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Abstract

Neural Radiance Fields (NeRFs) have shown impressive results for

novel view synthesis when a sufciently large amount of views are

available. When dealing with few-shot settings, i.e. with a small set

of input views, the model could overft those views, leading to artifacts

and geometric and chromatic inconsistencies in the resulting render-

ing. Regularization is a valid solution that helps NeRF generalization.

On the other hand, most of the recent NeRF regularization techniques

aim each one to mitigate a specifc rendering problem.

Starting from this observation, in this thesis we propose CombiNeRF,

a framework that synergically combines several regularization tech-

niques, some of them novel, in order to unify the benefts of each. In

particular, we regularize single and neighboring rays distribution and

we add a smoothness term to regularize near geometries. After these

geometric approaches, we propose to exploit Lipschitz regularization

on both NeRF density and color networks and to use encoding masks

for input features regularization.

We show that CombiNeRF outperforms the state-of-the-art methods

with few-shot settings in several publicly available datasets. We also

present an ablation study on the LLFF and Nerf-Synthetic datasets

that supports the choices made. The research activity performed

within this thesis has been submitted to a major conference in 3D

and Computer Vision.

iii



iv



Abstract

Neural Radiance Fields (NeRFs) hanno mostrato risultati impression-

anti per la sintesi di immagini inedite quando è inizialmente disponibile

un numero sufcientemente elevato di immagini. Nel caso ”few-shot”,

ossia quando viene fornito un numero limitato di immagini di input,

il modello potrebbe adattarvisi eccessivamente, causando artefatti e

incoerenze geometriche e cromatiche nel rendering risultante. Forme

di regolarizzazione possono essere introdotte per mitigare questi prob-

lemi. A questo scopo, recenti tecniche di regolarizzazione NeRF sono

state introdotte per evitare la convergenza del modello in soluzioni

incoerenti.

Partendo da questa osservazione, in questa tesi proponiamo CombiN-

eRF, un framework che combina sinergicamente diverse tecniche di re-

golarizzazione, alcune delle quali nuove, al fne di unifcarne i benefci.

In particolare, regolarizziamo la distribuzione dei raggi e aggiungiamo

un termine di smoothness per favorire la generazione di superfci lisce.

Oltre questi approcci geometrici, proponiamo di sfruttare la regolar-

izzazione di Lipschitz sia per la rete NeRF di densità che del colore e

di utilizzare maschere di codifca per la regolarizzazione delle features

in input alla rete.

Successivamente, mostriamo come CombiNeRF supera i metodi allo

stato dell’arte con impostazione few-shot in diversi datasets disponibili

pubblicamente. Presentiamo anche un’analisi ulteriore sui datasets

LLFF e Nerf-Synthetic che supporta le scelte fatte. L’attività di

ricerca condotta in questa tesi è stata proposta ad una delle principali

conferenze nel campo 3D e Computer Vision.
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Chapter 1

Introduction

Starting from a set of images together with their corresponding known camera

positions, novel view synthesis problem aims to reconstruct novel views, i.e. taken

from diferent points of view with respect to the input ones. Several classes of

approaches addressed this problem and made signifcant progress in predicting

geometry and appearance representations from seen images. Novel view synthesis

methods use mesh-based representation of the scene [3, 4, 5, 6], light felds [7, 8, 6]

or image-based rendering [4, 9, 10, 5, 11]. Another class of approaches uses volu-

metric representations since they are well-suited for gradient-based optimization.

Previous methods [12, 13, 14] worked directly on the voxel grids, while more re-

cent approaches [15, 16, 17, 18, 19, 20, 21, 22] used large datasets to train deep

networks. The main problem with these volumetric techniques is the expensive

storage required. With the increasing attention on deep learning, other methods

in this feld have been introduced: NeRF [23] has gained signifcant attention.

Neural Radiance Field [23] has emerged as a powerful approach for scene

reconstruction and photorealistic rendering from a sparse set of 2D images. By

leveraging a multilayer perceptron (MLP) to model the volumetric scene repre-

sentation, NeRF can generate high-quality novel views of scenes. As the MLP

networks are queried multiple times for each pixel to be rendered, a lightweight

architecture allows to dramatically speed up the whole rendering pipeline. The

multiresolution hash encoding proposed in [1] allows for example to improve scene

reconstruction efciency using a shallow MLP without any loss of visual accuracy.

However, to achieve high accuracy in its predictions and avoid artifacts, NeRF

often relies on a large number of images, which can be impractical in real-world

scenarios.

Regularization is a crucial tool for improving the visual fdelity of rendered

1



Vanilla NeRF CombiNeRF

Figure 1.1: The fgure shows how the proposed CombiNeRF achieves better results in terms of
rendering and reconstruction quality in few-shot settings compared with the Vanilla
NeRF [1, 2].

images, ensuring more coherent predictions. Several works [24, 25, 26, 27] have

proposed to constrain the MLP network during training by adding regularization

terms in the fnal loss. Instead, Lipschitz regularization [28, 29], is applied directly

on network weights to enforce smoothness by controlling the rate of change of the

network’s outputs concerning its inputs.

In this work, we empirically select a combination of loss components to con-

strain the MLP network during the training phase. Firstly, (a) we modify the

information-theoretic approach of InfoNeRF [25] that includes regularization of

neighboring rays distributions, (b) we adopt a smoothness term to regularize near

geometries, and (c) we regularize single ray distributions in order to have a spe-

cifc hitting point on the scene, that refects real-world scenarios. Additionally,

as in [30], we add an encoding mask that encourages the learning of fner details

only during the latest stages of the training phase. Finally, we impose Lips-

chitz regularization on both color and density networks, observing substantial

improvements in the overall reconstruction and rendering quality and showing

how NeRF benefts from Lipschitz regularization. CombiNeRF avoids the need

for pre-training required by similar approaches while showing promising improve-

2



ments over the state of the art.

In summary, we present the following contributions:

• we propose a modifcation of the KL-Divergence loss proposed in InfoNeRF,

• we select a combination of regularization losses, available on a unifed frame-

work, and we validate its efectiveness through ablation studies,

• to our knowledge we are the frst to impose Lipschitz regularization on all

the network layers on NeRF, recording a performance increase in all the

tested scenarios,

• an extensive performance evaluation on public datasets, showing that Com-

biNeRF achieves state-of-the-art (SOTA) performance in few-shot setting,

• the research activity performed within this thesis has been submitted to a

major conference in 3D and Computer Vision.

In Chapter 2, a theoretical background is presented including preliminaries

about Neural Radiance Fields, the multiresolution hash encoding used in our

framework, and few-shot rendering, together with other related works in this

feld. Our method is described in Chapter 3, combining several regularization

techniques, while in Chapter 4 are shown the experiments done with diferent

datasets, including comparisons with other methods and an ablation study. After

the conclusion in Chapter 5, additional implementations used for preliminary

analysis during our work are described in Appendix A.

3
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Chapter 2

Theoretical Background

In this chapter, we provide a preliminary theoretic background of Neural Radiance

Fields together with the multiresolution hash encoding adopted in our method

to speed up the training process. The few-shot concept will be introduced since

our fnal goal is to propose an efcient method when only a few input images are

available.

Related work in this feld will be taken into account, including multiple tech-

niques of regularization adopted during the training process, both in the form of

additional loss terms and MLP network structure.

2.1 Preliminaries

2.1.1 Neural Radiance Field

Neural Radiance Field addressed the novel view synthesis problem by representing

and optimizing a continuous scene through a simple MLP network, as shown in

Fig. 2.1. For each input 3D point and view direction, it outputs the density σ of

the point and its color value c. Colors of the rays are rendered through classical

volume rendering: σ can be interpreted as the probability of a ray hitting an

infnitesimal particle at the specifed 3D point location. Given the near and far

bounds tn and tf , the expected color Ĉ(r) of camera ray r(t) = o+ td is

Ĉ(r) =

∫ tf

tn

T (t)σ(r(t))c(r(t),d)dt,

where T (t) = exp

(

−
∫ tf

tn

σ(r(s))ds

) (2.1)

5



Figure 2.1: NeRF optimizes a continuous neural radiance feld representation of a scene. Starting
from a set of input views, it exploits an MLP network to encode the scene and it uses
classical volume rendering techniques to accumulate samples along the rays in order to
render the entire scene from any viewpoint. Together with the input views, it renders
novel unseen views from the optimized representation.

Figure 2.2: NeRF benefts from the high-frequency positional encoding used to map the input of
the MLP network. The complete model uses positional encoding in both input position
and view direction.

is the accumulated transmittance. In order to estimate this integral, for each

pixel, points are sampled on their corresponding camera ray through a stratifed

sampling approach. [tn, tf ] is partitioned into N evenly-spaced bins and each

sample is drawn uniformly at random within each bin:

ti ∼ U
[

tn +
i− 1

N
(tf − tn), tn +

i

N
(tf − tn)

]

. (2.2)

Using stratifed sampling instead of deterministic quadrature enables a continu-

ous scene representation even if the rays are discretized, because points are not

sampled in fxed locations. These samples are fed to the MLP network to render

the approximated color

C(r) =
N
∑

i=1

Ti (1− exp(−σiδi)) ci, (2.3)

6



Figure 2.3: Representation of Multiresolution Hash Encoding in 2D.

where δi = ti+1 − ti is is the distance between the ith point and its adjacent

sample, N is the number of samples and the transmittance Ti is computed as

Ti = exp

(

−
i−1
∑

j=1

σjδj

)

. (2.4)

The rendered pixel color C(r) can be expressed in terms of a weighted sum of the

color values C(r) =
∑N

i=1 wici where wi = Tiαi with αi = (1− exp (−σiδi)). The

fnal loss for network training is the total squared error between the rendered and

true pixel colors:

LRGB =
∑

r∈R

∥C(r)− C∗(r)∥22. (2.5)

Instead of dealing directly with 3D point positions and view directions, NeRF

proposes to use a positional-encoding function g to map the input of the MLP

network to a high-dimensional space. This encoding exploits sinusoidal functions

with diferent frequencies:

g(p) = (sin(20πp), cos(20πp), ... , sin(2V−1πp), cos(2V−1πp)), (2.6)

where the parameter V controls the maximum encoded frequency. The g function

is applied to the input position and the view direction separately. As shown in

Fig. 2.2, this encoding enables to better reconstruct high-frequency geometries

and details.

7



Figure 2.4: Comparisons between diferent encodings and structures for feature embeddings. ”Fre-
quency” is defned as the positional encoding used in NeRF, while in the hash table the
hyper-parameter T is defned as its size.

2.1.2 Multiresolution Hash Encoding

Multi-layer perceptrons have been shown the need for high-dimensional repre-

sentations to capture high-frequency details. In NeRF, a sine-based positional

encoding (frequency encoding) is used to map the 3D point position to a high-

dimensional feature vector. Other parametric encodings propose to arrange ad-

ditional trainable parameters in a data structure, such as a grid or a tree. In-

stead of having a single dense grid, which allocates many features for both empty

space and surface areas, other parametric encodings applied to neural approaches

propose multiresolution grids maintaining a similar reconstruction quality while

reducing the number of parameters required.

Based on these ideas, the multiresolution hash encoding proposed in [1] was

able to manage the trade-of between good high-frequency quality details of the

reconstructions and memory capacity. In Fig. 2.4, Instant-NGP shows how fea-

ture embeddings are essential and how diferent confgurations difer in quality,

time, and memory.

The multiresolution hash encoding adopts multi-resolution grids, whose reso-

lutions are chosen between the coarsest and fnest ones based on a growth factor

b, achieving a similar result while signifcantly accelerating training and inference

times against NeRF. In Fig. 2.3, as illustrated in Instant-NGP, this is accom-

plished by frst identifying the cell of the grid containing the point and then

assigning the result of the spatial interpolation of the features defned on the

corners. As a result, a lightweight MLP can be employed to process the en-

coded points. Given a input point x ∈ R
3, its feature vector γ(x) ∈ R

FL can be

expressed as

γ(x) = [γ1,1(x), ..., γF,1(x), ..., γF,L(x)] (2.7)

8



where F is the number of feature dimensions per entry and L is the number of

levels.

To minimize memory usage, each grid corner index is mapped into a hash

table that holds its corresponding feature vector. Collisions are limited to fner

levels where (Nl + 1)3 > E, Nl and E being the resolution at level l and the

maximum number of entries in the hash maps respectively, and they are handled

through gradient averaging. This ensures that the results maintain their qualita-

tive comparability to using solely a multi-resolution grid without hash encoding.

2.1.3 Few-Shot View-Rendering

Novel view synthesis for Neural Radiance Fields is a challenging problem when

dealing with few-shot settings, i.e. when only a small set of input views are avail-

able. Starting from a few images representing the scene means to have drastically

less information available. For this reason, NeRF struggles to reconstruct unseen

viewpoints, in particular for those distant enough from the inputs.

Previous work tried to address this problem, using pre-trained models in order

to overcome the lack of input views but they require the collection of additional

data and they introduce a non-negligible overhead. In [24] a normalizing fow

model is introduced and a denoising difusion model (DDM) is used in [27]. Prior

knowledge from a pre-trained image encoder is adopted in [31], while other meth-

ods require depth supervision. Instead, CombiNeRF does not rely on external

information or models and it manages to deal with few-shot using multiple forms

of regularization techniques.

2.2 Related Work

Novel view synthesis aims to generate images from diferent viewpoints by uti-

lizing a collection of pre-existing views [32, 33, 34, 35, 36]. Among the novel

view synthesis solutions, NeRF emerged as a result of several factors as the com-

pactness ofered by the underlying structure, its domain-agnostic nature and the

impressive visual quality ofered. Subsequent works managed to improve over the

fdelity of rendered images [37, 38, 39, 40, 41], reduce required time [42, 43, 44, 45]

and extend NeRF capabilities and application domain [46, 47, 48, 49, 50, 51].

9



2.2.1 NeRF Regularization

NeRF models struggle to render novel high-quality images when supervised with

only a few input views during training. To reduce the impact of the artifacts

introduced by overftting on training samples, previous work focused on adding

loss terms to provide additional constraints to the model.

In InfoNeRF [25], the entropy of the rays and the KL-divergence between

the distribution of neighboring rays are both minimized in order to restrict the

range of the prediction of high-density value on the object surface. Similarly, in

Mip-NeRF 360 [26], distortion loss was introduced to consolidate weights into as

small a region as possible when rays intersect a scene object. In RegNeRF and

DifusioNeRF [24, 27], rendered patches that are less likely to appear, according to

a determined image distribution, are penalized. In PixelNerf [52], prior knowledge

acquired from diferent scenes and global context information are both leveraged

by concatenating image features extracted by a Convolutional Neural Network

Encoder with the input 3D positions.

Depth regularization is considered as a loss term in RegNeRF [24], while DS-

NeRF improves quality reconstruction by adding supervision on the depth. Also

in [53] a loss term is introduced to regularize rendered depth maps with depths

estimated using Structure-from-Motion.

DietNeRF [31] introduced a semantic loss term by extracting semantic repre-

sentation of renderings using the CLIP Vision Transformer [54] and maximizing

the similarity with the representations of the ground truth views. In Aug-NeRF

[55], noise is injected into input, feature, and output during training to improve

the generalization capabilities.

We take into consideration some of these forms of regularization, combin-

ing their benefts during the training phase, ensuring better generalization and

reconstruction of the scene with few input views.

2.2.2 Neural Surface Reconstruction

Implicit functions like signed distance functions (SDFs) [56, 57, 58, 59] and oc-

cupancy maps [60, 61] are best ftted for representing objects on the scene with

a defned surface geometry. Both NeuS and HF-NeuS [62, 63] reparametrize the

rendering equation used in NeRF to exploit SDFs properties. In order to increase

the training and inference speed and facilitate the learning of high-frequency

details, Instant-NSR and Neuralangelo [64, 30] exploit the hash grid encoding
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proposed in Instant-NGP [1], while PermutoSDF [65] employs a permutohedral

lattice to decrease the memory accesses. To recover smoother surfaces in refective

or untextured areas, Neuralangelo and PermutoSDF add a curvature term loss.

Additionally, Neuralangelo discards values from fner levels of the hash grid en-

coding to encourage the learning of coarse details on the frst training iterations.

To prevent the color network overftting due to the injection of the curvature

loss term, PermutoSDF employs the Lipschitz constant regularization method

proposed in [29].

In our work, we exploit both Lipschitz regularization, leveraged in neural

surface reconstruction to avoid geometry over-smoothness, and encoding mask,

fnding out they provide additional benefts in the few-shot setting.
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Chapter 3

Method

A graphical overview of the CombiNeRF method proposed in this work is given

in Fig. 3.1. The proposed approach combines multiple regularization techniques

in a unifed and fexible framework that helps NeRF generalization in few-shot

scenarios. In this section, all the combined losses will be described together with

the Encoding Mask and Lipschitz regularization techniques. For each technique,

our improvements and modifcations will be described in detail to better highlight

the main contributions of this work.

During the empirical selection of the best implementations used in Com-

biNeRF, we considered three additional regularization techniques: Sample Space

Annealing [24], Adversarial Perturbation [55] and Ray Entropy loss [25]. Such

techniques have not been included in CombiNeRF because of their poor contri-

bution. We refer to Appendix A for a detailed description of these techniques

together with the results obtained during our preliminary experiments.

3.1 Regularization Losses

When the model is prone to overft, regularization losses are introduced to limit

its capacity and to lead to more realistic solutions, with the further beneft of not

increasing the training time. These additional losses are added to the main loss

function, in our case to the photometric loss LRGB.

In this section, we regularize ray distributions considering the Distortion loss,

the Full Geometry loss and a modifcation of the KL-Divergence loss. We also take

into account the Depth Smoothness loss in order to encourage smooth surfaces.

13



Figure 3.1: Overview of the CombiNeRF framework. We sample 3D points over a batch of rays
passing through the scene. Position and view direction are respectively encoded through
Multi-resolution Hash Encoding and Spherical Harmonics and fed to the Lipschitz net-
work (LipMLP) after being masked. Networks’ outputs are used by volumetric render-
ing for estimating the expected color C and depth d of each ray, while diferent loss
terms are computed to regularize the training process. CombiNeRF combines i) all
these regularization losses, ii) the Lipschitz network instead of the original MLP, iii)
the Encoding Mask approach used for masking the networks’ input.

3.1.1 KL-Divergence Loss

When dealing with a few training views, the standard models [23, 1] struggle to

generalize to unseen views. As 3D scenes exhibit piece-wise smooth surfaces, we

enforce similar distributions of weight values among neighboring rays. Diferently

from [25], we compute the ray density p(r) on weights wi, instead of alpha values

αi:

p(ri) =
wi

∑

j wi

=
Tiαi

∑

j Tjαj

. (3.1)

Given an observed ray r, we sample another neighboring ray r̂ minimizing

the KL-Divergence (DKL) between their weight distributions. The corresponding

loss is defned as follows:

LKL = DKL

(

P (r)||P (r̂)

)

=
N
∑

i=1

p(ri) log
p(ri)

p(r̂i)
. (3.2)

The choice of the neighboring ray r̂ can be done in two ways: by slightly

rotating the camera pose of the ray r or by choosing one of the possible adjacent

rays (defned as near pixels). In our implementation, we deviate from the original

contribution [25] by choosing the second option. After sampling uniformly at

random one of the four adjacent rays for each training ray, we compute LKL.
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3.1.2 Distortion and Full Geometry Loss

A common problem of NeRF is the presence of ”foaters”, disconnected regions of

dense space, usually located close to the camera planes, which cause the presence

of blurry cloud artifacts on images rendered from novel views. Previous works

[26, 27] showed that those artifacts can be removed by adding a loss term Ldist

that takes into account the distances ti and weights wi of the N points sampled

on the rays, and the depth

d(r) =

∑N
i=1 witi
∑N

i=1 wi

(3.3)

of each ray. Thus, the Ldist loss can be written as:

Ldist =
1

d(r)

(

∑

i,j

wiwk

∣

∣

∣

∣

ti + ti+1

2
− tj + tj+1

2

∣

∣

∣

∣

+
1

3

N
∑

i=1

w2
i (ti+1 − ti)

)

, (3.4)

where the depth factor penalizes dense regions near the camera.

The frst term minimizes the weighted distances between all pairs of interval

midpoints and the second term minimizes the weighted size of each individual

interval. In this way, weights on the ray are encouraged to be as compact as

possible by pulling distant intervals towards each other, consolidating weights

into a single interval or a small number of nearby intervals, and minimizing the

width of each interval.

In Eq. (3.4), all possible intervals for each ray are considered. As the total

combination of all (i, j) would drastically increase the amount of memory re-

quired, to reduce the total load we consider only a subset over the total number

of sampled rays on which we compute the loss.

Furthermore, a normalization loss term Lfg is considered, following [27], that

encourages the weights to sum to unit, as the ray is expected to be fully absorbed

by the scene geometry in real scenes:

Lfg =

(

1−
N
∑

i=1

wi

)2

, (3.5)

In addition, Lfg enforces LKL by driving the model to treat the weights wi

as probabilities, p(ri) ≈ wi (See Eq. (3.1)).
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3.1.3 Depth Smoothness

Similarly to KL-Divergence loss, the depth smoothness constraint encourages

smooth surfaces. However, while the former term requires similarity between the

compared distributions, the latter term only computes the diference between the

expected depth values. As in [24], given the estimated depth d(r) of a pixel ray

and a patch of size Spatch, the depth smoothness constraint is defned as follows:

Lds =
∑

p∈P

Spatch−1
∑

i,j=1

(

(

d(rij)− d(ri+1j)
)2

+
(

d(rij)− d(rij+1)
)2

)

, (3.6)

where P is the set of all the rendered patches and rij is the ray passing through

the pixel (i, j) of patch p.

In order to compute this loss term, it is necessary to sample rays through

patches instead of sampling them at random, otherwise the depth smoothness

prior would not hold anymore because rays could be far away from each other.

3.2 Encoding Mask

Input encoding allows the preserving of high-frequency details [23]. However,

when only a few images are available, the network is more sensitive to noise.

In this scenario, high-frequency components exacerbate the problem preventing

the network from exploring more in depth low-frequency information and con-

sequently learning a coherent geometry. As in [66, 30], we use a mask to flter

out high-frequency components of the input in early iterations in order to let the

network focus on robust low-frequency information.

Given the length l = L · F of the resulting multiresolution hash encoding

given by Eq. (2.7), the mask m is defned as:

m = [11, ...1Jl·xK, 0, ...0l], (3.7)

where x is the ratio of features to keep active. The resulting feature vector given

in input to the MLP network will be the element-wise product γ ⊙ m between

the multiresolution hash encoding of the input and the mask. The ratio x is set

to keep only the coarsest features during the initial phase of the training and

progressively include the remaining features.

In CombiNeRF, we apply Instant-NGP multiresolution hash encoding on in-

put positions and sphere harmonics encoding on the view directions (see Fig. 3.1).
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The progressive mask can be used on both inputs in order to flter high-frequency

terms on early training iterations.

3.3 Lipschitz Network

We defne fΘ(x, t) as the function representing the implicit shape, expressed by

means of a neural network, where Θ = {Wi, bi} is the set of parameters containing

weights Wi and biases bi of each layer li of the network.

A function is called Lipschitz continuous if there exists a constant k ≥ 0 such

that:

∥fΘ(x0)− fΘ(x1)∥ ≤ k∥x0 − x1∥, (3.8)

for all possible inputs x0, where k is called the Lipschitz constant which bounds

how fast the function fθ can change.

We employ the regularization method proposed in [29], which was already

used by PermutoSDF [65] on the color network to balance out the efect intro-

duced by the curvature regularization applied on the SDF network. However,

diferently from PermutoSDF, we apply the regularization on both NeRF den-

sity and color networks, recording an increase in performance with respect to the

original MLP network. Given the trainable Lipschitz bound ki associated to layer

li, the normalization scheme is described as:

y = σ(Ŵix+ bi)

Ŵi = fn(Wi, ln(1 + eki)),
(3.9)

where fn is a normalization function and ln(1 + eki) enables to avoid negative

values for ki. The normalization scales each row of Wi to have an absolute value

row-sum less or equal to ln(1 + eki) in order to satisfy Eq. (3.8).

3.4 Overall method

CombiNeRF combines the previously described regularization techniques regard-

ing losses and network structure, hence the name CombiNeRF. Thus, we can

write the fnal loss as:

LCombiNeRF = LRGB + λdist · Ldist+

λfg · Lfg + λds · Lds + λKL · LKL,
(3.10)
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where λ are the hyper-parameters controlling the contribution of each loss. In

addition, CombiNeRF includes Lipschitz regularization and the Encoding Mask

technique. The proposed CombiNeRF ofers a unifed implementation of all the

regularization techniques described above, outperforming current SOTA methods

on few-shot scenarios as demonstrated in the following experimental chapter.
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Chapter 4

Experiments

In this chapter, we show the datasets and metrics we use for the experiments, we

provide relevant details about our implementation and we show quantitative and

qualitative comparisons made against the state-of-the art methods. Finally, an

ablation study is made to evaluate the contribution of the components that form

CombiNeRF.

4.1 Setup

4.1.1 Dataset

Our experiments include the LLFF dataset [18] and the NeRF-Synthetic dataset

[23] under few-shot settings. LLFF is composed of 8 complex scenes, representing

real-world scenarios, with 20-62 images for each scene captured with a handled

camera. Instead, NeRF-Synthetic is composed of 8 synthetic scenes with view-

dependent light transport efects, in which each scene is composed of 100 training

images and 200 test images. We also consider the Fox dataset, composed of 50

images.

We evaluate LLFF on 3/6/9 input views, following the protocol proposed

in RegNeRF [24], while in NeRF-Synthetic we train 8 views and test 25 views

following DietNeRF [31]. Fox dataset is evaluated only in the ablation study,

including tests under 9 input views and also considering the full dataset.

4.1.2 Metrics

To evaluate the performance of CombiNeRF against the SOTA methods, we use

3 diferent metrics: peak signal-to-noise ratio (PSNR), structural similarity index
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measure (SSIM) [67], and learned perceptual image patch similarity (LPIPS)

[68]. We also take into consideration the geometric mean of MSE = 10−PSNR/10,√
1− SSIM and LPIPS following [24], in order to have an easier and unifed

comparison.

4.1.3 Implementation Details

For our experiments, we used the torch-ngp [2] implementation of Instant-NGP [1]

as base code, since from our experience it generally outperforms the original NeRF

implementation [23] from both a runtime and accuracy points of view. We refer

to torch-ngp as ”Vanilla NeRF” in the experiments. We developed CombiNeRF

on top of torch-ngp, thus obtaining a unifed and unique implementation that

embeds all the contributions shown in the previous sections.

In the LLFF dataset, we set λdist = 0 for the frst 1000 iteration and then

λdist = 2 · 10−5 until the end and λfg = 10−4, λKL = 10−5, λds = 0.1 and

Spatch = 4, while we use the encoding mask only on the density network in which

x saturates after 90% of the total iterations.

In the NeRF-Synthetic dataset, we set λdist = 0 for the frst 1000 iterations

and then λdist = 2 · 10−3 until the end and λfg = 10−3, λKL = 10−5, λds = 0.02

and Spatch = 4, x saturates after 20% of the total iterations. We also set the

number of sampled rays for each iteration to 4096 and 7008 and the number of

levels for the Instant-NGP multiresolution hash encoding to 16 and 32 for LLFF

and NeRF-Synthetic, respectively.

In the Fox dataset, we set λdist = 0 for the frst 1000 iteration when consid-

ering 9-view setting or 2000 when considering full dataset and then λdist = 10−3

until the end and λfg = 10−2, λKL = 10−6, λds = 1.0 and Spatch = 4, while we use

the encoding mask only on the density network in which x saturates after 90%

of the total iterations when considering full dataset or 30% of the total iterations

when considering 9-view setting.

4.1.4 Training Details

For an easier reproduction of the results, we provide the training procedure

adopted for the LLFF dataset, which follows [24], and for the NeRF-Synthetic

dataset, which follows [31].

In LLFF we use all 8 scenarios (”Fern”, ”Room”, ”T-rex”, ”Flower”, ”Leaves”,

”Horns”, ”Orchids” and ”Fortress”). Each view of each scene is 378×504, thus
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PSNR ↑ SSIM ↑ LPIPS ↓ Average ↓
3-view 6-view 9-view 3-view 6-view 9-view 3-view 6-view 9-view 3-view 6-view 9-view

Vanilla NeRF 17.71 22.03 24.21 0.544 0.738 0.811 0.303 0.149 0.101 0.155 0.081 0.057

RegNeRF 19.08 23.10 24.86 0.587 0.760 0.820 0.336 0.206 0.161 0.146 0.086 0.067

FreeNeRF 19.63 23.73 25.13 0.612 0.779 0.827 0.308 0.195 0.160 0.134 0.075 0.064

DifusioNeRF 19.88 24.28 25.10 0.590 0.765 0.802 0.192 0.101 0.084 0.118 0.071 0.060

CombiNeRF 20.37 23.99 25.15 0.686 0.805 0.841 0.191 0.106 0.084 0.101 0.060 0.049

Table 4.1: Comparison of CombiNeRF with SOTA methods on the LLFF dataset with 3/6/9 input
view few-shot settings.

8× downsampled with respect to the original resolution. Test views are taken

every 8th view and input images are evenly sampled among the remaining ones.

In Nerf-Synthetic we use all 8 scenarios (”Lego”, ”Hotdog”, ”Mic”, ”Drums”,

”Materials”, ”Ship”, ”Chair” and ”Ficus”). Each view of each scene is 400×400,

thus 2× downsampled with respect to the original resolution. We take 25 test

views evenly sampled from the original test set, while training views are chosen

according to the following IDs: 2, 16, 26, 55, 73, 75, 86, 93.

In Fox we consider views in the original resolution, thus 1080×1920. Con-

sidering the full dataset, we take the frst view as the validation set, from the

second to the fourth as the test set and the other 46 views as the training set.

Instead, when considering only 9 input views, the training set is composed of

evenly sampled images starting from the previous one.

4.2 Comparison

We compare the performance achieved by CombiNeRF against the SOTA meth-

ods in the few-shot scenario. In LLFF we consider RegNeRF [24], FreeNeRF [66]

and DifusioNeRF [27], while in NeRF-Synthetic we take into account DietNeRF

[31] and FreeNeRF [66]. All quantitative evaluation results for the other methods,

along with images showing the qualitative results, are taken from the respective

papers. If some results are not present, it means that the related paper has not

reported quantitative or qualitative results on the related dataset.

4.2.1 LLFF Dataset

This dataset is a collection of complex real-world scenes where, from our ex-

periments, we observed that Vanilla NeRF heavily overfts the training images

when only a few of them are used as input. In Tab. 4.1 are shown the quan-

titative results under 3/6/9 training images. For 3 and 9 views, CombiNeRF

outperforms the other methods in all the metrics. With 6 views, DifusioNeRF
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Figure 4.1: Comparison of our CombiNeRF against RegNeRF, FreeNeRF and Vanilla NeRF on
Fern, Horns and T-rex scenarios with 3-view setting.

achieves a better LPIPS score, however, CombiNeRF scores higher on average.

Interestingly, with more views (6 or 9), Vanilla NeRF approaches and sometimes

outperforms all other methods except CombiNeRF, while its performance heavily

degrades with a reduced number of views. CombiNeRF, on the other hand, shows

cutting-edge and consistent performance regardless of the number of views.

Qualitative results on LLFF are shown in Fig. 4.1. CombiNeRF is able to
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FreeNeRF CombiNeRF GT

(a) 9-view Room dataset

(b) 6-view Orchids dataset.

(c) 3-view Leaves dataset.

Figure 4.2: In-depth comparison of CombiNeRF against FreeNeRF on some LLFF scenes with 3/6/9
input views.

reconstruct better high-frequency details maintaining the geometry of the scene.

Other methods generate lots of artifacts, like in the ”Fern” scene, and they strug-

gle to reconstruct the background. In the ”Horns” scene, the environment is noisy

in RegNeRF and FreeNeRF while it becomes sharper in CombiNeRF. We also

notice that some fne details like the stair handrail in the ”T-rex” scene are pre-

served. In Fig. 4.2 we additionally compare CombiNeRF against FreeNeRF. In

”Room” with the 9-view setting, the near part of the table gets deformed while
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NeRF-Synthetic 8-views PSNR ↑ SSIM ↑ LPIPS ↓
Vanilla NeRF 22.335 0.845 0.144
DietNeRF 23.147 0.866 0.109

DietNeRF, LMSE ft 23.591 0.874 0.097
FreeNeRF 24.259 0.883 0.098

CombiNeRF 24.394 0.883 0.088

Table 4.2: NeRF SOTA comparison on NeRF-Synthetic dataset with 8 input views. ”LMSE ft” is
the fne-tuned version of DietNeRF.

in CombiNeRF some details on the foor are still visible. In ”Orchids”, with the

6-view setting, CombiNeRF is able to render more high-frequency details, for ex-

ample, stripes in the orchid petals (Fig. 4.2). In ”Leaves” with the 3-view setting,

the central leaf rendered in FreeNeRF contains several artifacts and, in general,

even in this case, CombiNeRF is able to reconstruct better high-frequency details.

In Fig. 4.8, Fig. 4.9 and Fig. 4.10 are shown additional qualitative results

on all scenarios of the LLFF dataset under 3-view, 6-view and 9-view settings,

respectively. Under the 3-view setting, we can see the efectiveness of CombiN-

eRF against Vanilla NeRF in both RGB images and depth images. When the

number of input images increases, the performance gap between Vanilla NeRF

and CombiNeRF decreases, but the depth quality still remains defnitely better

in the latter. In Tab. 4.7, Tab. 4.8 and Tab. 4.9 are shown per-scene quantitative

results on PSNR, SSIM, and LPIPS metrics, respectively, including 3/6/9-view

settings. CombiNeRF clearly outperforms Vanilla NeRF in all the scenarios.

4.2.2 NeRF-Synthetic Dataset

This dataset contains synthetic renderings of objects exhibiting high-frequency

geometric details and refective efects, thus making this dataset particularly chal-

lenging. In Tab. 4.2 we show the quantitative results of CombiNeRF and the

compared methods. We can see that CombiNeRF outperforms the other SOTA

methods on the PSNR and LPIPS metrics while achieving the same result on

the SSIM. CombiNeRF is also the overall best-performing method on the NeRF-

Synthetic dataset, performing better on scenes like ”Lego”, ”Mic”, and ”Ficus”

which exhibit complex geometries, while ”Materials” represents the most chal-

lenging scenario due to the presence of strong view-dependent refection.
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Vanilla NeRF CombiNeRF

Figure 4.3: Comparison of CombiNeRF against the Vanilla NeRF method in Drums, Ship, Materi-
als, Ficus and Hotdog scenarios.

In Fig. 4.3 we show qualitative results of CombiNeRF in diferent scenes.

The reconstructed depth is more consistent, presenting fewer artifacts. Rendered

images are far less noisy with respect to the ones rendered by the Vanilla NeRF

implementation. Colors are better preserved as can be seen in the ”Hotdog” and

in ”Ficus” scenes where the color of the leaves is more realistic and closer to the

ground truth.

In Fig. 4.11 are shown additional qualitative results on all scenarios of the
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NeRF-Synthetic dataset under the 8-view setting. CombiNeRF is able to better

reconstruct the scenarios, this is particularly visible in the geometry of ”Ship”

and in the color of ”Ficus”. Finer details are less visible in Vanilla NeRF, as we

can see in ”Mic” and ”Chair”, while a lot of foaters and noise are removed in

”Drums” and ”Materials” with CombiNeRF. In Tab. 4.10, Tab. 4.11 and Tab. 4.12

are shown per-scene quantitative results on PSNR, SSIM, and LPIPS metrics,

respectively. We can observe that in ”Lego”, ”Chair”, ”Mic”, ”Hotdog” and

”Ficus” CombiNeRF gets better results in all the metrics. Instead, in ”Drums”,

”Materials” and ”Ship”, which are the most challenging scenarios, CombiNeRF

outperforms the other methods in the overall metric scores.

4.3 Ablation Study

In this section, we assess the contribution of each of the regularization techniques

used in CombiNeRF, thus highlighting their importance. Instead of showing all

the possible combinations, we empirically select only the more relevant regular-

ization techniques. We conducted an ablation study of our CombiNeRF in the

3-view and 8-view few-shot settings for the LLFF and NeRF-Synthetic datasets

respectively. For these datasets, we used the same parameters as the experi-

ments previously described. We also consider the Fox dataset both under 9-view

few-shot setting and with full dataset.

4.3.1 LLFF Dataset

In Tab. 4.3 is shown the ablation on the LLFF dataset with the 3-view setting.

Starting from the Vanilla NeRF solution, we notice that each contribution in

CombiNeRF brings an increase in performance, with Lipschitz regularization and

Ldist + Lfg losses playing a crucial role in improving the overall performance.

Applying Lipschitz regularization on both density and color networks also allows

to further improve the quality of the obtained results. From the same table, we

can observe that, when using the term losses Ldist + Lfg, they greatly beneft

from sampling patches of rays instead of the single rays.

In Fig. 4.4 we show qualitative results of CombiNeRF using Lipschitz regular-

ization in both sigma and color network against the only color network. The latter

tentative approach is named CombiNeRF♯ in the fgures and tables. CombiNeRF

is able to model in a more coherent way the geometry of the scenarios, remov-

ing also the blurry efects that characterize the renderings of the implementation
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LLFF 3-views PSNR ↑ SSIM ↑ LPIPS ↓ Average ↓
Vanilla NeRF 17.71 0.544 0.303 0.155

L 18.74 0.608 0.249 0.130
Ldist+Lfg 17.93 0.554 0.288 0.151

Ldist+Lfg(Spatch=4) 19.10 0.608 0.249 0.128
Ldist+Lfg+Lds 19.50 0.626 0.237 0.122

Ldist+Lfg+Lds+L 20.09 0.674 0.198 0.105
Ldist+Lfg+Lds+L+EM 20.27 0.683 0.194 0.103

CombiNeRF♯ 19.52 0.637 0.236 0.119

CombiNeRF 20.37 0.686 0.191 0.101

Table 4.3: Ablation on LLFF dataset with 3-view setting. Lipschitz and Encoding Mask are named
L and EM respectively. When using Lds, we set the patch size Spatch = 4 by default.

We call CombiNeRF♯ our method using Lipschitz only in the color network.

CombiNeRF♯ CombiNeRF

Figure 4.4: Qualitative result on the ablation study of LLFF with 3-view setting. We compare our
CombiNeRF with CombiNeRF♯ (our method using Lipschitz only in the color network).

using only Lipschitz regularization in the color network.

4.3.2 NeRF-Synthetic Dataset

As already done for the LLFF dataset, we also provide an ablation study on

the NeRF-Synthetic dataset. In Tab. 4.4 is shown the result of this study on

the with the 8-view setting. In this study, we additionally focused on the LKL

loss. In particular, we both tested the same implementation of the KL-Divergence
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NeRF-Synthetic 8-views PSNR ↑ SSIM ↑ LPIPS ↓ Average ↓
Vanilla NeRF 22.34 0.845 0.144 0.073

Ldist+Lfg+Lds+L 23.61 0.865 0.115 0.059

Ldist+Lfg+Lds+L†
KL+L 22.93 0.863 0.126 0.064

Ldist+Lfg+Lds+L+EM 24.04 0.871 0.105 0.056
CombiNeRF† 24.36 0.883 0.088 0.050

CombiNeRF 24.39 0.883 0.088 0.051

Table 4.4: Ablation on NeRF-Synthetic dataset with 8-view setting. Lipschitz is defned as L and

Encoding Mask is defned as EM. We call L†
KL the KL-Divergence loss presented by

InfoNeRF and we call CombiNeRF† our method using their L†
KL.

CombiNeRF† CombiNeRF

Figure 4.5: Qualitative result on the ablation study of NeRF-Synthetic with 8-view setting. We
compare our CombiNeRF with CombiNeRF† (our method with KL-Divergence as in
InfoNeRF).

loss used in [25] (implemented in an intermediate version of CombiNeRF called

CombiNeRF†) and our modifed version (as described in Sec. 3.1) used in the

fnal CombiNeRF.

In Fig. 4.5 we show the qualitative results of both the two implementations.

While quantitative results remain almost the same (see Tab. 4.4), CombiNeRF is

able to remove most of the artifacts generated below the objects, thus indicating
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Fox 9-views PSNR ↑ SSIM ↑ LPIPS ↓ Average ↓
Vanilla NeRF 17.06 0.679 0.613 0.190
Ldist + Lfg+L 22.07 0.775 0.348 0.101

Ldist + Lfg + Lds+L 22.69 0.791 0.376 0.097
Ldist + Lfg + Lds+L+EM 23.89 0.784 0.402 0.091

CombiNeRF⋆ 24.21 0.791 0.386 0.087

Table 4.5: Ablation on the Fox dataset with 9 input views. Lipschitz is defned as L and Encoding
Mask is defned as EM. CombiNeRF⋆ is our method using near-pose sampling instead of
near-pixel sampling in the computation of LKL.

Fox PSNR ↑ SSIM ↑ LPIPS ↓ Average ↓
Vanilla NeRF 25.77 0.842 0.347 0.072

Lds 26.43 0.839 0.385 0.071
EM 27.70 0.852 0.339 0.061

Ldist + Lfg 29.82 0.863 0.279 0.048
Ldist + Lfg+EM 28.75 0.857 0.290 0.053
Ldist + Lfg+L 30.22 0.869 0.277 0.046

Table 4.6: Ablation on the full Fox dataset. Lipschitz is defned as L and Encoding Mask is defned
as EM.

an improved reconstruction of the fnal geometries.

4.3.3 Fox Dataset

Starting from the full dataset experiment, in Tab. 4.6 are shown quantitative

results considering some of the implementations of CombiNeRF. Lipschitz and

Ldist+Lfg are the best-performing forms of regularization, in fact also their com-

bination increases the scores of each metric, especially the PSNR and LPIPS. The

Encoding Mask technique is able to improve the result with respect to Vanilla

NeRF, but it gets worse together with the others. In Fig. 4.6 are shown the quali-

tative results. Lipschitz with Ldist+Lfg enable a smoother depth reconstruction,

also avoiding the wrong reconstructed foral pattern on the wall. Moreover, the

RGB images have high-frequency details and light efects that are closer to the

ground truth.

Instead, in Tab. 4.5 are shown quantitative results of the Fox dataset under

9-view setting. Vanilla NeRF clearly struggles more when dealing with fewer

input views. The combinations of multiple techniques defnitely improve the

performance even if there is not a single clear winner in all the scores. Anyway,

CombiNeRF⋆, which deviates from CombiNeRF by only changing the sampling
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Figure 4.6: Qualitative result on the ablation study of Fox with full dataset in diferent implemen-
tations. Lipschitz is defned as L and Encoding Mask is defned as EM.

method of LKL from near-pixel to near-pose, has the overall best performance and

outperforms Vanilla NeRF. In Fig. 4.7 are shown the qualitative results of Fox

under 9-view setting, comparing them together with the one using no few-shot,

as described before. It’s interesting to notice how the regularization technique

enables better reconstruction in the RGB images against Vanilla NeRF, especially

in few-shot settings where, however, depths are badly reconstructed in all the

cases.
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Figure 4.7: Qualitative comparison on the ablation of Fox dataset against Vanilla NeRF with full
dataset (top two rows) and under 9-view setting (bottom two rows). CombiNeRF⋆ is
our method using near-pose sampling instead of near-pixel sampling in the computation
of LKL, while Lipschitz technique is defned as L.
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Figure 4.8: Additional qualitative results on all the scenarios of LLFF dataset with 3-view setting.
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Figure 4.9: Additional qualitative results on all the scenarios of LLFF dataset with 6-view setting.
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Figure 4.10: Additional qualitative results on all the scenarios of LLFF dataset with 9-view setting.
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(a) 3 input views.

LLFF 3-view Orchids Leaves Horns Flower T-rex Room Fern Fortress

Vanilla NeRF 12.47 17.72 15.65 18.54 20.54 19.52 17.79 19.47

CombiNeRF 16.04 18.46 18.84 21.01 21.21 21.47 22.21 23.75

(b) 6 input views.

LLFF 6-view Orchids Leaves Horns Flower T-rex Room Fern Fortress

Vanilla NeRF 16.74 20.1 22.32 22.25 21.66 25.58 23.18 24.42

CombiNeRF 18.11 20.46 23.26 24.52 23.91 28.72 25.07 27.9

(c) 9 input views.

LLFF 9-view Orchids Leaves Horns Flower T-rex Room Fern Fortress

Vanilla NeRF 18.45 21.07 24.59 24.88 25.27 27.11 25.54 26.76

CombiNeRF 19.1 21.22 25.15 26.13 26.35 28.57 26.17 28.51

Table 4.7: Per-scene quantitative results on LLFF dataset w.r.t. PSNR↑ metric.

(a) 3 input views.

LLFF 3-view Orchids Leaves Horns Flower T-rex Room Fern Fortress

Vanilla NeRF 0.199 0.61 0.523 0.548 0.719 0.755 0.509 0.486

CombiNeRF 0.461 0.666 0.692 0.668 0.773 0.821 0.713 0.692

(b) 6 input views.

LLFF 6-view Orchids Leaves Horns Flower T-rex Room Fern Fortress

Vanilla NeRF 0.499 0.738 0.797 0.725 0.816 0.894 0.744 0.688

CombiNeRF 0.584 0.753 0.823 0.815 0.863 0.921 0.811 0.873

(c) 9 input views.

LLFF 9-view Orchids Leaves Horns Flower T-rex Room Fern Fortress

Vanilla NeRF 0.605 0.777 0.86 0.82 0.885 0.912 0.827 0.805

CombiNeRF 0.647 0.782 0.876 0.857 0.908 0.93 0.85 0.877

Table 4.8: Per-scene quantitative results on LLFF dataset w.r.t. SSIM↑ metric.
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(a) 3 input views.

LLFF 3-view Orchids Leaves Horns Flower T-rex Room Fern Fortress

Vanilla NeRF 0.435 0.181 0.35 0.3 0.195 0.269 0.402 0.292

CombiNeRF 0.25 0.155 0.212 0.226 0.15 0.184 0.194 0.157

(b) 6 input views.

LLFF 6-view Orchids Leaves Horns Flower T-rex Room Fern Fortress

Vanilla NeRF 0.23 0.124 0.137 0.156 0.133 0.112 0.166 0.137

CombiNeRF 0.178 0.12 0.122 0.095 0.094 0.08 0.105 0.054

(c) 9 input views.

LLFF 9-view Orchids Leaves Horns Flower T-rex Room Fern Fortress

Vanilla NeRF 0.171 0.106 0.091 0.093 0.078 0.083 0.101 0.084

CombiNeRF 0.151 0.112 0.078 0.071 0.06 0.066 0.082 0.05

Table 4.9: Per-scene quantitative results on LLFF dataset w.r.t. LPIPS↓ metric.

NeRF-Synthetic 8-views Drums Material Ship Ficus Lego Chair Mic Hotdog

Vanilla NeRF 18.07 19.36 18.69 22.93 22.49 25.25 27.34 24.55
DietNeRF, LMSE ft 20.029 21.621 22.536 20.940 24.311 25.595 26.794 26.626

CombiNeRF 20.165 20.73 21.392 23.493 24.958 27.862 28.172 28.383

Table 4.10: Per-scene quantitative results on NeRF-Synthetic dataset w.r.t. PSNR↑ metric.

NeRF-Synthetic 8-views Drums Material Ship Ficus Lego Chair Mic Hotdog

Vanilla NeRF 0.767 0.804 0.69 0.897 0.851 0.901 0.949 0.901
DietNeRF, LMSE ft 0.845 0.851 0.757 0.874 0.875 0.912 0.950 0.924

CombiNeRF 0.838 0.838 0.754 0.91 0.885 0.933 0.957 0.945

Table 4.11: Per-scene quantitative results on NeRF-Synthetic dataset w.r.t. SSIM↑ metric.

NeRF-Synthetic 8-views Drums Material Ship Ficus Lego Chair Mic Hotdog

Vanilla NeRF 0.222 0.185 0.269 0.107 0.105 0.076 0.054 0.134
DietNeRF, LMSE ft 0.117 0.095 0.193 0.094 0.096 0.077 0.043 0.067

CombiNeRF 0.14 0.114 0.151 0.078 0.072 0.049 0.035 0.066

Table 4.12: Per-scene quantitative results on NeRF-Synthetic dataset w.r.t. LPIPS↓ metric.
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Figure 4.11: Additional qualitative results on all the scenarios of NeRF-Synthetic dataset with 8-
view setting.
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Chapter 5

Conclusion

In this thesis, we presented CombiNeRF, a combination of regularization tech-

niques in a unifed framework for few-shot Neural Radiance Field novel view

synthesis. We regularize neighboring ray distributions, we also take into account

the single ray distribution and a smoothness term is adopted to regularize near

geometries. Besides these additional loss functions, we also consider Lipschitz

regularization and an Encoding Mask to regularize high-frequency components.

CombiNeRF shows cutting-edge and consistent results in the quality of the

reconstructions and it outperforms the SOTA methods in LLFF and NeRF-

Synthetic datasets with few-shot settings. The increasing performance of the

combination of multiple regularization techniques is validated through an abla-

tion study that highlights the contribution of the CombiNeRF components and

the diferences with the previous implementations.

Additional techniques like Ray Entropy Loss, Adversarial Perturbation, and

Space Annealing have been taken into account but not considered in CombiNeRF

for their apparently poor contribution. More experiments are required as future

works on these and other techniques in order to achieve a richer and more general-

purpose NeRF framework.

The research activity performed within this thesis work has been submitted

to a major conference in 3D and Computer Vision. At the moment of writing, the

submitted paper is still under review and the fnal revision will be released upon

acceptance. The open-source code implementation of CombiNeRF will also be

released upon publication of this thesis document and the corresponding scientifc

paper.
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Appendix A

Additional Implementations

In the following sections, we describe three additional implementations considered

during the empirical selection of the best methods used in CombiNeRF. The

following implementations were not included in CombiNeRF for their apparently

poor contribution with respect to Vanilla NeRF [1]. Due to a lack of time for

further testing, we were only able to partially evaluate these methods, which

will eventually be considered in future CombiNeRF extensions. As done for the

other considered techniques, we initially tested their performance on the LLFF

dataset with the 3-view setting, comparing their results against Vanilla NeRF.

For completeness, we provide below a brief summary of these techniques.

A.1 Regularization Losses

A.1.1 Entropy Loss

The aim is to introduce a sparsity constraint to focus only on the scene of interest.

This constraint can be achieved by minimizing the entropy of each sampled ray

density function, as done in [25], in order to force the rays to have a few high

peaks, i.e. the peaks should only represent the hit surfaces.

To minimize the entropy of a ray r, we start defning the normalized ray

density q(r) as:

q(ri) =
αi

∑

j αj

=
1− exp(−σiδi)

∑

j 1− exp(−σjδj)
, (A.1)

where ri (i = 1, ..., N) is a sampled point in the ray, σi is the observed density at

ri, δi is a sampling interval around ri and αi is the opacity at ri.

Starting from the Shannon Entropy, we can defne the entropy of a discrete
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ray density function:

H(r) = −
N
∑

i=1

q(ri) log q(ri), (A.2)

where the calculation of q(ri), which includes σi and δi, is already given thanks

to volume rendering computation.

A mask M is applied to flter the rays in the entropy defned in Eq. (A.2)

with the aim of discarding too low-density rays not intersecting or hitting any

object in the scene:

M(r) =







1 if Q(r) > ϵ

0 otherwise
, (A.3)

where

Q(r) =
N
∑

i=1

1− exp(−σiδi), (A.4)

is the cumulative ray density.

Because unobserved viewpoints can help generalization, for the entropy loss

computation both rays from training views and from unseen images can be con-

sidered, whose sets are denoted respectively by Rt and Ru. The fnal entropy loss

is defned as:

Lentr = λentr ·
1

|Rt|+ |Ru|
∑

r∈Rt∪Ru

M(r)⊙H(r), (A.5)

where ⊙ denotes the element-wise multiplication and λentr defnes the contribu-

tion of this loss.

A.1.2 Perturbation

Previous works demonstrate how neural networks beneft from random or learned

data augmentation. Generalization can be achieved by injecting noise during the

training phase, as done in [55]. Here, noise is introduced in the form of worst-case

perturbations applied on the input coordinates, into the features of the network,

and on the pre-rending output of the network. The worst-case perturbation can

be formulated as a min-max problem defned as follows:

min
Θ

max
δ

∥

∥C†(r|Θ, δ)− C∗(r)
∥

∥

2

2
, (A.6)
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where

δ = (δp, δf , δr) ∈ Sp × Sf × Sr, (A.7)

and δp, δf , δr are the learned perturbation, Sp,Sf ,Sr are the corresponding search

range and C†(r|Θ, δ) is the perturbed rendered color.

The input coordinates perturbation δp = (δt, δxyz, δθ) consists of along-ray

perturbation δt ∈ R
3, point position perturbation δxyz ∈ R

3 and view-direction

perturbation δθ ∈ R
3 (hence Sp ⊆ R

6). The feature perturbation δf consists

of perturbing a D-dimensional features vector, hence Sf ⊆ R
D. Finally, a pre-

rendering output perturbation is applied to RGB color and density values (Sr ⊆
R

4).

In order to estimate the worst-case perturbation of the injected noise, [55]

proposes a multi-step Projected Gradient Descent (PGD) approach. Given linf

as the norm ball defning all search spaces Sp,Sf ,Sr and the radius ϵ as the

maximum magnitude of the perturbation, a PGD step is defned as:

δ(t+1) =
∏

∥δ∥∞≤ϵ

[

δ(t) + α · sgn(
∥

∥C†(r|Θ, δ)− C∗(r)
∥

∥

2

2
)
]

, (A.8)

where α is the step size,
∏

[·] is a projection operator and sgn(·) is the sign

function.

Following this procedure, the adversarial perturbation loss is obtained as:

Ladv = λadv ·
∑

r∈R

∥

∥C†(r|Θ, δ)− C∗(r)
∥

∥

2

2
, (A.9)

where λadv defnes the contribution of this loss.

A.2 Sample Space Annealing

When few images are provided, NeRF could converge to undesired solutions. In

this case, high-density values are concentrated close to ray origins. Annealing

the sampled scene space over the early iterations of the training [24] can be a

solution to avoid this specifc problem: the idea is to restrict the sampling space

to an initial smaller region where the scene is centered.

Given the camera’s near and far plane tn and tf , let tm be a point between

them, likely their midpoint, and defne the new near and far plane per-iteration
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LLFF 3-views PSNR ↑ SSIM ↑ LPIPS ↓ Average ↓
Vanilla NeRF 17.71 0.544 0.303 0.155

Ladv 17.75 0.541 0.300 0.155
Lentr 17.34 0.526 0.312 0.161
Anneal 18.04 0.562 0.284 0.147

CombiNeRF 20.37 0.686 0.191 0.101

Table A.1: Quantitative results comparison among the other three regularization techniques on
LLFF dataset with 3-view setting.

as:

tn(i) = tm + (tn − tm)η(i)

tf (i) = tm + (tf − tm)η(i)

η(i) = min(max(i/Nt, ps), 1),

(A.10)

where i is the current training iteration, the parameter Nt represents the max-

imum number of iterations in which to perform the space annealing and ps in-

dicates the starting range. These parameters should be tuned according to the

particular scene under consideration.

Annealing the sampled space, especially during the frst iteration of training,

may allow NeRF to focus on the right region of interest, avoiding degenerate

solutions.

A.3 Results

We evaluated the three implementations presented above on the LLFF dataset

with a 3-view setting. We compared the obtained results with the results obtained

by Vanilla NeRF to see if a specifc technique should be considered for further

experiments or should be revised or better fne-tuned.

In Tab. A.1 we show the quantitative results of this study. CombiNeRF

remains the best-performing method, outperforming all the other methods by

a large margin. Lentr is not able to improve NeRF generalization and, on the

contrary, degrades its performance. Ladv slightly improves some metrics but it

doesn’t afect the overall score. Moreover, the time complexity required to per-

form PGD for worst-case perturbation considerably increases the total computa-

52



tional time. Instead, the Space Annealing technique outperforms Vanilla NeRF

in all metrics. This result would lead us to focus on the latter as a promising

method to be tested and eventually integrated into CombiNeRF. However, we ar-

gue that the contribution provided by Space Annealing could not ofer additional

benefts when paired with the distortion loss of Eq. (3.4), as both methods try to

remove high-density values on points close to the camera.

In Fig. A.1 and Fig. A.2 are shown qualitative results of Vanilla NeRF against

the other three implementations. In Space Annealing results, the depths are

smoother, and the reconstruction quality increases as visible in the white wall

and the light on top of ”T-rex”, in the leaves’ details on ”Fern” and in the

overall object reconstruction of ”Fortress”. With Ladv is very difcult to see

improvements in the resulting renderings, which refects the quantitative results

seen in Tab. A.1. In Lentr results, both depth and RGB images are less accurate,

containing more artifacts (e.g., in ”Fortress”) and noise, particularly visible in

the white wall of ”T-rex”.
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Figure A.1: RGB comparison of Vanilla NeRF against Space Annealing, Adversarial Perturbation
and Entropy loss on LLFF with 3-view setting.
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Figure A.2: Depth comparison of Vanilla NeRF against Space Annealing, Adversarial Perturbation
and Entropy loss on LLFF with 3-view setting.
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