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Abstract

This master’s thesis work is the result of six months of research conducted alongside the Human

Movement Biomechanics Research Group at the KU Leuven University (Belgium), within a

collaboration with the HumanMovement Bioengineering laboratory at the University of Padova

(Italy).

The aim of this study is to test and validate SageMotion, a new wearable IMU-based haptic

feedback system for real-time movement assessment and training; the main goal is to establish

SageMotion’s suitability as a gait retraining and modification tool for patients affected by knee

osteoarthritis.

Knee osteoarthritis (OA) is a chronic degenerative joint disease that affects millions of people

worldwide, causing joint stiffness, pain during gait and movement restrictions.

Many studies have highlighted a correlation between a higher knee adduction moment (KAM)

and the presence, severity and progression of medial compartment knee OA; for this reason, the

KAM is an often investigated biomechanical variable for assessing the disease occurrence and

progression.

Among the possible treatments for knee OA, gait retraining has recently emerged as a non-

invasive conservative strategy aiming at decreasing joint loading, thanks to the implementation

of gait retraining techniques which, through the modification of the patient’s gait kinematics,

allow a reduction of the KAM.

For this study, a group of four healthy individuals took part to the data collection. Each par-

ticipant performed three different gait retraining strategies (trunk leaning, toe-in walking and

toe-out walking), which were collected simultaneously by SageMotion and OpenCap, the refer-

ence system chosen for assessing SageMotion’s validity.

OpenCap is a markerless video-based system that enables 3D kinematic and dynamic analysis of

human movement using videos captured with iOS devices, which already proved its reliability

and suitability for rehabilitation purposes.

3



After the acquisition, for each analyzed technique the data underwent filtering, resampling and

synchronization, in order to make them comparable.

The last step into the data processing consisted of a statistical analysis, which included the root

mean square errors (RMSE) and coefficient of multiple correlation (MCM) calculation, a nor-

mality assessment for the groups under comparison and the computation of statistical tests, fol-

lowed by a false discovery rate (FDR) correction for minimizing the rate of false positives. The

analysis covered both a inter-subject comparison and a comprehensive overview concerning the

whole system’s validity, regardless of the distinction between subjects.

The analysis revealed comparable results between the two systems for the trunk leaning strat-

egy, suggesting the system’s suitability as a gait retraining tool within this technique.

The most controversial results occurred from the toe-in and toe-out techniques, resulting in

highly significant discrepancies between the two systems for the toe-out walking, while sug-

gesting a much better comparability between SageMotion and OpenCap for the toe-in.

This contradictory outcome, together with the lack of an explained calibration procedure, re-

current connection issues during the data collection and imprecise structure of some user apps,

led to the conclusion that the SageMotion system, despite its strengths and novelty, still needs

to be improved and investigated before being used as a gait retraining and modification tool for

patients affected by knee OA.

However, this study provided a first insight into SageMotion’s capabilities, highlighting some of

its limitations, that could be further analyzed in the future, ideally through a comparison against

a gold standard marker-based system.
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Sommario

Il presente lavoro di tesi magistrale è il risultato di un progetto di ricerca della durata di sei

mesi, svolto presso il gruppo di ricerca di Human Movement Biomechanics dell’Università KU

Leuven (Belgio), in collaborazione con il laboratorio di Bioingegneria del Movimento presso

l’Università di Padova (Italia).

Questo studio si pone come scopo quello di testare e validare SageMotion, un innovativo sistema

di acquisizione indossabile con feedback tattile, per la valutazione e la riabilitazione del movi-

mento in tempo reale; in particolare, l’obiettivo primario è quello di decretare l’adeguatezza di

SageMotion come strumento di riabilitazione all’andatura per pazienti affetti da osteoartrite di

ginocchio.

L’osteoartrite (OA) del ginocchio è una malattia articolare cronica degenerativa, che colpisce

milioni di persone in tutto il mondo, causando rigidità articolare, dolore durante la deambu-

lazione e restrizioni nel movimento.

Molti studi hanno evidenziato una correlazione tra un momento di adduzione del ginocchio più

elevato e la presenza, gravità e progressione dell’OA del compartimento mediale del ginocchio;

per questo motivo, il momento di adduzione del ginocchio costituisce una variabile biomecca-

nica spesso investigata al fine di valutare l’incidenza e la progressione della malattia.

Tra i possibili interventi atti a rallentare la progressione e i sintomi dell’OA del ginocchio, la

riabilitazione all’andatura (gait retraining) è recentemente emersa come strategia conservativa

e non invasiva, volta a ridurre il carico articolare, grazie all’implementazione di tecniche di ri-

allineamento dell’andatura che, attraverso la modifica della cinematica della deambulazione del

paziente, consentono una riduzione del momento di adduzione del ginocchio (KAM).

In questo studio, un gruppo di quattro individui sani ha preso parte all’acquisizione dati. Cias-

cun partecipante ha eseguito tre diverse strategie di riallineamento dell’andatura (inclinazione

del tronco o trunk leaning, camminata toe-in, e camminata toe-out), che sono state acquisite

simultaneamente da SageMotion e da OpenCap, il sistema di riferimento scelto per decretare
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l’idoneità di SageMotion.

OpenCap è un sistema di acquisizionemarkerless (non prevede l’applicazione dimarkers riflet-

tenti sul corpo del soggetto), che consente l’analisi cinematica e cinetica del movimento umano

servendosi solamente di registrazioni video acquisite con dispositivi iOS, le cui afidabilità e

idoneità a scopo riabilitativo sono già state testate e dimostrate.

Dopo l’acquisizione, per ciascuna delle tecniche di riabilitazione dell’andatura analizzate i dati

sono stati sottoposti a filtraggio, campionamento e sincronizzazione, al fine di renderli con-

frontabili.

L’ultimo passaggio nell’elaborazione dati, costituito da un’analisi statistica, includeva il cal-

colo degli errori quadratici medi (RMSE) e del coefficiente di correlazione multipla (MCM),

una valutazione della normalità della distribuzione dei dati per ciascuno dei gruppi confrontati

e l’esecuzione di alcuni test statistici, seguito da una correzione false discovery rate (FDR) atta

a minimizzare il numero falsi positivi nei risultati. L’analisi, dopo un primo confronto intra-

soggetto, ha fornito una panoramica completa riguardante la validità del sistema, indipenden-

temente dalla distinzione tra i soggetti. L’analisi dati ha rivelato risultati comparabili tra i due

sistemi per la strategia di trunk leaning, suggerendo l’idoneità del sistema come strumento per

la riabilitazione all’andatura per quanto concerne questa specifica tecnica di gait retraining.

I risultati più controversi sono emersi invece dalle tecniche di toe-in e toe-out, evidenziando dis-

crepanze altamente significative tra i due sistemi durante l’esecuzione del toe-out, e suggerendo

invece una discreta comparabilità tra SageMotion e OpenCap per la tecnica di toe-in.

Questo risultato contraddittorio, unito all’assenza di una spiegazione dettagliata della procedura

di calibrazione, a problemi di connessione ricorrenti durante l’acquisizione dati e a una struttura

poco intuitiva di alcune delle app previste nell’interfaccia del sistema, ha condotto alla con-

clusione che il sistema SageMotion, nonostante le sue caratteristiche innovative, necessiti di

ulteriori miglioramenti e indagini prima di essere utilizzato come strumento di gait retraining

per pazienti patologici affetti da OA di ginocchio.

Tuttavia, questo studio ha permesso di fornire una prima panoramica sulle potenzialità di Sage-

Motion, evidenziandone al contempo alcune limitazioni, che potrebbero essere ulteriormente

analizzate e migliorate in futuro, preferibilmente in un confronto con un sistema marker-based,

le cui accuratezza e precisione sono state ampiamente testate e accertate.
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1

Introduction

1.1 Introduction to the study

Knee Osteoarthritis (OA) is a chronic degenerative joint disease that affects millions of people

worldwide, especially adults and elderly people.

Aging is considered as the main cause of knee osteoarthritis, but factors such as excessive

weight, heredity, gender and repetitive stress can increase the risk of developing osteoarthritis

also for younger people. Due to their condition, osteoarthritic patients suffer from pain during

gait, joint stiffness and limitation of the range of movement; all these symptoms can affect an

individual’s daily activities and quality of life [1].

More specifically, the knee’s medial compartment is usually affected more often than the lateral

one, probably due to the higher loads acting on the medial compartment during gait [2].

Many studies have observed a correlation between a subject’s higher knee adduction moment

(KAM) (especially the first peak of the curve representing the KAM over time) and the pres-

ence, severity, progression and pain caused by medial compartment knee OA. For this reason,

the KAM represents a biomechanical variable which is often examined and taken into consid-

eration for assessing the disease progression [2] [3].

There are different possible treatments for knee OA, which should suit the needs and specific

condition of the individual. Clinical guidelines and scientific studies provide a comprehensive
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overview of the available options [4]. Among the others, rehabilitation is strongly recommended

in both national and international guidelines for the management of OA within primary care set-

tings, being emphasized by the OA Research Society International (OARSI) as the cornerstone

of OA treatment and advised for all patients [5] [6].

Rehabilitation for OA typically comprises various interventions, such as land-based and water-

based exercise therapy, strength training, weight management, self-management and regular

physical activity.

Gait retraining has been recently proposed as a non-invasive conservative treatment strategy

aiming to address the biomechanical gait dysfunction observed in osteoarthritic individuals. This

intervention’s main goal is to reduce joint loading and decrease the pain level using different

strategies and tools. In particular, in the case of osteoarthritic patients, the main strategy consists

in modifying their gait kinematics in order to affect and reduce their KAM.

Several gait modification techniques proved to have an effective influence on the reduction of the

KAM; the most common techniques include the lateral leaning of the trunk towards the stance

leg during walking (trunk leaning), the modification of the foot progression angle by intra- or

extra-rotating the feet during walking (toe-in or toe-out), and the medialising of the knee during

the stance phase (medial thrust). These methods are usually employed by a therapist, aiming at

helping the patient in changing in his gait pattern through verbal, visual or haptic feedback; in

fact, biofeedback is presented by researchers as a promising tool which can be combined with

gait retraining, providing the patients with real-time data regarding their gait patterns, helping

them to adjust their gait in a faster and easier way [7].

In order to acquire gait data from the patients, the gold standard solution is represented by optical

marker-based motion capture (MoCap). This technology employs reflective markers placed on

the subject’s body in order to track his movements in three-dimensional space. Multiple cam-

eras record the markers’ positions in real-time, providing highly detailed and accurate data.

Despite the high accuracy, as a drawback these systems limit the subjects to the controlled lab-

oratory environment, they’re very expensive and the maintenance of an accurate calibration is

challenging.

In order to overcome the need for a laboratory environment, several methods were developed

for motion analysis; a promising approach is represented by inertial measurement units (IMUs)
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Chapter 1. Introduction

wearable sensors: they combine accelerometers, gyroscopes, andmagnetometers, providing real

time information on the subject’s movement. IMUs employment is increasing due to their low

production costs, small size and weight and portability, which allows to acquire data in any

environment [8].

The purpose of this thesis project is to test and validate SageMotion, a new wearable IMU-based

haptic feedback system for gait retraining and modification, that aims at providing biofeedback

based on IMU data, verifying the feasibility of the feedback for adjusting individual gait patterns

[9].

This goal translates into a comparison between SageMotion and OpenCap [10], an open-source

software which enables 3D kinematic and dynamic analysis of human movement, through the

use of videos captured with iOS devices. OpenCap combines computer vision, machine learning

and musculoskeletal simulation to provide a cost-effective and accessible alternative to tradi-

tional motion capture systems. As its strength, it’s already been validated [11] against the gold

standard stereophotogrammetric MoCap (motion capture) acquisition systems, which makes it

a suitable solution for the comparison with SageMotion in this study.

The key aim is therefore to conduct a meaningful comparison regarding the acquisition of differ-

ent gait retraining strategies between the two systems, in order to assess SageMotion’s accuracy

and precision, which would verify its suitability as a wearable biofeedback system for gait re-

training and modification for patients affected by knee OA.

1.2 Thesis Outline

Chapter 1 of this thesis provides an introduction to the study, aiming to describe the work and

define its objectives.

Chapter 2 presents and examines the background information necessary to understand the de-

velopment of the project, going deep into the topics of human motion analysis, gait analysis,

motion capture instrumentation and gait retraining techniques; moreover, this chapter provides

a detailed introduction to SageMotion and OpenCap, the two acquisition systems employed for

the data collection.
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Chapter 3 portrays a description of the participants involved in the study, and underlines the

methods and materials employed during the data collection; moreover, it goes through the steps

of the data processing and statistical analysis.

The results of the study are outlined in Chapter 4, where they’re divided into three sections:

Trunk Leaning results, Toe-in results and Toe-out results.

Chapter 5 provides a comprehensive discussion regarding the obtained results, also comprising

an analysis of the limitations of the study, and possible future developments.

Finally, Chapter 6 consists of an overview of the thesis work, summarizing the achievements

reached and including some final statements.
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2

Movement analysis and gait retraining

2.1 Introduction to human motion analysis

Human motion analysis is a discipline that aims to obtain information regarding the movement

of individual selected points, anatomical segments, joints, muscles, and the entire human body

during the execution of specific predetermined tasks [12].

More specifically, we can distinguish kinematic analysis, which deals with the movement of a

body in space and time without considering the causes that determine it, regardless of forces,

and kinetic analysis, which instead investigates the cause that generates a specific movement

and therefore takes into account all the forces and moments involved.

2.1.1 Reference systems

Kinematically describing the motion of a body means defining, at each instant, the position and

orientation of an anatomical segment during the execution of a specific motor task [12].

In order to describe the motion of a body in motion analysis, it’s essential to rely on the rigid

body assumption. A rigid body is a body whose points move while maintaining unaltered dis-

tances relatively to a fixed observer. By observer, we mean an orthogonal Cartesian system
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with a fixed orientation, and generally the laboratory’s global reference system is considered

as the fixed observer. It’s also necessary to introduce a local reference system, attached to the

moving body; with these assumptions, the rigid motion problem consists at defining, at each

instant, the relative position of the local reference frame with respect to the absolute one of the

laboratory. Motion analysis and the description of the examined quantities is therefore depend-

ing on the identification of appropriate reference systems. We can then introduce, in order to

associate the anatomical segments with a reference system, the so-called ”anatomical planes”,

three orthogonal imaginary planes, each one, as shown in [Fig. 2.1], dividing the human body

into two parts:

• Sagittal plane: divides the human body into right and left part;

• Coronal plane: divides the human body into anterior and posterior part;

• Transverse plane: parallel to the ground, divides the human body into upper and lower

part.

Figure 2.1: Anatomical reference planes
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Referring to the above-described reference planes, internal and external rotation movements

occur on the transverse plane, abduction and adduction movements occur on the coronal plane,

and flexion-extension movements of the joints occur on the sagittal plane.

2.2 Gait analysis

Postural and movement analysis are practices of great scientific interest; posture and move-

ment result from the interaction of different physiological systems, more specifically the mus-

culoskeletal system and the nervous system.

The activity of walking is characterized by a cyclic motor activity pattern of the lower limbs

and trunk, which allows to transfer the body weight onto the supporting limb and to move for-

ward the contralateral limb [12]. Therefore, gait analysis, or computerized gait analysis, is a

fundamental step within movement analysis in order to obtain a spectrum of information that

accurately maps a subject’s gait patterns.

It’s important to underline that the analysis of postural and movement alterations can provide

fundamental information in order to understand how restrictive a particular pathology can be

at the motorial level, and how it may change over time. Moreover, in the rehabilitation field,

gait analysis can be effective in assessing the feasibility of any interventions. Jacqueline Perry,

physicist and researcher, one of the pioneers ofmovement analysis in clinical settings, and author

of the reference text for clinical biomechanics enthusiasts [13], defined the process of walking

as follows:

A series of rhythmic movements of the lower limbs, upper limbs, pelvis, and trunk that, by caus-

ing a forward displacement of the center of gravity, produces, through a series of translations

and rotations of the bony segments and the joints involved, the forward movement of the body

[13].

In order to carry out the locomotion process, it’s necessary for the subject’s body to exert an anti-

gravitational function in order to counteract the oscillations of the center of gravity and maintain

an upright position; furthermore, the subject must maintain balance and take steps, and in order

to do this, the presence of a propulsive means in which it can move is also necessary.
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2.2.1 The gait cycle

The period between two consecutive heel strikes of the same foot is defined as the ”gait cycle”.

It represents the reference functional unit in gait analysis. The gait cycle is defined as a periodic

cycle involving both lower limbs. During walking, the limbs repeat a sequence of movements

that allow the center of pressure Center of Pressure (COP), which represents the ground pro-

jection of the body’s center of gravity, to shift from one foot to the other alternatively, in order

to maintain dynamic balance [12]. Referring to one of the lower limbs, the most basic way to

analyze the walking activity is to divide the gait cycle into two phases:

• Stance phase, or support phase, during which the foot of the reference limb remains in

contact with the ground. In healthy deambulation, it occupies approximately the first 60%

of the gait cycle. The stance phase can be further divided into:

– Double support, the period during which the foot of the contralateral limb is also in

contact with the ground. It occurs twice during the gait cycle: at the beginning and

at the end of the support phases.

– Single support, during which only the reference foot is in contact with the ground,

corresponding to the swing phase of the contralateral limb.

In healthy walking individuals, the first contact with the ground is made by the heel, and

for this reason the starting point of the gait cycle (0%) is defined as Heel Strike (HS).

The end of the stance phase, corresponding to the beginning of the swing phase, can be

defined as the Toe Off (TO), the moment in which the foot leaves the ground.

• Swing phase, during which the reference foot lifts off the ground in order to advance. In

a healthy subject, it represents the remaining 40% of the gait cycle.

More specifically, it’s possible to identify 8 phases during the gait cycle [12] [Fig. 2.2]; each of

them has a specific functional objective and is characterized by a synergic movement pattern to

be executed. The sequential combination of these phases allows the limb to perform three basic

tasks: load acceptance, single support, and limb advancement.
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• Load acceptance constitutes the first 10% of the gait cycle, and includes two phases:

Initial contact , where the forward-projected foot makes contact with the ground; the knee

is extended, the hip is flexed, and the ankle is dorsiflexed).

Loading response, where heel the heel rolls and the weight is transferred onto the sup-

porting limb, bringing the forefoot closer to the ground with consequent plantar flexion

of the ankle and knee flexion.

• Single support occupies the periodwhich goes from 10% to 50%of the cycle, consisting of

two phases: midtsance (10-30% of the cycle, involving dorsiflexion of the ankle allowing

the limb to advance beyond the supporting foot, and extension of the knee and hip) and

terminal stance (30-50% of the cycle, where the heel lifts and hip extension allows limb

advancement; the forefoot rolls and the initially extended knee flexes slightly)

• Limb advancement constitutes the remaining 50% of the gait cycle and can be divided

into 4 phases:

Pre-swing (50-60% of the cycle, contralateral limb begins the double support, while the

reference limb increases plantar flexion of the ankle, the knee flexion increases, and the

hip extension decreases);

Initial swing (60-73% of the cycle, the foot is lifted and the limb advances, the hip and

knee are flexed, and the ankle is partially dorsiflexed);

Mid-swing (73-87% of the cycle, the hip flexes, the tibia continues the dorsiflexion, the

knee extends due to gravity, and these movements cause the swinging limb to advance

beyond the gravity line);

Terminal swing (87-100% of the cycle, begins when the tibia is vertical; limb advance-

ment is completed, the knee extends, the hip returns to the initial flexion, the ankle

remains dorsiflexed until reaching a neutral position, and it ends when the foot touches

the ground again).

In each of these phases, the contralateral limb acts opposite to the ipsilateral limb

(reference limb).
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Figure 2.2: Phases of the gait cycle

2.2.2 Gait parameters

There are some significant instants identified within the gait cycle, that can be useful for cal-

culating some parameters used in gait analysis in order to describe a subject’s walking pattern.

These instants include, for example, the HS, defined as the minimum vertical position of the

heel, and the TO.

By knowing these instants, it’s possible to calculate space-time parameters related to the gait

cycle. The main temporal parameters include:

• Step duration [s]: the time interval between two heel-strikes of the same foot;

• Stance phase duration [s or % of step duration]: the time interval between heel strike and

toe-off of the same foot;

• Swing phase duration [s or % of step duration]: the time interval between the toe-off and

the subsequent heel strike of the same foot;

• Double support duration [s or % of step duration]: the time interval between the contralat-

eral heel strike and the toe-off of the first foot.
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The spatial parameters include:

• Stride length [m or % of subject’s height]: the distance travelled by the heel in the walking

direction between two successive heel strikes;

• Step width [m]: the distance between the right and left heels in successive steps, measured

perpendicular to the walking direction.

Starting from these parameters, other derived measures can be obtained, such as:

• Walking speed [m/s or % of subject’s height/s]: step length divided by step duration;

• Cadence [steps/min]: the number of steps at the minute.

2.2.3 Gait retraining strategies

Knee OA is a major cause of pain and physical disability. OA is the most common joint disorder

worldwide, with symptomatic knee OA expected to rise due to population aging and the obesity

epidemic. This condition affects all three compartments of the knee joint (medial, lateral, and

patellofemoral), with a prevalence of themedial compartment (which is subjected to higher com-

pressive loads), leading to limitations in daily activities. Initially perceived as a degenerative

wear-and-tear disease only associated with aging, it is now recognized as multifactorial, with

contributing factors including genetics, age, obesity, diabetes, systemic inflammation, lower

limb alignment abnormalities and traumas. Regardless of the origin of the disease, OA is char-

acterized by cartilage damage, subchondral bone sclerosis, and, in advanced stages, subchondral

cysts, which lead to pain, stiffness and impaired movements. [14]

The external KAM has been proved to be a strong predictor of the presence, severity and rate of

progression of knee OA. [15]

The KAM is calculated as the product of the Ground Reaction Forces (GRF) generated by the

foot-ground interaction and the perpendicular distance in the frontal plane between this force

vector and the knee center of rotation, also known as its lever arm. The KAM creates a ten-

dency for the tibia to rotate inwards, such that a larger KAM concentrates higher compressive
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loads on the medial tibiofemoral compartment. This uneven distribution of the loads imparted

on the tibiofemoral joint due to KAM can be responsible for the higher prevalence of medial

compartment knee OA.

The KAM typically exhibits 2 peaks during the stance phase of gait, that correspond to the peaks

in the vertical GRF [Fig. 2.3]. The larger initial peak occurs during the load-acceptance phase of

gait, and the second peak occurs in late stance. A higher first peak in KAM has been previously

reported in patients with medial compartment knee OA. [16]

For this reason, the KAM is a biomechanical variable which is often investigated in order to

evaluate the disease progression. [3]

Figure 2.3: Schematic representation of the KAM during gait

Gait retraining is a conservative intervention which has recently been proposed as a non-invasive

treatment strategy aiming to address biomechanical gait dysfunction experienced by individuals

with osteoarthritis. The main goal of gait retraining is to reduce joint loading and decrease the

pain level using different strategies and tools. In particular, in the case of osteoarthritic patients,

it can be used for modifying their gait kinematics in order to reduce the KAM.

Several gait modification techniques have been tested and shown to effectively reduce the KAM;

the most common techniques include leaning the trunk in the direction of the stance leg (trunk

leaning), medialising the knee during the stance phase (medial thrust), and modifying the foot
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progression angle (toe-in or toe-out) [17]; in particular, the Foot Progression Angle (FPA) is

defined as the angle between the line from the calcaneous to the second metatarsal and the line

of progression averaged from heel strike to toe-off during the stance phase of walking for each

step (the toe-in angle is conventionally considered to be positive, while the toe-out angle is

negative) [18].

These methods are usually employed by a therapist, and help the patient to make changes in his

gait through verbal, visual or haptic feedback. In fact, research suggests biofeedback to be a

promising tool used to complement gait retraining, since it provides individuals with real-time

data on their gait patterns, and helps them to make the necessary adjustments more easily and

faster [7].

2.3 Motion Capture instrumentation

Modern laboratory motion analysis systems often consist of multiple interconnected instru-

ments, each aimed at investigating a specific aspect of movement itself.

These systems can be used alone or combined, and they can provide a detailed analysis

of movement and gait, which is essential for the diagnosis and treatment of many disease

conditions related to posture and movement.

In order to perform motion analysis, different types of instrumentation can be used, including:

• Stereophotogrammetric systems: these systems measure the three-dimensional coordi-

nates of anatomical landmarks on the subject using markers;

• Force platforms: these platformsmeasure the interaction forces between the subject’s foot

and the ground;

• Pressure sensors: these systems measure the distribution of pressure from the subject’s

foot on the ground; they can be pressure platforms or pressure insoles;

• Electromyographs: these devices measure the electrical potentials developed in a muscle

during contraction using different types of electrodes;
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• Inertial Measurement Units (IMUs) wearable sensors: these systems provide information

about angular velocities and linear accelerations using accelerometers and gyroscopes.

Within this research project, stereophotogrammetry and force platforms are going to be further

investigated, as they represent the gold standard techniques; moreover, IMU wearable sensors’

functioning is also going to be explained in detail, since IMUs constitute the basic components

of the SageMotion system.

2.3.1 Stereophotogrammetry

Optoelectronic stereophotogrammetric systems exhibit high accuracy in the measurement of hu-

man motion kinematics, and are regarded as the gold standard when compared to other motion

capture systems [19].

A stereophotogrammetric system [fig. 2.4] refers to a systemwith two ormore cameras equipped

with infrared sensors, positioned at known points in the laboratory space. By using the two-

dimensional local coordinates of a point on the image plane of each camera, it’s possible to

process the information obtained through a method called triangulation, resulting in 3D trajec-

tories [12].

Figure 2.4: Optoelectronic stereophotogrammetric system
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This process involves the application of two algorithms: the first is thresholding, which retains

data from stuff coated with infrared-reflective material, calculating the centroid of points corre-

sponding to pixels with values exceeding a certain threshold. The second is blob analysis (where

blob refers to groups of pixels in an image with shared properties): through this algorithm, it’s

possible to retain data from spherical objects named markers, coated with infrared-reflective

material placed on specific points on the subject’s body.

Markers can be of two different types: active diodes emitting infrared light, or passive, spherical

markers which reflect infrared light; spherical passive markers, made from plastic and coated

with reflective film, are most used due to their geometry, that ensures accurate and complete

visualisation.

Knowing that the marker’s projection occupies an ellipsoidal area on the image plane of the

cameras, it’s possible to calculate the centroid. In order to align the trajectories of the markers

with their projections on the image planes of the individual cameras, and then use the triangula-

tion procedure, it’s also necessary to assume that the camera can be approximated by a pin-hole

model. This model assumes that all optical rays contributing to the formation of the image pass

through a single point, known as the projection center [12].

A crucial step to be carried out before each acquisition, in order to obtain accurate measurements

in stereophotogrammetry, is the calibration of the system, which involves measuring and record-

ing the geometric properties of the cameras, such as intrinsic parameters (lens distortion) and

extrinsic parameters (position and orientation of the cameras with respect to a global coordinate

system). This ensures that the coordinates of the same point, expressed on the image planes of

two or more different cameras, are expressed with respect to the same reference system.

Despite its reliability, this technique presents some limitations [20] [21]; it’s really expensive,

it requires a laboratory environment to be performed, the application of the markers onto the

subject’s body is time-consuming and requires expertise to be performed, and the calibration

needs to be very accurate.

Moreover, the precision and accuracy of the reconstructed kinematics can be affected by three

different types of errors:

1. Instrumental errors: errors related to the system, they can be both systematic (for example,

related to an inaccurate calibration procedure, or a wrong choice of the model parameters)
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or random (for example, related to the electronic noise, flickering);

2. Incorrect marker placement on the anatomical reference points: the identification of the

anatomical landmarks can be challenging and imprecise;

3. Soft Tissue Artifact (STA): it’s the most critical error source in terms of markers’ trajec-

tory reconstruction; it’s caused by a relative sliding between themarker and the underlying

bone, due to the presence of skin, muscles and adipose tissue.

2.3.2 Force platforms

The study of human movement aims to obtain precise and quantitative information not only in

terms of the kinematics, but also on the kinetics of these movements. The human body operates

under the influence of internal forces generated bymuscular actions, respecting joint constraints,

while also experiencing external forces exchanged between the body and the environment.

Force platforms, also known as dynamometric platforms, are devices consisting of an instru-

mented platform that allows for the measurement of ground reaction forces when a subject

applies weight to them. The platforms can measure the three components of ground reaction

force and the three components of moments along the three coordinate axes, thus providing six

outputs [fig. 2.5]; additionally, the use of force platforms enables the estimation of the COP,

which is the point of force application. Each platform comprises 4 triaxial load cells at the four

corners, and each cell has three transducers, each one aiming at detecting one of the three force

components [12].

Figure 2.5: Force platform
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The two most commonly used types of transducers are:

• Strain Gauge (SG): Forces and moments are measured using SG associated with four

load cells placed near the four corners of the platform. The cells consist of an insulating

layer and a measuring grid to which the strain gauges are bonded, converting elongation

or compression into a change in the electrical resistance. Since the induced variations

are often minimal, additional circuits are generally required in order to amplify the resis-

tance variations. The most commonly used circuit configuration in a load cell is called a

”Wheatstone bridge”. The operating principle of the strain gauge sensor is presented in

[fig. 2.6].

Figure 2.6: Strain gauges working principle

• Piezoelectric sensors: piezoelectric sensors consist of crystals of piezoelectric materials,

which change their orientation in response to stress variations, thereby generating an elec-

tric charge proportional to the mechanical stress. Usually, a charge amplifier is used to

make the variations measurable (typically in a range of 0-10V). Platforms with piezoelec-

tric sensors have the advantage of being able to measure a wide range of force values;

however, they are subject to drift for prolonged static loads, meaning that when applying

a constant force, after a certain period of time, no change in orientation is detected. There-

fore, strain gauge platforms are generally preferred in posturography, while piezoelectric

sensor platforms are preferred for dynamic measurements at high frequencies.
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2.3.3 Inertial Measurement Units (IMUs)

As already explained, despite being to date the most accurate motion capture system, optical

stereophotogrammetry needs sophisticated calibration, it’s space-limited, expensive and not

easy to deploy, since it needs the use and application of markers; moreover, it’s also easily

affected by occlusion and the presence of reflective objects [19].

Micro-Electro-Mechanical Systems (MEMS) inertial sensors, also known as IMUs, are an in-

creasingly popular and widespread technology for movement analysis and training, due to their

low cost, customization, flexible application, and comfort in wearing. IMUs have the capabil-

ity to capture motion in the three planes of space. This technology generally puts together two

different types of sensors, accelerometers and gyroscopes, eventually associated with magne-

tometers (in this case Magneto-Inertial Measurement Units (MIMUs)).

The complementary information of acceleration, angular velocity, and magnetic field can be ex-

ploited by means of a sensor fusion algorithm in order to estimate the absolute orientation and

displacement of the MIMU (and the body segment which it’s attached to) [22].

Thanks to their small size and portability, these sensors are proving to be an optimal option for

human motion analysis, and more specifically for gait analysis.

The purpose of inertial sensors is to translate a physical phenomenon, inertia, into a measurable

signal.

Accelerometers can measure linear acceleration along their sensitive axis [23]. The general

principle they are based on is a mass-spring-damper system; more specifically, a known seis-

mic mass (which generates the inertial force) is coupled to a spring, which induces a kinematic

movement in the mass, oscillating along an axis (called the sensitivity axis); furthermore, there

must be a damper to obtain favorable frequency response values, and a method to convert the

mass displacement into an electrical output.

Accelerometers can be single-axial, as described above, or triaxial; in the latter case, they allow

the reconstruction of linear acceleration values along the three axes x, y, z, although it is impor-

tant to avoid cross-talk phenomena between the different axes.

There are three common types of accelerometers: piezoelectric, piezoresistive, and capacitive.

Gyroscopes generate and measure angular acceleration values; more specifically, they exploit
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the Coriolis acceleration phenomenon to estimate angular acceleration. The gyroscope rotates

around the y-axis perpendicular to the x-axis around which a mass rotates; in this way, an an-

gular momentum around z is generated, which is measured with a force or torque sensor.

MEMS gyroscopes do not have rotating parts and measure acceleration through the Coriolis

force, an apparent force to which a body is subjected when its motion is observed from a ref-

erence system that is in circular motion with respect to an inertial reference system. In this

situation, the observer, located in the rotating reference system, sees the object moving with a

curved trajectory.

The combination of the different elements results in IMUs, which consist of three accelerome-

ters, three gyroscopes, a battery, an hardware for data processing, and a small box acting as a

container.

Typically, a magnetometer is also added to the system, because the obtained measurements are

often subjected to drift, meaning that the trajectory of the sensor’s position, due to the Earth’s

magnetic field, turns out to be curved and non-linear. The magnetometer allows detecting the

offset due to the magnetic field and subtracting it from the obtained measurements. With the

addition of the magnetometer, we speak of MIMUs. This technology presents some great ad-

vantages: their small size, light weight and portability, in addition to their ability to provide

real-time measurements, makes them an suitable solution for various acquisition environments.

Moreover, compared to traditional motion capture systems, they’re less influenced by occlusion,

and, since they can be directly attached to the body or clothing, they allow the subject’s move-

ments to be more natural and unrestricted, which makes IMUs not only ideal for rehabilitation,

but also in the world of sports and biomechanic research.

However, it’s important to know that this technology also presents some drawbacks [22]: first of

all, they can be subjected to drift, which consist in a progressive misalignment of the sensor over

time, which can cause errors in the estimation of the sensor orientation, and the magnetometer’s

measurements can be affected by ferromagnetic disturbances. In addition, IMUs require a care-

ful and time-consuming calibration, and they can present some errors due to limited accuracy,

repeatability, sensitivity to the magnetic field interference, and integration (errors can accumu-

late while integrating acceleration in order to obtain velocity and position).

Overall, wearable inertial sensors represent a suitable solution for tracking the movement of the

37



Chapter 2. Movement analysis and gait retraining

human body, especially when conventional gait analysis is too expensive, or the analysis needs

to be carried out of the laboratory environment. [24]

2.3.4 Markerless motion capture

Markerless Motion Capture (MMC) is a technique which is still not fully recognized as an ap-

plication in clinical settings. There are various approaches to it, and the one which will be

here explained, called Visual Hull Based Markerless Motion Capture, represents one of the few

whose clinical applications are recognized, since it’s been validated against a stereophotogram-

metric system. [25]

It’s based on the premise that it’s possible to reconstruct human movement without using mark-

ers, which would overcome some of the limitations related to the use of the gold standard optical

stereophotogrammetric technique: it’s time-consuming, expensive, it can introduce errors due

to STA, and needs a laboratory setting; MMC aims to reconstruct motion, using non-invasive

measurements of body segments kinematics through video sequences of the subject taken from

multiple views, acquired synchronously, and with each camera calibrated to the same calibration

object.

This methodology is very advantageous because the subject can perform a ”natural walk” with-

out perceiving the encumbrance due to marker application. Furthermore, markerless technique

allows for acquisitions even in uncontrolled environments, such as outside and even underwater.

The procedure of Visual Hull MMC involves retaining only the silhouette of the subject from

the visible image, and then projecting and assembling the shapes from individual views. It’s

also necessary to create a model, which will then be tracked by the dynamic visual hull.

There are twomethods in order to create a model: the optimal method acquires the volume of the

subject with a body scanner and then assimilates each body segment to a known solid, in order

to obtain the anatomical axes and position the joint centers; the non-optimal method, due to the

lack of a body scanner, acquires a static visual hull of the subject in the laboratory; subsequently,

using machine learning algorithms, for each acquired visual hull, it searches a database (which

contains laser scans performed on various subjects) for the model which is the most similar to

the one found in static, which already contains the anatomical axes. Static acquisitions are then
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associated with dynamic visual hulls frame by frame.

Obviously, this technique needs to be validated through synchronous acquisition with a

stereophotogrammetric system. Based on the offsets identified between markerless and marker-

based acquisitions, whose acceptability needs to be evaluated considering the range of motion

of each joint, it can be concluded that markerless technique can be used to reconstruct hip, knee,

and ankle angles for the sagittal plane, while its use must be excluded for the coronal and trans-

verse planes [25].

2.4 Haptic wearables and SageMotion

Haptic wearables can be defined as untethered, ungrounded body-worn devices that interact with

the subject’s skin, directly or through clothing, and can be used in natural environments outside

a laboratory.

The clinical interest in the haptic wearables area is progressively increasing; in fact, depending

on the level of impairment of a subject (total impairment, partial impairment or no impairment),

haptic wearables can act, respectively, as sensory replacement, sensory augmentation or trainers

[26] [Fig. 2.7].

Figure 2.7: Haptic wearable applications classified by degree of sensory impairment
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Focusing now on the area of rehabilitation and the use of haptic wearables as trainers, they can

train human motion by stimulating mechanoreceptors in the skin; they can be applied across

multiple locations on the body, in order to simultaneously train one or more movement param-

eters.

One of the applications of haptic wearables allows to reduce knee loads by providing informa-

tion directly to the subject, allowing him to self-select a new gait pattern. This solution, which

can be effective in short-term, as a drawback risks to make the subject adopt gait patterns that

could be awkward and difficult to maintain long-term.

Another approach which overcomes this issue is to explicitly train gait kinematics in order to

reduce knee loading. In two studies carried out by Shull et al. [27] [28], vibration pulses on the

lateral shank, just below the knee, have been used with the aim of training individuals affected

by knee OA to internally rotate their toes, resulting in reduced knee loading and reduced knee

pain over time.

Another solution that has been tried is the training of multiple kinematic parameters simulta-

neously [29], which could present challenges in terms of cognitive and motorial processing,

due to the need to respond to multiple streams of information simultaneously. Lurie et al. [30]

conducted a study where subjects were trained to adjust different gait parameters, such as trunk

sway, tibia angle and foot progression angle, and they either received error correction feedback

on all parameters simultaneously or one parameter at a time. Results showed that perception

accuracy was lower when all three feedback cues were given simultaneously, but surprisingly,

the subject performance was similar regardless of receiving all feedback simultaneously or one

feedback parameter at a time, despite the latter scenario transmitting less feedback information.

Although haptic wearables’ primary target was addressing existing issues, there’s also a shift

towards preventive medicine, which could allow a greater impact on clinical applications. For

example, in knee osteoarthritis, tactile feedback has already been proved to be effective in re-

training gait patterns to reduce knee loads, potentially slowing down the progression of the

osteoarthritis. Moreover, haptic wearables could also be used to correct sitting posture to fore-

stall back and neck injuries, as well as refining athletic movements to mitigate risks of ligament

tears or bone fractures. This shift towards prevention could significantly enhance the depth and

impact of the use of haptic wearables in the healthcare field.
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SageMotion [9] is the first wearable haptic feedback system with full customization and open

algorithm code, for real-time movement assessment and training. As previously explained, the

use of haptic biofeedback represents a powerful solution in order to train human movement,

by stimulating one or multiple body locations, with the aim of training one or more movement

parameters.

As its strength, SageMotion is a wearable and portable system, which eliminates the need for

a laboratory environment; moreover, the use of haptic biofeedback instead of visual or audi-

tory feedback allows the system not to interfere with the visual/audio information input that are

usually necessary for rehabilitative movement sessions. In addition, the customization allows

to perform subject-specific research for a specific movement training application; SageMotion

sensors can be placed in any configuration across any location of the human body, which also

allows to use just the necessary number of sensors, without being forced to wear a full body suit

or a complicated configuration of unnecessary sensors.

SageMotion System The system is composed by 8 (or 16) nodes, one wifi Hub to which the

nodes get connected, a battery, 14 node straps with three different lengths for fixing the nodes

to the body, two cables for connecting the hub to the battery (or the laptop) and charge the

sensors, and a node charging station [Fig. 2.8].
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Figure 2.8: SageMotion system’s components

42



Chapter 2. Movement analysis and gait retraining

Each node contains a MIMU, and can perform both sensing and vibrating biofeedback.

The sampling rate of the nodes is 100 Hz, their size is 58 x 38 x 19 mm, and the weight is 43 g.

SageMotion interface software is fast and easy to use, it’s supported on Windows, Mac, Linux,

iOS and Android, and the output measures given during the data collection depend on which

App the user decided to select for that specific acquisition. In fact, the system provides plenty

of different Apps that can measure and train different parts of the human body.

The Apps that were used in this research work were:

• Standing Balance Trunk Side Angle App: measures and trains trunk side angle during

walking.

• Walking Foot Progression Angle App: measures and trains foot progression angle during

walking.

2.5 OpenCap

OpenCap is an open-source, video-based and web-based software presented in 2023 by a

research group from Stanford University, Stanford, California, USA, which allows to obtain

both 3D kinematics and dynamics of human movement, by using videos captured with at least

two iOS devices (iPhone, iPad or iPod).

OpenCap allows movement analysis to become widely available without specialized hardware,

software or expertise, through the combination of computer vision, machine learning and

musculoskeletal simulation.

Compared to the gold standard marker-based stereophotogrammetric motion capture, the

system presents an important reduction in terms of cost, time of the acquisition, and expertise

barriers for the movement analysis, as shown and explained in the figure below [fig. 2.9].

In fact, OpenCap allows to obtain musculoskeletal dynamics data in less than 10 minutes of

hands-on time, with an equipment worth less than $700, which is 200 times cheaper than

traditional motion capture laboratory equipment, and it does not require a dedicated laboratory

space. Moreover, the system can be used almost anywhere, since it just requires a working

internet connection and a minimum of two iOS devices.
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The experimental setup for an OpenCap data acquisition just requires the use of a device

for running the OpenCap web application, two tripods in order to fix the iOS devices, and a

printed calibration checkerboard provided on the OpenCap website [10]. After pairing the

devices to the application, the user is guided through the calibration, the data collection and the

visualization of three-dimensional (3D) kinematics.

Figure 2.9: Marker-based motion capture (Mocap) vs. video-based (OpenCap) analysis of

human movement dynamics

The OpenCap system includes a smartphone application, a web application and a cloud com-

puting; in order to obtain kinematic data, the user must link the smartphone application on the

iOS devices to the OpenCap web application on a laptop, which allows to visualize the three-

dimensional (3D) kinematics simultaneously to the video recording on the iOS devices. In the

cloud, 2D keypoints are obtained from the multi-view videos through an open-source pose es-

timation algorithm, and subsequently synchronized and triangulated in order to obtain 3D key-

points. With the use of two long short-term memory (LSTM) networks, starting from the po-

sition of the triangulated video keypoints, it’s possible to predict the position of 43 anatomical

markers, corresponding to the ones commonly used in marker-based motion capture, in order to

determine more precisely the 3D joint kinematics.

OpenCap uses the anatomical markers’ position to scale the subject’s anthropometry through
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OpenSim’s Scale tool, by using the musculoskeletal model from Lai et al. [31], which comprises

33 degrees of freedom. After the scaling, it’s possible to compute joint kinematics through the

OpenSim’s Inverse Kinematics tool; finally, OpenCap estimates dynamics using tracking sim-

ulations of joint kinematics. All the process is resumed in [fig. 2.10].

Figure 2.10: OpenCap data collection and analysis workflow

The system has been validated against the gold standard marker-based motion capture and force

platform analysis, with a group of ten healthy subjects performing different tasks, such as walk-

ing, squatting, rising from a chair and drop jumping; OpenCap demonstrated to accurately esti-

mate changes in dynamic measures with statistical power ranging between 0.65 and 0.92, which

is comparable to the gold standard technique (0.77-0.89). The system also predicted adverse out-

comes related to osteoarthritis and fall risk with values ranging from 0.65 to 0.80. Furthermore,

OpenCap provided dynamic measures that can inform rehabilitation decision-making with clas-

sification accuracies between 75% and 89% [11].

Moreover, the system’s kinetics is comparable to inertial measurement unit-based approaches,

with root mean square errors (RMSE) and joint moments predictions comparable to the ones
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obtained by using a 17-sensor IMU suit [32].

2.6 Musculoskeletal modeling

Musculoskeletal modeling represents an increasingly popular approach that aims at determining

how the elements of the musculoskeletal system interact with each other in order to produce

movement. A musculoskeletal model consists of a mechanical description of bones, muscles

and joints, and it’s usually created in order to estimate the internal forces (muscle and joint

reaction forces) that can’t be experimentally measured in vivo; plus, these models can be scaled

and customized according to the parameters related to the individual, which makes them subject-

specific [12].

According to this type of approach, the human body is assumed to be an articulated multi-body

system, which means that it’s represented as a kinematic chain between anatomical segments,

which transfer motion through joints; the single bones are typically modeled as rigid bodies, as

the bone deformations are assumed not to contribute significantly to the joint articulations or

estimations of muscle forces. The segments’ lengths are corresponding the anatomical lengths,

measured as distances between anatomical landmarks. Masses are considered as if they were

concentrated on the Center ofMass (COM) of each segment, and their inertial features are known

[33].

2.6.1 Opensim

OpenSim is a freely-available, open-source, user extensible software system for biomechanical

modelling, simulation and analysis, which allows the development of musculoskeletal struc-

tures’ models and the creation of dynamic simulations of movement [34].

The first version of the system was released in 2007 by Simbios, a NIH Center for Biomedical

Computation at Stanford University.

OpenSim enables the implementation of musculoskeletal models, the visualization of their mo-

tion, and a set of tools for extracting meaningful information. These tools include the Inverse

Kinematics, to resolve internal coordinates from available spatial marker positions correspond-
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ing to known landmarks on rigid segments; Inverse Dynamics, to determine the set of general-

ized forces necessary to match estimated accelerations; Static Optimization, to decompose net

generalized forces amongst redundant actuators (muscles); and Forward Dynamics, to generate

trajectories of states by integrating system dynamical equations in response to input controls and

external forces. Moreover, specialized tools are provided in order to generate patient-specific

simulations. These include the scaling of an existing model to match patient-specific measure-

ments, and the determination of dynamic muscle activations that cause the model to track ex-

perimental data [35].

OpenSim models consist of several elements (components) that have computational counter-

parts in the underlying Simbody multibody system. These include: bones (rigid bodies), joints

(mobilizers, constraints and forces), contact elements (rigid constraints and compliant forces),

as well as ligaments and muscle actuators (forces).

The OpenSim pipeline is displayed in the figure below [fig. 2.11].

Figure 2.11: OpenSim elaboration pipeline
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Materials and Methods

3.1 Data collection

The data collection took place at the Movement and Posture Analysis Laboratory Leuven

(MALL), at the Department of Movement Science of the KU Leuven University in Leuven,

Belgium.

3.1.1 Participants

A total number of four healthy subjects, with no history of musculoskeletal or neurological

disorders, volunteered for the study (3 males and 1 female, age 27.7 ± 2.2 years, height 181.4 ±

6.3 cm, weight 76.6 ± 4.7 kg).

Tab. 3.1 displays all the subjects’ demographics.

All the participants were asked to wear tight clothing, in order to create contrast with the back-

ground, and shoes that made contrast with both the floor and the pants, which was helpful for

the OpenCap video-based data collection.
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Subject Gender Age Height Weight BMI

H01 M 27 178 cm 78 kg 24,62

H02 M 31 186 cm 76 kg 21,97

H03 M 28 189 cm 83 kg 23,24

H03 F 25 173 cm 70 kg 23,39

Table 3.1: Participants’ demographics

3.1.2 Experimental setup

OpenCap The OpenCap system requires to record the videos of the subject using at least two

cameras from iOS devices. For the data collection, two iPad Pro 11” were used; there was no

need for a third camera, since the two devices allowed to avoid body segment occlusions.

The iPad Pro 11” were fixed to the tripods, and the cameras were positioned in order to see

every body segment at all times during the data acquisition. As suggested on the OpenCap

website, the cameras were orientated at approximately 45° with respect to the walking direction

of the acquired subject.

Calibration The calibration took place through the use of a checkerboard provided by Open-

Cap [fig. 3.1], which was printed on A4 paper, with 35x35 mm black and white squares.

The checkerboard was positioned at the center of the desired capture volume, at less than 5m

far from the cameras, visible by all the cameras. As specified on the OpenCap instructions, the

line pointing out of the checkerboard didn’t point straight at one of the cameras, but it bisected

the cameras’ arches.
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Figure 3.1: OpenCap calibration checkerboard

After the calibration, the checkerboard could be removed.

It was fundamental not to move the cameras after the calibration; if this happened, a new session

had to be started, and it was necessary to perform the calibration again.

3.1.3 Data collection

Sensors placement

Each of the eight SageMotion nodes, displayed on the back of the sensor, presented its own

reference system, and a code which was supposed to identify the sensor [fig. 3.2].

Figure 3.2: Reference system and identification code of a SageMotion node
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Using the node straps, the eight nodes were fixed onto the subjects’ bodies, and positioned as

follows [36]:

• one sensor on the upper trunk

• one sensor at the middle of the left and right posterior superior iliac spines (pelvis) [fig.

3.3]

• two sensors, one for each thigh, at the middle of the greater trochanter and the lateral

epicondyle of the knee (left/right thighs)

• two sensors, one for each shank, at the middle of the lateral epicondyle of the knee and

the lateral malleolus of the ankle (left/right shanks)

• two sensors, one for each foot, at the middle of the heel and the toe (left/right feet) [fig.

3.4]

Figure 3.3: Nodes’ positioning on the back
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Figure 3.4: Nodes’ positioning on the lower limbs
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3.1.4 Acquisition protocol

The data were collected by both systems (SM and OC) simultaneously.

Each time a new subject started the acquisition, the OpenCap web app asked as an input

his/her weight, height and date of birth, in order to create a profile for the subject, and required

the subject to stand in a “neutral pose” (standing with arms along the trunk and the distance

between the feet comparable to the shoulder width), which allowed the system to scale the

model and adapt it to the individual’s features.

As suggested on the OpenCap website, each recording was started at least 1s before the

participant beginned the movement, in order to allow the system to set, and to be sure that the

measured values were more precise and reliable.

Since SageMotion presented some issues related to the Wi-Fi connection between the hub and

the nodes, it was decided to ask the subject to make some extra steps at the beginning of each

acquisition, in order to facilitate the setting of the system, and, since the space in the laboratory

and the cameras setting didn’t allow to walk straight for a longer distance, the subjects had to

make a 90° turn during walking.

For this reason, during the data processing it was necessary to cut the part of the acquisition

relative to the steps taken before the turn, because in that part of the task the cameras were not

orientated at 45° with respect to the subject’s walking direction as requested by OpenCap, and

due to occlusion, the data were not very precise.

Each subject performed four different trials, and repeated each trial four times. The performed

trials were:

1. Natural straight walking for a 5-10m length For the straight walking task, the SageMotion

app used was the Raw Data App.

As shown on the figure below, the required number of nodes was 8, so all the nodes were

sensing during the acquisition of this task. In this case, there was no feedback going on.

As an output, the system gave, for each sensor, the linear accelerations [m/s2], angular ve-

locities [°/s] and the magnetometer data [µT] along each axis (X, Y, Z), and the quaternion
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data.

2. Toe-in gait for a 5-10m length.

3. Toe-out gait for a 5-10m length.

For the toe-in and toe-out walking tasks, the SageMotion app used was theWalking Foot

Progression Angle App.

In this case, the required number of nodes was 3, and there was just one sensing node

[fig. 3.5], which was the one placed on the left foot of the subject (the one which was

executing the toe-in or toe-out), and two feedback nodes, which could be put anywhere,

because their function was just to vibrate whenever the FPA exceeded the maximum value

set for the feedback (foot-lateral) node or was lower than the minimum value set for the

feedback (foot-medial) node. [Fig. 3.6]

The output values for this app were:

• Step-Count: the number of steps of walking.

• Gait-Phase: for the left foot, the system recognized the step phases, each corre-

sponding to one number; 0 = early stance, 1 = middle stance, 2 = late stance, 3 =

swing

• FPA-This-Step [°]: the foot progression angle for each step, calculated, as explained

on the SageMotion documentation, as the mean of the FPA between 15% and 50%

of the stance phase.

• For each sensor, the linear accelerations [m/s2], angular velocities [°/s] and the mag-

netometer data [µT] along each axis (X, Y, Z), and the quaternion data.
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Figure 3.5: Nodes’ positioning for the Walking Foot Progression Angle App

Figure 3.6: Walking Foot Progression Angle App’s interface on Sagemotion
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4. Trunk leaning gait for a 5-10m length.

For the trunk leaning walking task, the SageMotion app used was the Standing Balance

Trunk Side Angle App.

In this case, the required number of nodes was 3, and there was just one sensing node [fig.

3.7, which was placed on the back of the torso of the subject (which was executing the

leaning), and two feedback nodes, which could be put anywhere, because their function

was just to vibrate whenever the TSA exceeded the maximum value set for the feedback

(feedback-left node) or was lower than the minimum value set for the feedback (feedback-

right node). [Fig. 3.8]

The output values for this app were:

• Time [s]: time since the trial started

• TSA [°]: the value of the trunk side angle (medial-lateral), with the TSA being

positive when the subject was leaning to the right.

• For each sensor, the linear accelerations [m/s2], angular velocities [°/s] and the mag-

netometer data [µT] along each axis (X, Y, Z), and the quaternion data.

Figure 3.7: Nodes’ positioning for the Trunk Side Angle App
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Figure 3.8: Trunk Side Angle App’s interface on Sagemotion

3.2 Data Processing

The main goal of the data analysis was to highlight eventual differences between the data

obtained by OpenCap, which have already been proved to be reliable [11], and the SageMotion

data, which need to be validated in order to understand if the system represents a suitable

solution for the rehabilitation of patients affected by knee OA, through gait retraining and

modification.

The analysis was conducted separately for the trunk leaning data and the toe-in and toe-out

data.

Data processing was performed through the use of different tools, such as Matlab R2023a,

OpenSim 4.4, and Microsoft Excel.

3.2.1 Trunk Leaning

For the trunk leaning technique, the variable of interest was the trunk side angle; for SM, the

TSA values were extracted from the Excel files (outputs of the SM data collection), while for

OC the output file was a .mot, and the value of the TSA was assumed to be equivalent to the
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lumbar bending angle on OpenSim.

Some pre-processing procedures were implemented in order to reduce noise components without

compromising the data integrity.

The datawere filteredwith a Butterworth lowpass filter, with filter order = 4 and cutoff frequency

= 20 Hz.

As previously explained, due to internet connection issues, the subjects had to make a 90° turn

while walking, so during the task execution, before the turn they were not totally visible by the

OpenCap cameras, and the data were not reliable; for this reason, it was necessary to identify

the instant of the turn for both the acquisition systems, in order to only retain the data from that

instant onwards. For the OC data, this was possible thanks to the OpenSim reconstruction of

the movement’s kinetics, which allowed to identify the turn from the video; as for SM, the turn

instant was corresponding to a peak of the angular velocity around the Y axis of the node placed

on the back of the subject [fig. 3.9].

Once the instants corresponding to the turn were identified, the data were cut.

Figure 3.9: Peak of the angular velocity along the vertical axis, corresponding to the turning

instant

The two systems collected data at different sampling rates (100 Hz for SageMotion, 60 Hz for

OpenCap); for this reason, through the use of the Matlab function resample, the SM data were

resampled at 60 Hz.

Moreover, in order to be comparable, the data needed to be synchronized; this happened through
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the use of the Matlab function alignsignals, which aligns signals based on cross-correlation: it

computes the cross-correlation between the two signals and finds the time shift that maximizes

the correlation; afterwards, it applies this time shift in order to align the signals.

Once all these data processing techniques had been applied, the data were synchronized and

comparable [fig. 3.10].

Figure 3.10: Example of the processed data: subject H04, trunk leaning OpenCap vs

SageMotion

For each task, the peak values of the trunk side angle were extracted with the use of the Mat-

Lab function findpeaks; moreover, the Root Mean Square Error (RMSE) [formula 3.1] , which

represents one of the most commonly used measures for evaluating the quality of predictions,

was calculated, as well as the variance and standard deviation of the TSA for each task and each

repetition.

Moreover, the mean value and the standard deviation of the RMSE were calculated.

RMSE =

⌜⃓⃓⎷ 1

n

n∑︂
i=1

(smi − oci)2 (3.1)
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Moreover, it was decided to compute the Coefficient ofMultiple Correlation (CMC) [37], which

allows to assess the similarity between kinematic waveforms acquired synchronously through

different protocols or measurement systems. The CMC provides an index of the similarity

among the curves, clearing it from the ”gait cycle to gait cycle” variability, which is related

to the subject’s kinematics’ changes and the measurement system’s performance variability.

The CMC’s absolute value ranges between 0 (indicating great discrepancies between the sys-

tems’ measurements), and 1 (suggesting greater consistency between the measures obtained

from the two systems).

For all the analyzed gait retraining techniques, a statistical analysis was performed, in order to

understand if the differences between the data acquired with SM and OC were significant or

non significant, which would have meant that SageMotion represents a suitable system for gait

retraining and modification for patients affected by knee OA.

First of all, it was decided to perform one-dimensional Statistical Parametric Mapping (SPM) in

order to evaluate the trunk side angle values measured by the two systems, for all the subjects,

among all the trials.

One-dimensional Statistical Parametric Mapping (SPM1D) SPM, which was initially

developed for statistical inference on neuroimaging data, was subsequently introduced in the

biomechanics and human movement science, and used for the analysis of kinematic and kinetic

data [38].

SPM, employing the Random Field Theory, takes into account the fact that, since biomechanical

data are typically smooth, neighboring time samples are not independent [39]; through the

leverage of the local correlation between adjacent time points, SPM mitigates the multiple

testing problem, controlling Type I errors when testing correlated field data.

Rather than computing a p-value at each time sample, SPM calculates a p-value for clusters of

statistics that cross a critical threshold [40].

In a second moment, it was decided to perform an additional analysis, only considering the peak

values of the TSA for each subject, under the assumption that for rehabilitation purposes the

most relevant aspect is the maximum angle value reached by the patient on each step, while the

61



Chapter 3. Materials and Methods

intermediate values can be considered less significant.

An initial assessment for normality was conducted through the computation of a normality test,

the Shapiro-Wilk test, aiming to evaluate the distribution characteristics of the acquired data.

Shapiro-Wilk test The Shapiro-Wilk test is a hypothesis test used for small samples. Its null

hypothesis assumes that the sample originates from a normal distribution, while the alternative

hypothesis contends that it deviates from normality.

It assesses the degree of conformity between the sample data and a normal distribution by or-

dering and standardizing (setting a mean (μ) of 0 and a standard deviation (σ) of 1) the sample.

Due to the prevalence of normal distribution of both the OC and SM datasets, the chosen test

for the statistical analysis was a two-sample t test.

Two-sample t test The two-sample t test, also known as the independent sample t test, is a

statistical method used to determine whether the unknown means of two groups’ populations

are equal or not.

This test is applicable when data values are independent and randomly sampled from two

normal populations with equal variances.

The null hypothesis of the t test assumes that the mean values of the populations underlying the

two groups are equal (or that their difference is null), while the alternative hypothesis contends

that their difference is nonzero.

The assumptions for a valid t test include the independence of the data values, a random

sampling from populations, a normal distribution of data in each group, the continuity of the

data values, and equal variances of the two groups.

In order to compare the two groups of data, it was necessary to establish a level of significance.

In this case, the significance level was set at 5% (alpha was set at 0.05), meaning that any

p-value lower than alpha was considered to be significant. In fact, the p-value represents a

measure of the likelihood of the null hypothesis, based on the observed result in the sample:

the higher the p-value, the more likely the null hypothesis is true, and therefore confirmed by

observations, meaning that it’s compatible with the empirical result. On the contrary, the lower

the p-value, the less likely the null hypothesis is true: the observed result is too (significantly)
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different from the expected.

Overall, the two-sample t test represents a valuable tool for comparing means between two

independent groups, providing insights into whether observed differences are statistically

significant or can be attributed to chance.

For each subject two vectors were initialized:

• all the peak values reached during the four tasks’ repetitions measured by OpenCap

• all the peak values reached during the four tasks’ repetitions measured by SageMotion

The two vectors, constituting the two groups used to perform the t test for each subject, are

displayed below [tab. 3.2], with T representing the task number, and P representing the peak

number; for the sake of clearness, the first element of the first vector displays the first peak value

(P1) measured by OpenCap (OC) during the first repetition of the trunk leaning task (T1), for

the first subject (H01).

H01OC H01SM

T1P1 T1P1

T1P2 T1P2

T1P3 T1P3

T2P1 T2P1

T2P2 T2P2

T3P1 T3P1

T3P2 T3P2

T3P3 T3P3

T4P1 T4P1

T4P2 T4P2

T4P3 T4P3

T4P4 T4P4

Table 3.2: Peak TSA values’ vectors for subject H01, trunk leaning task, OC vs SM
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The t tests were performed for each subject, resulting in four p-values, allowing to test the inter-

subject variability.

Moreover, it was decided that in order to compare the accuracy and precision of SageMotion’s

measures, it would have been significant to compute another t test, considering as the two groups

under comparison the two vectors containing all the peak values measured for all the subjects

during the trunk leaning technique acquisition, respectively for OpenCap and SageMotion.

This resulted in another p-value.

Once the p-values were obtained, for both the tests comparing the TSA for each instant and the

ones only considering the peak values of the TSA, it was decided to apply a False Discovery

Rate (FDR) correction, due to the need to address the issue of multiple testing, which consists

in an increased risk of a type I error when making multiple statistical tests.

False Discovery Rate correction When conducting multiple statistical tests, the likelihood

of obtaining false positives increases.

The FDR correction technique allows for controlling the rate of false positives while simultane-

ously identifying significant results [41].

The application of FDR correction allows to maintain a balance between the identification of

true significant findings and the minimization of the risk of false positives. This correction

adjusts the significance thresholds of individual tests to account for the multiple comparisons

being made, ensuring that only a small proportion of significant results are likely to be false

discoveries.

Consequently, the resulting q-values provide a more reliable measure of significance, indicating

the probability that a given result is a false positive within the context of multiple testing.

For this reason, the computation of the q-values through the use of FDR enhances the reliability

and interpretability of the performed statistical analysis.
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3.2.2 Toe-in and Toe-out

Since the SageMotion App used was theWalking Foot Progression Angle App for the execution

and acquisition of both the toe-in and toe-out tasks, the steps performed for the data processing

were the same for both these gait retraining techniques, and for this reason they will be presented

and explained together.

The variable of interest for these techniques was the foot progression angle; for SM, the FPA

values were extracted from the Excel files (outputs of the SM data collection), while for OC the

output file was a .mot, and the value of the FPA was assumed to be equivalent to the subtalar

angle on OpenSim.

Some pre-processing procedures were implemented in order to reduce noise components with-

out compromising the data integrity.

As previously explained, the output value for the FPA on the SageMotion Walking Foot Pro-

gression Angle App was the mean of the FPA between 15% and 50% of the stance phase. In

fact, the system was able to detect the gait phases from each step performed by the subject, and

it provided just one value of FPA for each step. For this reason, since the system didn’t provide

the value for each time sample, in order to compare the data and perform the statistical analysis,

it was necessary to calculate the mean value between the 15% and 50% of the stance phase also

for the OC data.

Moreover, as in the trunk leaning acquisition, due to internet connection issues, the subjects had

to make a 90° turn while walking, so during the task execution, before the turn they were not

totally visible by the OpenCap cameras, and the data were not reliable; for this reason, it was

necessary to identify the instant of the turn for both the acquisition systems, in order to keep

only the data from that instant on. For the OC data, this was possible thanks to the OpenSim

reconstruction of the movement’s kinetics, which allowed to identify the turn from the video;

the number of steps made by the subject after the turn was counted, and same number of steps

was kept from the SM output values, starting to count from the last value.

Afterwards, the next step was to detect all the stance phases of the left foot (which was the one

where the sensing node was applied); this objective translated into the need of identifying the

Heel Strikes (HS) and Toe-Offs (TO) for each step of the task execution acquired by OpenCap.
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The research literature presents various different strategies for the detection of the gait events

during walking; the ones chosen for the development of this work are explained below [42]:

• the time instant corresponding to the left HS was detected as the maximum displacement,

along the subject’s walking direction (which, for the OpenCap/OpenSim reference sys-

tem, was the X axis), between the heel and the sacrum.

tHS = (Xheel − Xsacrum)max (3.2)

Once the time instants corresponding to the HS were found, the heel and sacrum coor-

dinates along the walking direction (X) were extracted from the .trc files relative to the

markers’ data, respectively from the X-Lheel and the X-LASIS (where ASIS stands for

Anterior Superior Iliac Spine) columns [fig. 3.11].

Once the data was extracted, the displacement was calculated, and the peaks (correspond-

ing to the heel strikes) were extracted using the MatLab function findpeaks [fig. 3.12].

Figure 3.11: Example of the plot of the left heel marker (blue) and the left ASIS marker

(orange) coordinates along the X axis
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Figure 3.12: Example of the plot of the heel-sacrum displacement

• the time instant corresponding to the left TO was detected as the maximum vertical po-

sition of the left heel (which, with respect to the OpenCap/OpenSim reference system,

corresponded to the Y axis).

Once the time instants corresponding to the TO were found, the heel marker’s coordinates

along the vertical axis (Y) were extracted from the .trc files relative to the markers’ data,

in particular from the Y-Lheel column [fig. 3.13].

Once the data was extracted, the peaks (corresponding to the toe-offs) were extracted

using the MatLab function findpeaks.
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Figure 3.13: Example of the plot of the left heel marker coordinate along the Y axis

Since the calculation of the RMSE wouldn’t have been extremely significant when considering

mean FPA values, in order to provide a first insight on the results, it was decided to calculate

the mean value of the FPA for all the steps, for all the subjects, for each system, with the corre-

sponding standard deviation.

Subsequently, as well as for the trunk leaning task, an initial assessment for normality was con-

ducted through the computation of a normality test, the Shapiro-Wilk test, aiming to evaluate

the distribution characteristics of the acquired data.

In this case, due to the prevalence of non-normal distribution of the data (especially SM’s data),

it was decided to extract the p-values computing the Wilcoxon-Mann-Whitney test, which is a

non-parametric test suitable for non-normally distributed data.

Wilcoxon-Mann-Whitney test The Wilcoxon-Mann-Whitney test, also called Mann-

Whitney-U test, is a non-parametric statistical method that involves ordering the data in each

group from the lowest to the highest values. Subsequently, the entire dataset undergoes rank-

ing. The summation of ranks is then computed for each group, leading to the determination of

68



Chapter 3. Materials and Methods

U by the formula:

U = min(U ′, U ′′) (3.3)

where U’ stands for the Mann-Whitney statistic for one group (OpenCap data), while U” is the

Mann-Whitney statistic for the other one (SageMotion data).

In order to compare the two groups of data, it was necessary to establish a level of significance.

In this case, the significance level was set at 5% (alpha was set at 0.05), meaning that any

p-value lower than alpha was considered to be significant [43].

In order to perform the test, for each subject two vectors were initialized:

• the mean FPA value for each step calculated for the left foot during the four tasks’ repe-

titions measured by OpenCap

• the mean FPA value for each step calculated for the left foot during the four tasks’ repe-

titions measured by SageMotion

The two vectors, constituting the two groups used to perform the test for each subject, are dis-

played below [tab. 3.2], with T representing the task number, and S representing the left foot’s

stance phase number; for the sake of clearness, the first element of the first vector displays the

TSAmean value during the first left foot’s stance phase (S1) measured by OpenCap (OC) during

the first toe-in/toe-out task repetition (T1), for the first subject (H01).
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H01OC H01SM

T1S1 T1S1

T1S2 T1S2

T1S3 T1S3

T2S1 T2S1

T2S2 T2S2

T3S1 T3S1

T3S2 T3S2

T3S3 T3S3

T4S1 T4S1

T4S2 T4S2

T4S3 T4S3

T4S4 T4S4

Table 3.3: Mean TSA values’ vectors for subject H01, toe-in/toe-out tasks, OC vs SM

The tests were performed for each subject, resulting in four p-values for each technique (Toe-in

and Toe-out).

As well as for the trunk leaning, once the tests had been computed, for both the techniques’

resulting p-values it was decided to apply a FDR correction, due to the need to address the issue

of multiple testing, which consists in an increased risk of a type I error when making multiple

statistical tests.

Moreover, as for the trunk leaning data, it was decided that in order to compare the accuracy

and precision of SageMotion’s measures, it would have been significant to compute another

Wilcoxon-Mann-Whitney test, considering as the two groups under comparison the two vectors

containing all the FPA values measured for all the subjects during the toe-in and toe-out tech-

niques acquisition, respectively for OpenCap and SageMotion.

This resulted in other two p-values, one for the Toe-in technique and one for the Toe-out tech-

nique.
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Results

The performed statistical analysis, coupled with the generation of graphic representations that

facilitated the results’ visualization, aided in making a distinction between the compared groups.

This assisted the detection of significant differences, providing a clear understanding of the ob-

tained results, which will be exposed and subsequently discussed within the following chapters.

The achieved findings will be presented and further discussed through the division into three

sections: Trunk Leaning results, Toe-in results and Toe-out results.

4.1 Trunk leaning

In the trunk leaning section of the study, the data were collected from 4 participants, each of

whom performed the trunk leaning technique 4 times, for a total number of 16 tasks’ repetitions.

The first step performed on the processed data was the calculation of the RootMean Square Error

(RMSE), which was computed for each task repetition for each subject, as a representation of

the discrepancy between the OC and the SM data.

The RMSEs, as well as the standard deviation for each acquisition, are displayed in the following

table [tab. 4.1].
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RMSE [°] std OC [°] std SM [°]

H01 TL1 3.71 7.81 8.67

H01 TL2 4.13 7.07 6.85

H01 TL3 3.71 8.92 10.35

H01 TL4 10.49 11.41 13.69

H02 TL1 2.56 6.29 6.96

H02 TL2 2.68 5.73 6.24

H02 TL3 6.16 9.86 14.59

H02 TL4 4.90 9.55 13.66

H03 TL1 6.77 6.32 8.01

H03 TL2 5.69 5.96 7.52

H03 TL3 8.03 8.33 10.45

H03 TL4 9.02 8.36 11.81

H04 TL1 3.60 7.39 5.38

H04 TL2 3.32 7.35 5.28

H04 TL3 5.06 8.66 7.53

H04 TL4 3.87 9.18 7.09

Table 4.1: Statistical analysis: Root Mean Square Error and standard deviations, trunk leaning

technique, OC vs SM
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In order to obtain more significant information, the mean of the RMSE was calculated for

each subject, which allowed to establish an inter-subject comparison and to highlight eventual

differences between subjects.

Finally, the mean RMSE value referred to all the acquisitions, which represents the most

intuitive and immediate result in terms of comparison between the two acquisition systems, was

calculated; the resulting information was that the two acquisition systems exhibit an average

discrepancy of 4.80° ± 2.25°.

The RMSE mean values for each subject are displayed in the table below [tab. 4.2], and a

visual representation is provided through the bar plot in [fig. 4.1].

Moreover, in [fig. 4.2] is displayed the mean RMSE value calculated over all the trials, for

each frame, represented over the percentage of the trials.

RMSE [°]

H01 4.94 ± 2.88

H02 3.79 ± 1.52

H03 7.27 ± 1.26

H04 3.91 ± 0.66

Table 4.2: Statistical analysis: mean Root Mean Square Error and standard deviations for each

subject, trunk leaning technique, OC vs SM
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Figure 4.1: Inter-subject trunk leaning Root Mean Square Error comparison

Figure 4.2: Mean Root Mean Square Error calculated for each frame, among all the trials,

represented over the trial percentage
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With regard to the coefficient of multiple correlation computing, it resulted in a CMC = 0,889

± 0,078 (standard deviation), revealing a high correlation between the systems in terms of the

trunk side angle measurement.

As for the results regarding the computing of the one-dimensional Statistical Parametric Map-

ping (SPM), there was no evidence of statistical difference between SageMotion and OpenCap

in any instant of the trunk side angle curve, representing the mean TSA value on each time frame

for all the subjects’ trials.

This positive outcome is graphically displayed in the figure below [fig. 4.3 ], which exhibits the

descriptive statistics for each system’s dataset (mean ± standard deviation error cloud), repre-

sented over the percentage of the trials; the plot shows how the two curves are almost overlap-

ping.

Figure 4.3: SPM1D results: mean FPA ± standard deviation error cloud, OpenCap vs

Sagemotion

Moreover, as already illustrated in the previous chapter, it was decided to evaluate the inter-

subject variability by the extraction of the peak values of the trunk side angle (TSA) for each step

of each acquisition, and the computing of other four t tests, each comparing all the peak values
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for one subject; this choice was made due to the assumption that for rehabilitation purposes the

most relevant aspect is the maximum trunk leaning angle value reached by the patient on each

step, while the intermediate values can be considered less significant.

The results of these tests led to the conclusion that, considering the peak TSA values, SageMo-

tion’s measures are significantly different from OpenCap’s for subjects H03 and H04 (p-values

< 0.05), while their difference is non significant for subjects H01 and H02, meaning that the

measures of the two systems result to be comparable for these two subjects.

The p-values resulting from this set of tests are displayed in the table below [tab. 4.3], as

well as the q-values obtained through the computing of the FDR correction, and a graphical

representation of the differences between the systems are displayed through the use of boxplots

[fig. 4.4, 4.5, 4.6, 4.7].

subject p-value q-value

H01 0.4749 0.5877

H02 0.5877 0.6331

H03 0.0010 0.0041

H04 0.0031 0.0061

Table 4.3: Statistical analysis: p-values and q-values resulting from the t-tests considering the

TSA peak values; non significant p-values ( > 0.05) are highlighted in yellow
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Figure 4.4: Statistical analysis: subject H01, statistically non-significant difference between

OC (left) and SM (right), trunk leaning technique (q-value=0.5877)

Figure 4.5: Statistical analysis: subject H02, statistically non-significant difference between

OC (left) and SM (right), trunk leaning technique (q-value=0.6331)
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Figure 4.6: Statistical analysis: subject H03, statistically significant difference between OC

(left) and SM (right), trunk leaning technique (q-value=0.0041)

Figure 4.7: Statistical analysis: subject H04, statistically significant difference between OC

(left) and SM (right), trunk leaning technique (q-value=0.0061)
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The last step of the trunk leaning technique’s statistical analysis consisted in the computing of

another t test, where the groups under comparison were the two vectors containing all the peak

TSA values measured for all the subjects, respectively by OpenCap and SageMotion.

This test resulted in a non-significant p-value = 0.9456, suggesting that, for the trunk leaning

technique, if considering only the angle’s peak values (which is more clinically relevant), there’s

no statistical evidence that proves a significant difference between the TSA peak values mea-

sured by SageMotion and the ones measured by OpenCap.

A visual representation of this result is displayed through the boxplots in [fig. 4.8].

Figure 4.8: Statistical analysis: statistically non-significant difference between OC (left) and

SM (right), all subjects, trunk leaning technique (p-value = 0.9456)
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4.2 Toe-in

In the toe-in section of the study, the data were collected from 4 participants, each of whom

performed the toe-in technique 4 times, for a total number of 16 tasks’ repetitions.

As previously illustrated in Chapter 3, SageMotion’s output values for the toe-out were the

mean values of the foot progression angle (FPA) during the 15%-50% of each left foot’s stance

phase. For this reason, since the system didn’t provide the FPA instant-by-instant, during the

data processing it was necessary to calculate the mean values for the left foot’s stance phases

also from the OpenCap’s data.

In order to have a first overview of the results, the mean FPA value was calculated for both the

systems.

As expected, the mean values were positive for the toe-in gait, resulting in a mean FPA of 11.2°

(with a standard deviation of 12.5°) for OpenCap, and a mean FPA of 10.8° (with a standard

deviation of 12.5°) for SageMotion.

Subsequently, after the computation of the Shapiro-Wilk test for testing the normality of data

distribution, which resulted in a non-normal distribution of the SageMotion data, it was decided

to perform a non-parametrical statistical test, theWilcoxon-Mann-Whitney test, in order to com-

pare, for each subject, the mean values on each step.

The results of theWilcoxon-Mann-Whitney test highlighted a non-significant difference between

the groups for all the subjects (p-values > 0.05).

Subsequently, the FDR correction was performed and the q-values were extracted, even though

this didn’t constitute a shift in terms of the results’ significance.

The p-values and the matching q-values computed through the FDR correction are displayed

in the following table [tab. 4.4], and the visual representations of the tests results are provided

through the use of boxplots [fig. 4.9, 4.10, 4.11, 4.12].
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subject p-value q-value

H01 0.2251 0.3001

H02 0.5293 0.5293

H03 0.1903 0.3805

H04 0.0596 0.2384

Table 4.4: Statistical analysis: p-values and q-values resulting from the Mann-Whitney test

considering the FPA peak values for toe-in technique; non significant p-values ( > 0.05) are

highlighted in yellow

Figure 4.9: Statistical analysis: subject H01, statistically non-significant difference between

OC (left) and SM (right), toe-in technique (q-value = 0.3001)
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Figure 4.10: Statistical analysis: subject H02, statistically non-significant difference between

OC (left) and SM (right), toe-in technique (q-value = 0.5293)

Figure 4.11: Statistical analysis: subject H03, statistically non-significant difference between

OC (left) and SM (right), toe-in technique (q-value = 0.3805)
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Figure 4.12: Statistical analysis: subject H04, statistically non-significant difference between

OC (left) and SM (right), toe-in technique (q-value = 0.2384)

The last step of the toe-in technique’s statistical analysis consisted in the computing of another

Wilcoxon-Mann-Whitney test, where the groups under comparison were the two vectors con-

taining all the mean FPA values measured for all the subjects, respectively by OpenCap and

SageMotion.

This test resulted in a non-significant p-value = 0.7103, suggesting that, for the toe-in technique,

if considering only the angle’s mean values, the analysis doesn’t show a significant difference

between the FPA mean values measured by SageMotion and the ones measured by OpenCap,

meaning that SageMotion can perform accurate measurements, therefore it’s suitable for the

employment regarding this gait retraining technique.

A visual representation of this result is presented through the boxplots in [fig. 4.13].
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Figure 4.13: Statistical analysis: statistically significant difference between OC (left) and SM

(right), all subjects, toe-in technique (p-value = 0.7103)
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4.3 Toe-out

In the toe-out section of the study, the data were collected from 4 participants, each of whom

performed the toe-out technique 4 times, for a total number of 16 tasks’ repetitions.

As previously illustrated in Chapter 3, and further investigated in the Toe-in section of the re-

sults, SageMotion’s output values for the toe-out were the mean values of the foot progression

angle (FPA) during the 15%-50% of each left foot’s stance phase. For this reason, since the

system didn’t provide the FPA instant-by-instant, during the data processing it was necessary to

calculate the mean values for the left foot’s stance phases also from the OpenCap’s data.

With regard to the toe-out gait, as well as for the toe-in technique, in order to have a first overview

of the results, the mean FPA value was calculated for both the systems.

As expected, the mean values were negative for the toe-out gait, resulting in a mean FPA of -

7.7° (with a standard deviation of 8.0°) for OpenCap, and a mean FPA of -20.5° (with a standard

deviation of 10.7°) for SageMotion.

Subsequently, after the computation of the Shapiro-Wilk test for testing the normality of data

distribution, which resulted in a non-normal distribution of the SageMotion data, it was decided

to perform a non-parametrical statistical test, theWilcoxon-Mann-Whitney test, in order to com-

pare, for each subject, the mean values on each step.

The results of theWilcoxon-Mann-Whitney test highlighted a significant difference between the

groups for 3 subjects out of 4 (p-values < 0.05).

Subsequently, the FDR correction was performed and the q-values were calculated; however,

although the q-values relative to the subjects that presented a non-significant difference were

higher than the corresponding p-values, they didn’t represent a change in terms of statistical

significance.

The p-values and the matching q-values computed through the FDR correction are displayed

in the following table [tab. 4.5], and the visual representations of the tests results are provided

through the use of boxplots [fig. 4.14, 4.15, 4.16, 4.17].
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subject p-value q-value

H01 0.00399 0.00532

H02 0.79844 0.79845

H03 0.00031 0.00616

H04 0.00002 0.00009

Table 4.5: Statistical analysis: p-values and q-values resulting from the Mann-Whitney test

considering the FPA peak values for toe-out technique; non significant p-values ( > 0.05) are

highlighted in yellow

Figure 4.14: Statistical analysis: subject H01, statistically significant difference between OC

(left) and SM (right), toe-out technique (q-value = 0.00532)
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Figure 4.15: Statistical analysis: subject H02, statistically non-significant difference between

OC (left) and SM (right), toe-out technique (q-value = 0.79845)

Figure 4.16: Statistical analysis: subject H03, statistically significant difference between OC

(left) and SM (right), toe-out technique (q-value = 0.00616)
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Figure 4.17: Statistical analysis: subject H04, statistically significant difference between OC

(left) and SM (right), toe-out technique (q-value = 0.00009)

The last step of the toe-out technique’s statistical analysis consisted in the computing of another

Wilcoxon-Mann-Whitney test, where the groups under comparison were the two vectors con-

taining all the mean FPA values measured for all the subjects, respectively by OpenCap and

SageMotion.

This test resulted in a highly significant p-value, very close to 0 (3.997 × 10−8), suggesting

that, for the toe-out technique, if considering only the angle’s mean values, the analysis shows

a significant difference between the FPA mean values measured by SageMotion and the ones

measured by OpenCap, meaning that SageMotion is not precise in its measurements, therefore

not suitable for the employment regarding this gait retraining technique.

A visual representation of this result is presented through the boxplots in [fig. 4.18].
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Figure 4.18: Statistical analysis: statistically significant difference between OC (left) and SM

(right), all subjects, toe-out technique (p-value = 3.997× 10−8)
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Discussion and Limitations

The SageMotion’s system validation protocol involved the participation of 4 healthy individuals

who were tested in the execution of three different gait retraining strategies.

The primary goal of this thesis work was to evaluate SageMotion’s data accuracy and the sys-

tem’s potential as a gait retraining and modification tool, through its comparison with OpenCap,

whose suitability had already been tested and demonstrated.

The data processing, followed by the implementation of several statistical procedures, allowed

to highlight the distinguishing factors between the two systems, and led to the results summa-

rized in Chapter 4.

This chapter will go through some considerations about the obtained results, discussing and giv-

ing an interpretation of the main findings of this study, and trying to trace back to the factors

that most effectively discriminated between the two systems’ output results.

As for the Results part of the thesis, this chapter will discuss the results in separate sections, since

each gait retraining technique analyzed led to different findings and associated considerations.

The last section will list some of the limitations of the study, which could have affected the

obtained results, and for this reason deserve to be taken into consideration.
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5.1 Trunk leaning

The RootMean Square Errors’ (RMSEs) calculation allowed a representation of the discrepancy

between the tho systems’ measurements.

Regarding the trunk leaning technique, the kinematic data collected by SageMotion compared

moderately well on average with those collected by OpenCap, achieving an average overall

RMSE of 4.80° with a standard deviation of 2.25°.

These findings suggest a favorable outcome in the evaluation of SageMotion’s accuracy with

respect to this gait retraining technique, since the results are consistent with several studies which

aimed at evaluating and validating markerless or IMU-based acquisition systems comparing

them with the gold standard marker-based system. These studies reported, for example, RMSE

values ranging from 2° to 10.2° degrees for activities such as walking, running or squatting [11],

or a RMSE lower than 5.5° for most segment angles [44], meaning that, overall, the RMSE’s

results of this study are aligning (and also refining) with those reported in existing literature.

With regard to the inter-subject RMSE comparison, as it’s visible from the bar plot displayed

in the Results section [fig. 4.1], for three subjects out of four the RMSE’s values appeared to

be consistent with the mean value, which was demonstrated to be aligned with the acceptable

values for systems’ validations in literature; subject H03, on the other hand, exhibited a 50%

higher RMSE value. This result is in accordance with the significant p-value extracted for this

individual’s data, and, since the data plots on the two systems exhibited a sort of offset value

between each other, it could probably be attributed to a calibration error of the SageMotion

system, that couldn’t be verified due to the lack of an explained calibration procedure.

As for the coefficient of multiple correlation, it resulted in a CMC = 0,889 ± 0,078.

This result, which is aligning with the favorable mean RMSE calculated, indicates a strong pos-

itive correlation between the TSA waveforms measured by SageMotion and OpenCap, meaning

that the values are coherent and similar to each other, and confirms SageMotion’s reliability

with regard to the trunk leaning technique.

The results obtained by the computing of the one-dimensional SPM allow to state that there

was no evidence of statistical difference between SageMotion and OpenCap in any instant of
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the trunk side angle curve, which represents a positive and encouraging outcome in assessing

SageMotion’s accurateness in the TSA measurement, and consequently the system’s suitability

as a gait retraining tool for the trunk leaning strategy.

As already mentioned, under the assumption that for rehabilitation purposes the most relevant

aspect is the maximum trunk leaning angle value reached by the patient on each step, it was

decided to perform the t tests only taking into consideration the peak values [45].

This set of t tests, subsequently subjected to false discovery rate (FDR) correction, resulted in

two non significant q-values for the first two subjects [tab. 4.3], which confirm the suitably low

RMSE values associated to the TSA calculated for H01 and H02; on the other hand, H03 and

H04 presented slightly significant q-values. This could be attributed to a wrong or imprecise

positioning of the SageMotion’s nodes, since also a minor rotation of the sensor could impact

the measured outcomes, especially for sensitive biomechanical parameters such as the TSA;

moreover, the reason for the significant discrepancy between the systems can depend on the

calibration procedures of both the systems, as well as on the individual features of the subjects,

such as body morphology or walking style, which could affect the measurements of the trunk

leaning angle.

Finally, the test was repeated for all the peak values belonging to all the trials for all the subjects,

resulting in a non significant p-value = 0.945 [fig. 4.8].

This promising outcome, which confirms the SPM results and the favorable RMSE and CMC

calculations’ outcomes, suggests the suitability of SageMotion as a gait modification tool for

osteoarthritic patients within the trunk leaning technique; it is therefore to keep in mind that this

result doesn’t provide a comprehensive assessment regarding the whole movement; in fact, the

repetition of the tests only focusing on the peak values can lead to the loss of information and

may not fully represent the complexity of the movement.

5.2 Toe-in and Toe-out

For the toe-in and toe-out analysis it was decided not to compute the root mean square error

values, differently from what happened for the trunk leaning technique.
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This approach was chosen because the calculation of the RMSE on mean values of the foot

progression angle during each stance phase wouldn’t have been particularly meaningful; in fact,

the mean output value, with respect to the value computed at each instant, could mask detailed

variations in the movement pattern and may not accurately reflect discrepancies during specific

phases of movement.

Toe-in With regard to the toe-in gait, in order to have a first overview of the results, the mean

FPA value was calculated for both the systems.

As expected, the mean values were positive for the toe-in gait, resulting in a mean FPA of 11.2°

(with a standard deviation of 12.5°) for OpenCap, and a mean FPA of 10.8° (with a standard

deviation of 12.5°) for SageMotion. These mean values are well comparable to each other,

and in accordance with the FPA obtained for healthy participants in previous research studies

(mean value between 7° and 10°) [46] [47], while the standard deviations result almost doubled,

indicating a higher data variability.

The non-parametric Wilcoxon-Mann-Whitney tests conducted for each subject, after the FDR

correction, resulted in four non-significant q-values [tab. 4.4], suggesting SageMotion’s relia-

bility and validity in measuring and detecting the FPA changes during the execution of the toe-in

strategy.

This findingwas finally confirmed by the last non-parametric test, which considered all themean

FPA values for all the subjects, and resulted in a non-significant p-value = 0.710 [fig. 4.13].

Toe-out With regard to the toe-out gait, as well as for the toe-in technique, in order to have a

first overview of the results, the mean FPA value was calculated for both the systems.

As expected, the mean values were negative for the toe-out gait, resulting in a mean FPA of -

7.7° (with a standard deviation of 8.0°) for OpenCap, and a mean FPA of -20.5° (with a standard

deviation of 10.7°) for SageMotion. The SMmean absolute value is more than two times higher

than the OC’s, which doesn’t represent a promising result; anyway, it is to specify that in this

case the SageMotion mean value is in accordance with the FPA obtained for healthy participants

in previous validation studies (mean value between -19° and -17°) [46] [47], while the Open-

Cap’s absolute value is lower than the ones found in the literature, indicating a milder toe-out
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gesture. As for the standard deviations, they result almost doubled with respect to the research

literature, indicating a higher data variability, aligning with the toe-in technique results.

The non-parametric Wilcoxon-Mann-Whitney tests conducted for each subject, after the FDR

correction, resulted in three significant q-values out of four [tab. 4.5], with only one subject’s

(H02) measures being comparable between the two systems. This result excludes SageMotion’s

reliability and validity in measuring and detecting the FPA changes during the execution of the

toe-out strategy.

This unpromising finding was confirmed by the last non-parametric test, which considered all

the mean FPA values for all the subjects, and resulted in a highly significant p-value [fig. 4.18].

The different results obtained for SageMotion’s reliability regarding toe-in and toe-out strategies

could be attributed to different reasons.

First of all, SageMotion’sWalking Foot Progression Angle App promised to be able to recognize

all the gait phases during the individual’s deambulation, and basing on the identified stance

phases, to calculate the mean FPA value for each step. However, the number of steps detected

by SM in most cases was not corresponding with the number of mean FPA values calculated

from OC, whose correctness could be verified thanks to the recorded videos and the movement

reconstruction on OpenSim. For this reason, due to the mismatched number of angles’ values,

it was necessary to cut some of the SM values, in order to be able to perform the tests. This

could have affected the results, since it’s not possible to assure that each angle value measured

by SM was paired with the corresponding one measured by OC. In addition, the inability of

SageMotion to properly detect the gait phases during walking represents an important concern

for its suitability as a gait retraining and biofeedback tool for pathological patients.

Moreover, some error amplification could have been caused by the nodes’ movement, as the

foot sensors were placed above the subjects’ socks; although they were secured as firmly as

possible, some unwanted movement may have still occurred.

Finally, both the studies aiming at validating OpenCap’s kinematics and kinetics highlighted the

highest errors when analyzing the movement of the subtalar joint, due to the high complexity

of the foot segment, which represents a more demanding goal also for marker-based systems.

For this reason, the evaluation and interpretation of the results concerning this joint is always

more difficult, and the achievement of a good performance of the acquisition system could be
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challenging for OpenCap as well [11] [48].

5.3 Limitations of the study

This study presents some limitations that could have affected the obtained results, and for this

reason deserve to be taken into consideration.

First of all, the number of subjects that was involved in the study was limited; in fact, a vali-

dation study usually recruits at least 10 subjects, which can enhance the results’ accuracy and

reliability, allowing a wider and more valuable analysis.

The limited number of individuals participating in the study was due not to the lack of individ-

uals available for the data acquisition, but to connection issues between the SageMotion’s hub

and the sensing nodes during the acquisition, which didn’t allow to collect data from all the sub-

jects available. This represents a big concern for SageMotion’s accessibility, especially because

the system promises to be suitable for acquisitions in any type of environment, for any type of

motorial gesture, at any execution speed, but despite these guarantees, the issues occurred for a

data collection that took place in a controlled environment with no obstacles or disturbances.

Moreover, three subjects out of four were males, while it would have been more significant if

the study had involved an equal number of males and females. In fact, a more heterogeneous

group would have allowed for the assessment of any potential influence of gender on the anal-

ysis’ results.

Additionally, it’s important to highlight that SageMotion’s ability to estimate informative dy-

namic measures was tested by having healthy individuals simulate different movement patterns

associated with pathology or treatment; the next step represents the validation of these measures

in the populations of interest.

Furthermore, the lack of a detailed calibration procedure’s explanation for the SageMotion’s

system didn’t allow to delve into the reasons that caused some significant differences between

subjects; for example, for one of the subjects (H03), the trunk leaning data for the two systems

seemed to present an offset value, that could have been caused by a calibration error for one of

the two systems, ascribable to a wrong positioning or a slight rotation of the sensors. While the
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OpenCap’s neutral pose was investigated, and it was established that there were no calibration

inaccuracies, it wasn’t possible to do the same for SageMotion due to the absence of a reference

pose at the beginning of the data collection. The possibility to check and assess the calibration’s

validity could have influenced the statistical tests’ results and consequently the final considera-

tions about the system’s suitability.

Another obstacle regarding the evaluation of the system’s reliability concerns SageMotion’s

Walking Foot Progression Angle App structure. In fact, the measurement of the foot progres-

sion angle at each instant throughout the stance phase would provide a more detailed and ac-

curate representation of gait dynamics compared to only relying on the average angle between

15% and 50% of the stance phase; indeed, it would allow to capture the full variability and

subtleties of the foot’s orientation during walking, enabling to identify specific points of dis-

crepancy between the systems and leading to more informed decisions regarding the validation

and comparison processes.Moreover, the lack of an instant-by-instant output angle value is par-

ticularly disadvantageous for the feedback capabilities of the system, since it doesn’t allow for

the rapid detection of alterations in the foot movement during the support phase, nor for imme-

diate corrections of posture or balance.

Finally, despite OpenCap’s promising features, comprising the capability to detect between-

condition differences with similar statistical power as motion capture and force plate analy-

sis, with kinematic errors similar to the ones reported for inertial measurement unit–based ap-

proaches and commercial and academic video-based systemswith eight cameras [11], the system

also presents some limitations. In fact, another study [48] highlighted higher RMSE values (with

respect to the Ulrich et al. study) for the comparison between OpenCap’s and a marker-based

system’s kinematics of the pelvis, hip, knee, and ankle joints, with the highest errors observed

for the subtalar joint.

For this reason, in order to give more credit to the SageMotion’s validation, it would have been

more significant to compare the system with a gold standard marker-based acquisition system.
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Conclusions

The primary objective of this thesis project was to test and validate SageMotion, a wearable

IMU-based haptic feedback system for gait retraining and modification. SageMotion was pre-

sented as an innovative solution for training and rehabilitation, and its applications include walk-

ing training, balance training and running training, each of whom intended for a specific target

of users (both pathological patients and recreational or professional athletes).

In order to achieve this goal, the system was compared to OpenCap, an already validated video-

based system, which provides 3D kinematic and dynamic analysis of human movement.

The performed statistical analysis regarding the execution of three gait retraining techniques,

aiming at evaluating SageMotion’s suitability as a gait modification tool for patients affected by

knee osteoarthritis, shed light on some strengths of the system, as well as some limitations.

The trunk leaning technique analysis brought to encouraging results concerning the Statistical

Parametric Mapping outcomes, as well as the Root Mean Square Errors and Coefficient of

Multiple Correlation calculation, and also when focusing on the peak trunk side angle values,

suggesting that the use of the system can be considered adequately accurate and reliable

within this gait retraining technique. This allows to declare SageMotion as a potential tool

for biofeedback and gait modification for patients affected by OA regarding the trunk leaning

strategy, even though the next step could be represented by a validation study against the gold

standard (stereophotogrammetry), whose accurateness and precision have already been proved
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and assessed in several studies.

The toe-in and toe-out section presented the most controversial results, revealing highly signif-

icant discrepancies between the systems for the toe-out technique, while the system proved to

be potentially more usable and precise regarding the toe-in technique.

However, the fact that SageMotion provides a mean output FPA, relying on its own gait phases

detection, which has been proven to be often imprecise, represents a noteworthy obstacle in

terms of the system’s accuracy and suitability for rehabilitation purposes; other studies aiming

to validate wearable systems for gait retraining [49] [46], perform their statistical analysis by

considering an instant-by-instant angle, confirming the unsuitability of only possessing a mean

value, which prevents from a precise detection of alterations in the foot movement during the

support phase, and as a consequence doesn’t allow for immediate corrections of posture or bal-

ance.

In conclusion, SageMotion system owns potential as a gait modification and biofeedback tool

for patients with knee osteoarthritis, thanks to its features of portability, short acquisition time

and limited cost.

However, despite these encouraging attributes, the system presents some concerns that, at

time, don’t make it a feasible solution for clinical rehabilitative usage for all the gait retraining

strategies, such as the lack of a detailed calibration procedure and frequent connection issues,

as well as some app’s settings and features that hinder its ease of use.

Therefore, this study represented a first insight in assessing the system’s accuracy and precision,

revealing through its comprehensive statistical analysis some significant discrepancies between

the systems (especially for the toe-in and toe-out techniques) that could be attributed to different

factors, and for this reason need to be further investigated in the future, ideally by conducting

an analysis against a marker-based system, whose accuracy is more extensively verified than

OpenCap’s.
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