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Introduction

The purpose of the following thesis is to review the use of the Poincaré-
Melnikov method in the detection of homoclinic phenomena, and hence chaotic
dynamics.

The first chapter gives some basic definitions from the theory of dynamical
systems and the mathematical objects necessary for the discussion. The second
chapter presents two of the most important theorems in the theory of nonlin-
ear dynamical system and the definitions of homoclinic and heteroclinic points.
Chapter 3 deals with chaotic dynamics. This type of dynamics is explained
through the horseshoe map, invented by S. Smale in the 1960’s, and symbolic
dynamics. Furthermore, the Smale-Birkoff homoclinic theorem is presented,
that connects the existence of transverse homoclinic points to chaotic dynam-
ics. Chapter 4 concerns the Poincaré-Melnikov method and its extension in
the case of heteroclinic orbits. This method introduced by Poincaré in [13],
and developed by Melnikov in [9], is still used today to prove the existence
of chaotic dynamics in various fields of physics, such as fluid dynamics see
[11], mechanics see [8], or astrophysics see [1]. This method is even used in
the detection of chaotic orbits in the high energy accelerators like the LHC at
CERN, see [10].

An application of the Poincaré-Melnikov method is given in chapter 5,
where it is applied to detect the existence of chaotic phenomena in an interest-
ing problem of fluid dynamics, the two-vortex problem. Kozlov in [6] studied
the aforementioned problem with a perturbation along the y-axis. In this case
the Poincaré-Melnikov method succeeds in predicting chaotic dynamics and
this is confirmed by numerical evidence. We also considered a perturbation
along the x-axis, where the Poincaré-Melnikov method does not assure that the
system is chaotic. However, the presence of chaos is confirmed by numerical
evidence.
Acknowledgments I wish to thank prof. Massimiliano Guzzo for some very
useful conversations on the point vortex systems.
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1. Dynamical systems

We recall some basic definitions, following [4].

1.1 Basic definitions
Definition 1.1. A differential dynamical system is a triplet (G,M, φ), where
M is a differentiable manifold, called the phase space, G = Z or R, and
φ : G ×M → M, (t, x) 7→ φ(t, x) =: φt(x), is a differentiable map with the
following properties:

• φt :M→M, ∀t ∈ G, is a diffeomorphism;

• φ0 = id;

• φt+s = φt ◦ φs for each t, s ∈ G.

The orbit of x ∈ M is the set O(x) =
{
φt(x)|t ∈ G

}
. A point x∗ ∈ M

is a fixed point for the dynamical system if φt(x∗) = x∗ ∀t ∈ G. A subset
U ⊂ M is said to be invariant if φt(U) ⊆ U ∀t ∈ G. For more information
about dynamical system see [14], [4] or [3].

1.2 Iteration of diffeomorphisms
The discrete case G = Z is the case of iteration of diffeomorphisms. If f :
M→M is a diffeomorphism, let

φ1 = f ; φt = f ◦ · · · ◦ f︸ ︷︷ ︸
t times

=: f t;

φ0 = id φ−t = f−1 ◦ · · · ◦ f−1︸ ︷︷ ︸
t times

=: f−t ∀t ∈ N;

then (Z,M, φ) is a discrete dynamical system. The fixed points of f are the
fixed points of the dynamical system. Fixed points of the k-th composition of
f with itself, fk(x) = x, are called periodic points of the dynamical system of
period k.

Definition 1.2. A fixed point x of a diffeomorphism f , is said to be hyperbolic
if dfx, the linearization of f evaluated in x, has no eigenvalues of modulus 1.

3
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Hyperbolic points will play a major role in the following chapters.
Moreover, two dynamical systems, (Z,M, φ) and (Z,N , ψ) are topologically

conjugate if there exists a homeomorphism h :M→N such that

h ◦ φt = ψt ◦ h ∀t ∈ Z

This implies that h takes the orbits of (Z,M, φ) to orbits of (Z,N , ψ).

1.3 Flows
The continuous case G = R is the case of flows of vector fields. A vector field
X :M→ TM, can be seen as a differential equation

ẋ = X(x) (1.1)

The differential equation (1.1) gives the flow φ of X which satisfies

∂

∂t
φt(x) = X(φt(x)), φ0 = id

Therefore, (R,M, φ) is a continuous dynamical system. Fixed points of
the dynamical system are the zeros of the vector field, X(x) = 0.

Definition 1.3. A fixed point x of a flow φ of X is hyperbolic if dXx, the
linearization evaluated at x, has no eigenvalues with zero real part.

1.4 Time dependent vector fields
A time dependent vector field, called non autonomous, gives a differential
equation

ẋ = X(x, t) (1.2)
Let xt(x0; t0) be the solution of (1.2). Due to the time dependence of X, if
t0 6= t′0, generally xt−t0(x0; t0) 6= xt−t

′
0(x0; t′0). The equation (1.2) does not

define a flow, hence a dynamical system.
The dynamics is thus studied through the extended vector field

ẋ = X(x, τ) τ̇ = 1 (1.3)

In the extended phase spaceM×R, let the flow of equation (1.3) be Φt(x0, τ0),
then Φt(x0, τ0) = (φt(x0, τ0), t+τ0) where φt(x0, τ0) = xt(x0; τ0). (R,M×R,Φ)
is a dynamical system and its study is completely equivalent to the study of
(1.2).

1.5 Time periodic vector fields
Let X be a time periodic vector field with period T

X(x, t) = X(x, t+ T ) ∀x ∈M,∀t ∈ R
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As we now explain, in this case, the extension can also be done to the quotient
extended phase spaceM× S1

T , where S1
T = R/TZ. Indeed, since the solutions

are invariant under time translation of the period T

xt(x0; t0 + T ) = xt(x0; t0) ∀x ∈M,∀t0 ∈ R

the extended flow has the property

Φt(x0, τ0 + T ) =
(
φt(x0, τ0 + T ), τ0 + t+ T

)
=
(
φt(x0, τ0), τ0 + t+ T

)
= Φt(x0, τ0) + (0, T )

Calling Φ̃ the flow of the differential equation

ẋ = X(x, τ), τ̇ = 1 with (x, τ) ∈M× S1
T

we have then
Φ̃t ◦ π = π ◦ Φt

where π : M× R → M× S1
T = (x, τ) 7→ (x, τ mod T ). The system can be

studied equivalently inM× R orM× S1
T .

1.6 Poincaré maps
In [13] Poincaré introduced the idea of analyzing flows through an associated
discrete dynamical system, called the Poincaré map.

In the case of a time periodic vector field, extended in the phase space
M× S1

T , the subset

Στ0 =
{

(x, τ) ∈M× S1 : τ = τ0
}

is intersected by all orbits of the system. The map at fixed time T of the flow

ΦT (x0, τ0) =
(
φT (x0, τ0), τ0

)
is a map from Στ0 to itself.

Definition 1.4. The map

P τ0(x0) = φT (x0, τ0) P τ0 : Στ0 → Στ0 (1.4)

is called Poincaré map.

P τ0 is a diffeomorphism, so the Poincaré map gives a discrete dynamical system
on Στ0 .

Proposition 1.5. Poincaré maps relative to different sections are conjugate.

Proof. Let τ0, τ1 ∈ S1
T , with relative Poincaré map P τ0 = Στ0 → Στ0 and

P τ1 = Στ1 → Στ1 . Since ψ := Φ(τ1−τ0) : Στ0 → Στ1 is a diffeomorphism and
ψ ◦ P τ0 = P τ1 ◦ ψ, hence P τ0 and P τ1 are conjugate.
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This proves that the choice of the section Στ0 is not important. The dy-
namics is conjugate for all sections.

The study of a time periodic system through its Poincaré map P τ0 , gives
many insights. For example, fixed point or periodic points for P coincide with
periodic orbits in the flow. If the system has an invariant set U , then the
Poincaré map has also an invariant set given by U ∩ Σ0. Vice Conversely, if
the Poincaré map has an invariant set, also the flow has an invariant set.

See [19] for a more in depth analysis of Poincaré maps or [4] for examples
of use of Poincaré maps.



2. Stable and unstable manifolds

Following Zehnder in [21], we restrict ourselves to the case of M = Rn, and
consider the dynamical system given by (G,Rn, φ), where G = R or G = Z. If
the system has a fixed point p, it is of interest to consider the sets of points
that converge or diverge to it.

2.1 The stable and unstable sets
Definition 2.1. The stable and unstable sets for a fixed point p are

W s(p) =
{
x ∈ Rn : lim

t→+∞
φt(x) = p

}
W u(p) =

{
x ∈ Rn : lim

t→−∞
φt(x) = p

} (2.1)

In general, these sets do not have a well defined structure. They are invari-
ant, non empty since p ∈ W s,u(p), and, in the case of flows, connected.

If the fixed point is hyperbolic, they have more properties. To state these
properties one needs to first consider a local definition of these sets.

Definition 2.2. In a neighborhood U of p the sets

W s
U(p) =

{
x ∈ U : φt(x) ∈ U ∀t ≥ 0 and lim

t→+∞
φt(x) = p

}
W u
U(p) =

{
x ∈ U : φt(x) ∈ U ∀t ≤ 0 and lim

t→−∞
φt(x) = p

} (2.2)

are called the local stable and local unstable sets of p in U .

If p is hyperbolic, these local sets have the following properties

Theorem 2.3 (Hadamard-Perron, 1908). Assuming that p is a hyperbolic fixed
point of (G,Rn, φ) fixed point p. Let Es and Eu be the stable and unstable sub-
spaces of the linearization of the dynamical system in p. Then in a sufficiently
small neighborhood U of p,

1. W s
U(p) and W u

U(p) are embedded submanifolds of Rn and ns and nu their
dimension;

2. TpW s
U(p) = Es and TpW u

U(p) = Eu;

7
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3. ∃δu, δs, λu, λs > 0, such that

∥∥∥φt(x)− p
∥∥∥ ≤ δse

−λst‖x− p‖ ∀t ≥ 0 and x ∈ W s
U(p),∥∥∥φt(x)− p

∥∥∥ ≤ δue
−λut‖x− p‖ ∀t ≤ 0 and x ∈ W u

U(p).
(2.3)

Proof. See [21].

The manifold structure of these sets can be globalized to some extent.
Theorem 2.4 (Smale, 1963). Let p be a hyperbolic fixed point for a dynamical
system (G,Rn, φ). Then W s(p) and W u(p) are injective immersions of Rns

and Rnu in Rn.
Proof. See [16] or [17].

2.2 Parametric dependence
Let fε : M → M be a diffeomorphism, which depends smoothly in the real
parameter ε.
Proposition 2.5. If f0 has a hyperbolic fixed point p then for ε sufficiently
small
• fε has a hyperbolic fixed point pε, O(ε) close to p;

• W s
ε (pε) and W u

ε (pε) depend smoothly on ε.
The case of flows is quite similar,

Proposition 2.6. Let Xε be a vector field which smoothly depends in the
parameter ε. Then the flow φε depends smoothly on ε.

2.3 Homoclinic and heteroclinic points
Definition 2.7. Let p a hyperbolic fixed point of a dynamical system (G,Rn, φ).
A point q 6= p such that

q ∈ W s(p) ∩W u(p)
is said to be a homoclinic point for p.
If TqW s(p)⊕TqW u(p) = Rn then q is a transverse homoclinic point. See figure
2.1(a).
Definition 2.8. Let p1 6= p2 be two hyperbolic fixed points, and p1 6= q 6= p2.
Then if

q ∈ W s(p1) ∩W u(p2)
the point q is said to be a heteroclinic point.
If TqW s(p1)⊕ TqW u = Rn(p2) then q is a transverse heteroclinic point.

SinceW s andW u are invariant sets, each point in the orbit of a homoclinic
(resp. heteroclinic) point is homoclinic (resp. heteroclinic), and such an orbit
is called homoclinic (resp. heteroclinic) orbit.
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2.4 Homoclinic tangle in R2

Figure 2.1: Examples of homoclinic point (a), the first orbit of homoclinic points (b), and formation of
other orbits (c)

a)

p

q

W s(p)Wu(p)

b)

p

q

q−1

q−2

q1

q2

c)

p

q

Assuming that the phase space is R2, we consider the dynamical system
given by a diffeomorphism f : R2 → R2. Let p be a hyperbolic fixed point
for f , we also assume that W s(p) and W u(p) are two curves in R2. If q is
a transverse homoclinic point for f , then the whole orbit of q is formed by
transverse homoclinic points ( transversality follows from the fact that dfx is
a isomorphism ∀x ∈ R2). The iterations of q, qi := f i(q), i ∈ Z, tend to
p for i → +∞ along W s(p), converging to p exponentially, by theorem 2.3.
The two curves intersect transversally at each point in the orbit of q, so as
qi approaches p along W s, the curve W u will cut through W s creating folds
as in figure 2.1(b). As i → +∞, the folds of W u(p) arrange parallel to each
other other, growing larger and thinner, see figure 2.1(c). Consequently, for
i large enough, other homoclinic points, that do not belong to the orbit of q,
are formed. In turn, these new points generate other intersections and hence
new homoclinic orbits.

A similar situation happens for i→ −∞ with the folds of W s(p) wrapping
around W u(p) and creating again new homoclinic orbits. The union of all the
homoclinic points for p so created form the homoclinic tangle. The dynamics
of systems presenting homoclinic points is in [21], [18] or [12].

It iss defined, (see [19]),
Definition 2.9. A set Λ ⊂ R2 which
• is closed;

• is perfect, (each point in Λ is a limit point);

• is totally disconnected, (@ a non-trivial connected subset of Λ).
is a Cantor set.
A cantor set is uncountable and nowhere dense in R2.
Proposition 2.10. If p is a hyperbolic fixed point for the dynamical system
given by f on R2, if non-empty, the set of all the transverse homoclinic points
for p is a Cantor set.
Proof. See [12] or [18].
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3. Homoclinic chaos

According to Wiggins in [19], we explain chaotic dynamics through a model
introduced by S. Smale in [15], the horseshoe map.

3.1 The horseshoe map

H0

H1

H0

H1

contraction
expansion

fold
V0 V1

Figure 3.1: On the left is shown U with the subsets H0, H1; the contraction and expansion of U , and F(U)
with V0, V1 on the right

Let U be the unit square [0, 1] × [0, 1] ⊂ R2. Let H0 = [0, 1] × [0, 1/4] and
H1 = [0, 1]× [3/4, 1] be two disjoint horizontal strips; let V0 = [0, 1/4]× [0, 1]
and V1 = [3/4, 1]× [0, 1] be two disjoint vertical strips. The map F : U → R2

acts contracting U along x, expanding it along y and folding it, as shown in
figure 3.1. The horizontal strips H0, H1 are mapped into the vertical strips
V0 = F(H0), V1 = F(H1), while the folded part is mapped outside of U . The
orientation of the folding is given by the vertexes A,B,C,D. Thus, U∩F(U) =
V0 ∪ V1; since F is not onto, F−1 is not globally defined. However H0 ∪H1 is
the preimage of U ∩ F(U), that is F−1(U ∩ F(U)) = H0 ∪H1.

We want to describe the set of all points in U whose orbits remain in U ,

Λ =
{
p | F i(p) ∈ U, i ∈ Z

}
As shown in figure 3.2, applying F to U ∩F(U) we get four vertical strips.

Continuing the argument inductively, the set U ∩ F(U) ∩ · · · ∩ Fn(U) is the

11
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Figure 3.2: The grey area is U ∩ F(U) ∩ F2(U).

union of 2n vertical strips, that in the limit n→ +∞ become vertical segments
and form the set

Λ+ =
{
p | F i(p) ∈ U, i ≥ 0

}
which is a Cantor set (see [14]).

If a point p ∈ U , then F−1(p) ∈ H0 ∪H1. If F(p) ∈ U then F−1(F(p)) ∈
H0 ∪H1 = F−1(U ∩F(U)). While if F2(p) ∈ U , p ∈ F−2(U ∩F(U)∩F2(U)).
The set F−2(U ∩ F(U) ∩ F2(U)) is shown in figure below, outlined in grey.

F−1 F−1

Therefore if (U ∩ F(U) ∩ · · · ∩ Fn(U)) is a set of 2n vertical strips, the n-th
preimage F−n(U ∩F(U)∩ · · · ∩ Fn(U)) is a set of 2n horizontal strips. When
n→ +∞, the strips form the Cantor set of horizontal segments

Λ− =
{
p | F−i(p) ∈ U, i ≥ 1

}
Since Λ = Λ+∩Λ−, a point p ∈ Λ must belong to both a vertical and horizontal
segment. Therefore, Λ is a Cantor set.

So far we have constructed the invariant set Λ for the horseshoe. Now, we
want to describe the dynamics given by F on Λ.

3.2 Symbolic dynamics
Each point p ∈ Λ can be associated with a string of 2 symbols. Recalling [19],
we show how it is done.

Let S = {0, 1}, where element s ∈ S is called a symbol. A string of symbols
is a sequence with index in Z, s = {si}i∈Z. The set of all the strings of symbols
is denoted S =

{
{si}i∈Z|si ∈ S ∀i ∈ Z

}
.
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Figure 3.3: Outlined in grey
⋂2

n=−2 F
n(U) to give an idea of the invariant set Λ.

Let ψ : Λ→ S be the map that associates a string of symbols in S to each
point p in Λ as follows

ψ(p)i = ai such that f i(p) ∈ Hai
.

The sequence ψ(p) is the horizontal history of p. It specifies if, ∀i ∈ Z, the
i-th iteration under f of p is either in H0 or in H1.

The set S can be equipped with the metric

d(a, b) =
∑
i∈Z

2−|i|δ(ai, bi) δ(ai, bi) =

0 ai = bi

1 ai 6= bi
∀a, b ∈ S. (3.1)

From now on, the set S will be considered with the topology induced by the
metric (3.1).

Proposition 3.1. The map ψ : Λ→ S is a homeomorphism.

Proof. See [4].

Definition 3.2. The shift map σ : S → S is the map defined ∀a ∈ S as

σ(a)i = ai+1 ∀i ∈ Z

The map σ is a homeomorphism in S, see [19].

Theorem 3.3. The dynamical system given by σ on S is conjugate to the
dynamical system given by F on Λ:

ψ ◦ F|Λ = σ ◦ ψ.

Proof. See [4].

The immediate consequence is that

ψ ◦ Fn|Λ = σn ◦ ψ
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Therefore, the unique string associated to p ∈ Λ by ψ contains all the infor-
mation about the past and future iterations of F .

The dynamics of σ has the following properties (see [2]). A k-periodic point
is given by a string a, ai = ai+k, ∀i ∈ Z. If k = 1, a is a fixed point and there
exist only two fixed points. The most important features of the dynamics of
σ are proven in the following theorem.

Theorem 3.4. In the dynamical system given by σ on S,there exist:

1. A countable infinity of periodic orbits, with period arbitrarily large;

2. An uncountable infinity of non-periodic orbits.

3. An orbit which is dense in S.

Proof. Periodic points are given by string composed of periodically repeating
blocks. The length of the block gives the period. Since for any fixed k ∈ N, the
number of periodic sequences with period k is finite, there exists a countable
infinity of periodic orbits with all possible periods.

Since S and Λ are homeomorphic, S is a Cantor set and therefore uncount-
able. Given that there is a countable infinity of periodic orbits, the remaining
orbits, which are non-periodic, are uncountable.

To prove the existence of an orbit which is dense in S, it has to be proved
that there exists s ∈ S for any s′ ∈ S and ε > 0, there exists n ∈ N such that
d(σn(s), s′) < ε, where d is the metric (3.1). Noting that two string s′, s′′ ∈ S
are closer than ε > 0 if s′i = s′′i for |i| ≤ N where 2−N < ε.

Let s be the string which contains all possible finite sequence of symbols.
Therefore, by construction of s, for each s′ ∈ S there exists k ∈ Z, where
d(σk(s), s′) < ε . Thus, the orbit of s is dense in S.

3.3 Chaotic dynamics of the horseshoe map
In the previous section it has been shown that the Smale horseshoe map on
Λ is conjugate to a shift σ of two symbols. This implies that the horseshoe
map shares all the properties listed in theorem 3.4: countable periodic orbits,
uncountable non-periodic orbits and an orbit which is dense in the invariant
set Λ.

Let p, q ∈ Λ be two points such that ψ(p) and ψ(q) agree on the central
block of lenght k such that ψ(p)i = ψ(q)i for |i| < k and ψ(p)k 6= ψ(q)k. Then
by the definition of ψ, each one of the first (k − 1) forward and backward
iterations of p and q belong to the same horizontal strip, H0 or H1. The k-th
iteration of f separates one point in H0 and the other in H1. Thus, no matter
how close the two points p and q are in Λ, after some number of iterations
they will be separated at least by a certain fixed distance.

Definition 3.5. A dynamical system (G,Rn, φ) is said to have sensitive de-
pendence on initial condition, if ∃ε > 0, such that ∀x ∈ Rn and for every open
neighborhood U of x there is y ∈ U and t ∈ G such that d(φt(x), φt(y)) > ε.
The dynamic is usually called chaotic.
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Therefore, the horseshoe exhibits sensitive dependence on initial condition
and consequently also σ has chaotic dynamic.

3.4 The Smale-Birkoff homoclinic theorem
The symbolic dynamic can be extended easily to the case of N symbols. Let
S = {1, 2, . . . , N}, then the space of all the strings of N symbol becomes SN ,
and it can be equipped with the metric (3.1).

On SN it can be defined the shift map σ : SN → SN in the same manner
as above, and the dynamics of σ in SN has all the properties discussed above.

The following theorem connects the existence of transverse homoclinic
points to chaotic dynamics.

Theorem 3.6 (Smale, 1963). Let f : R2 → R2 be a diffeomorphism, with p a
hyperbolic fixed point for f , and let q a transverse homoclinic point for p.
Then there exist integers n and N ≥ 2 so that fn has an invariant Cantor set
Γ, on which fn is conjugate to a shift of N symbols.

The theorem proved by Smale in [15] implies that there is an invariant
Cantor set Γ in the presence of a homoclinic point, on which the dynamics is
conjugate to the shift. Therefore f on Γ displays all the properties discussed in
theorem 3.4, in particular exhibits sensitive dependence on initial conditions,
and therefore is chaotic.
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4. The Poincaré-Melnikov method

In 1963 V. Melnikov (see [9] for the original article) investigated a sufficient
condition for the existence of transverse homoclinic points in perturbed Hamil-
tonian systems. The condition was first studied by Henry Poincaré, see [13],
and it is often called "The Poincaré-Melnikov Method".

4.1 Hamiltonian systems
The Hamiltonian systems are the class of dynamical systems, whose differential
equation is of the form:

ẋi = ∂H

∂yi
(x1, . . . , xn, y1, . . . , yn)

ẏi = −∂H
∂yi

(x1, . . . , xn, y1, . . . , yn)
(4.1)

where the phase space is R2n, and the function H : R2n → R is called the
Hamiltonian. Or in a more compact form, where q = (x1, . . . , xn, y1, . . . , yn):

q̇ = J∇H(q) where J =
(
In On

On −In

)

The function H is a first integral:

Ḣ = ∇H · q̇ = ∇H · J∇H = 0

In the simplest form the method is applied to bi-dimensional Hamiltonian
systems, perturbed with a small perturbation that is possibly non Hamiltonian,
which depends periodically on time.

ẋ = ∂H

∂y
(x, y) + εgx(x, y, t)

ẏ = −∂H
∂x

(x, y) + εgy(x, y, t)
(4.2)

For ε = 0, the system is called unperturbed system and it is assumed that it
has a hyperbolic fixed point p with a homoclinic orbit γ0. See figure 4.1. The

17
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p

(a)

γ0 pε

γ0
W u(pε)

W s(pε)

(b)
Figure 4.1: (a) The fixed point p and the homoclinic orbit γ0. (b) For ε small, the stable and unstable
manifolds of pε, in the Poincaré map.

study of this system can be reduced to that of one of its Poincaré maps. If T
is the period of g the Poincaré map Pε(x, y) : Σ0 → Σ0 is

Pε(x, y) = φTε (x, y, 0)

When ε = 0, P0 can be considered as the Poincaré map of the unperturbed
system. The point p is a hyperbolic fixed point for P0, and γ0 the homoclinic
orbit for p.

By propositions 2.5 and 2.6, the Poincaré map depends smoothly on ε. For
ε sufficiently small, Pε has a hyperbolic fixed point pε, close to p. The invariant
manifolds,W s

ε (pε) andW u
ε (pε), will not necessarily coincide anymore, see figure

4.1(b).
The Poincaré-Melnikov method gives a sufficient condition to prove the

existence of a transverse intersection between these two manifolds. From now
we write W s

ε (pε) =: W s and W u
ε (pε) =: W u.

4.2 The Melnikov function
In the unperturbed system, the curve γ0, being the image of a solution, can
be parametrized with the time along that solution. Let us choose q∗ ∈ γ0 and
a parametrization

λ 7→ γ0(λ) := φλ0(q∗) (4.3)

At each point of γ0 the vector υ(λ) = ∇H0(γ0(λ)) is perpendicular to γ0. This
vector, gives a segment r:

r(λ) =
{
γ0(λ) + t υ(λ) t ∈ ]−1, 1[

}
For ε = 0, W s and W u coincide with γ0 and intersect r perpendicularly. For ε
sufficiently small, W s and W u still intersect r transversely. However, W s and
W u may intersect r many times, not just once. The choice of the intersection
point with which continue the study is given by the following lemma.
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W s

W u

γ0

r(λ)

qsε

quε

Figure 4.2: The segment r0 with the intersections qs
ε and qu

ε .

Lemma 4.1. For ε sufficiently small, ∃! qsε ∈ W s ∩ r(λ) where

φtε(qsε(λ)) ∩ r(λ) = ∅ ∀t ≥ 0∥∥∥φtε(qsε(λ))− γ0(t+ λ)
∥∥∥ = O(ε) ∀t ≥ 0∥∥∥φ̇tε(qsε(λ))− γ̇0(t+ λ)
∥∥∥ = O(ε) ∀t ≥ 0

The same holds true for quε for t ≤ 0.

Proof. See [20].

It is possible to compute the signed distance between the two points quε (λ) and
qsε(λ) as follows

d(λ, ε) = (quε (λ)− qsε(λ)) · υ(λ)∥∥υ(λ)
∥∥ (4.4)

In the unperturbed system the invariant manifolds coincide, d(λ, 0) = 0 ∀λ ∈
R. Moreover qu,sε are differentiable in ε, for ε small, since W u,s are smooth in
ε and for ε = 0 W u,s intersect transversally r.

The expansion in a Taylor series of (4.4) about ε = 0 gives

d(λ, ε) = d(λ, 0) + ε
∂d

∂ε
(λ, 0) +O(ε2)

where
∂d

∂ε
(λ, 0) =

 ∂quε (λ)
∂ε

∣∣∣∣∣
ε=0
− ∂qsε(λ)

∂ε

∣∣∣∣∣
ε=0

 · ∇H(λ)∥∥∇H(λ)
∥∥

Definition 4.2. The Melnikov function M : R→ R is

M(λ) =
 ∂quε (λ)

∂ε

∣∣∣∣∣
ε=0
− ∂qsε(λ)

∂ε

∣∣∣∣∣
ε=0

 · ∇H(γ0(λ)) (4.5)

The Melnikov function is the first order term of the Taylor expansion about
ε = 0 of the distance betweenW s andW u, except for the norm of the gradient
of H, which is always nonzero along γ0.
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4.3 The Melnikov method
In [9], Melnikov found a commutable expression for the function above.

Proposition 4.3. The Melnikov function (4.5) can be written in the form

M(λ) =
∞∫
−∞

∇H(γ0(t)) · g(γ0(t), t+ λ)dt (4.6)

Proof. The proof is given in 4.6.

Theorem 4.4. Let M(λ) be the Melnikov function for a system of the form
(4.2), with the hypotheses stated above. If ∃λ∗ such that M(λ∗) = 0, dM

dλ
(λ∗) 6=

0, then for ε sufficiently small in the dynamical system given by the Poincaré
map of (4.2), W u(pε) and W s(pε) intersect transversally at γ0(λ∗) +O(ε).

Proof. Using the distance between the two manifolds (4.4)

d(λ, ε) = ε
M(λ)∥∥∇H(γ0(λ))

∥∥ +O(ε2)

If M(λ∗) = 0 then d(λ∗, 0) = 0. Since ∂M
∂λ

(λ∗) 6= 0 by the implicit function
theorem, for ε sufficiently small, there exists λ(ε) so that d(λ(ε), ε) = 0. This
means that W s(pε) and W u(pε) intersect at γ0(λ∗) +O(ε).

In a small neighborhood of the homoclinic point γ0(λ) + O(ε), qsε and quε
can be parametrized by λ. A sufficient condition for transversality is

∂qsε
∂λ
6= ∂quε

∂λ

Since
∂M

∂λ
(λ) = ∇H(γ0(λ)) ·

(
∂qsε
∂λ
− ∂quε

∂λ

)
,

a sufficient condition for transversality is ∂M
∂λ

(λ∗) 6= 0.

4.4 The heteroclinic case
The Melnikov method can be extended to the case of heteroclinic orbits. In the
proof, it is assumed that γ0 is a homoclinic orbit of the unperturbed system,
but the fact that limt→+∞ γ0(t) = limt→−∞ γ0(t) is never used. As seen in [20],
the Poincaré-Melnikov method can be used to detect transverse heteroclinic
points.
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Theorem 4.5. Let M(λ) be the Melnikov function for a system of the form
(4.2), where γ0 is a heteroclinic orbit that connects two hyperbolic fixed points
p1 and p2. If ∃λ∗ such that M(λ∗) = 0, dM

dλ
(λ∗) 6= 0, then for ε sufficiently

small, in the dynamical system given by the Poincaré map of (4.2), W u(p1ε)
and W s(p2ε) intersect transversally at γ0(λ∗) +O(ε).

The existence of the heteroclinic point found with the theorem above, is
not sufficient for the system to show chaotic phenomena.

Definition 4.6. Let f : R2 → R2 be a diffeomorphism. Let {pi}i=1,...,n be a
collection of hyperbolic fixed points for f , with p1 ≡ pn. If, for all i , W u(pi)
intersects transversally W s(pi+1) then the fixed points are said to form a het-
eroclinic cycle. See figure 4.3.

Figure 4.3: Three hyperbolic fixed points p1, p2, p3, with their stable and unstable manifolds, forming a
heteroclinic cicle.

p1

p2

p3

Theorem 4.7. Let the diffeomorphism f : R2 → R2 have a heteroclinic cycle.
Then W u(pi) intersects transversally W s(pi), for all i = 1, . . . , n

Proof. See [19] or [12].

The above theorem states that in the presence of n fixed points for a dif-
feomorphism, whose stable and unstable manifolds intersect transversally, and
form a heteroclinic cycle, then the stable and unstable manifolds of the same
fixed point intersect; hence homoclinic phenomena are present.

These facts reconnect to the Melnikov method as follows:

Theorem 4.8. Let a system of the form (4.2) have n hyperbolic fixed points,
p1, p2, . . . , pn connected by heteroclinic orbits γ12, γ23, . . . , γn1. If for each γi,i+1,
the Melnikov Function M(λ) has a transverse zero, then, for ε sufficiently
small, in the dynamical system given by the Poincaré map, W u(pi) and W s(pi)
intersect transversally for each i = 1, . . . , n.

Proof. From the statements above, the Melnikov method is a sufficient condi-
tion for a heteroclinic orbit to have a transverse intersection, if the existence of
a transverse heteroclinic point is proved for each heteroclinic orbit q12, . . . qn1
then the Poincaré Map shows a heteroclinic cycle. The presence of a hetero-
clinic cycle is a sufficient condition forW u(pi) to intersect transversallyW s(pi,
by Theorem 4.7.
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4.5 Consequences
• In case of a Hamiltonian perturbation, that is g = J∇H1, M(λ) can be

written

M(λ) =
∞∫
−∞

{H0, H1}(γ0(t), t+ λ)dt

where {·, ·} are the Poisson brackets.

• In the heteroclinic case, it is sufficient to prove the existence of a hetero-
clinic point for each orbit in the cycle, for P to display chaotic dynamics.

• Transverse zeros of M correspond to a given homoclinic point, but not
all the homoclinic points correspond to a transverse zero of M , since M
is valid only ε-near to the unperturbed homoclinic orbit.

• For ε small, M is the signed distance between W s and W u. If M(λ) 6= 0
for all λ then W s and W u do not intersect.

• M(λ) is periodic in λ with period T . That follows from the periodicity
of the perturbation g.

• If the perturbation g is autonomous, then M is a number, not a function
of λ. This makes sense since for autonomous vector fields W s and W u

either coincide or do not intersect at all.

• The choice of the section of the Poincaré map is not important, since they
are all conjugate. If a homoclinic point is found for a certain section, all
other sections have a homoclinic point.

4.6 Sketch of the proof
The Melnikov function can be written as

M(λ) = ∆u(0, λ)−∆s(0, λ),

where

∆u(t, λ) := ∇H(γ0(t+ λ)) · u(t, λ) ∆s(t, λ) := ∇H(γ0(t+ λ)) · s(t, λ)

and
u(t, λ) := ∂quε (t, λ)

∂ε

∣∣∣∣∣
ε=0

s(t, λ) := ∂qsε(t, λ)
∂ε

∣∣∣∣∣
ε=0

We compute only ∆u, since the argument presented is equally valid for ∆s.
For a fixed λ ∈ R, note that

d

dt
∆u(t) = d

dt

(
∇H(γ0(t))

)
· u+∇H(γ0(t)) · d

dt
u(t) (4.7)
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then
d

dt
u(t) = d

dt

∂quε (t)
∂ε

∣∣∣∣∣
ε=0

= ∂

∂ε

∣∣∣∣∣
ε=0

dquε (t)
dt

.

The quantity dqu
ε (t)
dt

is simply the vector field at that point:

d

dt
quε (t) = J∇H(quε (t))) + εg(quε (t), t),

hence
∂

∂ε

∣∣∣∣∣
ε=0

d

dt
quε (t) = JH ′′(γ0(t)) ∂q

u
ε (t)
∂ε

∣∣∣∣∣
ε=0

+ g(γ0(t), t),

where H ′′ is the hessian of H. By the definition of u(t)

d

dt
u(t) = JH ′′(γ0(t)) · u(t) + g(γ0(t), t)

substituting into (4.7),

d

dt
∆u(t) = d

dt

(
∇H(γ0(t))

)
· u(t) +∇H(γ0(t)) · JH ′′(γ0(t))u(t)

+∇H(γ0(t)) · g(γ0(t), t)

By the properties of J

d

dt
(∇H) · u = H ′′J∇H · u = −∇H · JH ′′u

Therefore the first two addenda sum up to zero

d

dt
∆u(t) = ∇H(γ0(t)) · g(γ0(t), t) (4.8)

In conclusion, for any ξ > 0

∆u(0)−∆u(−ξ) =
0∫
−ξ

∇H(γ0(t+ λ) · g(γ0(t+ λ), t)dt

and similarly

∆s(ξ)−∆s(0) =
ξ∫

0

∇H(γ0(t+ λ)) · g(γ0(t+ λ), t)dt

These results can be added to get

M(λ) = ∆u(0)−∆s(0) =
ξ∫
−ξ

∇H(γ0(t+λ)) · g(γ0(t+λ), t)dt+ ∆u(−ξ)−∆s(ξ)

(4.9)

Lemma 4.9.
lim

ξ→+∞
∆u(−ξ) = lim

ξ→+∞
∆s(ξ) = 0
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Proof. By the definition of ∆s

∆s(t) = ∇H(γ0(t+ λ)) · s(t)

As t → +∞, γ0 converges to p. The local stable manifold theorem 2.3 states
that ∃λ, δ > 0 such that γ̇0(t − λ) ≤ δe−λt for t ≥ 0. The gradient of H,
calculated along the orbit, is in norm equal to γ̇0(t− λ).

Taking the limit of the second factor s(t), it is possible to swap the deriva-
tion and the limit

lim
t→∞

s(t) = ∂

∂ε

∣∣∣∣∣
ε=0

lim
t→∞

qsε(t)

The point qsε approaches pε under iterations of the Poincaré map. The fixed
point pε is necessarily a periodic point of φtε, thus φtε(pε) is bounded for all t.
Expanding around ε = 0,

φtε(pε) = p+ ε
∂φtε(pε)
∂ε

∣∣∣∣∣
ε=0

+O(ε2)

This means that ∂φt
ε(pε)
∂ε

∣∣∣∣
ε=0

is bounded. As a consequence limλ→+∞∆s(ξ) = 0.
A similar argument gives limξ→∞∆u(−ξ) = 0.

Therefore, taking the limit for ξ → +∞ of expression (4.9), we have

M(λ) =
∞∫
−∞

∇H(γ0(t+ λ)) · g(γ0(t+ λ), t)dt

or

M(λ) =
∞∫
−∞

∇H(γ0(t)) · g(γ0(t), t− λ)dt

We note that the improper integral in the Melnikov function converges ab-
solutely as follows from the local stable manifold theorem and the boundedness
of g along γ0.



5. Chaos in fluid dynamics

In [6] Kozlov studied the motion of fluid particles in the velocity vector field
given by two point vortexes, perturbed with a small time periodic perturbation
along the y-axis. In this case the Poincaré-Melnikov method succeed in proving
the existence of chaos.

Following [7], we retrace the theory behind the point vortexes.

5.1 Theory of point vortexes
The motion of inviscid fluids is governed by the Euler equation and by the
incompressibility condition:

Du

Dt
= −∇p, ∇ · u = 0, (5.1)

here u(x, t) is the velocity vector field, p(x, t) is the pressure and D
Dt

= ∂
∂t

+
(u · ∇) the material derivative.

The curl of u, ∇× u =: ω, is called the vorticity, and gives a measure of
the amount of local rotation. Taking the curl of equations (5.1) we get:

Dω

Dt
= ω · ∇u, ∇ · ω = 0. (5.2)

The vorticity equations (5.2) contain as much information as the Euler equa-
tion above, that solving (5.2) is completely equivalent to solving (5.1) . See
[7].

For a planar fluid, the vector fields are u = (ux(x, y, t), uy(x, y, t), 0) and
ω = (0, 0, ω(x, y, t)). Equations (5.2) can be written in the simple form:

Dω

Dt
= 0. (5.3)

This means that the vorticity is carried by the fluid.
In this case, exists a function H(x, y, t), see [7], such that

ux(x, y, t) = ∂H

∂y
(x, y, t) uy(x, y, t) = −∂H

∂x
(x, y, t)

The motion of fluid particles then becomes

ẋ = ∂H

∂y
(x, y, t)

ẏ = −∂H
∂x

(x, y, t)
(5.4)

25
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Therefore, the dynamics has a Hamiltonian structure.
In the limit case (see [11] for details and references), where the vorticity is

highly localized about (x1, y1):

ω(x, y, t) = Γ
2πδ(x− x1, y − y1)

is called a point vortex. Here the δ is the Dirac function, and Γ is referred as
the strength of the vortex. The velocity field associated with an isolated point
vortex fixed in time at (x1, y1) exists and it is:

ux(x, y) = Γ
2π

y − y1

((x− x1)2 + (y − y1)2)

uy(x, y) = − Γ
2π

x− x1

((x− x1)2 + (y − y1)2)

(5.5)

.
We want to study the dynamics of two point vortex with equal and opposite

strength. Since vorticity is carried by the fluid, their position will change
in time according to (5.4). Let the position of the two point vortexes be
xi(t) = (xi(t), yi(t)) where i = 1, 2. We want to prove the existence of a u
vector field which has a vorticity:

ω(x, y, t) = Γ
2π

(
δ(x− x1(t))− δ(x− x2(t))

)
. (5.6)

where x1,2(t) are given by:

ẋi = ux(xi, yi, t)
ẏi = uy(xi, yi, t).

(5.7)

The interactions are governed by the velocity that one of the vortexes
induces in the position of the other. Since u = J∇H, and the function H
satisfies a Poisson equation with vorticity (see [11]),

∇2H(x, y, t) = −ω(x, y, t). (5.8)

An isolated point vortex xi(t), ω(x, y, t) = Γ
2πδ(x− xi(t)), induces

ui = J∇Hi

where Hi is found using the Green’s functions

Hi(x, y, t) = Γ
2π log

(∥∥x− xi(t)
∥∥) . (5.9)

Since each vortex moves in the velocity vector field induced by the other

ẋ1 = J∇H2, ẋ2 = J∇H1;

then

ẋ1 = Γ
2π

y2 − y1

d2 ẋ2 = Γ
2π

y2 − y1

d2

ẏ1 = Γ
2π

x2 − x1

d2 ẏ2 = Γ
2π

x2 − x1

d2
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where d is the distance between the two vortexes, d =‖x1 − x2‖, and clearly
it remains fixed in time ḋ = 0.

Moreover, we assume that the initial conditions of the two vortexes are

x1(0) = (0, a) x2(0) = (0,−a),

then the equations of motion are

x1(t) = − Γ
4πat x2(t) = − Γ

4πat

y1(t) = a y2(t) = −a.

The resulting Hamiltonian is obtained by superposition H = H1 + H2, (since
vorticity and velocity are related linearly),

H(x, y, t) = Γ
4π

log
(x+ Γ

4πat)
2 + (y − a)2

(x+ Γ
4πat)2 + (y + a)2

 ,
which gives the vector field

u = J∇H

with vorticity in the form (5.6).
Transforming the coordinate system with x′ = x+ Γ

4πat, y
′ = y, we get the

autonomous Hamiltonian

H(x, y) = Γ
4π

(
y

a
+ log x

2 + (y − a)2

x2 + (y + a)2

)
(5.10)

that is the unperturbed system studied in [6].
The phase portrait of the Hamiltonian system given by (5.10) is shown in

figure 5.1. The system has four fixed points: two elliptic fixed points e1, e2 at
(0,±a), in the position of the two point vortexes, encircled by period orbits;
and two hyperbolic fixed points p−,p+ at (±

√
3a, 0), connected by three het-

eroclinic orbits, γ+, γ0, γ− (thicker in figure 5.1) that divide the phase space
into four invariant subsets. Fluid particles with initial condition on one of
these subsets will remain in it. The two central invariant sets that includes
the periodic orbits will be referred to as the vortex area.

5.2 Kozlov perturbation
In [6], Kozlov perturbed the system given by (5.10) with a Hamiltonian per-
turbation H1 = −x sin(ωt) or g = (0, sin(ωt)).

There are two possible cycles that can be studied with the Poincaré-Melnikov
method, γ+ → γ0 and γ− → γ0. However, since the system has a y reflectional
symmetry, the results found for the cycle γ+ → γ0 will be the same for the
other.

In this case, the Poincaré-Melnikov method is sufficient to prove the ex-
istence of homoclinic points and thus chaotic dynamics, and the Melnikov
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p+p−

e1

e2

γ+

γ0

γ−

Figure 5.1: Phase portrait of the hamiltonian system given by (5.10), with Γ = 2π, a = 1.

function (4.6) takes the form

M(λ) =
∞∫
−∞

−ẋ(t) · sin(ω(t− λ))dt

On γ+, fixing q∗ in the intersection of γ+ with the y-axis, λ = 0 is a
transverse zero for M , since sin(ωt) is an odd function and ẋ(t) is even. In γ0,
fixing q∗ = (0, 0), also M has a transverse zero for λ = 0. Consequently, by
theorem 4.7, the Poincaré map will exhibit chaotic dynamics.

Figure 5.2 shows the phase portraits for various values of ε. As expected
for this type of problems, the black region which is densely filled with chaotic
orbits, grows larger with ε. Moreover, are also plotted periodic orbits in the
neighborhood of both e+ and e− which persisted the perturbation, and orbits
with initial conditions outside of the vortex area. Note: It is not possible to
follow the path of just one point since the particles tends to escape the vortex
area towards the positive x-axis. Therefore, in figure 5.2, plots one thousand
orbits in the chaotic region.

It is important to notice how the stable and unstable manifolds of the two
fixed points, no longer divide the phase space into the four invariant sets as
before. Thus, particles with initial condition in the vortex area are able to
escape, as well for particles outside to enter in.

In figure 5.3 are instead plotted 50 forward and backwards iterations of
one thousand initial conditions. It can be seen how points on the outside of
the region, from the negative x-direction, can enter the vortex area and leave
towards positive x direction.

Figure 5.4 shows the stable and unstable manifolds of p+
ε and p−ε , for

ε = .5. The Melnikov method predicts transverse heteroclinic points for



29

(a)

(b)

(c )

Figure 5.2: Phase portrait of the perturbed system, with Γ = 2π, a = 1 where ε = .01 in (a), ε = .05 in
(b), ε = .1 in (c).
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Figure 5.3: Forward and backward iterations of few close initial conditions. (ε = .5, a = 1)

W u(p+),W s(p−) andW s(p+),W u(p−), the two heteroclinic tangles are showed
in figure 5.5. A heteroclinic cycle is formed. This this is a sufficient condi-
tion for the existence of homoclinic points, in fact figure 5.6 shows various
intersections between the stable and unstable manifolds of both fixed points.
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W s(p+) Wu(p+)

W s(p−) Wu(p−)

Figure 5.4: The stable and unstable manifolds of the two fixed points. With ε = .5.

W s(p+), Wu(p−) Wu(p+), W s(p−)

Figure 5.5: The two heteroclinic tangles. All the intersection represent heteroclinic points. (ε = .5)

W s(p+), Wu(p+) W s(p−), Wu(p−)

Figure 5.6: The homoclinic tangles for both fixed points.(ε = .5, a = 1)
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5.3 Perturbation on the x-axis
If the perturbation is g = (sin(ωt), 0) or in Hamiltonian form H1 = y sin(ωt),
then the Melnikov function has the form:

M(λ) =
∞∫
−∞

−ẏ(t) · sin(ω(t− λ))dt

The Melnikov function for γ+ has a transverse zero, for the same arguments
of the previous case. So W u(p−) and W s(p+) intersect transversally forming
heteroclinic points, by theorem 4.5.

However, since γ0 is horizontal ẏ(t) ≡ 0, the Melnikov function for γ0 is
identically zero. Thus the Melnikov method fails. However, the Melnikov
function is the first order approximation of the distance between the two man-
ifolds, so its vanishing does not necessarily means that the stable and unstable
manifolds will not split.

W s(p+) Wu(p+)

W s(p−) Wu(p−)

Figure 5.7: Stable and unstable manifolds for the two fixed points.(ε = .5, a = 1)

Figure 5.7 plots the stable and unstable manifolds of the fixed points. The
heteroclinic orbit γ+ splits, while the horizontal heteroclinic orbit γ0 does not
split and remains horizontal. Showing heteroclinics points, in figure 5.8

Figure 5.8 shows W s(p+) and W u(p−) together and it is noticed the pres-
ence of transverse heteroclinic points; which instead are not present in the
intersection between W u(p+) and W s(p−).

Figure 5.9 shows that no transverse homoclinic points are formed, for both
p+ and p−.

Since the horizontal manifolds does not split, the phase space is still divided
into two parts. Points outside the vortex area can enter and then exit again,
but initial conditions with positive y will remain in the positive y sector, and
similarly for the negative y.
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W s(p+), Wu(p−) Wu(p+), W s(p−)

Figure 5.8: The formation of the heteroclinic tangle for γ+, on the left. For γ0 instead, no transverse
heteroclinic point is formed.(ε = .5, a = 1)

W s(p+), Wu(p+) W s(p−), Wu(p−)

Figure 5.9: No intersections are showed, thus no homoclinic points are present.(ε = .5, a = 1)

As shown in figure 5.10, the regions in y > 0 and y < 0, display chaotic
dynamics. The chaotic orbits fill densely the region in the proximity of the
invariant manifolds, but never cross the horizontal line y = 0.
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(a) (d)

(b) (e)

(c) (f)

Figure 5.10: Phase portrait of the perturbed system with Γ = 2π, a = 1. For positive y initial condition
where ε = .01 in (a), ε = .05 in (b), ε = .1 in (c).
For negative y initial conditions where ε = .01 in (d), ε = .05 in (e), ε = .1 in (f).



Conclusion

We showed how the Poincaré-Melnikov method is a sufficient condition for
the existence of transverse homoclinic points, which in turn are a sufficient
condition for a system to display chaotic dynamics. However, the presence
of heteroclinic orbits for the unperturbed system, can be sufficient to ap-
ply the Poincaré-Melnikov method and prove the existence of chaotic orbits.
We showed two example of the same system perturbed in two different ways.
The first, examined in [6], the Poincaré-Melnikov method succeed in detecting
chaotic dynamics; in the second, the method fails. In this latter case, the
presence of chaotic dynamics is confirmed by numerical evidence.
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