𝜇𝑗)
𝑡
𝑘   

 

Where 𝑡 is equal to the time window of 260 weeks. Understandably the time horizon 

applied in this setting is the same used for expected returns, therefore 1044 variance – 
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covariance  matrixes22 are generated week by week, from the 261th one to the last 1304th.

  

Weighting the portfolios 

The portfolio manager can use optimization techniques to select the stocks for the 

portfolio and assign them their respective weights. The weighting of stocks in the portfolio can 

be set to maximize the portfolio’s overall return, minimize its risk, and satisfy other constraints 

such as diversification requirements and specific investment style requirements. The objective 

of this work is to compare different strategies in the construction of equity portfolios which, 

from an operating point of view, means that the first thing to do is to find for each approach the 

matrix of weights.  

Therefore, stock weights are the key unknown variables in this framework because they 

identify the allocation strategy that we want to asses and, once we obtain them, the rest of the 

work is rather straightforward.  

In the previous sections, we have briefly outlined, for every portfolio construction 

method, the analytical procedure to find the weights (𝑥𝑖) for stock  𝑖 = 1, . . , 𝑛.  These 

procedures have been implemented with Matlab and the functions and codes used in this work, 

to find the weights of each portfolio are presented in the Annex23. 

                                                 
22 I.e. an Array with 3 dimensions 𝑛 x 𝑛 x 𝑡𝑖𝑚𝑒 (30x30x1044). 
23 For the ERC, MDP and long-only GMV portfolios it has been used a Matlab built-in function “FMINCON” which 
solve for minimum of constrained nonlinear multivariable function. More information available at 
http://uk.mathworks.com/help/optim/ug/fmincon.html. For the ERC and MDP functions, the codes used have 
been developed respectively by Dr Farid Moussaoui (http://mfquant.net/erc_portfolio.html) and Enareta 
Kurtbegu (http://erasmus-mundus.univ-paris1.fr/fichiers_etudiants/2664_dissertation.pdf) which are both 
acknowledged and thanked. 
 

http://uk.mathworks.com/help/optim/ug/fmincon.html
http://mfquant.net/erc_portfolio.html
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The outcome of this process is represented in the figures of the empirical evidence 

section. Each of them is the plotted area of the weight vectors for each method and geographical 

area, depicting their evolution on time for all of the 30 stocks. As shown in the next figure for 

the long-only GMV Japanese portfolio, taken as an example here, the sum of the stock weights 

at every time is equal to one (or equivalently 100%), meaning that the portfolio is always fully 

invested, which indeed is an assumption valid for every method that we presented so far. 

 

The x-axis denotes the time from 3-October-1994 to 29-September-2014. Every color 

represents each different stocks and clearly, since the GMV portfolio is quite concentrated, not 

every stock appears in the graph.  

Risk Contribution  

As already shown in section 3 regarding the Risk Parity approach, the stock risk 

contribution is calculated likewise section 3.3.1 as follow: 

𝑅𝐶𝑖,𝑡(𝑥1,𝑡, … , 𝑥𝑛,𝑡) = 𝑥𝑖,𝑡
(𝚺𝒙)𝒊,𝒕

√𝒙𝐓𝚺𝒙
 

Differently form 𝑃. 𝑅𝑒𝑡𝑡 and 𝑃. 𝑉𝑜𝑙𝑡 which are scalar, 𝑅𝐶𝑖,𝑡 is vector (30x1).  

For every allocation strategy, the three operations are then computed for each of the 

1044 weeks of this framework, finally resulting in two vectors of portfolio realized returns and 

volatilities defined in next paragraph(𝑷. 𝑹𝒆𝒕 − 1044𝑥1 and𝑷. 𝑽𝒐𝒍 −  1044𝑥1) and in a matrix of 

Figure 4.2.1 – Stock weights of GMVc Japanese portfolio 
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stocks risk contribution (𝑹𝑪 − 30𝑥1044). As an example, the next figure depicts the evolution 

of the stocks Risk Contribution for the Equally Weighted Japanese portfolio, in the same 

fashion as the weights graph. 

 

 

 

 

 

 

 

 

 

 

 

Differently from the previous graph of GMV weights, this time obviously each stock is 

represented by construction of the equally weighted portfolio itself. 

 

4.2.2. Indicators of portfolio performance 

The ratio used for comparing the different portfolios is based on a few performance 

indicators which are widely used by practitioners.  It is important to remind that the portfolios 

in question correspond to the asset allocation strategy by which they are constructed.  

Once we have the weight matrixes for each method, the portfolio realized returns, the 

historical volatility, the stocks risk contribution, the transaction costs, the historical Value At 

Risk and Expected Shortfall can be defined for each portfolio every week. The key element 

here is to apply the weights calculated in “t-1” to the set of information available in “t”. For 

instance, from the point of view of a PM who wants to build the max Sharpe Ratio portfolio 

with the weights calculated today, he will observe its performance with the stock prices of 

tomorrow (t+1). Then, in “t+1” he will rebalance the weights and observe the performance 

given the prices of “t+2” and so on. 

Realized Returns 

Previously it has been defined 𝜇𝑖,𝑡 as the expected return of stock 𝑖 = 1, . . 𝑛 at week 

number 𝑡 = 1,… ,1044. The portfolio realized return (𝑃. 𝑅𝑒𝑡) at any time 𝑡, can be simply 

obtained multiplying each stock’s realized return(𝑅𝑒𝑎𝑙. 𝑅𝑒𝑡) simply defined by the percentage 
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Figure 4.2.2 – Stocks’ Risk Contributions for the EW Japanese portfolio 
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difference in stock prices, by their weight(𝑥𝑖). In a matrix language 𝑃. 𝑅𝑒𝑡𝑡 is a scalar obtained 

by the multiplication of the vector of stock return 𝑅𝑒𝑎𝑙. 𝑅𝑒𝑡(30x1) and the weight’s one 𝒙(30𝑥1) 

calculated one period before: 

𝑃. 𝑅𝑒𝑡𝑡 = 𝑅𝑒𝑎𝑙. 𝑅𝑒𝑡𝑡
𝑻 ∗ 𝒙𝒕−1 

Where the realized percentage return for a generic stock at time t is calculated as follows: 

𝑅𝑒𝑎𝑙. 𝑅𝑒𝑡𝑡 = (
𝑃𝑡
𝑃𝑡−1

− 1) 

Volatility 

Considering the returns standard deviation as a measure for the portfolio volatility, the 

procedure is then similar to the previous one.  Instead of considering the expect return, we take 

into account the realized return of portfolios (𝑃. 𝑅𝑒𝑡) and compute it’s standard deviation for 

the period considered. 

Transaction Costs 

Transaction costs generally correspond to the commission that brokerages charge to 

execute orders. These commissions vary among brokers and sometimes depend on the specific 

trade. The same broker may charge different commission for trading the same stock depending 

on the number of shares of the trade or the value of the transaction. 

Given the complicated and unpredictable nature of transactions costs, it is conventional 

to model them as a fixed proportion of the total value of the transaction. In our framework a 

constant of 15 bps has been chosen to approximate the cost per transaction.  

The turnover rate has been takes as a measure of transaction, designed as the weekly 

change in each portfolio weights. Specifically, the turnover rate has been computed as the sum 

of the absolute value of differences between the stock weights in two close periods:  

𝑃. 𝑇𝑢𝑟𝑛𝑜𝑣𝑒𝑟𝑡 = ∑ |𝑥𝑡 − 𝑥𝑡−1|
𝑛
𝑖=1   

 

In this way, 𝑃. 𝑇𝑢𝑟𝑛𝑜𝑣𝑒𝑟𝑡  has always a value included between 0 (in case of no stock’s 

sale or purchase) and 2 (in the special case of diametrically change the portfolio composition). 
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Thus, to obtain the transaction cost adjusted return of the portfolio (𝑃. 𝐴𝑑𝑗𝑅𝑒𝑡𝑡), the constant 

of 15 bps is multiplied by 𝑃. 𝑇𝑢𝑟𝑛𝑜𝑣𝑒𝑟𝑡 and the result is subtracted from the portfolio expected 

return (𝑃. 𝑅𝑒𝑡𝑡) as follow: 

𝑃. 𝐴𝑑𝑗𝑅𝑒𝑡𝑡 = 𝑃. 𝑅𝑒𝑡𝑡 − 0.0015 ∗ 𝑃. 𝑇𝑢𝑟𝑛𝑜𝑣𝑒𝑟𝑡 

 

Standard arguments imply the computation of 𝑃. 𝐴𝑑𝑗𝑅𝑒𝑡𝑡 for every week starting from 

the second one (in our settings the 10th of October 1994), resulting in a final vector of returns 

(𝑷.𝑨𝒅𝒋𝑹𝒆𝒕)with dimension 1043x1. No matter what conditions or costs arise, the principle of 

portfolio selection always remains the same. Transaction costs introduce a new variable into 

the process of determining the optimal portfolio, but they do not alter the selection principle 

itself.  

Finally, it is essential to remind that the EW portfolio is excluded from the transaction 

costs analysis, since in this setting, it would result in a zero cost strategy which does not make 

much sense in the reality. Indeed even an equally-weighted portfolio has to be rebalanced: since 

stocks values change every week, then the weights which are equal at the beginning of the week 

are not the same anymore at the end of the week. 

Diversification Ratio 

In recent years, new portfolio construction techniques focused on risk and diversification 

rather than expected average returns have become quite popular as it has been claimed for the 

Risk budgeting approach. This success has been due to an increasing acknowledgment that a 

traditional balanced portfolio, where 60 percent is allocated in equities and the remaining 40 

percent is invested in bonds, is not diversified at all. It may look balanced from a capital 

allocation point of view, but it is not from a risk perspective, as equities are the main risk 

contributor within such a portfolio. Therefore, it is remarkable to include as a key indicator of 

portfolio performance the diversification ratio defined in section 3 regarding the Most 

Diversified Portfolio (MDP) and computed in the same way as section 3.2: 

 

 

𝑃. 𝐷𝑅𝑡 =
𝒙𝒕−1

𝑻𝝈𝒕

√𝒙𝒕−1
𝑻𝜮𝒕𝒙𝒕−1
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where 𝝈𝒕 is the vector of stocks standard deviation, corresponding the square root of the 

diagonal of the variance-covariance matrix  𝜮𝒕, calculated on the basis of the last 5 years weekly 

stock prices.  Thus, following the same logic as before, the index is computed applying the 

vector of weights obtained in the period before.  
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5. Empirical Evidence 

5.1. Overall results for US portfolios 

The next tables present the overall findings of nine different portfolio construction methods24. The 

first indicator “return” is the annual cumulative realized return of the portfolio. Taking the year 1998 as 

example, it is calculated as follows: 

𝑅𝑒𝑡𝑢𝑟𝑛1998 =∏(1 + 𝑃. 𝑅𝑒𝑡𝑖)

52

𝑖=1

− 1 

 

Where 𝑃. 𝑅𝑒𝑡𝑖 as calculated as in paragraph 4.2.2. and 𝑖 indicates the number of week. 

 The second indicator “volatility” is the annualized standard deviation of weekly-realized 

returns: 

𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦1998 = 
√∑ (𝑃. 𝑅𝑒𝑡𝑖 − 𝑃. 𝑅𝑒𝑡𝑖̅̅ ̅̅ ̅̅ ̅̅ ̅)52

𝑖=1

2

52
 

 

Where 𝑃. 𝑅𝑒𝑡𝑖̅̅ ̅̅ ̅̅ ̅̅ ̅ is the simple mean of weekly percentage returns: 

 

 𝑃. 𝑅𝑒𝑡𝑖̅̅ ̅̅ ̅̅ ̅̅ ̅ =  
1

52
∑ 𝑃. 𝑅𝑒𝑡𝑖
52
𝑖=1  

 

The following tables25 highlight the characteristics and performance indicators of each 

portfolio considering only the United States market, while in the next sections the analysis is 

extended also to the other two geographical areas.  

 

 

 

 

 

 

 

 

 

 

 

                                                 
24 Recall the abreviations for the following portfolios: GMVc (long-only global minimum variance), GMVu 
(unconstrained g.m.v.), MSR (max sharpe ratio), MSR_12 (max sharpe with 12% risk contribution constraint), 
MCap (market capitalization weighted), EW (equally weighted), MDP (most diversified), ERC (equal risk 
contribution). 
25 The year 2014 consider the weekly stock prices until the 29th of September.  
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Table 1 - Returns 

 

 

The portfolio returns is clearly the first and main performance indicator that anyone 

would look at. Reasonably, it is possible to observe how all the portfolios show a common trend 

during both periods of market crisis or economic growth. For example, in 2002 with the dot-

com bubble, and in 2008 with the real estate bubble and consequently with the financial crisis, 

every portfolios show a negative cumulative annual returns. Similarly, in flourishing periods of 

U.S. economy, such as in the late 90s, or in a year of economic upturn like 2013 (at least from 

the financial market point of view), the performance of portfolios are all extremely positive. 

Nonetheless, it comes immediately evident how the methods based on measures of performance 

optimization are completely outperformed, in several years, by the ones based on risk 

diversification. The most significant example are the years 2000, 2001 and 2012. In 2000, for 

instance, the MSR portfolio is outperformed by the EW, MDP and ERC by more than 30% and 

this result gets only slightly better if considering the MSR with risk contribution constraints. 

However, the three MSR portfolios along with the MCap and the GMVu reveal negative returns 

in a period in which all the risk based portfolios gain around 10%. The straightforward 

explanation to this behavior is that, in these periods, the MSR and the GMVu simply fail to pick 

up the few stocks on which they put all the risk. This occurs because, at least in our model, the 

weights allocation is based on the historical performance of the assets in the previous 5 years. 

GMVc GMVu MSR MSR_12 MSR_6 Mcap EW MDP ERC

1995 32.96 31.66 38.77 36.58 36.53 38.57 41.52 36.36 38.87

1996 32.20 31.95 37.49 36.02 28.97 33.31 33.84 33.98 33.48

1997 19.11 15.48 17.04 17.95 17.64 31.50 30.47 23.43 28.82

1998 20.66 41.80 48.84 37.38 37.04 37.54 34.13 31.00 31.57

1999 9.70 -1.44 16.56 15.89 15.91 27.56 24.91 15.05 19.33

2000 5.12 -3.93 -23.99 -17.52 -8.64 -10.33 11.50 13.06 11.55

2001 5.58 7.08 -11.92 -9.23 -8.80 -3.12 -3.45 -1.38 -2.07

2002 -14.04 -11.44 -25.62 -25.84 -20.53 -19.90 -15.03 -11.84 -14.28

2003 19.56 13.35 24.74 21.88 23.31 18.57 27.54 22.33 25.72

2004 12.12 10.48 6.66 8.69 9.77 7.47 10.94 9.66 11.08

2005 13.36 10.95 21.66 14.23 14.51 1.87 5.87 14.69 7.13

2006 14.56 16.23 6.66 11.27 16.56 13.43 16.53 21.34 16.18

2007 13.91 15.82 21.92 22.07 13.92 4.77 6.02 12.69 7.03

2008 -22.50 -15.38 -26.81 -31.45 -29.03 -31.08 -27.81 -25.30 -25.26

2009 11.76 -4.49 0.90 17.74 11.59 14.55 27.63 19.16 22.97

2010 7.62 3.61 21.80 17.44 14.10 8.71 13.67 12.47 11.80

2011 11.91 17.98 22.82 12.36 9.21 1.72 2.84 11.20 8.08

2012 4.84 -3.23 -7.63 8.63 11.78 12.55 17.56 11.94 12.81

2013 21.63 15.07 21.46 21.67 24.92 25.28 29.45 24.65 26.66

2014 6.13 5.85 12.76 10.54 7.64 5.20 6.84 7.49 6.78
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An emblematic example is given by the composition of the MSR portfolio in 2012, which 

concentrates always more than 60% in the McDonalds stock, simply because the performance 

of that stock was outstanding in the preceding years, as shown in the next figure.  

  

 

 

 

 

 

 

 

 

 

 

 

 

Thus, sometimes it might happen that stocks, which performed the best in the recent 

past, in terms of returns and volatility, will fall down right after. Of course, this mechanism is 

amplified in periods of financial bubbles, with dramatic consequences in terms of return of 

some portfolios as presented in the table.  

On the other hand, there are some periods in which the optimized methods have much 

higher, such as in 1998 where the MSR outperformed the diversified portfolios (EW, ERC, 

MDP) by almost 18%. Nevertheless, it seems quite indisputable that, overall, this last category 

of portfolios beats the other ones. 

Moreover, this result is confirmed by considering the volatility and the Sharpe Ratio 

shown in Table 2 and Table 3. The Sharpe Ratio indicated is the simple ratio between return 

and volatility (e.g. zero risk-free rate), which gives an immediate hint of the risk/reward value 

of the investment. In Table 2 the value of the volatility is represented with different colors and 

intensity: red if it is higher than the average of all portfolios in the year considered, blue if it is 

lower; the more is the color intensity, the more is the value far from the average.  

Unsurprisingly, the volatility of the GMVc and GMVu are the lowest in most of the 

years (1996, 1997, 1998, 1999, 2001, 2004, 2006, 2007, 2008, 2009, 2010, and 2012).  

 

 

Figure 5.1 – McDonald’s stock prices (USD) 



48 

 

 

These two portfolios show also a similar trend in their Sharpe Ratio (Table 3) with the 

remarkable differences that in 2000, 2009 and 2013 the GMVu delivers negative returns, while 

in 1998 it has an outstanding performance with more than 20% return higher than the GMVc. 

The first hint that is possible to gather from these figures is that the build a minimum variance 

long/short portfolio does not seem the optimal choice, since the long-only GMV delivers the 

same roughly the same results.  

 

Table 2 - Volatility 

 

In general, the portfolios based on asset diversification show low values of volatility 

except the EW. In particular, the MDP and the ERC both deliver significantly higher returns 

and lower volatility. These two portfolios can be considered the “winners” from any point of 

vire, as it will be also proved later. The ERC, in turn, functions as a risk-weighted version of 

the EW, with significantly lower risk. On the other hand, the EW outperforms the market cap-

weighted index with comparable volatility.  

 

 
 

 

GMVc GMVu MSR MSR_12 MSR_6 Mcap EW MDP ERC

1995 8.93 8.94 12.25 10.11 8.55 8.08 8.17 9.08 7.80

1996 13.27 13.47 17.57 16.66 15.19 14.62 14.17 13.50 13.69

1997 16.59 15.50 21.57 21.18 19.08 20.31 18.66 17.69 18.11

1998 17.43 17.32 24.97 22.92 22.94 22.24 22.84 20.95 21.34

1999 15.55 16.59 24.07 20.99 18.26 19.95 17.97 15.70 16.35

2000 16.33 17.83 18.15 17.88 16.94 18.08 16.36 15.52 15.52

2001 12.78 12.92 15.54 15.16 14.07 15.63 14.33 13.11 13.57

2002 23.91 23.65 27.92 27.49 27.14 28.22 26.70 23.01 25.74

2003 14.94 14.44 15.45 13.68 13.55 15.43 15.41 15.82 14.74

2004 9.52 9.69 13.29 11.19 9.97 10.46 10.38 11.11 10.14

2005 10.02 11.38 11.92 10.40 9.36 7.90 8.48 10.12 8.61

2006 8.15 9.05 11.00 10.23 9.01 9.41 9.29 9.27 9.04

2007 11.33 10.43 13.86 13.32 13.37 14.03 13.75 12.68 13.49

2008 20.03 21.23 22.87 22.94 24.54 28.89 30.35 24.84 27.01

2009 17.43 15.10 18.66 24.60 23.22 26.76 33.27 25.27 26.21

2010 10.19 9.99 13.53 14.61 14.71 17.01 17.16 12.56 14.63

2011 12.27 9.65 15.28 18.62 19.87 23.46 24.68 16.08 19.96

2012 8.24 9.92 10.38 9.36 9.30 10.84 11.09 9.21 9.15

2013 9.51 9.84 12.10 9.83 9.66 9.76 10.03 10.23 9.34

2014 8.41 8.69 10.38 8.73 8.20 9.21 8.95 7.18 8.45
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Table 3 – Sharpe Ratio 

 

 

Observing the figures in Table 3, one can see how the actual maximum Sharpe Ratio is 

obtained, ex-post, only in three years out of twenty: 2005, 2010, 2014, plus 2007 if considering 

also the MSR_12. The last three portfolios on the right of the table seem, overall, to capture the 

best risk-adjusted return. Nonetheless, it is worth to note that the GMVu presents the best ratios 

in seven years (1998, 2001, 2002, 2007, 2008 and 2011) more times than any other portfolio. 

In particular, it tends to reach the best results in periods of market depression and poor stock 

performance such as the early 2000 and during the crisis: indeed, in 2002 and 2008 the GMVu 

has the highest Sharpe Ratio with negative sign, while in 2001, along with the GMVc, they are 

the only portfolios delivering positive returns.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GMVc GMVu MSR MSR_12 MSR_6 Mcap EW MDP ERC

1995 3.69 3.54 3.16 3.62 4.27 4.78 5.08 4.00 4.98

1996 2.43 2.37 2.13 2.16 1.91 2.28 2.39 2.52 2.45

1997 1.15 1.00 0.79 0.85 0.92 1.55 1.63 1.32 1.59

1998 1.19 2.41 1.96 1.63 1.61 1.69 1.49 1.48 1.48

1999 0.62 -0.09 0.69 0.76 0.87 1.38 1.39 0.96 1.18

2000 0.31 -0.22 -1.32 -0.98 -0.51 -0.57 0.70 0.84 0.74

2001 0.44 0.55 -0.77 -0.61 -0.63 -0.20 -0.24 -0.11 -0.15

2002 -0.59 -0.48 -0.92 -0.94 -0.76 -0.71 -0.56 -0.51 -0.55

2003 1.31 0.92 1.60 1.60 1.72 1.20 1.79 1.41 1.74

2004 1.27 1.08 0.50 0.78 0.98 0.71 1.05 0.87 1.09

2005 1.33 0.96 1.82 1.37 1.55 0.24 0.69 1.45 0.83

2006 1.79 1.79 0.61 1.10 1.84 1.43 1.78 2.30 1.79

2007 1.23 1.52 1.58 1.66 1.04 0.34 0.44 1.00 0.52

2008 -1.12 -0.72 -1.17 -1.37 -1.18 -1.08 -0.92 -1.02 -0.94

2009 0.67 -0.30 0.05 0.72 0.50 0.54 0.83 0.76 0.88

2010 0.75 0.36 1.61 1.19 0.96 0.51 0.80 0.99 0.81

2011 0.97 1.86 1.49 0.66 0.46 0.07 0.12 0.70 0.40

2012 0.59 -0.33 -0.74 0.92 1.27 1.16 1.58 1.30 1.40

2013 2.27 1.53 1.77 2.21 2.58 2.59 2.94 2.41 2.85

2014 0.73 0.67 1.23 1.21 0.93 0.56 0.76 1.04 0.80
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Table 4 - Diversification Ratio 

 

 

 

 
Table 5 - Turnover 

 

 

GMVc GMVu MSR MSR_12 MSR_6 Mcap EW MDP ERC

1995 1.90 1.80 1.70 1.80 1.88 1.86 1.95 2.19 2.02

1996 2.18 2.13 1.83 1.91 2.01 2.07 2.19 2.40 2.23

1997 2.14 2.17 1.82 1.86 1.96 1.94 2.09 2.36 2.14

1998 1.93 1.95 1.57 1.69 1.80 1.73 1.88 2.11 1.92

1999 1.96 1.93 1.60 1.72 1.78 1.64 1.81 2.05 1.87

2000 1.61 1.60 1.50 1.60 1.65 1.55 1.65 1.86 1.68

2001 2.14 2.18 1.83 1.85 1.92 1.79 1.96 2.28 2.05

2002 2.13 2.17 1.54 1.74 1.87 1.80 1.95 2.27 2.03

2003 2.06 2.12 1.46 1.71 1.84 1.74 1.88 2.19 1.95

2004 2.03 2.13 1.47 1.75 1.87 1.76 1.90 2.20 1.95

2005 1.86 1.93 1.60 1.67 1.74 1.68 1.80 2.06 1.84

2006 1.61 1.60 1.50 1.60 1.65 1.55 1.65 1.86 1.68

2007 1.61 1.59 1.62 1.68 1.68 1.59 1.66 1.86 1.69

2008 1.71 1.66 1.62 1.73 1.77 1.70 1.74 1.95 1.80

2009 1.51 1.29 1.24 1.47 1.51 1.48 1.49 1.69 1.56

2010 1.49 1.28 1.19 1.43 1.46 1.42 1.45 1.65 1.52

2011 1.44 1.23 1.19 1.39 1.41 1.38 1.40 1.60 1.46

2012 1.40 1.16 1.28 1.41 1.41 1.34 1.35 1.54 1.41

2013 1.41 1.14 1.35 1.43 1.41 1.33 1.34 1.53 1.40

2014 1.45 1.29 1.36 1.45 1.48 1.37 1.38 1.60 1.45

GMVc GMVu MSR MSR_12 MSR_6 Mcap EW MDP ERC

1995 4.05 8.19 14.57 13.31 12.22 2.04 n. r. 4.97 0.74

1996 5.44 8.95 11.84 10.39 13.29 2.08 n. r. 5.05 0.89

1997 5.31 8.49 14.74 11.07 9.01 2.31 n. r. 4.08 0.78

1998 5.06 10.43 15.07 14.31 10.82 2.95 n. r. 4.90 0.81

1999 4.08 7.84 15.05 12.41 9.49 3.28 n. r. 3.95 0.58

2000 3.75 7.68 14.96 13.01 5.21 1.55 n. r. 3.45 0.40

2001 2.55 5.12 15.73 11.79 10.15 2.93 n. r. 2.09 0.39

2002 4.13 7.77 18.01 17.37 11.28 2.76 n. r. 2.95 0.66

2003 3.51 6.96 19.98 14.46 8.05 1.90 n. r. 2.79 0.47

2004 3.51 6.77 21.38 13.57 7.87 1.59 n. r. 3.10 0.47

2005 6.36 11.68 15.97 13.03 7.07 1.57 n. r. 4.95 0.55

2006 4.46 9.61 21.41 9.99 5.21 1.55 n. r. 3.45 0.40

2007 7.28 15.88 20.72 14.40 10.94 1.64 n. r. 5.89 1.08

2008 7.49 17.66 18.25 13.99 7.91 3.28 n. r. 8.66 1.35

2009 3.46 10.30 11.09 9.69 10.59 2.95 n. r. 5.84 0.58

2010 1.37 5.81 8.90 13.82 9.15 1.67 n. r. 2.25 0.20

2011 2.12 6.04 8.78 13.09 9.83 1.83 n. r. 2.26 0.24

2012 1.99 6.96 14.19 5.51 9.79 1.42 n. r. 1.89 0.19

2013 3.38 10.89 18.22 13.72 8.19 1.42 n. r. 4.33 0.51

2014 3.92 11.60 18.37 15.88 10.95 1.31 n. r. 5.53 0.81
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Table 4 and Table 5 are strictly connected to each other as they both illustrate where the 

MDP and ERC portfolios find most of their benefits. Indeed, the Diversification ratio (DR) and 

the Turnover rate are key indicators, which every investor would look at when managing a 

portfolio of stocks: the DR because, being the ratio between portfolios’ weighted average asset 

volatility and its actual volatility, it measures the essence of diversification. The Turnover rate, 

on the other hand, gives an important information regarding the need and the frequency of 

rebalancing the portfolio with all its costs associated.  

The DR in the table is calculated as the annual average of the 52 weekly values along 

every year. As expected, the MDP, built on the maximization of this ratio, delivers the highest 

values even ex-post, followed closely by the ERC, and in some years in the early 2000 by the 

minimum variance portfolios. Furthermore, it is interesting to note how the other two least 

concentrated portfolios, the MCap and the EW, cannot compete with the other two in terms of 

Diversification Ratio, with the MCap which has sometimes even lower values than the MSR 

with risk contribution constraints.  

On the other hand, the MCap presents, obviously, optimal values of Turnover rates, even 

slightly better than the MDP. Only the ERC does better, with values closer to zero, which, in 

this framework is the hypothetical, but not real (as explained above) value of the EW portfolio. 

Finally yet importantly, Table 4 and especially Table 5 show the greatest discrepancy between 

the two minimum variance portfolios: the long-only portfolios is more diversified and needs 

less rebalancing, than the long/short one. Hence, as far as can be depicted from these figures, 

the slightly better returns adjusted for volatility results delivered by the GMVu are not good 

enough to compensate the drawbacks in terms of DR and Turnover; therefore anyone should 

prefer, in our case, to build a long-only strategy for the minimum variance portfolio. 

 

5.1.1. Risk Contribution and Weight Distribution 

Comparing the evolution of the stock’s risk contribution (RC) among the different methods is 

highly important, not only to get a measure about the transaction and rebalancing cost associated to that 

specific portfolio, but mainly an idea of its diversification. The RC goes hand in hand with the distribution 

of weights: ceteris paribus, the higher the weight of the stock in the portfolio, the higher its risk 

contribution.  
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The following graphs represent stacked area chart of the paths of the thirty stock’s risk contribution 

and weights distribution along time for each portfolio in the United States26. The stocks picked are, as 

already said, among the largest capitalized ones in S&P500 and DJ30 of the last 25 years, and are the 

following: 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

                                                 
26 For the purpose of this section, only the United States equity portfolios are taken as the key figures. The 
European and Japanese RC and weight distribution figures (which are shown in annex #) follow essentially the 
same trends. 
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Figure 5.1.1 – Stock’s RISK CONTRIBUTION in the GMVc portfolio (U.S.) 
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Figure 5.1.2 – Stock’s WEIGHT DISTRIBUTION in the GMVc portfolio (U.S.) 
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Figure 5.1.3 – Stock’s RISK CONTRIBUTION in the GMVu portfolio (U.S.) 
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Figure 5.1.4 – Stock’s WEIGHT DISTRIBUTION in the GMVu portfolio (U.S.) 
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As shown in the first four graphs, the distribution over time of the weights and risk contribution 

of the two minimum variance portfolio are very similar. Each components seem to follow approximately 

the same trend, with the only obvious difference that the weights – and consequently, the risk contributions 

– of the GMVu can be negative. Nevertheless, the absolute sum of weight differences in the two portfolios 

reaches quite high values, especially in 2007, 2011 and 2010 - as revealed in the next figure - justifying the 

large differences in Turnover rates presented in Table 5.  

Figure 5.1.5 shows this evolution, where the weight differences between the GMVc and the 

GMVu portfolio are calculated at every week as follows: 

 

𝑤. 𝑑𝑖𝑓𝑓 =∑|𝑥𝑖
𝐺𝑀𝑉𝑢 − 𝑥𝑖

𝐺𝑀𝑉𝑐|

𝑛

𝑖=1

 

 

where 𝑛 = 30 and 𝑥𝑖 is the weight of the stock 𝑖.   

  

Next figures show the distributions of the MSR portfolio that, predictably, present the most 

chaotic pattern due to the need of persistent rebalancing. Moreover it can be seen how the portfolio 

concentrates more than 60% of the risk in only one stock for long periods, like McDonalds (the red one) 

from October 2008 to July 2012.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1.5 –Sum of GMVu and GMVc weights differences on time 
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The remaining graphs highlight the great dissimilarity between the more concentrated 

portfolios – GMV, MSR - and the ones diversified in every assets - MCap, ERC, EW – or 

almost every assets – MDP. Indeed, recalling what already illustrated in Section 3, the core 

property of the MDP shows that any stock not held by the MDP is more correlated to the MDP 

than any of the stocks that belong to it. Furthermore, all stocks belonging to the MDP have the 

same correlation to it. Thus, this property illustrates that all assets in the universe considered 

are effectively represented in the MDP, even if the portfolio does not physically hold them. 

Nonetheless these portfolios show a steady behavior in the distribution of weights and risk 

contribution, explaining the low turnover rates in Table 5.   
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Figure 5.1.6 – Stock’s RISK CONTRIBUTION in the MSR portfolio (U.S.) 

Figure 5.1.7 – Stock’s WEIGHT DISTRIBUTION in the MSR portfolio (U.S.) 
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Undoubtedly, the ERC (Figure 5.1.14 - 15) and the EW (Figure 5.1.10 - 11) portfolios 

show the most similar trends, with the former that adjust the weights on basis of constant stock’s 

risk contributions and the latter that takes constant weights as input. The ERC risk contributions 

bars are not perfectly constant () like the weights of the EW portfolio, simply because we the 

weights obtained in "𝑡", are used to calculate the risk contributions in "𝑡 + 1", just as like it has 

been done for the calculation of portfolio returns and the other indicators. 
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Figure 5.1.8 – Stock’s RISK CONTRIBUTION in the MCap portfolio (U.S.) 

Figure 5.1.9 – Stock’s WEIGHT DISTRIBUTION in the MCap portfolio (U.S.) 
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Figure 5.1.10 – Stock’s RISK CONTRIBUTION in the EW portfolio (U.S.) 

 

Figure 5.1.11 – Stock’s WEIGHT DISTRIBUTION in the EW portfolio (U.S.) 
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Figure 5.1.12 – Stock’s RISK CONTRIBUTION in the MDP portfolio (U.S.) 
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Figure 5.1.14 – Stock’s RISK CONTRIBUTION in the ERC portfolio (U.S.) 
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Figure 5.1.15 – Stock’s WEIGHT CONTRIBUTION in the ERC portfolio (U.S.) 
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Figure 5.1.13 – Stock’s WEIGHT DISTRIBUTION in the MDP portfolio (U.S.) 
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5.1.1. Value at Risk and Expected Shortfall 

Finally, we take into account a measurement for the ex-post, Value at Risk (VaR) and 

Expected Shortfall (ES). Starting from the weekly portfolio realized returns (𝑃. 𝑅𝑒𝑡) for each 

year, we consider their differences from one week to the next one, then sorting them year by 

year, we end up having a distribution of 52 return’s differences for every year. In this way, it is 

possible to capture the highest weekly portfolio drawdowns for every year, considering the 

percentile of the 99th and 95th of the distribution; meanwhile for the Expected Shortfall we 

consider the simple mean of the return’s differences tail distribution. 

Since the distribution includes only 52 returns at each periods, Table VaR-99 and Table 

ES-99 show very similar results. The four tables generally resemble the volatility figures in 

Table 2, in the way that the minimum variance portfolio show most of the times the lower 

values, followed by ERC and MDP. There are however some exceptions for example in the 

years of 1996 and 2001 where the MSR portfolio and the MSR 12, the most concentrated 

portfolios, show lower values of VaR and shortfall. As expected, during the financial turmoil 

of 2007-2009, the capitalization weighted portfolio, along with the other diversified portfolios, 

tend to be more risky with high level of drawdowns. Remarkably, in the same period, the 

minimum variance portfolios in particular, but also the MSR unconstrained, present good 

results, meaning that, in this case, the stock selection process based on historical values worked 

well.  
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Table 6 - Value at Risk (95%) 

 

 
Table 7 – Expected Shortfall (95%) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VaR (95%) GMVc GMVu MSR MSR_12 MSR_6 Mcap EW MDP ERC

1995 3.15 3.37 5.47 3.46 2.96 2.68 3.18 3.17 2.81

1996 4.13 4.21 4.44 3.94 4.22 4.42 3.83 4.49 3.95

1997 6.04 5.32 8.17 7.82 6.97 6.62 6.30 5.70 6.26

1998 5.87 4.96 7.91 8.23 6.98 7.14 6.80 6.39 6.26

1999 5.87 4.96 7.91 8.23 6.98 7.14 6.80 6.39 6.26

2000 4.54 4.73 6.53 5.78 5.31 5.65 5.18 5.23 4.83

2001 3.16 3.78 4.07 3.71 3.34 4.05 3.28 3.14 3.55

2002 6.14 6.62 6.45 6.74 8.86 8.05 7.48 6.30 6.94

2003 4.69 4.11 4.89 4.48 4.19 4.93 4.95 4.55 4.74

2004 3.24 2.98 3.82 3.24 2.88 3.01 3.01 3.59 3.02

2005 3.75 4.12 3.71 3.66 3.69 2.82 3.25 4.09 3.43

2006 2.47 2.95 3.18 2.95 2.53 2.57 2.67 2.83 2.63

2007 3.52 3.47 4.20 4.21 4.31 4.78 4.45 3.74 4.43

2008 6.25 8.50 7.11 6.95 8.66 10.38 9.27 7.04 8.48

2009 5.08 4.45 7.19 11.17 8.11 9.29 10.69 10.37 8.91

2010 3.42 3.48 4.96 4.66 4.20 4.52 4.63 3.95 4.18

2011 4.30 3.14 4.89 6.39 6.77 8.34 8.91 6.15 7.25

2012 2.46 3.16 3.18 3.46 3.39 3.18 3.26 3.08 2.85

2013 2.14 2.75 3.36 2.70 2.67 2.28 2.46 2.56 2.20

2014 2.17 2.65 3.18 2.30 2.57 2.72 2.68 2.21 2.38

ES (95%) GMVc GMVu MSR MSR_12 MSR_6 Mcap EW MDP ERC

1995 4.63 4.40 5.83 4.57 3.92 3.61 3.62 4.23 3.53

1996 5.94 6.58 4.71 4.67 4.68 4.81 4.55 5.09 4.67

1997 6.78 6.20 8.84 8.72 7.89 8.21 7.74 7.49 7.47

1998 8.20 8.11 11.22 10.58 9.71 9.60 9.43 9.13 8.84

1999 6.09 7.06 11.69 9.73 8.22 8.31 6.92 6.21 6.26

2000 5.22 6.28 6.91 6.48 5.69 6.10 5.47 5.48 5.40

2001 4.30 4.51 4.47 4.46 4.91 4.85 4.91 4.56 4.80

2002 10.45 9.85 11.75 12.40 12.69 12.56 11.74 9.41 11.63

2003 5.06 5.00 8.14 6.30 5.63 6.01 6.21 5.78 5.70

2004 3.92 4.03 5.71 4.40 3.89 3.99 4.08 4.63 3.99

2005 4.81 5.50 5.44 4.82 4.20 3.14 3.55 4.99 3.72

2006 2.75 3.19 3.70 3.52 2.61 3.15 2.85 3.11 2.82

2007 3.78 3.83 4.69 4.56 4.96 5.71 5.32 4.03 5.18

2008 8.73 9.55 9.65 10.25 12.44 15.04 15.73 12.39 13.88

2009 6.46 5.83 8.91 12.83 10.29 11.57 13.59 11.01 11.00

2010 4.13 4.37 5.73 5.25 5.04 5.81 5.66 4.09 4.93

2011 4.64 3.69 6.12 7.90 8.15 10.11 10.64 6.31 8.41

2012 3.53 4.13 4.34 4.04 3.91 4.45 4.60 4.02 4.07

2013 2.42 3.03 3.97 2.93 3.14 2.90 3.06 2.72 2.83

2014 2.36 2.87 3.57 2.82 2.65 3.37 3.11 2.44 2.78
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Table 8 - Value at Risk (99%) 

 

 

Table 9 – Expected Shortfall (99%) 

 

 

VaR (99%) GMVc GMVu MSR MSR_12 MSR_6 Mcap EW MDP ERC

1995 6.27 5.77 6.14 5.79 4.88 4.31 3.91 4.71 3.88

1996 6.79 7.59 4.94 5.08 5.28 5.17 4.88 5.88 5.30

1997 7.16 6.88 9.43 9.15 8.66 9.98 9.39 8.97 9.15

1998 10.61 11.00 13.62 13.01 13.39 12.87 12.72 12.75 12.41

1999 6.70 8.92 15.92 12.07 10.48 10.25 7.44 6.68 6.52

2000 5.50 7.98 7.13 6.89 6.06 6.43 5.65 5.63 6.11

2001 5.45 5.06 4.86 4.87 6.30 5.62 6.61 6.41 6.36

2002 14.23 12.71 18.75 18.80 17.54 18.06 16.93 12.67 16.76

2003 5.27 5.91 9.91 7.21 6.23 6.57 6.88 6.91 6.12

2004 4.82 5.32 6.84 5.31 5.20 4.68 5.44 5.69 5.28

2005 5.45 6.06 6.62 5.29 4.40 3.32 3.72 6.10 3.87

2006 2.88 3.52 4.17 3.83 2.70 3.37 3.00 3.41 2.90

2007 4.01 4.06 5.31 4.98 5.66 6.51 6.38 4.20 6.13

2008 11.46 10.14 12.30 13.58 17.06 17.01 19.10 16.90 17.43

2009 7.97 6.93 10.65 14.28 11.62 12.69 15.46 11.41 11.92

2010 4.53 5.39 6.46 6.00 6.08 6.75 6.41 4.26 5.40

2011 4.94 4.29 6.61 9.74 9.13 11.47 11.78 6.38 9.26

2012 4.34 4.70 5.30 4.43 4.19 5.13 5.19 4.83 4.70

2013 2.69 3.34 4.47 3.22 3.44 3.40 3.50 2.83 3.24

2014 2.52 3.05 3.83 3.23 2.73 3.99 3.52 2.58 3.10

ES (99%) GMVc GMVu MSR MSR_12 MSR_6 Mcap EW MDP ERC

1995 6.29 5.80 6.15 5.81 4.89 4.32 3.92 4.71 3.88

1996 6.79 7.59 4.95 5.08 5.30 5.18 4.89 5.90 5.31

1997 7.16 6.89 9.43 9.15 8.67 10.01 9.42 8.99 9.18

1998 10.65 11.04 13.65 13.05 13.45 12.93 12.77 12.81 12.47

1999 6.70 8.95 15.99 12.10 10.52 10.28 7.45 6.69 6.53

2000 5.51 8.00 7.13 6.89 6.07 6.43 5.65 5.64 6.13

2001 5.48 5.07 4.87 4.88 6.33 5.64 6.65 6.46 6.40

2002 14.28 12.75 18.87 18.90 17.62 18.15 17.02 12.72 16.84

2003 5.27 5.92 9.92 7.22 6.23 6.58 6.89 6.93 6.12

2004 4.84 5.34 6.85 5.32 5.22 4.69 5.47 5.71 5.30

2005 5.46 6.06 6.64 5.29 4.40 3.32 3.72 6.12 3.87

2006 2.88 3.53 4.18 3.83 2.70 3.37 3.00 3.41 2.90

2007 4.01 4.06 5.33 4.99 5.68 6.53 6.41 4.20 6.16

2008 11.50 10.15 12.34 13.63 17.13 17.01 19.13 16.96 17.46

2009 7.99 6.95 10.67 14.30 11.64 12.70 15.48 11.41 11.92

2010 4.54 5.40 6.48 6.01 6.10 6.76 6.42 4.26 5.41

2011 4.95 4.30 6.62 9.77 9.14 11.49 11.80 6.38 9.27

2012 4.35 4.71 5.32 4.44 4.19 5.13 5.19 4.85 4.71

2013 2.69 3.34 4.47 3.22 3.45 3.41 3.50 2.83 3.25

2014 2.52 3.05 3.83 3.23 2.73 3.99 3.52 2.58 3.10
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5.2. Cumulative Return Analysis 

 The cumulative return represents the aggregate amount that an investment has gained or 

lost over time, independent of the period involved.  Investors are more likely to see a compound return 

than a cumulative return, as the compound return figure will be annualized. This helps investors to compare 

different investment choices. However, it could be also significant to observe the total percentage increase 

in the value of an investment from the time it was purchased, and so, the evolution of the total return of  

different the portfolios as shown in the following graphs. 

The total cumulative return (TCR) for a generic portfolio is defined as in paragraph 5.1. with the 

difference that now the cumulated return is not reset every year: 

𝑇𝐶𝑅 = ∏(1 + 𝑃. 𝑅𝑒𝑡𝑖)

1044

𝑖=1

− 1 

𝑇𝐶𝑅 gives a measure of realized return, meaning what an investor would have actual obtained if 

he applied the weights calculated using, as inputs, the historycal data in the preceding 5 years.   

It is worth to compare the portfolios cumulative returns arising from the 𝑇𝐶𝑅  calculated as 

above with a purely theoretical situation in which the investor applies the weights calculated in t having as 

inputs also the stock ‘s return in t (e.g. the stock prices of t+1). Analytically this hypothetical  𝑇𝐶𝑅 

represented in the next three figures has been calculated using the portfolio returns as follows: 

𝐻𝑦𝑝. 𝑅𝑒𝑡𝑡 = 𝑅𝑒𝑎𝑙. 𝑅𝑒𝑡𝑡
𝑻 ∗ 𝒙𝒕 

 

While the realized portfolio returns, as already said, are computed as 

 

𝑃. 𝑅𝑒𝑡𝑡 = 𝑅𝑒𝑎𝑙. 𝑅𝑒𝑡𝑡
𝑻 ∗ 𝒙𝒕−1 

 

In the scenario of hypothetical, anyone would use a max Sharpe criterion to build its portfolio, 

which dominates all the others in every geographical area.  
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Figure 5.2.1 – Hypothetical portfolios Cumulative Returns in U.S.  
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Figure 5.2.2 – Hypothetical portfolio Cumulative Returns in Europe  
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The unit of measure in the vertical axis is not percentage, thus according to Figure 5.2.3, 1 euro 

invested the MSR portfolio in 1994 would return 400 euros in 2014. Moreover, the spike of the black line 

on the right side of the graph is due to the stock price of Fuji Heavy Industries, which increased from 423 

Yen at the end of September 2011 to 3578 in the same period of 2014. Even if not so striking, this positive 

result is achieved by the MSR also in terms of actual realized cumulative returns (Figure 5.2.6 ). This is 

one of the few cases in which the concentration of the MSR portfolio in one stock, with a Diversification 

Ratio equal to 1 (its minimum), delivers positive results.  

Nevertheless, in the real world, the performance of the MSR portfolio dramatically falls and the 

risk parity based portfolios outperform it by a long way in every geographical area considered in the 

analysis.   

In particular, the EW, MDP and the ERC show very similar trend in United States, Figure 5.2.4 

outperforming all other portfolios. In Europe (Figure 5.2.5) , the situation is a bit different, since the 

“winner” in terms of cumulative returns is the MDP, while the ERC and the EW are on the same level as 

the MSR and the GMVc. In Japan (Figure 5.2.6), where the trends are much more volatile than in the other 

two regions, the best cumulative returns are obtained not only by the MDP, ERC and EW but also by the 

GMVu. 
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Figure 5.2.3 – Hypothetical portfolio Cumulative Returns in Japan  
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Figure 5.2.4 – Realized portfolio Cumulative Returns in U.S.  
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Figure 5.2.5 – Realized portfolio Cumulative Returns in Europe  
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5.2.1. Transaction Costs and Diversification Ratio 

 Considering the transaction costs, as estimated in paragraph 4.2.2, the situation little changes, but 

the leitmotif remains the same. The 15 bps “fee” applied to the weekly change in the portfolio weights 

(rebalancing) does not affect the allocation methods with low turnover rate such as the MCap and the ERC, 

it slightly affects the MDP, while it worsen the situation of the MSR and the GMVu because of their high 

level of turnover. 
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Figure 5.2.6 – Realized portfolio Cumulative Returns in Japan  

 

Figure 5.2.8 – Cumulative Returns net of transaction costs (U.S.) 
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Figure 5.2.7 – Cumulative Returns net of transaction costs (Europe) 
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Figure 5.2.9 – Cumulative Returns net of transaction costs (Japan) 
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Figure 5.2.10 – Portfolio turnover rates in US 

Figure 5.2.11 – Portfolio turnover rates in Europe 
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It is remarkable to note that the maximum level of 2 in the turnover rate is reached only by the 

Japanese MSR portfolio. This happens because for three times, in the middle of 2012 the portfolio is fully 

rebalanced from one week to another. Specifically, the weights are concentrated at 100% in one stock 

(Fanuc Corp) on the 18 of June, then in another stock (Fujifilm Holdings) for three weeks, then in another 

one (JGC Corp) and then back in the Fujifilm Holdings on the 23 of July. This kind of behavior, which is 

not presented in any other portfolios or regions, it is due to the great volatility of the Japanese Nikkei 

constituents that affects, in this way, the inputs (historical stock returns and their variance/covariance) for  

the calculation of the MSR weights. 

 Furthermore, only in the MSR Japanese portfolio happens that, sometimes, all the weight is 

concentrated in one stock. Because of this, the Diversification Ratio reaches its minimum value of 1 as 

shown in the figure 5.2.13.  

Obviously, it is not the optimal choice to concentrate the portfolio in only one asset, especially in 

terms of risk management, but also in terms of total return. Indeed, it was observed that the MSR portfolios 

in all the three regions deliver poor results, and the stock picking method based on this mechanism does 

not work properly. 
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Figure 5.2.12 – Portfolio turnover rates in Japan 
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5.2.2. Max Sharpe Ratio with risk contribution constraints  

To limit the shortcomings of the MSR seen above, it might be helpful to introduce some 

boundaries on the maximum level of single stock risk contribution allowed at any time in the portfolio. 

Specifically two constraints are introduced in the analysis, providing that any stock held in the portfolio 

cannot exceed the 12% or 6% of its total risk. In this way, the resulting portfolio will always hold at least 

9 and 17 stocks, respectively for the 12% and 6% boundaries. Therefore, some of the problems related to 

the poor diversification of the MSR could be limited.  

For a stock  𝑖 , at every week we have that 

𝑥 = argmax
𝑥𝑇

√𝑥𝑇Σ𝑥
 

Subject to   

𝑅𝐶𝑖(𝑥1, … , 𝑥𝑛) = 𝑥𝑖
𝜕𝜎(𝑥)

𝜕𝑥𝑖
= 𝑥𝑖

(Σ𝑥)𝑖

√𝑥𝑇Σ𝑥
≤ 12% (𝑜𝑟 6% 

 

These restrictions are clearly visible in the next two figures showing the distribution of stocks risk 

contribution for the two constrained portfolios in United States.  
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Figure 5.2.13 – Diversification ratio of MSR portfolios 
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It is possible to observe and compare, in the following three figures, the hypothetical cumulative 

return obtained if the stock prices of t+1 are known in t, with the actual realized cumulative returns (not 

considering the transaction costs).  Clearly, from the theoretical point of view represented in the left-hand 

side of the figures, the unconstrained portfolio always beats the other two, and the MSR with 12% risk 

contribution boundary (MSR 12) always outperforms the one with the tighter boundary at 6% (MSR 6). 

This happens because the maximization of returns over the volatility imposed by the Sharpe Ratio criterion 

delivers inferior results whenever it has some restrictions preventing it to pick only the stocks with the 

higher Sharpe Ratio. 
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Figure 5.2.14 – Stocks Risk Contribution MSR 12 (US)  
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Figure 5.2.15 – Stocks Risk Contribution MSR 6 (US) 
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Figure 5.2.17 – Hypothetical and Realized Cumulative Returns in Japan  

 

Figure 5.2.18 – Hypothetical and Realized Cumulative Returns in U.S. 
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Figure 5.2.16 – Hypothetical and Realized Cumulative Returns in Europe  
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However, as it could be expected considering the previous results, the situation change completely 

considering the realized returns indicated in the right-hand side of the figures. Specifically, the 

unconstrained MSR delivers higher total return both in Europe and Japan, while in the US it is the least 

profitable, even though all the three have quite similar trends. It can be observe how the green line of MSR 

12 tends to stay below the other two (at least in Europe and Japan), while in the theoretical framework it 

is always in the middle. It is also quite interesting to see how the MSR 6 outperforms the MSR 12 in every 

region, suggesting that a more diversification may lead to higher returns, at least in the U.S. case. 

Considering also the Tables in Section 5.1, regarding U.S. we can observe, as expected, the improvement 

that the MSR portfolio has when adding the constraints, in terms of volatility, diversification ratio, turnover 

ratio, VaR and ES.  

 

5.3. Conclusions 

In the first part of this Section we analyzed the performance of the different portfolio 

allocation methods with regards to the United States investment universe. From those results it 

was possible to observe how all the portfolios show a common trend in terms of returns and 

volatility, during both periods of market crisis or economic growth, nonetheless risk based 

portfolios present overall slightly better performance, translated in higher Sharpe ratio values. 

Considering the Diversification Ratio (Choueifaty & Coignard) and the turnover rate, we saw 

how the MDP maximizes the first and the ERC minimizes the second, delivering the best results 

in terms of diversification and transaction costs. On the other hand, the GMVc and GMVu seem to be 

the best choices when taking into account measures of drawdown and shortfall. 

In the second part of the Empirical Evidence we focused on the cumulative return analysis 

considering also the results from the other geographical area. On one hand, we considered the 

return of a hypothetical portfolio built as if the future stock prices at “t+1” were known to the 

portfolio managers. In a case like that, the MSR portfolio would largely outperform all the other 

strategies. Nevertheless, in the real world, the return of the MSR portfolio dramatically falls 

and the risk parity based portfolios greatly outperform, in every geographical area considered 

in the analysis. This difference is striking especially considering the fact that the weights of the 

portfolios are calculated on the basis of 5 years of weekly historical stock prices. Therefore, 

only by moving one week forward the range considered, the portfolios’ performance radically 

change. 
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In the last part of this section we showed the results of cumulative returns adjusted for 

the transaction costs, confirming the benefits of the risk parity strategies and their superiority 

also in Europe and Japan. Finally, we introduced a new technique of portfolio construction 

consisting in putting some limits of single stock risk contribution to the MSR portfolio. The 

aim was to try to reduce the shortcomings of this optimized method, both in terms of high 

concentration and poor performance. By construction the portfolios obtained become more 

diversified in terms of weights and risk contribution, while their cumulative returns show 

different trends across the regions, but with an overall improvement. In the United States case, 

the benefits grasped by the constrained MSR are the highest, as demonstrated by the level of 

the Sharpe ratio which is consistently superior to the original portfolio in most of the periods (in 

particular in very volatile market phases). 

From what seen in the Empirical Evidence, the risk parity approach seems a good way to 

obtain well diversified portfolio delivering competitive returns. Indeed, this is the main reason 

of the success of risk parity funds. It is not a coincidence that many operators from the buy-side 

financial industry are changing their investment views, becoming more sensitive to the risk management, 

in the recent crisis of credit, equity, hedge funds and sovereign bond markets.  

In particular, from the evidence obtained in our analysis two portfolios could be pick as potentially 

“winners”: the MDP and the ERC. These two methods share the logic of aiming to manage the 

portfolio risks, but with a diverse approach; in fact, the weights obtained by optimizing the 

functions on which they are built on, are completely different (i.e. they pick different assets: 

the ERC is by construction always diversified in all the stocks, while the MDP is , from this 

point of view, more “concentrated”). Nonetheless, both of them deliver extraordinary results 

not only in terms of low volatility, high diversification, low transaction costs and fairly low 

drawdown risks, but they also deliver a satisfying rate of return. In particular, they 

systematically outperform across all the three regions considered, not only the MSR, but also  

the capitalization-weighted and the minimum variance portfolios.  
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6. Appendix 

6.1. Historical stock prices 

Next figures show the price evolution of the stocks included in the investment universe 

of the analysis. The stocks picked are thirty large-cap from each geographical area. The prices 

are expressed in local currency. In the case of Europe, the prices of the constituents of CAC40 

and DAX30 are expressed in Euro, even before its introduction in 1999 (the exchange rate used, 

is the official one adopted in the moment of the introduction in France and Germany). 

Meanwhile the prices in the British FTSE100 are represented in pound sterling (GBP), although 

the stocks are usually traded in pence sterling (GBX or GBp).  

 

United States (USD $) - DJ30 and S& P500  
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6.2. Diversification ratio charts 

Next figures27 show the evolution, in the three geographical regions, of portfolio 

Diversification Ratio, the measure introduced by Choueifaty and Coignard in 2008. 

Considering what already stated in the previous sections, it is not surprising to find the black 

line of the MSR portfolio at the bottom in all the graphs. In Japan it even touches, more than 

once, the lower bound value of one. On the other hand, it is quite interesting to observe how the 

GMV achieves decent level of diversification in this sense, even though this portfolio is not 

diversified at all: indeed, in our analysis the GMVc usually picks about 25% - 40% of the 

available stocks in the universe (from 7 to 12 out of 30). Nonetheless, it does much better than 

the EW and the MCap, which by constructions are always diversified in all the assets. This 

happens, of course, because the DR is the ratio between the portfolio's weighted average asset 

volatility and its actual volatility. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
27 The GMVu portfolio is not represented in the graphs because its value in terms of Diversification Ratio is not 
much significant since we are comparing long-only portfolios: its values would be, anyways, slightly lower than 
the GMVc. 
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Figure 6.2.1 – Portfolio Diversification Ratio in United States.  
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Figure 6.2.3 – Portfolio Diversification Ratio in Japan 
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Figure 6.2.2 – Portfolio Diversification Ratio in Europe.  
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6.3. Rolling volatility charts 

The portfolio volatility has already been presented in Table 2 (5.1) for the United States. 

In this section, we show the graphs for each allocation method in every region. Starting from 

the weekly portfolio returns, the volatility is calculated as the annualized standard deviation on 

a one-year rolling base. The values are slightly different from the Table 2, because now we start 

the analysis from 3 October 1994, instead of starting from 2 January 1995. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3.1 – Portfolio volatility in United States 

Oct-96 Oct-98 Oct-00 Oct-02 Oct-04 Oct-06 Oct-08 Oct-10 Oct-12 Oct-14
5

10

15

20

25

30

35

40

45

 

 

ERC

MCap

GMVc

GMVu

MSR

MDP

EW

Figure 6.3.2 – MSR portfolios volatility in United States 
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Figure 6.3.3 – Portfolio volatility in Europe 
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Figure 6.3.4 – MSR Portfolio volatility in Europe 
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Figure 6.3.6 – MSR Portfolio volatility in Japan 
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Figure 6.3.5 – Portfolio volatility in Japan 
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6.4. Matlab Codes 

In this section, we will include the main part of the Matlab codes implemented to achieve 

the empirical evidence outcomes, divided in scripts and functions. It must be noted that for 

some computations, only Excel have been used (i.e. for the calculation of portfolio cumulative 

returns and single stock percentage returns). 

 

 Portfolio weights   

clc 

clear all 

tic,  

  

[A,B]    =   xlsread('US_stocks') ; % Weekly Prices                     

prices   =   A;                                           

names    =   B(6,2:end); % Stock Names and Ticker                     

ret      =   price2ret(prices,'','periodic');   

[T,N]    =   size(ret); %1304 Weekly returns and 30 Stocks 

wind     =    fix(T/5); % 260 = 5 years 

 

sigma_all     =       zeros(N,N,T-wind);                         

std_all       =       zeros(N,T-wind); 

mu_all        =       zeros(T-wind,N); 

wGMVc         =       zeros(N,T-wind); 

wGMVu         =       zeros(N,T-wind); 

wEW           =       zeros(N,T-wind); 

wERC          =       zeros(N,T-wind); 

wMDP          =       zeros(N,T-wind); 

wMSR          =       zeros(N,T-wind); 

wMSR_12       =       zeros(N,T-wind); 

wMSR_6        =       zeros(N,T-wind); 

  

LB    = zeros(1,N);  

UB    = ones(1,N);  

beq   = 1; 

b     = -eye(N); 

opts  = optimset('Display','off','algorithm','active-set'); 

opts2 = optimset('Display','off','algorithm','sqp'); 

  

for i                 = 1:(T-wind) 

    sigma_all(:,:,i)  = cov(ret(i:i+wind,:)); 

    mu_all(i,:)       = mean(ret(i:i+wind,:)); 

    std_all(:,i)      = sqrt(diag(sigma_all(:,:,i))); %Var/Cov 

Matrix 

    

%% Long-Only GMV (GMVc) 

wGMVc(:,i) =  quadprog(sigma_all(:,:,i),LB,b,LB', ... 

    UB,beq,LB',UB',UB'/N,opts);   
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for j = 1:size(wGMVc,1) 

             for k = 1:size(wGMVc,2) 

                      if    wGMVc(j,k)<0 

                            wGMVc(j,k)=0; 

                      end 

              end 

     end 

  

%% Unconstrained GMV (GMVu) 

wGMVu(:,i)   =   (inv(sigma_all(:,:,i))*ones(N,1))/ ... 

       (ones(1,N)*inv(sigma_all(:,:,i))*ones(N,1));   

      

%% Equally Weighted (EW) 

wEW         =   (1/N)*ones(N,T-wind); 

 

%% Equally Risk Contribution (ERC)  

f1           =   @(w1) ERC_FUNCTION(w,sigma_all(:,:,i));  

w0           =   1/N*ones(N,1); 

wERC(:,i)    =   fmincon(f1,w0,[],[],UB,beq,LB,UB',[],opts2);                    

   

%% Most Diversified Portfolio (MDP)  

f2       = @(w2) 

MDP_FUNCTION(w2,std_all(:,i),sigma_all(:,:,i)); 

w0       = 1/N*ones(N,1); 

wMDP(:,i) = fmincon(f2,w0,[],[],UB,beq,LB',UB',[],opts2);                        

     

%% Max Sharpe Ratio (MSR) 

f3  = @(w3) MSR_FUNCTION(w3,mu_all(:,i),sigma_all(:,:,i)); 

w0        = 1/N*ones(N,1); 

wMSR(:,i  = fmincon(f3,w0,[],[],UB,beq,LB',UB',[],opts);        

 

%% MSR with RC constraints(MSR_12 and MSR_6) 

F4  = @(w4) MSR_con_fun(w4,sigma_all(:,:,i)); 

w0           = 1/N*ones(N,1); 

wMSR_12(:,i) = fmincon(f,w0,[],[],UB,beq,LB',UB',f4,opts);      

     

end 

 

 

 ERC Function 

function [x]=ERC_FUNCTION(w1,Sigma) 

x = 0; 

R = Sigma*w1; 

for i=1:size(w1) 

    for j=1:size(w1) 

        x = x + (w1(i)*R(i)-w1(j)*R(j))^2; 

    end 

end 

x = x/(w1'*R); 
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end 

 

 

 MDP Function 

function f = MDP_FUNCTION(w2,std,sigma)  

f = -(w2'*std)*(w2'*sigma*w2)^(-.5);  

end 

 

  

 MSR Function 

function f = MSR_FUNCTION(w3,mu,sigma)  

f = -((mu*w3)/sqrt(w3'* sigma*w3)); 

end 

 

 

 MSR constrained Function 

function [c,ceq] = MSR_con_fun(w4,z) 

ceq=0; 

RC=(w4.*(z*w4))/(w4'*z*w4); 

URC = 0.12*ones(size(RC)); % 12% RC constraint 

c = RC-URC;   

end 

 

 

 Portfolio percentage returns 

ren      = ren(2:end,:); 

  

wERC     = wERC(:,1:end-1); 

wMSR     = wMSR(:,1:end-1); 

wGMVc    = wGMVc(:,1:end-1); 

wGMVu    = wGMVu(:,1:end-1); 

wEW      = wEW(:,1:end-1); 

wMDP     = wMDP(:,1:end-1); 

wMCap    = wMCap(:,1:end-1); 

wMSR_12  = wMSR_12(:,1:end-1); 

wMSR_6   = wMSR_6(:,1:end-1); 

  

for i=1:length(ren) 

    muGMVu(i)          =        ren(i,:)*wGMVu(:,i); 

    muERC(i)           =        ren(i,:)*wERC(:,i); 

    muGMVc(i)          =        ren(i,:)*wGMVc(:,i);  

    muEW(i)            =        ren(i,:)*wEW(:,i); 

    muMSR(i)           =        ren(i,:)*wMSR(:,i); 

    muMDP(i)           =        ren(i,:)*wMDP(:,i); 

    muMCap(i)          =        ren(i,:)*wMCap(:,i); 

    muMSR_12(i)        =        ren(i,:)*wMSR_12(:,i); 

    muMSR_6(i)         =        ren(i,:)*wMSR_6(:,i); 
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end 

  

 

 Portfolio cumulative returns 

CumRet  = xlsread('PTF_CumRet');  

 

% PTF_CumRet are the portfolio cumulative returns computed 

throush Excel, starting from the percentage returns as above.  

 

ERC     = CumRet(:,1); 

EW      = CumRet(:,2); 

GMVc    = CumRet(:,3); 

GMVu    = CumRet(:,4); 

MCap    = CumRet(:,5); 

MDP     = CumRet(:,6); 

MSR     = CumRet(:,7); 

MSR_12  = CumRet(:,8); 

MSR_6   = CumRet(:,9); 

 

%% Plots  

figure (1) 

hold on 

plot(ERC,'b','DisplayName','ERC'); 

plot(MCap,'r','DisplayName','MCap'); 

plot(GMVc,'g','DisplayName','GMVc'); 

plot(GMVu,'m','DisplayName','GMVu'); 

plot(MSR,'k','DisplayName','MSR'); 

plot(MDP,'y','DisplayName','MDP'); 

plot(EW,'c','DisplayName','EW'); 

hold off 

  

figure (2) 

hold on 

plot(MSR,'b','DisplayName','MSR'); 

plot(MSR_12,'g','DisplayName','MSR 12'); 

plot(MSR_6,'r','DisplayName','MSR 6'); 

hold off 

 

 

 Portfolio volatility 

wind=52; % 1-year rolling base 

  

for i = 1:1043-wind 

SigERC(i)      = std(muERC(i:i+wind))*sqrt(52)*100; 

SigMCap(i)     = std(muMCap(i:i+wind))*sqrt(52)*100;     

SigGMVc(i)     = std(muGMVc(i:i+wind))*sqrt(52)*100; 

SigGMVu(i)     = std(muGMVu(i:i+wind))*sqrt(52)*100; 

SigMSR(i)      = std(muMSR(i:i+wind))*sqrt(52)*100; 

SigMDP(i)      = std(muMDP(i:i+wind))*sqrt(52)*100; 

SigEW(i)       = std(muEW(i:i+wind))*sqrt(52)*100; 
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SigMSR_6(i)    = std(muMSR_6(i:i+wind))*sqrt(52)*100; 

SigMSR_12(i)   = std(muMSR_12(i:i+wind))*sqrt(52)*100; 

end 

  

%% Plots   

figure (1) 

hold on 

plot(SigERC,'b','DisplayName','ERC'); 

plot(SigMCap,'r','DisplayName','MCap'); 

plot(SigGMVc,'g','DisplayName','GMVc'); 

plot(SigGMVu,'m','DisplayName','GMVu'); 

plot(SigMSR,'k','DisplayName','MSR'); 

plot(SigMDP,'y','DisplayName','MDP'); 

plot(SigEW,'c','DisplayName','EW'); 

hold off 

 

 

 Transaction Costs 

%% Turnover 

TO_ERC_US   = sum(abs(diff(wERC_US')'));   

TO_GMVc_US  = sum(abs(diff(wGMVc_US')')); 

TO_GMVu_US  = sum(abs(diff(wGMVu_US')')); 

TO_MSR_US   = sum(abs(diff(wMSR_US')')); 

TO_MSR_12   = sum(abs(diff(wMSR_12')')); 

TO_MSR_6    = sum(abs(diff(wMSR_6')')); 

TO_MDP_US   = sum(abs(diff(wMDP_US')')); 

TO_MCap_US  = sum(abs(diff(wMCap_US')')); 

 

%% Treansaction costs 

Adj_muERC     =  muERC(1:end)-(TO_ERC.*0.15e-2)';      

Adj_muGMVc    =  muGMVc(1:end)-(TO_GMVc.*0.15e-2)';  

Adj_muGMVu    =  muGMVu(1:end)-(TO_GMVu.*0.15e-2)'; 

Adj_muMSR     =  muMSR(1:end)-(TO_MSR.*0.15e-2)'; 

Adj_muMSR_12  =  muMSR_12(1:end)-(TO_MSR_12.*0.15e-2); 

Adj_muMSR_6   =  muMSR_6(1:end)-(TO_MSR_6.*0.15e-2); 

Adj_muMDP     =  muMDP(1:end)-(TO_MDP.*0.15e-2)'; 

Adj_muMCap    =  muMCap(1:end)-(TO_MCap.*0.15e-2)'; 

 
%% Plots 

figure(1);  

ax_size=[0 1045 0 1]; 

  

subplot 326; 

plot(TO_ERC); 

axis(ax_size); 

ylabel('Turnover'); 

xlabel('Time'); 

title('ERC'); 

  

subplot 324; 
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plot(TO_MCap); 

axis(ax_size); 

ylabel('Turnover') 

xlabel('Time'); 

title('MCap'); 

  

subplot 321; 

plot(TO_GMVc); 

axis(ax_size); 

ylabel('Turnover'); 

xlabel('Time'); 

title('GMVc'); 

  

subplot 322; 

plot(TO_GMVu); 

axis(ax_size); 

ylabel('Turnover'); 

xlabel('Time'); 

title('GMVu'); 

  

subplot 325; 

plot(TO_MDP); 

axis(ax_size); 

ylabel('Turnover'); 

xlabel('Time'); 

title('MDP'); 

  

subplot 323; 

plot(TO_MSR); 

axis(ax_size); 

ylabel('Turnover'); 

xlabel('Time'); 

title('MSR'); 

  

figure(2);  

ax_size=[0 1045 0 1.1]; 

  

subplot 311; 

plot(TO_MSR); 

axis(ax_size); 

ylabel('Turnover'); 

xlabel('Time'); 

title('MSR'); 

  

subplot 312; 

plot(TO_MSR); 

axis(ax_size); 

ylabel('Turnover') 

xlabel('Time'); 
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title('MSR 12%'); 

  

subplot 313; 

plot(TO_MSR); 

axis(ax_size); 

ylabel('Turnover'); 

xlabel('Time'); 

title('MSR 6%'); 

 

 

 VaR and ES 

a = (muERC(13:end)); %starting from 2 Jan 1995  

b = zeros(1030,1); 

  

for i = 1:length(b) 

    b(i) = a(i+1)-a(i); 

end      

  

% y=99 x=95 

b1  =  sort(b(1:52)); % 1995 

VaRx1 =  abs(prctile(b1,5)); 

VaRy1 =  abs(prctile(b1,1)); 

ESx1  =  abs(prctile(b1,0)+prctile(b1,1)+prctile(b1,2)+ ... 

             prctile(b1,3)+prctile(b1,4)+prctile(b1,5))/6; 

ESy1  =  abs(prctile(b1,0)+prctile(b1,1))/2; 

  

b2  =  sort(b(53:105)); % 1996 

VaRx2 =  abs(prctile(b2,5)); 

VaRy2 =  abs(prctile(b2,1)); 

ESx2  =  abs(prctile(b2,0)+prctile(b2,1)+prctile(b2,2)+ ... 

             prctile(b2,3)+prctile(b2,4)+prctile(b2,5))/6; 

ESy2  =  abs(prctile(b2,0)+prctile(b2,1))/2; 

 

… 

 

b20  =  sort(b(992:1030)); % 2014 

VaRx20 =  abs(prctile(b20,5)); 

VaRy20 =  abs(prctile(b20,1)); 

ESx20 =  

abs(prctile(b20,0)+prctile(b20,1)+prctile(b20,2)+... 

        prctile(b20,3)+prctile(b20,4)+prctile(b20,5))/6; 

ESy20 =  abs(prctile(b20,0)+prctile(b20,1))/2; 
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