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Abstract

The high number of nowadays applications using the wireless channel to exchange
information among separate entities and the increasing bandwidth required by a single
device make reasonable to start looking at the 30-300 GHz spectrum (corresponding
to wavelength of the order of millimeters) for mobile broadband applications. In fact,
almost all modern wireless communication systems use spectrum in the range of 300
MHz - 30 GHz, for reasons like fading-related issues as well as efficiency and cost of
electronic components. However, research on multiple antennas communication gives
interesting solutions to deal with such issues and offer the same advantages in terms of
data rates and user multiplexing. In this work a review of the state-of-the-art of modern
multi-user MIMO systems is given, presenting various algorithms that use interference
alignment techniques to allocate multiple users over the same physical channel. In
particular, the performance achieved with these methods over the millimeter-wave and
the Rayleigh fading channels are compared and some considerations are given. Finally,
the work is completed with the description of a novel frequency domain non-linear
equalizer for wideband channels that combines the advantages of fractionally spaced
equalization, non-linear processing and frequency domain implementation.
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Chapter 1

Introduction

Mobile communications play a key role in almost all recent technology innovations.
With the increasing use of smart-phones and other portable data devices such as net-
books and tablets (Fig. 1.1), mobile data traffic is growing exponentially and new
communication systems are needed to fullfill the bandwidth demand. The use of ad-
vanced technologies in the last years, like orthogonal frequency-division multiplex-
ing (OFDM), multiple input multiple output (MIMO), turbo codes, hybrid automatic
repeat request (HARQ) and many others have made possible to achieve higher spectral
efficency and have brought data rates close to theoretical limits. On the other hand, as
the spectral efficiency was reaching his limit, the accurate deployment of the network
infrastructure exploited the possibility of frequency reuse over closer and closer loca-
tions by means of smaller cells and relays. However, because capacity can only scale
linearly with the number of cells, small cells alone will not be able to meet the capacity
required to accommodate orders of magnitude increases in mobile data traffic.

Figure 1.1: Global Mobile traffic (Montly ExaBytes) [1]

The allocation of unutilized spectrum can therefore represent a good solution, con-
sidering that nowadays almost all mobile communication systems use the portion of
spectrum ranging from 300MHz to 30GHz and a vast amount of spectrum in the
30-300 GHz range remains unused. This band, know in the literature as millimeter-
waves (MMW) band, is currently widely used for satellite communications and cellular
backhauls. More recently, MMW transmissions have been used for very high through-
put wireless LANs and personal area networks systems in the newly unlicensed 60
GHz bands. An overview of current allocated spectrum is available in Fig. 1.2. While
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these systems offer rates in excess of 1 Gbps, the links are typically for short-range or
point-to-point line-of-sight (LOS) settings [2].

Figure 1.2: Current spectrum allocation.

In fact, there are still some doubt that MMW bands can be a viable solution for cellular
systems that require reliable communications across long range and NLOS paths. The
major concern is the increased transmission loss, due mainly by free space loss but also
by the higher absorption rate of common material, compared to lower frequencies [3]-[4].
In fact, MMW signals do not penetrate most solid materials very well and transmissions
can experience significant attenuations in the presence of heavy rain, because raindrops
are roughly the same size as the radio wavelengths (millimeters) and therefore cause
scattering of the radio signal [2]. Moreover, the presence of absorption bands of oxygen
and water vapour limit the available bandwidth for commercial use. For example,
the frequencies in the 57-64 GHz oxygen absorption band can experience attenuation
of about 15dB/km as the oxygen molecule (O2) absorbs electromegnetic energy at
around 60GHz [5]. But even excluding these bands for broadband applications we can
still have about 100GHz of available spectrum [6], and recent trends have encouraged
a reconsideration of the viability of MMW cellular systems development despite the
above mentioned issues.
In particular, as pointed out in [6], the concept of path loss lead to a general mis-
understanding of the propagation phenomenon, making high frequencies considered
disadvantaged compared to lower ones. This because the underlying assumption often
used in radio engineering textbooks is that the path loss is calculated at a specific
frequency between two isotropic antennas or λ/2 dipoles, whose effective aperture area
increases with the wavelength (decreases with carrier frequency). As a result, a wider
aperture area means that more energy is collected from a given radio signal. However,
as the wavelength decrease, more antennas can be packed in the same area, resulting
in no inherent disadvantage compared to longer wavelength in terms of free space loss.
Multiple antenna transmission systems enable then to cope with the free space loss
and, in addtion, result in higer gain trasmitters ad receivers thanks to the narrower
beamform that they can generate.
Considering a typical urban environment, in fact, we have a twofold consequence: on
one hand millimeter-wave signals do not penetrate most solid materials very well, de-
termining a separation between indoor and outdoor communication and hindering
non-line-of-sight (NLOS) links, but on the other hand reflection and diffraction behav-
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iors actually facilitate NLOS communications because they reduce the number and the
delay of incoming rays at the receiver. Furthermore, the Doppler shift caused by the
dynamic of the working environment will have a lighter impact on signals while the
narrow beams generated by the antenna array will significantly reduce angular spread
of the incoming waves, which in turn reduces the Doppler spread [6].
We see then that the MMW spectrum owns a high potential for next generation mo-
bile communication systems and that MIMO represent the leading technology that
can possibly open to new interesting scenarios. This, togheter with coordination be-
tween cellular base station (BS) [7], will allow an efficiently exploitation of the channel
resources and satisfy the bandwidth demand. In this work we will analyze the state-
of-the-art of modern beamforming techniques for MIMO systems, focusing on those
that enable the simultaneous transmission from a BS to many users (downlink (DL)
scenario) and between several nodes couple (point-to-point (PP)). In particular, we
aim at evaluating the performance given by different algorithms that try to suppress
interference caused by simultaneous transmissions occurring between several users that
share the same physical channel. Particular attention will be given to the behavior of
such algorithms when employed over the MMW spectrum in order to appreciate dif-
ferencies and issues of this particular band compared to the classical Rayleigh fading
channel model (RYL) used in modern cellular systems. Moreover, in Chapter 7 it is pre-
sented a novel decision feedback equalizer in the frequency domain (FD) that achieves
intersymbol interference (ISI) suppression present in broadband wireless transmissions.
The proposed equalizer combines the advantages of fractionally spaced (FS) equaliza-
tion, non-linear processing and FD implementation, giving furthermore a closed form
expression of the equalizer coefficients. This last work has been submitted to the IEEE
Wireless Communications Letter.

It is possible to find an introduction to MIMO communications in [8].
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Chapter 2

Millimeter Wave Channel

The millimeter-wave spectrum, ranging between 30 and 300 GHz, shows substantial
differencies in the propagation property compared with lower frequencies since elements
like buildings, umidity and even foliage can represent serious attenuation factors that
affect transmissions more heavily than in lower bands, as explained in [6]. On the
other hand, the small size and separation (around half of the wavelength) of millimeter-
wave antennas allow a large number of antennas to be packed in a relative small area
(e.g., tens of antennas per square centimeter area at 80 GHz carrier frequency) and
consequently a high beamforming gain can be reached. Additionally, a large number
of antennas means that signal travels from Tx to Rx arrays across multiple high-gain
narrow beams, so that we can model such channel as a combination of multiple rays
received with the same delay but different phases. In the following chapter, we will
cover some of the propagation aspects of MMW and the mathematical model that can
efficiently describe them in order to understand resources and issues of this particular
band.

2.1 Characterization of propagation

In a classical propagation scenario, power attenuation is usually modeled by means of
the path loss (PL) formula, where the average received power is estimated by combin-
ing the expression of free-space attenuation with the gain of the antennas involved in
the communication. If an obstruction is present, then the received signal will suffer
additional attenuation. Equation (2.1) accounts for attenuation factors caused by ob-
structive elements such as rain, foliage and windows glass that are particularly relevant
in the MMW channel [9]. Moreover, since directional antennas are considered, the rel-
ative gains will depend on the azimuth (φ) and elevation (θ) angles of the transmitted
and received rays [10]. The final PL equation for the MMW channel assumes then the
form

Pr[dBm] = Pt[dBm]− 10αlog

(
4πd

λ

)
+ Λt(φt, θt)[dB] + Λr(φt, θt)[dB]+

− Ao[dB]− Aw[dB]− Am[dB]

(2.1)

with

• λ = c/fc Wavelengh at carrier frequency fc;
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• d Path length;

• α Decay slope;

• Λt Transmitter directional gain as a function of the azimuth φt and elevation θt
angles;

• Λr Receiver directional gain as a function of the azimuth φt and elevation θt
angles;

• Ao Average attenuation caused by oxygen absorption;

• Aw Average attenuation caused by weather conditions (rain, moisture, hail...);

• Am Average attenuation caused by general material such as foliage and window
glass.

In typical models used at UHF the decay of power due to separation between users
is generally dependent on the environment characteristics and on reference distances.
This results in very simple models, usually based on the interference of a direct and
a ground-reflected ray, as shown in Fig. 2.1, with a simple dependence of the power
on the distance d of the type 10αlog(d), as in (2.1). While in UHF this model usually
lead to α = 4 instead of α = 2 as in the free-space propagation, at higher frequency
this is not necessarily satisfied. In fact, as explained in [5], one of the conditions to
be satisfied is that the path length difference between the direct and reflected rays is
less than λ/2, which defines the break-point distance, dbp = 4hthr/λ (ht and hr are the
transmit and receive antenna heights, respectively), beyond which the fourth power
law has to be used. In millimeter wave case, assuming frequency ranging from 60 to 66
GHz, hr = 1.8m and ht ∈ [5, 50]m, we get dbp ∈ [7.2, 72.9]Km, which is far beyond the
expected maximum range for the cell radius (from 0.5 up to 1 Km). We can therefore
assume α = 2 for the mm-wave signals, as confirmed by measurements performed in
[5].

ht

hr

d

Figure 2.1: Two-rays propagation model.

The path loss exponent α is useful for predicting large scale propagation effects. How-
ever, it is inadequate at predicting site-specific propagation effects, such as reflection,
diffraction, or penetration losses caused by a particular building layout, construction
materials, furniture, etc.
As reported in (2.1), high attention should be paid to attenuation factors that signif-
icantly affect the propagation besides the normal fading due to distance. In fact, the
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chemical composition of the atmosphere can present reasonance effects that dissipate
signal energy. For example, around 60 GHz we found a peak of attenuation caused by
oxygen reasonance phenomena that in general is not negligible over the bandwidth of
our interest. In [5], the following sperimental model for the oxygen is developed

Ao[dB/Km]

(
fc[GHz]

)
=

{
0.104(fc − 60)3.26 − 15.10 60 ≤ fc ≤ 63

11.35 + (fc − 63)2.25 − 5.33(fc − 63)1.27 63 < fc ≤ 66

Moreover, weather condition may also affect significantly propagation, but while the
influence of water vapour absorption, fog, hail, snow, sand, etc. can be neglected, either
because the attenuation coefficient is very low or because these events occur with very
low probability, attenuation due to rain can also be of some importance in the MMW
band, depending on the rainfall rate R[mm/h]. Again in [5], the following model is given
for the rain attenuation

Ar [dB/Km]

(
fc[GHz], R[mm/h]

)
= k(f)Ra(f) (2.2)

where k(f) and a(f) are approximately equal to

k(f) = 101.203 log(f)−2.29, a(f) = 1.703− 0.493 log(f). (2.3)

It is remarked in [5] that rain can play an important role in cell coverage reduction,
since its attenuation can reach values larger than those for oxygen, depending on the
rainfall rate (18 dB/km for 50 mm/h), while oxygen and rain attenuations cannot be
neglected if large distances (>1 km) are to be considered, but for calculations within
cells (with ranges less than 200 m) they may not be of great importance.
In Figure 2.2 it is plotted the attenuation values due to atmospheric condition as a
function of the frequency and it is easy to note the peaks caused by the absorption
bands of oxygen and moisture.

Figure 2.2: Atmospheric attenuation as a function of the carrier frequency.
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We end our dissertation about outdoor attenuation agents with the effect of foliage
on propagation. In fact, foliage losses for millimeter waves are significant and can be
a limiting impairment for propagation in some cases. An empirical formula has been
reported in [11] to calculate the propagation through foliage

Af =
(f)0.3D0.6

5
, (2.4)

where D is the depth of foliage area between transmitter and receiver.

Drywall
Office

Whiteboard Clear Glass Mesh Glass Clutter

Material Thickness (cm) 2.5 1.9 0.3 0.3 –

2.5
Ghz

Average Measured
Attenuation (dB) 5.4 0.5 6.4 7.7 2.5

Measurement Standard
Deviation (dB) 2.1 2.3 1.9 1.4 2.2

Normalized Average
Attenuation (dB/cm) 2.1 0.3 20.0 24.1 –

60
Ghz

Average Measured
Attenuation (dB) 6.0 9.6 3.6 10.2 1.2

Measurement Standard
Deviation (dB) 3.4 1.3 2.2 2.1 1.8

Normalized Average
Attenuation (dB/cm) 2.4 5.0 11.3 31.9 –

Table 2.1: Loos in excess of free-space at 2.5 and 60 GHz for indoor signal propagation
[3].

Indoor coverage deserves a separate discussion as signal penetration of building can
be really weak because of the large attenuation factor of walls and windows. The use
of indoor femtocells could then be needed to extend cellular signal, and the coverage
limit just mentioned could possibly lead to higher frequency reuse rate between ad-
jacent rooms or buildings. In Table 2.1, the attenuation values for 2.5 and 60 GHz
are reported for common indoor material such as walls, clear glass, mesh glass (rein-
forced windows), whiteboard and objects that do not directly block the LOS signal
from transmitter to receiver but somehow interfere with the propagation, defined as
clutter. Clutter includes office furniture such as chairs, desks, bookcases, and filing
cabinets. Comparing the measured losses, taken from [3], for 2.5 and 60 GHz in Table
2.1, the attenuation of drywall, whiteboard, and mesh glass increases from 2.5 to 60
GHz; however, the attenuation of clear glass and clutter decreases. The reason for
the decrease in attenuation from clutter is explainable by the fact that with narrower
beams, fewer objects in the environment are capable of perturbing the LOS signal.
It is not known why the attenuation of Clear Glass, decreases from 2.5 to 60 GHz.
It has been also noticed that when using highly directional antennas at 60 GHz, the
large-scale mean path loss is very close to free space, confirming the results presented
in [5], but the spread of values about the mean is higher than at 2.5 GHz. Moreover,
the RMS delay spread at 2.5 GHz is significantly higher than at 60 GHz, due to the use
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of omnidirectional antennas at 2.5 GHz and directional antennas at 60 GHz [3]. This
can be caused by the high attenuation of reflecting materials, that limits the number
of path through which the signal can travel without excessive attenuation, enabling
therefore higher data rates communications.
Further attenuation values are provided in [4], and here reported in Table 2.2, where
is also highlighted the dependence on the polarization of the incident wave, as a con-
sequence of an internal oriented structure of materials.

Material ds(mm) Ah[dB] Av[dB] Material ds(mm) Ah[dB] Av[dB]

Chipwood 16 7.9 8.6 Mortar 100 159.98 159.3

Glass 4 3.1 2.5 Brick Wall 100 177.92 195.06

Wood 7 2.6 3.5 Concrete 100 174.95 178.05

Plasterboard 15 2.7 2.9

Table 2.2: Attenuation values for different materials and with horizontal (Ah) and
vertical (Av) polarization at 40GHz [4].

2.2 MIMO Channel Models

In the following section we present the model that will be used in this thesis as from
[10]. The equivalent complex base band impulse response of a MMW MIMO channel
with narrow impulses can be represented by a matrix CN×M of the form

H =


h1,1 · · · h1,M
... . . . ...

hN,1 · · · hN,M

 (2.5)

where hi,j are complex random variables satisfying

E
[
‖H‖2

]
= MN. (2.6)

In the following paragraphs we will show how to get (2.5) from the configuration of the
antenna arrays considered.

2.2.1 Uniform Linear Array

Consider a MIMO channel with two linear arrays composed by M and N antennas,
respectively, at Tx and Rx side. For both arrays, the inter-antenna spacing is equal
to half the signal wavelength λ, and the array axe lies in the azimuth plane that will
therefore contain the rays generated by the array. We refer to this configuration as
uniform linear array (ULA).
For an ULA and for a given ray, let consider a column vector of phasors

a(φ) =
1√
N

[
1 ejψD sinφ · · · ej(N−1)ψD sinφ

]T
(2.7)
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being ψ = 2π/λ, D = λ/2 the inter-antenna spacing and φ the angle of departure or
arrival of the ray, depending if we consider Tx or Rx side. If L rays are received with
the same delay, the channel matrix introduced in (2.5) can be rearranged considering
vector (2.7) in the following way

HULA =

√
MN

L

L∑
l=1

glar
(
φ
(r)
l

)
aHt
(
φ
(t)
l

)
(2.8)

where ar and at are as in (2.7) for Rx and Tx, respectively, and gl ∼ CN (0, 1) represent
the complex random gain of the ray l. We highlight that from the definition of a as in
(2.7), elements of (2.8) are determined by the phase offset of the different rays due to
the relative position across array elements, as depicted in Figure 2.3.
For simplicity, we rewrite (2.8) into a matrix formulation with the aid of the following
matrices

At =
[
at
(
φ
(t)
1

)
at
(
φ
(t)
2

)
· · · at

(
φ
(t)
L

)]T
(2.9)

Ar =
[
ar
(
φ
(r)
1

)
ar
(
φ
(r)
2

)
· · · ar

(
φ
(r)
L

)]T
(2.10)

Hg = diag (g1, g2, · · · , gL) (2.11)

and

H =

√
MN

L
ArHgAH

t (2.12)

N − 1 D 0

D
si
n(
φ)

φ

φ
equiphase
wavefront

Figure 2.3: Relative path difference in an ULA.

2.2.2 Correlation of the ULA channel

The peculiarity of the channel considered in this work is the high correlation between
adjacent elements of the antenna array. The expression for the correlation at Tx and
Rx are given by the followings

RTX = E
[
HHH

]
and RRX = E

[
HHH

]
. (2.13)

By expanding the expectation it is possible to get a closed-form for a generic entry on
row p and column q of the Tx correlation matrix
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[RTX ]p,q =
N

φmax − φmin

∫ φmax

φmin

ejψ(p−q)sin(a)da (2.14)

and the Rx correlation matrix

[RRX ]p,q =
M

φmax − φmin

∫ φmax

φmin

ejψ(p−q)sin(a)da. (2.15)

2.2.3 Uniform Planar Array

Similar results can be found when considering arrays spanning two dimensions, com-
posed by N = WH antennas, with inter-element space equal to D, where W and H
are the antennas composing the single dimension. Also in this case we define the phase
vector as

b(φ, θ) =
1√
L

[
1 · · · ejψD(w sinφ sin θ+h cos θ) · · · ejψD((W−1) sinφ sin θ+(H−1) cos θ)]T (2.16)

where w = 1, ..,W − 1 and h = 1, ..., H − 1 are the antenna index, ψ = 2π/λ and
D = λ/2. With the vector just defined we can generate the N ×M channel impulse
response, valid for a uniform planar array (UPA) system, as in (2.8), obtaining the
matrix

HUPA =

√
MN

L

L∑
l=1

glbr
(
φ
(r)
l , θ

(r)
l

)
bHt
(
φ
(t)
l , θ

(t)
l

)
(2.17)

We can note that, with UPA, beamforming in elevation is also possible since the channel
impulse response is function of the parameter θ.
A matrix formulation is again useful, so by defining

Bt =
[
bt
(
φ
(t)
1 , θ

(t)
1

)
bt
(
φ
(t)
2 ,Θ

(t)
2

)
· · · bt

(
φ
(t)
L , θ

(t)
L

)]T
(2.18)

Br =
[
br
(
φ
(r)
1 , θ

(r)
1

)
br
(
φ
(r)
2 , θ

(r)
2

)
· · · br

(
φ
(r)
L , θ

(r)
L

)]T
(2.19)

Hg = diag (g1, g2, · · · , gL) (2.20)

we rewrite (2.17) as

H =

√
MN

L
BrHgBH

t (2.21)
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Chapter 3

Scenario

3.1 System description

As illustrated in Fig. 3.1, our system is a K-user MIMO interference channel (IC),
where K transmitters (Tx’s), each equipped with M antennas, transmit to K receiver
(Rx’s), each equipped with N antennas, simultaneously, so that transmissions are sup-
posed to happen between the pair of Tx/Rx with the same index, i.e. from transmitter
k to receiver k. Furthermore, for a given user, d parallel streams are allocated. The
channel is supposed narrow-band so that each transmitter-receiver link will experience
quasi-static fading, time-invariant over each transmission duration and different among
successive transmissions.

sK
VK

...

...

s2
V2

...

s1
V1

...

zK
UK

...

...

z2

U2
...

z1

U1
...

xK yK

x2 y2

x1 y1

Figure 3.1: System configuration.

For each symbol slk, belonging to stream l of user k, linear precoding is performed
independently at each channel realization. By definining the precoding column vector
for stream l as vlk, the transmitted signal of user k obtained by summing all the streams
assumes the form (see also Fig. 3.2):

xk =
d∑
l=1

xlk =
d∑
l=1

vlks
l
k. (3.1)

A unitary sum-power constraint (SPC) for each user is considered, so that the total
available power Pk is distribute among the streams belogning to user k for which the
transmitted power assumes the form
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E
[
‖xlk‖2F

]
= ρlkPk (3.2)

with
∑d

l=0 ρ
l
k = 1 for any k ∈ {1, · · · , K}. If power allocation is not employed, each

stream will share a equal fraction of the total power, i.e. ρlk = 1/d, while if interference
suppression is achieved, a more efficinet use of the channel would require a water-filling
algorithm (Appendix A) to allocate power across the streams of a given user.
Assuming data symbols to have unitary power, (3.2) implies ‖vlk‖22 = ρlkPk. For sim-
plicity we will assume Pk = 1,∀k ∈ {1, · · · , K}.
By further defining Hk,j as the N ×M MIMO channel matrix from transmitter j to
receiver k and nk ∼ CN (0, σ2

w) as the complex zero-mean Gaussian noise affecting user
k, with covariance matrix

Ξk = E
[
nHk nk

]
= σ2

wIN , (3.3)

the signal vector received by receiver k, is equal to:

yk =
K∑
j=1

d∑
n=1

Hk,jxnj + nk (3.4)

with k ∈ {1, · · · , K}.

sdk vdk
xdk

...

s2k v2
k

x2
k

s1k v1
k

x1
k

+

M

... xk

1

Figure 3.2: Particular of transmitter k structure (beamformer).

It is furthermore assumed that:

1. all transmitters generate independent identically distributed (i.i.d.) data sym-
bols, i.e. E

[
(snj )∗slk

]
= 0 for (j, n) 6= (k, l);

2. all transmitted signals are statistically-independent of the noise at the receiver,
i.e. E

[
(xnj )Hnk

]
= 0 for all k, j ∈ {1, · · · , K} and n ∈ {1, · · · , d}.

At the receiver side, as shown in Fig. 3.3, stream l associated to user k is filtered by
a linear structure (combiner), a 1×N vector denoted as (ulk)

H , which finally leads to
the signal at detection point, given by:

zlk =
(
ulk
)H yk = (ulk)

HHk,jxnj +
∑

(j,n)6=(k,l)

(ulk)
HHk,jxnj + (ulk)

Hnk. (3.5)
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N

...

1

yk (
udk
)H

ẑdk

...
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H

ẑ2k
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(u1
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H

ẑ1k

Figure 3.3: Particular of the receiver k structure (combiner).

In (3.5) it is highlighted the contribution of the useful signal against the contribution
of intra-user and inter-user interference plus noise.
From (3.5), we derive the statistical power of the total interference leakage plus noise
at detection point for stream l of user k, equal to

I lk =
(
ulk
)H

Ξkulk +
∑

(j,n) 6=(k,l)

∣∣∣(ulk)H Hk,jvnj
∣∣∣2 , (3.6)

for which the relative signal-to-interference-plus-noise ratio (SINR) is defined as

Γlk =
|
(
ulk
)H Hk,kvlk|2

I lk
. (3.7)

The associated achievable rate will then have the form

Rl
k = log2

(
1 + Γlk

)
. (3.8)

For simplicity, we will eventually consider the symbol vector of user k as the column
vector whose elements are the symbols belonging to the d streams and consequently
use a matrix notation to denote beamformers and combiners in some of the presented
algorithms, i.e. we set

sk =
[
s1k, · · · , sdk

]T
, (3.9)

zk =
[
z1k, · · · , zdk

]T
, (3.10)

Vk =
[
v1
k, · · · ,vdk

]
, (3.11)

Uk =
[
u1
k, · · · ,udk

]
. (3.12)

In this case, (3.4) and (3.5) become, respectively,

yk =
K∑
j=1

Hk,jVjsk + nk (3.13)

zk = UH
k yk. (3.14)
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and, consequently, (3.6), (3.7) and (3.8) assume a per-user form, i.e.

Ik = UH
k ΞkUk +

∑
j 6=k

[
UH
k Hk,jVjVH

j H
H
k,jUk

]
, (3.15)

Γk = I−1k
[
UH
k Hk,kVkVH

k H
H
k,kUk

]
(3.16)

Rk = log2 [det (I + Γk)] . (3.17)

Finally, if instead of having K separate transmitters we have just a single transmitter,
e.g. a base station, all the formulas still hold by assuming

Hk,1 = Hk,2 = · · · = Hk,K = Hk, k ∈ {1, · · · , K} (3.18)

so that the single subscript will mean that a single transmitter scheme is being assumed.

3.2 Interference Alignment

In the K users interference channel, the key idea for interference suppression, when its
power is comparable to the desired signal, is channel orthogonalization. This is also the
basis for codes, time or frequency division channel access schemes that avoid interfer-
ence between coexisting users by dividing time or spectrum in a cake-cutting fashion.
In general, interference alignment (IA) scheme is extending the idea of orthogonality
to the space dimensions, through beamforming across multiple antennas.
The enabling premise for interference alignment in all the preceding examples is the
relativity of alignment, i.e. the alignment of signal vector spaces is relative to the
observer. Two transmitters may appear to be accessing the channel simultaneously to
one receiver while they appear to be orthogonal to another receiver. Since each receiver
has a different view, there exist scenarios where each receiver, from its own perspective,
appears to be privileged relative to others. The goal of IA is to create such scenarios
in a wireless network. Specifically, IA refers to a construction of signals in such a
manner that they cast overlapping shadows at the receivers where they constitute in-
terference while they remain distinguishable at the receivers where they are desired [12].

More in depth, from (3.14) the condition targeted by IA is the following

UH
k Hk,jVj = 0 for j 6= k. (3.19)

In this situation, a receiver can easily cancel several interferers since they are all aligned
to a specific subspace of the received signal space, and (3.14) simplify in

zk = UH
k yk = UH

k Hk,jxj + UH
k nk. (3.20)

In order to achieve condition (3.19), cooperation among users is necessary, meaning
that each Tx should care about the interference caused to other Rx’s and not just aim
at maximizing its own transmissions (3.7).
IA is a cooperative strategy that can achieve the channel capacity, but its drawback is
that in general a closed form solution for beamformers and combiners design is available
only in few simple cases and under the assumption of perfect channel knowledge. In
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fact, iterative algorithms are often required to reach optimum, so that beamformers
and equalizers are alternatively updated to reach condition (3.19). Moreover, perfect
alignment is not alway possible and it is still not clear the feasibility of alignment for
a signal space with a limited number of dimensions [13]. For that reason, IA under
perfect alignment often results in suboptimal sum-rate at moderate signal-to-noise
ratio (SNR), and relaxing the zero-forcing constraint is sometimes needed to converge
to a solution that actually achieves better rates, especially with an increasing number
of users.
In [12], it is shown that for a MIMO IC the theoretical achievable rate with IA is
KNa
2

log (Γ) + o (log(Γ)), with Γ as in (3.7) and with Na = M = N . This means that
the achievable rate of the single user in the IC could be half of what would have been
in the absence of interference.
To give a pictorial representation on how IA works, in Fig. 3.4 is reported an example
for a 3-dimensional signal space. As we previously stated, the IA conditions imply
that we need to align the interference at each receiver by occupying an (N − d)-
dimensional subspace, creating an interference-free, d-dimensional space for the desired
signal. Equivalently, if we are able to create at each receiver a d-dimensional signal
space that is free from interference, we have implicitly aligned the interference in the
other remaining space. This done, all a receiver has to do is to hide from the interference
by projecting the received signal onto the d-dimensional subspace that has the lowest
interference, thereby suppressing all the undesired interference [14].

subspace
Interference

ν3

ν2

ν1

desired signal
subspace

λ3λ2

λ1

desired signal

Figure 3.4: Example of a 3-D signal space.

We might wonder what is then a suitable mathematical tool that can allow us to
measure the interference level along each signal dimension. We know from principal
component analysis (PCA) that the eigenvectors of the interference covariance matrix
correspond to the dimensions along which a receiver "sees" interference, and their cor-
responding eigenvalues indicate the variance / power of interference along that dimen-
sion (Fig. 3.4). Assuming that the eigenvalues and their corresponding eigenvectors
are sorted in increasing order, this implies that the d dimensional subspace with the
lowest interference is spanned by the d eigenvectors corresponding to the d smallest
eigenvalues, and the variance of interference in this subspace is given by the sum of the
d smallest eigenvalues [14].
In order to give the idea of how PCA can be applied to IA, a simple iterative algorithm,
presented in [13], is described below. For a given set of beamformersVk, we can rewrite
the expression of the interference leakage (the second term of (3.6)) as
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Ik = ‖U∗kΘkUk‖2F (3.21)

being

Θk =
∑
j 6=k

Hk,jVjV∗jH
∗
k,j (3.22)

the received interference covariance matrix. To minimize the contribution of (3.22)
in (3.6), the combiner should be aligned to the subspace where (3.22) is minimum.
The d dimensional received signal subspace that contains the least interference is the
space spanned by the eigenvectors corresponding to the d smallest eigenvalues of the
interference covariance matrix (3.22), that is

Uk = νdmin (Θk) . (3.23)

Once the combiner is set, we consider the reciprocal channel, i.e. the channel obtained
by switching the role of Rx and Tx, and whose channel matrix is given by the Hermitian
transposition of the direct channel, i.e.

←−
Hk,j = HH

j,k, j, k ∈ {1, · · · , K}. (3.24)

By considering (3.23) as beamformer, i.e.

←−
Vk = Uk (3.25)

where the arrow is referring to the reciprocal channel, we can now apply relation (3.23)
to update combiners for the reciprocal channel, that is

←−
Uk = νdmin

(←−
Θk

)
. (3.26)

We can now turn back to the direct channel, upating the old beamformer used in the
previous iteration with the combiner just found, obtaining

Vk =
←−
Uk, (3.27)

and alternate direct and reverse channel with the update rule (3.23) until convergence
is reached.
The idea behind (3.25) is that if the signal subspace over which Uk is defined is lightly
affected by interference, transmitting on the same signal subspace will cause the least
interference to other users. The result is that each transmitter will adjust its beam-
former to cause the least possible interference to non-intended users, while receivers
will "hear" the channel over the subspace with less interference. The drawback of this
method is that, in general, the interference free subspace found by one user may not
be a lucky one for its own transmission because of the low gain provided by the se-
lected modes. In that sense seeking only for interference avoidance can be not optimal
for the whole systems, especially at low SNR. Allowing therefore a little amount of
interference can sometimes give an overall gain in terms of SINR. Other strategies can
therefore be employed, to maximize quantities such as the SINR or the total sum-rate
of the system instead of simply avoiding interference, as we will show later.
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3.3 Simulation Setup

In this work, we aim at evaluate the overall system sum-rate achieved after interference
has been canceled or reduced, summing the singular rates reached by each user given
by 3.28, that is equal to

R =
K∑
k=1

d∑
l=1

log2

(
1 + Γlk

)
(3.28)

with Γlk as in (3.7).
For each realization, channel matrix for the direct and cross links are generated indepen-
dently. For the MMW case, the channel matrix is as in Section 2.2, while the classical
Rayleigh channel matrix is composed by independent and identically distributed (i.i.d.)
entries taken randomly from a complex Gaussian distribution with zero mean and unit
power.
For our purposes, we do not consider distances nor eventual blocking object between
each pair Tx/Rx.
The results obtained will then be presented by plotting the system sum-rate (expressed
in bit/s/Hz) against the SNR, defined as 1/σ2

w, being unitary both the Tx power and
also each channel gain. For each figure, the following parameters will be defined:

• K: the number of Rx users;

• KTx: number of Tx users (KTx = K in point-to-point configuration, KTx = 1 in
downlink configuration);

• N : number of Tx antennas;

• M : number of Rx antennas;

• SPC: waterfilling algorithm is used for power allocation.
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Chapter 4

Combiner design methods

In this chapter, we cover combiner design, giving different approaches to the problem
of aligning the receiver subspace to match as much as possible the transmitter one.
Normally these filters have a simpler form than that of the beamformers, since they are
usually implemented in portable devices for which energy consumption and processing
complexity represent important factors that affect implementation decisions. For this
reason, in the IA algorithms that we will present the receivers are in some case fixed
and the design is concentrated on transmitters.

4.1 Principal/Singular Components Analysis

We start with the most simple design method for combiners, that is to use princi-
pal/singular decomposition of the channel matrix. An example of this approach has
been already employed in Section 3.2 to avoid interference, but in general, if applied
to the direct channel matrix, it could lead to a very simple alignment that is certainly
favourable for the intended signal that is received over the highest gain direction. Al-
though this is a very immediate solution and it does not require knowledge from other
users but only on the direct channel matrix, its drawbacks are that in general com-
puting eigen or singular vectors has a high computational complexity. Moreover the
resulting combiner does not participate to the interference alignment process since no
consideration is given to cross channel matrix. However, this choice represents the best
possible solution for low SNR, as stated in [15], and it is also a good solution for the
initialization of combiners in iterative algorithms.

4.2 Interference Rejection

In [16], signal received from each user antenna is weighted and combined in order to
maximize the SINR at the detection point.
Indeed, the receiver front-end multiplies signal by a weight obtained from the noise-
plus-interference correlation matrix

Ψk = E

(∑
j 6=k

Hkxj + nk

)∗(∑
j 6=k

Hkxj + nk

)T
 . (4.1)

that in case of uncorrelation between noise and interference simplifies in
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Ψk = σ2
wI +

∑
j 6=k

E
[
H∗kH

T
k

]
(4.2)

where σ2
w is the noise power.

Finally we can set the combiner weights by means of the following relation

Uk = αΨ−1k HH
k (4.3)

where α is a constant that does not affect the SINR.

4.3 Minimum Mean-Square Error

Using a stream-by-stream optimization, we define the mean-square error (MSE) w.r.t.
each stream of each user as

ηlk = E
[∣∣s̃lk − slk∣∣2]

= 1 +
(
ulk
)H (Al

kB
l
k

)
ulk −

(
ulk
)H hlk −

(
hlk
)H

ulk
(4.4)

where

Al
k = Hk,kvlk

(
vlk
)H

(Hk,k)
H (4.5)

Bl
k =

Ξ(k,l) +
∑

∀(j,n) 6=(k,l)

Hk,jvnj
(
vnj
)H

(Hk,j)
H

 , (4.6)

are the terms representing, respectively, the signal and the noise plus interference
statistical power, and

hlk = Hk,kvlk. (4.7)

The combiner vector ulk minimizing (4.4) is given by

ulk =

(
Al
k + Bl

k

)−1
hlk

‖
(
Al
k + Bl

k

)−1
hlk‖2F

. (4.8)

To reduce its computational complexity in practical situations (4.8) can be implemented
as a sparse filter [17], without a relevant loss of performance.

Remark

In [18, Sect. 8.3.3, pag. 359] it is shown that the maximum-SINR receiver also min-
imizes the minimum mean-square error (MMSE). Receivers of Sections 4.2 and 4.3
can be considered therefore equivalent unless a scaling factor. This aspect has been
confirmed also from simulations performed.
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Beamformer design methods

5.1 Multiuser Eigenmode Transmission

The multiuser eigenmode transmission (MET) is a linear beamformer design technique
based on block diagonalization (BD), that achieve interference suppression with a zero-
forcing condition on the beamforming matrix.
Indeed, MET uses a combiner to select a sub-set of the eigenmodes of a given user, and a
beamformer in order to guarantee orthogonality between the different users, resulting in
a block diagonal channel matrix, meaning that no interference occurs between different
users.
In this section we will cover the beamformer design, as first introduced in [19] and later
improved in [20], togheter with two power allocation strategies. The classical SPC and
a per-antenna power constraint (PAPC).

Considering our system model, the channel of user k can be decomposed using the
singular-value decomposition (SVD) as Hk = QkΣkRH

k , with the convention that
singular-values in Σk are arranged so that the ones associated to user k appear in the
leftmost d colums. The combiner of user k is a linear detector given by the Hermitian
transposition of the leftmost d columns of Qk, i.e. Uk = QH

k,[1:d], hence the cascade of
the channel and the combiner gives

T k = UH
k Hk = [Σk,1vk,1, · · · ,Σk,dvk,d]

H . (5.1)

To avoid inter-user interference, conditions (3.19) must be satisfied, that is equivalent
to say that Vk must lie in the null space of

H̃k =
[
TH

1 · · · TH
k−1 TH

k+1 · · · TH
K

]H
. (5.2)

To allocate at least one data stream per user, we see that (5.2) should not have a full
rank, or equivalently it should be

d(K − 1) < M. (5.3)

Applying the SVD to matrix H̃k we get

H̃k = Q̃kΣ̃k

[
R̃

(1)

k R̃
(0)

k

]H
(5.4)
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where R̃
(0)

k and R̃
(1)

k holds the eigenvectors associated with the null and non-null sin-
gular values, respectively. Now we understand that to achieve interference alignment
at receiver, that is verify (3.19), we can set

Vk = R̃
(0)

k CkW
1/2
k , (5.5)

withCk to be defined andWk the diagonal matrix with allocated powers to eigenmodes.
Correspondingly, we see that for any choice of Ck it is H̃kVk = 0, since it is TkR̃

(0)

j = 0
for any j 6= k.
The received vector (3.13) is now simply

yk = HkVksk + nk (5.6)

since all interference from other users has been cancelled.
We consider now the product T kR̃

(0)

k , whose SVD gives

T kR̃
(0)

k = Q̄k

[
Σ̄k 0

] [
R̄(1)
k R̄(0)

k

]H
. (5.7)

where R̄(0)
k and R̄(1)

k are as in (5.4).
By setting Ck = R̄(1)

k , hence the signal subspace spanned by the non-null modes, we
finally obtain a closed-form for the beamformer matrix of user k in the form

Vk = R̃
(0)

k R̄(1)
k W1/2

k . (5.8)

We can now define the power allocation matrix. Recalling the equality

‖A‖2F = tr
(
AAH

)
, (5.9)

the total amount of transmitted power is equal to

Pk = ‖Vk‖2F = tr
[
VkVH

k

]
= tr [Wk] (5.10)

since by construction
∥∥∥R̃(0)

k R̄(1)
k

∥∥∥2
2

= 1, while the signal power out of antenna m of user
k is equal to

Pk,m =
d∑
j=1

|r(m,j)k |2w(j)
k (5.11)

where r(m,j)k is the element (m, j) of the product R̃
(0)

k R̄(1)
k and w(j)

k the diagonal element
j of Wk.
In order to define the entries of Wk, and considering a PAPC, we aim at maximizing
the sum rate defined in (3.8) in the following way

R = max
w

(j)
k

K∑
k=1

d∑
j=1

log (1 + Γ) (5.12)

subject to

{
w

(k)
j ≥ 0 k ∈ {1, · · · , K}, j ∈ {1, · · · , d}∑K
k=1 Pk,m ≤ PMAX

m m = 1, · · · ,M
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being σ(k)
j

2
the j-th diagonal element of Σ̃

2

k as from (5.7).
It is possible to solve this convex optimization by the interior point algorithm.
If instead we are interested in a SPC, the individual constraints for power allocation
are replaced by a sum-power constraint

K∑
k=1

Pk ≤
M∑
m=1

Pk,m = PMAX (5.13)

that can be solved using the Waterfilling algorithm (Appendix A). We highlight that
since (5.12) is more restrictive that (5.13), its optimal value will result in equal or worst
performance.

Performance results

We present now some results in Figure 5.1. MET proves to be a powerful and fast
method to create an interference free subspace with few information about the sys-
tem and without need to alternate the design procedure between Tx and Rx, since a
closed-form solution is available. It complexity is then affected only by SVD opera-
tions, that have to be performed both at Tx and Rx, since no information exchange is
required between different Tx users that could be eventually separate entities. Indeed,
each Tx simply avoid to cause interference towards not-intended users while each Rx
align its receiver subspace to the most favorable direction w.r.t. its own Tx. In gen-
eral, this could not be the best strategy and we will see later in this work other way
to reduce interference to other users and optimize the signal subspace at the same time.
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Figure 5.1: MET scheme with Rayleigh channel, effect of number of stream allocated
for each user.

Since MET pursuits a zero forcing (ZF) solution, condition (5.3) needs to be verified in
order to apply (5.5). Of course, relaxing the ZF condition would allow to apply MET
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also in case where a perfect interference alignment is not possible. In particular, from
(5.4) we can decide to take R̃

(0)

k as the last d right singular vectors of H̃k, even if not
all associated with null-modes. However, this would result in very poor performance.
In Fig. 5.2 we compare two cases in which we keep fixed all system parameters but
the number of Tx and Rx antennas, so that in one case (5.3) is not fulfilled and
residual interference strongly limits the achievable sum-rate. This because the design
procedure takes care only on avoiding interference between different users and does not
pay attention that the selected signal subspace is favorable for the transmission.
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Figure 5.2: MET scheme with Rayleigh channel, effect of ZF condition.

Finally, no relevant differencies has been noticed between the downlink and the point-
to-point case.

5.2 Minimum Interference-plus-Noise Leakage

In [21], the optimization problem is minimization of interference-plus-noise leakage
(INL) caused by both user belonging to the system and interfering users that do not
participate to the coordinated set of nodes, and thus referred as uncoordinated interfer-
ence, so that we can overlap our coordinated interference to such coloured noise. This
represents somehow a generalization of classical IA, where the noise is assumed white
and all interferers participate to the alignment process.
For each user, we seek a subspace for which the interference cause by other transmission
is minimum, and denote its orthonormal basis with Φk.
We can therefore use Φk to project the received signal into the useful space, removing
what is liying outside, and then a linear filter Gk to suppress intra-stream interference,
so that our receiver filter will have the form Uk = GkΦk.
As in previous cases, we start by defining a cost function to represent our INL as follows
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IINL =
K∑
k=1

E

∥∥∥∥∥ΦH
k

(∑
`6=k

Hk,`V` + n`

)∥∥∥∥∥
2

2

 (5.14)

where the expression inside brachet is the term (3.13) that takes into account the
interference and noise affecting the useful signal.
Expanding the expectation and considering assumptions in (3.1), (5.14) becomes

IINL =
K∑
k=1

∑
` 6=k

∥∥ΦH
k Hk,`V`

∥∥2
2

+ tr
(
ΦH
k ΞkΦk

)
(5.15)

We can now write our objective function as

minimize IINL (5.16)

subject to VH
` V` =

P`
d
I, ` ∈ {1, · · · , K} (5.17)

ΦH
k Φk = I, k ∈ {1, · · · , K} (5.18)

where (5.17) takes into account the power constraint of each user as defined in (3.2).
Again, using (5.9) we further expand IINL in

IINL =
K∑
k=1

∑
6̀=k

tr
[
ΦH
k

(
Hk,`V`VH

` H
H
k,` + Ξk

)
Φk

]
(5.19)

The optimization is performed in the following way. Beamformers and combiners are
alternatively updated so that the first will transmit over the subspace where it creates
less interference to other users, while the latter will adapt the receiver’s subspace to
the one that sees less interference from other users. In particular, after initialization
of combiners, e.g. chosing from the left singular vector of the channel matrix, we can
update the beamformer matrix with the following rule

V opt
` = νdmin

(∑
k 6=`

HH
k,`ΦkΦ

H
k Hk,`

)
. (5.20)

where we recall νdmin (A) is the matrix whose column are the eigenvectors corresponding
to the d smallest eigenvalues of matrix A. Once we have updated the beamformers,
we can use them to compute new values for combiners by means of the following

Φopt
k = νdmin

(
Ξk +

∑
`6=k

Hk,`V`VH
` H

H
k,`

)
. (5.21)

The two relations are then alternatively applied until convergency is reached.
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Performance results

INL is a very light and fast algorithm and it does not require any knowledge a part
from the cascade of beamformers/combiners with the cross channels, that can however
easily collected by means of pilot sequence transmitted from Tx to Rx and back again.
Every user can apply the update rule on its own and no information exchange is needed.
Simulations show that INL behave quite well in situations where a ZF solution exists,
but far from the performace offered by MET scheme, as can be seen in Fig. 5.3. In this
situation, the convergency of the algorithm is really fast where ZF is possible while
it need hundreds of iteration for more complex systems. A possible factor affecting
performance could be the fact that while with MET the receivers were fixed to the
leftmost singular vectors of the direct channel, so taking advantage from the best
channel gains, in this case the Rx update rule can bring the receiver subspace on a
shadowed alignment, even if with no interference.
However, if we test it in situations where perfect IA is not possible, we found that
INL still gives good results with a relatively low computational cost at least for low
SNR. At high SNR, we found that the residual interference becomes comparable to
the noise power and therefore the sum-rate reaches asymptotically a maximum value,
that depends on the number of iterations. The iterative approach becomes therefore
relevant at high SNR and when ZF is not possible, as can be seen in Fig. 5.4.
Finally, in Fig. 5.5, we note that in the downlink case, so when the cross-channels are
actually equal to the direct channel, the performance of INL are far lower than for the
PP case.
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Figure 5.3: Comparison between INL and MET scheme considering a Rayleigh channel.
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Figure 5.4: Effect of iterations for the INL scheme.
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Figure 5.5: Comparison between the downlink and the point-to-point case with
Rayleigh channel.

5.3 Maximum SINR

We have already shown a simple method for IA in Section 3.2, where channel reci-
procity was used to update beamformers and combiners applying the same rule by
simply switching the transmission direction. In [13] it is presented an evolution of such
algorithm where the target is to maximize the SINR for each user instead of simply
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avoiding interference. In fact, INL seeks to create an interference free subspace of the
required number of dimensions but, in general, it makes no attempt to maximize the
desired signal power within the selected subspace. Indeed, in the algorithms presented
in Sections 5.1 and 5.2, the direct channel, Hk,k, does not participate in the inter-
ference suppression procedure, resulting possibly in bad subspace choices as pointed
out in Section 3.2. To take into account this last aspect, the new update rule will
be the MMSE of (4.8). The steps to follow are listed in Algorithm 1. We recall that
this procedure is based on the assumption that the channel can be reversed by setting←−
Hk = HH

k , where the arrow state that we are considering the channel that goes from
te receiver to the transmitter. Even if this assuption allows an easier implementation
of the algorithm and makes possible to run it entirely at the transmitter side, it should
be verified case by case. As already explained in Section 3.2, on the transmitter side,
if signals from Rx users are received along a certain direction, transmitting on that
direction will affect in the same way the signal received by Rx users. For that reason,
aligning the beamformer over the highest SINR dimension involves that transmitting
on that direction will reduce interference and maximize signal power at the same time.

Algorithm 1 Max-SINR algorithm
1: Initialization:
2: Start with arbitrary precoding matrices Vk, with linearly independent column vec-

tors.
3: while ulk(t),v

l
k(t) reach convergency do

4: for all k ∈ {1, · · · , K} and l ∈ {1, · · · , d} do
5: Update receive combining vectors Uk with (4.3)
6: Reverse the communication direction (

←−
Hk = HH

k ) and use the receive com-
bining vectors as beamformers:

←−
Vk = Uk

7: Update receive combining vectors
←−
Uk with (4.3)

8: Reverse the communication direction and use the receive combiner vectors
as beamformer vectors: Vk =

←−
Uk

9: end
10: end

Performance results

SINR maximization can appears a selfish strategy to employ in a cooperative network,
but it is instead a very powerful approach thanks to the exploitaion of the simmetric
property of the channel. The update rule for the receiver is in fact the most intuitive
way to design a combiner, that is choosing the subspace with the highest SINR. In
Figures 5.6 and 5.7 we see the behavior of the MAX-SINR approach compared to the
INL scheme with different streams allocated among users. We see that the MAX-SINR
method clearly outperforms the INL scheme, especially when the allocated streams
overload the system.
Regarding the implementation aspects, we need few dozen more iteration than with
INL, but since are not involved operation like SVD we still have an acceptable com-
putational cost. The update process can also in this case be performed independently
by each user since the same kind of knowledge of the SINR algorithm is required.
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Figure 5.6: Comparison between INL and MAX-SINR performance with Rayleigh chan-
nel.

However, the channel reciprocity assumption may not be always valid and need to be
verified, while the alternation between the direct and the inverse channel requires pilot
sequences to be employed.
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Figure 5.7: Comparison between INL and SINR performance with Rayleigh channel.

Also in this case, as can be seen in Fig. 5.8, we see a consistent performance gap
between the downlink case and the point-to-point one. But differently to the INL
algorithm, the difference appears only in network with many users, while it is absent
for less crowded situations.
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Figure 5.8: Comparison between the downlink and the point-to-point case with
Rayleigh channel.

5.4 Weighted-Sum-Rate Maximization

This design approach, firstly described in [17] without the employment of weighting
coefficients and then improved in [18], aim at maximizing the system sum-rate, i.e. the
system rate given by the sum of the single user rates, defined as follow

R̃sum = Kd
K∑
k=1

d∑
l=1

wlkRl
k (5.22)

whereRl
k is the achievable rate of the single stream (3.8) and wlk is the weight associated

to the stream l of user k with the constraint
∑
∀(k,l)w

l
k = 1.

The maximization problem is therefore

max
vlk
R̃sum (5.23)

s.t. ‖vlk‖22 = 1

For the beamformer desing it is made the assumption that each receiver makes use of a
virtual combiner, despite of the actual implementation used. This will make possible to
design the beamformer entirely at the transmitter side, without the need to alternate
the design between transmitter and receiver. Such virtual combiner is a MMSE linear
filter, whose design criterion has been described in Section 4.3.
For a given weight {wlk}, the Lagrangian optimization of (5.23) yield the following
condition for the beamformer design:

Υ̃
l

kv
l
k = λ̃lkv

l
k ∀(k, l) (5.24)

where λ̃lk is the Lagrangian multiplier.
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By introducing the following quantities

γnj =
1[(

unj
)H

Ξ(k,l)unj
] (5.25)

B(j,n)
(k,l) = γnj (Hj,k)

H unj
(
unj
)H Hj,k, (5.26)

A
(j,n)
(k,l) = 1 + γnj

∑
∀(j,q)6=(k,l)

∣∣∣(unj )H Hj,iv
q
i

∣∣∣2 , (5.27)

C
(j,n)
(k,l) = 1 + γnj

∑
∀(i,q)6=(k,l)
∀(i,q)6=(j,n)

∣∣∣(unj )H Hj,iv
q
i

∣∣∣2 , (5.28)

B̄(j,n)
(k,l) =

B(j,n)
(k,l)

A
(j,n)
(k,l)

, (5.29)

B̃
(j,n)

(k,l) =
B(j,n)

(k,l)

C
(j,n)
(k,l)

, (5.30)

Υ̃
l

k can be expressed as

Υ̃
l

k =
∑
∀(j,n)

 wnj B̄
(j,n)
(k,l)[

1 +
(
vlk
)H B̄(j,n)

(k,l)vlk
]
− ∑

∀(j,n)6=(k,l)

 wnj B̃
(j,n)

(k,l)[
1 +

(
vlk
)H B̃

(j,n)

(k,l)vlk
]
 (5.31)

for j ∈ {1, · · · , K}, n ∈ {1, · · · , d}.
Although the condition in Eq. (5.24) is in the form of a standard eigenvalue problem,
the matrix Υ̃

l

k depends on the set of precoders vlk and a closed-form solution for such
a problem is not available. Therefore, iterative procedures emerge as the only way to
find an optimal solution.
The use of weights for the rate control of each stream is a classical strategy to adapt
each link to its maximum achievable capacity, in particular the following weight design
is based on the sum-rate defined in (5.22).
First of all, we write (5.22) as

R̃sum = Kd

Kd∑
p=1

wpRp (5.32)

being wp = wlk and Rp = Rl
k, defining p = (l + (k − 1)d).

The single weights are then defined w.r.t. the sum of all other user’s rates in the
following way

wk =
Rk∑Kd
j=1Rj

(5.33)

It can be verified 1 that when it is wk = wEQk = 1
Kd

, i.e. when all users have the same
weight, the sum-rate is minimum.

1 By recalling the Holder’s inequality
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The weights update will work in the following way: initially for all users and all stream
wlk = 1

Kd
. The transmitter, after the optimization procedure considering the virtual

combiner, sends the intended data streams to user k, which is employing a matched or
mismatched combiner w.r.t. the virtual one. The receiver will therefore compute a new
value for its weight, based on the actual combiner implemented and on the beamformer
(5.33).
In Algorithms 2 and 3, the pseudo code of the design procedure is presented. In
particular, the first focus on the weight update process that optimize the results given
by the second, where the design of beamformer is described.
In Algorithm 3, the loop performed over the SNR range plays an important role in
the reserch of a good local maximum for the beamformer vectors as it attempts to
track a local optimum as the SNR is incrementally increased from zero. In fact, as
explained in [15], this is motivated by the observation that as the SNR tends to zero, the
noise dominates the interference, so that the optimal beams Vk tends to the principal
eigenvectors of the direct channel HH

k Hk. Furthermore, as the SNR tends to infinity,
the set of local optima correspond to ZF (interference aligned) solutions (which depend
only on the cross-channel matrices). The set of beams that maximize the sum utility
at high SNRs should therefore be close to a ZF solution where the beams aligned are
as closely as possible to the low-SNR solution. This intuition is illustrated in Fig.
5.9, where, for illustrative purposes, it is assumed that the optimization problem is
one-dimensional.

Algorithm 2 Alternation-free multi-stream iterative IA Algorithm
1: procedure at transmitter side
2: Initialization:
3: wlk ← 1

Kd
, k = {1, · · · , K} l = {1, · · · , d}

4: while ulk(t),v
l
k(t) reach convergency do

5: With the current value of wlk, apply Algorithm 3
6: Recalculate wlk from (5.33) using equalizers and beamformers found in Al-

gorithm 3
7: end
8: Transmit data using beamformers vlk
9: procedure at receiver side
10: Computes u according to the design criterion employed.
11: Recalculate wlk , from (5.33), using the actual combiner employed at Rx

Q∑
k=1

|ckdk|2 ≤

(
Q∑

k=1

|ck|p
)1/p( Q∑

k=1

|dk|q
)1/q

, s.t.
1

q
+

1

p
= 1

where ck and dk are any complex numbers. For q = p = 2, dk = 1, ck = Rk, ∀k, we obtain

Kd∑
k=1

Rk ≤

(
Kd∑
k=1

R2
k

)1/2

(Kd)
1/2 (5.34)

⇒ 1

Kd

Kd∑
k=1

Rk =

Kd∑
k=1

wEQ
k Rk ≤

∑Kd
k=1R2

k∑Kd
k=1Rk

=

Kd∑
k=1

wkRk (5.35)
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Algorithm 3 Beamformer Design
1: procedure at transmitter side
2: Let Ω(t) and Ψ(t) be a multidimensional matrix recording, respectively, the

current values for beamformer and combiner of all users
3: Initialization:
4: t← 0
5: vlk(0)← ν1max

(
HH
k,kHk,k

)
,∀(k, l)

6: Ω(0)← {{v1
1(0), · · · ,vd1(0)}, · · · , {v1

K(0), · · · ,vdK(0)}}
7: Ψ(0)← {{u1

1(0), · · · ,ud1(0)}, · · · , {u1
K(0), · · · ,udK(0)}}

8: Γ← 0
9: while Γt < Γmax do
10: while ulk(t),v

l
k(t) reach convergency do

11: t← t+ 1
12: for all k ∈ {1, · · · , K} do
13: for all l ∈ {1, · · · , d} do
14: Using Ω(t− 1), use (4.8) to determine ulk
15: end for
16: end for
17: Ψ(t)← Ψ(t− 1)
18: for all k ∈ {1, · · · , K} do
19: for all l ∈ {1, · · · , d} do
20: if k = 1 && l = 1 then
21: Update Ω(t) = Ω(t− 1)

22: end if
23: Using Ψ(t) and Ω(t) , apply (5.24)
24: Update Ω(t) with the new values of vlk(t)
25: end for
26: end for
27: Γt+1 ← Γt + ∆Γt

28: end while
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Figure 5.9: For low SNR (left), the optimal beamforming strategy is easily found and
consists of using the principal eigenvectors of the Gramians of the direct channels. At
high SNR (right), there are many local optimizers which depend only on the cross
channels. The best aligned solution is the one with the highest high-SNR offset r,
which depends only on the direct channels. We are therefore interested in finding
aligned solutions that are close to the low-SNR optimal strategy.

Performance results

The simulations shows that this algorithm perform quite well and performances get
close to MAX-SINR, at least for low values of SNR. However, it comes at a very
high computational cost. We have seen that Eq. (5.24) needs an iterative procedure
to be solved, while the beamformers and combiners design alternation needs about
800 iteration to converge, as shown in [18]. Moreover, we might wonder whether the
optimization procedures proposed are actually valuable for practical application. We
have mentioned that the iteration performed over different values of the SNR was a
way to obtain beamformers that was optimum or near-optimum for both low and high
noise levels, but it is in doubt the advantage of design beamformers that are suitable for
tens of different dB values but valid only for a given channel realization at the price of
repeating several times the design procedure. In the previous algorithms treated in this
work, by initializing beamformers as the principal eigenvectors of the direct channel,
we obtained good values at low SNR, i.e. less than 20dB, with few iteration. The same
holds for WSR, so that considering SNR in the design procedure is not always needed.
Finally, we want to consider the effect of the weights strategy on the system sum-rate.
In the paper, the author claims that the weights are needed to deal with mismatches
of receiver combiners from the virtual combiner that is assumed at the transmitter,
but it seems a very particular situation to have a system where receiver can imple-
ment different types of combiner. Moreover, when all the receivers are matched to the
MMSE virtual one assumed for the beamformer design, no improvements are observed.

In Figure 5.10 it is reported an example of the performance achieved in the point-to-
point configuration, while in Figure 5.11 the same results are shown for the downlink
case. As in previous algorithms, when the transmitters belong to the same physical
location, the overall throughput is affected from the high correlation between direct
channel and cross-channels.
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Figure 5.10: Performance of the WSR scheme in a PP scenario with Rayleigh channel
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Figure 5.11: Performance of the WSR scheme in a DL scenario with Rayleigh channel



38 Chapter 5. Beamformer design methods



Chapter 6

Results

As we have seen in Section 2.2, the MMW channel is characterized by a high correlation
between antennas, due mostly to the fact that signals propagates from Tx to Rx across
few rays, three in our case, and with similar delay and angle of arrival (AoA). One of the
consequences is a channel matrix where the diversity offered by the channel is limited.
In particular, our channel matrix will have a constant rank, equal to the number of rays
that reach the receiver, independently from the size of the antenna array. Under this
point of view one could wonder what is then the advantage of increasing the number
of antennas when the diversity provided will not be affected. The reason can be found
by analysing the gain provided by its non-null modes. In fact, as can be seen from
Fig. 6.1, we can note that the magnitude of the eigenvalues of our channel matrix is
increasing together with the number of antennas composing the arrays.

1 2 3
0

5

10

15

20

25

30

35

40

45

50

55

modes

S
in

g
u

la
r 

V
a

lu
e

s
 P

o
w

e
r 

[d
B

]

Magnitude of eigenvalues for different MMW channel matrix sizes

 

 

M=N=64

M=N=128

M=N=256

M=N=512

Figure 6.1: Magnitude of the eigenvalues of the MMW channel matrix for different
array sizes.

Moreover, in Fig. 6.2, where is shown the same aspect over a classical Rayleigh fading
channel, it is of interest to note how the magnitude of the eigenvalues remains constant
among the modes and that this value is several decibels lower than the correspondent
modes of the MMW channel. However, it would be wrong to think that the MMW
channel has somehow advantages w.r.t. the classical Rayleigh fading. In fact, we have
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shown only the first three modes, that are the only non-null modes for the MMW
channel, but we should keep in mind that a Rayleigh fading channel matrix is always
full rank and therefore has as many different modes as the number of antennas com-
posing the arrays. For this reason, it is believed that it would be not fair to compare
performance between the two different channels by assuming the same transmission
rank, that in the MMW case is limited to the number of existing rays. Instead it is
reasonable to compare the two channels with the higher number of modes that each
can support.
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Figure 6.2: Magnitude of the eigenvalues of the Rayleigh channel matrix for different
array sizes.

In Figures 6.3 and 6.4 it is compared the sum-rate achieved by the MET algorithm
[20] over the two considered channel when, respectively, three and twenty modes are
employed for the transmission and considering antenna arrays of M = N = 256 ele-
ments. Power allocation is performed by applying Water Filling, so that beamforming
over the MMW channel is actually performend using the only three non-null modes.
What happens is that with Rayleigh channel the sum-rate grows togheter with the sig-
nal subspace dimension, while the MMW channel available modes limit the maximum
achievable sum-rate. Of course, using massive antenna arrays over the normal ultra
high frequency (UHF) spectrum would mean having a huge array size that would not
be suitable for portable devices. On the other hand, we have seen that the single modes
are more powerful in the MMW, so that it slightly ouperforms the Rayleigh channel
when the same number of modes are considered and the gap between them scale with
the number of antennas composing the arrays since the growth rate of modes magni-
tude is higher for the MMW. We can therefore think that system at MMW could be
more suitable for situation in which many users that don’t require excessive bandwidth
have to share the same channel.
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Figure 6.3: System sum-rate with MET scheme [20] over MMW and RYL channels,
when three streams per user are considered.
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Figure 6.4: System sum-rate with MET scheme [20] over MMW and RYL channels,
when twenty streams per user are considered.
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The same results hold for the other algorithms, as can be seen from Figures 6.5 and
6.6, where the Rayleigh channel provides higher rates thanks to the diversity that can
offer.
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Figure 6.5: System sum-rate with INL scheme over MMW and RYL channels.
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Figure 6.6: System sum-rate with SINR scheme over MMW and RYL channels.

Now that we have analysed pros and cons of the MMW channel, we can take a look
over the behavior of the different algorithms considered and try to understand what
strategies can better exploit its properties. In the following figures, all the method
previously explained are compared in different system configurations and for antenna
arrays of M = N = 128 elements. In Figures 6.7 and 6.8 we compare the difference
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with the Rayleigh channel. In both scenarios the relative performances are similar
and all methods but the INL one reach the same sum-rate. Indeed, we are in a very
favourable situation, since the possibility of using a huge number of antennas compared
to the transmission order implies a high order of degrees of freedom (DoF) in which
align the interference components.
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Figure 6.7: Sum-rate achieved by all considered algorithms with the MMW channel
with a low number of users (four Tx/Rx pairs).
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Figure 6.8: Sum-rate achieved by all considered algorithms with the RYL channel with
a low number of users (four Tx/Rx pairs).

A different trend appears when the number of users increase. As can be seen from
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Fig. 6.9, while MAX-SINR and WSR are able to withstand these conditions, MET
suffers from the reduced available space in which accomondate every single user. As
said before, this is probably due to the limited degrees of freedom offered by the
MMW channel, that prevent to find enough space to accomodate signal and interferers
in separate subspaces so in that particular situation the best approach would be to
consider also the gain provided to the desidered signal instead of take care only to
cancel interference.
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Figure 6.9: Sum-rate achieved by all considered algorithms with the MMW channel
with a high number of users (sixteen Tx/Rx pairs).

To complete our results discussion, we show the behavior of the studied algorithms
when a downlink scenario is considered. In Figure 6.10 we can compare the sum-
rate achieved when the different transmitters share the same antenna array with the
corresponding PP case shown in Figure 6.7.
As we can see, the MET algorithm does not changes remarkably its behavior between
the two cases, like in the Rayleigh channel, but surprisingly also the MAX-SINRmethod
is capable of mantain its performances with the DL case, differently from what seen
in the Rayleigh fading case (Figure 5.8). The INL and the WSR algorithms, on the
other hand, are annihilated by this situation. Focusing furthermore on the MET and
MAX-SINR methods in the DL scenario, we have that in more crowded network, as
reported in Figure 6.11, we see that performances are lightly affected if compared with
the ones found in Figure 6.9. In particular, MET is even improving its performance
(actually it has been originally designed for a DL scenario, differently from the others),
while for the MAX-SINR algorithm we don’t have the same performance gap as the
one given by the Rayleigh scenario of Figure 5.8. This is indeed an interesting situation
that can possibly represent an advantage of MMW channels.
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Figure 6.10: Sum-rate achieved by all considered algorithms with the MMW channel
considering a downlink scenario.
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Figure 6.11: Downlink case for the MET and MAX-SINR algorithms in crowded situ-
ations (sixteen Tx/Rx pairs).
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Chapter 7

Frequency Domain Equalization for
Wideband Channels

For a transmission over frequency selective channels, it is proposed a FS iterative block
decision feedback equalizer (FS-IBDFE) receiver that combines the advantages of FS
equalization, non-linear processing and FD implementation. The improvements given
by this receiver are: a) the extension of existing FD iterative equalization schemes con-
sidering a FS processing; b) the design of the FD equalizer coefficients minimizing the
mean-square error at the detection point; and c) a simple equalizer design procedure
where equalization coefficients are computed in closed form, without matrix inversions.
As an example, performance of the proposed scheme is assessed in a Rayleigh fad-
ing channel and it is seen that the FS-IBDFE significantly outperforms the FS-linear
equalizer (LE), the non-FS iterative block DFE (IBDFE) and the noise prediction FS
FD equalizer (NP-FS-FDE).

7.1 Introduction

Transmission over broadband channels yields ISI, which can be addressed by various
techniques at the receiver. The solution that minimizes the error probability is pro-
vided by a maximum likelihood sequence detector receiver [22], whose complexity grows
exponentially with both the number of equivalent channel taps and the constellation
size.
When equalization techniques are employed the complexity instead grows linearly with
the number of receive filter taps. A further complexity reduction is achieved by perform-
ing equalization in the FD, by using a block-based transmission format (cyclic prefix or
unique-word extended transmission) and applying discrete Fourier transform (DFT) on
the received block [23]. Indeed, it has been shown that best performance are achieved
by using non-linear equalization structures where filtering and detection are iterated
[24]. On the other hand, FS receivers yield better performance in dispersive channels,
as they prevent folding of the channel frequency response. They also allow a greater
flexibility in the choice of the sampling phase. FD equalization of FS signals has been
first proposed in [25] where however only LEs have been considered. Among other
receiver structures, FS-LEs have been also used in [26], while noise prediction config-
urations are proposed in [27]. Since performance evaluation will be compared to the
IBDFE of [28] and the NP-FS-FDE configuration of [27], a brief description of those
schemes is given, respectively, in Appendix B and C.
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7.2 Channel Model

We consider a transmission system where data symbols am, m = 0, 1, . . . are transmit-
ted from a transmitter filter, having impulse response gtx(t), through a Rayleigh fading
channel having impulse response gch(t), for which we define the equivalent impulse
response as

hch(t) = gtx ∗ gch(t), (7.1)

with energy

Ehch =

∫ ∞
−∞
|hch(t)|2dt. (7.2)

At the receiver front-end, additive white gaussian noise (AWGN) with power spectral
density (PSD) N0 is added to the transmitted signal that is finally received by a filter
with impulse response grx(t). The cascade of the transmit, the channel and the receive
filters will be denoted as

h(t) = gtx ∗ gch ∗ grx(t). (7.3)

The received signal is then sampled with a period Ts that represents the system time.
In Fig. 7.1 it is reported the scheme of the channel model just introduced.

am

T
gTx(t) gch(t)

⊕
wIN(t)

gRx(t)
x(t)

t0 + iTs

xi

Figure 7.1: Channel scheme.

As can be seen from Fig. 7.2, where is reported the equivalent channel scheme at
system time Ts = T/2, the signal after sampling at Rx can be written as

xi = vi + wi =

Nh−1∑
k=0

hksi−k + wi (7.4)

where, by a proper sampling phase, hi = h(iT/2), i = 0, . . . , Nh−1, and wi is the noise
term. In particular, wi is obtained by filtering a complex value zero-mean AWGN
w

(IN)
i , having power spectral density N0, with the receive filter having impulse response
{gi = grx(iT/2)}, with i = 0, . . . , Ng − 1.
By further defining as

Ma = E
[
|am|2

]
(7.5)

the average power of the transmitted data sequence, the signal-to-noise ratio at the
receiver front-end is equal to



7.3. System Model 49

am

T
↑ 2

si

Ts
hi

Ts

vi ⊕ xi

wi

gi

wINi

Figure 7.2: Equivalent channel scheme.

Γ =
Ms

N0/T
=
MaEhch
T

1

N0/T
=
MaEhch
N0

. (7.6)

Notation:

In the following chapter, the DFT over 2P samples of a signal in the time domain (TD)
ui, i = 0, . . . , 2P − 1, is denoted by its corresponding upper case letter, and DFT and
inverse discrete Fourier transform (IDFT) are defined, respectively, as

Up =
2P−1∑
k=0

uke
−j 2πkp

2P , ui =
1

2P

2P−1∑
k=0

Upe
j 2πip

2P , (7.7)

where j =
√
−1, and i, p = 0, 1, . . . , 2P − 1. The real part of x is denoted as <(x).

The complex conjugate of x is denoted as x∗ while the complex conjugate transpose of
vector v is vH . dxe denotes the ceiling of x.

7.3 System Model

Given a sequence of information bits, after encoding, interleaving and bit mapping,
symbols am, m = 0, 1, . . ., are transmitted at rate 1/T , and the signal after the receive
filter is sampled at rate 2/T . Let si be the upsampled version of am, i.e.,

s2m = am, s2m+1 = 0 (7.8)

for m = 0, 1, . . ..
The equalization structures that will be presented in the following sections require
a particular block transmission format, denoted pseudo noise (PN)-extended trans-
mission, which both removes the interference between blocks [see (7.9)] and forces the
convolution between data and equivalent channel impulse response to be circular, hence
processing at the receiver can be easily implemented in the FD [24]. In particular, data
symbols {dm} are organized into blocks of lengthM , and each block is extended with a
fixed sequence of L symbols, for example a PN sequence {qm}, m = 0, . . . , L−1, which
is assumed to be known at the receiver, providing blocks of size P = M+L. Therefore,
signal {am} of block ` can be written as am+`P = dm+M` for m = 0, . . . ,M − 1 and
am+`P = qm−M for m = M, . . . , P − 1, where the last L symbols are the PN sequence.
An additional PN extension is required before the first data block. Note that if 1/T
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S/P DFT IDFT P/S ↓ 2
xi

T/2

x0

x1

x2P−1

...

X0

X1

X2P−1

...

C
(l)
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(l)
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ū
(l)
m

T

Figure 7.3: feedforward part of the FS-IBDFE operating at T/2.

remains the transmission rate, the symbol rate of am will be now 1/T ′ = (M/P )/T ,
i.e., we are transmitting at a slower data rate. In the following we will assume that

L ≥ d(Nh − 1)/2e, (7.9)

so that by taking blocks of xi of size 2P , in each block the first 2M samples are
not affected by interference due to adjacent blocks. Therefore, without restrictions, we
focus on the transmission/reception of the first block, i.e., for xi with i = 0, . . . , 2P −1,
and we set the block index to zero, ` = 0.

7.4 Fractionally Spaced IBDFE

The FS-IBDFE scheme, operating on blocks of the received signal, is shown in Fig.s
7.3 and 7.4. The scheme performs iterated operations on each 2P -size block of the
received signal [28]. We denote with l = 0, 1, . . . , NI − 1, the iteration number. The
equalizer includes two parts: 1) the feedforward (FF) filter, with coefficients {C(l)

p },
p = 0, 1, . . . , 2P−1, in the FD, (see Fig. 7.3), which partially equalizes the interference,
and 2) the feedback (FB) filter, with coefficients {B(l)

p }, p = 0, 1, . . . , 2P−1, and output
{Z(l)

p } in the FD (see Fig. 7.4), which removes part of the residual interference.
In details, 2P -size blocks of xi are transformed by DFT and then multiplied by the FF
filter coefficients in the FD obtaining signal

Y (l)
p = C(l)

p Xp , p = 0, 1, . . . , 2P − 1. (7.10)

Then the output of the FB filter is summed to the FF output to obtain U (l)
p = Y

(l)
p +Z

(l)
p .

Lastly, U (l)
p is transformed by IDFT into {u(l)i }, which is downsampled to {ū(l)m }.

With regard to the FB part of Fig. 7.4, soft detection is performed on ū(l−1)m . Decod-
ing, re-encoding and bit mapping yield â(l−1)m , m = 0, 1, . . . ,M − 1. Next, {â(l−1)i } is
extended to size P by PN insertion as dm. By upsampling, {ŝ(l−1)i } is then obtained as
in (7.8). DFT follows, whose output is multiplied by the FB filter coefficients to yield
Z

(l)
p = B

(l)
p Ŝ

(l−1)
p for p = 0, . . . , 2P − 1.

Since Z(l)
p depends upon the detected data at iteration (l − 1), for l = 1, when no

detected data is available, we set

â(0)m = 0 , m = 0, 1, . . . ,M − 1 , (7.11)
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SDEB PN ins ↑ 2 S/P DFT
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Figure 7.4: feedback part of the FS-IBDFE operating at T/2. SDEB: soft detection,
decoding, re-encoding and bit-mapping.

while for m = M, . . . , P − 1, we have the PN sequence.

7.5 Design Method

As a criterion for the deign of the equalizer we consider the minimization of the MSE
at the detection point, i.e.,

J (l) =
1

P
E

[
P−1∑
m=0

|ū(l)m − am|2
]
, (7.12a)

under the constraint that the FB filter does not remove the desired component, i.e.,

P−1∑
p=0

B(l)
p = 0 . (7.12b)

Since the system is independent of the FF filter gain, we add the constraint

1

2P

2P−1∑
p=0

C(l)
p Hp = 1 . (7.12c)

Now, the solution to problem (7.12) is obtained by minimizing the Lagrangian function

J (l) + λ1

P−1∑
p=0

B(l)∗
p + λ2

[
1

2P

2P−1∑
p=0

C(l)∗
p H∗p − 1

]
, (7.13)

with respect to FF and FB coefficients, where λ1 and λ2 are the Lagrange multipliers
such that (7.12b) and (7.12c) hold. We now provide an expression of J (l) as a function
of the filter coefficients, and then derive a closed form solution to the minimization of
(7.13).
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7.5.1 MSE Computation

First, by using the Parseval’s theorem we obtain

J (l) =
1

P 2

P−1∑
p=0

J (l)
p , (7.14)

where J (l)
p = E[|Ū (l)

p −S̄p|2]. Note that, due to upsampling (7.8), Sp is periodic of period
P , and S̄p = Sp, while due to downsampling

Ū (l)
p =

U
(l)
p + U

(l)
p+P

2
, S̄p =

Sp + Sp+P
2

. (7.15)

Let M (l−1)
Ŝ

be the statistical power of Ŝ(l−1)
p , MS = PMa be the power of Sp, with Ma

the power of am and let

MW(IN) = 2PMw(IN) = 2PN02/T, (7.16)

with Mw(IN) the power of w(IN)
i . Let us define the average correlation between Sp and

Ŝ
(l−1)
p as r(l−1)

SŜ
= E[SpŜ

(l−1)∗
p ], for which estimation method [28, eq. (44)] is used, where

all signals are at T . Hence, when working at T/2 we assume the received signal and
the channel frequency response are given by, respectively, X(T )

p = (X
(T/2)
p +X

(T/2)
P+p )/2,

H
(T )
p = (H

(T/2)
p +H

(T/2)
P+p )/2, p = 0, 1, . . . , P − 1, with obvious meaning of the signals.

Expanding (7.14) and using the definitions of power and correlation, J (l) can be rewrit-
ten as

J (l) =
1

P 2

P−1∑
p=0


∣∣∣∣∣C

(l)
p Hp + C

(l)
p+PHp+P

2
− 1

∣∣∣∣∣
2

MS +

∣∣∣∣∣B
(l)
p +B

(l)
p+P

2

∣∣∣∣∣
2

M
(l)

Ŝ

+ 2<

[(
C

(l)
p Hp + C

(l)
p+PHp+P

2
− 1

)(
B

(l)
p +B

(l)
p+P

2

)∗
r
(l)

SŜ

]

+ MW(IN)

|C(l)
p Gp|2 + |C(l)

p+PGp+P |2

4

}
.

(7.17)

Note that the FB coefficients in (7.17) appear as Bp+Bp+P
2

. Hence, we assume Bp =
Bp+P , i.e., Bp is a periodic sequence of period P , inline with the fact that the FB filter
in the time domain is working at T rather than at T/2. Therefore, defining matrix
R

(l)
p and vectors q(l)

p , z(l)
p as

R(l)
p =


|Hp|2
4
MS + |Gp|2

4
MW

H∗
pHp+P

4
MS

H∗
p

2
r
(l−1)∗
SŜ

HpH∗
p+P

4
MS

|Hp+P |2
4

MS +
|Gp+P |2

4
MW

H∗
p+P

2
r
(l−1)∗
SŜ

Hp
2
rSŜ

Hp+P
2
r
(l−1)
SŜ

M
(l−1)
ŝ

 , (7.18)

q(l)
p =


H∗
p

2
MS

H∗
p+P

2
MS

r
(l−1)
SŜ

 (7.19)
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and

z(l)
p =


C

(l)
p

C
(l)
p+P

B
(l)
p

 , (7.20)

we obtain a compact expression of J (l)
p as a function of the equalizer coefficients as

J (l)
p = z(l)H

p R(l)
p z(l)

p − z(l)H
p q(l)

p − q(l)H
p z(l)

p +MS . (7.21)

7.5.2 Minimum MSE Equalizer Coefficients

For minimizing (7.13) we set its gradient w.r.t. zp to zero and obtain from (7.21)

R(l)
p z(l)

p − q(l)
p +


λ2H

∗
p/(2P )

λ2H
∗
p+P/(2P )

λ1

 =


0

0

0

 , (7.22)

p = 0, . . . , P − 1. By solving (7.22) (7.12b) and (7.12c) w.r.t. the FB filter coefficients,
we get

B(l)
p = −

r
(l−1)
SŜ

M
(l−1)
Ŝ

[
C

(l)
p Hp + C

(l)
p+PHp+P

2
− 1

]
. (7.23)

Inserting now (7.23) into (7.22), and defining

ζ(l−1) = 1−
|r(l−1)

SŜ
|2

M
(l−1)
Ŝ

MS

, (7.24)

γ(l)p = |Hp|2ζ(l−1) + |Gp|2
MW

MS

, (7.25)

L(l)
p =

 γ
(l)
p H∗pHp+P ζ

(l−1)

HpH
∗
p+P ζ

(l−1) γ
(l)
p+P

 (7.26)

the optimum FF coefficients solve the system of equations

α(l)L(l)
p

 C(l)
p

C
(l)
p+P

 =

 H∗p

H∗p+P

 (7.27)

where α(l) is such that (7.12c) is satisfied. Hence, for p = 0, . . . , 2P − 1, we write

C(l)
p =

κ
(l)
p

α(l)
, α(l) =

1

2P

2P−1∑
p=0

Hpκ
(l)
p , (7.28)

and various expressions of κ(l)p are obtained according to the properties of L(l)
p . Here

we focus on the case in which Hp and Gp have the same support and we consider the
two cases in which det(Lp) 6= 0 and det(Lp) = 0.
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Case det(Lp) 6= 0 for Hp 6= 0 and Hp+P 6= 0 In this case we have

κ(l)p = H∗p |Gp+P |2×
[
ζ(l−1)(|Hp|2|Gp+P |2+|Hp+P |2|Gp|2)+

MW

MS

|Gp|2|Gp+P |2
]−1

, (7.29)

where p = 0, 1, . . . , 2P − 1 and we note that both Hp and Gp are periodic with period
2P , i.e., Hp+P = Hp−P for p = P, . . . , 2P − 1, and similarly for Gp.

Case det(Lp) = 0 for Hp = 0 and any Hp+P In this case, from (7.10) the best
solution is

κ(l)p = 0 , if Hp = 0 . (7.30)

Case det(Lp) = 0 for Hp+P = 0 and Hp 6= 0 In this case, from (7.27) we have

κ(l)p = H∗p (γ(`)p )−1 . (7.31)

To summarize, based upon a previous detection data block, the correlation r(l−1)
SŜ

can
be estimated. Then, using {Hp} and {Gp}, p = 0, . . . , 2P − 1, the FF coefficients
can be determined by (7.29), (7.30), (7.31), and (7.28) with corresponding global MSE
J (l). It is important to note that the FF coefficients, for which (7.12c) holds, the
FB coefficients, as given by (7.23), automatically satisfy constraint (7.12b). Now,
processing of {Xp} and {Ŝ(l−1)

p } can start, to yield a new signal at detection point
which can be (soft) detected, decoded and re-encoded to provide {Ŝ(l)

p } and the whole
design procedure can be iterated once more. Note that the solution of the system of
equations (7.22) is more involved than the solution to IBDFE [28], as can be seen from
(7.29)-(7.31).

7.6 Numerical Results

For a quadrature phase shift keying (QPSK) transmission over a channel with a
Rayleigh fading typical urban model [29] a square root raised cosine filter with roll-off
factor 0.2 is considered at the transmitter, while an anti-aliasing filter is used at the
receiver [27, 30]. We set L = 72 and M = 952. Information bits are encoded by a
low density parity check (LDPC), with rate 2/3 and frame size of 64,800 bit. Over a
frame, the channel is assumed known and time-invariant. The FB output is recursively
updated as better data are produced by the cascade of the soft detector, decoder, en-
coder, bit mapper as in [28]. While FS-IBDFE and IBDFE of [28] update filters at each
iteration, in NP-FS-FDE of [27], the FF is given by a FS-LE and the FB is working
at T [30]. Note that at the first iteration FS-IBDFE and NP-FS-FDE yield the same
FS-LE receiver.
Figures 7.5 and 7.6 show the cumulative distribution function (CDF) of the bit error
rate (BER) for a SNR Γ = 4.5 dB, where Γ is as in (7.6). In the first it is highlighted
the effect of iterations on the decoding procedure, while in the latter comparison with
the other considered schemes is shown. We observe that the proposed FS-IBDFE sig-
nificantly outperforms all other solutions, showing at the same time the merits of filter
adaptation and FS operation at the receiver front-end. In fact, the IBDFE working
at T introduces folding of the equivalent channel frequency response before the FF,
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Figure 7.5: CDF of the BER for the FS-IBDFE scheme with an average SNR of 4.5
dB, at various iterations.

Structure CMUL

IBDFE 2CFFT(P ) + P + (NI − 1) [2CFFT(P ) + 2P ]

FS-IBDFE CFFT(2P ) + 2P + CFFT(P ) + (NI − 1) [2CFFT(P ) + 3P ]

NP-FS-FDE CFFT(2P ) + 2P + CFFT(P ) + (NI − 1) [2CFFT(P ) + P ]

Table 7.1: Computational complexity of the system in terms of number of complex
multiplications (CMUL) per data block. NI is the number of iterations and CFFT =
P/2 log2 P − P is the number of CMULs for an FFT of size P [28].

and this increases ISI. Moreover, filters of the NP-FS-FDE are designed assuming that
the data is known and are fixed for a given channel. Hence, the whole structure does
not make use on available information on data. Complexity of FS-IBDFE is higher
than that of the other two structures, as reported in Table 7.1. For example, with
P = 1, 024, at iteration one the FS structures have complexity 1.6 w.r.t. the IBDFE
operating at T . When more iterations are considered, the complexity of all structures
is very similar, e.g., the complexity of FS-IBDFE and NP-FS-FDE are 1.2 and 1.1
times w.r.t. to IBDFE at NI = 4 iterations, as can be seen from Table 7.2. On the
other hand, for the design complexity, the NP-FS-FDE must solve a linear system of
equations [30], while both FS-IBDFE and IBDFE require simple multiplications and
divisions.
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Figure 7.6: CDF of the BER for various equalization schemes with an average SNR of
4.5 dB, at iteration one (dashed lines) and iteration four (solid lines).

IBDFE FS-IBDFE NP-FS-FDE

NI = 1 9216 15360 15360

NI = 2 19456 26624 24576

NI = 3 29696 37888 33792

NI = 4 39936 49152 43008

Table 7.2: Number of complex multiplications involved in the considered structures, at
different iterations. P = 1024.



Chapter 8

Conclusions

We analysed the problem of multiplexing several users over the same physical chan-
nel using the interference alignment technique. This method ortogonalizes the signal
subspace spanned by the interfering signals coming from other users with the one in
which the intended signal is transmitted. Particular attention has been given to the
performance achieved by these algortithms over the MMW channel.

The results obtained with the MMW channel are encouraging for the future devel-
opment of next generation mobile networks over this band. The algorithms already
proposed for the classic Rayleigh fading channel behave quite well also in the MMW
scenario and provide therefore a start point for future improvements. In particular,
the peculiarity of the modes highlighted in Chapter 6 suggests that resource allocation
can be a relevant operation to optimize the filter design. In fact, waterfilling is a pow-
erful algorithm for power allocation in MIMO systems, but its effectiveness is limited
to situations where interference is completely removed, which is not always the case.
Moreover, cooperation between BSs can better exploit the limited degrees of freedom
offered by the MMW channel, since as we saw the considered algorithms suffer in the
downlink scenario where cross-channels are equal to the direct channel. A further per-
formance evaluation could be the simulation of a urban environment that takes into
account different distances between user and BSs as well as different fading statistics
due to obstacles or other particular conditions.
Furthermore, the new properties of the channel could be taken into account in the
design procedure of the RF part and of higher protocol stack levels, like medium access
schemes, since the narrow beam generated by the antenna arrays can make possible a
space-based division of the channel and many assumptions made in modern wireless
systems may be a limitation of the actual possibilities given by this new spectrum.

Finally, during my thesis I was also involved on a different research topic: how to
design a frequency domain equalizer for wideband channels, focusing in particular
on the FS-IBDFE, that allows a closed form expression of the equalizer coefficients.
Application of the FS-IBDFE solution to a typical broadband wireless transmission,
shows its effectiveness over both IBDFE and NP-FS-FDE, at the cost of a slightly
higher complexity.
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Appendix A

Waterfilling Algorithm

The waterfilling algorithm is a widely used method for power allocation in systems
where data symbols are transmitted via multiple sub-channels that experience different
fading. The name of the algorithm suggests the idea behind it, that is to compensate
channel impairments by assign to each subchannel the amount of power needed to
reach a reference level common to all channles, in the same way water finds its level
when filled in one of several communicating vessels.

Assume then to have a channel which consist of a set ofNc non-interfering sub-channels,
each corrupted by independent noise, called parallel channel, and a sum power con-
straint that has to be met. We want allocate power to each sub-channel, as stated in
(3.2), such that the total power constraint P is met. For a given set of power allocated
Pn, n = 0, ..., Nc − 1, the maximum rate of reliable communication is

Nc−1∑
n=0

log

(
1 +

Pn|h̃n|2

N0

)
bits/channel use, (A.1)

being h̃n the n-th sub-channel gain and N0 the noise PSD.
In order to maximize Eq. (A.1), we can find the optimal power allocation by solving
the optimization problem

CNc = max
P0,..,PNc−1

Nc−1∑
n=0

log

(
1 +

Pn|h̃n|2

N0

)
, (A.2)

subject to

Nc−1∑
n=0

Pn = P, Pn ≥ 0, n = 0, ..., Nc − 1. (A.3)

The optimal power allocation can be explicitly found by Lagrangian methods since
the objective function in (A.2) is jointly concave in the powers. Consider then the
Lagrangian

L(λ̄, P0, ..., PNc−1) =
Nc−1∑
n=0

log

(
1 +

Pn|h̃n|2

N0

)
− λ̄

Nc−1∑
n=0

Pn, (A.4)

being λ̄ the Lagrangian multiplier. The Kuhn-Tucker condition for the optimality of a
power allocation is
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δL
δPn

{
= 0 ifPn > 0

≤ ifPn = 0.
(A.5)

By defining x+ = max(x, 0), the optimal power level for subchannel n are given by the
following

P ∗n =

(
1

λ̄
− N0

|h̃n|2

)+

, (A.6)

where the Lagrangian multiplier λ̄ has to be chosen such that the power constraint is
met:

Nc−1∑
n=0

(
1

λ̄
− N0

|h̃n|2

)+

= P. (A.7)

N0

|h̃n|2

1
λ̄

Subchannel n

Figure A.1: Waterfilling power allocation for Nc sub-channels

We can now explain this methody using the analogy of water pouring. In Figure
A.1 a pictorial view of the optimal power allocation strategy is given. Think of the
sub-channels as many vessels where the value N0/|h̃n|2, plotted as a function of the
subchannel index in Fig. A.1, represent the bottom level. If we pour P units of water
into our vessels, that are communicating, the height of the water surface in every vessel
is equal to 1/λ̄. From this analogy cames the name waterfilling. Note that there might
be some sub-channels where the bottom of the vessel is above the water and no power
is allocated to them. In these sub-channels, the gain is too poor to be worthwhile to
transmit information. In general, the transmitter allocates more power to the stronger
sub-channels, taking advantage of the better gain level, and less or even no power to
the weaker ones. To find more informations, refer to [8].

In MIMO systems, waterfilling allocates power among the modes of the equalized chan-
nel matrix, that is, the equivalent channel matrix after beamforming and combining is
applied. If both intra-user and inter-user interference is removed, we have
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(U)HHV = diag{λ1, ..., λd}, (A.8)

being λi the eigenvalues ofHHH and thus the gains relative to the different modes. We
can therefore set λi = |h̃i|2 and apply the algorithm to the virtual subchannels provided
by the different modes of the MIMO channel matrix. In Algorithm 4 it is presented
the pseudo-code for the optimal power allocation choise provided by waterfilling.

Algorithm 4 Waterfilling
1: Initialization:
2: Let r be the number of modes (virtual subchannel), sorted in descending order

w.r.t. the SNR level.
3:

µ← 1

r

[
P +

r∑
i=1

N0

λi

]
(A.9)

4:

Pi ← µ− N0

λi
, i = 1, ..., r (A.10)

5: m← r
6: Procedure:
7: while Pi > 0, i = 1, ...,m do
8:

µ← 1

m

[
P +

m∑
i=1

N0

λi

]
(A.11)

9:

Pi ← µ− N0

λi
, i = 1, ...,m (A.12)

10:
Pi ← 0, i = m+ 1, ..., r (A.13)

11: if ∃ Pi ≤ 0, i = 1, ...,m then
12: m← m− 1

13: end
14: end

return Pi, i = 1, ..., r
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Appendix B

Non-FS Iterative Block DFE

The IBDFE scheme is equivalent counterpart of the FS-IBDFE with sampling rate
equal to the symbol period, i.e. Ts = T , as can be seen in Figures B.1 and B.2. In this
case, the MSE at detection point is given by

J (l) =
1

P
E

[
P−1∑
m=0

|ū(l)m − am|2
]

(B.1)

that, after applying Parseval’s theorem and taking the expectation, becomes

J (l) =
1

P 2

P−1∑
p=0

∣∣C(l)
p

∣∣MW(IN)

+ |C(l)
p Hp − 1|2MS + |B(l)

p |2M
(l−1)
Ŝ

+ 2<
[
B(l)∗
p

(
C(l)
p Hp − 1

)
r
(l−1)
SŜ

]
.

(B.2)

The minimization of (B.2) yields the solution for the FF filter, given by

C(l)
p =

k
(l)
p

1
P

∑P−1
k=0 Hkκ

(l)
k

, p = 0, 1, · · · , P − 1 (B.3)

where

k(l)p =
H∗p

MW |Gp|2 +MS

(
1− |rSŜ|

2

MŜMS

)
|Hp|2

. (B.4)

The FB filter will have instead coefficients equal to

B(l)
p = −

r
(l−1)
SŜ

MŜ

[
HpC

(l)
p − 1

]
, p = 0, 1, · · · , P − 1. (B.5)

We remark that at Ts = T , the noise power in the FD is given by

MW(IN) = PMw(IN) = PN0/T. (B.6)
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Figure B.1: feedforward part of the IBDFE operating at T .
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â
(l−1)
m

T

ŝ
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Appendix C

Noise Prediction DFE

A different feedback configuration from the one presented in Chapter 7 involves the
employment of a noise prediction filter. If we assume â(l)m = am, the input of the
feedback filter, that is dm = â

(l)
m −am, is colored noise. By removing the correlated noise

em from sm, we obtain ym that is composed of white noise, with minimum variance,
plus desired symbol am [31]. The system configuration is shown in Fig. C.1, where the
linear equalizer in the FD is determined as follow.
Let

C̄p =
H∗p

(|Hp|2 + |Hp+P |2) + MW

MS

. p = 0, · · · , 2P − 1, (C.1)

and

α =
1

2P

2P−1∑
k=0

HkC̄k, (C.2)

it is

Cp =
C̄p
α

p = 0, · · · , 2P − 1. (C.3)

xi

T/2
FFT {Cp} IFFT ↓ 2

um ⊕+

−
ym Soft

Detector
Decoder

Encoder

Symbol
Generator

âm⊕−
+

dm{−bm}
m = 1, ..., NFB

em

Figure C.1: NP-DFE system configuration

The noise prediction as a feedback filter of length NFB = L − 1, with coefficients
[0,−b1, · · · ,−bFB], can be found instead by the following system of equations
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NFB∑
m=1

(−bm)qn−m = qn, n = 1, · · · , NFB (C.4)

where q = {q0, · · · , qP−1} is the IDFT of

Qp =
1

|Hp|2 + |Hp+P |2 + MW

MS

p = 0, · · · , P − 1 (C.5)

If we denote with bold letters the vector given by the symbols of the whole transmission
block, i.e. x = {x1, x2, ..., xP−1}, the data sequence, after the IDFT , is downsampled
to yeld the vector s of length P .
The noise predictor will then predict interference due to preceding symbols from the
coloured noise affecting received signal. That is,

e = B · d (C.6)

where B is a P × P circular matrix whose first row is equal to

B[1,:] = [0 · · · 0 − bNFB − bNFB−1 · · · − b1] . (C.7)

The sequence that is being passed to the detector is then given by

y = u− e = u−B · d = u−B (u− â) (C.8)

from which the new estimated sequence is obtained and a new iteration can be per-
formed.
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