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Abstract

In this thesis we deal with a class of mean field control problems that are obtained
as limits of optimal control problems for large particle systems. Developing on
[Cardaliaguet, P., Souganidis, P. E.; Regularity of the value function and quanti-
tative propagation of chaos for mean field control problem, Nonlinear Differ. Equ.
Appl., 2023], we analyze the value function U in Wasserstein metric and we prove
its smoothness in an open and dense set of the space, time and probability mea-
sures using the strategy of the linearized system. The definition of this set exploits
the concept of strong stability. Finally, we focus on chaos propagation: we study
the properties of the optimal solutions of the interacting particle system starting
from the aforementioned open and dense set. We also show some classical results
on flows of probability measures via simple analytical tools.
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Introduction

Optimal control is a field of study that deals with finding the best control law for
a dynamic system in order to achieve a specific optimality condition.

In deterministic optimal control, by dynamical system we mean a set of differential
equations for the evolution over time of the variable y(¢) that represents the state
of the system at time ¢:

{y(t) = fly(t),a(t)) t>te>0, (1)

y(tO) = o € RN:
where o € A is the control taking values in the set of admissible controls
A ={a:R— A| «ais measurable and the solution of (1) exists unique in [to, T},

A is a topological space and T > 0 a finite time horizon.
The optimality condition in optimal control is defined via an objective cost func-
tion, e.g.

T
Hantora) = [ 1y(e).0(0)de+ 9(u(T))
0

with [ : R¥x A — Rand g : RY — R two given functions. This function quantifies
the quality of the control inputs and the resulting system behavior. The objective
is to find the control law that minimizes (or maximize) this cost function over the
set of admissible controls. When the control is governed by a stochastic equation
we call this problem stochastic optimal control.

Mean field game (MFG for short) theory is closely related to optimal control,
and extends it to a setting where identical players simultaneously try to minimize
some cost function.

Its birth dates back to 2006 when paper [18] by Lasry and Lions was published.
The main idea behind MFGs is the following: when the number of players N
in a game is so big that it can be approximated by one with infinitely many
indistinguishable agents, the analysis can be reduced to the study of a control
problem with a single player representing the whole system.
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In particular, in our case of interest the formalization of such a problem is the
following. The dynamics of the state of the population is affected by the movement
of an average control a via

dX; = audt + V2B,

where B; is a standard Brownian motion.
The representative agent aims to minimize the cost functional

E {/T L(X,, as, m(s))ds + G(Xp, m(T))

to

The following system of equations can be used to model a typical mean field game:

O — Au+ H(z,m, Du) =0 in (t5, T) x RY,
om — Am — div(H,y(xz, m, Du)ym) = 0 in (to, T) x R%, (2)
m(tO) = My, U(T, ﬂf) = G(x,m(T)) n Rda

where L : R? x RY — R is the Lagrangian and its convex conjugate,
H(p) = max,cga{a - p — L(a)}, is the Hamiltonian, and G : R x P(RY) — R?
is the terminal cost.

In the above system (2), the map u can be interpreted as the value function of a
player, while m(t) is understood as the evolving probability density of the player
at time t.

Mean field control (MFC) is a concept closely related to mean field games. In
this case, a social planner controls the distribution of states and chooses a control
strategy. MFC problems are control problems where the dynamic of the state X,
satisfies an equation depending on the law of the state £(X;) itself. This is known
as a Mckean-Vlasov equation:

dXt = b(t, Xt, L(Xt))dt -+ Cl(t, Xt; 'E(Xt))dBt,

where o(t, X;, £(X})) and b(t, Xy, £L(X;)) are measurable functions, a(t, Xy, £(X;)) =
o(t, Xy, L(Xy))o(t, X;, £(X;))T and B; denotes a Brownian motion.

Furthermore the optimality conditions for MFC and MFG coincide in the case of
potential MFG, i.e. when the costs come from a derivative.

In this thesis we investigate and discuss the regularity of the value function
for a class of MFC problems naturally arising as limits of some large particle
systems. Then, using the regularity of this function, we obtain a propagation of
chaos property that connects the behaviour of the optimal trajectories for the N-
particle system and the one of the limit problem. We also show a convergence rate
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for the value functions of the two problems.

In particular, we focus on the following setting. Let (€2, F,P) be a probability
space and let T > 0 be a fixed time horizon. Set ¢y, € [0,7] be the initial time
and ¢ = (3, ..., 7)) € (RY)Y be the initial position of the system at time ty. In
order to control a N-particle system, we first focus on the minimization, over the
set AN of admissible controls o = (a*)Y_, € L*([0,T] x ©; (R4)Y), of the following
functional:

1 T N o T
(10,20, 0) = E N/ }:L(X;,agdH/ Fm )t +5mY )|, (3)
to

i=1 to

where the process X; satisfies

t
XF = ok +/ ofds +v/2(BF — B), for t € [to, T,

to

=1,...,

F and G are given data, m)]gt corresponds to the empirical measure of the process
X;,and L = L(z, ) : R4 x R? — R is the Legendre transform of the Hamiltonian
H and it is assumed to be convex with quadratical growth in .
Then, the value function for the problem is defined as
VN (to, x0) = inf JN(to, 20, @0).
(to, 7o) T (to, zo, ) (4)

We show the convergence of the empirical measure of the optimal trajectories of
(4), m% ~, to the optimal solutions of the MFC problem. This last corresponds to
t

minimizing the following functional
T
J*(tg, mp, x) = E {/ L(Xy, ) + F(L(Xy))dt + G(L(X7)) |,
to

where my is the initial distribution of the particles at time to, £(X}) is the law of
X, o is an admissible control square integrable R%valued processes adapted to a
Brownian motion B and to an initial condition X, which is independent of B and
of the law mq and the process (X;)cp, 1) satisfies the following equation

t
X = Yojt/ ayds +V2(B; — By,) for t € [to, T.

to

Finally, the value function of this last problem is

U(toy, xo) = (ilelfl(] (to, Mo, cv).
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The rest of the thesis is structured as follows.
Chapter 1 is devoted to a recap of some basic definitions on Wasserstein distances,
derivatives in the space of measures and basic results on MFC problems. In par-
ticular, we prove that any minimizer (m, «) of J* corresponds to a solution to the
following potential MFG system (i.e. the coupling functions F' and G derive from
potentials, that is F = 2% (m,z) and G = & (m, z)):

—0wu — Au+ H(x, Du) = F(z,m(t)) in (to, T) x R4,
om — Am — div(H,(x, Du)m) = 0 in (to, T) x R, (5)
m(to) = mo, u(T,z) = G(x,m(T)) in R%

In chapter 2 we show a result on the convergence rate of V¥ to U, as N tends
to infinity. The rate is obtained in a setting where the value function U does not
need to be smooth.

First of all, we present some regularity estimates for VV and U. The second step
consists in bounding from above VY by U: we define the function

N
V(L m) = / VW (1, 2) [ mday),
RHN j=1

and, comparing U with VN and VN with VN , we obtain the thesis. The core of
this chapter is the proof of the opposite inequality: we divide, via an appropriate
partition, the players into subgroups in order to get that the optimal controls
for the agents in each of them are close. We show the inequality holds for each
subgroup.

So, we obtain that there exist 5 € (0,1] and a constant C' > 0 such that, for any
(t,z) € [0,T] x (RHN

VN (t, ) — Ut,mY)| < ONTP(1 4+ My *(md)),
where My?(mY) = LS %

Chapter 3 represents the core of the work. We introduce the linearized version
of the system (5)

—0yz — Az + Hy(z, Du) - Dz = 2E(z,m(t))(u(t)) in (to, T) x RY,
Ot — Ap— div(Hpy(x, Du ),u) — odiv(Hyy(x, Du)Dzm) = 0 in (t5, T) x R,

plto) = 0 and =(T,x) = % (2, m(T)) (u(T)) in R,

om
(6)
We exploit the notion of stability, that is when the only solution to (6) is the
trivial one, to show that, in an open and dense set O of initial times and measures,
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the value function U is smooth and it is a classical solution in O of the master
Hamilton-Jacobi equation

—oU(t,m) —/d div(D,, U(t, m,y))m(dy) + ) H(y, D,,U(t,m,y))m(dy) = F(m).
R R

Chapter 4 focuses on the proof of the propagation of chaos property, that de-
scribes the limit behavior of the particle system when the number of particles
grows to infinity.
We study the properties of the optimal trajectories of the interacting N-particle
system exploiting the results obtained in the previous chapter. So, for every
(to,mp) € O, taking a sequence of independent random variables with law mg, Z =
(Z%) k=1,..N, & sequence of independent Brownian motions independent of Z, B =
(B¥)g=1...n, and a sequence of optimal trajectories for VN, YV = (YNH*),_;  y,
such that

t
Ly / H,(Y¥, DV (s, YN))ds + V2(BE — BE),
to

we show that there exist v € (0,1) and C' > 0 such that

E[ sup dl(m)]\,iN,m(t))] <CN™.

tE[to,T]

Some additional material is collected in the Appendix. In particular, in Appendix
A we show a result on the Wasserstein distance using only analytical tools. In
Appendix B we present the Kantorovich duality theorem that we use to prove
the Kantorovich-Rubistein theorem. Finally, in Appendix C we recall the Lions-
Malgrange-type argument: a result to prove uniqueness of solution for general
linear forward-backward systems given the initial data.
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Chapter 1

Definitions and preliminary facts

In this chapter we provide the necessary notations and the consequent definitions
that will then be used in the rest of the work.

1.1 General notation

Let d € N. We work on RY. Let Bp be the ball of radius R centred at the origin.
We use the notation P(R?) to denote the set of Borel probability measures on R%.
Let m in P(R?) and p > 1 and we call M,(m) = [, |z[Pdm the p""-moment of m.
We denote by P,(R?) the set of m in P(R) such that M,(m) < co.

In what follow, we use positive constants C' that may change from line to line.

1.1.1 The Wasserstein distance

Let p > 1, we endow P,(R?) with the Wasserstein metric d,, defined in the following
way:

d?(m,m') == inf x —ylPdr(z,y),
p( ) well(m,m’) ]Rd| y| ( y)

where IT1(m,m’) is the set of all 7 € P(R? x R?) with marginals m and m/.
In particular, for p = 1, we have

Theorem 1.1 (Kantorovich-Rubinstein Theorem). For any m,m’ € P1(RY), then

di(m,m’) = sup ¢ d(m—m').
¢: 1 Lip Jrd

For the proof, we refer to the last part of Appendix B.

7
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Proposition 1.2. Let p,v € P1(R?) and X, X, be a stochastic variable whose
law is p and v respectively. It holds that

di (. v) < E[|X,, - X,
Proof. Let f:R? — R be a Lipschitz function with its Lipschitz constant C' < 1.
We have

|f(@) = fW)| < Cle —y| < |z —yl.
Hence,

[ 1@wtdo) = [ rwtdy) = B - B < [BLCX,) - ()
< E[F(X,) ~ F(X)]] < EBIIX, - X,
This means that
i) = s [ au-v = s { [ st - [ s}
f:1-Lip JR4 f:1-Lip LJRd R
< ]EHXM - XZ/H

Remark 1.3. One can show that
dl(ﬂ> I/) = Xf})f(l/ EHXH - XVH?

where the infimum is taken over random variables X, and X, such that the law of
X, (resp. X,) is pu (resp. v).

Remark 1.4. Another useful distance on the space of measures is the Wasserstein
distance dy. It is defined on the space Po(R?) of Borel probability measures m with
a finite second order moment (i.e., [pq|x[*m(dz) < 400) by

™

1/2
d2(m17m2) = inf (/ |x - y|2dﬂ($ay)> )
RQd

where the infimum is taken over the Borel probability measures m on R? x R with
first marginal given by my and second marginal by ms:

@dr(ay) = [ o)) and [ otin.s) = [ ot)amly).

R2d R2d
The distance can be defined equivalently by

_ 2\ /2
da(my, mg) = ;gf, (]EHX Y| ]) )

where the infimum is taken over random variables X and Y with law my and ms
respectively.
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Remark 1.5. By Holder inequality P,(RY) C P,(RY), for any 1 < s <r, and

ds(m,m’) < d,(m,m’) VYm,m' € P.(R?).

1.1.2 Derivatives in the space of measures

Let U : P(RY) — R. We, first, restrict the function U to the elements m € P(R?)
which have a density in L?(R?) and assume that the function is defined in a
neighborhood O C L*(R?) of L2(RY) N P(R?). We write

5_U(p)( ) = 11m1(U(p+ eq) —U(p)) pe0; ge L*(R).

(5m e—0 €
We can identify ¥ (p) with an element of L?(R?). We set, when possible
U U
D, U(m,y) = D,~—(m,y) and D2 U(m,-y,y) = Dz’y/%(m,y,y’).

Yom
In the same way, we denote by gz—% the second derivative of U

52U 1 ((SU oUu

) =tin (S @) - 5 0@))  pe0iad € LR

We can also consider, in a more general way, the derivatives out of L? in P(R?).

Definition 1.6. We say that U : P(R?) — R is C! if there exists a continuous
map $% : P(R?) x R? — R such that, for any m,m; € P(R?),

—(m,y)d(my —m)(y).

lim
50+ S a0m

U(L = s)m + smq) — U(m) _ / u

Since % is defined up to an additive constant, we adopt the mormalization

convention SU

R4 (5m

1.2 Assumptions

We state now some assumptions on the data that will be involved in the work:
some are more standard than others but will be important to prove the regularity
of the value function U.
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Let H: R xR - R, F:P;(RY) - R and G: P;(RY) — R.
We define L : R? x R? — R as the Legendre transform of H with respect to the
second variable as
L(z, o) = sup[—a-p — H(z,p)].
pER4

We assume that:

e H € @} and strictly convex with respect to the second variable,

e 3C > 0 constant such that, V(z,p) € R? x R? O~ 1; < H,,(z,p) < C I,
—C+C7p|* < H(z,p) < C(1+ |pf*) and | Do H (z,p)| < C(|p| + 1),

e J € € with ¥, D,,F, D}, F and D}, F uniformly bounded and, moreover,
525

s (m,x,y) is

z — 22 (m, ) is bounded in €2 uniformly in m, while y —
bounded in €? uniformly in (m, z),

e G € @' with all derivatives up to order 4 uniformly bounded.

For convenience, in what follow, we will call all the assumptions on H, & and §
(1.1)
An example of a Hamiltonian satisfying (1.1) is

H(z,p) = |pl®

and a typical F is the class of cylindrical functions of the form

F(m) =F ( /R Fi()dm(x)..... /R d S"k(:v)dm(m)) ,

where F and the JF;, for 1 < i < k, are smooth with bounded derivatives.

Remark 1.7. We note that the strict convexity of H with respect to the second
variable implies that L has the same regularity as H.
The uniform bounds on D,,F and D,,G imply that both maps are Lipschitz contin-
uous in Pi(RY).
Remark 1.8. Since L is the Legendre transform of H and for |a] < R, x € R? and
p = D,L(x,a), in view of the hypothesis (1.1), we have L(x,a) = —a-p — H(z,p)
and that
1 2 ! /12 R2
—Rlpl = C+ ~pl” < L(z,0) <sup{—a-p'+ C = cp['} < O+
p/

So, we have that for every R > 0, there exists Cr > 0 such that

|DoL(z,a)| < Cg for all (r,a) € R* x Bp. (1.2)
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1.3 Background

In this part we present the mean field control (MFC for short) problems obtained
as the limit of optimal control problem for large particle systems.

Let (€, F,P) be a probabilistic space, X = (X!, ..., X) the trajectories that
satisfy, for each k € 1,..., N,

t
XF = ok +/ afds +V2(BF — B;) for t € [to, T7, (1.3)

to
where the (B'),—;.  n are independent d-dimensional Brownian motions and
a = (aF)N_, € L*([0,T] x ©; (RY)Y) are admissible controls adapted to the fil-
tration generated by them.
We define the empirical measure of the process X;, where ¢, is the Dirac mass

center in x :
1 N
N ._ § :
k=1

Let T > 0 be a fixed time horizon, ¢, € [0,7] the initial time and
zo = (2}, ..., 2)) € (RY)Y the initial position of the system at time to.
We want to minimize the following problem over the set A" of admissible controls
a=(aF)N_ € L*[0,T] x Q; (R)N) in order to control a system of N particles

T N

1 o T
JN(to, 20, 0) :=E N/ ZL(X;,ag)dH/ F(my,)dt + G(my )|, (1.4)
to i—1 to

where L = L(z,a) : R x R — R is a convex function with quadratically

.....

For this problem, the value function is

VN<t0,ZL’Q> := inf JN(to,LU(),Oé>

acAN
1 T N ‘ ‘ T N N (15)
— inf E|— L(X}, a)dt F dt
ach N/to 2 M) +/m S

It can be proved that (see [17]), in a more general framework and under slightly
different hypothesis on the data, the empirical measure m)]gN in the optimal tra-
t
jectories of (1.5) converges to the weak optimal solutions of the mean field control
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problem which consists of minimizing the following functional

Jw(to,mo,a):E[/TL(Xt,at)dtJr/T?(L(Xt))dwr9(L(XT)) . (1.6)

to to

where my is the initial distribution of the particles at time ¢y, £(X;) is the law
of X;, a € A, where A is the set of admissible controls that are square integrable
Révalued processes adapted to a Brownian motion B and to an initial condition
X, which is independent of B and of the law my.

The process (Xi)ict,,1] satisfies the following equation:

t
Xt = 70—'—/ OéSdS + \/§(Bt — Bt0> for t € [to,T] (17)

to

The value function of this last problem is

U(to, xg) := inf J*(tg, mg, )
acA

T T .8
= OltfelﬁlE l/ L<Xt7 Oét)dt + / ?(L(Xt))dt + S(L(XT>> (1 )

to

1.4 Preliminary facts

We call M(ty, mo) the set of controls defined by

(m, ) € CO[to, T], P1(RY)) x LO([te, T] x R%;RY)
M(to,mo) =S [ [oulaf?>m < oo
Oym — Am + div(ma) = 0in (ty, T) x R? and m(to) = mg in R?

for each initial point (tg,mg) € [0,T) x P;(R?) with the equation understood in
the sense of distributions.
We can rewrite the value function in (1.8) as
(1.9)

m,a)EM(to,mo)

U(to, mo) = ( inf {/to /Rd Lz, a(t,z))m(t, dz) + F(m(t))dt + S(m(T)l)

We also define the set O

O := {(to, mo) € [to, T]xP2(R?) : 3! stable minimizer in the definition of U(ty, mg)}.
(1.10)
In what follows, we will prove that U is smooth in O.
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Let (tg,mg) € [0,T) x Po(RY). We have [see section 1.5] that for U(ty, mg)
there exists at least one minimizer and, if (m, a) € M(to, M) is a minimizer, there
exists a multiplier u : [tg, 7] x R? — R such that & = —H,(z, Du) and the pair
(u, m) solves the mean field game system

—0wu — Au+ H(x, Du) = F(z,m(t)) in (to,, T) x RY,
om — Am — div(H,(x, Du)m) = 0 in (to, T) x R?, (1.11)
m(tO) = My, U(T7 :C) = G(:c,m(T)) n Rd:

where

F(zx,m) = g—i(m,x) and G(z,m) = g—i(m,x)

The system is made by a pair formed by a backward Hamilton-Jacobi equation,
describing the dynamics of the value function of any of the players, and a forward
Kolmogorov equation, describing the dynamics of the distribution of the popula-
tion. We can think of F' as a running cost and G as a terminal cost.

Since the hypothesis of strict convexity on H, given (m, «), Du is defined uniquely
by the relation o = —H,(x, Du).

Lemma 1.9. Assume (1.1) and let (u,m) be a solution of (1.11).Then,

i) for any 6 € (0,1) and t,t' € [0,T] there is a constant C > 0 independent of
(to, mg) such that

dy(m(t), m(t'))

[[ullees+1/25+1 + sup <C, (1.12)

1At |t_t/|1/2 —
ii) there exists a constant C' such that
sup lz|*m(t,dz) < (1 + CT)/ |z|*mo(t, dz) + CT. (1.13)
telto,T] JRY R4

Proof. i)The @(1%9)/2140 Jocal regularity of u is a consequence of the classical
parabolic regularity theory, since

e the map x — G(x,m) is bounded €*
e the map z — 3£ (z,m(t)) is of class €2
e using the fact that m is a solution (see Proposition 1.13) to

Om — Am — div(Hym) =0
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and the divergence theorem we have

OF

%F(m,m(t)) = /Rd 5—m(m(t),x,y)3tm(t,y)dy

= [ (e 25) S S oml0) 2, )i, Dt )6, )y

d% 5m

— [ (A5 m(0),) = Hyly Dutt,) - Dy 5o (m(t) . hm(e, )y

that implies the map t — F(z, m(t)) is @1*9/2 for any § € (0, 1) for the fact
that y — g%(m,x, y) is bounded in €% uniformly in (m,x).

This regularity holds globally in space since there exists a constant C' > 0 such
that for every z,y € R?

sup | F(z,m(t)) = F(y, m(t))] + |G(z, m(t)) — Gy, m(t))| < Clz -y

te(to,T)

for the uniform boundedness of D2, F and D2, G.
Applying the maximum principle, recalling that for T terminal time we have
w(T,z) = G(x,m(T)), we get that u is Lipschitz continuous in the space variable.
The same argument applied to the equation satisfied by u,, for each ¢t =1,...,4d,
implies that Du is Lipschitz in the space variable.

To prove the bound on ds, let us assume ¢’ = 0. Consider

{&m — Am — diV(Hp('xa Du(ta a:)m) = O n Rd X <O’ T)’ (1 14)

m(0) =mg in R

with
m(t,z) = / u(t 2, y)dy
Rd

and
Ot — Agpt — divy (Hy(x, Du(t, z))u(t, v, y)) =0 in R* x (0,T). (1.15)
Multiplying (1.15) by |z — y|* and integrating over R?? we obtain
/ Opr - | — y|*dady — / App- |z —yl?
R2d R2d

= [ diva(ty (e Dult. o)t a,) - o — yPdndy =0,
]R2d
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Notice that, applying twice the divergence theorem since A pu = div,(V ),

- App - |z — yPdedy = 2 Vep - (x —y)daedy = —2d,
R2d R2d

where we used that fRQd wu(t, z,y)drdy = 1. Using the divergence theorem, we have
that

—/ div, (Hy(z, Du)p(t, ,y)) - |v — y[’dedy =2 | Hy(x, Du)p(t,,y)(z — y)dzdy,
R2d

R2d

and so
/ O - o — yPdady — 2d + 2/ H,(z, Du)p(t, z,y)(z — y)dedy = 0.
R2d R2d

Using the Young’s inequality

/ u(t, 2, 9l — yldedy = / (Valt, .9z — y) VAt 7, 9)dedy
RQd RQd

1
=3 (/ |z — y\2u(t,x,y)dxdy+/ ,u(t,a:,y)dxdy> :
2 R2d R2d

and that H,(Du) is bounded, we have

2 [ Hy(x, Du)u(t,z,y)|lr —yldedy < 2||Hy(z, Du)||s /2d u(t, z, y)|x — y|dedy
R

R2d

<t Dl ([ 1o = Putt,o iy + [ nteaioay
R

R2d
<C (/ | = yPult, 2, y)dzdy + 1) :
R2d
and so, putting everything together, we have
/ Oy - |z — ylPdedy —2d < C (/ |z — yPu(t, z, y)dedy + 1) :
R2d R2d

and applying the Gronwall’s lemma and knowing that ds is a distance and so there
exist p such that dy(m, m) = [g.q |2 — y|*1(0, z,y)drdy = 0 we get

/ u(t,z,y) - [ — yPdedy < C(—t — 1+ &) + Ct
R2d
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and, there exists a K > 0 such that

/ plt,x,y) - o — y[Pdedy < Kt
R2d

The last inequality follow since we assumed ¢t € (0,7).
Using that

d%(m(t),m(O)) - inf / 4 |I - y|2d7T($,y) S / ., ‘l’ - yPM(t?xay)dxdy?
R2 R2

well(m(t),m(0))

and so we have that
da(m(t),m(0)) < CVt,
and we get the thesis.

ii)Using Lemma 2.2 in [1] with 1 € C®(R?), ¢(z) = |x|? outside B;(0), we get
the thesis.
[

In what follow, we state a stability estimate for minimizers of (1.9) when they
are unique.

Lemma 1.10. Assume (1.1) and fix (to,mg) € [0,T) x Po(R?). Let u be the asso-
ciated multiplier to the unique minimizer (m, o) of U(to, mo). If (t§, m{) converges
to (to,mo) and if the associated multiplier to a minimizer (m™, ™) for U(ty, my)
is u™, then u" converges to u, Du" to Du and D*u" to D*u in C%/>9 . In addition,
if, Vn, t8 = to, the convergence of (u™) holds in C(2+0)/22+9,

The following result will be useful in the proofs of the main results.
Lemma 1.11. Assume (1.1) and let ty € [0,T) and my € P2(RY). Call (m,a) a
minimizer for U(tg, mg). Fiz 8 € CO([tg, T] x RGRY) or B € L>®([ty, T] x R% RY)
with B vanishing in a neighborhood of ty and let p € CO([ty, T], (C*T0(RY))") be the

solution to

{3tp Ap +div(mB) = 0 in (t,,T) x R, (1.16)

p<t0) =0n Rd7

with the equation understood in the sense of the distributions.

Then
/t (/Rd Loo(z, a(t,2))B(t, x) - B(t, z)m(t, dz) + <§_7];("m<t)’ Vp(d)), p(t)))dt+
G (D), Y (o(T, ), p(T. ) = 0.

om
(1.17)
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For the proof of the previous two lemmas, see Lemmas 1.5 and 1.6 of [10].

We know that V¥ defined in (1.5), solves the Hamilton-Jacobi-Bellman (HJB)
equation [see []]

{—@VN(t, ) = SN ALVt 2) + L H(z, ND, VY (t,2)) = F(mY) in (0,T) x (RH™,
VN(T,z) = G(md) in (RN,

1.5 Existence of U
Let us begin with some definitions.
Definition 1.12. We define
MR RY) = {w : w is a Borel vector measure with finite mass |w]|}.

Let us call E(ty) the set of pairs (m(t),w(t)) € P(RY) x M(RY RY) such that

t — m(t) is continuous and
T
/ (b)) dt < oo,
0

and the following equation holds in the sense of distributions
om — Am + div(w) = 0 in R x [to, T] and m(ty) = my.

We denote by Ey(ty) the subset of (m(t),w(t)) € E(to) such that w(t) is abso-

lutely continuous with respect to m(t) with a density j:f;((?) satisfying

dw(t

[ Ll

(t)
Then, we define J on E(ty) by

J(to, mo, ) = {fto Jaa L( adm(t) (z))m(dr) + ft m(t))dt + G(m(T)) if (m,w) € Ex(ty),

2
x)’ m(dz, t)dt < oo

+00 otherwise.

The next proposition shows that minimizers of the functional J correspond to
solution of the MFG system.

Proposition 1.13. Under our standing assumptions:

i) For any to € [0,T] and my € P(R?) there exists a minimum (m,w) € Ey(ty)
Of J(t(]u My, ')7
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ii) Let (m,w) be minimum of J(ty, mo,-). Then there exists u such that (u,m)
15 a classical solution to the MFG system

—0wu — Au+ H(x, Du) = F(z,m(t)) in (to, T) x R,
om — Am — div(H,(x, Du)m) = 0 in (to, T) x RY,
m(to) = mo, w(T,z)=G(z,m(T)) inRY,

where F(z,m) = 2 and G(z,m) = &, and w(z,t) = —m(z,t)Hy(z, Du).

In particular, any minimizer is a classical solution of the above system.

Proof. Let us start proving i).
Let (my,w,) € E2(to) be a minimizing sequence. By the definition of J, we have
J(my,,w,) < C and, by the assumption on H in (1.1), there exists C' > 0 such
that

C™ ' 1 < Hpp(x,p) < C 1.

This assumption on H implies the following uniform bound

dwy,(t)

[ Ll

We can then argue as in [7, Lemma 3.1] to conclude that the sequence (m,,) is
uniformly bounded in €*/2([0, T], P(R%)). In particular,

9 1/2 T 1/2
dw,(t) ’ my(dz, t)dt) ( / my(dz, t)dt) < C.
to R4

/ wn ()]t < ( / [ |t

So, up to a subsequence,w, — w in M((0,7) x RY,R?) and (m,) converges in
C([0,T], P(R%)) to m. Then, we can conclude that the pair (m,w) belongs to
Ea(to).

Since J is lower semicontinuous

2
( mn(dz, t)dt < C.

liminf J(my,, w,) = lim J(m,, w,) < J(m,w),
n—oo n—o0

and we have that the couple (m,w) is a minimum of the functional .J.

Let us pass to ii). We define on E(%y) the functionals ®(m,w) and ¥(m) such
that J(m,w) = ®(m,w) + ¥(m), so

<I>(m,w) — {ft fRd (t) (dl’ t)dt if (m ’LU) € 82(t0)

+00 otherw1se
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and

U(m) ;:/ F(m(t))dt + G(m(T)).

to

Let (m,w) be a minimum of J. Recall from i) that, since it is a minimum,
m € CY2([0,T], P(R%)).

Let m) and wy be the convex combination of m and m and w and w respectively.
So we have my := (1 — \)m + Am and wy, := (1 — \)w + Aw with A € (0,1). By
minimality of (7, W)

<I>(m,\, w,\) + \I/(m)\) > (I)(m, w) + ‘Il(m),

and so
<I>(m,\,w,\) — CID(W,E) Z \If(m) — \If(m,\)

Thus, by the convexity of ®
D (mx, wy) < AR(m,w) + (1 = \)@(m, W),
and so
A@(m, ) — D)) > D, wn) — B, W) > U(m) — U(my).
Thus, by the regularity assumptions on F and G, we get
A(@(m, w) — (M, w))
>\ (- /tT /R o m(6))(m = m)(do.6) = [ S m(T)(m ~ m)(dx,T)) + o).
(1.18)

Then dividing (1.18) by A and letting A tends to 0, we obtain, for any (m,w) €
E(t

/ /Rd x,m(t))(m(dz,t) —m(dz,t)) — | G(x,m(T))(m(dx,T) — m(dx,T))

< d(m,w) — ®(m, w).
(1.19)

Let us define
J(m,w) = ®(m, w) / / (z, m(t)m(dx, t)dt + [ G(z,m(T))m(dx,T).
R4 Rd

Note that this functional is convex. B
By (1.19), the pair (72, W) is a minimizer of J on &(t).
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Note also that the problem of minimizing J on &E(to) is the dual problem (in the
sense of the Fenchel-Rockafellar duality theorem B.3 [see [7] for the details]) of the
problem

inf {— /R mo(@)u(z, 0)dz - —0u — Au+ H(z, Du) < F(z, m(#))

u€eC?

(1.20)
and u(z,T) < G(z, m(x,T))}.

By comparison, there is an obvious minimum to this problem which is the solution
u to

—0i — Au + H(x, Du) = F(z,m(t)) in R? x (0,7T),
u(z,T) = G(x,m(x,T)) in R

This solution is €2* because m € CV2([0,T), P(R?)). By the Fenchel-Rockafellar

duality theorem, we have that

0=J(m,w)— » mo(z)u(z,0)d.

Using the definition of J. , the equation for w and the equation for (7, w), we have
that

0= /tOT /R d (L (:c dw—((?) + Sf(x,m(t))) m(de,t)dt + | S, m(T))m(de, T)

dm ) R4

-/, mo(z)u(z,0)dr = /: /Rd (L <9c 3;”2—((?)) + (=0 — Au + H(x, DU))) m(dx, t)dt

+ /R (e, m(T))m(de, T) - /R ,mo(@)u(, 0)dz

- /tOT /Rd (L (m %) + H(z, Du) + Du - <3Z—8>) m(dx,t)dt.

Recalling that L is the convex conjugate of H which is uniformly convex, we find

dw(t) _ S
amt) —H,(x,Du) m—ae.

This means that m solves the Kolmogorov equation
oim — Am — div(mH,(z, Du)) =0 and m(-,tg) = my

which has a regular drift: thus 7 is of class €** by Schauder theory. Therefore w
is also smooth and the proof of ii) is complete.

]



Chapter 2

The convergence of V" to U

This chapter is devoted to an algebraic rate of convergence of the value function
VN of N-particle control problems to the value function U of the corresponding
MFC problem.

With V¥ defined by (1.5) and U by (1.8), we have the following result.

Theorem 2.1. Assume (1.1). There exists 5 = pB(d) € (0,1) and a constant
C > 0 depending on the smoothness of the data such that, ¥(t,z) € [0,T] x (RN,

1
VYt 2) = Ut my)] < Oz (L4 Ma(my))). (2.1)
The proof of Theorem 2.1 requires several steps: we first obtain uniform in N
regularity estimates on VY, then we show how to bound from above V¥ by U plus
an error term and, finally, we prove the converse estimate.

Here we present a result on the regularity of VY and of U.

Lemma 2.2. Assume (1.1). There ezists a constant C' > 0, which depends on the
data, such that

1V ]|so + N ;slupN |D2; VN |oo + 10V < C, (2.2)

J=1,
and, V(t',m'), (t",m") € [0,T] x P1(R?),
U, m") — U, m")| < C(|t" —t"| + di(m/,m")). (2.3)
Proof. The bound on V¥ follows by the assumptions on the data.

21
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Call w’ = Dy, VN Then w’ satisfies

( 1
— Ol (t, x) ;Awkw (t,z) + ND H(z?, NDuw’(t,z))
al 1
+ Y Hy(wp, NDy, VY (t,2)) - Dyl (t,2) = 7 DmT (¥, 2;) in (0,T) x (RHYN,
k=1
(W (T, ) = %D G(mY, z;) in (RT)N.

(2.4)
Using the maximum principle we can conclude that N||D, V" ||« are uniformly
bounded in N and j.
In the same way, w' = 0,VV satisfies

(

—8tw t,x) ZAzkw (t,z)+

N
+ Y Hy(x, NDy, VY (¢, 2)) - Dy w'(t, ) = 0in (0,T) x (RY)Y,

k=1

N
1 1
wi(T, z) = N Ztr {D;m (m¥, zp) + NDfnmS(mﬁ,xk,:xk)

H(xk,DmS(mﬁ,xk) — ?(m%) in (Rd)N,

| = T
WE

\ k=1

and the uniform bound on [|9, V" || follows again from the maximum principle.

For the second part, fix (¢,m’) € [0,T] x P;(R?). So there exist at least
(see Proposition 1.13) a pair (m,a) optimal in the definition of U(#',m’) and a
multiplier u : [ty, T] x R? — R and such that (u,m) solves the system

—0pu — Au+ H(z, Du) = 22 (m(t),z) in (t,, T) x RY,
oym — Am — div(H,(z, Du) )=01n (t,T) x RY, (2.5)
m(t') =m’ and u(T,z) = & (m(T),z) in R%.

Arguing as before for V¥, there exists a constant C' > 0 such that
1Dl < C
and, since o« = —H,(x, Du), ||a||c < C and so we have

[Dalloe = [[DIH (-, Du(:,))]lloe < C.
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Let m” € P1(R%) and p be the solution to
Oup — Ap+ div(pa) = 0 in (to, T) x R? with p(t') = m”.
Arguing as in Theorem A.1, one can prove that

sup di(p(t),m(t)) < Cdy(m’,m").

te(to,T)

Thus, for some constant C' depending on the data

w.n) < | ) ([ Blo.ateonutdo) + 50w de + 5T

§1:<A;Mma@wﬂm@¢m+ﬁmwﬂ)ﬁ+
+ G(m(T)) + C sup dy(u(t),m(t))

te(to,T)
< U, m') + Cdy(m’, m").
We can conclude that
U, m') — U, m")| < Cdy(m',m").

Finally, fix t” > t/, and we choose (m, a) optimal in the definition of U(t", m”).
By dynamic programming principle, we have

U, m") =u',m') +/
and so
U, m") — U, ”<L/L/ (@t a)mlt.do) + T()d)]| o

+ U, m) - m")| < C(t" = 1') + Cdy(m',m").
This completes the proof.

tl

’

(Aﬁ@ﬂ@@m@mmﬂmwmm%

The next lemma is about a key estimate on VV.

Lemma 2.3. Assume (1.1). There exists a constant C' independent of N, such
that, for any N > 1 & = (¢') € (RY)Y and £° € R,

Z D3, VN(t,z)" - & +2 Z D VN(t,x) - £€° + DV (t,x)(€°)?
1,j=1 =1

N (2.7)
Z§|2+0§°

ZIQ
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Proof. For 1 <i,5,k < N, let

TiTj
Wt = 9 VV(E)?, w® = 9VNE, @ =YY w and o =YY, Dyt
(2.8)

{wi =D, VN . ¢ wii=D2 VYNE. g i =il = §,D, VN . ¢,

Since VN (¢, z) solves

{—8t\7N(t, x) — Z;V:1 A, VN (t,x) + +H(zj, ND,,VN(t,2)) = F(ml) in (0,T) x (RY)",
VV(T,z) = G(md) in (RHN,

T

a simple computation gives

N n
— O — Y Ny W+ Y Doy - Hy(wy, NDy VN (t, 7))
k=1 k=1
N

=-—N Z pr<56k, NDzka(t, LC))O'k O
k=1
R (2.9)

N
1 o
—2 § ij(mk, ND, VN(t,2))" - oy — v § :Hm(xi, ND, VN(t,z)¢ - ¢
k=1 =1

N N

1 S 1 S

+ m 2: Dgnm:}d(m%> Xy, xj)gl &+ N Z Dzm?(mﬁﬁ xz)fl £
1,j=1 i=1

Denote by % the right-hand-side of the equality above.
Recalling that H is strictly convex in the second argument and that, by Lemma
2.2, N9, VY is bounded, we have, for all 1 < k < N,

C
~NHp,0, - 0 — 2Hp" - 0y, < N|§’“|2.

We can use again the Lipschitz bounds on V¥ and the hypothesis on H:
for any R > 0, there exists Cg > 0 such that

| Hao(2,p)] + [Hop(2,p)] < Cr ¥(2,p) € R? x Bp,
to deduce that . o Z o 210
SN2 : .
Next, fix (tg, zo) and consider the weak solution m” to

AymN (t,x) — SO0 | AymN (L, )
— SN div(Hy (2, NDy, VN (¢, 2))ymN) = 0 in (to, T) x (RH)N, (2.11)
m™N (to, ) = 64, in (RHN.
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After summing equation (2.9) multiplied by m® and equation (2. 11) multiplied by
w and integrating in space and time, using (2.10) and that [, m" (¢, z)dz = 1, we

get
N

~ - C
w(to, vo) < sup [[(T, 2)loc + > IEMP.

k=1

In order to bound the right-hand side of the inequality above, we first note that,
by the equation satisfied by V¥, we have

N
OVN(T, x) Z A, GV () + %Z H(zy, ND,, GV () — F(z),
k=1

where TN (z) := F(m¥Y) and GV (z) := G(m¥), and, similarly,
N
PRZVN(T, x) Z Ay OVN(T,x) + ) Hy(wp, NDy, SV (1)) - Dy V(T ).
k=1

Using the following proposition to express the derivatives of 7 and GV in function
of the derivatives of ¥ and G,

Proposition 2.4. Ifu : Py(RY) — R is continuously diffentiable, then its empirical
projection u” , that is the function u’™ = u (% SV 6Xi> , is differentiable on (R%)N
and, for alli € {1,... N},

N
1 1
8xiuN(,Z‘1, RN ,:L'N) = NDmU (N 25IJ> (.731),
j=1

it can be show that, under our standing assumptions on F and G, for some

C >0,
oL
sup [[w(T, 2)lee < D IEP +C(e0)?
z i=1
O

The second step in the proof of Theorem 2.1 is an upper bound of VN in terms
of U. Our strategy will be to first compare U to V¥, where

VN (t,m) = /( V(¢ ) [ mida;). (2.12)
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Lemma 2.5. Let VN be given by (2.12). Then YN s smooth and satisfies the
inequality

—8, VN (t,m) — Je div(Dy, VN (t, m, y))m(dy),
i_fRd H(y, DTVN(t,m,y))m(dy) < FN(m) in (0,T) x P(RY), (2.13)
VN(T, m) = GN(m) in P1(R?),

3 (m) = /() FmY) [[m(de;) and G (m) == /() §(m¥) [ m(dzy)

For the proof see [, Proposition 3.1].

Next we prove the easier inequality in Theorem 2.1.

Proposition 2.6. There exist constants C' depending on the data and 3 depending
only on d such that, for all (t,z4) € [0,T] x (RN

C
V¥ (o, i) < UEmY) + 5 (1 + My (mX)). (2.14)
Proof. Using the following theorem (for the proof see [15, Theorem 1])
Theorem 2.7. Let m € P(R? and let p > 0. Assume that for some q > p,
M,(m) < oco. There exists a constant C' = C(p,q,d) such that, for all N > 1,

N2 ¢ N~=Paif p > d/2 and q # 2p
/ dy(m,my) < OMP(m) { N~2log(1+ N)+ N~=@»/a if p=d/2 and q # 2p
d
- N/t N=@D)/aif p € (0,d/2) and q # d/(d —p),
(2.15)

we have that, there exist § and C' constants such that
a C
N , 1/2
/(Rd)N di(m', m) ”1 m(dx;) < NF M,""(m).

Let (to,mo) € [0,T) x Py(RY) and the infimum in U(ty,me) is achieved by a*.
Applying Lemma 2.5 and [t6’s formula, we have that

acA

VN (1, mo) < in {/tT (/R L(z, a(t, 2))m(t, dz) + ?N(m@s))) dt + §(m(T>,x)} ,
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and, using the optimality of a*,

~

VN (to, mo) < /: ( /R L% () + H’N(m(t))> dt+ Sm(T),2).  (2.16)

Using the Lipschitz continuity of I with respect to d; we get

TV (m(t)) < F(m(t)) + C’/(Rd)N (m%,m Hm (t,dxy)
C i N o
< F(m(t)) + My (m(t)) < F(m(t)) + 55 (1 + My (mo)),

where, in the last inequality, we used the following formula in Lemma 1.9

sup |z|*m(t, dz) < (1+ C’T)/ |z|*mo(t, dz) + CT. (2.17)
te(to,T] JRE R4
Similarly,
= C
Y (m(T)) < §(m(1)) + 175(1 + My (my)).

Since a* is optimal for U(to, mo), putting together the estimates (2.16) and the
ones of FN and GV we obtain

T?”(to,mo)éE[/t (L0, 0" (1)) + Tt + S(E(Xn) | + 51+ M (o))

< U(to, mo) + %(1 + M) (mg)).

(2.18)

Fix now zy € (R?)". Then the Lipschitz estimate on V¥ and the same argument
as above yield

< S (14 M), (2.19)

‘vN(to,Io) V (t07 ) N’B

Putting the equations (2.18) and (2.19) together

U(to, mo) — VN(to, mo)

< ‘u(to,mo) — VN (tg, o)

+ ‘VN<t0, mo) — T?N(to, mi\;)

C 1/2 N
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The difficult step of the proof is to show the opposite inequality.

We continue estimating in the next lemma the error related to the penalization.
For the proof see Lemma 3.9 of [5].

Lemma 2.8. Assume (1.1). There exists C' > 0 such that, for anyi € {1,...,N}
and for 0, \ € (0,1)

1 & 1 o C
N; 2 — yb|* + [s0 — to]* < CO*  and N; wol* < -

Lemma 2.9. For each 6 > 0 there exist a constant C' depending only on the data,

77777

that J < C6~% and, for all k € C;
|H(xk, ND,, VN (to, 70)) + @; - (ND,, VN (to, 20)) + L(zf, @;)| < C6. (2.20)

Proof. Let ay(t,x) = —H,(zg, ND,, V" (t,r)) be the optimal feedback for particle
k. It follows from the estimate on D, VN that the optimal feedback of the problem
remains uniformly bounded, and so there exists R depending only on the data such
that |ax(t,z)| < R.

Given d > 0, we can find a d-covering of Br C R? consisting of J < C'§~¢ balls

77777

We select the partition (C;);eq1,..,s3 so that, for each k € C; , |ag(t, ) —ay;| < 9.
Using that L is the Legendre transform of H, we get

|H (xf, NDy, V¥ (to, 20)) + @; - (NDy, V¥ (to, z0)) + L(xf, @)
= |(o; — Q(t, 2)) - (NDy, V" (to, 20)) + L(a, @;) — L(xg, Qi(t, x))]
< (ND, VN (to, 20)) + || DaL|| oo (rix ) ) |Gk (t, ) — @] < C6.

where in the last inequality we used the estimate in (1.2).

Fix j € {l,...,J}, set oF =/ if k € C7 let

XZZJFT —2f 470 +V2BF and Y

So+T

= y¥ + 1a* + V2B,

; 1 ; 1
my == Oy and mj = — g dyk
to+T nJ sg+T so+T nJ tot7

keCi keCi
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consider the solution m? to

om? — Am? +@;- Dm? =0 in (s, T) x R* and m!(sg,-) = m{m in R?
and, finally, set m(s) = + Zjvzl nim(s).

We state next the concentration inequality we need for the proof.

Lemma 2.10. There exist positive constants 5 € (0,1/2) depending on d and C,
which depends only on sup; [a;|, d and T, such that, for all h >0,

. . , hB
1/2
E [dl(mf(so + ), mﬂyw)} < OO+ M (50)) (2.21)
and
j j 1 k_k 12, h?
E [y (m(so+ b, m )] < = > lab=sb+ OO+ () 5, (22
kel
and, as a consequence,
E [d (m(so + h), m )] < 05—d5(1+x1/2)h—ﬂ (2.23)
1 0 ) YSOJrh = ('I’Lj)ﬂ’ .
and
E [d (m(so + h), mY )} < 0O+ 05 P(1 + xl/?)h—ﬁ (2.24)
1 0 9 XtDJrh — (n])ﬁ . .

Proof. We define
L={¢:R* = R|¢is1— Lipschitz},
Lp={¢:Br CR* = [~R,R]| ¢is 1 — Lipschitz},
and, for any ¢ € Lg, the extension 5: R? — [—R, R] given by

¢(x) if [z < R
o(x) = Hg( L) if R < 2| < 2R
0if |z| > 2R.

Without loss of generality, we can assume sy = 0. B
Fix R > 0. Note that any ¢ € L with ¢(0) = 0 can be rewritten as ) = ¢ + ¢
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with ¢ € Ly and [¢] < [z|Ipe.
For any h € (0, 1], we have

Efdy (m (), m}, )] = Efsup | ¢(m (k) = m, )

<Blsup [ o) =, )]+ [ Jellogm () +BL| lellsgm

¢eLRr JRA

=Bl [ o(m (h) = m3; )] + Mz(gj(h)) + MQ(]ZLYh)

< E[sup Qz(mj(h) — mg,h)] + C'(l + Mj%(mj(O))’
¢cLr JRY

where we used theorem 1.1 in the first equality, the characterization of ¢ € L
written above, the definition of Ms(m) and the inequality in (1.13).
Finally, using the following lemma

Lemma 2.11. There ezists a constant C such that, for any j € {1,...,J} and
R >0,
Elsup | ¢(m/(h) —mi,)] < C(1+ R72)(nf) 2 iz,
¢ELRr JRE
we get

(1 + My(m’ (0))

Eldy(m? (h),m}, )] < C(1 + R2)(n) 72 hz 4 C

R
< O(1+ R)(nf) @2 hrs,
Taking R = (nf)2ari b~ 271 v/ 1+ My(mi(0)), we get the first thesis with § = 571
We, now, show the proof of the third inequality.
J
E [dl(m<80 -+ h), m%ﬁh)} S Z N]E [dl (mj (80 -+ h) mYS +h>
j=1
< oz (14 My (m?(s0))) "
(m” (50 (n3)?
< OR? . (nf)t=" % j 1/2 d n’ 1/2
CW Y S+ OW Ml (so)) (Y y9)
Jj=1 j=1 j=1
J i\ Jl 1
< Chﬁ% (Z %) + CM,"* (m(s))h” %(Z ﬂ(nj)l )
j=1 j=1



31

where we used the definition of m(s), the inequality (2.21), the Cauchy-Schwarz
inequality, the concavity of the maps n — n'™? and n — n'=25, the fact that
D n/ = N, and the assumption that 8 € (0,1/2) and J < C6~% and the estimate
of My(m(sp)) in Lemma 2.8.

O

To continue, we need a dynamic programming-type argument, which is stated
next.

Lemma 2.12. With the notation above, we have

U(so + h,m(so + h)) = U(so, my,)

— /80 N —nJL (z,@;)m? (s, 2)dz + F(m(s)))ds.

(2.25)
Proof. Let K € N and be m{, ..., m{ non-negative integrable functions on R?
such that S5 mk € P(RY).
Define

(m1,8Y),.., (mK ,BK) ,dx)

K

Zm ))dt+ S m*(T)),

k=1

UK (tg,mp, ..., mY) == mf /t /Rd f’j) ym*(t, x)dx

where the infimum is taken over the tuple of measures (m*, 8*) (the 8* being a
vector measure) with 5% absolutely continuous with respect to m* and such that
(mk, B¥) solve in the sense of distributions,

omF — Am* 4+ div(B¥) =0 in (to,T] x RY and m"(ts) =mf in R
We note that
UK (tg,mi, ..., mE) < U(ty, my + - - + mi)

since U is an infimum.

Set 8= S0 | 3% and mi(t ) Zk g k(t), and fix € > 0. Let (m!, 3L, ..., m%, &)
be e-optimal for UK (tg,m}, ..., mE).

Then (m, ) solves

om —Am+div(3) =0 in (L, T] xRY and m(ty) =me in RY
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and using the convexity of the map (5,m) — mL(x, %) and the definition of U,
we have

e+ UK (tg,mp, ..., mi)
BE(t, z) . mE(t, x) K 3 K .
/ /RdZ O k) it ) m(t, x)da +F(O_m*(1)dt +G(>_ mH(T))
Z/t (/Rd L(z %)m(t,@dﬁs(z mb(t))dt + GO m*(T))
> U(to, mo). * i

(2.26)

We proved that
UK (tg, my, ..., m) = U(tg,m + - +mf).

Using the following dynamic programming principle.

Proposition 2.13. Assume (1.1). Then, for any 0 <ty <t; <T,

U(to, mo) = inf {/ /R (z,a(t, z)) (t)dm+3"(m(t))dt+U(t1,m(t1))}.

(m,a)eA
we have,
U (sg, my, - - -, = U(sg, mg + -~ +mi) =
mlngA {/so+h /Rd x,a(t,x))m(t)dx + F(m(t))dt + U(so + h, m(so + h))}

/50+h/d x oﬂ dm-l—ffr( ())dt+u(30+h,m(so+h)),

and recalling that m(t) = + >, nml(t) and m/ (s, -) = m] , we get the thesis.
0

Lemma 2.14. For any (t,z) € [0,T] x (RN

N
Z ’DIkVN(t, l’) — kaVN(to, 1’0)’

C & C & v
NZ\xk —zF| + (N_Z |z — 2k| + |k —x’(j]?)) 91/2]15—150‘1/2
k=1

(2.27)
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Proof. For 0, A € (0,1), we set

N
A
M = S(U(s, —VN(t, ——Ej Py —t2——§ i|2.

(t,x),@,yf&%,’%]x(m)we( (s,my)= ) 20N rimuil |S | 2N = v

We denote by ((to, o), (S0,%0)) a maximum point in the expression above.

Set p* = D, VN(tg,x9) and p' = 9, VN(to, 7). Using Lemma 2.3, for any
(to, mo), (1) € [0,T] x (RYV, we have,

=1Q

N N
VN (¢, ) =V (to,mo) = pF- (zp—af) —p'(t—to) < = > lax—zf>+ C(t—to)*.
k=1 k=1

Since ((to, xo), (S0, Y0)) is optimal, for any (¢, z),

N 2 N
2N02| t So) +V t SL’ > mZ’ 0 0‘ + to—So) +V (to,l’g).

(2.28)
In (2.28) putting z = x¢ and t = to+ h , dividing by h and letting h tends to zero,
we get that

’VN(to—i‘h,iL’o) —VN<t0,xo> N ’to—SoP ’to—i‘h—So’Z
. _ > .
i h OV (to, o) = p' 2 limy ( 20 20h )
— 280—2t0—h_80—t0
= oo 20 0

and putting x = xg and t =ty — h , dividing by A and letting h tends to zero, we
get that

¢ So— 1o
<
p — 9 )
and so

pt:So—to
0

Similarly, letting ¢ = ¢y and first * = xg + heg, and then © = xg — hey, letting h
going to zero, we get
P = Yo — 7o
ON
Furthermore, rearranging (2.28), using the triangular inequality and the definition
of p¥ and pt, we have
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N
1 1 1
V(L z) — VN (t >—§ —y5I> = == lto — so> — = [t — so/”
- N 1
_ k k\ |2 2
= ga 210 ¥ QGNZ_ (75 = 4)I" 4 5glto = sl
1
—%(t—to)Jr(to—So)’Q
1 & 1 &
< _ -
= N; ol 29N2|k NZ
N
1 1
~ N 2 — yollze — x| + %(to — 50)°
2 ]‘ 2 1
——|t0—80|—%(t—t0) —5(t0—50)(t—t0)

N

1 1
k—l'o +p(t—t0) Z2€N‘xk—$§2—%<t—to),
= k=1

|M2

and, putting some addends on the left hand side,

N
k
VN (t, 2) =V (to, z0) ;p Tp—x8)—p'(t—to) 2N02| —Th ——t to)?.

Assuming that 6 < (2C)~!,we define

N

w(t, z) ==V (tg, 20) -V (t, x)—i—Zpk-(xk—a:]g)—i—pt(t—to
k=1

ZIQ

N
Z z—zg*+C (t—1t0)>.
k=1

Note that w(t, ), since it is sum of convex and linear functions, is convex and
satisfies

N

1 1
Oéw(t,x)ﬁﬁzuk—x’gz—l——

EFRY
St —to)”
k=1
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Thus, using that w(t,z) > 0 for any (¢,z) and any (s,y), we have

Z D, w(t,z) - (yp — x) + Ow(t, x)(s — 1)

N

<w(t,x)+ Y Dyw(t,x) - (ys — zi) + Ow(t, z)(s — t)

N
1 1
< <_§: _F12 4 S (s — 4)2

where we used the inequality satisfied by w(¢, z).
Let

1
Yr = Th + §0Nkaw(t, x) and s=ty+ 00w(t,x)

in the inequality above, we obtain

va N N
R > Dgw(t x)|* <> Dy w(t,x) - (xy, — xf) + dw(t, z)(t — to),
k=1 k=1

and, using the Cauchy-Schwarz inequality and the inequality found above,

N N 1/2
> Dyt x)] < N'2 (Z |Dzkw(tal’)l2>
k=1 k=1

(2.29)

N 1/2
4 4
< N2 (m Zl |x’5 — zg|| Dy w(t, x)| + m|atw(t,x)||t — t0|> )

By the definition of w and since we proved that that | D VY| < % and [0, VV| < C,
we find

2C C  2C
[Daw(t,z)| = | = Da, VY (t,2) + pF + == (k= 2)| < 7 + F ok — o],
and
0w (t, )| = | — 8V (to, z0) + p' 4 2C(t — to)| < C,

returning to (2.29), we have

a 20 O (< "
Z ]—Dmk\?(t,x)—l—pk—l—ﬁ(xk—xlg)\ < N (Z(]xlg — 2] + |2E — 2|?) + Nt - t0]> :

k=1 k=1

and then, by the definition of p*, we get the thesis.
]
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Proposition 2.15. Assume (1.1). There exists 5 € (0,1] depending only on the
dimension and C' > 0 depending on the data, such that, for any N > 1 and any

(t,z) € [0,T] x (RH)N

Ut mY) — V(b 2) < N£1+ Zm (2.30)

Remark 2.16. Diwviding the players into subgroups in such a way that the opti-
mal controls for the agents in each subgroup are close and showing a propagation
of chaos-type result for each subgroup using a concentration inequality, it can be
overcome the main difficulty: transform an optimal control for the VVV that depends
on each particle into a feedback for U.

Proof of Theorem 2.15. We employ the technique, quite standard for viscosity so-
lutions, to double the variables and we define, for 6, \ € (0, 1),

N
1 A
M = (U VV(t, x))——— 2= —s—t]P——— 0|2

ey © (L Ty )=V 62) 29NZ| BT QN;M

We denote by ((to, zo), (So,%0)) @ maximum point in the expression above and we
continue estimating the error related to the penalization.

We begin creating the subgroups based on an appropriate partition of {1,..., N}
as stated in Lemma 2.9.

Using that M is a max, thanks to the Lipschitz regularity of U we have

M Z E[650+h(U(80 + h, m3]¥30+h) — VN(tO + h Xt0+h))

N
1 1
e A = 9 L
k=1

B
> Rl (U (s + h,m(so + h)) — VV(to + b, Xyy4n))] — CO (1 + )\1/2)%
N

N
1 A i
DY) (N Z — 5] + (s0 — t0)2> TN (lyo] + ChY/?)?,
k=1 i=1
where we used definition of X; and Y; so that | X}, = V%, | = [zf+ 7o +V2Bk —

(yk 4+ 1o +2B)| = ok — yb| and |to 4+ h — (so + h)| = |to — so| and the equation
(2.23).
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At this point, we using the dynamic programming-type argument in Lemma
2.12 and Ito’s formula for VVV, we find

so+h J
0 1 . ; )
so+h N so+h —
M > e " U(sg, my, ) — € /SO (/Rd -El NnJL(x,oﬂ)mJ(S,x)dx + F(m(s)))ds
to+h N
VN(to,xo)—Ir/ (OVN(t, X;) +§ (AL V(X —t)+ " - D, V(t, X,))dt

to -1

_eso+hE

N

A .
. ag 1/2 o . 2 _ 7 1/2\2
Co (1 + N\~ )N ( § lyh — z|* + (s — to) ) N > (ly| + Ch'*)2.

=1

Since the @’ are uniformly bounded, the map L(-,a’) is uniformly Lipschitz
independently of j. Hence, using lemmas 2.10 and 2.8, a change of variables in the
integral and the fact that @ = o if k € 7, we find

soth o T o
/ / Z —n! L(x, o )m’ (s, z)dxds
S0 Rd ) N

so+h J ) 1 . .
<E / —L(X;f) st @)+ C—=n’di(m’(s),my; ))ds

so N tg—spts

Jj=1 keCJ

to+h N 1 L i J 1/2 i hﬁ

<E\| ZNL(X o¥)ds +Oeh+oz—n (143" 7555
Wy ko k _ dp 1/2 W

<E —L(X d Coh+Co P+ N 7)—.
<elf > KL oty |+ O+ 0O (14 A7)

Note that in the last inequality we used exactly the same argument as for the proof
given above for the third inequality of Lemma 2.10.

Hence, recalling the optimality for M of ((to,xo), (S0, yo)) and employing the
equation for VYV, we get

B
0> (efoth — eso)(U(so,mJy\g) — VN(to, o)) — C6 (1 + A~ 1/2) ]}\Lm

N so+h
— CARYENTEN | — OO — e TR [ / (F(m(s)) = F (mﬁso_w))dS]
=1

S0

_ eso+hE

to+h N
%/ > (L(XE, oF) + oF - (ND,, VN (s, X,) + H(Xf,NDmkVN(s,XS)))ds] :
to k=1
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Using the Lipschitz regularity of 3 and Lemma 2.10 to deal with the difference of
the ¥ and Lemma 2.8 to deal with the term in Y. |y§|, we find

B
0> e*h(U(so, mly) — VN (to,z0)) — C5~ (1 + A—W)h— — C\Y2pY2 — COh — Ch?

NB
1 to+h N
— ¢St N/ Z(L(Xf, a®) +a* - (ND, YV (s, X,)) + H(XF ND, VN (s, X,)))ds| .
to k=1
(2.31)
Noting that, for s > %
| XE —af| = |af + (s — to)awx + V2BL, — x| = (s — to)aw + V2BL_, |,

and, thanks to the regularity of L and H, the uniform boundedness of the o, that

N
so+h 1 forth kE _k k _k
—€ E[N Z(L(Xs7a ):l:L(xOJQ )
to k=1
+ H(X® ND,, VN (s,X,)) + H(z§, ND,, V" (s, X,)))ds]
1 to+h N
> —e" B[ [ 7 Liaf,af) + H(af, ND,, VY (s, X,))ds
to k=1
N
_ _so+h l ot k ky E K
e E[N Z(|L<Xs,oc ) — L(xg, a")|
to k=1
+|H(XF, ND, VYV (s, X,)) — H(xk, ND,, V" (s, X,))|)ds]
1 to+h N
> —eME[= [ ) Liag,a") + H(xl, NDp, VY (s, X.)))ds]
to k=1
1 to+h N
_GSOME[N Z(C|Xf—x’g\+0|Xf—x§])ds]
to k=1
1 to+h N
= —ePE[ [ 3 L(ah,a") + H(ah, NDo VY (s, X,)))ds
to k=1

1 to+h N

_ eSO+hE[N Z(C|(s —to)a + V2BE, |+ O|(s — to)ay, + V2B~ |)ds]
to k=1
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1 to+h N
= e[ [ ST Lah, o)+ Hah N DV (s, X,))ds)
to k=1
1 to+h N
. 680+hEHakz|N / Z(O(s — to))dé’]
to k=1
1 [toth N
—65°+hE[N Z L(xg, o) + H (x5, ND,, VY (s, X,)))ds]
to k=1
2 h? t
— eso+hE[’Oék| NC( + B + toh — 5 — tg — toh + tg)]

to+h N
> e 0thE[— / ZL af, o) + H(xk, ND,, VN (s, X,)))ds]

Adding and subtracting the term Y, (L(zf, a*) + H (2§, ND,, V" (s, X,))) in the
inequality (2.31), using the last inequality and that, for h < 1, —C’ehh2 > —Ch?/2,
we get

hB
02 e h(U(so,myy) — VY (b0, 20)) = OF (1 + A7)

— ONYV2RY2 — 0Ol — Ch? — Ch?/?

— eSothR 7

1 to+h N
N[ o (Llabat) + ot (VDL VY (s, X))+ Hah NDL VY (s, X))
o k=1

and, in view of (2.20),

hB
0> e h(U(sg,mY) — VN(tg, o)) — CO¥ (1 + A~ 1/2)N

Yo

— ONV2RM2 — coh — Ch3/?

to+h N N s
— CE]| N/ kz:; IND,, VN (s, X,)) — ND,, V" (s,20))|ds] — -

(2.32)

The semiconcavity of VY and the penalization by the term in 0 give the Lemma
2.14.

Inserting the estimate of Lemma 2.14 in (2.32) and using that <% < C6h, we
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obtain

he
0> esoh(U(SO,mé\g) — V¥(to, o)) — C6 (1 + A~ 1/Q)NB
— ONY2pM2 — con — % — OR3/?

to+h C N C N 1/2
k k k k k k|2 1/2
~ce| [ <N;|XS—x0|+(N—9kZ<|Xs—wo|+|X ~ i >> + gl — ol )ds

hB
> e h(U(so, my,) — V¥ (to, 20)) — OO~ (1 + A‘”)W
C(0 + 6)h — CNY2RY2 — CO~Y2h(hY? + h)Y2.

Dividing by h we find, for each choice of 8, X\,0 > 0 and 0 < h < (T'—so) A (T —to),
that

B—1
e h(U(so, miy )=V (to, z0)) < C A};B 5d6(1+A U2 £ C(046)+CN2h= 24 ChM 49712,

we take

)\1/2h61
— — — N3 — N4
0=h ,5_< 7 ) CA=N"% and h= N,

Making appropriate choices of aq, as, ag and a4 we deduce that
e h(W(so,m) — VN (tg, 29)) < CN P (2.33)

holds for some 3 = B(3) € (0,1/2) and for all values of N such that h = N <
(T - 80) AN (T - to)

For those values of N such that h = N > (T — so) A (T' — ty), we have by
Lemma 2.8 that (T"— so) V (T' — ty) < h+ C6, so, noting that U(T,m) = G(m)
and VV(T,z) = G(m?Y) and using Lemma 2.2, we find

T

|U(so,m%) —VN(t(],on)‘
< [U(s0, myg) = Gmgg )| + 1G(my) = G(ma)| + () — VY (to, 20|
<C(h+0)+CO+C(h+0) <CNP

where in the last line we choose E even smaller if necessary. With this choice of 5 ,
we have now established that (2.33) holds for all values of V.
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Finally, using the optimality of ((to,z¢), (S0, ¥0)) in M, we conclude that, for
all (¢t,z) € [0,T] x (RH)N,

et‘u(tami\]) - VN(t,iE)| < 650(u<807mN) VN to,l’o Z ‘xl|2

< ON-minBes) (] 4 — Z|x2

[]

Proof of Theorem 2.1. Combining Proposition 2.6 and Proposition 2.15 we know
that there exist § € (0, 1] depending on dimension and C' > 0 depending on the
data such that, for any (t,z) € [0,T] x (R},

[U(t,m) = VN (t,2)| < ONTP (14 My (m)) + Ma(m))) < CN 72 (14 My(m}))).

]



42

CHAPTER 2. THE CONVERGENCE OF VN TO U



Chapter 3

The regularity of U

In this chapter, to show the regularity of U, we analyze a linearized version of
the system (1.11). We also introduce the concept of stability and strong stability
which are used to define and analyze the open and dense set O in which the map
U should be smooth.

We use this result to obtain the propagation of chaos property analyzed in Chapter
4.

3.1 The linearized system

Let m be the solution to
{@m — Am — div(Vm) = 0 in (ty, T) x R%, (3.1)

m(ty) = mg in RY,

with tg € [0,T), mo € Po(RY) and V : [t, T] x R? — R? such that ||V][e1s < Cp,
Cy > 0 constant.

In order to prove the regularity of the value function U, we want to show that
U has a derivative with respect to m. To do so we have to differentiate the system
(1.11) and we study the new system that we have obtained.
We call it the inhomogeneous linearized system of (1.11)

Oz — Az + V(t,x) - Dz = E(z,m(t))(p(t)) + R'(t, z) in (to,T) x RY,

Oip — Ap — div(Vp) — odiv(mI' Dz) = div(R?) in (ty,T) x R, (3.2)
plto) = € and =(T,2) = R* + (0. m(T)) (p(T)) in Y,

43
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where

o €[0,1] and § € (0,1),
I € %[0, 7] x R% R™?) with ||T'||s < Co,

R' € % R? ¢ L>([ty, T), (W'=Y (R? RY), R® € C**% and £ € (W),
(3.3)

If 2 € €% ([ty, T] x R?) and p € CO([0,T7], (C2+°)) satisfy respectively the first
and the second equation in the sense of distributions, then the pair (z,p) is a
solution to (3.2).

Note that, the maps (¢,z) — 3£ (z,m(t))(p(t)) and x — & (2, m(T))(p(T)) are

om sm
continuous and bounded because of the regularity of p and the assumptions on &F

and §.
We will use the system in (3.2) with V(t,z) = Hy(z, Du(t,z)) and I'(t,z) =
H,,(x, Du(t, z)), where (u, m) is a classical solution to (1.11).

The system

Oz — Az + V(t,z)- Dz = E(z,m(t))(p(t)) in (to, T) x RY,

Op — Ap —div(Vp) — adlv(mFDz) =0in (¢, T) x R, (3.4)
p(to) =0 and 2(T,z) = 3 (2, m(T))(p(T)) in R

is the homogeneous version of (3.2).

Definition 3.1. We say that the system (3.4) is strongly stable if, for any o €
[0, 1], the unique solution to the system is (z,p) = (0,0).

We will use a weaker notion of stability for (3.4) with ¢ = 1 when dealing with
the optimal control system. We need, however, the notion of strong stability with

o € [0, 1] for Proposition 3.5 below in order to prove the existence of a solution to
(3.2).

Lemma 3.2. Assume (1.1) and the system (3.4) strongly stable.
There ezist a neighborhood V of (V,T') in the topology of locally uniform conver-
gence, and 1, C > 0 such that, for any (V' t),my, T, RY' R*" R¥ ¢ ¢') with

(V,IY) €V, Jto — tol + da(mg,mo) < n, |[V'][ers + |[T]|oe < 2C0, o' €0, 1],
Rl/ c 66/2’6, RQ,’ e LOO([tO,T], (Wl’oo)/(Rd,Rd)), R?”, c 62+5, 5/ e (Wl’oo)/,
(3.5)
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any solution (2', p') to (3.2) associated with these data on [ty, T| and m’ the solution
to (3.1) with drift V' and initial condition my, at time t{, satisfies

p' @) = '@, )| e2+oy
It — t|1/2

I/ llewsosasa-+ sup_ 19 sy +5up < OM', (3.6)
! t' £t

te[tovT]
where

M= ||€]|wreey + [|RY ||esszs + [|[R¥ ||e2vs + sup [|[R¥ ()||wroey.  (3.7)

tet),T)

The idea of the proof of Lemma 3.2 follows some of the ideas of [0], where a
similar system is studied. For the rigorous proof, see Lemma 2.1 of [10]

An immediate consequence is the following corollary.

Corollary 3.3. Assume (1.1) and that the system (3.4) strongly stable.
Then, for any (V',my, ") satisfying (3.5), the corresponding homogeneous lin-
earized system is strongly stable.

Now we state a new lemma very similar to Lemma 3.2: the difference between
the estimate below and the one of previous lemma is the right hand side of the
former which depends on the solution itself.

Lemma 3.4. Assume (1.1) and let (z, p) be a solution to (3.4).
There is a constant C' > 0, depending only on the reqularity of ¥, G and on
|[V]|ers + ||T|oo, such that

||p(t/7 ) - p(t> )” G2+8)/
||2]|e(a)/2:245 + sup sup o L <O+ sup [[p(8)[ ey,
telto,T) t'#£t [t —t| tefto,T]
(3.8)

where

M = |[gll ooy + [[R lesszs + [[RP|lez+s + sup [|R*(t)]| ooy

teto, T

For the proof see [10, Lemma 2.3].

We complete the section with an existence result for system (3.2) given a solu-
tion m to (3.1).

Proposition 3.5. Assume (1.1) and the system (3.4) strongly stable.
Then, for any &, 6, T, R', R%, R3 as in (3.3), there exists a unique solution to the
linearized system (3.2) with o = 1.
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Proof. let us use a continuation method.
Let us call

Y = {0 €[0,1] : the system (3.2) has a solution for any data ¢, R', R?* R?® satisfying (3.3)}

We want to prove that ¥ is non-empty, open and closed in [0, 1], to conclude that
¥ =10,1].

Y1 is mon-empty since, letting 0 = 0 the equation for p has a unique solution
p = 0 and we get also the solution z = 0. Hence, 0 € 3.

We now check that ¥ is closed. Let 0" — o € [0,1] and (2™, p") be the
associated solution to (3.2) given some &, R', R* and R3. In view of Lemma 3.2,
we have

7n 14/./7 I PN ¢ t7 . ,
P lgeromss + sup [[7(E, Yl enesy + sup L)~ <1/2>”“2”> <c
tefty,T] t £t [t — |

Then, passing to the limit in system (3.2), we find a solution for the system for o
as a limit (up to subsequence) of the (2", p™)’s. By Lemma 3.2, we get that this
solution is also unique, and so X is closed.

Finally, we have to prove that ¥ is open. We fix ¢, R, R? and R® and 0 € .
Let o' € [0,1] be close to o and (2/,p') € CEFI/2243 » O([t,, T, (€*F9)). Let
(2", p") be a solution to
—0,2" — A"+ V(t,x) - D" = £ (2, m(t))(p"(t)) + R'(t, x) in (t,T) x RY,
o — Ap" — div(Vp") — odiv(mI' D2") = div(R* + (¢ — o)mI'DZ’) in (t5,T) x RY,
p"(to) = € and 2"(T,z) = R* + 2% (z,m(T))(p"(T)) in RY,

which is uniquely solvable since o € ¥. Call ¢ the map such that ¢((2/,p)) =
(2", p"). ¢is acontraction, indeed, let (2}, py) and (24, p) be such that ¢((z], p})) =
(21, pl) and o((25, py)) = (24, p). The difference (2§ — =7, pj — p4) satisfies an equa-
tion of the form (3.2) with o and R = R* = ¢ =0 and R?* = (0/ — o)mI'(2), — 2}).
By Lemma 3.2, we have

23 = 2lle+o22+s + sup [|(pf — p5)(E, )] e2ray

telt],T]
+oup 1067 = AB)(E) = (0t = )1 vy
v [t —t|'/?

< Clo" = a|sup ||[(mI'D(2; — 25)(t, -)||wreey < Clo’ — al||zy — 21| |ez+o)/2.2+45.
t
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If |o" — o] is small enough, ¢ is a contraction and, for Banach-Caccioppoli’s The-
orem, there exists a unique fixed point for ¢. Thus, (2, p’) fixed point for ¢ is a
solution to (3.2) with ¢’ and so ¢’ € .. Therefore, ¥ is open. By the definition of
> and strongly stable solution, we get the thesis.

O

3.2 The stability property

Let (to,mq) € [0,T] x P2(RY) and the associated multiplier u to (m, ) minimizer
for U(to, mo), that is, the pair (u, m) solves (1.11) and «a(t, z) = —H,(z, Du(t, z)).

Definition 3.6. The solution (u, m) is strongly stable (resp. stable), if Vo € [0, 1]
(resp. o = 1) the only solution (z, ) € CUFI/21+8 5 CO([ty, T; (C*HO(R?))') to the
linearized system

—0yz — Az + Hy(z, Du) - Dz = 3£ (2, m(t))(u(t)) in (t,, T) x RY,
o — Ap — div(Hy(x, Du)p) — odiv(H,y,(z, Du)Dzm) = 0 in (to, T) x R,
1(to) = 0 and 2(T, z) = 2% (z,m(T))(W(T)) in R
(3.9)
is (z, 1) = (0,0).
Moreover, we say that the minimizer (m,a) is strongly stable (resp. stable) if
(u,m) is strongly stable (resp. stable).

We point out that, for the choice of V(t,2) = H,(x, Du(t,z)) and I'(t,z) =
H,,(z, Du(t,z)), the system (3.9) is the linearized version of the one studied in
the previous subsection. To emphasize that we are working with this particular
system and also be consistent with other references, for the solutions, we use the
notation (z, u) instead of (z, p).

The following lemma asserts that the minimizers from an initial point in O are
strongly stable.

Lemma 3.7. Assume (1.1).
Fix (to,mo) € O and let (m,«) be the unique stable minimizer associated to
WU(ty, mg). Then (m,«) is strongly stable.

Proof. Let (z,p) be a solution to (3.4). For o = 1, (m,«a) by hypothesis is the
unique stable minimizer and so (z, p) = (0, 0) is the unique solution of the system.
For o = 0, the first equation in (3.4) does not depend on z and p(ty) = 0, therefore
p = 0 and thanks to this z(7,z) = 0 and z = 0.
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Let assume o € (0,1). Thanks to Lemma 3.2 we have that z € @(2+9)/2.2+9,
By duality

(ot ).n0) = = [ ([ (@Hyp(o. Do) Demde) + (5o m(®) n(0). et

and, for t =T,

| ([ (oHute, Du)Dz - Demde) + (G om0 (u(0). )+
o T (3.10)
2 ()T, w(T) = 0.

From (1.17), with p = p and 8 = 0 Hp,(x, Du)Dz we have

T
/ /Rd(Lma(:B, a(t,z))oHpyy(x, Du)Dz - 0 Hyp(x, Du)Dzmdx )+

oF

| G0 0) el ) it )y i+

/]R - (x m(T) y)(M(Ta l’)),/L(T, y)dydx =

2d 5m

/ / o(, Du)Dz - Dzmdx)+

/Rd 5m(1’ m(t),y)(u(t, x)), u(t, y))dy)dedt+

(3.11)

+ [ GtemlD). ) (). (T )y > 0,

where we used that, since @« = —H(x, Du), Lo o(z, a(t,x))Hyy(x, Du(t, x)) = L,
Combining the last two results, we obtain

0’—0‘ / / »(x, Du)Dz - Dzmdz < 0.
R4
Since o < 1 then 0 — 02 > 0 and by assumption H,, > 0, we have Dzm = 0 and
we can conclude that (z,u) = (0,0). O

The next lemma establishes that O is not empty.

Lemma 3.8. Assume (1.1).
Fiz (tg,mg) € [0,T) x Po(R?) and let (m, ) be a minimizer for U(ty, mg). Then,
Vt € (to, mp), we have (t,m(t)) € O.
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Proof. Fix (tg,mg) € [0,T) x P2(R?) and let (m, «) be a minimizer for U(ty, mo)
and u its associated multiplier.

For t; € (to,T), set m(t;) = my and let (m, &) be an optimal solution for U(y, m;)
with associated multiplier w. Thanks to the dynamic principle

o (m, ) on [tg,t1) x RY,
(m,a) on [t;, T] x R?

is optimal for U(ty, mg). By Lemma 1.9, & € CUH0)/2143 and so a(ty, ) = a(ty, )
and Du(ty,-) = Du(ty, ).

Let us call
g"(t,x) =H,, (v, Du) — H,, (v, Du) + H,(z, Du) - D(0y,u) — H,(z, Du) - D(0,, )

- ka(ff, m(t)) + ka(l’, ml(t))’
and
h = H,(Du)m — H,(Du)m.
Then, the pair ((2*)r=1._a, t = ((Or, (u — ©))=1...a, m — M) solves the system

—02F — A2F + gF(t, ) = 0in (4, T) x RY,
Ou — Ap+div(h) =0 in (4, T) x RY, (3.12)
p(ty) =0 and 2*(t;,-) = 0 on R%.

Since t; > to and m,m € CY2([t;, T] x R?) and m(¢,-), m(t,-) are bounded in
L? we have the following estimates :

d

D gt 2) P < C(|2(t,2)* + [Dz(t,2)* + [|n®)][72),
k=1 (3.13)
|h(t, 2)* < C(|2(t, @) + |u(t, 2)?),

[div(h(t, 2))]* < C(la(t, 2)]* + [Dz(t, 2)]* + |u(t, 2)|* + | Dp(t, 2)).

Then a Lions-Malgrange-type argument [see Appendix C|, we can conclude that
the solution to (3.12) is (zx, ) = (0,0) and so the solution starting from (¢;,m4)
is unique.

Let 0 =1 and (2, 1) be a solution to (3.9) in [t;, T] x R4
As in the previous Lemma in (3.10)

/t (/Rd(pr(x’ Duft, z)) Dz - Dzmdz) + <§_Z(-, m(t))(u(t)), u(t)>)dt+
+ <%('7W(T))(M(T)),M(T)> = 0.

(3.14)
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By Lemma 1.11, for (1.17) we have V3 € L*([to, T] x R R?) such that 8 =0
in a neighborhood of ¢y, and p solution in the sense of distributions to (1.16) in
[to, T] x R4

T6) = [ ([ Loalz,alta))B(t,0) - ot 2)m. do)+

* <§_Z("m<t)» ')(p(t))>p(t)>)dt+ (3.15)
i <%("m<T% )T, -)), p(T, -)> > 0.
Let 8 be a map such that

B . 0 in [to,tl),
—H,,(x, Du)Dz on [t;,T],

and 7 be the solution to (1.16) associated to 3.
Thus,

.\ Jo in [to,t;) x R4,
plt) = {u(t) on [t;, T] x R%.

It follows from (3.14) that J(8) = 0, and, 7 is a minimizer for J. It can be
proved that [see [2]] that this implies /3 is a continuous function and so Dz ({4, ) = 0.

Differentiating with respect to the space variable the first equation in (3.9) we
have that (0, 2)k=1...a, i) solves a system of the form (3.12) with zero initial con-
dition and data g and h satisfying (3.13). Then a Lions-Malgrange-type argument
[see Appendix C] implies that ((0,2)k=1...4, ) = (0,0). Now we obtain that (z, p)
solution to (3.9) is equal to (0,0) and thus the solution is stable.

O

The next theorem establishes the key property of the set O.

Theorem 3.9. Assume (1.1).
The set O is open and dense in [0, T) x Py(RY).

Proof. O is a non-empty dense set in [0,T) x Py(R?) for Lemma 3.8.

We want to show that O is open. We argue by contradiction: fix (to,mg) € O
and assume that (t",m?) ¢ O which converge to (tg,mg) in [0, 7] x Po(R?). Let
(m, a) be the unique and stable minimizer for U(¢o, my) and u be the associated
multiplier.

Since (t",mg) ¢ O, there are two cases:
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1) Vn, there exist several minimizer for U(¢", m{),
2) Vn, there exists a unique minimizer not stable.

2) is ruled out by Lemma 3.2 and the strong stability of (m, «).

It remains to consider 1). Let (m™!, a™!) and (m™?, o™ 2) be two distinct minimizer
for U(t", m?) with associated multipliers u™! and u™? respectively.

Lemma 1.10 and the fact that the problem with initial condition (o, mo) has a
unique minimizer imply that, for i = 1, 2,

(m"’i,a”’i) — (m,a) in GO([O,T];iPl(Rd)) x @929

and
n,i D n,i D2 n,i 2 : 8/2,6 :
u™', Du™', D*u™" — u, Du, D*u in C respectively.

Since m™! and m™? are distinct, we have sup, d;(m™!(t), m™2(t)) > 0 and setting

0" = ||Du"™" — Du"?||es/25 + sup dy(m™(t), m"%(t)),
te(to,T)

we have 0" > 0 and 6" 7> O

Since sup,e,, ) di(m™'(t), m™(t)) < H u' — Du?|| [the proof is deducible from
Appendix A], supyc(,, 7y di(m™'(t),m™?(t)) is controlled by C|Du™" — Du™?|gs /2.5
and we have

o" < C’||Du”’1 — Du"’2]]es/2,a. (316)

Let us call

un,l . un,2 mn,l . mn,2

M=——— and pu"=
K on
Observe that (2", u™) are solution to

—0p2" — A2" + Hy(z, Du™') - D2™ = £ (2, m™1(t)) (u"(t)) + R™,
o™ — Ap" — div(Hy(z, Du™")u™) — div(H,,(z, Du™)Dz"m™) = div(R*>"),
pt(to) = 0 and 2(T, ) = R*" + 35 (x,m™}(T))(u"(T))
(3.17)
with
R™ =(0™)"'[(H(z, Du™®) — H(z, Du™") — H,(x, Du™") - (Du"™?* — Du™"))+

~ (Ploam) = Flan™ @) = 5w m ) 0) - 1 0) )

R™? = — (0")_1[Hp(x, Du™*)m™? — Hy(z, Du™Hym™ — Hy(z, Du™)(m™* — m™?t)
— H,,(x, Du™') - (Du™* — Du™")ym™")],
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om
Qn
It follows from the regularity of F'; G and H and the definition of 6" that

g _[Gle,m™(T)) — Gz, m™X(T)) — 5w, m™(T)) (m™(T) — m™(T))]

B e+ sup By + IRl < CO% (319)
te(to,T)

For Lemma 3.2, 2" — 0 in @(119)/21%9 which is a contradiction with (3.16), so O
is open.

]

3.3 The smoothness of U in O

We prove now a preliminary lemma that is needed to establish the regularity of
U, which will allow us to compute its derivative with respect to m.

Lemma 3.10. Assume (1.1).

Fiz (tg,mg) € O. There exist 6,C > 0 such that Vty,, m}, mg satisfying (tj, mi) € O,
[th — to| < 0, da(mo,mpy) < 6, if (m', ") is the unique minimizer starting from
(ty, mb) with associated multiplier u' for i = 1;2, then

[ut — u?||e@s2/25+2 + sup do(m'(t), m*(t)) < Cdy(mf, m?). (3.19)
telty, T

Proof. Let u be the multiplier associated to the unique minimizer (m, «) starting
from (to, my).

We call V = —H,(z, Du) and I' = —H,,(x, Du) and consider the neighborhood V
of (V,T') given in Lemma 3.2. Choosing ¢ > 0, for any m} such that dy(mg, m$) < &
letting (m', a') be the unique stable minimizer starting from (¢o, m}) with mul-
tiplier u' and calling V! = —H,(z, Du') and I'' = —H,,(z, Du'), we have that
(VETH e V.

If § > 0 is small, the above is possible thanks to Lemma 1.10, since u! is close to
u in /20,

At this point, if it is necessary, choosing § even smaller, for any t;, mj, (m’, ') and
u’ as above such that |t} — to| < 6 and dy(mg, mf) < & for i = 1,2, for some n > 0
that will be chosen later

[u! — u?||e@es)/2245 + sup do(m'(t), m*(t)) < n. (3.20)
te(ty, T

For ty, mi, (m',a') and u’ as above, we have [see Appendix A] for a constant C
depending on T, H and || D?u||o which is uniformly bounded by Lemma 3.4

sup do(m'(t),m*(t)) < C(da(mg, m3) + ||Du — Du?||oo). (3.21)

tE[ty,T]
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Then, the pair
(Z,,LL) = (ul - U2, m-— m2)

satisfies the system (3.2) with
V(t,z) = —Hy(x, Du?),

I = —H,,(z, Du?),
&= m(l) — mg,

R'(t,z) = — (H(z, Du') — H(z, Du®) — H,(z, Du?) - (Du' — Du?))

+ Fx,m') = Fz,m?) = =—(a,m*(£)) (m'(t) = m*(t)),
R*(t,z) =H,(z, Du')m' — H,(x, Du*)m?* — H,(z, Du®)(m" — m?)
— H,p(z, Du?) - (Du' — Du*)m?,
G

R¥(x) = G(z,m!(T)) = G(z,m*(T)) — = (z,m*(T))(m" (T) — m*(T)).

om
Note that we can rewrite R? as

R?(t,7) =(H,(x, Du') — H,(x, Du?))(m" — m?)

+ (Hy(z, Du') — H,(z, Du®) — H,,(x, Du?) - (Du' — Du?))m?*.

Thus,
M = [|€]|wroey + [ B [esr2s + |[RP]]e2es + sup ||R*(t)]|wrey

teto, T
< di(mg, mg) + C{||Du' — Du?|[3s25 + sup dy(m’ (), m*(t))}.
t

It follows from Lemma 3.2 that

53

[u' = w?|leeiozess < C{di(mg,mg) + || Dut — Du?|[gsjas + sup dy(m (t), m*(t)) }.
t

Hence, choosing 1 > 0 small enough we find

lu! = u?[leeiszars < Cldi(mg, mg) + supd(m’ (1), m*(1))},
t

and inserting the last inequality in (3.21) we obtain

sup da(m (1), m (1)) < C{da(mb, m3) + sup di(m’ (8), m(1))}
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Noting that sup, da(m'(t),m?(t)) < nsup,da(m!(t),m?(t)) then, for n > 0 such
that 1 — Cn > 0, we have

sup da(m' (1) m2(1) < Clda(m, md) +nsup da(m (1), m (1),

and so
sup do(m*(t), m*(t)) < Cdy(my, m3).
¢

Going back to the previous inequality on ||u' — u?||e@+s)/2.2+5, since d; < dy we can
conclude the proof.

O
Here we state a simple criterion for the differentiability of the function U.

Lemma 3.11. Let U : Py(RY) — R be continuous. For (s,m,y) € [0, 1] x Py(R?) x
R?, we define )

U(s,m,y) :=U((1 — s)m + sd,).
If the map s — ﬂ(s,m,y) has a deriwative at s = 0 and if its derivative at 0

d%|szoﬂ : Po(RY) x RY — R is continuous and bounded, then U is of class C* with

ou d -
— =—U .
5, (1) = —- U0, m, y)
Remark 3.12. Let us note that, replacing m by (1 — s)m + sd,, the continuity

assumption of %Lg:oﬂ implies its continuity at any s € [0, 1].

Proof. Let us start by considering the case where my is fixed and, for some N € N,
N >1andy, € RY, m; = % fozl dy, is an empirical measure.
Let us define the set

N N
K = {agmy + Zakéyk Doy > O,Zak =1}
k=1 k=0

All the measures we will use belong to K, which is compact in Py(R9).
Since the map %u is continuous, for € > 0, there exist § € (0,1/2) such that, for
m,m’ € K so that do(m,m') < § and s € [0, d], we have

~ ~

l O ! < €. .22
ap = f k: — .. N
k N - (N - k:)s or 07 ’ ’
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and noting that 1 — oy = %, we get

ﬁl _ N-—(N-k+1)s N—(N—k)s N-—s
_a . DI
Ll 2 N—(N—k)s N—(N—k—1)s N

(3.23)
N—(N—-k+1)s 1 (N—k+1)s
B N B N '
We now define by induction
mo :=m and my = (1 — ag)my_1 + aidy,, (3.24)
and using (3.23) we get
N N-1 N
my = H(l — )M+ a,dy, + Z a0y, H (1— )
k=1 k=1 I=k+1
al s (N —k)s
— _ N
(1—s)m+;5ykN_(N_k)S (1— i )—(1—s)m+smy.
(3.25)
So, by definition of my; in function of my, in (3.24),
N-1
U((L = s)m +smy) = Um) = Y (Wmgr) — Ulmy))
k=0
N-1 R R A+l ] .
= > Wri1, My, Yrer1) — U0, Mg, Yrya) Z/ —u (7, Mgy Yper1 ).

iy

0

Let us assume that s € (0,6). Since s < 1/2, we get for any k oy < 2s/N, and
thus there exists a constant C' = C(mq, yx) > 0 such that

day(my,m) < Cs

we now require that s is so small that C's < ¢. Using (3.22), Vk and V71 € (0, ag),
we get

d ~ d ~
|Eu(7—7 mk7yk+1) - %U(O,m,ykﬂﬂ S €.

We deduce from this

N-1

U((L = s)m + sm}) Z Oék+1 U0, m, ypi1)| < Ce Z Q1
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. 2
Since oy, — 3| < CTS, we conclude that

U1 — s)m + smiv) —U(m) —s /Rd %U(O m,y)m (dy)| < COfes +s%). (3.26)

At this point, let T' € N be large and we define, for n € {0,...,T}

1\" 1\" N
m, = 1_N mo+(1— 1—? my

B 1 1\" 1\" N
_<1 T>[1 7] mo (1 T) | +m :I:Tmy
1 1
So, by (3.26)
T-1 d -
) = Umo) =T 3 [ LA, ()
0
T-1
1 1 1 d ~

< - — —mV ) — S
<31 ) ot o) o) [ 0. )

<X+ (7)) =e(+3)

Recalling that lim,, (1 + = )n = e, letting T' — oo and then € — 0 by continuity
of U and of u we can conclude that

Ule 'mo + (1 — e " )m)’) — U(me) / —u 0, *mo + (1 — e *)m), y)m)) (dy)ds
Rd
/ / 0,(1 = 7)mo + 7m, y)m, (dy) dr
]Rd 0 v’ 1 — T
(3.27)

By the continuity of U and of d%ﬂ and by the density of the empirical measures,
from (3.27), Vmg, m; € P2(R?), we obtain

d

U(e_1m0+(1— U(myg) / / (1—=T)mo+7m1,y )ml(aly)1 T
Rd

(3. 28)
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For m; = mg, we have

d -
/ —U(0,mg, y)mo(dy) = 0 for any mqy € Py(RY).
R4 ds

In particular, this yields

[, 500, (=rmatrm () = (1=) [ A0, (=)t ) (1 =mo) ().

Using this relation in (3.28) we get

—1

d

(e gt (1—e=)my)—U(mp) = /0 ' /R (0, (1= )mo . ) (my—mo) (dy)dr

Using again the continuity of U and of d%ﬂ, one can deduce from this the desired
equality.

]

Theorem 3.13. Assume (1.1).

The value function U is globally Lipschitz continuous on [0,T] x P1(R?) and of
class C' in the set O. In addition, U is a classical solution in O of the master
Hamilton-Jacobi equation

—8tU(t,m)—/ div(D,,U(t,m,y))m(dy)+ | H(y, D, U(t, m,y))m(dy) = F(m).

R4 Rd
(3.29)
Moreover, Y(tg,mo) € O, 3 € > 0 and a constant C = C(tg,mg) > 0 so that,
Vt € [0,T], z,y € R? and m',m? € Po(R?) with |t — to| < €, dy(mg,m') < € and
dg(mo,m2) <€

|D, U(t,m', z) — D, U(t,m? y)| < C(|lz —y| + da(m', m?)). (3.30)
Proof. Let us divide the proof in three parts.

First part: The regularity of U

By Lemma 2.2, U is Lipschitz continuous. We want to show that U is dif-

ferentiable at any (to,mg) € O. Let us fix (tg,mp) € O and be u the associated
multiplier to (m, @) unique minimizer for U(to, mo).
Let 6 > 0 and 0 < ¢’ < ¢ be such that the d-neighborhood of the [0,7] x
Py(RY)-compact set {(t,m(t)) : t € [to,T]} C O, and, for any m} € B(myg,?),
SUP; (s, 7 d1(m(t), m'(t)) < 0, where u' is the associated minimizer to (m', o)
minimizer for U(tg, my).
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Let (z, i) the solution to the linearized system (3.9) with initial condition p(0) =
m(l] — mMy.
Set

(w,p) = (u' —u—2z,m" —m — p), (3.31)

and it is the solution of the system (3.2) with
£=0
R'(t,x) = — (H(z, Du') — H(z, Du) — H,(x, Du) - (Du' — Du))+
B em') = F(em) = O (2 m(1) (m* (1) — m(1),

R(t,x) =H,(z, Du')m' — H,(x, Du)m — H,(z, Du)(m"' —m)+
— Hpy(z, Du) - (Du' — Du)m,

R¥(z) = G(z,m"(T)) — G(z,m(T)) — %(% m(T))(m* (T) —m(T)).

We can rewrite R!(¢,z) in the following way R'(t,z) = ri(t,z) + ri(t, z) with

ri(t,x) = —/O (H,(z,sDu" + (1 — s)Du) — H,(z, Du)) - (Du' — Du)ds,

We have
1R less2s < lIrillesszs + [Irallesszs.
Since
|Irillesszs < Cllut — UH%J/M
and
Irilesss < 1D, () = Dy o (. gssad(m'm) < (! m)

by Lemma 3.10 and the fact that d; < d»

1B lesr2s < CdB(mi,mo).
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Noting that
H,(x, Du'Ym' — H,(z, Du)m = [H,(z, Du') — H,(z, Du)jm" + H,(z, Du')(m"* — m),
and

[H,(x, Du') — Hy(x, Du)lm" + H,,(z, Du)(Du' — Du)m =

/ (7, sDu' + (1 — s)Du) - (Du' — Du)ds — H,,(z, Du)(Du' — Du)m
We can rewrite

1
R*(t, z) :ml/ (Hpp(z, sDu' + (1 — s)Du) — Hyy(x, Du)) - (Du' — Du)ds
0
+ H,,(z, Du)(Du' — Du)(m'(t) — m(t)).
By definition
sup ||R*(t)|| w1y < sup ( sup (€, R2<t)>W1,oo,(W1,oo)/>
tE[to,T] tE[to,T] Hﬂ'wl,oo <1

and

(€ B2 () e (wiroey = / (€, (m" —m)Hy,(-, Duft,))(Du' — Du)(t, ")

Rd

+ml(#) /0 (H, (-, [sDu + (1 — )Du](t, -)) (Du" — Du)(t,-)ds
—m'(t) /0 (Hpp (-, Du(t,-))) (Du' — Du)(t, -)ds)wr.ee (wicey

< C(l[¢llwreel[u’ — ull2di(m?,m) + [[€]lwreeJu’ — ulf}).

Finally, using Lemma 3.10 and the previous estimates
sup || R*(t)|| 1oy < Cd3(mg, mo).
te(to,T)

Lastly, rewriting R® as

/ /< (z,sm’ T>+<1—S>m<T>,y>) d(m"(T) = m(T))(y)ds

. / [, Getam(m,) ) dton (7) = i) s
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and noting that

G
[|1R[lez+s < [|Dyz—(c,m'(T),) -

< Cdi(m',m),

0G

vy, Cm(T), lez+sdi(m* (T), m(T))

using again Lemma 3.10, we obtain that

HR1H65/2,6 + s[up | HR2(t)H(W1’°°)’ + HR3H62+6 S Cd%(mé,mo)
telto, T’

Then, for Lemma 3.2 and noting that 2 = u'! —u —w and p=m! —m — u

|u' = u = wllewro2es + sup |Im* () — m(t) — p(t)]|e2+5y < Cdi(mg, mo).
te(to, T

Recall that o' = —H,,(x, Du'). Thus
o' = a — Hyy(x, Du) - Dw + o(dy(mg, my)),

where o(+) is small in uniform norm.
It follows that

uttnmd) = [ ([ Loty + 0m') ) di-+ 90 (1)

— Uty, mo) + / ' /R (Lol 0) - [~ Hyp(z, Du)] Dwm + Lz, aput, 2)+

+ Pz, m()u(t, 2))dzdt + /R Gl m(T)) (T, 2)d + olds(mh, mo)).
Using duality on the equations satisfied by u and J

/ G(x,m(T))u(T, x)dx—/ u(to,x)(mé—mo)(dx):

Rd

/ / H(z,Du) — F(z,m(t)) — Hy(x, Du) - Du)p — H,p(z, Du)Du - Dwm) .
R4
Thus,

U(ty, my) = U(ty, mo) +/ u(to, z)(mg — mo)(dz)

Rd
/ / (x, Du) — Hy(z, Du) - Du+ L(x, ) — (Hpp(x, Du)Du - Dw
R4

(z,) - (Hyp(x, Du)Dw))m)dxdt + o(dy(mg, mo)).
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Since v = —H,(x, Du), in view of the definition of H and L we have
H(x,Du) — Hy(xz, Du) - Du+ L(x,a) = 0,
and knowing that L,(x, ) = —Du we get
H,,(x, Du)Du - Dw + Ly (z,a) - (Hpy(x, Du)Dw) = 0.

Combining all these results, we obtain

U(tg, my) = U(tg, mo) +/ ulto, z)(mg — mo)(dz) + o(da(mg, mo)).

Ra

Rewriting m{ as m§ = (1 — s)mg + 86, for some y € R? and s € (0,1) and using
it in the above equality we get that the following limit exists:

This limit depends in a continuous way on (mg,y) since the stability of the
map mg — (u, m) proved in Lemma 1.10.
We have that
D, U(tg, mg, ) = Du(ty, x),

since, in view of Lemma 3.11, U(tg, -) has a linear derivative in a neighborhood of
mo given by u(to, -).

Using again the stability of the map mo — (u, m), we actually have that (o, mg) —
D, U(tg, my, -) is continuous in O with respect to the dy-distance for the measure
variable into €2,

Second part: The Hamilton-Jacobi equation

Here we shows that U is a classical solution to (3.29).
Let h > 0 small. The dynamic programming principle gives

to+h

U(ty, mo) = / (/ L(z,a(t,z))m(t, x)dx + Sr(m(t))) dt+U(to+h, m(to+h)),
to Rd

and, since U is C!,

to+h

to R4

+D,,U(to + h,m(t),y) - Hy(t, Du(t,y)))m(t, dy)dydt.
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It follows that 9,U(ty, mp) exists and is given by

O U(to, mo) = / L(z, a(to, 2))mo(dz) — Flmo)+

Rd

- /d(TTDsz(to, mo,Y) + D W(to, mo, y) - Hy(to, Dulto, y)))mo(dy).
R

Since we proved D,, U (ty, mg, x) = Du(to, x) and we used a(to, z) = —H,(z, Du(to, x)),
by the definition of H with the Legendre transform and knowing that the diver-
gence of Dy, U is the trace of D7, U, (3.29) is satisfied.

Third part: The reqularity of D,,U

Let 6 > 0 and C' > 0 be such that for any ¢, mg, m satisfying (t,mf) € 0O,
[t —to] < &, da(mg,mi) < § and for any z!, 22 € R? let (mf af) the unique
minimizer for U(¢, mj) with associated multiplier u* for i = 1,2 and

[ut — u?||e12/20+2 + sup do(m'(t),m?*(t)) < Cdy(my, m3).
telt),T]

Since D,,U(t,m}, z') = Du'(t,z') and D,,U(t,m3,2*) = Du?(t, z?)
| DUt mg,x') — DU (t,mg, a*)| = [Du'(t,2') — Du?(t, %)
< |Du'(t,2%) — Du?(t, 2%)| + |Du'(t, 2') — Du'(t,2?)|
< |Du'(t,2®) — Du*(t,2%)| + || D*ul||oo|z' — 2% < C(da(mg, m§) + |2' — 2?]),

where we used lemmas 1.9 and 3.10.

]



Chapter 4

The propagation of chaos

The aim of this chapter is to show the following propagation of chaos property.

Theorem 4.1. Assume (1.1).

There ezists a constant v = y(d) € (0, 1) such that, V(to, mo) € O with My 5(mo) <
+00, there is a constant C = C(tg,mg) > 0, such that, if Z = (Z")g=1.. N
15 a sequence of independent random wvariables with law mgy, B = (Bk)kzl _____
is a sequence of independent Brownian motions independent of Z, and YV =
(YNH®)_y N is the optimal trajectory of VN(to, (Z%)k=1.. ), that is, for each
kE=1,...,N andt € [ty,T]

.....

t
vV = Zk / H,(YF, DV (s,YN))ds + V2(Bf — BY). (4.1)
to

Then
E[ sup dl(m%v,m(t))] < CN™.

te(to,T)

Remark 4.2. We note that this theorem exploit the reqularity of the function U
in O obtained in the results of chapter 3 to get a convergence of the optimal tra-
jectories of the N particle system to the one of the limit problem.

In chapter 2 we show a different kind of convergence, one more variational: the
convergence of the two wvalue functions that holds not only in O, but in

[0, T) x Pa(RA).
4.1 Introduction

For large particle systems, the notion of propagation of chaos was initially intro-
duced by Boltzmann in statistical physics: the idea is that the correlations between
two (or more) given particles for large systems, which are due to the interactions
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become negligible. It means that only an averaged behaviour can be observed
instead of the detailed correlated trajectories of each particle.

The mathematical formalisation is due to Kac and McKean and dates back to
the 20'" century. It has recently spread out in many areas of mathematics.

The propagation of chaos property describes the limit behaviour of the particle
system when the number of particles grows to infinity: any subsystem of the N-
particle system asymptotically behaves as a system of i.i.d processes with common
law m.

Definition 4.3. Let E a separable metric space, uy a Sequence of symmetric
probabilities on EV. We say that uy is u-chaotic, u probability on E, if for
¢17"'7¢k€ eb(E)7 kZ 1;

k
Jm fuy, 610 @ o @10 @ 1) =[], (42)

i=1
where we use ® for the product measure.

The notation of u-chaotic means that the empirical measures of the coordinate
variables of EV, under uy tend to concentrate near u, as the next proposition
shows.

Condition (4.2) can also be restated as the convergence of the projection of uy
as ¥ to u®* when N goes to infinity. In the next proposition, we suppose uy
symmetric.

Proposition 4.4. uy is u-chaotic is equivalent to X y = % Zf\il dx, converges in
law to the constant random variable w.

4.2 The propagation of chaos property

Let Z = (Z%);=1...~n be a sequence of independent random variables with law my,
= (B")j=1...v a sequence of independent Brownian motions independent of Z,
and YV = (NN"“)k 1.~ the optimal trajectory of VN (to, (Z¥);=1..n), that is, for

eachk=1,...,N and t € [to, T
t
V=2 [ (VR DV s YY)+ VEBE - BY). (43)
to

It follows from the Theorem 3.13 and the compactness of the curve {(t, m(t)) :
t € [to, T]} that there exists 0, C' > 0 such that, for any ¢, € [to,T], [t —t1] < 0
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and m}, mg € Po(R?) with do(m(ty), md) < 8, do(m(ty), m3) < 8, (t;,m}) € O and
(t;,m3) € O, and z!, 22 € R?

| D, U(t1, m(l),xl) — D, U(ty, mg,x2)| < C’(|x1 — x2| + dg(mé,mg)) (4.4)
Definition 4.5. Let o € (0,9). We define
V, = {(t,m') € [to, T] x Po(RY) : dy(m’, m(t)) < o}

and
VN ={(t,x) € [0,T] x R*: (t,m¥) € V,}.
Definition 4.6. The stopping time ™ is defined by

7_N _ infté[to,T]{(tvxtN) @é ‘/6]72}
T if there is no such a t,

and
7’rN _ infte[to,TN]{(tvytN) ¢ V;iN}
N if there is no such a t.
We consider the solution (X)) = (XM ,X;V’N)te[toj] to

t
dXN = 77 — / Hy(XN9 D U(s, mYw, XN9))ds + V2(B] — Bl ) on [te, TV].
to
(4.5)

Theorem 4.7. Let My5(mg) < 0o, then there exists a constant C > 0 such that

E[ sup d3(myy, m(t))] < ON @
te[0,T] t

Proof. Let us construct i.i.d. copies of the unique solutions to
dX"" = —H,(XN', DU, m(t), X))dt +V2dB! and X' = Z,

with 7i(t) law of X}, So,
N, N.i r 1 -N.i
X X< [y X0 ) — By, K )
to

T
< / (X5 = XN 1 dy(mlY., 7)) ds,

to
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since H), is Lipschitz.
By Gronwall’s inequality

T
|XtN” —XtN”] < C/ dg(mﬁs,ﬁs)ds.
to

Taking the power 2 and averaging the left-hand side
2( N N 1 Ni N2 Tl N~
dQ(th,m;(t) < NZ Xi =X <0 dy(miy,, fis))ds.
i to
Using the triangle and the Gronwall’s inequality
T
d%(m%t,m%) < C’/ d%(m%,us)ds,
to
using again the triangle inequality
T
B i) < Clim i)+ C [ dimd i)
to ’
By Theorem 1.3 in [16], we get the thesis. O

Lemma 4.8. Assume (1.1).
There is a constant C' = C(tg, mg) > 0 such that

E[ sup di(miy,m(t)] < CN a5 (4.6)

tefto,™N]

and )
Plr" < T] < CN™a+s, (4.7)

Proof. Using Theorem 4.7, we have that

E[ sup da(my~,m(t))] < CN~ s,
te[0,7] ¢

Since d; < dy we can conclude that

E[ sup dy(miy,m(t)] < CN~#s

telto, V]
Then
< CO§\N-ars.

DO >

Plr¥ <T) <P | sup di(min,m(t)) >
teto, V] ¢
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Another way to understand the derivatives in the space of measures is to
project the map U to the finite dimensional space (R?)¥ via the empirical measure

my = %Zj\; 0y, With @ = (z1,...,2n) € (RN,

Let us call

UN(t, z) = U(t,mY) for (t,x) € V;".

From preposition 6.2 in [0]
N 1 N
D, U (t,x) = NDmU(t, my , ;)

and

1 1
D}, UN(tx) = NDimu(t, my, ;) + mD?nmu(t?miV7 ).
By the Theorem 3.13, we have the regularity of U and we can easily conclude that,
on V& UY is ! in time-space with ijuN Lipschitz continuous in space.
We get

1 C
D2, UM (@) — NngU(t,m;V,xm < 7 e in V;V.

et t,x) be such that
Let ON b h th

NIQ

|ON(t,7)] < = a.e. in V}". (4.8)

Then UV satisfies

—OUN(t,x) — 30 Ay UN(t,z) + OV (L, x)
++ Zj\;l H(zj, ND,, UN(t,z)) = F(m2) a.e. in V5", (4.9)
UN(T, z) = §(mY) on (RN,

T

Lemma 4.9. Let YN = (YN,
Calling RN = ||UN — V||, then

~ defined by (4.3).

.....

E[/ NN |H,(Y ND, UN) = Hy(Y,Y ND, VY)|%dt] < C(N~' + RY).
to j

(4.10)



68 CHAPTER 4. THE PROPAGATION OF CHAOS

Proof. Let t € [tg, 7] then
dUN(,YN) = QUN +> A UN =Y B, ND, V) - D, UN)dt
j j

+v2> D, uN-dB]
J

— (% Z H(YN, NijuN(t, YN)) - Z HP(Y;N’jv ND%'VN) ' Dl“a'uN
J J

J

> (5 2L (L —H, (Y, N Dy YY) + O (Y, N D UY)
J
— Hy(Y,",ND, VN)|*) = ON~' = F(myx))dt + V2 D, UN - dBj,
J
where we used that |OY (¢, )| < CN~! and the uniform convexity of H in bounded
sets:

L(=H,(") = p* - Hy(p") = H(p").
We take expectations and integrate between ¢, and 7V above and get
EUN 7Y, YVAD] — E[UN (to, Z™)]
=N
| , , - :
> E[/t (¥ > (—L(YN, —H,(Y,Y ND, VN)) + C'|H,(Y,"Y, ND, u")
0

J
— Hy(Y,"?,ND, VV)[) = CN~' = F(min))dt].

Rearranging, using the definition of RY, the dynamic programming principle
and the optimality of Y for V¥ (ty, ZV) we find

=N

T 1 A ,
E[UN (to, ZM)] + E[/ (C—N > |H,( ND, UN) - Hy (Y, ND, VN)|?dt]
J

to

< ]E[/ (5 2 (LY, —Hy (Y, ND, YY) + CN ! F(myly))dit+
to j
+ VNN Y] + RY
< EVN(ty, ZN) + CN~ '+ RN,

and using once more the definition of RN, we get

=N

T 1 . )
E| / (G 2 (Y NDo UY) = Hy(v;Y, ND,, V) Pdt] < ON™H + 2RY.
to j
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]

Lemma 4.10. For XV = (X™%) and YN = (YN defined by (4.5) and (4.3)
respectively, we have

E[ sup N7'Y XN — YN < C(NT!+ RV (4.11)

SE[tO TN] j

and

PN < T] < C(N~@s + (RV)'/2). (4.12)

Proof. From Lemma 4.9, the regularity of UY in (4.4)

E[ sup N IXM -y

SE[to tATN] j

tATN
< E[ / NS H,(Y, ND N (YY) - H (Y, ND, VY (YN d)+

to J

tATN
JE[/ NTUY I H, (VM N D UN (8, YY) = Hy (X, N D, UN (8 X)) di]
t() ]
tATN . '
< CO(N' 4+ RMY2 4 ON! Z]E[/ | X NG — Yy NI|ds),
j to

and Gronwall’s inequality gives

E[ sup N7'Y XN YV <C(NTH+ RV

Se[to T } j

Then by definition of 7, Lemma 4.8 and 4.10

PN < T) <P[rN <T]+P[ sup N'Y |XN - yNﬂ|>‘5}

s€[to,7N] §

< CN~#s 4+ 05 Y(N~L + RN)V2,

We are ready to prove Theorem 4.1.
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Proof of Theorem 4.1. We can notice that using the triangular inequality of the
distance and the additive interval property

E[ sup d; (mva m(s))]

s€[to,7N]
<E[ sup di(myn,myy)]++E[ sup di(m¥y,m(s))]
s€E[to,T ] s€[to,T ] <413)
<E[ sup N~ 1Z\XN] YN+ E[ sup dl(mXN,m(s))]
s€[to,7N] s€(to, 7]

J
< C(N~'+ RM)? 4 oN~ws,

where in the second inequality we used that m% ~ and mﬁN are the laws respec-
tively of XV and YV and in the last one we used lemmas 4.10 and 4.8.

Thanks to Theorem 2.1 we can estimate RY:
N = JuYN = V|| < CN* such that 38 > 0. (4.14)
Thus, 37 = v/(d) and C = C(ty, mo)
E[ sup dl(myN,m<S))] <CN™. (4.15)

s€[to,7N]
Finally, we have
E[ sup di(myx,m(s))]
s€to,T]

<E[ sup di(myy, m(s)] +E[ sup di(myx,m(s)]"*P[FY <T]V?  (4.16)

s€[to,7N] s€[to,T]
< ON™Y + C(N~ s + (RN)V/?)/2,
where we used the Holder inequality, Lemma 4.10 and that m(s) has a uni-

formly bounded second order moment and by Lemma 2.2 the drift of the process
Y¥ is also uniformly bounded:

E[ sup d3 (myN,m(s))] <C.

s€[to, T

Thanks to Theorem 2.1, there exists a constant v = ~”(d) € (0,1) and a new
constant C" = C'(to, mg) > 0 so that we can conclude

E[ sup dl(mgN, (s)] < C'N™".

s€[to,T)



Appendix A

The Wasserstein distance

Theorem A.1l. Let, fori=1,2

om’ — Am' — div(b'm?) =0 in R? x (0,7), (A1)
mt(0) =m} in R? ‘
with
¥(z) = Hyw, Du') and m'ta) = [ ut.ag)dy
Rd
Then,
sup do(m'(t),m*(t)) < C (||Du' — Du||o + da(mg, mg)) . (A.2)

te(0,7)
Proof. We write

Opp— Do pi— Ay =2V, pn—divy (b' () p(t, , y)) —div, (b (y) u(t, 2, y)) = 0 in R**x (0, 7).
(A.3)
Multiplying (A.3) by |z — y|? and integrating over R* we obtain

Opu - | — y|*dady — /

Agp- |z —y? + Ay o — y? = 2V2 - o — y[Pdady
R2d

R2d
- /R2d div, (b* (z)u(z, ) - |z — y|Pdedy — /de div, (0*(y)u(z,y)) - |z — y|*dady = 0.
Notice that, using the divergence theorem,
/R Agpue e =y o Ay o — gl = 22, | — yfdudy = .
Using the divergence theorem, we obtain

[ ol = yPdzay+ [ 208 @) - Bt )l — yldudy =0,
R2d R2d
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and so

Ot - |z — y|dady = 2/ [0*(y) — b (2)|pu(z, )|z — y|dzdy,

R2d R2d

and, now, recalling that b'(z) = H,(x, Du') and v*(y) = H,(y, Du?) and using
that H), is Lipschitz continuous

Dutt - | — y[2dudy = 2 / B(y) — (@) (e, y)le — yldedy

R2d R2d

<2 [ () - B @)t v)le - yldsdy
R2

<2 / Clla gl + 1Du (t,2) D (1) G, ) — yldady

| /\

/ (lz — y| + [Du' (t,2) — Du?(t, z)| + |Du?(t, z) — Du*(t, y) ) p(x, y)lz — yldedy

IN

c / (le — | +|Du" — Dl + 1Dl — yps(e, )| — yldedy

IN

e ([ o= sbutan + Ipa = el [ el =)
R2
(A4)

Using Holder’s inequality and the assumptions on g

1/2 1/2
[ uteete = idady < ([ 1o~ sPutedods) ([ utenasay)
R2d R2d R2d
1/2
SC(/ \x—y\zu(:v,y)dxdy) ,
R2d

and by Young’s inequality

1/2
1Du! — Du?|| ( [ k- y|2u<x,y,t>dxdy)
RQd
1 1 2112 1 2
2 2 ]R2d

Going back to (A.4) and using the previous estimates we get

&s/ p(z,y,t) - |z —y[’dedy < C||Du' — Du?|%, + C/ |z =y u(z, y, t)dady,
R2d R2d
(A.5)
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and, now, applying the Gronwall’s lemma we obtain

/ lt @y y)-le—yPdedy < C (HDul — D[, +/ (0,7, 9) <o — yIdecdy) :
R2 R2
(A%6)
2

Knowing that d3(mg, mg) = inf crgnt m2) [gea [2—y[*dm (2, y) and so Ir* € M (mg, m§)
such that d3(mg, mg) = [pea |z — y[?dn*(x,y) and so

[ ttg) Lo = yPdzdy < € (100" = D\ + b)) . (A7)
Recalling that by definition

'ty = _int o= sfdn(e) < [ o yPuteg)dody.
R2 R2

wEll(m!,m?2)

As all factors involved are positive and taking the supremum on the left-hand side,
we get
sup da(m'(t), m*(t)) < C (||Du" — Du?|| + do(mg, mg)) . (A.8)
t

]
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Appendix B

Kantorovich duality theorem

In this section, we investigate a powerful duality formula due to Kantorovich. It
will used to prove the Kantorovich-Rubistein Theorem 1.1 state in the first Chap-
ter 1.

We need some definitions and a theorem to prove the Kantorovich duality the-
orem.

Definition B.1. Let E be a normed vector space, E* its the topological dual and
©:E — RU{+00} a conver function. The Legendre-Fenchel transform of © is
given by the function ©* defined on E* with the formula

©7(2") = sup[(z*, 2) — O(z)].
z€E
Definition B.2. A Polish space is a separable completely metrizable topological
space.

Theorem B.3 (Fenchel-Rockafellar duality theorem). Let E be a normed vector
space, E* its topological dual space and two convez functions ©,= : E — RU{+o00}
. Let ©*, =* be the Legendre-Fenchel transform of ©, = respectively.

Assume that there exists zg € E, such that © continuous at zy, ©(zy) < +oo and
Z(z9) < 400. Then,

1%f[@+:] = ereaéc*[—@ (—2") = =Z*(2")].

For the proof, see Theorem 1.9 in [20].

Finally, we state and prove a dual formulation for linear minimization problem
that was introduced by Kantorovich in 1942.
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Theorem B.4 (Kantorovich duality theorem). Let X and Y be Polish spaces and
W, v two probability measures such that p € P(X) and v € P(Y).

Let c: X XY — Ry U{+o0} be a lower semicontinuous cost function.
Call

I[r] = /Xxy c(z,y) dr(z,y),

J(6,1) = /¢w+/ww

with m € P(X xY) and (¢,v) € L*(du) x L*(dv).

Let us define the set I1(u,v) of Borel pmbabzlzty measures on X XY with marginals
p and v, and ®, the set of measurable functions (¢,v) € L'(du) x L'(dv) such
that

and

o(z) +¢(y) < c(z,y) (B.1)

for dp-almost all x € X and dv-almost all y € Y.
Then .

inf Ilr] = sup J(6,0)
Tl (p,v) (¢ )ED,

Sketch of the proof. (<) Let (¢,1) € ®. and 7 € II(u, v). By definition of II(u, v)

16:0) = [ odu+ [ wau= [ (o) + vldra)

(B.1) holds only almost everywhere and so, let Nx and Ny such that u(Nx) =0
and v(Ny) = 0. Then (B.1) holds for any (z,y) € N x N&. Since 7[Nx x Y] =
p(Nx) =0 and 7[X x Ny] = v(Ny) = 0, we have that 7[(N{ x NF)°] =0. As a
consequence

/X [9(0) + V)il y) < /X el y)dr(a,y) = 1),

Taking the supremum on the left-hand side and the infimum on the right-hand
side in the last inequality we get the thesis.

(>) Let us divide the proof in three parts.

(1) X and Y compact sets and ¢ continuous function on X xX Y.
Set E the set of bounded continuous functions on X x Y equipped with the supre-
mum norm || - ||«. Using the Riesz’ theorem, the dual of E is E* = M(X x Y),
the set on Radon measures. Let us define

@ = E — {O if U,([L',y) Z —C(ZL’,y)
400 else,



7

and
E:ueEH{Lémwhkwm/ﬁUWw%=M@+¢@)
400 else.

The assumption of Theorem B.3 are satisfied with zy = 1.
Note that

m{é¢w+£¢m~ww+wwzﬂmWﬁ=—wma¢ww¢we@}

Let m € M(X xY). We compute the Legendre-Fenchel transform of © and =.

O"(—7) = sup {— /u(aﬁ,y) dr(z,y) - u(z,y) > —C(x,y)}

uek

—sup{ [ e dr(ie.p) o) < o) |

uel

Thus
O (—7) = Sy (@, y) dr(z,y) if 7 is non negative
+00 else.

Similarly, calling Cj(A) the set of bounded continuous function on A and setting
D = Cy(X) x Cy(Y),

Ewﬂ:{OﬁW¢weD:ﬁwﬂmw+w@mme=Lam+L¢w

+00 else.

Noting that Cy(X) x Cy(Y) C L'(du) N L'(dv), putting everything together and
changing signs, we recover

inf I(7) =supJ(o,v).
int 1(x) = sup J(6. )

(2) ¢ is bounded and uniformly continuous.
We define

|lelloo = sup c(z,y).
XXY

Let 7, € II(p,v) such that I[r,] = infrenqu,) f(7]. Let 6 > 0 small. We have
that X x Y is a Polish space since X and Y are so. m, is tight and so there exist
Xo C X and Yy C Y so that pu(X \ Xo) < d and v(Y \ Yy) < 4. It can be proved
that m.[(X x Y)\ (Xo x Yp)] < 26.

Define
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and let g and vy be the marginals of mpx onto Xy and Yj respectively.
We define IIy(p0,v0) the set of probability with marginals u and vy.
Let us define

ool = [ cl.y)dnfo,y).
X0><Y0
Let 7o € TI(po, o) be such that

0] = g il ool

We construct from 7,
T = T.(Xo X Yo)To + L x,xvp)0 M-

We calculate I(7)

I(7) = m(Xo x Yo)Io(mo) +/ c(, y)dm.(x,y) < Io(7o) + 2[c]0d

(X()XY())C
= inf Iy + 2||c||0.

Thus
inf I[r] <inf Iy + 2||c||ao0.
H(p,v)
Let
JO((bo, wo) = (bo d,uo + wo dVO defined on Ll (d/l,o) X Ll (dyo).

Xo Yo

By (1) we have inf Iy = sup Jp.
There exists a couple of function ((bo, wo) such that J0(<b0, wo) > sup Jo — 0.

We ensure that (150( )—i—%( ) < ¢(x,y) for all x and y allowing that o and wo take
values in RU{—o0}. Without loss of generality, we assume ¢ < 1. Since Jy(0,0) =0

then sup Jo > 0 and so Jg(gbo,wo) > —§ > —1. So exists (zq, yo) 6 Xo X Y, such
that ¢o(zo) + ¢0(y0) —1. We have ¢g(z) > —2% 1 and @/Jo(yo) > —2. We get that,
V(l',y) € XO X YE)?

do(@) < c(z,0) — %@0) < c(x,yo) +

?

boly) < ex0,y) — do(x0) < (0, y) +

| = N

Let us define .
¢o(z) = inf [c(z,y) — to(y)].

yeYD
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We have 50 < ¢y on X, and so JO(%, %) > JO(%,{/TO) and

Go(e) 2 infle(,) — clao,)) — 5

and

—~ 1
Po(x) < c(x,90) — Yo(yo) < c(x,y0) + 3
We define

Yoly) = inf [e(x,y) — go(2)],

xeXp

and we still have (%, %) € ®. and Jg(%, %) > JO(%, %) > JO(%,%).
We have .

¢0(y) > ir;f[c(:r,y) - C(‘Ta yo)] - 57
and

Toly) < clza,9) ~ Golio) < el ) — o) < elro,y) + 5.
In particular
Fole) > ~lelloe 3,
and

—_ 1
Tow) = ~llelloe —

With some simple inequality we get
T (b0, %0) > (1 = 28)[inf I — 2(2[|c][os +1)0] = 2(2]|¢]|oc + 1)3.

Since 0 is arbitrary we can conclude that sup J(¢, ) > inf I.

(3) General case
We write ¢ = sup,, ¢,, where ¢, is a non-decreasing sequence of non-negative
uniformly continuous cost functions. Replacing ¢, by inf,(c,,n) one can assume
that ¢, is bounded.
Let

I,[r] = / ¢ dm for me ll(p,v).
XxY

By (2) we have
inf I,[r]= sup J(¢, ). (B.2)

WEH(,U,V) (d%%b)eq’%

Since ¢, < ¢ by construction, it follows that ®. C &, then

sup J(¢,9) < sup  J(o,9). (B.3)
(6:6)®c,, ().
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Since [, is a non-decreasing sequence of functional, then I, is a non-decreasing
sequence bounded above by inf I. II(u,v) is tight and relatively compact for the
weak topology.

In particular, if (7%),ey is any minimizing sequence for the problem inf I,,[7] then,
up to a subsequence, 7¥ koo, ™ € P(X X Y) weakly and so V6 bounded and
continuous function

/9(96,3/) dmf(x,y) === /G(w,y) dry(w,y),
and we see that m, € II(u, v) and

inf I, = lim [ ¢, d?TZ = /cn dm,.
k—o00
By compactness of II(u, v), the sequence (7, ),, admits a cluster point 7. Whenever
n>m
L[mn] > Ln[ma].

By continuity
lim 1I,[m,] > limsup I,,[m,] > L[]

n—00 n—00

By monotone convergence I, [r,] — I[m;] and so

lim I,,[m,] > lim I,[r]=I[m] > inf I[n],

n—00 m—00 TEPi(p,v)

which proves
lim inf I,[7] > inf I[x].

n—o0 well(p,v) mell(p,v)
By invoking the monotone convergence theorem for the increasing sequence (¢, )y,
we have

I[7.] = lim I,[n.] < lim limsup I,[mg] < limsup I[my] = inf I.

n—o0 n—x0 L_ss0 k—00

Combining all these results, we get the thesis.
O

Definition B.5. Let c¢: X x Y — RU {400} be a bounded lower semicontinuous
function. Let ¢ : X — R be a bounded function. We define

¢°(y) = infle(z,y) — ¢(x)]

and

¢“(z) = irylf [c(z,y) — ¢°(y)]-

The couple (¢°°, ¢°) is called conjugate c-concave functions.
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Now we are ready to prove Theorem 1.1.

Proof of theorem 1.1. Let us call d(x,y) the metric on X xY and be d,, := Hn;d—ld'

Since 1+dn~! > 1, we note that d, < d and for all z,y € R?, d,,(x,y) —= d(x,y)
monotonically. Finally, let us point out that the set of 1-Lipschitz functions for d,,
is included in the set of 1-Lipschitz functions for d since d,, < d and so

|f(2) = f)] < dn(z,y) < d(z,y).

So, by that, we can use Theorem B.4 with d bounded (otherwise we can reason
with d,,) and we only have to check that

sp J(6.0) = sup { [ o dm—m)}.

(RIS ¢:1—Lip

recalling that J(¢,¢) = [, éd p+ [, ¢ dv.
Let (¢% ¢?) be the d-concave conjugate functions. We have that ¢¢ is 1-Lipschitz

since is the infimum of ¢ that is a 1-Lipschitz function. It follows from the proof
of Theorem B.4 (with d bounded) that

sup  J(¢,9) = sup  J(¢™, 67,

(¢ )EDC e Ll (dm)

and noting that, using the lipschitzianity,
~6%(a) < infld(z, ) - 6'(y)] < ~0'(z),

where in the last inequality we put z = y. We conclude that

It can also proved that (¢9?)? = ¢¢. Then

sSup J(¢a ,lvb) = Sup J(¢dd7 ¢d) = Sup J(_¢d7 ¢d)

(CRDIS pEL(dm) deLt(dm)
S Sup J(_¢7 (b) S Sup J(¢7 ¢)7
¢:1—Lip L8

and we get the thesis.
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Appendix C

Lions-Malgrange-type argument

In this part we show the Lions-Malgrange-type argument: we prove the uniqueness
of solution a general linear forward-backward system with given initial data. This
result is used several times in the thesis.

Let the pair ((2%)g=1.. 4, 1) = (O, (u — @))x=1....a, m — m) solves the system
—0p2F — AZF 4+ gF(t,2) = 0in (41, T) x RY,
O — Ap+ div(h) = 0 in (¢, 7T) x R? (C.1)
w(ty) =0 and 2*(t1,-) = 0 on R4,

Assuming that

U

D 1gt(2)P < C(l=(t,0)F + [Da(t,2)]° + ||u(t)]]72).
=1 (C.2)
(At 2)* < C(|2(t 2)]” + |u(t, 2) ),

[div(A(t, 2))|* < C(l=(t, 2)]” + | Dz(t, 2)* + |p(t, 2)]* + [Dplt, ) ).

Let us point out that the system in (C.1) is different to the classical MFG and
MFC systems since the data are both given in an initial point ¢; and the two
equations are one forward and the other one backward.

Theorem C.1. Under the above assumptions, (2%, ) = (0,0) on [t;,T] x R4

Proof. Without loss of generality, let us assume that ¢; = 0 and it is sufficient to

.....

Let 6 : [0,7] — [0, 1] be a smooth non decreasing function so that ||0'(¢)||. < C/T

and
1 on [0,7/2],

6(t) = < 6(t) on (T/2,2T/3),
0 on [27/3,T).
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For ¢ > 1, we set
() = T 20(4) R (2, 4) and Ji(z,t) = T 29(4) u(x, 1),

Then, ((;ﬁ)kzl 4, [t) satisfies

.....

(i) =02k — Ak 4 ot — T2k 4 D122/ 2k 4 oet=T129g, — ()
(i1)  Oi — ATl — c(t — T)Ji — e“CTP129/ 4 =T 29div(h) =0,  (C.3)
(iii) 2*(x,0) = p(z,0) = (2, T) = p(z, T) = 0.

Multiplying (C.3)-(ii) by 9,z and integrating in time-space, we obtain
T 2 2
/ (9,5;7-8,5/7—Aﬁ-@tﬁ—c(t—T)ﬁ-atﬁ—ec(t_T) /20/,U'atﬁ+€c(t_T) /29d1V(h)8t/7 = O7
0 Jrd

and after integrating by parts the second term and using that d;(f)* = 21 - Oy

T
- 1 ~ . 2 2 -
/ / (90 =500 DR =5 (=) (1) — (/2 p—e =" div ()4 = 0.
0 Rd

Integrating the second term in time and by parts in time the third one (using
the boundary conditions)

T
- c _ elt— . -
/ /Rd(atuf L) — (T — T i () Oy = O
0

Using the Young’s inequality on the third term

g -~ € ~ ’ c(t—T)2 1 pt c(t—T)2 :
| [ s@r e [ ] @ e v et e mp)
0 JRd 0 JRd

1 [T 9
+ 5 (atﬂ’) )
0o Jrd
and so

T T
| sear 5@ <c [ [ @ e e reanmp). (©3)
0 R4 0 R4

(C.4)

Repeating the same steps for (C.3)-(i) multiply by Oy2% and integrating in
time-space

T 1 ~ ~ r 2N 2
/0 Ad§<8tzk>2+§<zk)2ﬁc/o /Rd@c“) (02(5)? + TP g2g2). (C.6)
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Consider (C.3)-(ii) multiply by g and integrating in time-space

T
/ Oufi - i = AJi- i — et = T)ji- fi — =120 - i 4 e 20div(h) - i = 0,
0 R4

and considering the bounding conditions, integrating by parts the first and the
second term and using the divergence theorem on the last one we get

T
/ Rd IDR* = e(t = T)(7)* + (—e" 20 1) - i — (e="60h) - Dji = 0.
0

Hence, by Young’s inequality

T
/ / —|D|* < / /(ﬁ)2+C(eC(t_T)2(9’)2u2+ec(t_T)292h2). (C.7)
Rd 0o Jrd

Repeating the same steps multiplying (C.3)-(i) by 2* and integrating in time-
space

T ~ ~ ~
/ |D2E|? + et — T)(25)? + (X720 28 4 =120, ) . 2k = 0.
0 Jrd
Then, for € € (0,1) to be chosen later
/ g \Dz’“|2 / /Rd (T + € )2 + C’e(ec(t’TV(9')2(2/%)2 + ec(t’T)202g,%).
(C.8)

Since the assumption on h, g; and |div(h)|?, the result obtain in (C.5) becomes

5/ I < C / [ @ o

Q2]+ D=0+ a] + D) |E)).

Rearranging, noting that e“*~7)°¢% < 1 and using that |[v(t)||%, == [[v(t)|]3 +
1 Dv()]]3,

o [0 <€ @RI + IO + OB (©9

The same argument for (C.6) yields to

T T . N N
C/O sz(t)||§+§0/0 IG5+ 1ZOF + [1EO]17. (C.10)
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Then (C.7) becomes

[ ooz < ¢ [T @RI O] + @l )
and (C.8)
| i< [ er+enidols -

+ Ce(e )| [5 + [Z(6)] 7 + R [Fr)-

Summing (C.12) over k, for € > 0 small enough
T T ,
IDZ(1)]]3 < C/O (T + DI + 02015 + 10|12

Plugging (C.11) into the above inequality gives

T T
/O IDZ(8)]]5 < C/O (T + D)|[Z0)113+ 0212013 + [1a(t)]13) + [E@)]]3-
(C.13)

Sum over k the inequality in (C.10) and collecting (C.9), (C.11) and (C.13)

0/0 |!ﬁ(t)\\§+l|5(t)||§§0/o IO ()5 + [12@)][3) + E@) [ + 170
SC/O IO ()3 + 12@)]13) + (T + DIEOI + 113

We can now fix 7" > 0 small enough, so that, for any ¢ large enough

s [0+ OB < [ e @RI + 0

By the definition of

¢ (T2 ,
5/0 D ()2 + 112(0)]13) <

HIQ

2
// (@3 + 120)113)-
Hence,

. , [T/2
Ewwml (1B + 113 <

HIQ

2 [ (ol + 1B

T/2
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T/2)?

Dividing both terms in the last inequality by e and letting ¢ — oo yields

to (z,u) = (0,0) on [0,7/2].



88

APPENDIX C. LIONS-MALGRANGE-TYPE ARGUMENT



Bibliography

1]

2]

Bogachev, V.I., Da Prato, G., Rockner, M.: On parabolic equations for mea-
sures, Commun. Partial Differ. Equ., 2008

Briani, A., Cardaliaguet, P.: Stable solutions in potential mean field game
systems, Nonlinear Differ. Equ. Appl. 25(1), 2018

Cannarsa, P., Tessitore, M. E.: Optimality conditions for boundary control
problems of parabolic type. Control and estimation of distributed parameter
systems: nonlinear phenomena, (Vorau, 1993), 79-96, Internat. Ser. Numer.
Math., 118, Birkauser, Basel, 1994.

Cardaliaguet, P., Cirant, M., Porretta, A.: Splitting methods and short time
existence for the master equations in mean field games, To appear in JEMS,
2020

Cardaliaguet, P., Daudin S., Jackson J., Souganidis P.: An algebraic conver-
gence rate for the optimal control of McKean-Viasov dynamics, arXiv preprint,
arXiv:2203.14554

Cardaliaguet, P., Delarue, F., Lasry, J. M., Lions, P.-L.: The Master Equation
and the Convergence Problem in Mean Field Games (AMS-201) (Vol. 381).
Princeton University Press, Princeton, 2019

Cardaliaguet, P., Graber, J., Porretta, A., Tonon D.: Second order mean field
games with degenerate diffusion and local coupling, Nonlinear Differ. Equ. Appl.
22, 5, (2015), 1287-1317.

Cardaliaguet, P., Masoero, M.: Weak KAM theory for potential MFG, Journal
of Differential Equations, 268(7), 3255-3298, 2020

Cardaliaguet, P., Porretta, A.: An introduction to Mean Field Game theory,
2013

89



90 BIBLIOGRAPHY

[10] Cardaliaguet, P., Souganidis, P. E.: Regularity of the value function and quan-
titative propagation of chaos for mean field control problems, Nonlinear Differ-
ential Equations and Applications NoDEA, 2023

[11] Carmona, R., Delarue, F.: Probabilistic Theory of Mean Field Games with
Applications I-11. Springer, Berlin, 2018

[12] Chaintron, L. P., Diez, A.: Propagation of chaos: a review of models, methods
and applications. II. Applications, 2022

[13] Daudin, S.: Optimal control of the Fokker-Planck equation under state con-
straints in the Wasserstein space, arXiv preprint. arXiv: 2109.14978

[14] Delarue, F., Lacker, D., Ramanan, K.: From the master equation to mean
field game limit theory: large deviations and concentration of measure, Ann.
Probab. 48(1), 2020

[15] Fournier, N., Guillin, A.: On the rate of convergence in Wasserstein distance
of the empirical measure, Probability Theory and Related Fields, 162(3), 707-
738, 2015

[16] Horowitz, J., Karandikar, R. L.: Mean rates of convergence of empirical mea-
sures in the Wasserstein metric, J. Comput. Appl. Math. 55, 1994

[17] Lacker, D.: Limit theory for controlled McKean-Viasov dynamics, STAM J.
Control. Optim. 55(3), 2017

[18] Lasry, J.-M., Lions, P.-L.: Mean field games, Jpn. J. Math, 2007

[19] Lieberman, G.: Second Order Parabolic Differential Equations, World Scien-
tific Publishing Co. Pte. Ltd., 1996

[20] Villani, C.: Topics in Optimal Transportation, American Mathematical Soci-
ety, 2003



