UNIVERSITA ® DIPARTIMENTO
DEGLI STUDI —) DIINGEGNERIA
DI PADOVA — DELL’INFORMAZIONE

DIPARTIMENTO DI INGEGNERIA DELL’INFORMAZIONE

CORSO DI LAUREA MAGISTRALE IN
COMPUTER ENGINEERING

“Communication solution for IoT devices using the Toit programming
language”

Relatore: Prof. Andrea Galtarossa

Laureando: Alessandro Fano

ANNO ACCADEMICO 2021 -2022
Data di laurea 5 Settembre 2022

DTU DTU Compute

Department of Applied Mathematics and Computer Science

i

Communication solution for IoT devices

using the Toit programming language

Master Thesis

- ;"ﬂ' 7 ETLA, ® Py o T £ AW Ne

il i ’.’Ai. »

¥ o
ot

>
b
W

.

g

I

|
| {
e B
o L
2 |

ALK o
ghguny R oA 1§

Y, WP e Moy ‘\%.f S0 ono A b |
e T AL e ::\L\‘(ﬂ \

Approval

This thesis has been prepared over six months at the Section for Embedded Systems
Engineering, Department of Applied Mathematics and Computer Science, at the Techni-
cal University of Denmark, DTU, in partial fulfilment for the degree Master of Science in

Engineering, MSc Eng.

Alessandro Fano - s217110

Signature

July the 1st, 2022

Communication solution for loT devices using the Toit programming language iii

Abstract

Toit is a new object-oriented programming language for microcontrollers. The Toit virtual
machine enables multiple independent apps to run side-by-side through software-based
fault isolation. Toit is being developed as open source by the Danish company Toitware
ApS, which collaborates with DTU Compute in the EU project TRANSACT. Although there
are a plethora of programming solutions for loT devices, they typically either involve low-
level programming or their high-level programming requires too many resources. The
objective of the thesis is to develop a communication solution for loT devices using the
Toit language. The solution proposed in this thesis is a tree-based network that allows
devices to exchange data over Bluetooth Low Energy data channels without involving

cloud connectivity.

iv Communication solution for loT devices using the Toit programming language

Acknowledgements

Special thanks go to:

Paul Pop, Professor, DTU

for supervising the development of my master thesis;

Gaurav Choudhary, Postdoctoral Researcher, DTU

for helping me with the structuring and review of my thesis;

Kasper Lund, Co-founder and CEO, Toitware ApS

and the whole team behind Toit, for promptly providing me with assistance and software

updates.

Communication solution for loT devices using the Toit programming language v

vi

Communication solution for loT devices using the Toit programming language

Contents

1 Introduction

2 Literature Review
2.1 Cloud Computing and Edge Computing
2.2 loT Architecture

2.3 Communication protocols L

3 Bluetooth Low Energy
3.1 Stack Architecture
3.2 Specifications

3.3 Mesh Networks e
4 Toit Platform

5 Implementation of BLE mesh network with Toit
51 Overview
5.2 Implementationdetails L

5.3 Practicalissues

6 Evaluation
6.1 ExperimentalSetup
6.2 Single-hop communication
6.3 Multi-hop communication,
6.4 Forwarding communication 0oL
6.5 Results

6.6 ISSUES L
7 Conclusion
Bibliography
A Message OP Codes

B Tree Message

Communication solution for loT devices using the Toit programming language

23
23
25
26

35

41
41
44
50

53
53
53
55
57
58
60

63

65

73

77

vii

C Tree Node 81

viii Communication solution for loT devices using the Toit programming language

List of Figures

2.1 Layout of the four-stage architecture. L. 8
2.2 Three-layer and five-layer architecture. 10
2.3 MAQTT client-broker architecture. 13
2.4 ZigBee network topologies. oo 15
2.5 LoRaWAN network architecture overview. 17
2.6 Sigfox network architecture overview. 19
3.1 Bluetooth Low Energy protocolstack. 23
3.2 Bluetooth Meshstack. 28
3.3 Example of a Bluetooth Mesh topology. 30
3.4 Bluetooth Mesh node composition. 31
3.5 Bluetooth client-server model communication. 32
3.6 Example of publish/subscribe communicationina BLEmesh. 33

4.1 Architecture of the Toit Platform in comparison with traditional firmware de-

ployment. e 36
4.2 Design of Consibio product before and after adopting Toit. 39
5.1 Tree network structure and addressing. 43
5.2 Message propagation from leaf nodetoroot. 43
5.3 State diagram of the suggested BLE tree routing service. 45
5.4 Four steps of forwarding communication 48

5.5 Deadlock situation where two nodes are both scanning, looking for each

other. s, 51

6.1 Testtree configurations. 54

6.2 Representation of the single-hop Data Message transmission time mea-
surements. . .. oL L 55

6.3 Representation of the single-hop Data Request and Response transmis-
siontime measurements. Lo 56

6.4 Representation of the multi-hop Data Message transmission time measure-

Communication solution for loT devices using the Toit programming language iX

6.5 Representation of the multi-hop Data Request and Response transmission
time measurements. L L 57

6.6 Representation of the Forward Data Request and Response transmission

time measurements. e e 58

Communication solution for loT devices using the Toit programming language

List of Tables

5.1
5.2
5.3

6.1
6.2
6.3

A1
A2
A3
A4
A5
A6
A7
A8

Description of the characteristics exposed by the GATT service. 44
Tree message composition oo 44
Value of the tuning parameters 50
Single-hop communication time performances 59
Multi-hop communication time performances 59
Forwarding communication time performances over 5 messages 59
Data Message structure 73
Data Request message structure 73
Data Response message structure, 74
Forward Data Request message structure 74
Forwarded Data Request message structure 74
Forward Data Response message structure 75
Forwarded Data Response message structure 75
Provisioning Request message structure 76

Communication solution for loT devices using the Toit programming language Xi

Xii Communication solution for loT devices using the Toit programming language

1 Introduction

The concept of the Internet of Things (10T) was first predicted by Mark Weiser in 1991 [1]
where he describes what he calls Ubiquitous Computing: an elevated number of hetero-
geneous devices, interconnected with each other in a wireless fashion, deeply integrated
in the fabric of everyday life and so small to be mostly invisible.

In 2007 [2] it was predicted that by 2024 everything will be connected to the web to the
extent that the environment in which we live will be fundamentally indistinguishable from
the web itself, and that “Every item, every artefact[...] will have some sliver of connectivity
that will be part of the web”.

Today the aforementioned concept is a consolidated reality and although there is no uni-
versally accepted definition [3] , the loT paradigm can be described as multitude of het-
erogeneous smart objects (Things) capable of exchanging data with each other over a
network. Moreover, a Thing can be any physical object - or their virtual representation
- that is assigned an unique identifier and is able to collect, exchange and process data
over a Internet-like structure: in the broad spectrum of loT application a Thing can be
a home surveillance camera, a smart LED lightbulb, smart speakers, smartphones and
smart wearable devices, but also RFID tags, a person wearing a heart monitor implant
and a farm animal with a biochip transponder [4, 5].

The interest in Internet of Things grew over the year due to its huge potential in industrial,
agricultural, healthcare and military application, and the numbers speak for themselves:
in 2021 there were more than 10 billions active I0T devices and the number is expected
to grow to more than 25 billions by 2030 [6]. If we also consider passive 0T connections
- such as RFID tags - then by the end of 2030 there will be over 50 billions loT devices
installed around the world [7]. Although there has been a slow down in the production of
smart devices, caused by the COVID pandemic and the war in Ukraine - earlier forecast
from 2016 [8] were expecting 46 billions devices by 2021 - it is clear that the Internet of

Things is here to stay.

loT is already a consolidated paradigm in industrial applications - the so called Industry
4.0 - where a huge number of smart connected devices are used to manage fleet of au-

tonomous vehicle and to monitor the production line [9].

Communication solution for loT devices using the Toit programming language 1

In agriculture, a network of wireless sensors and satellites allows a farmer to monitor the
crops soil moisture and temperature and to make decision based on rainfall and wind di-
rection reports from a network of weather station [10, 11].

A person can use their smartphone to start the washing machine, modify the temperature
of the air conditioning and warm the oven, on his way home from work [12].

Every time we wear a smartwatch, every time we control our thermostat through our smart-
phone and every time we ask Alexa to play a song, we are taking part in the Internet of
Things: it is already part of our everyday life. 10T will be deeply integrated in the cities
of the future - smart cities - which will employ a huge network of sensors to thoroughly
monitor and manage every aspect of the city life, such as smart transportation, home and

office automation, traffic, security and smart energy and water management[13].

The wide variety of applications and scenarios makes it impossible to find a one-fit-all so-
lution when it comes to communication technologies, but rather multiple possible choices
depending on the requirements of the system. Other than that, the biggest challenge that
the academia and the industry are facing when it comes to loT development is the lack of
standardization: the multitude of protocols employed by these devices, the platform they
run on and the lack of a universally accepted architecture is seriously slowing down the
technological advancement of loT [14]. This greatly affect interoperability [15] - i.e., the
capacity for multiple components within an [oT deployment to effectively communicate,
share data and perform together to achieve a shared outcome - and poses a security
threat as well [16]. The absence of a standard approach to loT often leads loT develop-
ers to employ their own proprietary solutions, further deepening the issue. In some cases,
major participants in the loT scene might want to defer the standardization debate for as
long as possible in order to preserve some proprietary technology that controls the access
to the market.

On the other hand, there are some serious concerns whether the imposition of a universal
standard might be used by powerful actors in an attempt to seize a decisive technological

advantage at the expenses of their competitors [17].

The other great issue that 10T is facing is the incapability of traditional cloud models to
keep up with the evergrowing amount of data produced on site. The huge volume of data

produced tirelessly by the billions smart objects that make up the Internet of Things needs

2 Communication solution for loT devices using the Toit programming language

to be transferred to the cloud to be processed, however, the bandwidth availability and
latency are restrictive bottlenecks when it comes to time-critical scenarios or application
that crank out large quantities of data.

To address this issue, there is a tendency in providing the smart devices with more com-
puting power, so that part of the data processing can be performed on the edge of the
network. The importance of this new model of computation, called Edge or Fog comput-

ing, in the take over of the Internet of Things is discussed in section 2.1.

In most of the mentioned cases the smart objects - which are the building blocks of the
Internet of Things - are small microcontrollers programmed to implement some commu-
nication protocol in order to connect with other devices. Developing and deploying the
code for these microcontroller is a crucial part in the building of an loT systems.
Toitware ApS, a Danish company founded in 2018, developed the Toit platform, along with
a high level language with a syntax similar to Python’s, to ease the task of programming
microcontrollers in 10T contexts. The code runs on a virtual machine which allows for
over-the-air updates and multiple programs running at the same time, independently [18].
The scope of this thesis is to explore the capabilities of a Toit-powered edge device in the
Internet of Things.

The thesis is structured as follows:

* In chapter chapter 2 will be given an overview of 10T systems and a survey of the
most popular communications protocol employed in loT applications, their advan-

tages, their practical issues and their typical use cases;

* In chapter chapter 3 will be given a detailed description of the Bluetooth Low Energy
(BLE) protocaol;

* In chapter chapter 4 will be given a description of the Toit platform;

* In chapter chapter 5 will be described the implementation of a communication solu-

tion using the BLE protocol in the Toit programming language;

* In chapter chapter 6 the proposed implementation will be evaluated.

Communication solution for loT devices using the Toit programming language 3

1 Introduzione

L'idea di Internet of Things (l1oT) o Internet delle Cose & stata immaginata inizialmente
da Mark Weiser nel 1991[1] con il nome di Ubiquitous Computing (Computazione On-
nipresente): un elevata quantita di dispositivi eterogenei, interconnessi tra di loro in modal-
ita wireless, profondamente integrati nel tessuto della vita di tutti i giorni e di dimensioni
cosi ridotte da essere praticamente invisibili.

Nel 2007 [2] é stato previsto che entro il 2024 'ambiente che ci circonda sara sostanzial-
mente indistinguibile dal web stesso, e che "ogni oggetto, ogni manufatto [...] sara almeno
in parte connesso al web”.

Oggi i concetti appena riportati sono una realta affermata e nonostante non ne esista una
definizione universalmente accettata [3], il paradigma loT pud essere descritto come una
moltitudine di smart object (Things, Cose) in grado di scambiare dati tra di loro tramite
una rete. In particolare, una Cosa pud essere ogni oggetto reale - o la sua rappresen-
tazione virtuale - a cui viene assegnato un identificatore univoco, in grado di raccogliere,
trasmettere ed elaborare dati tramite una rete come linternet: nell’ampio spettro delle
applicazioni loT, una Cosa pu0 essere una videocamera di sorveglianza domestica, una
lampadina LED intelligente, altoparlanti smart, smartphone e dispositivi smart indossabili,
ma anche etichette RFID, una persona che indossa un impianto per il monitoraggio car-
diaco o un animale da fattoria equipaggiato con un biochip transponder [4, 5].
Linteresse per I'Internet of Things & cresciuto negli anni grazie al suo enorme potenziale
in applicazioni industriali, agricole, sanitarie e militari, e i numeri parlano da sé: nel 2021
erano attivi piu di 10 miliardi di dispositivi l0T, e si aspetta che entro il 2030 saranno piu
di 25 miliardi [6]. Se si considerano anche le connessioni loT passive - come le tag RFID
- allora entro la fine del 2030 ci saranno piu di 50 miliardi di dispositivi loT operativi nel
mondo [7]. Nonostante ci sia stato un rallentamento della produzione di dispositivi smart
causata dalla pandemia COVID e dalla guerra in Ucraina - nel 2016 le previsioni si as-
pettavano 46 miliardi di dispositivi entro il 2021 [8] - € chiaro che I'Internet of Things & qui

per rimanere.

L'loT & un paradigma gia affermato nelle applicazioni industriali - la cosiddetta Industria

4.0 - dove un grande numero di dispositivi smart connessi vengono usati per gestire flotte

4 Communication solution for loT devices using the Toit programming language

di veicoli autonomi e per monitorare la linea di produzione[9].

Nel settore agricolo, una rete di sensori wireless e satelliti permette all’agricoltore di mon-
itorare 'umidita e la temperatura del terreno, e di prendere decisioni basate sui report
atmosferici provenienti da un network di stanzoni meteo [10, 11].

Un utente pud usare il proprio smartphone per avviare la lavatrice, modificare la temper-
atura del condizionatore e preriscaldare il forno, durante il tragitto di ritorno dal lavoro [12].
Ogni volta che indossiamo uno smartwatch, ogni volta che controlliamo il termostato della
nostra casa con il cellulare e ogni volta che chiediamo ad Alexa di riprodurre un brano,
stiamo prendendo parte all’Internet delle Cose: & gia parte della nostra vita quotidiana.
L'loT sara profondamente integrato nelle citta del futuro - smart cities - che impiegheranno
un ampio network di sensori per monitorare e gestire scrupolosamente ogni aspetto della
vita cittadina, come i trasporti pubblici smart, automazione domotica, traffico, sicurezza e

gestione smart dell’acqua e dell’energia[13].

La grande varieta di applicazioni e scenari rende impossibile una soluzione universale,
parlando di tecnologie di comunicazione: esistono invece diverse alternative possibili a
seconda dei requisiti di sistema. Oltre a questo, la grossa sfida che I'industria e la ricerca
stanno affrontando nel campo sello sviluppo IoT & la mancanza di standardizzazione:
la moltitudine di protocolli impiegati da questi dispositivi € la mancanza di un’architettura
standard universalmente riconosciuta costituiscono un serio rallentamento al’avanzamento
tecnologico dell'loT [14]. Questo ha un impatto negativo sull'interoperabilita [15] - i.e., la
capacita di diversi componenti all’interno di un sistema loT di comunicare, scambiare dati
e collaborare efficacemente al fine di perseguire un traguardo comune - e costituisce in-
oltre un rischio per la sicurezza [16]. L'assenza di un approccio standard spinge molti
sviluppatori IoT a impiegare le loro soluzioni proprietarie, aggravando di conseguenza il
problema. In alcuni casi, grandi nomi del settore 10T hanno tutto I'interesse nel rallentare
e posticipare il dibattito sulla standardizzazione, con lo scopo di preservare alcune tec-
nologie proprietarie che controllano I'accesso al mercato.

D’altro canto, ci sono serie preoccupazioni riguardo al fatto che I'imposizione di standard
universali possa essere sfruttata da attori potenti per impadronirsi di vantaggi tecnologici

decisivi alle spalle dei loro concorrenti [17].

L'altro grande problema che I'loT si ritrova ad affrontare € I'incapacita dei modelli cloud

Communication solution for loT devices using the Toit programming language 5

tradizionali di stare al passo con la enorme quantita di dati, in costante crescita, che viene
prodotta sul posto. L'enorme volume di dati prodotto incessantemente dai miliardi di dis-
positivi che formano I'lnternet of Things necessita di essere trasferito sul cloud per venire
elaborato, tuttavia, la disponibilita di banda e la latenza sono stretti colli di bottiglia, spe-
cialmente in applicazioni time-sensitive o che sfornano grosse quantita di dati.

Per affrontare questo problema, c’é la tendenza a fornire sempre piu potenza di cal-
colo ai dispositivi smart, cosi che parte dell’elaborazione dati possa svolgersi in loco.
L'importanza di questo nuovo modello di elaborazione dati, chiamato Edge o Fog com-

puting, nell’avvento dell'Internet delle Cose, & discussa insection 2.1.

Nella maggior parte dei casi menzionati, gli smart objects - che sono i mattoni costituenti
dell’'Internet of Things - sono piccoli microcontrollori programmati perimplementare qualche
protocollo di comunicazione, con lo scopo di connettersi ad altri dispositivi. Sviluppare il
codice per questi microcontrollori &€ una parte cruciale nella costruzione di un sistema IoT.
L'azienda Danese Toitware ApS, fondata nel 2018, ha sviluppato la piattaforma Toit,
assieme a un omonimo linguaggio di alto livello simile a Python, per facilitare il compito
di programmare microcontrollori in un contesto loT. Il codice sviluppato viene eseguito su
una macchina virtuale che consente aggiornamenti over-the-air e esecuzione simultanea
ed indipendente di diversi programmi [18].

Lo scopo di questa tesi &€ di sondare le capacita di dispositivi Toit come edge device nel
contesto dell’'Internet of Things.

La tesi & strutturata in questo modo:

* Nel capitolo chapter 2 verra data una panoramica dei sistemi lIoT e un elenco dei

protocolli di comunicazione maggiormente impiegati in applicazioni loT;

* Nel capitolo chapter 3 verra data una descrizione dettagliata del protocollo Bluetooth

Low Energy (BLE);
* Nel capitolo chapter 4 verra data una descrizione della piattaforma Toit;

* Nel capitolo chapter 5 verra descritta 'implementazione di una soluzione di comu-

nicazione basata sul protocollo BLE usando il linguaggio di programmazione Toit;

* Nel capitolo chapter 6 I'implementazione proposta verra valutata.

6 Communication solution for loT devices using the Toit programming language

2 Literature Review

2.1 Cloud Computing and Edge Computing

Cloud computing is a paradigm characterized by the transfer of data to and from a client
over the internet. Cloud services such as Dropbox, Google Drive and iCloud are extremely
popular and most of us uses them on a daily basis, but it's important to remark that cloud
computation is much more than just online data storage. Cloud computation involves data
synchronization between multiple distributed devices, data processing on server side and
data transfer from the server back to the client over the internet.

The focus of cloud computing, also called on-demand computing, is to exploit the max-
imum potential of computing resources, distributed all over the globe, shared between
multiple clients and dynamically reallocated [19, Chapter 2].

Given the premises, cloud computing has worked - and works - well when it comes to non-
time-driven data processing that require huge amount of computing power. However, the
enormous abundance of data produced tirelessly by the billions of smart things connected
to the network is incompatible with traditional cloud models. Not only the amount of band-
width required to transfer all the data to the cloud is out of reach, but the latency - i.e., the
time between the data being produced by the device and its processing - makes cloud
computing unsuitable for time-sensitive applications.

The unprecedented volume of data generated by the Internet of Things that needs to be
processed and analysed on the spot require for a new model of computation, where the
processing power is physically located in proximity of the data producers, that is, on the
Edge of the network [19, Chapter 2].

Edge computing, also called fog computing, is a new paradigm that involves the placement
of fog nodes - any device with processing, storage and network connectivity capabilities
- to extend the capabilities of the cloud allowing for the processing of time-sensitive data
shortly after they are produced. The potential of edge computing in the contest of 0T is
well understood and estimates shows that in 2015 the amount of data analysed on the
edge is 40% [20]. This paradigm shift is inevitable and will likely become a standard in
loT applications. The cloud alone cannot fulfill the necessities of the Internet of Things,

and the relevance of edge computing will grow to the point of surpass the cloud’s [21].

Communication solution for loT devices using the Toit programming language 7

2.2

Due to the lack of standardization mentioned in the Introduction, there is no universally

loT Architecture

accepted architecture for loT systems, but rather multiple possible layered representa-

tions. One widely used when designing an IoT infrastructure is the four-stage architecture

(fig. 2.1) [22][23][24]:

Sensors and Dgt-a. Cloud or
actuators acquisition Edge IT Datacenter
and gateway
LLLLL
OF
O E

LIl

&3

()
= E;Lﬂ

LLRRR}

Figure 2.1: Layout of the four-stage architecture.

(1) Sensors and Actuators: this is the stage of the Things. In this stage are present

(2)

devices capable of converting the information from the environment into data. Such
devices are, for example, temperature sensors, water-level detectors, pressure sen-
sors, accelerometers and so on. We use the term sensor in a broad sense: every-
thing is counted as a sensor as long as it provides data about its current state.
Actuators are devices capable of intervene on the environment in order to change
the physical conditions that generate the data. An actuator can regulate a water
valve, shut off the power supply or adjust the speed of a cooling fan.

In this stage there is usually no processing - although in a loT architecture some
data processing may occur in each of the four stages - and the data is forwarded to

the next stage;

Data Acquisition and Gateway: in this stage the raw information from the sensors
is collected, converted into digital data and pre-processed by the Data Acquisition
System (DAS). The Internet Gateway takes the digital data and forwards it to Stage
3 of Stage 4 systems via Wi-Fi or wired LAN.

The Stage 2 systems often are physically located in proximity of the Stage 1 sys-

tems: imagine an industrial machinery in a production line that mounts several sen-

Communication solution for loT devices using the Toit programming language

sors and actuators (Stage 1) connected - for instance via Bluetooth - to the Electronic
Control Unit (Stage 2) of the machinery.

This stage is of vital importance because the several sensors in the previous stage
will produce a large volume of data in short times which exceed the available band-
width if directly forwarded to the next stages. To carry on the previous example,
imagine a facility employing hundreds of industrial machinery, each of them with
dozens of sensors constantly producing data. This data will quickly overcome the
capacity of the infrastructure if directly forwarded to the next stage, therefore every
machine is equipped with a Stage 2 system that takes care of collecting, convert-
ing and pre-processing the sensor’s data, significantly reducing its volume, before

submitting it to the next stage.

(3) Edge IT: this stage refers to processing systems that offer enhanced analytics, ma-
chine learning and visualization technologies. This stage of data processing allows
to have quick access to meaningful information and scan for anomalies in the data.
In time critical scenarios this is particularly useful rather than just send the data to
the next Stage. Edge systems are often physically close to the previous stage: in
our example, the facility employs a highly integrated compute system which process
the data from all the machines in the production line and provides an easy to read
overview of the status of each machine to the human operators, while also display-
ing production statistics and scanning for anomalies.

In some application, where the amount of data produced in the previous stages is
contained and there aren’t time critical requirements, there is no need for a Stage
3 system, and the data is directly forwarded to the Cloud - e.g., in a smart home
context.

In other cases it may be more convenient to have powerful smart devices, capa-
ble of processing the data on their own before sending it to the cloud, therefore

incorporating Stage 2 and 3 in the same device;

(4) Cloud or Data Center: this is the last stage, where the data is stored for in-depth
processing and analysis. This stage allows to extract insights, trends and patterns
from the gathered information, in order to make crucial business decisions. Cloud-
based systems provide the processing power to perform thorough examination of
the data sent by several facilities. At this stage, the data is accessible for every

device with an internet connection.

Communication solution for loT devices using the Toit programming language 9

The architecture just described is by any means no standard in [oT, but rather an attempt
to categorize all the parts in an loT system; in some scenarios there might not be a clear
distinction between the stages.

Other architectures proposed in the literature are the three- and five-layer architecture

(fig. 2.2). The three-layer architecture is the most basic layered representation that defines

(@) (b)

Business layer

Application layer

Application layer

Processing layer
Network layer

Transport layer

Perception layer Perception layer

Figure 2.2: (a) three-layer and (b) five-layer architecture.

the main idea of IoT [25][26]. The three layers are:

(1) The Perception layer is a physical layer composed of sensors and smart objects.
It is responsible for sensing and gathering information about the environment and

identifying other smart devices;

(2) The Network layer is responsible for transmitting and processing information ob-

tained from the perception layer, and connecting to other smart objects;

(3) The Application layer is responsible for delivering application specific services to
the end user such as data visualization and advanced analytics. The function of

this layer is providing all kinds of applications for each industry.

The five-layer architecture proposed by the literature allows for a finer distinction between

the functionalities of 10T systems [25][26]. The layers are:
(1) The Perception layer, as before;

(2) The Transport layer is responsible for transmitting the data received from the Per-

ception Layer to the processing center through various network;

(3) The Processing layer store, analyse and process the large volume of information

10 Communication solution for loT devices using the Toit programming language

received from the transport layer. The reason behind this layer being severed from
the 3-layer architecture’s network layer is that the huge amount of information to
be processed represents one of the main challenges of loT systems. The main

technologies employed are databases, cloud computing and big data processing
(4) The Application layer, as before;

(5) The Business layer manages the whole IoT system, including applications, business

and profit models, and users’ privacy.

2.3 Communication protocols

As explained in the introduction, the variety of loT applications goes hand in hand with the
multitude of the protocols employed. They differ for range, data rate, power consumption,
network topology, security and frequency, making each protocol valid for some specific
scenario. The protocols can be categorized in several way, depending on weather they
are for short or long range data transfer; which layer of the OSI model they work on and

SO on.

Bluetooth

Bluetooth is a low power radio that streams data over 79 channels in the 2.4GHz unli-
censed industrial, scientific, and medical (ISM) frequency band [27][19, Chapter 3]. It
was introduced in 1994 as a wireless communication standard for data exchange between
computer and mobile phones, but gained its initial popularity thanks to wireless headsets
that allowed to make phone calls without holding the phone. Today it's one of the most
used loT protocols in domestic application and in handheld devices - every smartphone
has Bluetooth capabilities - and estimates forecast 7 billions of Bluetooth enabled devices
shipped annually by 2026 [27].

The Bluetooth standard is completely controlled by the Bluetooth Special Interest Group
(SIG) and it includes application profile to describe the data exchange for a particular
task, like audio streaming or remote control of a television. The Bluetooth SIG also of-
fers qualification process to ensure that every product that utilize the technology comply

with the standard specification. This allows for an incredible flexibility and interoperability

Communication solution for loT devices using the Toit programming language 1"

between certified devices [28]. Bluetooth is designed for medium-short range - up to 100
meters for industrial grade radios - low power data transmission at up to 3 Mbit/s. This,
along with the cost effectiveness of the implementation, makes it first choice technology
for wearable smart devices and domestic application in small battery powered devices.
Bluetooth offers point-to-point and star type (piconet) network topology.

Bluetooth is typically employed in smart watches, smart home appliances and home au-
tomation, medical devices, car and home entertainment systems and all those application
where a device is connected to a smartphone or a tablet.

The main disadvantage of classic Bluetooth technology is it's reach, especially the fact
that the strength of the connection drops quickly when obstacles such as walls are be-
tween its path, even within the 10 meter range. The topology offered by this technology
does not allows to work around this problem. Another drawback is the limit of active con-
nections - one master can have only seven active connection to other slave devices - and
the security issues found is some popular chipsets that could lead to denial of service and

arbitrary code execution [29].

MQTT

Message Queuing Telemetry Transport is a machine-to-machine, open source network
protocol. It was introduced in 1999 by IBM as a way to monitor oil pipelines and since
then has been widely employed in industrial scenarios. In 2013, the OASIS MQTT techni-
cal committee was founded in an effort to standardized the protocol [30], in order to make
it a more viable option in the I0T scene. The light weight of the protocol and it's ability
to deliver data messages over unreliable network make MQTT the ideal choice when it
comes to condition monitoring in logistic and industrial application, such as transportation
status monitoring [31] and petrolchemical plant and powerplant monitoring [32][33], but it
is also used in smart home scenarios for energy and water consumption monitoring and
smart home appliances [34].

MQTT is designed to work on low resources and optimize the network bandwidth and al-
lows for bidirectional communication device-to-cloud and cloud-to-device. It is built on top
of TCP/IP and is suitable to 2G, 3G and 4G networks [35]. MQTT employs a publish/sub-
scribe architecture (fig. 2.3) by defining two entities: clients - publishers and/or subscribers

- and brokers - or servers. Clients can connect to a broker and publish messages under

12 Communication solution for loT devices using the Toit programming language

a certain topic. Whenever a message is received by the broker, it is forwarded to all the
clients subscribed to the message topic [36]. This architecture allows for millions of de-
vices to exchange data in an efficient way, ensuring great scalability.

Another great feature is the reliability of the message delivery, with three defined level of

M Brarer)
S 1 publish sensor/temperature) B ro ker ijbscribe sensor/temperature
ensor 1 f-----z==s-----» [€mooooemeoeoooo- :
DA | | 5| Client 1
DA
publish sensor/temperature M
Sensor 2 [-----: ST >
< subscribe sensor/humidity
T N D | Client 2
30,0H Sensor 3 |-Pupishsensorumidiy | Y
. |9|| i M \)

Figure 2.3: MQTT client-broker architecture.

quality of service (QoS), in increasing order of overhead [37]:

(1) At most once (QoS 0): there is no guarantee of delivery. The recipient does not ac-
knowledge receipt of the message and the message is not stored and re-transmitted

by the sender;

(2) Atleast once (QoS 1): guarantees that a message is delivered at least one time to
the receiver. The message is stored by the sender and retransmitted periodically

until the receiver responds with an acknowledgement;

(3) Exactly once (QoS 2): a four-part handshake between the sender and the receiver
guarantees that the message is received exactly one time. This QoS has greater

latency and overhead.

The messages are composed of a 1-byte control header, that defines the message type
and the flags; a variable header of length 1 to 4 bytes, to carry additional control informa-
tion; and the payload, for a maximum packet size of 256 MB [37].

The main drawback of this protocol is that, due to the asynchronous nature of the com-
munication, one publisher have no way to know if the message has reached the desired
client; there are also some open discussions about the feasibility of the quality of service
of level 3 in practice [38]. Another critical point, inherent to the architecture, is the cen-
trality of the broker, which, in case of failure, will interrupt the connection between all the

devices involved.

Communication solution for loT devices using the Toit programming language 13

ZigBee

ZigBee is wireless networking protocol defined in the IEEE 802.15.4 standard as a Low
Rate Wireless Personal Area Network (LR-WPAN) [39]. It is designed as an open global
standard to address the needs of low-cost, low-power wireless loT networks.

It offers support for multiple network topologies such as point-to-point, star and mesh
networking (fig. 2.4), the latter being a key point in it's usefulness in loT scenarios. The

ZigBee architecture consist of three types of nodes:

(1) The coordinator: there is one in every network and is responsible for handling and

storing the information while receiving and transmitting data operations;
(2) The routers: allow the data to hop through them;
(3) The end devices: produce and consume the data.

The small dimensions of ZigBee chips - 5x5 mm - makes it an ideal technology to adopt
in small battery-powered device.

ZigBee operates in the 2.4 GHz (global), 915 MHz (America) and 868 MHz (Europe) fre-
quencies, and has a coverage from 10 to 100 meters in line-of-sight, depending on the
power output. The ZigBee Alliance takes care of maintaining and updating the specifica-
tions, ensuring a good level of interoperability between products from different vendors

[40] but still providing the possibility of creating specific variation to manufacturers.

Due to its characteristic, ZigBee is placed in direct competition with Bluetooth as a low
power, high interoperability, low range technology for small IoT contest such as home
automation and healthcare applications like patient condition monitoring [41].

With respect to Bluetooth, ZigBee offer more possibilities in terms of network topologies,
which in turns means a greater reach of the network. ZigBee mesh network is self-forming
and self-healing, meaning that it configures itself automatically and dynamically to repair
itself if some nodes are removed; they also allows for a much greater number of con-
nected devices to the network - 65536 devices in a ZigBee network against 8 devices in
a classic Bluetooth piconet.

On the downside, the larger the network, the greater the latency between two distant de-
vices, as the message need to hop through the routers to reach its target. A great number
of devices also means that each one of these devices must be powered, although ZigBee

offers two operating modes, beacon and non-beacon. In beacon mode, the coordinator

14 Communication solution for loT devices using the Toit programming language

Figure 2.4: ZigBee network topologies: (a) point-to-point, (b) star and (¢) mesh

periodically transmit the beacon, which is used to dictate a schedule and synchronize the
communication in the network: this way, all the devices know when to communicate to
each other, allowing them to sleep in between beacons. This mode works best when
the coordinator and the routers are battery powered, as long as the timing circuits in the
devices are accurate. In non-beacon mode instead, the end devices are sleeping almost
all the time and periodically wake up to confirm their presence to the coordinator, which
is always awake. The end devices only start communicating on detection of activity.

The great advantages of ZigBee are consrained by the low data rate of 250 kbit/s on 2.4
GHz band. This is because ZigBee is designed for Wireless Sensonr Network (WSN),

expecially for condition monitoring context, where the volume of data is little [39].

Z-Wave

Z-Wave is proprietary wireless communication protocols developed the Danish company
Zensys in 1999 for residential and lightweight commercial environments, and is now reg-
ulated by the Z-Wave Alliance.

Z-Wave operates in the sub-1 GHz band - from 865 Mhz to 926 MHz depending on the
country - which ensure low power transmission at 100 kbit/s up to 30 meters [42]. By op-
erating in the sub-1 GHz band, Z-Wave signal is able to penetrate obstacles such as walls
while avoiding possible collisions with Wi-Fi and Bluetooth signals - but may interfere with

cordless phones and other wireless devices.

Communication solution for loT devices using the Toit programming language 15

Z-Wave network operates using controllers and slaves. A controller may send a message
to a slave which act as a monitoring device or as an actuator; thus, responds and exe-
cutes the controller’s instructions. Slave nodes are usually small low cost battery-powered
devices, while masters are usually smartphones or wireless remotes. Z-Wave supports
mesh networking allowing message to hop from one device to another, extending the
reach of the network [43].

Z-Wave technology shares a lot of applications with ZigBee and Bluetooth, its main com-
petitors, however, Z-Wave was specifically design to transmit small messages from one
control unit to slave devices; instead of utilising a large bandwidth, it supports only short
burst commands such as toggling the lights, set the alarm, locking the doors, turning on
the sprinklers etc. The extremely low power consumption of the slave devices makes it
an excellent choice in home automation - smart lightning, smart locks, smart security and
alarms [44] - by ensuring long battery life and low latency transmission.

There are currently more than 700 members of the Z-Wave Alliance that manufacture Z-
Wave devices, the most famous being Samsung SmartThings and General Electric, and
in 2005 there were over 50 millions Z-Wave devices for a total of 70% of the home au-
tomation market share [45]. Z-Wave devices are easy to setup and is guaranteed vendor-
agnostic levels of interoperability and backward compatibility [43], although the latter has
raised some concern about security [46].

Z-Wave mesh networks can theoretically accommodate 232 nodes, although most ven-
dors recommend to deploy no more than 40-50 devices. Another downside is that the
maintenance of the network is cumbersome: moving a slave device once it was added to
the network may prevents other devices from receiving messages, and there are cases
of unusual behaviour reported by customers. The solution in this case is to factory reset
the master unit and relearn the network topology [42].

The region-specific operating frequency is also a limiting factor, devices working in one

country may not function in another one.

LoRaWAN

LoRaWAN - which stands for Long Range Wide Area Network - is a MAC layer, open
protocol developed and maintained by the LoRa Alliance. The first specification was re-
leased in 2015, making it one of the youngest protocol for loT. It is built on top of LoRa, a

physical proprietary radio modulation technique derived from the Chirp Spread Spectrum

16 Communication solution for loT devices using the Toit programming language

(CSS) technology.

The technology employs a spreading technique, according to which a symbol is encoded
in a longer sequence of bits, thus reducing the signal to noise and interference ratio re-
quired at the receiver for correct reception, without changing the frequency bandwidth of
the wireless signal. This make it possible to select the data rate in the range of 300 bit/s
to 37.5 kbit/s, which offers a trade off between throughput and coverage range or power
consumption [47]. This characteristics allows LoRa to cover a greater area with less gate-
ways, compared to cellular network. LoRa and LoRaWAN together defines a Low Power
Wide Area (LPWA) networking protocol designed to connect multiple battery-powered de-
vices over long distances. The technology operates in the 169 MHz, 433 MHz and 915
MHz bands in the USA, but in Europe it works in the 868 MHz band.

LoRa networks are typically deployed in a star-of-stars topology: multiple end devices
- wireless sensors and actuators - are connected through a single hop to one or many
gateways, that are in turn connected to a common Network Server via standard TCP/IP
protocols (fig. 2.5). The end devices are not required to associate to a specific gateway
to gain access to the network, but only to the Network Server; the gateways act as simple
relays and forward the data to the network server, which is responsible for filtering the

messages and replying to the end devices.

End

devices
Gateways
Applications

Server

(0

TCP/IP

LoRa RF

Figure 2.5: LoRaWAN network architecture overview.

Communication solution for loT devices using the Toit programming language 17

Interoperability of end devices is guaranteed by the LoRa Alliance Certification Programs,
which ensure end customers that their application-specific end devices will operate on any
LoRaWAN network [48].

The long range coverage even in harsh environments and the indoor penetration capa-
bility, granted by operating in the sub-1 GHz spectrum, makes LoRa the technology of
choice in large-scale residential, agricultural and smart city applications, such as room
temperature monitoring of entire buildings [47], smart lightning and smart parking [49].
The coverage of a single gateway is between 2 and 6 km in urban scenarios, and up to
18 km in rural areas [50], making it possible to cover the extent of a large city with less
then a hundred gateways, each of them capable of supporting 15000 nodes [47].

By operating in the unlicensed ISM band it's not required to buy expensive frequency
spectrum license fees to deploy a LoRaWAN network, however this comes at the cost
of adopting 1% (or 0.1%) duty cycled transmission depending on the transmission fre-
quency, as regulated by regional and global entities, which is a limiting factor in terms of
throughput and network size [51][52].

Another downside is that the star-of-stars network topology adopted by LoRaWAN, in
particular the use of gateways to connect the end devices might be a bottleneck due
to a single point of failure. LoRaWAN modules are also more expensive than other RF
modules that employ GFSK and FSK, and the technology itslef is not suited for real time
applications that require low latency.

Despite these flaws, LoRaWAN is a young and modern protocol - the most recent spec-
ification is from October 2020 [53] - that is bound to be a big player in smart cities loT
applications [47].

Sigfox

Sigfox is a French global network operator founded in 2010 with the goal of providing
a controlled network for low-power loT devices, similar to the cellular network. Sigfox
proprietary technology employs ultra-narrow band (UNB) modulation, taking up only 192
KHz of the 868 MHz (Europe) and 91MHz (US) bands in the unlicensed ISM spectrum
[54]. Sigfox offer ultra-long range bidirectional communication at extremely low power
consumption. The UNB modulations allows for high resilience to interference, coverage
from 3 km up to 10 km in urban area - and up to 30 km in rural area [55] - and good indoor

penetration capabilities. This at the cost of an extremely low data rate of up to 100 bit/s

18 Communication solution for loT devices using the Toit programming language

and small size payload of 12 bytes.

Like other LPWA networking protocols, Sigfox aims at providing connectivity for low-end
sensors distributed over a wide area in agricultural, industrial and smart city applications.
For example, Sigfox has been employed in Marseille to monitor the water level of over
5,000 storm drains using self-powered sensors [56].

The SigFox network topology has been designed to provide a scalable, high-capacity net-
work, with very low energy consumption, while maintaining a simple and easy to rollout
one-hop star-based cell infrastructure, as show on fig. 2.6: the devices are connected to
base stations, which act as gateways to forward the messages to Sigfox Support System

over standard IP link.

—Q\ 8 NOC (50)
—ﬁ\ @ GNOC (Corp) &
m g Supervision I

SIGFOX SUPPORT SYSTEMS D

Connectors

Figure 2.6: Sigfox network architecture overview [57].

The Sigfox Support System is in charge of processing the messages and send them
through callbacks to the customer system. The data can be accessed and collected by
the users from any device with an internet connection using web interfaces and API [57].
Unlike cellular connectivity protocols, Sigfox devices are not attached to a specific base
station and the transmitted messages are received by any nearby stations (spatial di-
versity). The transmission is unsynchronized between the network and the device. The
device emits a message on a random frequency and then sends 2 replicas on different
frequencies and time (time and frequency diversity). Spatial diversity coupled with the
time and frequency diversity of the repetitions are the main factors behind the high quality

of service of the Sigfox network [57].

Communication solution for loT devices using the Toit programming language 19

Sigfox is present in 75 countries and services 20 millions registered devices over 6 million
square kilometers of covered area.

On the downsides, Sigfox suffer from the same ISM band usage restrictions of LoRa,
constraining the devices to no more than 6 12-bytes per hour [57]. This, coupled with
the 25 seconds of latency between reception and transmission make Sigfox unsuited for
real time applications and scenarios where large volume of data is produced over short
periods of time.

Other than that customers are required to purchase a subscription from Sigfox certified lo-
cal cellular operator in order to deploy their smart embedded devices. Given the premises,
Sigfox is a viable options for big business and public administrations that require infre-

quent monitoring of multiple sensors spread over a large area.

Radio Frequency ldentification (RFID)

RFID is a technology based on the use of electromagnetic fields to transfer small quan-
tity of data between two devices in close proximity. Predecessors of this technology have
been around since the 1940s, but the first patented commercial RFID systems dates back
to the 1980s [58]. Since then RFID systems have been widely deployed in logistic applica-
tions in industrial and commercial environments, such as items tracking, precision timing
and telemetry, and toll collection.

Atypical RFID system is composed of two main entities: a tag and an interrogator [59][60].
A micro chip and a small antenna constitute a tag. The tag information - from a few bits
up to 8KB - is stored in a non-volatile memory that can be either read-only, read-write or

write-once read-multiple. Tags have a unique ID and can be of three types:

(1) Passive: they cheaper and smaller because they have no battery, instead they are
powered by the current induced by the signal sent from the interrogator to transmit

the data;
(2) Active: they coupled with a small battery and periodically transmit their ID;

(3) Battery-assisted passive: they have batteries like active tags but are only activated

when in presence of an interrogator.

RFID tags come in several form factors and are priced a few cents up to 100$, depend-
ing on frequency, memory size, battery life, encapsulation protections, etc [61]. High-end

active tags can also mount sensors to capture environmental changes in temperature,

20 Communication solution for loT devices using the Toit programming language

humidity, pressure and even GPS. Due to its simple nature, RFID is a technology prone
to miniaturization and the smallest tag measure only 0.15x0.15 mm [62].

Interrogators are devices that transmit and receive radio waves and are responsible of
the communication with RFID tags.

RFID operates in three frequency bands: low frequency (125-134.2 kHz and 140-148.5
kHz), high frequency (13.56 MHz) and ultra-high frequency (865-928 MHz). While low
and high frequency RFID tags can be used globally, there is no global standard for ultra-
high frequency tags, and the specific regulations differs from country to country. Depend-
ing on the type and the operational frequency, RFID tags can be read at less than 10
centimeters up to 100 meters regardless of obstacles and occlusion [63].

RFID tags are a relatively inexpensive solution that provide no-latency transmission of
small quantities of data at short distance; they are widely employed for contactless pay-
ments, ID cards and machine readable documents, smart locks, tracking of shipping,
luggage and livestock, anti-theft systems in retail and timing of sport events [64].

On the downside, the wide use of RFID tags raised several security concerns about the
fact that the tags can be read by unauthorized users with malicious intents, and legitimate
transactions can be eavesdropped from non-trivial distances. This allows the criminal to
identify or track packages, persons, carriers, or the contents of a package [65] [66]. The
term "RFID skimming” is the practice of unlawfully obtain someone’s payment card infor-
mation using a RFID reading device [67].

There are also privacy concerns since RFID tags used in retail remain functional after the
customers have purchased and taken home the products, making it possible to be used
for surveillance and other unlawful purposes unrelated to the original logistic functions of
the tags.

Despite that, RFID tags are still widely employed and the total RFID market is expected
to be worth over $12 billions in 2022 [68].

Near Field Communication (NFC)

NFC is a secure, short-range communication standard for interaction between two elec-
tronic devices wirelessly, without the need for any prior setup [69]; the first NFC specifi-
cation was introduced in 2003 by Sony and Philips [70].

NFC technology is based on RFID and operates at 13.56 MHz in the unlicensed ISM band

with the same functional principles: inductive coupling between two loop antennas.

Communication solution for loT devices using the Toit programming language 21

The devices involved are an active initiator and a target, which may be both active - bat-
tery powered - or passive - draw the operating power from the initiator-provided magnetic
field. NFC communications supports between two devices in close proximity - 10-20cm -
at data rates of 106, 212 or 424 kbit/s. A NFC device can operate in three possible modes
[71]:

(1) Reader/Writer mode: an active initiator can read/write data from/to targets detected

in close proximity, such as passive RFID and NFC tags;

(2) Peer-to-peer mode: two active NFC devices can exchange information over a bidi-
rectional half duplex channel, meaning that when one device is transmitting, the

other one has to listen and should start to transmit data after the first one finishes;

(3) Card emulation mode: a portable NFC device such as a smartphone can act as a

passive smart card to be read by an active reader.

NFC technology is integrated in every modern smartphone and widely employed as to
perform contactless payments, ticketing and access control [71]. NFC plays an important
role in loT as a technology enabler [72]: smart objects are often equipped with NFC tech-
nology to replace the pairing of Bluetooth-enabled devices or the configuration of a Wi-Fi
network through PINs and keys, by simply touching the devices.

NFC is subject to security concerns similar to those of RFID. The close range required
by NFC communication does not make it immune to eavesdropping, which, with the right
equipment, can be carried out at distances up to 10 meters; RFID jamming devices can
transmit a signal that interfere with the transmission between a mobile NFC phone and a
reader of a service provider, causing denial of service; malicious NFC tags that contains

false information can be used to replace legitimate tags in a phishing attempt [73].

22 Communication solution for loT devices using the Toit programming language

3 Bluetooth Low Energy

Bluetooth Low Energy (BLE) was defined for the first time in 2010 by the Bluetooth SIG
as part of the Bluetooth 4.0 specification, it's main feature being offering similar perfor-
mances of classic Bluetooth in terms of range and data rate, while significantly reducing

the power consumption.

3.1 Stack Architecture

The BLE stack (fig. 3.1)[74][75] is composed of two major blocks, the Host and the Con-
troller, which act as separate logical containers in the architecture; the Host and the Con-
troller communicate through the Host Controller Interface (HCI). This allows a Bluetooth

system to consist of host and controller components from different manufacturers.

L2CAP

Host-Controller Interface

Link layer

Physical layer

CONTROLLER

Figure 3.1: Bluetooth Low Energy protocol stack [75].

Physical layer
The Physical layer defines all the aspect of BLE technology related to the use of RF, such

as modulation schemes, frequency bands and channel use. BLE operatesin 2.4 GHz ISM

band but instead of the classic Bluetooth 79 1-MHz channels, Bluetooth Low Energy has

Communication solution for loT devices using the Toit programming language 23

40 2-MHz channels. These channels are divided into three advertising channels, which
are used for device discovery, connection establishment and broadcast transmission, and
37 data channels, used for bidirectional communication between connected devices.

The modulation scheme used by BLE is the Gaussian Frequency Shift Keying (GFSK).

Link layer

BLE devices can communicate according to two different patterns supported by the Link

layer:

(1) Advertiser/Scanner: one device, the advertiser, broadcast the data unidirectionally
in the advertising channels; the other device, the scanner, can receive the data.

Also called connectionless communication;

(2) Master/Slave: the advertiser and the scanner establish a bidirectional connection
and adopt the slave and master roles, respectively. The master can connect to mul-

tiple slaves at the same time.

Host Controller Interface

The HCI defines a standardized interface via which a host can issue commands to the

controller and a controller can communicate with the host.

Logical Link Control and Adaptation Protocol

The Logical Link Control and Adaptation Protocol (L2CAP) provides connection-oriented

and connectionless data services to the upper layer protocols with protocol multiplexing.

Attribute Protocol

The Attribute Protocol (ATT) defines the server and client roles. The server exposes a
series of composite data items known as attributes to a client in a peer device. Attributes
are identified by a unique index value, so that they can be referenced by the client; a
Universally Unique Identifier (UUID) that identifies the attribute type; a set of permissions
that indicate whether read, write or both forms of access are permitted; and a value, which

is a byte array that contains the attribute’s value.

24 Communication solution for loT devices using the Toit programming language

Generic Attribute Profile
The Generic Attribute Profile (GATT) defines a framework that uses the ATT for the dis-

covery of services, and the exchange of characteristics from one device to another. A
characteristic is a set of data which includes a value and properties. The data related to

services and characteristics are stored in attributes.

Security Manager Protocol
The Security Manager Protocol (SMP) supports the execution of security related proce-

dures such as pairing, bonding and key distribution, and provides a cryptographic toolbox

for security functions.

Generic Access Profile
The Generic Access Profile (GAP) defines the generic procedures related to discovery,

link management, and security aspects for communication between BLE devices.

3.2 Specifications

The Bluetooth 4.0 specification [76] doesn’t allow a slave node to take part in multiple
connections simultaneously with other masters. Therefore, the only network topology
supported by BLE is the star topology.

Despite the vibrant interest displayed by both industry and academia, BLE technology
was falling short to populate the wireless home automation market, only allowing star
networks being the bottleneck. Mesh networks, like those employed by BLE main com-
petitors - e.g., ZigBee and Z-Wave - proved to be more efficient in domestic context, where
multiple smart objects in different rooms are hard to reach in a single hop, and communi-
cation between two non-adjacent end nodes may be required. The same problem can be
observed in industrial, agricultural and urban scenarios, where direct communication be-
tween end devices may not be possible and the nodes are deployed over an area greater

than the reach of a single device.

In 2013, the release of the Bluetooth 4.1 specification [77] introduces a fundamental
change with regard to BLE mesh network support. A slave node is now allowed to be
simultaneously connected to more than one master. In addition, one device can act both
as slave and as a master, keeping parallel communications with its neighbors.

This game changer extends the possibilities in term of network topology by allowing de-

Communication solution for loT devices using the Toit programming language 25

vices to take part in mesh networks. At this point there is no official specification about
the implementation of mesh networking for BLE technology, and multiple solutions are

studied and proposed by both vendors and researcher.

Bluetooth 4.2 (2014)[78] and 5.0 (2016)[79] incorporate improvements in terms of range,
data rate, security and advertising channel functionality, but do not offer further function-

ality to support BLE mesh networks.

The big step is taken in 2017 with the release of the the Bluetooth Mesh Profile speci-
fication [80], which defines fundamental requirements to enable an interoperable mesh

networking solution for BLE technology.

3.3 Mesh Networks

A wireless mesh network consist of multiple nodes connected together in a many-to-many
fashion; nodes can communicate with each other even if not directly connected, by send-
ing messages that can hop through nodes in the network to reach their destination. Mesh
networks are effective approach to providing coverage of large areas, extending range

and providing resilience.

Routing vs. Flooding

Since the release of Bluetooth 4.0 there as been multiple proposal for implementing
mesh networking with Bluetooth Low Energy devices, that can be classified in two dis-
tinct groups, based on the multihop paradigm adopted [81].

BLE devices can send data in two different ways, that is by broadcasting - advertising - the

data or by establishing a connection. This duality makes way for two possible approaches:

* Routing-based approach: the data is forwarded through the network over the data
channels by establishing a connection. A routing algorithm is used at every step to

pick the next hop in order to reach the target node;

* Flooding-based approach: the data is broadcasted over the advertising channels to
all the neighbouring nodes, which in turn broadcast the message until the target is

reached.

26 Communication solution for loT devices using the Toit programming language

The strong point of Flooding-based mesh networks is their simplicity: it is not required to
establish a connection, and there is no need to employ complex routing protocols. This
means no delay due to route discovery and less memory usage for storing and maintain-
ing routing tables. On the downside, since the messages are broadcasted through all the
network, flooding-based solutions suffer poor message throughput, which worsen with
the increase of network size. The other issue is with security, since SMP services are
only available over data packets sent through the data channels, and not over advertising

packets [81].

Routing-based solutions instead employ a routing algorithm to find a route to deliver a
data packet from one node to another. These solutions may use advertising channels for
neighbor discovery and route formation but the data is exchanged over the data channels
after a connection is established. Many routing-based solutions exploit the capability,
introduced with Bluetooth 4.1, of performing multiple connections as both a slave and a
master, while other, mostly older, approaches rely on one connection at a time.

Routing algorithms often require the construction and maintenance of routing table, which

is a cost in overhead.

Bluetooth mesh architecture

Starting from the summer of 2017, with the release of the Bluetooth Mesh Profile specifi-
cation [80], support for mesh network topology is officially available for BLE devices. The
document defines the Bluetooth mesh stack as a layered architecture built on top of the

BLE stack (fig. 3.2) [82].

Bearer Layer
The Bearer Layer defines how network messages are transported between nodes.

At the moment of writing the specification defines two mesh bearers over which mesh

messages may be transported:
+ the advertising bearer, used to send mesh packet;

» the GATT bearer, using to allow older BLE devices, which do not support the adver-

tising bearer, to take part in a Bluetooth mesh network.

Network Layer
The Network Layer defines how transport messages are addressed towards one or more

elements. It also decides whether to relay/forward messages, accept them for further

Communication solution for loT devices using the Toit programming language 27

Model Layer

Foundation Model Layer

Access Layer

Bluetooth Mesh Profile }_
Upper Transport Layer

Bluetooth Low Energy

Lower Transport Layer

Network Layer

— Bearer Layer

Figure 3.2: Bluetooth Mesh stack [80].

processing, or reject them, and defines how a network message is encrypted and au-

thenticated.

Lower Transport Layer

The Lower Transport Layer takes PDUs from the Upper Transport Layer and sends them
to the Lower Transport Layer on a peer device; it defines how Upper Transport Layer
messages are segmented and reassembled into multiple Lower Transport PDUs in order

to deliver large Upper Transport Layer messages to other nodes.

Upper Transport Layer
The Upper Transport Layer is responsible for the encryption, decryption and authentica-

tion of application data passing to and from the Access Layer.

Access Layer
The Access Layer defines the format of the application data and how higher layer appli-

cations can use the upper transport layer.

Foundation Layer
The Foundation Model Layer defines the states, messages, and models required to con-

figure and manage a mesh network.

28 Communication solution for loT devices using the Toit programming language

Model Layer

Finally, the Model Layer defines the models, that is standard software components that,
when included in a product, determine what it can do as a mesh device [83]; a model de-
fines the implementation of behaviors, messages, states, state bindings and basic func-
tionality of nodes on a mesh network.

The Bluetooth Mesh Model specification [84] is a document that defines over 50 models
for different applications, such as lightning, sensors and even models that are “deliber-

ately positioned as generic, having potential utility within a wide range of device types”

([85]).

Bluetooth mesh operation

Nodes

Devices which take partin a BLE mesh network are called nodes, and they are the building
blocks of the network. All nodes are able to receive and transmit messages, but in addition

they can also be of one or more of these types:

* Relay nodes are able to retransmit the received messages over the advertising
bearer. Relaying is the mechanism by which a message can propagate through

the network, hopping from one node to another;

* Proxy nodes are able to transmit messages between GATT and advertising bearers.
This functionality allows devices which posses a BLE stack but not a Bluetooth mesh

stack to take part in a BLE mesh network, by connecting to a Proxy node;

* Low Power nodes are able to take part in a mesh network at low power consumption
by operating at significantly reduced receiver duty cycle. This is only possible on
conjunction with a Friend node. Low Power nodes are usually powered-constrained

devices. A Low Power node can connect to only one Friend node;

* Friend nodes enable Low Power nodes to operate in a mesh network. A Friend node
stores the messages directed to the Low Power node and send them to it whenever
its possible - that is, whenever the Low Power node polls the Friend node. A Friend

node can be connected to multiple Low Power nodes.

Unlike other low power mesh networks, such as those offered by ZigBee and Z-wave,
Bluetooth mesh do not require a centralized controller: the messages hop across the
network to reach their destination without the need to pass through a coordinator, which

results in reduced latency and less overhead. Bluetooth mesh allows for a vast and diver-

Communication solution for loT devices using the Toit programming language 29

sified network (fig. 3.3), to which multiple devices of different kinds can take part: devices
powered by a small battery can participate in the network through a Friend node without
compromising battery life and interoperability is extended to older devices thanks to Proxy

nodes.

Low power
advertising bearer

S Q ----------- Q <«----> Advertising bearer
O: ———————————— . N X <«—> GATT bearer
\ Node

Proxy node

Friend node

Low Power node

OO00OO0O

Relay node

Figure 3.3: Example of a Bluetooth Mesh topology [80].

Elements and States

Every node in the network contains one or more elements; an element is an addressable
entity within a node, and represent a component of the device that can be controlled in-
dependently. For example, a smart lightning product that has three separate lightbulbs is
represented in a mesh network as a node containing three elements, one for each light-
bulb.

The status of an element is described by one or more states; states are data items with
one or more values that indicate the condition of the element. For example, a smart light
controlled by a dimmed switch would possess two states, one to indicate whether the light
is on or off and one to represent the brightness level.

When a state changes its value it's called state transition.

Sometimes a state transition may trigger a change in another state. This kind of relation-
ship between states is called state binding. In the previous example, changing the value

of brightness level to zero will trigger a state transition in the OnOff state from on to off.

30 Communication solution for loT devices using the Toit programming language

Models
Models encapsulate the previous concepts to define some or all the functionalities of an

element. Models can be of three types:

node

element element

model | model model | model
[state || state || || state |} state |
[state | [state |
[_state |

Figure 3.4: Bluetooth Mesh node composition [83].

» Server models define a collection of states, state transitions, state bindings and
messages which the element containing the models may send or receive. They

also define behaviors relating to messages, states and state transitions;

» Client models do not define any states. Instead, they defines the messages which
they may send or receive in order to request, change, or obtain the value of the

corresponding server model states.
» Control models encapsulate both a server model and a client model.

For example, a simple binary light switch contains an element, which represents the
switch, whose functionality is defined by the Generic On/Off Client model. This model
controls the Generic On/Off Server Model, which defines the functionality of a simple
light, by sending it messages.

The Bluetooth Mesh Model specification [84] defines states, state transitions, state bind-
ings and messages of over 50 models that describe the functionality of multiple elements
spanning over different devices and applications.

Communication

Communication within the network is achieved via messages. Messages operate on
states and for each state there is a defined set of messages that a server supports and

that a client may use to request the value of a state or to change a state (fig. 3.5).

Communication solution for loT devices using the Toit programming language 31

Figure 3.5: Bluetooth client-server model communication [80].

Messages can be acknowledged or unacknowledged. The former requires a response

from the nodes that receive them to confirm that the message was delivered, while the

latter doesn'’t.

Client Model Server Model
‘ Message X
[TT1 [T
‘ Message Y
[TT 11
‘ Message Z
L 7
Element
Device A
State
Client Model
‘ Message R
[T 11
‘ Message S
[T [T1
’ Message T
[1T [T1
‘ Message Z
| [
Element Element
Device B Device C

Messages must be sent to addresses, which can be of three types:

» Unicast addresses identify a single element of a node, and are assigned during the

provisioning process;

» Group addresses identify multiple elements spanning over one or more nodes. The

Bluetooth SIG defines four Fixed Group Addresses named All-proxies, All-friends,

All-relays and All-nodes.

Group addresses may also be assigned dynamically by the user: for example, a

group address may identify all the lights in a room in order to control them with a

single switch;

+ Virtual addresses identify multiple elements spanning over one or more nodes and

are usually preconfigured by the manufacturer.

The exchange of messages in the network is defined as using the publish/subscribe
paradigm (fig. 3.6). A node publish messages to an address - unicast, group or virtual

- and nodes that are interest in receiving the messages will subscribe to these addresses.

32 Communication solution for loT devices using the Toit programming language

Nodes may subscribe to multiple addresses.

Kitchen Dining Room Hallway Bedroom Garden

600666600

Figure 3.6: Example of publish/subscribe communication in a BLE mesh [82].

Provisioning
A device that is not member of a mesh network is called an unprovisioned device. Adding

an unprovisioned device to the mesh network is a process called provisioning. This pro-
cess is started by the unprovisioned device, which advertise its presence to the Provi-
sioner - usually a smartphone. The Provisioner then invites the device to the network,
which is followed by the exchange of public keys. Then the Provisioner requires an au-
thentication: the user must enter into the Provisioner a random number that is output
by the new device. After the provisioning has been completed, the provisioned device
possesses the network key, which is used to secure and authenticate messages at the
network layer: the device is now part of the mesh network and therefore a node.
Managed flooding

Managed flooding is the protocol chosen by the Bluetooth Mesh Working Group to allow
nodes to exchange messages in a mesh network. Flooding is a technique based on
advertising the message to all the neighboring nodes, which in turn will relay the message
to other nodes, until the destination node is reached.

With respect to other flooding techniques, managed flooding offers some improvements:

* Messages are assigned a time-to-live (TTL) field, which limits the number of times
that the message can be relayed. The TTL field is decremented every time the
message is relayed until it reaches zero, then the message does not get relayed
further. The TTL field optimize the overall power consumption of the network by

preventing a message from being transmitted further than is required;

Communication solution for loT devices using the Toit programming language 33

34

» Heartbeat messages are sent periodically to signal to other nodes in the network that
the sender is still active. Heartbeat messages contain data which allows receiving
nodes to estimate how far away is the sender in terms of number of hops required

to reach it; this data can be used to tune the TTL field;

» Messages are cached by all the nodes. Every node has a cache that contains the
message that the node has received and sent recently. Whenever a node receive a
message that is present in its cache it discards it. This way messages are prevented

from being transmitted multiple times by the same node;

» Friendship is the relationship between a Friend node and a Low Power node, allow-

ing the latter to operate in a power efficient way.

Communication solution for loT devices using the Toit programming language

4 Toit Platform

Toitware ApS is a Danish company founded in February 2018 by former Google software
engineers Kasper Lund, Erik Corry, Florian Loitsch and Anders Johnsen.

Their product is the Toit Platform, a software development and deployment platform for
loT that allows for high-level programming of embedded devices without compromising
on performance, with focus on connectivity and edge computing. Toit’s mission is to make
loT developing accessible to everyone by providing a simple and efficient programming
language and taking care of all the thorny aspect of embedded programming, such as

connectivity, over-the-air software and firmware update and fleet management [86].

Toit Language

Toit applications are written in the Toit language, a high-level language with a syntax simi-
lar to Python’s. When developing code for embedded devices the most common approach
is to programming in native C language. This allows to access low-level operation such
as bit wise data manipulation and precise memory management, while achieving high
performances due to little to no overhead. However, C is a low-level language that might
be hard to learn and require technical hardware knowledge when used for embedded sys-
tems programming. Simple functionalities take time to build and modern coding technique
might be difficult to implement.

On the other hand, the use of high-level languages such MicroPython and Java SE Em-
bedded implicate higher memory usage, higher power consumption and much lower per-
formances. This is not ideal in 10T applications where the smart objects are typically
battery-powered, low-end devices.

With these premises, Toit spent one year putting together an approachable high-level,
object-oriented programming language that runs code efficiently on constrained devices.
Toit simple syntax and recognizable programming style make it quickly to learn and easy
to use. It comes with ready-made reliable libraries to access low-level functionalities. It is
declarative, statically analyzable, memory safe and garbage collected [87]. The programs

are compiled to compact binaries that execute 30 times faster than MicroPython [86].

Communication solution for loT devices using the Toit programming language 35

Toit Virtual Machine

The Toit firmware is composed of the ESP-IDF operating system and the Toit Virtual Ma-
chine (VM) built on top of it [88]. The code developed runs on the Toit VM as one or more
applications in a sandboxed environment - that is, Toit programs can’t write to arbitrary
memory locations. The applications run isolated from one another and from the underly-
ing hardware. This means that one application’s crashing does not constitute a problem
for the system and the other applications, which keep running. Separate specification
files controls the execution of each application, allowing for multiple applications running
side by side.

Not only that, this means that applications can be installed and uninstalled on a device
without affecting the execution of the other applications already installed on the platform.

The traditional approach requires that all applications are compiled, linked and deployed

Traditional loT TOIT loT
Execution - Execution
= 0o
.) Q 0 .
Processor specific - o 3 =3 Processor agnostic
Unsafe memory access 52 = a < Safe memory access
Q %] -~ g Q
=bC< QO = pn
ou o o ®
:) —
W (0 o© i)
System < System
- ToIT virtual
3 machine Many isolated apps
5 Battery optimized
FreeRTOS o FreeRTOS

Figure 4.1: Architecture of the Toit Platform (right) in comparison with traditional

firmware deployment (left) [88].

together, which makes the code prone to errors and hard to maintain; Toit VM offers a
more flexible and robust alternative to deploy and run software that allows the developer

to focus only on the end goal and not the hardware technicalities.

Toit Cloud and API
Devices provisioned with the Toit firmware can be organized through the Toit Cloud, which
gives both a clear overview and detailed information about the health and status of the

fleet [89]. The Cloud takes care of scheduling over-the-air updates of both firmware and

36 Communication solution for loT devices using the Toit programming language

software for online and offline devices alike. Software and firmware updates are in the
form of small patches ranging from 40 to 500KB, meaning that they can be quickly de-
ployed even over an unstable Wi-Fi or cellular connection; the connectivity logic in the Toit
firmware is built as a stand-alone feature, completely isolated from the application code,
meaning that updates can be safely carried out even in the event of connectivity drops
[90].

Toit devices can communicate with each other through the Toit Cloud using an out-of-the-
box, publish/subscribe messaging service. An application can publish data on a certain
topic, the data is sent to all the applications subscribed to that topic. Since Toit connectiv-
ity is isolated from application code, a Toit app focuses only on producing data and saving
it on the device. The data is then uploaded to the cloud each time a device comes online,
without loss of data over connectivity issues [90].

All communication between the device and the cloud is end-to-end encrypted using mod-
ern public-key encryption [89].

Toit offers public API to give full programmatic control of the devices and access to the

data published by Toit applications [89].

Hardware

The Toit Platform runs on the ESP32 chip from Espressif [91].

The ESP32 System-on-Chip (SoC) is designed for ultra low-power consumption, mobile,
wearable electronics, and loT applications. It's capable of functioning reliably in industrial
environments, with an operating temperature ranging from —40°C to +125°C. It mounts
two Xtensa 32-bit LX6 microprocessors that runs at 240 MHz and 520KB of RAM [92][93].
It comes with 34 GPIO pins for peripherals, configurable to be used for communication
protocols (SPI, 12C, UART), analog/digital interfacing (ADC/DAC), Ethernet and PMW.

It has built in Wi-Fi and Bluetooth modules, and since 2019 it has officially passed the SIG
Bluetooth LE 5.0 certification.

The ESP32 SoC has been chosen by Toit because it perfectly fulfills the characteristics

of a battery-powered smart device in most of loT applications, that is:

» Low-power consumption and advanced power-management technologies: with five

different power modes the ESP32 can run on standard AA batteries for years;

» Cost-effective: ESP32 chips are low cost, which means that a large scale deploy-

ment would be less expensive compared to other MCUs;

Communication solution for loT devices using the Toit programming language 37

 High connectivity: ESP32 offers both wireless and wired connectivity options, mak-

ing it easy to build an loT infrastructure around them, regardless of the use case;

» Computing power: the dual-core microprocessor enable more processing and con-

trol of the data at the edge, before sending it to the cloud.

Use cases

Toit provides a cheap solution for a large scale deployment of smart devices with enough
computing power to manage multiple sensors and actuators, process the data gathered
by the sensors and forward it to the cloud; Toit takes care of all the pain points in loT
development leaving the developers to focus only on the applications that run on the
smart devices. This allows business who operate in loT to cut their expenses in hardware
and connectivity gateways while reducing the workload of the developers.

Example of real use cases of the Toit Platform are:

» Consibio [94] is a tech-spinout company that builds custom hardware for monitoring
and optimization of bioprocesses. Their typical product consist of several sensors
mounted on microcontrollers, connected to a Linux gateway, working with an estab-
lished loT platform that ensured connectivity to the cloud. The different units had to
be programmed using various programming languages and it was not possible to
update the sensors connected to the gateway.

Adopting the Toit Platform allowed Consibio to have all the components connected
only to the microcontroller, with no need for a gateway (fig. 4.2). Other than that
Consibio reported reduced cost in hardware and time spent programming the de-
vices, along with the other benefits such as lower power consumption, secure and
quick over-the-air updates and remote managing of the deployed fleet.
Toit-powered devices have been deployed in a biofactory that grows insects for
sustainable protein production. The devices measure the temperature and humidity
of the farm, making sure that the optimal condition for insect growth are met, and
send an SMS alert otherwise. They also operate an industrial valve that controls

the airflow when the presence of malodorous air is detected.

« Trifork [95] is a IT and business service provider that supply high-quality custom-built

applications and end-to-end software solutions. One of their product, the Foodbox,

38 Communication solution for loT devices using the Toit programming language

/ Linux-based design \ Toit

RPC
® pbalena "™ |, MONESCOER) € ¥ x
SR cLoup provided by the
Y Toit API
Heavy OTA updates kY \‘ .«
slow and expensive o

7 S
2-15 minutes Light-weight OTA /7

\ N
NN

updates completed in ¢
AN seconds s
% ’.' "'
s 4
£ ESP32-based puC
RaspberryPi d

Browser-based L

user interface
No OTA updates Device -
possible for the - f
ARM-based [T SENSOR | SENSOR AGTUATOR i
\micrccontrollers m]
Risk of bricking expensive RPi-based gateway More than 70% device cost reduction
No API for secure data integration End-to-end exposed APIs

Use of Python / Node and C/ C++ A single high-level language Toit

No possibility to run devices on batteries Cheaper devices running on batteries

Figure 4.2: Design of Consibio product before (left) and after (right) adopting
Toit [94].

is a growing chamber for vertical - also known as aeroponic - indoor farming. In
aeroponics farm, the roots of the plants are exposed to air and get their nutrients
from a solution sprayed as mist, needing only 5% of the water used in a traditional
farming system. The exposed roots have access to more oxygen than when sub-
merged in water and thus the plants grow faster, however they are very sensible to
changes in humidity, therefore the environmental conditions of the growing chamber
must be monitored constantly.

The Foodbox cabinet contains several shelves for the plants to grow, and on the
lowest shelf there is a system made of a reservoir, a pump, a pressure accumula-
tor, and spraying nozzles to spray the nutrient solution into mist. The cabinet also
contains temperature and humidity sensors and an artificial lightning system.

The condition monitoring is done by a single Toit-powered ESP32 that runs three
applications. One app measures the temperature and relative humidity in the Food-
box. A second app controls the lighting. A third app is used to schedule the spraying
of the nutrient solution.

Using the PubSub service the applications logs the measurements on the cloud,
that is accessed by a smartphone app thanks to the public APIs.

Thanks to the Toit Platform, the design of the cabinet is modular and easy to main-
tain: by adding extra sensors is possible to include the monitoring of the quality of

the nutrient solution and the water level, with an alarm triggered when the latter is

Communication solution for loT devices using the Toit programming language 39

40

running low.
The application that take care of this can be easily installed over-the-air without al-

tering the execution of the other applications.

Communication solution for loT devices using the Toit programming language

5 Implementation of BLE mesh network
with Toit

Motivation

Despite the fact that the ESP32 SoC has passed the Bluetooth 5.0 certification [96] and
the ESP-BLE-MESH implementation is fully Bluetooth SIG-certified [97] since 2019, at
the time of writing the Toit Platform does not support all the BLE features. That is, at the
moment a Toit device could not take part in a Bluetooth mesh as defined by the official
specification.

Since Toit devices work mostly as edge gateway devices, it is of interest to study a solution
to allow a wireless network of Toit-powered devices to communicate without requiring the
data to pass through the cloud.

The Toit Platform performs greatly under the assumption that all devices are under Wi-Fi
or cellular coverage in order to communicate wirelessly with other Toit devices and the
cloud. While this assumption holds true in most applications targeted by the Toit product,
this may not always be the case.

For example, only a few devices of a wireless sensor network deployed inside a large
building may be within the reach of Wi-Fi, and a wired connection to collect the data from
the end nodes may not be possible. In this case it is of interest to employ a communication
solution to collect data from the edge nodes, without having to pass through the cloud.
This chapter will propose an implementation of a mesh network to allow multiple Toit
devices to exchange messages over Bluetooth even if not directly connected.

Since the BLE functionalities available with Toit are limited - it's not possible for a slave
to connect to multiple masters, and for a node to act as both a slave and a master - the
solution proposed will employ only the primitive functions to advertise, scan, connect and

access read/write characteristics of a server.

5.1 Overview

The solution proposed is inspired by the tree network topology presented in [98]. The
structure of the network is that of a undirected tree that is generated starting from a root

node. The tree is composed of three types of nodes:

Communication solution for loT devices using the Toit programming language 41

» The root node is a unique node; there is only one root node and the network ex-
pands from the root. The root act as a sink in the network, that is, all the messages
pass through the root. In the previous example, the root node is represented by a
Toit device under Wi-Fi/cellular coverage that act as a gateway device. Cloud con-
nectivity for other nodes is not required, as all the messages pass through the root

node;

* The intermediary node is a node connected to exactly one node situated in a higher
level of the tree, and to one or more nodes in a lower level. Intermediary nodes
have the main function of relaying messages through the tree but they can also

incorporate sensors and actuators that produce and consume messages;

» The leaf node is a node that is only connected to exactly one node situated in a
higher level of the tree. Leaf nodes are typically sensors and actuators that produce

and consume data.

Every node is identified by a 2-byte address that is assigned by a higher level node during
the tree generation phase, except for the root node, which has address equal to 0. Every
node advertise its address, which is used by sender nodes to route the messages in the
network. The structure of the network and the addressing is presented in fig. 5.1.

Direct communication in the network is only possible from parent to child and vice versa.
The main advantage of this restriction is that the routing algorithm is extremely simple: the
next node can be easily selected by looking at the address pattern. The other advantage
is that no routing table is required, as one node can only send messages to its parent
node or its children nodes; there is exactly only one path between two nodes.

The disadvantage, with respect to Bluetooth mesh, is that all the messages need to pass
through the root and a node can forward messages only to its descendants and ancestors.

A node can send a message by:
(1) Scanning the neighbouring devices, looking for its parent or one of its children;

(2) Connecting to the receiver node. The receiver node is connected as slave, the

sender node is connected as master;
(3) The sender node writes the message in the characteristics of the receiver;

(4) The sender node disconnects from the receiver.

42 Communication solution for loT devices using the Toit programming language

Root node

level 0

Parent —— > Child

level 5

Node -----------~ » Descendant

Figure 5.1: Tree network structure and addressing.

Whenever a node receives a message that is directed to another node, it forwards it to
the next node in the path. Communication from a leaf node to the root is presented in
fig. 5.2.

This implementation is meant to work in parallel with the code that produce and consume

Figure 5.2: Message propagation from leaf node to root. The dashed lines

the data.

represent parent-child relationship, while the solid lines represent master-slave

active connection

Communication solution for loT devices using the Toit programming language 43

5.2 Implementation details

5.2.1 Data structure

Communication in the network require all node to act as slaves, to receive a message,
and as masters, to send a message. Therefore every nodes will expose a GATT service
that contains the characteristics illustrated in table 5.1. The UUID for the characteristics

have been randomly generated [99].

Table 5.1: Description of the characteristics exposed by the GATT service.

Characteristic UUID Size (bytes) Permission Description
ownAddr 0x3082 2 read/write Address of the node
. Indicates whether a new
newMsg 0x936A 1 read/write
message has been received
msg OxE51C 8 read/write Received message

The structure of a message is a 8 byte array that contains the source address, the desti-
nation address and the payload (table 5.2); little endianess is used.
The OP code field allows to define behaviours in response to messages. For example

the root can send a message to a node that triggers a response, like a data request.

Table 5.2: Tree message composition

Byte 7 | Byte 6 Byte 5 | Byte4 | Byte 3 | Byte 2 | Byte 1 | Byte 0

destination address | source address | message payload

opcode | message data

In addition, every node has an internal FIFO buffer where messages are stored before
they are sent, and a 1 byte variable that indicates the number of children nodes. Whenever

a message needs to be sent, it is simply inserted into the message buffer.

5.2.2 Network operation

The network operation can be described by a five-state machine (fig. 5.3). The device set
as root starts with address equal to zero and kick-start the tree generation by provisioning
the neighboring nodes.

All the other devices start with address OxFFFF and proceed to the Advertise state.

44 Communication solution for loT devices using the Toit programming language

[is not root] f\ [is root]
done
Advertise [« [done] | Address
< provisioning
—_ _E’ = [msg buffer
S| €8 empty]
g gt
2 o= Check msg
c _—
§ buﬁfer [msg buffer
) not empty]
[msg received] [next node
not found]
Connected Forward
[else] | as slave [msg received is message Q p=0.5
destined to other node]
[message [next node
[own address delivered] not found]
has changed] p=0.5

Figure 5.3: State diagram of the suggested BLE tree routing service.

Address Provisioning

This state is used to expand the network. The node starts by scanning the neighboring
advertising devices. For each device with address OXFFFF discovered, the scanning
device establish a connection as master and assign an address to the slave by writing
the ownAddr characteristic of the unprovisioned device. The address is calculated as
(ownAddr % 10) + i, where i is a 1-byte variable that tracks the number of children, and
is incremented at every iteration; this makes for an easy identification of parent node and
children nodes. By using two byte for the address, one tree can include up to 65535
devices over six levels.

When there are no more neighboring unprovisioned devices, the node proceed to the

Advertise state.

Advertise
At this state the node advertise his address to the neighboring devices, waiting for a
connection to be assigned an address or to receive a message. When a master device

establishes a connection, the node transitions to the Connected as Slave state. If no

Communication solution for loT devices using the Toit programming language 45

connection happens before the advertising timeout - which is a parameter to be tuned -

the device goes to the Check Message Buffer state.

Connected as Slave

When a node is connected as a slave, it waits for the master to disconnect. At this point

it checks if the values of its characteristics have changed:

* If the newMsg characteristic is set to 0x10 it means that the node has just received

a message. The node checks the destination address of the message:

— If the destination address corresponds to the node own address, then the mes-
sage has reached its destination. The node handles the message and then

goes to the Check Message Buffer state;

— If the destination address is different from the node own address, the message
goes to the Forward Message state, in order to send the message to the next

node.

+ If the newMsg characteristic is set to 0x11, it means that the master has provisioned
the node with a new address. The node transition to the Address Provisioning state

to continue the generation of the tree;

* If none of the above, the node goes back to the Advertise state.

Forward Message
While in this state, the goal of the node is to forward the message to the next device. The
node scan the neighboring devices. The structure of the tree makes routing easy, since

there is only one path that connects two nodes.

« If the destination is at a higher level of the tree - this can be checked easily by
verifying that dst Addr < ownAddr, then the node must forward the message to its

parent. That is, the device whose address is equal to ownAddr/10;

« If the destination is at a lower level, then the node must find, amongst its children,
the only one who could be an ancestor of the destination address. Let nd be 1
plus the number of digits of the node own address. Then the node must forward the
message to the device whose address is equal to the first nd digits of the destination

address.

If such a device is found, the node establishes a connection as master, writes the message

46 Communication solution for loT devices using the Toit programming language

in the msg characteristic of the slave and sets its newMsg flag to 0x10. Then transition
to the Advertise state. If the node is not able to find such device, it means that the latter
is not advertising, either because it's no longer alive in the network, or likely because it is
trying to forward a message itself.

At this point, the node makes a random choice:
» with probability 0.5 it starts scanning again;

« with probability 0.5 it saves the current message on top of the message buffer, then

proceed to the Advertise state.

Check Message Buffer

The node simply check if the message buffer is empty:

+ If the message buffer is empty it means that there are no messages to be forwarded.

The node transitions to the Advertise state;

+ If the message buffer is not empty, it means that there is at least one message
waiting to be forwarded. The first message in the buffer is removed and stored into

memory, then the node transitions to the Forward Message state.

5.2.3 Messaging functionalities

The messaging functionalities offered by this implementation allow communication be-
tween every pair of nodes in the network.

Standard communication can only happen between ancestors and descendants, and
reachability can be easily computed by comparing the node address with the destina-
tion address: whenever a node receives a message destined to an unreachable node - a
node that is neither a descendant or an ancestor - the message is discarded. However,
such unreachable nodes can be reached by passing through the root in a way that is
called forwarding communication.

This thesis propose some basic messaging functionalities, which can be expanded to ac-
commodate different applications. These functionalities are defined by the OP codes in
the opcode 1-byte field of every message (see Appendix A).

The most basic type of message is a Data Message, which is simply a message con-
taining some 3-byte data payload. This type of message requires no response from the
receiver. In WSN applications, sensor nodes can be set to send a Data Message to the

root node at a fixed time period.

Communication solution for loT devices using the Toit programming language 47

Data Request and Response

To request data from a node, a Data Request message can be sent. The reception of a
Data Request message will trigger the transmission of Data Response message. A Data
Response message is only sent in response of a Data Request message, and is sent to
the source address of the Data Request message.

Both Data Request and Data Response messages must be sent to descendants or an-

cestors.

Forwarding Communication

Forwarding communication allows to send messages to every node in the network by
sending a message to the root: since every node is a descendant of the root, the latter
will be able to forward the message to every node in the network.

This thesis propose a data request and response communication mechanism that allows

a node to request data from every other node in the network in four steps (fig. 5.4):

(1) (2
Forward Data Request Forwarded Data Request
source: 1 K source: 0
destination: 0 destination: 2
forward: 2 requester: 1
3 (4
Forward Data Response Forwarded Data Response
source: 2 source: 0
destination: 0 destination: 1
forward: 1 requestee: 2

4 =5 %

—— > Message transmission

------------ » Parent-child relationship

Figure 5.4: Four steps of forwarding communication

48 Communication solution for loT devices using the Toit programming language

(1)

(2)

@)

(4)

The requester sends a Forward Data Request to the root. The forwarding address,

that is the address of the requestee node, is stored in the message data field;

The root receives the Forward Data Request and sends a Forwarded Data Request
to the forwarding address. The address of the requester is stored in the message

data field;

The requestee node receives a Forwarded Data Request, which triggers the trans-
mission of a Forward Data Response to the root. The requester address is stored

in the message field, along with the requested data - which must fit in 1 byte;

the root receives the Forward Data Response and sends a Forwarded Data Re-
sponse to the requester. The message data contains the requestee address and

the requested data.

Provisioning Request

A Provisioning Request message is a special kind of message which triggers the transition

to the Address Provisioning state in the receiver. A node which receives a Provisioning

Request message will resend the message to all of its children. This can be used to

expand the network, by making the root sending a Provisioning Request to all of its chil-

dren when new nodes must be added to the network. In this way, the new nodes will

automatically be placed in the tree structure.

5.2.4 Tuning

The operation of the network can be tuned to accommodate different application by chang-

ing the values of some parameters:

Provisioning Scan Duration: it's the duration of the scan during the Address Provi-
sioning state, that is, the amount of time that a node spends looking for neighbouring

unprovisioned devices;

Forwarding Scan Duration: it's the duration of the scan during the Forward Message
state, that is, the maximum amount of time that a node spends looking for the next

hop to transmit a message - the scan stops as soon as the next hop is found;

Advertising Duration: it's the duration of the advertising during the Advertise state,
that is, the amount of time that a node spends advertising it's address. This param-
eter influences the most the operation of the network and ultimately bottleneck the
throughput of the nodes. A high value makes it easier to find and connect to a node

but decreases the message throughput, as buffered messages will sit in the buffer

Communication solution for loT devices using the Toit programming language 49

for the whole duration of the Advertise state. A low value will increase the throughput

but will make it difficult for other nodes to find and connect to each others;

* Keep Looking Probability: it's the probability that a node in the Forward Message
state will stay in the Forward Message state when the next hop is not found. This
prevents a deadlock situation, whenever two nodes are both scanning looking for
each other, by making them randomly choose whether to keep scanning or adver-

tising their address (see section 5.3.2).

The value of these parameters adopted by this implementation is illustrated in table 5.3

Table 5.3: Value of the tuning parameters

Parameter Value

Provisioning Scan Duration 500 ms
Forwarding Scan Duration 700 ms
Advertising Duration 4000 ms
Keep Looking Probability 50 %

5.3 Practical issues

5.3.1 Latency

The main issue with this implementation is that a connection must be established and
broken multiple times in order to deliver a message. The time required to scan, connect,
write and disconnect makes up for a greater latency with respect to other solutions, where
the devices keep their connection active. Unfortunately, the Toit platform does not imple-

ment the possibility for a node to act as both a slave and a master yet.

5.3.2 Starvation

The network structure restrict a pair nodes to be involved in only one message exchange
at a time. A deadlock situation may happen if two nodes, both carrying a message, are
scanning the network looking for each other (fig. 5.5). The deadlock is avoided by making
the nodes randomly choose between storing the message and advertising or keep scan-
ning, whenever they fail to find a receiver. However, this may cause “unlucky” nodes, who
never get a chance to connect as masters, to pile up undelivered messages, leading to

congestion in the network. If the nodes produce data at a quick rate this may lead to star-

50 Communication solution for loT devices using the Toit programming language

vation, heavy delays and messages delivered in non-chronological order. This problem
can be partially solved by implementing a priority system that evaluates how much time a
message has spent in the buffer, how many time a node has failed to find a receiver and
the direction of message to influence the decision to keep looking for a receiver or going

back to advertising.

F121) V122) Advertising
\ 4 AY 4 -

P P -

Figure 5.5: Deadlock situation where two nodes are both scanning, looking for
each other. Node 12 is scanning for node 1, in order to deliver a message to
the root; node 1 is scanning for node 12 in order to deliver a message to node
121. The passage between node 1 and 12 is blocked and all the messages

that need to cross it pile up.

5.3.3 Robustness and Security

This implementation does not take into account security concerns. The tree structure of
the network suffers from single-node failure, meaning that if one single node becomes
inactive, the whole sub-tree of devices becomes unreachable. The network lacks self-
healing capabilities, that is, it's not able to rearrange itself to cope with nodes becoming
inactive. Although the messages are sent over data channels, the simple addressing
pattern allows for a device to insert itself in the network by guessing an address and
advertising it. Other than that, advertising nodes accept all connections, therefore an
attacker device can just connect to a random node and keep it occupied, blocking every

message from passing through.

Communication solution for loT devices using the Toit programming language 51

52

Communication solution for loT devices using the Toit programming language

6 Evaluation

In this chapter the tree network implementation proposed in the previous chapter will be

evaluated in terms of time performances and functionalities.

6.1 Experimental Setup

The implementation will run on three M5Stack Core 2, which is a loT-oriented device that
uses an ESP32 model DOWDQ6-V3 as MCU. In addition to the feature of ESP32, the M5
device mounts a 2.0-inch capacitive touch screen, USB type-C interface, RTC module
and a 390mAh battery.

These devices are programmed with Jaguar, a Toit application that uses the Toit VM to
update and restart the code on ESP32 over Wi-Fi.

The network will be tested in three different configuration to evaluate the messaging func-

tionalities (fig. 6.1), that is:

(1) Single-hop communication: direct communication between two nodes, i.e., parent-

child communication;

(2) Multi-hop communication: communication between two nodes that are separated

by one or more level in the tree, i.e., ancestor-descendant communication;

(3) Forwarding communication: communication between two nodes passing through

the root;

Latency between transmission from source node and reception at destination node will
be measured using the built in RTC module: the devices clock will be synchronized and
the timestamps at transmission and reception will be compared. The measurements are

taken in a network without traffic.

6.2 Single-hop communication
In this section the time performances of single-hop communications will be evaluated.

The tree network is composed of just two nodes.

6.2.1 Data Message
A node is set to send a simple Data Message to its parent node; the following time mea-

surements are taken:

Communication solution for loT devices using the Toit programming language 53

(@ (b) (c)

Root node Root node Root node

© O (o)
OO

—— > Message transmission
------------ » Parent-child relationship
O Message source

O Message destination

Figure 6.1: Test tree configurations: (a) single-hop communication, (b) multi-

hop communication and (c¢) forwarding communication.

Ay indicates the amount of time since when the message is buffered to when it is
removed from the buffer to be transmitted. This value is heavily influenced by the

Advertising Duration parameter and at which moment the message is buffered;

Ay indicates the amount of time that passes between transmission and reception,
that is the time since when a message is found in the buffer to when the parent node

receives it;

* 10 is the amount of time that passes since when a message is buffered to when the

parent node receives it, that is Ay + Ays.

The time measurements can be visualized in fig. 6.2.

6.2.2 Data Request and Response

A node is set to send a Data Request message to its parent node, which will send back a

Data Response message. The following time measurements are taken:

» A4 indicates the amount of time since when the Data Request message is buffered

to when it is removed from the buffer to be transmitted, as before;

54 Communication solution for loT devices using the Toit programming language

message is buffered message is debuffered

l AHl ---------- At2 o
Node 1 ' Check msg: Forward i, 5 ” t
ibuffer state: msg | “fé,)@ reception

. state :
\\LS:D
N
9
A

Figure 6.2: Representation of the single-hop Data Message transmission time

Advertise state

Node 0

measurements. It can be easliy seen that A;; depends on the duration of the
Advertise state and at which moment the message is buffered. The duration
of the Check Message Buffer state is fixed, and the duration of the Forward
Message state is upper bounded by the Forwarding Scan Duration parameter
- since there is no traffic in the network, the destination node is always found

on the first try.

Ay indicates the amount of time that passes between the transmission of the re-
quest and the reception of response, that is the time since when the Data Request
message is found in the buffer of the child node to when the Data Response mes-

sage is received by the same node;

tior is the amount of time that passes since when a Data Request message is
buffered to when the corresponding Data Response message is received, that is

Ay + Ago.

The time measurements can be visualized in fig. 6.3.

6.3 Multi-hop communication

In this section the time performances of multi-hop communications will be evaluated. The

tree network is composed of three nodes on three different levels.

6.3.1 Data Message
Node 11, on the second level, is set to send a simple Data Message to the the root; the
message will need to pass through the node 1, on level 1. The following time measure-

ments are taken:

» A4 indicates the amount of time since when the Data message is buffered to when

Communication solution for loT devices using the Toit programming language 55

message is message is reception

buffered debuffered of response
........... At1lAt2l
Node 1 = l r : - >
. Advertise state :Check msg EForward A -o‘\"" t
: rbuffer state 1 msg 1 3, PRE
' ' Costate D NS
%, /R
%o, ! : Forward, &
&2 msg :Checkmsg: msg ;\,,'g\
Node 0 'y handler : buffer state: state . >
t

reception response response is
of request is buffered debuffered

Figure 6.3: Representation of the single-hop Data Request and Response

transmission time measurements.

it is removed from the buffer to be transmitted, as before;

* Ay indicates the amount of time that passes between the transmission and recep-
tion, that is the time since when the message is found in the buffer to when it is

received by the root;

* t:o¢ IS the amount of time that passes since when the request message is buffered

to when the root node receives it, that is Ay + Ap.

The time measurements can be visualized in fig. 6.4.

message is message is
buffered debuffered
___________ AﬂlAa
Node 11— l T : T - >»
| Advertise state : Check msg EForward Y : t
' ‘buffer state ; mSg .
! '+ state 3{9
% +Forward .
2 msg |
Node 1 ¥ state . >
T “\%é t
"% ti
reception \\\{p&recep fon
\(?O l
Node 0 L Y >
t

Figure 6.4: Representation of the multi-hop Data Message transmission time

measurements.

56 Communication solution for loT devices using the Toit programming language

6.3.2 Data Request and Response

Node 11, on the second level, is set to send a Data Request message to the the root; the
message will need to pass through the node 1, on level 1. Upon reception, the root will
send back a Data Response message, destined to node 11. The following time measure-

ments are taken:

* A4 indicates the amount of time since when the Data Request message is buffered

to when it is removed from the buffer to be transmitted, as before;

* Ay indicates the amount of time that passes between the transmission of the re-
quest and the reception of response, that is the time since when the Data Request
message is found in the buffer of node 11 to when the Data Response message is

received by the same node;

* ;o is the amount of time that passes since when a Data Request message is
buffered to when the corresponding Data Response message is received, that is
A+ Ap.

The time measurements can be visualized in fig. 6.5.

message is message is

reception
buffered debuffered

of response

Node 11— l Ay l Ap l

' . S >
! Advertise state | Check msg ; Forward; g 017'
! 1 buffer state ; mMsg NS S
' ' state ’)@’))ﬁ‘ @\@
%%, 1Forward {Forward ; (&7
92 msg msg <
' state ! | state
Node 1 3 slale . >
4 &
2 Lo
S &
% S8
"%, ' :Forward, f,;q?
“2! msg !Checkmsg: msg /&
W handler :buffer state: state .
Node 0 t >

reception response response is
of request is buffered debuffered

Figure 6.5: Representation of the multi-hop Data Request and Response trans-

mission time measurements.

6.4 Forwarding communication

In this section the time performances of forwarding communications will be evaluated.
The tree network is composed of three nodes on two levels: the root and two child nodes,
1 and 2.

Communication solution for loT devices using the Toit programming language 57

Node 1 is set to send a Forward Data Request message to the root, with forward address
2. The root will receive the message and send a Forwarded Data Request message to
node 2. Upon reception, node 2 will send a Forward Data Response message to the root,
with forward address 1. The root will receive the message and send a Forwarded Data

Response message to node 1. The following time measurements are taken:

* A4 indicates the amount of time since when the Forward Data Request message

is buffered to when it is removed from the buffer to be transmitted, as before;

* Ay indicates the amount of time that passes between the transmission of the re-
quest and the reception of response, that is the time since when the Forward Data
Request message is found in the buffer of node 1 to when the Forwarded Data

Response message is received by the same node;

* t1¢ IS the amount of time that passes since when a Forward Data Request mes-
sage is buffered to when the corresponding Forwarded Data Response message is

received, that is Ay + Ags.

The time measurements can be visualized in fig. 6.6.

message is message is reception
buffered debuffered of response

e

Ay l)

\4

Node 1 l -
! Advertise state ! Check msg Forward o
: ibuffer state ; msg

! : 1Forward, ' : 1Forward,
% ©~7 i msg Checkmsg: msg ! i msg iCheckmsg! msg | & &
Node 0 4 handler jbuffer state; state | ! handler ! buffer state! state !,

\4

ES
% . ‘Forward, &0 &

G T 0, H : HESAN

Q%27 | msg iCheckmsgi msg | .

4 handler : buffer state: state .’

\4

Node 2

reception response response is
of request is buffered debuffered

Figure 6.6: Representation of the Forward Data Request and Response trans-

mission time measurements.

6.5 Results

The time measurements explained in the previous sections are reported in the table 6.1,ta-
ble 6.2 and table 6.3 respectively.
Every messaging functionality has been tested over different number of messages: the

reason is explained in section 6.6

58 Communication solution for loT devices using the Toit programming language

Table 6.1: Single-hop communication time performances

An Ao teot An JAVS ttot

(ms) (ms) (ms) (ms) (ms) (ms)
Max 4184 1978 5758 Max 4020 3421 6881
Min 97 1225 1550 Min 10 2421 2798
Avg 1965 1591 3556 Avg 2166 2804 4970
(a) Single-hop Data Message time perfor- (b) Single-hop Data Request and Response
mances over 40 messages time performances over 25 messages

Table 6.2: Multi-hop communication time performances

Ap Ago tiot Ay AW tiot

(ms) (ms) (ms) (ms) (ms) (ms)
Max 4033 3639 7276 Max 4027 5408 9396
Min 107 2319 2958 Min 3519 5120 8705
Avg 2856 2867 5723 Avg 3810 5270 9079
(a) Multi-hop Data Message time perfor- (b) Multi-hop Data Request and Response
mances over 20 messages time performances over 5 messages

Table 6.3: Forwarding communication time performances over 5 messages

A Ao ttot

(ms) (ms) (ms)
Max 3716 6827 10543
Min 478 5381 6072
Avg 3073 6065 9137

It can be easily noticed that A4 is highly variable, as it depends entirely on how much
time of the Advertise state is left when the message is buffered, plus the short amount
of time required to inspect the message buffer and extract the first message. While the

former is upper bounded by the Advertising Duration parameter - 4000 ms - the latter is

Communication solution for loT devices using the Toit programming language 59

expected to grow with the number of messages sitting in the buffer. The A;; time is the
same for every type of message, as explained in the previous section.

The Ay, time instead strongly depends on the number of hops that a message take before
reaching its final destination, plus a small overhead. This overhead is composed of the
time needed to find the next node, which is bounded by the Forwarding Scan Duration
parameter, plus the time needed to handle the message. The former is present in every
message hop, while the latter is present only in advanced messaging functionalities.

For example in table 6.2b the message goes through three nodes before reaching the
destination: after being sent by node 11 it goes through node 1, then node 0, then again
node 1, and finally it reaches node 11. Whenever the message is received by node 1,
it is immediately forwarded. Only when the message reaches the root, it require to be
handled, which means generating a response, buffer it, debuffer it and send it.

In table 6.3 the message still goes through three nodes, but the handling process is done
every time, which causes a little more overhead, and it is why the A, times are slightly
larger in the latter case.

This difference can be visually seen in figures fig. 6.5 and fig. 6.6.

While the time performances measured are no match for a system employing the official
Bluetooth Mesh implementation [100], the implementation proposed is still suitable for a
WSN where the nodes produce non-time-sensitive data at large time intervals.

The latencies can be surely improved by keeping the connections alive during the entire
network operations, therefore greatly reducing the A;; times, as well as the time needed
to find the next hop. However this possibility is not feasible at the current state of the Toit

platform.

6.6 Issues

All the messaging functionalities presented were tested, and work as intended. However,
the way the Toit VM manages the memory and the BLE resources of the device causes
the application to crash frequently, especially every time a message is received. These
crashes happens at different times during the run of the application: sometimes the ap-
plication crashes at the beginning, other times it is able to run for tens of minutes before
crashing.

This problem become more frequent with the number of hops that a message goes through,
and it is the reason behind the small number of test messages for multi-hop and forward-

ing communication measurements.

60 Communication solution for loT devices using the Toit programming language

The downside of the Toit platform is that the memory management is handled by the Toit
VM and its garbage collector, with little to no freedom left to the developer.

The reasons behind the crashes can also be blamed on the fact that the implementation of
BLE functionalities in Toit is at an infant state, barely up to the 4.0 Bluetooth specifications;

the same functionalities changed during the development of this project.

Communication solution for loT devices using the Toit programming language 61

62

Communication solution for loT devices using the Toit programming language

7 Conclusion

In the previous chapter it was proposed a communication solution to achieve wireless
data exchange between devices without involving cloud connectivity, in a wireless sen-
sor network scenario. The solution proposed is based on a tree structure and a simple
addressing pattern that allows for a quick routing algorithm without the need for routing ta-
bles. The tree exploits BLE advertising channels for the routing process, while the actual
data is exchanged over data channel after a connection is established. The connections
between devices are established and kept up only in the event of data exchange.

The solution proposed was developed for running on Toit-provisioned ESP32 at the cur-
rent state of the BLE functionalities implemented in the Toit platform.

The solution was tested in terms of functionalities and time performances. While all the
functionalities proposed work as intended, the application often crashes unpredictably
due to the memory and BLE resource management of the Toit VM.

Future updates of the Toit platform BLE implementation will allow to improve the proposed
solution by allowing the nodes to keep the connections active for the whole operation of
the network, decreasing the latency between message transmission and reception.
Despite the memory leakage issues in this particular application, the Toit platform is an
innovative solution when it comes to loT development, that takes care of many thorny
aspect of microcontroller programming; the Toit language is easy to learn and to use. The
whole Toit framework is a highly functional alternative for IoT application that targets de-
velopers and companies that cannot or do not want to invest the time and resources into
classical microcontroller development, which requires hardware and C language knowl-
edge that are usually difficult to obtain. The team behind Toit is constantly at work to
update and improve their product, and they offer constant support over their webside and
Discord server.

The approach to loT development taken by Toitware ApS will likely become more popular

as the Internet of Things will continue to spread.

Communication solution for loT devices using the Toit programming language 63

7 Conclusione

Nel capitolo precedente €& stata proposta una soluzione di comunicazione per permet-
tere lo scambio di dati wireless tra dispositivi senza I'utilizzo di connettivita cloud, in uno
scenario di tipo wireless sensor netowrk. La soluzione proposta &€ basata su una strut-
tura ad albero e su un semplice schema di indirizzamento che consentono l'utilizzo di
un algoritmo di routing rapido, che non necessita di routing table. La struttura ad albero
sfrutta i canali BLE di advertising per la fase di routing, mentre i dati veri e propri vengono
scambiati tramite i canali data, dopo aver stabilito una connessione. Le connessioni tra
dispositivi vengono stabilite € mantenute solo nell’eventualita di scambio dati.

La soluzione proposta € stata sviluppata per essere utilizzata su ESP32 provviste di
firmware Toit, all’attuale stato dell'implementazione delle funzionalita BLE da parte della
piattaforma Toit.

La soluzione ¢ stata testata in termini di funzionalita e performance temporali. Nonostante
tutte le funzionalita proposte funzionano come previsto, I'applicazione soffre di crash fre-
quenti e imprevedibili a causa della gestione della memoria e delle risorse BLE da parte
della macchina virtuale Toit.

Futuri aggiornamenti dell'implementazione BLE nella piattaforma Toit potranno migliorare
la soluzione proposta permettendo ai nodi di mantenere attive le connessioni durante tutto
il funzionamento del network, diminuendo la latenza tra trasmissione e ricezione.
Nonostante i problemi di gestione della memoria in questa particolare applicazione, la pi-
attaforma Toit rappresenta una soluzione innovativa per lo sviluppo |oT; il linguaggio Toit
¢ facile da imparare ed utilizzare. L’intero framework Toit € una alternativa altamente fun-
zionale per applicazioni loT, mirata ad aziende e sviluppatori che non possono investire
tempo e risorse nel classico sviluppo software per microcontrollori, che richiede profonde
conoscenze dell’hardware e del linguaggio C, tipicamente difficili da ottenere. |l team di-
etro Toit &€ costantemente al lavoro per aggiornare e migliorare il loro prodotto, e offrono
continuo supporto tramite il loro sito web e il loro server Discord.

L'approccio alternativo allo sviluppo loT intrapreso da Toitware ApS diventera probabil-

mente molto popolare in futuro, con la incrementale diffusione dell’'Internet delle Cose.

64 Communication solution for loT devices using the Toit programming language

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Mark Weiser. “The Computer for the 21st Century”. In: Scientific American (Sept.
1991).

Kevin Kelly. “The next 5000 days of the web”. In: EG Conference. Monterey, CA,
2007.

Abiy Biru Chebudie, Roberto Minerva, and Domenico Rotondi. “Towards a defini-
tion of the Internet of Things (loT)”. PhD thesis. Aug. 2014.

Alexander S. Gillis. What is the internet of things (loT)? Tech Target. 2022. URL:
https://www.techtarget.com/iotagenda/definition /Internet-of- Things-loT.

Brien Posey. loT devices (internet of things devices). Ed. by Sharon Shea. Tech
Target. 2022. URL: https://www.techtarget.com/iotagenda/definition/loT-device.
Bojan Jovanovic. Internet of Things statistics for 2022 - Taking Things Apart. Dat-
aProt. 2022. URL: https://dataprot.net/statistics/iot-statistics/.

Jack Steward. The Ultimate List of Internet of Things Statistics for 2022. findstack.
2022. URL: https://findstack.com /internet-of-things-statistics/.

Sam Smith. ‘Internet of Things’ Connected Devices to Triple by 2021, Reach-
ing Over 46 Billion Units. Juniper Research. Dec. 2016. URL: https:/ / www .
juniperresearch.com/press/internet-of-things-connected-devices-triple-2021.

A Senthil Kumar and Easwaran lyer. “An industrial loT in engineering and manu-
facturing industries—benefits and challenges”. In: International Journal of Mechani-
cal and Production Engineering Research and Dvelopment (IUMPERD) 9.2 (2019),
pp. 151-160.

P. Jagannadha Rao et al. “Article: Detection of Rain Fall and Wind Direction using
Wireless Mobile Multi Node Energy Efficient Sensor Network™. In: International
Journal of Applied Information Systems 3.9 (Aug. 2012). Published by Foundation
of Computer Science, New York, USA, pp. 33-37.

S. Jaiganesh, K. Gunaseelan, and V. Ellappan. “IOT agriculture to improve food
and farming technology”. In: 2017 Conference on Emerging Devices and Smart

Systems (ICEDSS). 2017, pp. 260—-266.

Communication solution for loT devices using the Toit programming language 65

https://www.techtarget.com/iotagenda/definition/Internet-of-Things-IoT
https://www.techtarget.com/iotagenda/definition/IoT-device
https://dataprot.net/statistics/iot-statistics/
https://findstack.com/internet-of-things-statistics/
https://www.juniperresearch.com/press/internet-of-things-connected-devices-triple-2021
https://www.juniperresearch.com/press/internet-of-things-connected-devices-triple-2021

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

66

B. Dhanalaxmi and G. Apparao Naidu. “A survey on design and analysis of robust
loT architecture”. In: 2017 International Conference on Innovative Mechanisms for
Industry Applications (ICIMIA). 2017, pp. 375-378.

Aditya Gaur et al. “Smart City Architecture and its Applications Based on loT”. In:
Procedia Computer Science 52 (2015). The 6th International Conference on Ambi-
ent Systems, Networks and Technologies (ANT-2015), the 5th International Con-
ference on Sustainable Energy Information Technology (SEIT-2015), pp. 1089—
1094. URL: https://www.sciencedirect.com /science/article/pii/S1877050915009229.
Sarah A. Al-Qaseemi et al. “loT architecture challenges and issues: Lack of stan-
dardization”. In: 2016 Future Technologies Conference (FTC). 2016, pp. 731-738.
DOI: 10.1109/FTC.2016.7821686.

Mary K. Pratt. loT interoperability standards complicate loT adoption. TechTarget.
Sept. 2021. URL: https://www.techtarget.com /iotagenda/tip/loT-interoperability-
standards-complicate-loT-adoption.

Andreas Fink. loT: Lack of standards becoming a threat. URL: https://www.
iotglobalnetwork.com /iotdir /2017 /04 /18 /iot-lack- of-standards- becoming- a- threat-
5173/.

Phillip Lessner. Will a lack of standardization slow loT development? embedded.
May 2021. URL: https://www.embedded.com /will-a-lack-of-standardization-slow-
iot-development/.

Kasper Lund. The Toit language is now open source. Nov. 2021. URL: https://
blog.toit.io/the-toit-language-is-now-open-source-14bdcb1604d9.

Usama Mehboob, Qasim Zaib, and Chaudhry Usama. Survey of loT Communica-
tion Protocols. Techniques, Applications, and Issues. xFlow Research Inc, 2016.

Cisco white paper. Fog Computing and the Internet of Things: Extend the Cloud
to Where the Things Are. 2015.

Thomas Bittman. The Edge Will Eat The Cloud. Gartner. Mar. 2017. URL: https:
//blogs.gartner.com/thomas_bittman/2017,/03/06/the-edge-will-eat-the-cloud/.

JR. Fuller. The 4 stages of an loT architecture. TechBeacon. May 2016. URL:
https://techbeacon.com/enterprise-it/4-stages-iot-architecture.

Vivek Thoutam. “An Overview On The Reference Model And Stages Of lot Archi-
tecture”. In: Journal of Artificial Intelligence, Machine Learning and Neural Network

(JAIMLNN) ISSN: 2799-1172 1.01 (2021), pp. 34—42.

Communication solution for loT devices using the Toit programming language

https://www.sciencedirect.com/science/article/pii/S1877050915009229
https://doi.org/10.1109/FTC.2016.7821686
https://www.techtarget.com/iotagenda/tip/IoT-interoperability-standards-complicate-IoT-adoption
https://www.techtarget.com/iotagenda/tip/IoT-interoperability-standards-complicate-IoT-adoption
https://www.iotglobalnetwork.com/iotdir/2017/04/18/iot-lack-of-standards-becoming-a-threat-5173/
https://www.iotglobalnetwork.com/iotdir/2017/04/18/iot-lack-of-standards-becoming-a-threat-5173/
https://www.iotglobalnetwork.com/iotdir/2017/04/18/iot-lack-of-standards-becoming-a-threat-5173/
https://www.embedded.com/will-a-lack-of-standardization-slow-iot-development/
https://www.embedded.com/will-a-lack-of-standardization-slow-iot-development/
https://blog.toit.io/the-toit-language-is-now-open-source-14bdcb1604d9
https://blog.toit.io/the-toit-language-is-now-open-source-14bdcb1604d9
https://blogs.gartner.com/thomas_bittman/2017/03/06/the-edge-will-eat-the-cloud/
https://blogs.gartner.com/thomas_bittman/2017/03/06/the-edge-will-eat-the-cloud/
https://techbeacon.com/enterprise-it/4-stages-iot-architecture

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

Lu Tan and Neng Wang. “Future internet: The Internet of Things”. In: 2010 3rd Inter-
national Conference on Advanced Computer Theory and Engineering(ICACTE).
Vol. 5. 2010, pp. V5-376-V5-380. DOI: 10.1109/ICACTE.2010.5579543.

Miao Wu et al. “Research on the architecture of Internet of Things”. In: 2010 3rd In-
ternational Conference on Advanced Computer Theory and Engineering(ICACTE).
Vol. 5. 2010, pp. V5-484-V5-487. DOI: 10.1109/ICACTE.2010.5579493.

Smruti R. Sarangi Pallavi Sethi. “Internet of Things: Architectures, Protocols, and
Applications”. In: Journal of Electrical and Computer Engineering 2017 (Jan. 2017).
Ed. by Rajesh Khanna, pp. 33-37.

Bluetooth. Bluetooth Technology Overview. Accessed on May 2022. Bluetooth
SIG. URL: https://www.bluetooth.com/learn-about-bluetooth /tech-overview/.
Bluetooth. Bluetooth Qualification Process Overview. Accessed on May 2022.
Bluetooth SIG. URL: https://www.bluetooth.com /develop-with-bluetooth /qualification-
listing /.

lonut Arghire. BrakTooth: New Bluetooth Vulnerabilities Could Affect Millions of
Devices. SecurityWeek. Sept. 2021. URL: https://www.securityweek.com /braktooth-
new-bluetooth-vulnerabilities-could-affect-millions-devices.

OASIS. Cisco, Eclipse Foundation, Eurotech, IBM, Kaazing, Machine-To-Machine
Intelligence (M2Mi), Red Hat, Software AG, TIBCO, and Others Partner to Stan-
dardize MQTT Protocol. OASIS OPEN. Apr. 2013. URL: https://www.oasis-open.
org / news / pr / oasis- members- to- advance- mqtt- standard - for- m2m- iot- reliable -
messaging/.

HiveMQ. HiveMQ's Reliable loT Communication Enables Real-time Monitoring of
Matternet’s Autonomous Drones. Accessed on May 2022. URL: https://www.
hivemq.com/case-studies/matternet/.

Hema. MQTT Implementation on Celikler Holding’s Power Plant Monitoring. Bevy-
wise. Sept. 2020. URL: https://www.bevywise.com /blog/iot-success-stories-mqtt-
broker-celikler-holding/.

EMQ. EMQ helps IoT innovation in the petrochemical industry. Accessed on May
2022. URL: https://www.emgx.com/en/customers/emq-helps-innovation-in-the-oil-
iot.

HiveMQ. CASO Design creates Smart Kitchen Appliances with HiveMQ. Accessed
on May 2022. URL: https://www.hivemq.com /case-studies/caso/.

Communication solution for loT devices using the Toit programming language 67

https://doi.org/10.1109/ICACTE.2010.5579543
https://doi.org/10.1109/ICACTE.2010.5579493
https://www.bluetooth.com/learn-about-bluetooth/tech-overview/
https://www.bluetooth.com/develop-with-bluetooth/qualification-listing/
https://www.bluetooth.com/develop-with-bluetooth/qualification-listing/
https://www.securityweek.com/braktooth-new-bluetooth-vulnerabilities-could-affect-millions-devices
https://www.securityweek.com/braktooth-new-bluetooth-vulnerabilities-could-affect-millions-devices
https://www.oasis-open.org/news/pr/oasis-members-to-advance-mqtt-standard-for-m2m-iot-reliable-messaging/
https://www.oasis-open.org/news/pr/oasis-members-to-advance-mqtt-standard-for-m2m-iot-reliable-messaging/
https://www.oasis-open.org/news/pr/oasis-members-to-advance-mqtt-standard-for-m2m-iot-reliable-messaging/
https://www.hivemq.com/case-studies/matternet/
https://www.hivemq.com/case-studies/matternet/
https://www.bevywise.com/blog/iot-success-stories-mqtt-broker-celikler-holding/
https://www.bevywise.com/blog/iot-success-stories-mqtt-broker-celikler-holding/
https://www.emqx.com/en/customers/emq-helps-innovation-in-the-oil-iot
https://www.emqx.com/en/customers/emq-helps-innovation-in-the-oil-iot
https://www.hivemq.com/case-studies/caso/

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

68

Paul Duffy. Beyond MQTT: A Cisco View on IoT Protocols. Cisco. Apr. 2013. URL:
https://blogs.cisco.com/digital /beyond-mqtt-a-cisco-view-on-iot-protocols.

Michael Yuan. Getting to know MQTT. IBM Developer. May 2017. URL: https:
/ /developer.ibm.com/articles/iot-mqtt-why-good-for-iot/.

OASIS Standard. MQTT Version 5.0. Tech. rep. Mar. 2019. URL: https://docs.
oasis-open.org/mqtt/mqtt/v5.0/0s/mqtt-v5.0-os.html.

Amelia Dalton. /s Exactly-Once Delivery Possible with MQTT? May 2015. URL:
https: / /www.eejournal.com /2015 /05 /28 /is- exactly- once- delivery- possible- with-
mqtt/.

What is Zigbee Technology? Architecture, Topologies and Applications. Electron-
ics Hub. Nov. 2017.

OpenSystems Media. zigbee 3.0 compliant platforms support interoperability. Feb.
2017.

Ravi Kishore Kodali, Govinda Swamy, and Boppana Lakshmi. “An implementation
of loT for healthcare”. In: 2015 IEEE Recent Advances in Intelligent Computational
Systems (RAICS). IEEE. 2015, pp. 411-416.

Musewerx. Z-Wave Wireless Control: Technology, System and Applications. Tech.
rep.

Daniel Anglin Seitz. What Is Z-Wave? Lifewire. Jan. 2020. URL: https://www .
lifewire.com/what-is-z-wave-4588924.

Rajiv. Applications of Z-wave technology. RF Page. Mar. 2018. URL: https://www.
rfpage.com/applications-of-z-wave-technology/.

Brandon Lewis. Z-Wave opens up as smart home connectivity battle closes in.
Embedded Computing Design. Sept. 2016. URL: https: / / embeddedcomputing .
com / application / consumer /smart- home-tech / z- wave- opens- up- as- smart- home-
connectivity-battle-closes-in.

Thomas Brewster. “A Basic Z-Wave Hack Exposes Up To 100 Million Smart Home
Devices”. In: Forbes (May 2018).

Marco Centenaro et al. “Long-Range Communications in Unlicensed Bands: the
Rising Stars in the loT and Smart City Scenarios”. In: IEEE Wireless Communica-
tions 23 (Oct. 2015). DOI: 10.1109/MWC.2016.7721743.

Certifying LoORaWAN® Products. LoRa Alliance. URL: https://lora-alliance.org/
lorawan-certification/.

Cities Vertical Market. LoRa Alliance.

Communication solution for loT devices using the Toit programming language

https://blogs.cisco.com/digital/beyond-mqtt-a-cisco-view-on-iot-protocols
https://developer.ibm.com/articles/iot-mqtt-why-good-for-iot/
https://developer.ibm.com/articles/iot-mqtt-why-good-for-iot/
https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html
https://www.eejournal.com/2015/05/28/is-exactly-once-delivery-possible-with-mqtt/
https://www.eejournal.com/2015/05/28/is-exactly-once-delivery-possible-with-mqtt/
https://www.lifewire.com/what-is-z-wave-4588924
https://www.lifewire.com/what-is-z-wave-4588924
https://www.rfpage.com/applications-of-z-wave-technology/
https://www.rfpage.com/applications-of-z-wave-technology/
https://embeddedcomputing.com/application/consumer/smart-home-tech/z-wave-opens-up-as-smart-home-connectivity-battle-closes-in
https://embeddedcomputing.com/application/consumer/smart-home-tech/z-wave-opens-up-as-smart-home-connectivity-battle-closes-in
https://embeddedcomputing.com/application/consumer/smart-home-tech/z-wave-opens-up-as-smart-home-connectivity-battle-closes-in
https://doi.org/10.1109/MWC.2016.7721743
https://lora-alliance.org/lorawan-certification/
https://lora-alliance.org/lorawan-certification/

[50]

[51]

[52]

[53]

[54]

[59]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

Ramon Sanchez-lborra et al. “Performance Evaluation of LoRa Considering Sce-
nario Conditions”. In: Sensors (Basel) 18 (Mar. 2018).

Ferran Adelantado et al. “Understanding the Limits of LoRaWAN”. In: IEEE Com-
munications Magazine 55.9 (2017), pp. 34—40. DOI: 10.1109/MCOM.2017.1600613.
Martijn Saelens et al. “Impact of EU duty cycle and transmission power limitations
for sub-GHz LPWAN SRDs: an overview and future challenges”. In: EURASIP
Journal on Wireless Communications and Networking 219 (Sept. 2019). DOI: https:
/ /doi.org/10.1186/513638-019-1502-5.

LoRaWAN® 1.0.4 Specification Package. LoRa Alliance, Oct. 2020. URL: https:
//lora-alliance.org/resource_hub/lorawan-104-specification-package/.

Tomas Hegr and Radim Kalfus. “Ultra Narrow Band Radio Technology in High-
Density Built-Up Areas”. In: Oct. 2016. ISBN: 978-3-319-46253-0. DOI: 10.1007/
978-3-319-46254-7_54.

Khaldoun Agha, Guy Pujolle, and Tara Ali Yahiya. Mobile and Wireless Networks.
Aug. 2016. DOI: 10.1002,/9781119007548.

Antoine Mége. GreenCityZen and Sigfox France connect the city of Marseille’s
storm drains. Press release. Nov. 2021.

Sigfox. Sigfox Technical Overview. Tech. rep. Jan. 2018.

Jeremy Landt. “Shrouds of Time: The history of RFID”. In: (Oct. 2001).

Gavin Phillips. How Does RFID Technology Work? MUO. May 2017. URL.: https:
//www.makeuseof.com /tag/technology-explained-how-do-rfid-tags-work /.

R. Want. “An introduction to RFID technology”. In: IEEE Pervasive Computing 5.1
(2006), pp. 25-33. DOI: 10.1109/MPRV.2006.2.

How much does an RFID tag cost today? Accessed on May 2022. RFID Journal.
URL: https://blog.acdist.com/understanding-rfid-and-rfid-operating-ranges.

Sarah Gingichashvili. Hitachi Develops World’s Smallest RFID Chip. The Future
Of Things. Oct. 2007. URL: https://web.archive.org/web/20090416235559 / http:
//thefutureofthings.com/news/1032/hitachi-develops-worlds-smallest-rfid-chip.html.
Advanced Controls & Distribution. Understanding RFID and RFID Operating Ranges.
Mar. 2017. URL: https://blog.acdist.com /understanding- rfid- and- rfid- operating-
ranges.

James Thrasher. How is RFID Used in the Real World. Aug. 2013. URL: https:

//www.atlasrfidstore.com /rfid-insider /what-is-rfid-used-for-in-applications/.

Communication solution for loT devices using the Toit programming language 69

https://doi.org/10.1109/MCOM.2017.1600613
https://doi.org/https://doi.org/10.1186/s13638-019-1502-5
https://doi.org/https://doi.org/10.1186/s13638-019-1502-5
https://lora-alliance.org/resource_hub/lorawan-104-specification-package/
https://lora-alliance.org/resource_hub/lorawan-104-specification-package/
https://doi.org/10.1007/978-3-319-46254-7_54
https://doi.org/10.1007/978-3-319-46254-7_54
https://doi.org/10.1002/9781119007548
https://www.makeuseof.com/tag/technology-explained-how-do-rfid-tags-work/
https://www.makeuseof.com/tag/technology-explained-how-do-rfid-tags-work/
https://doi.org/10.1109/MPRV.2006.2
https://blog.acdist.com/understanding-rfid-and-rfid-operating-ranges
https://web.archive.org/web/20090416235559/http://thefutureofthings.com/news/1032/hitachi-develops-worlds-smallest-rfid-chip.html
https://web.archive.org/web/20090416235559/http://thefutureofthings.com/news/1032/hitachi-develops-worlds-smallest-rfid-chip.html
https://blog.acdist.com/understanding-rfid-and-rfid-operating-ranges
https://blog.acdist.com/understanding-rfid-and-rfid-operating-ranges
https://www.atlasrfidstore.com/rfid-insider/what-is-rfid-used-for-in-applications/
https://www.atlasrfidstore.com/rfid-insider/what-is-rfid-used-for-in-applications/

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]
[76]
[77]
[78]
[79]

70

Markus Hansen and Sebastian Meissner. “Identification and Tracking of Individ-
uals and Social Networks using the Electronic Product Code on RFID Tags”. In:
The Future of Identity in the Information Society. Ed. by Simone Fischer-Hlbner
et al. Boston, MA: Springer US, 2008, pp. 143—150. ISBN: 978-0-387-79026-8.

Lothar Fritsch. “Business risks from naive use of RFID in tracking, tracing and

logistics”. In: 5th european Workshop on RFID Systems and Technologies. 2009,
pp. 1-7.

Gerhard Hancke. “Practical Eavesdropping and Skimming Attacks on High-Frequency

RFID Tokens”. In: Journal of Computer Security 19 (Mar. 2011), pp. 259-288. DOI:
10.3233/JCS-2010-0407.

Raghu Das, Dr Yu-Han Chang, and Dr Matthew Dyson. RFID Forecasts, Players
and Opportunities 2022-2032. IDTechEX, Nov. 2021.

Cameron Faulkner. What is NFC? Everything you need to know. Tech Radar. May
2017. URL: https://www.techradar.com/news/what-is-nfc.

Sony Corporation and Philips. Philips and Sony announce strategic cooperation
to define next generation Near Field Radio-Frequency Communications. Press
release. Sept. 2002. URL: https://www.sony.com /en /Sonylnfo / News / Press__
Archive/200209/02-0905E /.

Ekta Desai and Mary Grace Shajan. “A Review on the Operating Modes of Near

Field Communication”. In: International Journal of Engineering and Advanced Tech
nology (IJEAT). Vol. 2. Dec. 2012.

NFC Forum. NFC as Technology Enabler. 2013. URL: https://web.archive.org/
web/20131127230007 /http://www.nfc-forum.org/aboutnfc/tech_enabler/.

Arwa Alrawais. “Security Issues in Near Field Communications (NFC)”. In: Inter-
national Journal of Advanced Computer Science and Applications 11.11 (2020).
Carles Gomez, Joaquim Oller, and Josep Paradells. “Overview and Evaluation of
Bluetooth Low Energy: An Emerging Low-Power Wireless Technology”. In: Sen-
sors 12.9 (2012), pp. 11734-11753. ISSN: 1424-8220. DOI: 10.3390/s120911734.
URL: https://www.mdpi.com/1424-8220/12/9/11734.

Martin Woolley. The Bluetooth Low Energy Primer. Bluetooth SIG. May 2022.
Mesh Working Group. Bluetooth Core Specification 4.0. Bluetooth SIG. June 2010.
Mesh Working Group. Bluetooth Core Specification 4.1. Bluetooth SIG. Dec. 2013.
Mesh Working Group. Bluetooth Core Specification 4.2. Bluetooth SIG. Dec. 2014.
Mesh Working Group. Bluetooth Core Specification 5.0. Bluetooth SIG. Dec. 2016.

Communication solution for loT devices using the Toit programming language

https://doi.org/10.3233/JCS-2010-0407
https://www.techradar.com/news/what-is-nfc
https://www.sony.com/en/SonyInfo/News/Press_Archive/200209/02-0905E/
https://www.sony.com/en/SonyInfo/News/Press_Archive/200209/02-0905E/
https://web.archive.org/web/20131127230007/http://www.nfc-forum.org/aboutnfc/tech_enabler/
https://web.archive.org/web/20131127230007/http://www.nfc-forum.org/aboutnfc/tech_enabler/
https://doi.org/10.3390/s120911734
https://www.mdpi.com/1424-8220/12/9/11734

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]
[94]

[99]

[96]

[97]

Mesh Working Group. Bluetooth Mesh Profile specification. Bluetooth SIG. July
2017.

Seyed Mahdi Darroudi and Carles Gomez. “Bluetooth Low Energy Mesh Net-
works: A Survey”. In: Sensors 17.7 (2017). ISSN: 1424-8220. DOI: 10.3390 /
s17071467. URL: https://www.mdpi.com/1424-8220/17 /7 /1467.

Martin Woolley. Bluetooth Mesh Networking: An Introduction for Developers. Blue-
tooth SIG. Dec. 2020.

Martin Woolley. Bluetooth Mesh Models: Technical Overview. Bluetooth SIG. Mar.
2019.

Mesh Working Group. Bluetooth Mesh Model specification. Bluetooth SIG. Dec.
2016.

Bluetooth Mesh Glossary of Terms. Bluetooth SIG. URL: https://www.bluetooth.
com/learn-about-bluetooth /recent-enhancements/mesh /mesh-glossary/.

Kasper Lund. Leaving Google for a couple of devices. Feb. 2019. URL: https:
//blog.toit.io/building-for-billions-bcb48814d864.

Toit language basics. Toit. URL: https://docs.toit.io/language.

Toit platform overview. Toit. URL: https://docs.toit.io/platform /concepts.

Cloud Fleet orchestration. Toit. URL: https://toit.io/product/cloud-orchestration.
Toit. OTA updates that let you sleep at night. Sept. 2021. URL: https://blog.toit.
io/otas-that-let-you-sleep-at-night-614fb8bedff7.

Espressif Systems. ESP32 Overview. URL: https: / / www . espressif . com /en /
products/socs/esp3271&7&0.

ESP32 Technical Reference Manual. Espressif Systems. Nov. 2021.

ESP32 Datasheet. Espressif Systems. Mar. 2022.

Céline Materna and Nils Westerlund. Consibio chooses Toit to optimize biopro-
cesses. Mar. 2021. URL: https://blog.toit.io / consibio- chooses- toit- to- optimize-
bioprocesses-794f6bda6d3d.

Toit. Toit lets Trifork build an loT product without firmware developers. June 2021.
URL: https://blog.toit.io/toit- lets-trifork- build- an-iot- product- with- no- need- for-
firmware-developers-f1e032eb06a2.

ESP32 Is Now Bluetooth LE 5.0-Certified. Espressif Systems. Dec. 2019. URL:
https://www.espressif.com/en/news/BLE_5.0_Certification.

ESP-BLE-MESH Is Now Fully Certified by Bluetooth-SIG. Espressif Systems. Oct.
2019. URL: https://www.espressif.com/en/news/ESP_BLE_MESH_SIG_ Certified.

Communication solution for loT devices using the Toit programming language 71

https://doi.org/10.3390/s17071467
https://doi.org/10.3390/s17071467
https://www.mdpi.com/1424-8220/17/7/1467
https://www.bluetooth.com/learn-about-bluetooth/recent-enhancements/mesh/mesh-glossary/
https://www.bluetooth.com/learn-about-bluetooth/recent-enhancements/mesh/mesh-glossary/
https://blog.toit.io/building-for-billions-bcb48814d864
https://blog.toit.io/building-for-billions-bcb48814d864
https://docs.toit.io/language
https://docs.toit.io/platform/concepts
https://toit.io/product/cloud-orchestration
https://blog.toit.io/otas-that-let-you-sleep-at-night-614fb8bedff7
https://blog.toit.io/otas-that-let-you-sleep-at-night-614fb8bedff7
https://www.espressif.com/en/products/socs/esp32?1&7&0
https://www.espressif.com/en/products/socs/esp32?1&7&0
https://blog.toit.io/consibio-chooses-toit-to-optimize-bioprocesses-794f6bda6d3d
https://blog.toit.io/consibio-chooses-toit-to-optimize-bioprocesses-794f6bda6d3d
https://blog.toit.io/toit-lets-trifork-build-an-iot-product-with-no-need-for-firmware-developers-f1e032eb06a2
https://blog.toit.io/toit-lets-trifork-build-an-iot-product-with-no-need-for-firmware-developers-f1e032eb06a2
https://www.espressif.com/en/news/BLE_5.0_Certification
https://www.espressif.com/en/news/ESP_BLE_MESH_SIG_Certified

[98] Bishnu Kumar Maharjan, Ulf Witkowski, and Reza Zandian. “Tree network based
on Bluetooth 4.0 for wireless sensor network applications”. In: 2014 6th Euro-
pean Embedded Design in Education and Research Conference (EDERC). 2014,
pp. 172—-176. DOI: 10.1109/EDERC.2014.6924382.

[99] Mohammad Afaneh. How do | choose a UUID for my custom services and char-
acteristics? Oct. 2016. URL: https:/ /www.novelbits.io / uuid- for- custom- services-
and-characteristics/.

[100] Adnan Aijaz et al. “Demystifying the Performance of Bluetooth Mesh: Experimental
Evaluation and Optimization”. In: 2021 Wireless Days (WD). IEEE. 2021, pp. 1-6.

72 Communication solution for loT devices using the Toit programming language

https://doi.org/10.1109/EDERC.2014.6924382
https://www.novelbits.io/uuid-for-custom-services-and-characteristics/
https://www.novelbits.io/uuid-for-custom-services-and-characteristics/

A Message OP Codes

OP codes are used to define advanced messaging functionalities between nodes. This
thesis propose some basic message types and their receiving behaviours that can be

expanded to satisfy the requirement of the deployment.

Data Message
Consist of a simple message containing data. Itis sentindependently and does not require

a response from the receiver

Table A.1: Data Message structure

Byte 7 | Byte 6 Byte 5 | Byte4 | Byte 3 | Byte 2 | Byte 1 | Byte O

destination address | source address | OxO0 | message data

Data Request

A Data Request message is sent to a node in order to request a Data Response message.
The data payload field is left reserved: depending on the application, it can be used to
specify the type of data requested.

The message must be sent only to direct descendants and ancestors. To send a data

request to other nodes the forwarding functionality must be used.

Table A.2: Data Request message structure

Byte 7 | Byte 6 Byte 5 | Byte4 | Byte 3 | Byte 2 | Byte 1 | Byte O

destination address | source address | 0x01 reserved

Data Response

A Data Response message is sent when a Data Request message is received. The
destination address is the source address of the Data Request. The data payload contains

the data requested.

Communication solution for loT devices using the Toit programming language 73

Table A.3: Data Response message structure

Byte 7 | Byte 6 Byte 5 | Byte 4 | Byte 3 | Byte 2 | Byte 1 | Byte O

destination address | source address | 0x02 requested data

Forward Data Request

A Forward Data Request message is sent to request data from a node that is not a de-
scendant or an ancestor, therefore not reachable with a standard Data Request message.
The Forward Data Request message is sent to the root node, which will forward the re-
quest to the recipient node, by sending a Forwarded Data Request message. The data
payload contains the requestee address, that is the address of the final recipient node.
The Byte 0 is left reserved: depending on the application, it can be used to specify the

type of data requested.

Table A.4: Forward Data Request message structure

Byte 7 | Byte 6 | Byte 5 | Byte 4 Byte 3 | Byte 2 | Byte 1 Byte 0
0x0000

(root address)

requester address | 0x03 requestee address | reserved

Forwarded Data Request

When the root node receives a Forward Data Request message, it sends a Forwarded
Data Request to the requestee address. The requester address of the Forward Data
Request message is contained in the data payload field. The Byte 0 is the same Byte 0

of the corresponding Forward Data Request message.

Table A.5: Forwarded Data Request message structure

Byte 7 | Byte 6 Byte 5 | Byte 4 | Byte 3 | Byte 2 | Byte 1 Byte 0

0x0000
requestee address 0x04 requester address | reserved

(root address)

74 Communication solution for loT devices using the Toit programming language

Forward Data Response

When a node receive a Forwarded Data Request message, it sends as a response a
Forward Data Response message. This message is sent to the root node, which will
forward it to the requester. The requester address is contained in the data payload. The

Byte 0 contains the requested data.

Table A.6: Forward Data Response message structure

Byte 7 | Byte 6 | Byte 5 | Byte 4 Byte 3 | Byte 2 | Byte 1 Byte 0
0x0000

requestee address | 0x05 requester address | requested data

(root address)

Forwarded Data Request

When the root node receives a Forward Data Response it sends a Forwarded Data Re-
sponse to the requester node. The requester address contained in the Forward Data Re-
quest is not the destination address. The requestee address is the address of the node

that sent the Forwarded Data Request message. The Byte 0 contains the requested data.

Table A.7: Forwarded Data Response message structure

‘ Byte 7 ‘ Byte 6 ‘ Byte 5 ‘ Byte 4 ‘ Byte 3 ‘ Byte 2 ‘ Byte 1 ‘ Byte 0

0x0000
requester address 0x06 requestee address | requested data

(root address)

Provisioning Request

The Provisioning Request message is used to trigger the Address Provisioning state in
order to expand the network. When a node receive a Provisioning Request message it
transition to the Address Provisioning state. Then it sends a Provisioning Request mes-

sage to all its children nodes. The last three bytes are reserved.

Communication solution for loT devices using the Toit programming language 75

76

Table A.8: Provisioning Request message structure

Byte 7

Byte 6

Byte 5

Byte 4

Byte 3

Byte 2

Byte 1

Byte O

destination address

Communication solution for loT devices using the Toit programming language

source address

0x07

reserved

B Tree Message

The TreeMessage class defines a message object, which is exchanged by node during
the operation of the network. As seen before, a message is an 8-byte data structure con-
taining the source and destination addresses, the OP code and the message data.

In a TreeMessage object these four elements are stored as four separate ByteArrays - in
Toit, a ByteArray is a fixed-length list for 8-bit unsigned integers.

The class provides two constructor to initialize a TreeMessage object, either by providing
a 8-byte ByteArray in the format of a message, or by providing the four distinct field as
integer arguments.

The class provides dynamic getter methods to obtain source and destination addresses,
OP code and message data, as well as convenience static methods for conversion be-
tween ByteArray and elements and vice versa, while taking care of endianess.

Before the class the OP codes are defined as constants

Listing B.1: TreeMessage class and constant definitions

DATA_MESSAGE i= 0x00
DATA_REQUEST 1= 0x01
DATA_RESPONSE 1= 0x02
FORWARD_DATA_REQUEST 1= 0x03
FORWARDED_DATA_REQUEST 1= 0x04
FORWARD_DATA_RESPONSE 1= 0x05
FORWARDED_DATA_RESPONSE = 0x06

PROVISIONING_REQUEST 0x07

NOT_A_TREE_MESSAGE_EXCEPTION ::=

class TreeMessage:

Communication solution for loT devices using the Toit programming language 77

srcAddr /ByteArray :=7
dstAddr /ByteArray :=7
msg_data /ByteArray :=7
opcode /ByteArray :=7

/

/% %
Build a message by receiving destination address, source address,
opcode and message data.
y
constructor dst/int src/int opc/int data/int
msg_data = data_to_bytearray data
dstAddr = addr_to_bytearray dst
srcAddr = addr_to_bytearray src
opcode = opcode_to_bytearray opc

/ * %

/

Build a message from the 8—byte bytearray.

/

* /
constructor msg/ByteArray
if msg.size != 8
throw NOT_A_TREE_MESSAGE_EXCEPTION
else:
dstAddr = msg[..2]
srcAddr = msg[2..4]
opcode = msg[4..5]
msg_data = msg[5..]

/%%
Takes an int message data and return the corresponding 3—byte
bytearray.
Little endianess is used.
The data must be 3—byte long, that is data <= OxFFFFFF.
y
static data_to_bytearray data/int —> ByteArray:
byte_2 := (data & BYTE_2 MASK) >> 16
byte_1 := (data & BYTE_1_MASK) >> 8
byte_0 := (data & BYTE_0_MASK)

78 Communication solution for IoT devices using the Toit programming language

return F#[byte_0,byte_1, byte_2]

/%%
Takes an int address and return the corresponding 2—byte bytearray.
Little endianess is used.
addr must be 2—byte long, that is addr <= OxFFFF.
*/
static addr_to_bytearray addr/int —> ByteArray:
byte_1 := (addr & BYTE_1_MASK) >> 8
byte_0 := (addr & BYTE_0_MASK)

return F#[byte_0, byte_1]

/%%
Takes an int opcode and return the corresponding 1—byte bytearray.
opc must be 1—byte long, that is addr <= OxFF.
f
static opcode_to_bytearray opc/int —> ByteArray:
byte_0 := opc & BYTE_0_MASK

return #[byte_0]

/%%
Takes a 4—byte advertising data and returns the corresponding int

address.

*/
static adv_data_to_address adv_data/ByteArray — int:
return adv_data[2] + (adv_data[3]<<38)

/%%

Takes a 2—byte bytearray and returns the corresponding int address.

*/
static bytearray_to_address array/ByteArray —> int:

return array[0] + (array[l]<<38)

/%%

Communication solution for loT devices using the Toit programming language 79

get_message_bytearray —> ByteArray:
return #[dstAddr[0],dstAddr[1],srcAddr[0],srcAddr[1],opcode[0],
msg_data[0], msg_data[1l], msg_data[2]]

get_src_addr —> int:
return srcAddr[0] + (srcAddr[l]<<38)

get_dst_addr — int:
return dstAddr[0] + (dstAddr[l]<<8)

get_opcode —> int:

return opcode [0]

get_msg_data — int:
return msg_data[0] + (msg_data[l]<<8) + (msg_data[2]<<16)

80 Communication solution for loT devices using the Toit programming language

C Tree Node

The TreeNode class defines a node which takes part in a Tree network. A TreeNode
object is initialized with a boolean value, which indicates whether that node is the root.
The message buffer, the current and next state of the node, the number of children and
the current message that is being handled are stored as private fields.

A TreeNode object start operating with the method StartNetwork, which can only be called
once per node. This method launches a task - a Toit task is a block of code with an
independent control flow that takes turn to run - containing a while loop. In this while
loop, the 5-state machine is implemented with separate functions, each function returns
an integer indicating which function - that is, which state - should be executed at the next
iteration.

The class also offers methods to obtain the address, the children and the current state of
the node.

A message is sent by inserting it in the message buffer, which will be checked in the next
Check Message Buffer state.

The class also contains a message handler function, which defines the behaviours upon
message reception, depending on the message OP code.

Before the class, the characteristics UUIDs, the states indicator, the tuning parameters,

the exceptions and other constants are defined.

Listing C.1: TreeNode class and constant definitions

TREE_MESSAGE_SERVICE ::= ble.uuid O0x8AEC
OWN_ADDRESS ;= ble.uuid 0x3082
NEW_MSG = ble.uuid 0x936A
TREE_MSG = ble.uuid 0xE51C
STATE_INIT = 0x01
STATE_ADDRESS_PROVISIONING ::= 0x02
STATE_ADVERTISE ii= 0x03
STATE_CHECK_MSG_BUFFER = 0x04
STATE_FORWARD_MESSAGE ;= 0x05
NEW_ADDRESS_RECEIVED = 0x10

Communication solution for loT devices using the Toit programming language 81

NEW_MESSAGE_RECEIVED = 0x11

PROVISIONING_SCAN_DURATION ::= Duration —ms = 0_500
ADVERTISING_DURATION ::= Duration —s = 4
FORWARDING_SCAN_DURATION ::= Duration —ms = 0_700
ROOT_ADDR = 0x0000
UNPROVISIONED_ADDRESS ::= OxFFFF

NEXT_HOP_NOT_FOUND_EXCEPTION =
UNREACHABLE_ADDRESS_EXCEPTION =

NETWORK_ALREADY_STARTED_EXCEPTION

KEEP_LOOKING_PROBABILITY/int ::= 50

class TreeNode:
mgs_buffer_ /List = []
i_ /int := 0

is_root_ /bool

own_addr_ /int? := null
curr_msg_ /TreeMessage? := null
already_started_ /bool := false
next_state_ /int = ?

curr_state_ /int := STATE_INIT

constructor .is_root_

82 Communication solution for loT devices using the Toit programming language

if is_root_:
next_state_ = STATE_ADDRESS_PROVISIONING
own_addr_ = ROOT_ADDR
else:
next_state_ = STATE_ADVERTISE
own_addr_ = UNPROVISIONED_ADDRESS

startNetwork

if already_started_:

print
return
already_started_ = true
config := ble.ServerConfiguration

treeMsgService := config.add_service TREE_MESSAGE_SERVICE
ownAddr := treeMsgService.add_read_write_characteristic

OWN_ADDRESS

newMsg := treeMsgService.add_read_write_characteristic NEW_MSG
msg = treeMsgService.add_read_write_characteristic TREE_MSG
task ::

while true:

if next_state_ == STATE_ADDRESS_PROVISIONING:
next_state_ = address_provisioning

else if next_state_ — STATE_ADVERTISE:
next_state_ = advertise config ownAddr newMsg msg

else if next_state_ =— STATE_CHECK_MSG_BUFFER:
next_state_ = check_msg_buffer

else if next_state_ — STATE_FORWARD_MESSAGE:
next_state_ = forward_message

return

Communication solution for loT devices using the Toit programming language 83

address_provisioning —>int:

curr_state_ = STATE_ADDRESS_PROVISIONING

print
device := ble.Device.default
devices := List

device.scan —duration=PROVISIONING_SCAN_DURATION: | remote_device
/ble.RemoteDevice |
if remote_device.data.service_classes.contains
TREE_MESSAGE_SERVICE:
addr := TreeMessage.adv_data_to_address (remote_device.data.
manufacturer_data)
if addr = UNPROVISIONED_ADDRESS and (not devices.contains
remote_device.address):
devices.add(remote_device.address)

print

print

if devices.is_empty:
print
device.close

return own_addr_ == ROOT_ADDR ? STATE_ADDRESS_PROVISIONING
STATE_ADVERTISE

clients = List
devices.do: | address |
e = catch:
client := device.connect address

clients.add client
print

if e:

84 Communication solution for loT devices using the Toit programming language

continue.do

clients.do: | client |
service := client.read_service TREE_MESSAGE_SERVICE
addr_char := service.read_characteristic OWN_ADDRESS
new_msg_char := service.read_characteristic NEW_MSG
i =i_+1
next_addr := (own_addr_x10) + i_
print

addr_char.write_value (TreeMessage.addr_to_bytearray next_addr)

new_msg_char. write_value #[NEW_ADDRESS_RECEIVED]

device.close

return STATE_ADVERTISE

advertise config/ble.ServerConfiguration ownAddr/ble.
ReadWriteCharacteristic newMsg/ble. ReadWriteCharacteristic msg/

ble. ReadWriteCharacteristic:

curr_state_ = STATE_ADVERTISE

print

device/ble.Device? := null
try:
device = ble.Device.default config
advertiser := device.advertise
data := ble.AdvertisementData
—name=
—service_classes=[TREE_MESSAGE_SERVICE]
—manufacturer_data=#[0xFF, OxFF, (TreeMessage.
addr_to_bytearray own_addr_)[0], (TreeMessage.

addr_to_bytearray own_addr_)[1]]

advertiser .set_data data

advertiser.start —connection_mode=ble.

Communication solution for loT devices using the Toit programming language 85

BLE_CONNECT_MODE_UNDIRECTIONAL
received/int? := null

timeout := catch:
with_timeout (ADVERTISING_DURATION): device.

wait__for_client_connected

if timeout:
print
advertiser.close

device.close
return own_addr_ — UNPROVISIONED_ADDRESS ? STATE_ADVERTISE :

STATE_CHECK_MSG_BUFFER
else:

print

received = newMsg.value[0]

device.wait_for_client_disconnected

if received = NEW_MESSAGE_RECEIVED:
curr_msg_ = TreeMessage msg.value
advertiser.close

device . close

if curr_msg_ .get_dst_addr = own_addr_:
time := (Time.now.plus —h=2).local
print

return message_handler curr_msg_

else:
return STATE_FORWARD_MESSAGE

else if received =— NEW_ADDRESS_RECEIVED:
own_addr_ = TreeMessage.bytearray_to_address ownAddr.value
print
advertiser.close

device . close
return STATE_ADDRESS_PROVISIONING

86 Communication solution for loT devices using the Toit programming language

advertiser.close

device.close

return STATE_ADVERTISE
finally:

if device : device.close

check_msg_buffer —>int:
curr_state_ = STATE_CHECK_MSG_BUFFER

print

if mgs_buffer_ .is_empty:
print
return STATE_ADVERTISE

else:
print
curr_msg_ = mgs_buffer_ . first
mgs_buffer_ = mgs_buffer_[1..]. copy
time := (Time.now.plus —h=2).local
print

return STATE_FORWARD_MESSAGE

forward_message —>int:

curr_state_ = STATE_FORWARD_MESSAGE

Communication solution for loT devices using the Toit programming language

87

88

print

next_hop = 7

if own_addr_ > curr_msg_ .get_dst_addr:

next_hop = own_addr_/10

else:
dst_Ivl := level curr_msg_ .get_dst_addr
next_lvl := (level own_addr_) + 1

next_hop = curr_msg_ .get_dst_addr / ((math.pow 10 (dst_Ivl —

next_Ivl)).to_int)

if not is_reachable next_hop:

throw UNREACHABLE_ADDRESS_EXCEPTION

device/ble.Device? := null
next_hop_addr := null
try:
device = ble.Device.default
scan_err = catch:
next__hop_addr = find_next_hop device next_hop
if scan_err:
print
choice := random 1 101
if choice <= KEEP_LOOKING_PROBABILITY:
print
device.close

return STATE_FORWARD_MESSAGE

else:
print
tmp := [curr_msg_]
mgs_buffer_.do: | it |
tmp.add it
mgs_buffer_ = tmp.copy

device.close

Communication solution for loT devices using the Toit programming language

return STATE_ADVERTISE

else:
client/ble.Client? := null
e = catch:
client = device.connect next_hop_addr
print
if e:
print

return STATE_FORWARD_MESSAGE

service := client.read_service TREE_MESSAGE_SERVICE
msg_char := service.read_characteristic TREE_MSG
new_msg_char := service.read_characteristic NEW_MSG

msg_char. write_value curr_msg_ .get_message_bytearray
new_msg_char. write_value #[NEW_MESSAGE_RECEIVED]
return STATE_ADVERTISE

finally:

if device : device.close

find_next_hop device/ble.Device next_hop/int:

device.scan —duration=FORWARDING_SCAN_DURATION: | remote_device/
ble.RemoteDevice

if remote_device.data.service_classes.contains
TREE_MESSAGE_SERVICE:
addr := TreeMessage.adv_data_to_address (remote_device.data.
manufacturer_data)
if addr = next_hop:
print

return remote_device.address

throw NEXT_HOP_NOT_FOUND_EXCEPTION

send_message msg/ TreeMessage:

Communication solution for loT devices using the Toit programming language

mgs_buffer_ .add msg

return

/%%

Returns the current address of the node.
*/

get_address —> int:

return own_addr_

/ % x

Returns the number of children of the node.
*/

get_i —int:

return i_

/%%
Returns a list of the address of the children.
*/
get_children —List:
children := List
i_.repeat: | i |

children.add (own_addr_x10) + i

return children

/%%

Returns the current state of the node (Address provisioning ,
advertising , checking message buffer, forwarding message)

*/

get_state —int:

return curr_state_

/%%

Message handler function. It is called when a node receive a message
with dstAddr = ownAddr.

*/

message_handler msg/TreeMessage:

opc := msg.get_opcode

Communication solution for IoT devices using the Toit programming language

if opc = DATA_MESSAGE:
data := msg.get_msg_data

print

if opc = DATA_REQUEST:

print

data_response := random 0 OxFFFFFF

response := TreeMessage msg.get_src_addr own_addr_ DATA_RESPONSE

data_response
send_message response

print

if opc = DATA_RESPONSE:
data := msg.get_msg_data

print

if opc = FORWARD_DATA_REQUEST:
fwd_addr := msg.get_msg_data & 0x00_00_FF_FF

response := TreeMessage fwd_addr own_addr_
FORWARDED_DATA_REQUEST msg. get_src_addr
if is_reachable fwd_addr:
send_message response

print

else:

throw UNREACHABLE_ADDRESS_EXCEPTION

if opc =— FORWARDED_DATA_REQUEST:
rec_addr := msg.get_msg_data

print

data := random 0 OxFF

response := TreeMessage ROOT_ADDR own_addr_
FORWARD_DATA_RESPONSE (rec_addr + (data<<16))
send_message response

print

Communication solution for loT devices using the Toit programming language

92

if opc == FORWARD_DATA_RESPONSE:
fwd_addr := msg.get_msg_data & 0x00_00_FF_FF
data := msg.get_msg_data>>16
response := TreeMessage fwd_addr own_addr_
FORWARDED_DATA_RESPONSE (msg. get_src_addr + (data<<16))
if is_reachable fwd_addr:
send_message response

print

else:

throw UNREACHABLE_ADDRESS_EXCEPTION

if opc == FORWARDED_DATA_RESPONSE:
rec_addr := msg.get_msg_data & 0x00_00_FF_FF
data := msg.get_msg_data>>16

print

if opc == PROVISIONING_REQUEST:

children := get_children

children.do: | c |

tmp := TreeMessage ¢ own_addr_ PROVISIONING_REQUEST 0

send_message tmp
return STATE_ADDRESS_PROVISIONING
return STATE_CHECK_MSG_BUFFER

is_reachable dst_addr/int —>bool:

Ivi_diff := ((level dst_addr) — (level own_addr_)).abs

Communication solution for loT devices using the Toit programming language

if own_addr_ < dst_addr:
return own_addr_ = (dst_addr/((math.pow 10 IvI_diff).to_int))
else:

return dst_addr = (own_addr_/((math.pow 10 IvI_diff).to_int))

JET:
Convenience method.
Returns the tree level of a node given its node address.
Correspond to the number of digits of the address, except for the root
which has level 0.

address must be a positive integer < 65535
*/
level address/int —> int:

6.repeat: | Ivl |

if address/((math.pow 10 Ivl).to_int) = 0:

return |vl

return —1

Communication solution for loT devices using the Toit programming language 93

Toit is a new object-oriented programming language for microcontrollers. The Toit virtual machine
enables multiple independent apps to run side-by-side through software-based fault isolation. Toit
is being developed as open source by the Danish company Toitware ApS, which collaborates with
DTU Compute in the EU project TRANSACT. Although there are a plethora of programming solutions
for loT devices, they typically either involve low-level programming or their high-level programming
requires too many resources. The objective of the thesis is to develop a communication solution for
loT devices using the Toit language. The solution proposed in this thesis is a tree-based network
that allows devices to exchange data over Bluetooth Low Energy data channels without involving

cloud connectivity.

Technical
University of

Denmark
Elektrovej, Building 324

2800 Kgs. Lyngby
TIf. 4525 3031

www.compute.dtu.dk

www.compute.dtu.dk

	1 Introduction
	2 Literature Review
	2.1 Cloud Computing and Edge Computing
	2.2 IoT Architecture
	2.3 Communication protocols

	3 Bluetooth Low Energy
	3.1 Stack Architecture
	3.2 Specifications
	3.3 Mesh Networks

	4 Toit Platform
	5 Implementation of BLE mesh network with Toit
	5.1 Overview
	5.2 Implementation details
	5.3 Practical issues

	6 Evaluation
	6.1 Experimental Setup
	6.2 Single-hop communication
	6.3 Multi-hop communication
	6.4 Forwarding communication
	6.5 Results
	6.6 Issues

	7 Conclusion
	Bibliography
	A Message OP Codes
	B Tree Message
	C Tree Node

