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”Okay. The answer to the ultimate question
of life, the universe, and everything is... 42”
The Hitchhiker’s Guide to the Galaxy

2



Abstract

In this thesis we will solve a conjecture on Fermi-Pasta-Ulam and Toda chains

written in the continuum limit N → ∞: this says that every first integral of the

Toda chain admits an extension to the 4th order in the perturbative parameter h

that is an approximated first integral of FPU.
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1 Introduction

Mathematical physics has come a long way since its birth in the 19th century: there
has been an enormous progress thanks to geniuses like Hamilton, Poincaré, Arnold,
Kolmogorov and Nekhoroshev. They have opened entire new sub-fields and research
branches with their results and their theorems. In recent years, KAM theory and inte-
grable systems theory have been applied to new systems and problems and this has led
to even more results and has also contributed to developments in other fields of mathe-
matics and mathematical physics.
In this thesis, we will stick mainly with integrable systems theory and with hamiltonian
perturbation theory. We will study, in particular, the connection between the Toda chain
and the Fermi-Pasta-Ulam (FPU) chain, because both systems still present open ques-
tions nowadays and because there have been interesting developments in recent years.
For example, Boris Dubrovin in [3] has proved that there is a small number of mass-
spring models in which first integrals can be extended to successive perturbative orders
and, fortunately, Toda chain is one of these. Moreover, in [7] the author has conjectured
that first integrals of Toda chain can be extended, in a suitable sense, to approximated
first integrals of FPU chain up to the fourth order of the perturbative parameter. This
thesis will be a natural sequel of this work and its main goal will be solving the con-
jecture. This will be an interesting step forward for a better understanding of FPU chain.

Let’s start with a brief historical and mathematical recap of the two systems.

FPU model The history of non-linear chains and integrable differential equations
began in the summer of 1953. In that year, Fermi, Pasta and Ulam performed the first
calculations on the ”MANIAC I” machine of Los Alamos laboratories with the aim of
studying the behaviour of one-dimensional chains of masses and springs with pairwise
forces that contained quadratic and cubic terms. This experiment is well described in
[4], where one can read that ”Fermi did some work on the ergodic problem when he was
young, and when electronic computers were developed he came back to this as one of
the problems computers might solve. He thought that if one added a nonlinear term to
the force between particles in a one-dimensional lattice, energy would flow from mode to
mode eventually leading the system to a statistical equilibrium state where the energy is
shared equally among linear modes (equipartition of energy)”.
Following their calculations, if we call qn the displacement of the n-th mass (with m =
1 ∀i = 1, . . . , N) and F (r) the force when the displacement of the spring is r, we can
write the equation of motion for the n-th mass as

q̈n = F (qn+1 − qn)− F (qn − qn−1) = F (rn)− F (rn−1)
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and the hamiltonian of the system as

HFPU(q, p) =
N
∑

n=1

(

p2n
2

+ VFPU(qn+1 − qn)

)

(1.1)

where VFPU(r) is the potential

VFPU(r) =
r2

2
+ α

r3

3
+ β

r4

4
+ γ

r5

5
+ . . .

with α, β, γ etc. constants. Fermi, Pasta and Ulam invented this ad-hoc problem with
the aim of studying a system which was simple from the physical point of view but
unmanageable with paper and pencil only. Their goal was also to begin the study of
nonlinear systems physics and the mathematics beneath them. As mentioned above, they
tried to observe the ”mixing” process and the ”thermalization” speed in the chain, that is
how the energy propagates in the chain as the time increases and finally becomes the same
for every particle. They started from an initial condition in which only the first harmonic
mode qn(0) = Bsin( πn

N+1
) was excited and, surprisingly, they discovered that this does

not happen: as the time increased, the energy was shared only between a few normal
modes instead of being gradually distributed among all of them. Indeed, they found that
only the first five harmonic modes were excited, while the others had negligible energies.
Further studies on the problem showed how FPU system also presents a recurrence:
”After what would have been several hundred ordinary up and down vibrations, (the
system) came back almost exactly to its original sinusoidal shape” ([4]).

Toda model The Toda chain is a one-dimensional nonlinear chain of masses and
springs with pairwise exponential potential. It was invented by Morikazu Toda in 1966.
In [8] we can read that “From the idea that the fundamentals of the mathematical meth-
ods for nonlinear lattices would be elucidated by rigorous results, I was led in 1966 to
the lattice with exponential interaction”. He looked for a “potential which admits inte-
gration of the equations of motion [...]. It is also required that the potential must have
some physical meaning, so that it really provides us with a mechanical system with wide
applicability. Under these conditions, many functions were tried”. These excerpts show
how the model was invented simply by trying out different potentials and finding out
which one of them most simplified the calculations.
The hamiltonian this time is

HToda(q, p) =
N
∑

n=1

(

p2n
2

+ VToda(qn+1 − qn)

)

with potential

VToda(r) =
1

λ2
(

e−λr − 1− λr
)
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where λ is a real number. In 1974 Flaschka and Henon independently proved that this
Hamiltonian system is integrable and its constants of motion can be explicitly described
(see [6] and [5]). In other articles it was shown how the Toda chain is an integrable
version of the FPU chain. This strong connection is still present in the continuum limit
N → ∞ and will be used further on this thesis. For now, let’s see it for N finite: we
take λ = 2α in the Toda potential (α coming from VFPU) and we expand it using Taylor
series around r = 0 obtaining

VToda(r) =
r2

2
+ α

r3

3
+ βToda

r4

4
+ γToda

r5

5
+ . . .

with βToda =
2
3
α2, γToda =

1
3
α3 etc.. We can thus write

VFPU(r)− VToda(r) =
(β − βToda)r

4

4
+

(γ − γToda)r
5

5
+ . . .

that shows how FPU is tangent to Toda up to order three. It is therefore possible to
study the first using the second, which offers a much more manageable model.

Let’s now begin our study with some useful definitions coming from hamiltonian pertur-
bation theory.

Definition 1.1 (Non-degenerate hamiltonian). An hamiltonian H0(I) which depends
only on its action variables is said to be non-degenerate if det(H ′′

0 (I)) 6= 0 ∀I ∈ D ⊂ Rn

Definition 1.2 (Generic perturbation). Consider a perturbed hamiltonian H(I, φ) writ-
ten in action-angle variables of the form

H(I, φ) = H0(I) + ǫH1(I, φ) + . . . (1.2)

where I ∈ D ⊂ Rn and φ ∈ Tn. We say that H1(I, φ) is a generic perturbation if its
Fourier series

H1(I, φ) =
∑

m∈Zn

H1m(I)e
im·φ

has H1m(I) 6= 0 ∀m ∈ Zn.

The next theorem says that, under generic perturbations, non-degenerate integrable
hamiltonians exhibit only trivial first integrals:

Theorem 1.1 (Poincaré’s theorem). Consider the perturbed hamiltonian 1.2. Suppose
that H0 is non-degenerate in D and that H1(I, φ) is a generic perturbation.
Then the only first integrals which can be written as power series in ǫ are functions of H

F (H) = F (H0 + ǫH1 + . . . ) = F (H0) + ǫF ′(H0)H1 + . . .

where F ∈ C∞(D × Tn), F : D × Tn → R and we used Taylor expansion in the second
passage.
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Therefore, degenerate hamiltonian under non-generic perturbations might have ex-
tensions of their first integrals from the unperturbed case to the perturbed one. This
is exactly the starting point of the theory developed by Dubrovin in [3] and in other
articles, which regards hamiltonian systems in both cases of finite and infinite degrees
of freedom. Luckily for us, Toda and FPU do not fulfil the hypothesis of Poincare’s
theorem, so we can hope to find extensions.
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2 Dubrovin’s theorem

Let’s consider again a one-dimensional chain of N particles that interact pairwise with
potential φ, function of the displacement between a particle and the next. If we agree to
call q1, . . . , qN the positions of the particles and p1, . . . , pN their velocities, this system
can be described by the hamiltonian

H(q, p) =
N
∑

n=1

(

p2n
2

+ φ(qn+1 − qn)

)

(2.1)

that ∀i = 1, . . . , N yield the following equations of motion
{

q̇n = ∂H(qn,pn)
∂pn

= pn

ṗn = −∂H(qn,pn)
∂qn

= φ′(qn+1 − qn)− φ′(qn − qn−1)

We are interested in the case N → ∞, for which we have the following

Proposition 2.1 (Extension to the continuum limit). The extension of 2.1 to the con-
tinuum limit N → ∞ is given by

H(V,R) =

∫
[

V 2

2
+ φ(R)− h2

24
V 2
x

]

dx+O(h4) (2.2)

= H0(V,R) + h2H2(V,R) +O(h4) (2.3)

where h = 1/N is the perturbative parameter.

Proof. (sketch) The generating function

F (q, s) =
N
∑

n=1

sn(qn − qn−1)

transforms 2.1 in

K(r, s) =
N
∑

n=1

[

(sn − sn−1)
2

2
+ φ(rn)

]

Being a canonical transformation, the Poisson tensor remains untouched and the new
equations of motion are

{

ṡn = ∂K(r,s)
∂rn

= φ′(rn)

ṙn = −∂K(r,s)
∂sn

= (sn+1 − 2sn + sn−1)

Defining h := 1
N
, x := hn and τ := ht we can interpolate sn and rn using two smooth

functions R and S as follows:
{

rn(t) = R(x, τ)

sn(t) =
S(x,τ)

h
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We are interested in the case of h small, so we can take advantage of Taylor expansion
in order to change again the equations of motion. After some minor manipulations (see
[3] or the appendix of [7] for further details) and after the last change of variables

{

V (x, τ) := Sx(x, τ)

R(x, τ) := R(x, τ)

we finally obtain the hamiltonian we were looking for.

We are now in the correct position to introduce the main theorem of this thesis, which
concerns first integrals of H0 and their second-order extensions.

Theorem 2.1 (Dubrovin’s Theorem). If in 2.2 the potential has the form

φ(R) = kecR + aR + b

where a, b, c, k are constants, one can find a second-order extension of the first integrals
of H0(V,R). These extensions are therefore approximated first integrals of H(V,R).

Proof. See Dubrovin’s article [3].

This theorem immediately tells us that the first integrals of the Toda chain are
extensible to the second order.

2.1 Extension

We have to introduce now some standard mathematical machinery used in the theory of
hamiltonian PDEs.

Definition 2.1 (Poisson brackets). Given two functionals F (V,R) =
∫

fdx and G(V,R) =
∫

gdx, their Poisson bracket is

{F,G} =

∫

(∇L2FJ∗2∇L2G)dx =

∫
[

δF

δR
∂x
δG

δV
+
δF

δV
∂x
δG

δR

]

where

∇L2f =

(

δf

δV
,
δf

δR

)

J∗2 =

(

0 ∂x
∂x 0

)

are respectively the L2 gradient (a vector with functional derivatives as components) and
the Poisson tensor in the coordinates (V,R).

Definition 2.2 (Euler-Lagrange operator). Given f(u(x)) ∈ C∞(D), where D ⊂ R, the
Euler-Lagrange operator is the operator that acts on f by the formula

Euf = ∂uf − ∂x∂ux
f + ∂2x∂uxx

f + . . .
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We want now to prove a simple result whose immediate corollary will be used through-
out the thesis.

Proposition 2.2. If F [u] =
∫

f(u)dx is a functional, F [u] is constant ∀u iff Euf = 0.

Proof. F [u] = const ∀u ⇐⇒ δF [u] = 0 ∀u.
Now, we know that

δF [u] =

∫

Euf(u)δudx

so that

δF [u] = 0 ∀u ⇐⇒
∫

Euf(u)δudx = 0 ∀u ∀δu

which means
δF [u] = 0 ⇐⇒ Euf = 0

Corollary 2.1. Two local functionals F =
∫

fdx and G =
∫

gdx commute with respect
to the Poisson bracket {F,G} if and only if

EV

(

δF

δR
∂x
δG

δV
+
δF

δV
∂x
δG

δR

)

= 0

ER

(

δF

δR
∂x
δG

δV
+
δF

δV
∂x
δG

δR

)

= 0

Let’s consider now a modification of 2.2

H̃(V,R) = H̃0(V,R) + h2H̃2(V,R) +O(h4) (2.4)

=

∫
[(

V 2

2
+ φ(R)

)

+ h2
(

ψ1(R)−
V 2
x

24

)]

dx+O(h4) (2.5)

Notice that the only difference between this hamiltonian and 2.2 is the presence of
ψ1(R) at the second order of perturbation. We take now into account a first integral
J0(V,R) =

∫

j0(V,R)dx of H̃0(V,R) and we look for conditions on a functional

J2(V,R) =

∫

j2(R, V,Rx, Vx, Rxx, Vxx)dx

such that J = J0 + h2J2 +O(h4) satisfies {J, H̃} = O(h4), i.e. it commutes with respect
to H̃ up to the second order. J is called the second-order extension of J0. The density
of J2, up to a total x-derivative, can be written in the following form (see [3])

j2 =
1

2
(a(V,R)R2

x+2b(V,R)RxVx+ c(V,R)V
2
x )+ p(V,R)Rx+ q(V,R)Vx+ d(V,R) (2.6)

At this point, we can state and prove the extension we were looking for.
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Theorem 2.2 (Extended Dubrovin’s theorem). If in 2.5 the potential has the form

φ(R) = kecR + aR + b

where a, b, c, k are constants, one can find a second-order extension of the first integrals
of H̃0(V,R). These extensions are therefore approximated first integrals of H̃(V,R).
Moreover, if j0 is the density of a first integral, the coefficients of 2.6 satisfy the following
formulas

a(V,R) = −j0V V R

6

φ′′(R)2

φ′′′(R)
b(V,R) = −φ

′′(R)2j03V (V,R)

6φ′′′(R)
(2.7)

c(V,R) = −φ
′′(R)j0V V R(V,R)

6φ′′′(R)
− 1

12
j0V V (V,R) (2.8)

pV = qR, dRR = φ′′(R)dV V + ψ′′
1(R)j0V V (2.9)

Proof. (sketch) One starts by imposing that

{J, H̃} = {J0, H̃0}+ h2({J2, H̃0}+ {J0, H̃2}) = O(h4)

and recalling that {J0, H̃0} = 0, one has to calculate the remaining terms. This can be
done with the help of a computer software. We used Wolfram Mathematica and obtained
the following functional

{J, H̃} = h2
∫

[

j0R
12
Vxxx +

1

2
(cR − 2bV )V

3
x +

φ′′(R)

2
(aV − 2bR)R

3
x −

1

2
(aR + 2cRφ

′′(R))R2
xVx

− 1

2
(cV φ

′′(R) + 2aV )RxV
2
x − aRxxVx − bVxxVx − bφ′′(R)RxxRx − cφ′′(R)VxxRx+

+ (qR − pV )V
2
x + φ′′(R)(pV − qR)R

2
x + dRVx + (dV φ

′′(R) + j0V ψ
′′
1(R))Rx

]

dx+O(h4)

Denoting I the integrand, we use Corollary 2.1 to transform the problem in the two
equations

EV I = 0 ERI = 0

Checking term by term, one can find the equations that make the coefficients vanish,
obtaining the formulas above. Finally, one recalls that j0 is the density of a first integral,
so it must satisfy

j0RR = φ′′(R)j0V V

and following the proof given by Dubrovin in [3], one arrives to the thesis. In [7] there
are further details.

Let us remark a few things:
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• The equation pV = qR tells us that p and q are linked together. Indeed, one can
write

p(V,R) = νR(V,R), q(V,R) = νV (V,R) ⇒ ∂xν(V,R) = pRx + qVx

for some function ν(V,R), so that p and q are components of a gradient. This tells
us that pRx+qVx form a total x-derivative, which can be discarded from j2 because
its integral vanishes.

• Consider now equation 2.9 for d. This has two unknowns (ψ1(V,R) and d(V,R)),
so one has to first fix ψ1(R) and then see if this equation admits a solution.

• We will use this theorem and the strong connection between Toda and FPU chains
to extend first integrals of the former (which will be our unperturbed system) to
approximated first integrals of the latter.

2.2 Harmonic oscillator case

Before moving towards FPU chain, we examine the special case of an harmonic oscillator
to see what results we obtain. The potential this time reads

φ(R) = ω
R2

2
⇒ φ′′′(R) = 0 (2.10)

Proposition 2.3. The coefficients of 2.6 in this case satisfy the following formulas:

a = ωc+
j0RR

12
bV = cR bR = ωcV pV = qR dRR = ωdV V +

γ

ω
ψ′′
1(R)

Proof. (sketch) We cannot immediately substitute 2.10 in the formulas we found when
extending Dubrovin’s theorem because, if we did, denominators would become zero. We
have thus to recalculate the Poisson brackets:

{J, H̃} = h2({J2, H̃0}+ {J0, H̃2}) = h2
∫

[

j0R
12
V3x − bVxxVx − ωbRxxRx − aRxxVx−

− ωcVxxRx −
(ωcV + 2aV )

2
V 2
xRx −

(aR + 2ωcR)

2
R2

xVx +
(cR − 2bV )

2
V 3
x +

+
ω

2
(aV − 2bR)R

3
x + (qR − pV )V

2
x + ω(pV − qR)R

2
x + dRVx+

+ (dV ω + j0V ψ
′′
1(R))Rx

]

dx+O(h4)

As before, we denote I the integrand and apply Corollary 2.1 to transform the problem
in the two equations

ERI = 0 EV I = 0

13



from which one can obtain the formulas the coefficients must satisfy and also some
constraints on j0:

j03R = j0RRV = j02R2V = 0

These yield (see [7]) that the unperturbed first integral must have the following form

J0(R, V ) =

∫

j0(R, V )dx =

∫
[

γ

ω

(

V 2

2
+
ω

2
R2

)

+ αV R + βR + δV + λ

]

dx

where α, β, γ, δ and λ are arbitrary constants. We can observe that this is simply a linear
combination of first integrals: in fact, the first term is the unperturbed hamiltonian,
whereas the other three are linked respectively to the translation symmetry, the total
momentum and the length of the system.
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3 Fourth-order extension to FPU

In this section we want to see how the previous results can be applied to FPU chain
in the continuum limit N → ∞ and how we can build up a 4th-order extension of first
integrals. We rely again on [7] to write the FPU hamiltonian in this case:

Proposition 3.1. The FPU hamiltonian in the continuum case N → ∞ is given by

KFPU(V,R) =

∫

[

(

V 2

2
+

1

ǫ
φToda(

√
ǫR)

)

+

(

ψ1(R)−
h2

24
V 2
x

)

+

+

(

ψ2(R) +
h4

720
V 2
xx

)

]

dx+O(h6) =

= K0(V,R) +K2(V,R) +K4(V,R) +O(h6)

where h = 1
N

and ǫ = E
N

are respectively the perturbative coefficient and the specific
energy of the chain and the potentials ψi(R) are given by the formulas































ψ1(R) = 0

ψ2(R) = ǫ∆βR4

4

ψ3(R) = ǫ3/2∆γR5

5

. . .

ψn(R) = ǫn/2∆gn
Rn+2

n+2

where ∆β = (β − βToda), ∆γ = (γ − γToda) etc..

Proof. (sketch) We start from the hamiltonian HFPU seen in the introduction and we
apply the same canonical transformation of proposition 2.1. Then we use the tangency
between Toda and FPU chains to write

KFPU(s, r) = KToda(s, r) +
N
∑

n=1

(

∆β
r4n
4

+ ∆γ
r5n
5

+ . . .

)

and, similarly as before, using h and ǫ we interpolate as follows:
{

sn(t) =
√
ǫ

h
S(τ, x)

rn(t) =
√
ǫR(τ, x)

Now, the change of coordinates
{

V (x, τ) := Sx(x, τ)

R(x, τ) := R(x, τ)

15



and minor manipulations (see [7]) lead to the hamiltonian KFPU , but we still need to
find the potentials ψn(R). To do this, first define Ωσ = {x ∈ C||Im(x)| ≤ σ} and for
fixed τ ∗ call

v = max
Ωσ

{|V (x, τ ∗)|, |R(x, τ ∗)|}

then apply Cauchy estimates (see appendix A) to V , R and their derivatives:

|V | ≤ v |Vx| ≤
v

σ
|Vxx| ≤ C

v

σ2
. . . |V (n)| ≤ C

v

σn

For consistency, potentials must satisfy the following estimates

ψn(R) ≤ C
h2n

σ2n
v2

and we recall that from Korteweg de-Vries equation studied in [1] we must have

σ ≤ h

ǫ1/4
C

We conjecture now ψi(R) are given by the formulas































ψ1(R) = 0

ψ2(R) = ǫ∆βR4

4

ψ3(R) = ǫ3/2∆γR5

5

. . .

ψn(R) = ǫn/2∆gn
Rn+2

n+2

This hypothesis is immediately proved correct because

ψn(R) = ǫn/2∆gn
Rn+2

n+ 2
≤ h2n

σ2n
v2C ⇒ σ ≤ h

ǫ1/4
C

and this concludes the proof.

Let’s now move on and let us truncate KFPU to the second order

KFPU(V,R) =

∫
[(

V 2

2
+

1

ǫ
φToda(

√
ǫR)− h2

24
V 2
x

)]

dx+O(h4)

ǫ is not a perturbative parameter and it can assume any positive value without affecting
our results. Therefore we set ǫ = 1

4α2 which gives 2α
√
ǫ = 1 and

1

ǫ
φToda(

√
ǫR) =

e2α
√
ǫR − 2α

√
ǫR− 1

4α2ǫ
= eR −R− 1
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KFPU has the exact shape that is needed in the extension of Dubrovin’s theorem. We can
thus apply the formulas given above to a density j0 of a Toda’s first integral to obtain
its second-order extension

j2(V,R) = −1

6
eRRxVxj03V (V,R)−

1

12
eRR2

xj0V V R(V,R)−
1

24
V 2
x j0V V (V,R)

− 1

12
V 2
x j0V V R(V,R)

(3.1)

In this section, we look for conditions on a density

j4 = αR2
xx + βRxxVxx + γV 2

xx + δRxxV
2
x + ǫR2

xVxx + µR4
x + νRxV

3
x + ρR2

xV
2
x + λR3

xVx

+ ωV 4
x +

1

2
ηR2

x + ξRxVx +
1

2
ζV 2

x + σ;

so that

J(V,R) = J0(V,R) + h2J2(V,R) + h4J4(V,R) =

=

∫

[

j0(V,R) + h2j2(V,R, Vx, Rx) + h4j4(V,R, Vx, Rx, Vxx, Rxx)
]

dx

gives {J,KFPU} = O(h6).

Theorem 3.1 (4th-order expansion). Given the hamiltonian KFPU and a first integral
J0 =

∫

j0dx of the Toda chain, one can find an extension to the fourth order that satisfies
{J,KFPU} = O(h6). Moreover, the coefficients of j4 satisfy the following formulas

α =
1

120
e2Rj04V − 1

720
eRj0V V R; β =

1

120
eRj03V +

1

60
eRj03V R;

γ =
1

720
j0V V +

1

180
j0V V R +

1

120
eRj04V ; δ =

j0V V R

1440
− 1

180
eRj04V ;

ǫ =
1

120
eRj03V +

1

72
eRj03V R; λ =

1

540
eRj03V R − 14e2Rj05V

2160
− 1

216
e2Rj05V R;

µ =
eRj0V V R

2160
− 1

360
e2Rj04V − 17e2Rj04V R

4320
− 1

864
e3Rj06V ;

ν = −j03V R

1440
− 1

144
eRj05V − 1

216
eRj05V R; ρ = −7eRj04V

1440
− 1

160
eRj04V R − 1

144
e2Rj06V ;

ω = − j04V
5760

− 1

864
eRj06V − j04V R

1080
; η = 0; ξ = 0; ζ = 0;

σRR = σV V e
R + 3j0V V∆βR

2

so that we end up with the density

j4 = αR2
xx + βRxxVxx + γV 2

xx + δRxxV
2
x + ǫR2

xVxx + µR4
x + νRxV

3
x + ρR2

xV
2
x + (3.2)

+ λR3
xVx + ωV 4

x + σ (3.3)
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Proof. (sketch) Similarly to the second-order extension, one has first to compute the
Poisson brackets

{J,KFPU} = {J0,K0}+ h2({J2,K0}+ {J0,K2}) + h4({J0,K4}+ {J2,K2}+ {J4,K0})

and recalling that {J0,K0} = 0 and that h2({J2,K0}+ {J0,K2}) = O(h4), one has only
to compute its 4-th order term and to impose

{J,KFPU} = h4({J0,K4}+ {J2,K2}+ {J4,K0}) = O(h6)

obtaining

{J,KFPU} = h4
∫

[

j0R
360

V5x + (βVx + 2γRxφ
′′
Toda)V4x + (2αVx + βφ′′

TodaRx)R4x −
a

12
V3xRxx−

− b

12
VxxxVxx +

(

4γRφ
′′
Toda −

aR
24

)

VxxxR
2
x +

(

4γV φ
′′
Toda + 2βR − 2ǫ− aV

12

)

VxxxRxVx+

+

(

2δ + 2βV +
cR
24

− bV
12

)

VxxxV
2
x + 4αVRxxxV

2
x + (2βV φ

′′
Toda − 2δφ′′

Toda + 4αR)RxxxRxVx+

+ (2ǫφ′′
Toda + 2βRφ

′′
Toda)RxxxR

2
x + (2αV + 2βR − 2ǫ)VxxRxxVx+

+ φ′′
Toda(2βV + 2γR − 2δ)VxxRxxRx + (5δV + βV V − 3ν)VxxV

3
x +

+ (4γRV φ
′′
Toda + βRR − ǫR − 3λ− 6νφ′′

Toda)VxxR
2
xVx+

+ (2γV V φ
′′
Toda + 4δR + 2βRV − 4ρ− 12ωφ′′

Toda − 2ǫV )VxxR
2
xVx+

+ 2φ′′
Toda(γRR + ǫV − ρ)VxxR

3
x + φ′′

Toda(βRR + 5ǫR − 3λ)RxxR
3
x + (2δR + 2αV V − 2ρ)RxxV

3
x +

+ (2δ + γR + βV )V
2
xxVx + 3γV φ

′′
TodaV

2
xxRx + φ′′

Toda(2ǫ+ αV + βR)R
2
xxRx + 3αRR

2
xxVx+

+ (βV V φ
′′
Toda − δV φ

′′
Toda − 3ν − 6λ+ 4αRV )RxxRxV

2
x +

+ (4ǫV φ
′′
Toda + 2βRV φ

′′
Toda − 2δRφ

′′
Toda − 4ρφ′′

Toda + 4αRR − 12µ)RxxR
2
xVx+

+ (δV V − νV + ωR)V
5
x + (2δRV − 2ρV − 3ωV φ

′′
Toda)V

4
xRx+

+ (δRR − 3λV − 2νV φ
′′
Toda − ρR − 4ωRφ

′′
Toda)V

3
xR

2
x+

+ (ǫV V φ
′′
Toda − 3νRφ

′′
Toda − ρRφ

′′
Toda − 2λR − 4µV )V

2
xR

3
x + (2ǫRV φ

′′
Toda − 2ρRφ

′′
Toda − 3µR)VxR

4
x+

+ (µV φ
′′
Toda − λRφ

′′
Toda + ǫRRφ

′′
Toda)R

5
x +

φ′′
Toda

2
(ηV − 2ξR)R

3
x −

1

2
(ηR + 2ζRφ

′′
Toda)R

2
xVx

− 1

2
(ζV φ

′′
Toda + 2ηV )RxV

2
x +

1

2
(ζR − 2ξV )V

3
x − ξφ′′

TodaRxxRx − ξVxxVx − ζφ′′
TodaVxxRx

− ηRxxVx + σRVx + (σV φ
′′
Toda + 3j0V∆βR

2)Rx

]

dx+O(h6)

One calls I the integrand (which can be calculated via computer software) and uses the
Corollary 2.1 to transform the problem in the two equations

ERI = 0 EV I = 0

18



from which one can obtain the equations that make the coefficient of j4 vanish. These
formulas are correct because they also appear in the fourth-order Toda hierarchy (see
[2]). As mentioned previously, in [7] one can find more details on the calculations.

3.1 Explicit extension and conjecture

In this subsection we will see the explicit extension of j
(2)
0 , j

(3)
0 and j

(4)
0 and we will also

describe the conjecture we will try to solve.
The two most important PDEs we have seen so far are

j0RR = eRj0V V (3.4)

σRR = σV V e
R + 3j0V V∆βR

2 (3.5)

The first gives us the first integrals j
(n)
0 of the Toda chain, which are equivalent to the

continuum-limit extension of Henon’s first integrals up to a multiplicative constant. See
[6] for their definition in the case of finite N and appendix C for their extension and

equivalence. The first five j
(n)
0 are

j
(2)
0 =

V 2

2
+ eR

j
(3)
0 =

V 3

6
+ V eR

j
(4)
0 =

V 4

6
+ 2V 2eR + e2R

j
(5)
0 =

V 5

30
+

2

3
V 3eR + V e2R

...

More generic formulas (separately for even n and odd n) are

j
(2n)
0 =

n
∑

l=0

C l
nV

2(n−l)elR, j
(2n+1)
0 =

n
∑

l=0

Bl
nV

2(n−l)+1elR

where the coefficients are given by

C l
n =

{∏n
m=l+1

m2

[2(n−l)]!
for l = 0, . . . , n− 1

1 for l = n
Bl

n =

{∏n
m=l+1

m2

[2(n−l)+1]!
for l = 0, . . . , n− 1

1 for l = n

The second PDE allows us to fully describe j4 and it is non-homogeneous, so the solutions
must have the form σ = σ0 + σp, where σ0 is a solution of the homogeneous PDE
σRR = eRσV V (i.e. a first integral) and σp is a particular solution of the entire PDE.
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Proposition 3.2 (Extensions of j
(2)
0 , j

(3)
0 and j

(4)
0 ). The 4-th order extensions of j

(2)
0 ,

j
(3)
0 and j

(4)
0 to the FPU chain are given by the formulas

j(2) =
V 2

2
+ eR − h2

1

24
V 2
x + h4

(

∆βR4

4
+

1

720
V 2
xx

)

j(3) = j
(3)
0 + h2

(

−1

6
eRRxVx −

1

24
V V 2

x

)

+

+ h4
(

1

4
∆βR4V +

1

120
eRRxxVxx +

1

120
eRR2

xVxx +
1

720
V V 2

xx

)

j(4) = j
(4)
0 + h2

(

−2

3
eRV RxVx −

1

3
e2RR2

x −
1

3
eRV 2

x − 1

24

(

4eR + 2V 2
)

V 2
x

)

+

+ h4
(

σ(V,R) +
1

30
eRV RxxVxx −

7

360
eRRxxV

2
x +

1

36
e2RR2

xx +
1

30
eRV R2

xVxx

− 7

360
eRR2

xV
2
x − 1

108
e2RR4

x +

(

1

720

(

4eR + 2V 2
)

+
eR

18

)

V 2
xx −

V 4
x

1440

)

where σ(V,R) satisfies equation 3.5.

Proof. We only need to find a suitable σ for the 4th-order extension, because the other
terms have already been found previously. Let’s see the first two extensions in detail:

• j
(2)
0 : in this case the PDE reads

σRR = eRσV V + 3∆βR2

This is solved setting σ0 = j
(2)
0 and σp = ∆β

4
R4, which is trivially a particular

solution of the PDE. We have proved in another way that the extension of the
unperturbed hamiltonian is, obviously, the perturbed hamiltonian.

• j
(3)
0 :

σRR = eRσV V + 3∆βV R2

Here we can simply set σ0 = j
(3)
0 and σp =

∆β
4
V R4.

• j
(4)
0 (sketch): in order to extend it, we have to solve

σRR = eRσV V + 3∆β(2V 2 + 4eR)R2

For this purpose we conjecture (ansatz) that a particular solution for equation 3.5
has the following form

σp = ∆β[R4P2(V, e
R) +R3P3(V, e

R) +R2P4(V, e
R) +RP5(V, e

R) + P6(V, e
R)]
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where the subscript indicates the maximum degree the polynomial can have. These
are polynomials in which R appears only as eR. With this ansatz, instead of solving
the PDE we have now to solve the simpler system given by the 5 PDEs































∂2RP2 = eR∂2V P2

8∂RP2 + ∂2RP3 = eR∂2V P3

12P2 + 6∂RP3 + ∂2RP4 = 3j
(4)
0V V + eR∂2V P4

6P3 + 4∂RP4 + ∂2RP5 = eR∂2V P5

2P4 + 2∂RP5 + ∂2RP6 = eR∂2V P6

The first one gives simply P2 = j
(2)
0 , whereas the other four PDEs are non-

homogeneous, thus they follow the same solution pattern described above. In
the end we obtain (see [7])

P2 =
V 2

2
+X P3 = −8X P4 = 48X P5 = cj

(5)
0 − 144X

P6 = 192X + c

(

V 5

15
− V X2

)

where c is a free parameter and we have set X = eR.

We can now state the conjecture (contained in [7]) that we will try to solve. As
mentioned above, its proof will be the core of our thesis.

Conjecture 3.1. Every j
(n)
0 can be extended to be an approximated first integral of FPU

chain up to the fourth order with σp that has the following form

σp = ∆β[R4Pn−2(V, e
R) +R3Pn−1(V, e

R) +R2Pn(V, e
R) +RPn+1(V, e

R) + Pn+2(V, e
R)]

and where the polynomials are solutions of the following system of PDEs































∂2RPn−2 = eR∂2V Pn−2

8∂RPn−2 + ∂2RPn−1 = eR∂2V Pn−1

12Pn−2 + 6∂RPn−1 + ∂2RPn = 3j
(n)
0V V + eR∂2V Pn

6Pn−1 + 4∂RPn + ∂2RPn+1 = eR∂2V Pn+1

2Pn + 2∂RPn+1 + ∂2RPn+2 = eR∂2V Pn+2

(3.6)
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4 Proof of conjecture

As a first attempt we tried to find solutions via induction, but we found the following:

Remark (Polynomials’ dependency upon n) The polynomials that make up the sys-

tem depend on the particular j
(n)
0 one is extending.

Proof. By contradiction, if we suppose induction is working, then the polynomials that
make up 3.6 for n are known and they are also involved in the system for n+ 1:































∂2RPn−1 = eR∂2V Pn−1

8∂RPn−1 + ∂2RPn = eR∂2V Pn

12Pn−1 + 6∂RPn + ∂2RPn+1 = 3j
(n+1)
0V V + eR∂2V Pn+1

6Pn + 4∂RPn+1 + ∂2RPn+2 = eR∂2V Pn+2

2Pn+1 + 2∂RPn+2 + ∂2RPn+3 = eR∂2V Pn+3

From this we can observe that Pn−1 solves both the second PDE for n and the first for
n+ 1, so we have

8∂RPn−2 = eR∂2V Pn−1 − ∂2RPn−1 = 0

and this tells us Pn−2 must not depend on R. Moreover, we know that Pn−2 solves the
first PDE for n:

∂2RPn−2 = eR∂2V Pn−2 = 0 ⇒ ∂2V Pn−2 = 0 ⇒ Pn−2 = aV + b

so our polynomial must have a specific form and must not depend on R, and it also has
to be a first integral of Toda chain of degree n− 2. This is possible just for n = 3, where
P1 = V , and not ∀n, so we found an absurd.

This proposition tells us the polynomials are not ”fixed” as we change first integral
and suggests we should write a superscript P

(n)
i to indicate this dependency, but we will

not do it to avoid heavier notation. Also, there will never be confusion about the first
integral we are extending, because we will never have to study a simultaneous extension
of two of them.
Let’s move on now and let us rewrite the system of PDEs using X = eR and the operator
∂X instead of R and ∂R:

X = eR ⇒ ∂R =
∂X

∂R
∂X ⇒ ∂R = X∂X ⇒ ∂2R = X∂X +X2∂2X

⇒ ∂2R − eR∂2V = X∂X +X2∂2X −X∂2V
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We can then write






























(X∂X +X2∂2X)Pn−2 = X∂2V Pn−2

8X∂XPn−2 + (X∂X +X2∂2X)Pn−1 = X∂2V Pn−1

12Pn−2 + 6X∂XPn−1 + (X∂X +X2∂2X)Pn = 3j
(n)
0V V +X∂2V Pn

6Pn−1 + 4X∂XPn + (X∂X +X2∂2X)Pn+1 = X∂2V Pn+1

2Pn + 2X∂XPn+1 + (X∂X +X2∂2X)Pn+2 = X∂2V Pn+2

and with few modifications we obtain






























(X∂X +X2∂2X −X∂2V )Pn−2 = 0

(X∂X +X2∂2X −X∂2V )Pn−1 = −8X∂XPn−2

(X∂X +X2∂2X −X∂2V )Pn = −12Pn−2 − 6X∂XPn−1 + 3j
(n)
0V V

(X∂X +X2∂2X −X∂2V )Pn+1 = −6Pn−1 − 4X∂XPn

(X∂X +X2∂2X −X∂2V )Pn+2 = −2Pn − 2X∂XPn+1

(4.1)

which shows immediately how the 5 PDEs have similar shapes: they all share the same
operator on the left-hand side and differ just for the non-homogeneous term on the
right-hand side. Moreover, we already know the general solution of the first PDE:

Pn−2 = j
(n−2)
0 =







∑

n
2
−1

l=0 C l
n
2
−1V

2(n
2
−1−l)X l if even n

∑

n−3

2

l=0 B
l
n−3

2

V 2(n−3

2
−l)+1X l if odd n

so we only need to solve the other four. We recall that the system concerns polynomials
in X and V that can be written in all generality as

A =
m
∑

i,j=0

aijV
iXj

where aij are simply constant coefficients. Setting proper degrees, our main ansatz for
the polynomials will be

Pn−2 = j
(n−2)
0 Pn−1 =

n−1
∑

i,j=0

pijV
iXj Pn =

n
∑

i,j=0

qijV
iXj

Pn+1 =
n+1
∑

i,j=0

rijV
iXj Pn+2 =

n+2
∑

i,j=0

sijV
iXj

We can now state the main result found in this thesis
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Theorem 4.1 (Proof of conjecture 3.1). The system of PDEs admits a particular solution
∀n ∈ N that has the following form

• If even n

Pn−2 =
n2

16
j
(n−2)
0 =

n2

16

n
2
−1

∑

l=0

C l
n
2
−1V

2(n
2
−1−l)X l

Pn−1 =

n
2

∑

m=2

pn−2m,m−1V
n−2mXm−1 Pn =

n
2

∑

m=2

qn−2m,m−1V
n−2mXm−1

Pn+1 =

n
2

∑

m=1

rn−2m,m−1V
n−2mXm−1 Pn+2 =

n
2

∑

m=1

sn−2m,m−1V
n−2mXm−1

• If odd n

Pn−2 =
(n− 1)2

16
j
(n−2)
0 =

(n− 1)2

16

n−3

2
∑

l=0

Bl
n−3

2

V 2(n−3

2
−l)+1X l

Pn−1 =

n−3

2
+1

∑

m=2

pn−2m,m−1V
n−2mXm−1 Pn =

n−3

2
+1

∑

m=2

qn−2m,m−1V
n−2mXm−1

Pn+1 =

n−3

2
+1

∑

m=1

rn−2m,m−1V
n−2mXm−1 Pn+2 =

n−3

2
+1

∑

m=1

sn−2m,m−1V
n−2mXm−1

and the coefficients that make up the polynomials are given by the following recursive
formulas on m:

• Pn−1

pn−2(m+1),m = − n2

2m
Cm

n
2
−1 +

(n− 2m)(n− 2m− 1)

m2
pn−2m,m−1 if even n

pn−2(m+1),m = −(n− 1)2

2m
Bm

n−3

2

+
(n− 2m)(n− 2m− 1)

m2
pn−2m,m−1 if odd n

and pn−2,0 = 0 as boundary condition.

• Pn

qn−2(m+1),m = − 6

m
pn−2(m+1),m +

(n− 2m)(n− 2m− 1)

m2
qn−2m,m−1

and qn−2,0 = 0 as boundary condition.
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• Pn+1

rn−2(m+1),m = − 6

m2
pn−2(m+1),m − 4

m
qn−2(m+1),m +

(n− 2m)(n− 2m− 1)

m2
rn−2m,m−1

• Pn+2

sn−2(m+1),m = − 2

m2
qn−2(m+1),m − 2

m
rn−2(m+1),m +

(n− 2m)(n− 2m− 1)

m2
sn−2m,m−1

In the even case m = 1, . . . , n
2
− 1 and n ≥ 4, whereas in the odd case m = 1, . . . , n−3

2

and n ≥ 5.

Proof. For the sake of simplicity, we will suppose even n, the case of odd n being analo-
gous, with differences just in the sums and indexes extremes.

• Second PDE. We use the ansatz made above for Pn−2 and Pn−1. We also use n2

16

as a multiplicative constant for Pn−2. Its utility will become clear further on.
Now, the action of the operator X∂X +X2∂2X −X∂2V on a monomyal V iXj gives

(X∂X +X2∂2X −X∂2V )(V
iXj) = j2V iXj − i(i− 1)V i−2Xj+1

and coefficients are just carried through the calculations undisturbed. With some
similar manipulation we obtain that the PDE becomes

n−1
∑

i,j=0

(

j2V iXj − i(i− 1)V i−2Xj+1
)

pij = −n
2

2

n
2
−1

∑

l=1

C l
n
2
−1lV

2(n
2
−1−l)X l =

= −n
2

2
C1

n
2
−1V

n−4X − n2C2
n
2
−1V

n−6X2 + · · · − n2

2

(n

2
− 1

)

X
n
2
−1

The first term of the right-hand side has V n−4X and it must be balanced by
analogous monomials in the left-hand side. If we take a look at this, we see that
this is possible if we choose (i, j) = (n−4, 1) for the first term and (i, j) = (n−2, 0)
for the second. This means we have the equation

pn−4,1V
n−4X − (n− 2)(n− 3)pn−2,0V

n−4X = −n
2

2
C1

n
2
−1V

n−4X

⇒ pn−4,1 − (n− 2)(n− 3)pn−2,0 = −n
2

2
C1

n
2
−1

The same reasoning applied to the second term of the right-hand side

−n2C2
n
2
−1V

n−6X2
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tells us that we have to choose pn−6,2 and pn−4,1 in the left-hand side, so that we
obtain the equation

4pn−6,2V
n−6X2 − (n− 4)(n− 5)pn−4,1V

n−6X2 = −n2C2
n
2
−1V

n−6X2

⇒ 4pn−6,2 − (n− 4)(n− 5)pn−4,1 = −n2C2
n
2
−1

We can now repeat the procedure for every term of the right-hand side, obtaining
for m = 1, . . . , n

2
− 1

m2pn−2(m+1),m − (n− 2m)(n− 2m− 1)pn−2m,m−1 = −n
2

2
mCm

n
2
−1

⇒ pn−2(m+1),m = − n2

2m
Cm

n
2
−1 +

(n− 2m)(n− 2m− 1)

m2
pn−2m,m−1

This is a recursive formula that gives a coefficient when the previous is known.
The ones not involved in the recursion can be set to zero and we will see that the
fourth PDE will provide us the equation pn−2,0 = 0, so that coefficients are always
known ∀n ∈ N without arbitrariness. In the end we can write

Pn−1 =

n
2

∑

m=2

pn−2m,m−1V
n−2mXm−1

• Third PDE. We have to use the ansatz for Pn−2 and the formula just written for
Pn−1. At this point we can see why we introduced n2

16
: thanks to this coefficient

−12Pn−2 becomes exactly equal to 3j
(n)
0V V , thus the non-homogeneous part simplifies

and we are left just with −6X∂XPn−1. Without this coefficient the terms cancel
out only for n = 4 and n = 5, so that it becomes impossible to solve the system
for n > 5 because of spurious monomials. At the end the PDE becomes

n
∑

i,j=0

(

j2V iXj − i(i− 1)V i−2Xj+1
)

qij = −6

n
2
−1

∑

m=1

pn−2(m+1),mmV
n−2(m+1)Xm

At this point we repeat the procedure above: we take every term of the right-hand
side and we balance it with proper monomyals coming from the left-hand side,
obtaining the recursive formula

qn−2(m+1),m = − 6

m
pn−2(m+1),m +

(n− 2m)(n− 2m− 1)

m2
qn−2m,m−1

Here again we will see that the fifth PDE will provide us qn−2,0 = 0, so that the
coefficients are always fixed ∀n ∈ N without external arbitrariness and we can use
them to construct the polynomial

Pn =

n
2

∑

m=2

qn−2m,m−1V
n−2mXm−1
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• Fourth PDE. The non-homogeneous term this time is −6Pn−1 − 4X∂XPn. If we
substitute the ansatz and we manipulate it, it becomes

−6

n/2
∑

m=1

pn−2m,m−1V
n−2mXm−1 − 4

n
2
−1

∑

m=1

qn−2(m+1),mmV
n−2(m+1)Xm

that gives the equation

n+1
∑

i,j=0

(

j2V iXj − i(i− 1)V i−2Xj+1
)

rij = −6

n/2
∑

m=1

pn−2m,m−1V
n−2mXm−1

− 4

n
2
−1

∑

m=1

qn−2(m+1),mmV
n−2(m+1)Xm

If we choose now the term with m = 1 in the right-hand side we have

−6pn−2,0V
n−2

this term cannot be balanced on the left, so we must have pn−2,0 = 0. The other
terms on the right-hand side give the recursive formula

rn−2(m+1),m = − 6

m2
pn−2(m+1),m − 4

m
qn−2(m+1),m +

(n− 2m)(n− 2m− 1)

m2
rn−2m,m−1

• Fifth PDE. This is analogous to the fourth:

n+2
∑

i,j=0

(

j2V iXj − i(i− 1)V i−2Xj+1
)

sij = −2

n
2

∑

m=1

qn−2m,m−1V
n−2mXm−1

− 2

n
2
−1

∑

m=1

mrn−2(m+1),mV
n−2(m+1)Xm

and with similar passages it gives qn−2,0 = 0 and the recursive formula

sn−2(m+1),m = − 2

m2
qn−2(m+1),m − 2

m
rn−2(m+1),m +

(n− 2m)(n− 2m− 1)

m2
sn−2m,m−1

We observe that the coefficients rn−2,0 and sn−2,0 are not fixed, so they introduce an
arbitrariness in the polynomials Pn+1 and Pn+2. Coherence with Pn−1 and Pn suggests
to impose rn−2,0 = sn−2,0 = 0.
The polynomials we have found are trivially solutions of their PDEs because of the
construction we have carried out.
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4.1 Explicit results

We want to see now what polynomials are given by the formulas above for some value
of n. Of course, in the case n = 4 we expect to find the same we have seen before.

• n = 4. In this case, the index m can only have the value 1, so we have just an
equation for every polynomial and the only non-zero coefficients are p0,1, q0,1, r0,1
and s0,1. We also agree to set p2,0 = q2,0 = r2,0 = s2,0 = 0. The recursive formulas
yield the following linear system



















p0,1 = 2p2,0 − 8

q0,1 = 2q2,0 − 6p0,1

r0,1 = −6p0,1 − 4q0,1 + 2r2,0

s0,1 = −2q0,1 − 2r0,1 + 2s2,0

⇒



















p0,1 = −8

q0,1 = −6p0,1

r0,1 = −6p0,1 − 4q0,1

s0,1 = −2q0,1 − 2r0,1

⇒



















p0,1 = −8

q0,1 = 48

r0,1 = −144

s0,1 = 192

⇒ Pn−2 =
n2

16
j
(2)
0 =

V 2

2
+X Pn−1 = −8X Pn = 48X Pn+1 = −144X

Pn+2 = 192X

We can immediately see that these are identical to the polynomials found before,
the only difference being that we don’t have any free parameter. This happens
because we set to zero the coefficients that possibly can create them.

• n = 5. Here again we have only m = 1, but this time the non-zero coefficients are
p1,1, q1,1, r1,1 and s1,1. The linear system reads



















p1,1 = 6p3,0 − 8

q1,1 = 6q3,0 − 6p1,1

r1,1 = −6p1,1 − 4q1,1 + 6r3,0

s1,1 = −2q1,1 − 2r1,1 + 6s3,0

⇒



















p1,1 = −8

q1,1 = −6p1,1

r1,1 = −6p1,1 − 4q1,1

s1,1 = −2q1,1 − 2r1,1

⇒



















p1,1 = −8

q1,1 = 48

r1,1 = −144

s1,1 = 192

⇒ Pn−2 =
V 3

6
+ V X Pn−1 = −8V X Pn = 48V X Pn+1 = −144V X

Pn+2 = 192V X

we see that we obtain the same polynomials as before, just with V X instead of X.
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• n = 6. Here m = 1, 2 and we have two non-zero coefficients for every polynomial:



























































p2,1 = −36

p0,2 =
1
4
(2p2,1 − 36)

q2,1 = −6p2,1

q0,2 =
1
4
(2q2,1 − 12p0,2)

r2,1 = −6p2,1 − 4q2,1

r0,2 =
1
4
(−6p0,2 − 8q0,2 + 2r2,1)

s2,1 = −2q2,1 − 2r2,1

s0,2 =
1
4
(−2q0,2 − 4r0,2 + 2s2,1)

⇒



























































p2,1 = −36

p0,2 = −27

q2,1 = 216

q0,2 = 189

r2,1 = −648

r0,2 = −1323
2

s2,1 = 864

s0,2 = 999

⇒ Pn−2 =
9

4

(

V 4

6
+ 2V 2X +X2

)

Pn−1 = −36V 2X − 27X2

Pn = 216V 2X + 189X2 Pn+1 = −648V 2X − 1323

2
X2 Pn+2 = 864V 2X + 999X2
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5 Conclusions

As preannounced in the abstract, we managed to solve the conjecture and we ended up
proving that for every first integral of the Toda chain there exist a fourth-order extension
which is an approximated first integral of the FPU chain. This extension can also be
written explicitly. In order to extend a generic j

(n)
0 to the FPU chain, one has to follow

these simple steps:

1. Calculate second-order extension j
(n)
2 using formula 3.1;

2. Calculate fourth-order extension j
(n)
4 (σ excluded) using expression 3.2 and theorem

3.1;

3. Calculate σ using the formulas in theorem 4.1 to complete the extension.

Further developments of this result could be

• Study extension up to the sixth-order: this implies a lot more computation but
could as well find when and how motions of Toda and FPU chains start to differ.

• Study extension for lattices in greater dimension
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A Cauchy estimates

Let’s recall a simple result from basic complex calculus:

Proposition A.1 (Cauchy integral formula). If f : D ⊂ C → C is an analytic function
and z0 ∈ D, then the following holds

1

2πi

∮

Cr

f(z)

(z − z0)s+1
dz =

f (s)(z0)

s!

where Cr = {z ∈ D|z = z0 + reiφ, φ ∈ S1} is a circle of radius r and centre z0 completely
contained in D.

Proof. If z0 ∈ D and f is analytic in D ⊂ C, we have by definition that ∀z ∈ D

f(z) =
∑

j≥0

f (j)(z0)

j!
(z − z0)

j

and we also have dz = rieiφdφ from the definition of Cr, with φ ∈ [0, 2π[. We can thus
write

1

2πi

∮

Cr

f(z)

(z − z0)s+1
dz =

1

2πi

∮

Cr

∑

j≥0

f (j)(z0)

j!
(z − z0)

j−s−1dz =

=
∑

j≥0

f (j)(z0)

j!

∫ 2π

0

rj−s−1ei(j−s−1)φrieiφdφ =
∑

j≥0

f (j)(z0)

j!

1

2π
rj−s

∫ 2π

0

ei(j−s)φdφ =
f (s)(z0)

s!

In the second-last passage we used the fact that ei(j−s)φ = δjs, so that in the sum only
the term with j = s survives.

We can immediately use this result to obtain the so-called Cauchy estimates, which
describe how derivatives are bounded in the analytic domain: we rename z0 → z, z → ξ
and take the modules of both sides in the formula above

|f (s)(z)|
s!

≤ 1

2π

∮

Cr

|f(ξ)|
|ξ − z|s+1

rdφ =
1

2π

∮

Cr

|f(ξ)|
rs

dφ ≤ 2πM(r)

2πrs
=
M(r)

rs

from which

|f (s)(z)| ≤ s!
M(r)

rs
with M(r) = sup

ξ∈Cr
|f(ξ)|

The next result is again quite basic:

Proposition A.2 (Maximum principle). If f : D ⊂ C → C is analytic in D, then its
maximum is reached on the boundary of D.
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Proof. By contradiction, we suppose z is a local maximum point inside the domain in
which f is analytic. We take s=1 and use Cauchy integral formula:

f(z) =
1

2πi

∮

Cρ

f(ξ)

ξ − z
dξ

Now, by definition z is such that

|f(z)| > |f(ξ)| ∀ξ ∈ C̊ρ ∀ρ

This implies
|f(z)| ≤M(ρ) with M(ρ) = sup

Cρ
|f(ξ)|

which is absurd.

Now, take u(x) an analytic periodic function with x ∈ R
Z
. In order to apply Cauchy

estimates, we immerge the function in C obtaining its analytical extension u(z). Thanks
to Schwarz symmetric principle we have u(z) = u(z). Indeed, using Taylor series expan-
sion for u(z) we can write

u(z) =
∑

j≥0

u(s)(x)

s!
(z−x)s ⇒ u(z̄) =

∑

j≥0

u(s)(x)

s!
(z̄−x)s =

∑

j≥0

u(s)(x)

s!
(z − x)s = u(z)

If u(z) is analytical in the strip Ωσ = {x ∈ C||Im(x)| ≤ σ}, we can extend this up to
the imaginary part of the first singularity. On the other hand, maximum principle says
the maximum is reached on the boundary, so if we agree to call

M(σ) = max
Im(z)=σ

|u(z)|

using Cauchy estimates we can write

|u(s)(x)| ≤ s!
M(σ)

σs
∀x ∈ R

Z

which is the formula used to estimate functions V and R in previous sections.
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B Hamiltonian perturbation theory results

Let’s consider a perturbed integrable hamiltonian:

Hλ = h+ λH1 + λ2H2 + . . .

with h integrable. If J0 is a first integral of h then {h, J0} = 0 and if we calculate its
total derivative along the flow of Hλ we have

dJ0
dt

= J̇0 = {J0, Hλ} = {J0, h}+ {J0, λH1}+ · · · = λ{J0, H1}+ λ2{J0, H2}+O(λ3)

Introducing τ = λt as a re-scaling of time gives

dJ0
dτ

= {J0, H1}+O(λ)

so J0 varies on a time scale of O(1) in τ and O( 1
λ
) in t. We want now to see if we can

find a function J1(H1) such that J0 + λJ1(H1) varies on a time scale of O( 1
λ2 ) in t. To

this purpose, in all generality, we can define Jλ = J0 + λJ1 + λ2J2 + . . . and impose

{Jλ, Hλ} =

{

∑

i≥0

λiJi,
∑

j≥0

λjHj

}

=
∑

i,j≥0

λi+j{Ji, Hj} =
∑

k≥0

λk

(

∑

i+j=k

{Ji, Hj}
)

= 0

⇐⇒
∑

i+j=k

{Ji, Hj} = 0 ∀k ≥ 0

which gives

(k = 0) {J0, H0} = 0

(k = 1) {J0, H1}+ {J1, H0} = 0 ⇒ LhJ1 + {J0, H1} = 0

(k = 2) {J0, H2}+ {J1, H1}+ {J2, h} = 0 ⇒ LhJ2 = −{J1, H1} − {J0, H2}
. . . . . .

where Lh := {·, h} is the operator that gives the Poisson brackets with respect to h.
We recall now a simple result on hamiltonian flows:

Lemma B.1 (Exchange lemma). For any function F and any hamiltonian G one has

F ◦ φs
G = esLGF

Proof. Define F̃ (s) := F ◦ φs
G and observe that G̃(s) = G ◦ φs

G = G and F̃ (0) = F . The
derivative of F̃ with respect to the flow of G now reads

˙̃F = {F,G} ◦ φs
G = L̃GF ⇒ ¨̃F = L̃2

GF ⇒ . . . ⇒ dnF̃

dsn
= L̃n

GF ∀n ≥ 0
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and if we calculate the Taylor expansion of F̃ (s) we obtain

F̃ (s) =
∑

n≥0

sn

n!

dnF̃

dsn

∣

∣

∣

∣

s=0

=
∑

n≥0

snLn
G

n!
F = esLGF

Proposition B.1. The k = 1 equation above is solved ⇐⇒ {J0, H
(h)

1 } = 0, with the
over-line signifying time average on the unperturbed flow of h.

Proof. We use exchange lemma to write

LhJ1 + {J0, H1} = 0 ⇐⇒ LhJ1 ◦ φs
h = {H1, J0} ◦ φs

h ⇐⇒ esLhLhJ1 = esLh{H1, J0}

and we suppose h is such that the exponential is bounded. If now we integrate the
left-hand side of the last equation and we divide by t we have

⇒ 1

t

∫ t

0

esLhLhJ1ds =
1

t

∫ t

0

d

ds
(esLhJ1)ds =

(etLh − 1)J1
t

→ 0 for t→ ∞

Applying the same passages to the right-hand side yields

0 = lim
t→∞

1

t

∫ t

0

esLh{H1, J0}ds = lim
t→∞

1

t

∫ t

0

{H1, J0} ◦ φs
hds = lim

t→∞

1

t

∫ t

0

{H1 ◦ φh
s , J0}ds =

= {H1
(h)
, J0}

that is the thesis.

We could as well find similar results for higher k that make sure the condition

∑

i+j=k

{Ji, Hj} = 0

is satisfied, so that Jk exists. But, if ∃k ≥ 2 such that the sum above is not zero,
then we’re facing an obstacle to the extension of Jλ. If this happens, then J

(k−1)
λ =

J0+λJ1+ · · ·+λk−1Jk−1 cannot be extended anymore and we can conclude that J̇
(k−1)
λ =

{J (k−1)
λ , Hλ} = O(λk). This means J

(k−1)
λ varies on a time scale of O( 1

λk ) in t or O(λk)
in τ .
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C Continuum extension of Henon’s first integrals

In his article [6] Henon defines the following first integrals for the n-particles Toda chain:

Jm =
n

∑

i=1

∑

p,αj ,βj

A(α0, . . . , αp, β0, . . . , βp−1)u
α0

i u
α1

i+1 . . . u
αp

i+pX
β0

i X
β1

i+1 . . . X
βp−1

i+p−1 (C.1)

where m = 1, . . . , n and the coordinates are ui = ẋi and Xi = e−(xi+1−xi). The second
sum is intended on every p, αj, βj ∈ N such that βj ≥ 1 and

p
∑

j=0

αj + 2

p−1
∑

j=0

βj = m

and the coefficients are given by

A(α0, . . . , αp, β0, . . . , βp−1) =

p
∏

j=0

(αj + βj−1 + βj − 1)!

αj!

p−1
∏

j=0

1

βj!(βj − 1)!

According to the article, the first five Jm are

J1 =
n

∑

i=1

ui J2 =
n

∑

i=1

[

1

2
u2i +Xi

]

J3 =
n

∑

i=1

[

1

3
u3i + (ui + ui+1)Xi

]

J4 =
n

∑

i=1

[

1

4
u4i + (u2i + uiui+1 + u2i+1)Xi +

1

2
X2

i +XiXi+1

]

J5 =
n

∑

i=1

[

1

5
u5i + (u3i + u2iui+1 + uiu

2
i+1 + u3i+1)Xi + (ui + ui+1)X

2
i + (ui + 2ui+1 + ui+2)XiXi+1

]

and we can notice the first coefficient in the sum is 1
m
. A simple calculation using the

formula for A shows this is the case ∀m.

Proposition C.1. When extended to the continuum case n→ ∞, Henon’s first integrals

are equivalent to J
(m)
0 =

∫

j
(m)
0 dx up to a multiplicative constant. This is mC0

m
2

=
(m

2
!)

2

(m−1)!

in the case of even m and mB0
m−1

2

=
(m−1

2
!)

2

(m−1)!
in the case of odd m.

Proof. We want to extend the general formula C.1 to the continuum case. We start by
defining h = 1

n
and interpolating the coordinates u and X with two smooth functions V

and X̃ in the following way:

ui(t) = V (hi, t) = V (x, t) Xi(t) = X̃(x, t)

ui+1(t) = V (h(i+ 1), t) = V (x+ h, t) Xi+1(t) = X̃(x+ h, t)

. . .

ui+p(t) = V (x+ ph, t) Xi+p−1(t) = X̃(x+ (p− 1)h, t)
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We are interested in the case of h small, so we can use Taylor expansions

V (x+ jh, t) = V (x, t) +
∂V

∂x
(x, t)jh+O(h2) for j = 1, . . . , p

X̃(x+ jh, t) = X̃(x, t) +
∂X̃

∂x
(x, t)jh+O(h2) for j = 1, . . . , p− 1

and taking the limit h→ 0 (which means n→ ∞) we are left only with the first terms.
Also, the first sum in formula C.1 becomes

∫

dx and we can write

Jm =

∫

∑

p,αj ,βj

A(α0, . . . , αp, β0, . . . , βp−1)V
∑p

j=0
αjX̃

∑p−1

j=0
βjdx

We use now the constraints seen above to define

l :=

p−1
∑

j=0

βj ⇒
p

∑

j=0

αj = m− 2l

Because of the limit operation, we can say that the coefficients A ”aggregate” and end
up depending only on m and l. Now, in the case of even m we have l ∈ {0, . . . , m

2
}

whereas in the case of odd m we have l ∈ {0, . . . , m−1
2

} and we can write

Jm =

∫

m
2

∑

l=0

A(m, l)V m−2lX̃ ldx for even m

Jm =

∫

m−1

2
∑

l=0

A(m, l)V m−2lX̃ ldx for odd m

These two formulas are similar to the ones we have written in section 3.1 for j
(2m)
0 and

j
(2m+1)
0 if we agree that X̃ = eR and rewrite them using m instead of 2m and 2m + 1.
Also, here we are considering the entire first integrals (not just their densities), so this
motivates the presence of the integral sign.
We will show now that the two sets of first integrals are equivalent up to a multiplicative
constant that depends on m, so that A(m, l) is nothing but a re-scaling of C(m, l) or
B(m, l). To do so, we take advantage of the first five Jm. Their continuum extensions
are

J1 =

∫

V dx J2 =

∫
[

V 2

2
+ X̃

]

dx J3 =

∫
[

V 3

3
+ 2V X̃

]

dx

J4 =

∫
[

V 4

4
+ 3V 2X̃ +

3

2
X̃2

]

dx J5 =

∫
[

V 5

5
+ 4V 3X̃ + 6V X̃2

]

dx

36



The first two are equal to J
(1)
0 and J

(2)
0 while the others can be transformed in J

(m)
0

multiplying by 1
2
, 2

3
and 1

6
respectively. In all generality, the first coefficient for Jm is 1

m

while the first for J
(m)
0 is C0

m
2

in the case of even m and B0
m−1

2

in the case of odd m. We

can thus conclude that mC0
m
2

and mB0
m−1

2

are the multiplicative coefficients needed to

transform Jm in J
(m)
0 . Finally, if we use the explicit formulas for C0

m
2

and B0
m−1

2

we can

immediately obtain that these coefficients are
(m

2
!)

2

(m−1)!
in the case of even m and

(m−1

2
!)

2

(m−1)!

in the case of odd m.
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D Wolfram Mathematica code

• Functional derivative of a density f(u) (up to order 5)

funder[f_,u_]:=Sum[(-1)^n*Dt[D[f,D[u[x],{x,n}]],{x,n}],{n,0,5}];

• Poisson brackets of two densities f1(u, v) and f2(u, v)

PP[f1_,f2_,u_,v_]:=funder[f1,u]*Dt[funder[f2,v],x]

+funder[f1,v]*Dt[funder[f2,u],x];

• Coefficients C l
n and Bl

n

c[n_,l_]:=Piecewise[{{Product[m^2,{m,l+1,n}]/(2(n-l))!,l!= n},

{1,l==n}}];

b[n_,l_]:=Piecewise[{{Product[m^2,{m,l+1,n}]/(2(n-l)+1)!,l!=n},

{1,l==n}}];

• First integrals of Toda chain

j0even[V_,R_,n_]:=Sum[c[n/2,l]V^(2(n/2-l))E^(lR),{l,0,n/2}];

j0odd[V_,R_,n_]:=Sum[b[(n-1)/2,l]V^(2((n-1)/2-l)+1)E^(lR),

{l,0,(n-1)/2}];

• Densities for Dubrovin’s theorem

f00=f0[u[x],v[x]];

f1=p[u[x],v[x]]v’[x];

f2=1/2(a[u[x],v[x]]u’[x]^2+2b[u[x],v[x]]u’[x]v’[x]

+c[u[x],v[x]]v’[x]^2);

h0=1/2v[x]^2+\[Phi][u[x]];h2=-1/24\[Phi]’’[u[x]]u’[x]^2+O[h]^3;

• Densities for the extension of Dubrovin’s theorem
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j00=j0[V[x],R[x]];

j2=1/2 (a[V[x],R[x]]R’[x]^2+2b[V[x],R[x]]R’[x]V’[x]+

+c[V[x],R[x]]V’[x]^2)+p[V[x],R[x]]R’[x]+q[V[x],R[x]]V’[x]+d[V[x],R[x]];

K0=1/2V[x]^2+\[Phi][R[x]];

K2=\[Psi]1[R[x]]-1/24V’[x]^2+O[h]^3;

• Densities for harmonic oscillator case

j00=j0[V[x],R[x]];

j2=1/2(a[V[x],R[x]]R’[x]^2+2b[V[x],R[x]]R’[x]V’[x]+

+c[V[x],R[x]]V’[x]^2)+p[V[x],R[x]]R’[x]+q[V[x],R[x]]V’[x]+d[V[x],R[x]];

K0=1/2V[x]^2+\[Phi][R[x]]/.{\[Phi][R[x]]->1/2\[Omega]R[x]^2};

K2=\[Psi]1[R[x]]-1/24V’[x]^2+O[h]^3;

• Densities for the 4-th order extension of first integrals

j00:=j0[V[x],R[x]];

j2:= 1/2(a[V[x],R[x]]R’[x]^2+2b[V[x],R[x]]R’[x]V’[x]

+c[V[x],R[x]]V’[x]^2);

j2var=-1/12D[j0[V[x],R[x]],{V[x],2},{R[x],1}]E^R[x]R’[x]^2

-1/6D[j0[V[x],R[x]],{V[x],3}]E^R[x]R’[x]V’[x]

-1/12D[j0[V[x],R[x]],{V[x],2},{R[x],1}]V’[x]^2

-1/24D[j0[V[x],R[x]],{V[x],2}]V’[x]^2;

j4:=\[Alpha][V[x],R[x]](R’’[x])^2+\[Beta][V[x],R[x]]R’’[x]V’’[x]

+\[Gamma][V[x],R[x]](V’’[x])^2+\[Delta][V[x],R[x]]R’’[x](V’[x])^2

+\[Epsilon][V[x],R[x]]V’’[x](R’[x])^2+\[Mu][V[x],R[x]](R’[x])^4

+\[Nu][V[x],R[x]]R’[x](V’[x])^3+\[Rho][V[x],R[x]](R’[x]V’[x])^2

+\[Lambda][V[x],R[x]](R’[x])^3V’[x]+\[Omega][V[x],R[x]](V’[x])^4

+1/2\[Eta][V[x],R[x]]R’[x]^2+\[Xi][V[x],R[x]]R’[x]V’[x]

+1/2\[Zeta][V[x],R[x]]V’[x]^2+\[Sigma][V[x],R[x]];

K0=1/2V[x]^2+\[Phi]toda[R[x]];

K0var=1/2V[x]^2+E^R[x]-R[x]-1;

K2=-1/24(V’[x])^2;

K4=1/720(V’’[x])^2+1/4\[Epsilon]0\[CapitalDelta]\[Beta]R^4;

• Ansatz for σ

\[Sigma][V_,R_]:=\[CapitalDelta]\[Beta](R^4P[n][V,E^R]+R^3P[m][V,E^R]

+R^2P[i][V,E^R]+RP[j][V,E^R]+P[k][V,E^R]);
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• System of PDEs for σ

D[P[n-2][V,R],{R,2}]==E^RD[P[n-2][V,R],{V,2}];

8D[P[n-2][V,R],R]+D[P[n-1][V,R],{R,2}]==E^RD[P[n-1][V,R],{V,2}];

12P[n-2][V,R]+6D[P[n-1][V,R],R]+D[P[n][V,R],{R,2}]==E^RD[P[n][V,R],{V,2}]

+3D[j04[V,R],{V,2}];

6P[n-1][V,R]+4D[P[n][V,R],R]+D[P[n+1][V,R],{R,2}]==E^RD[P[n+1][V,R],{V,2}];

2P[n][V,R]+2D[P[n+1][V,R],R]+D[P[n+2][V,R],{R,2}]==E^RD[P[n+2][V,R],{V,2}];

• Recursion formulas associated with the PDEs

– Even n case

Subscript[p,n-2,0]=Subscript[q,n-2,0]=Subscript[r,n-2,0]=

Subscript[s,n-2,0]=0;

For[m=1,m<=n/2-1,m++,Print[Column[{Subscript[p,-2(1+m)+n,m]

=(-(1/2)mn^2c[-1+n/2,m]+(-1-2m+n)(-2m+n)Subscript[p,-2m+n,-1+m])/m^2,

Subscript[q,-2(1+m)+n,m]=(-6mSubscript[p,-2(1+m)+n,m]+(-1-2m+n)(-2m+n)

Subscript[q,-2m+n,-1+m])/m^2,Subscript[r,-2(1+m)+n,m]=

(-6Subscript[p,-2(1+m)+n,m]-4mSubscript[q,-2(1+m)+n,m]+(-1-2m+n)(-2m+n)

Subscript[r,-2 m+n,-1+m])/m^2,Subscript[s,-2(1+m)+n,m]=

(-2Subscript[q,-2(1+m)+n,m]-2mSubscript[r,-2(1+m)+n,m]+(-1-2m+n)(-2m+n)

Subscript[s,-2m+n,-1+m])/m^2}]]];

– Odd n case

Subscript[p,n-2,0]=Subscript[q,n-2,0]=Subscript[r,n-2,0]=

Subscript[s,n-2,0]=0;

For[m=1,m<=(n-3)/2,m++,Print[Column[{Subscript[p,-2(1+m)+n,m]=

(-(1/2)m(-1+n)^2b[1/2 (-3+n),m]+(-1-2m+n)(-2m+n)

Subscript[p,-2m+n,-1+m])/m^2,Subscript[q,-2(1+m)+n,m]=

(-6mSubscript[p,-2(1+m)+n,m]+(-1-2m+n)(-2m+n)

Subscript[q,-2m+n,-1+m])/m^2,Subscript[r,-2(1+m)+n,m]=

(-6Subscript[p,-2(1+m)+n,m]-4mSubscript[q,-2(1+m)+n,m]

+(-1-2m+n)(-2m+n) Subscript[r,-2m+n,-1+m])/m^2,

Subscript[s,-2(1+m)+n,m]=(-2Subscript[q,-2(1+m)+n,m]

-2mSubscript[r,-2(1+m)+n,m]+(-1-2m+n)(-2m+n)

Subscript[s,-2m+n,-1+m])/m^2}]]]
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