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Abstract

In this thesis we deal with a class of mean field control problems that are obtained
as limits of optimal control problems for large particle systems. Developing on
[Cardaliaguet, P., Souganidis, P. E.; Regularity of the value function and quanti-
tative propagation of chaos for mean field control problem, Nonlinear Differ. Equ.
Appl., 2023], we analyze the value function U in Wasserstein metric and we prove
its smoothness in an open and dense set of the space, time and probability mea-
sures using the strategy of the linearized system. The definition of this set exploits
the concept of strong stability. Finally, we focus on chaos propagation: we study
the properties of the optimal solutions of the interacting particle system starting
from the aforementioned open and dense set. We also show some classical results
on flows of probability measures via simple analytical tools.
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Introduction

Optimal control is a field of study that deals with finding the best control law for
a dynamic system in order to achieve a specific optimality condition.
In deterministic optimal control, by dynamical system we mean a set of differential
equations for the evolution over time of the variable y(t) that represents the state
of the system at time t:

{
ẏ(t) = f(y(t), α(t)) t > t0 ≥ 0,

y(t0) = x0 ∈ R
N ,

(1)

where α ∈ A is the control taking values in the set of admissible controls

A = {α : R → A | α is measurable and the solution of (1) exists unique in [t0, T ]} ,

A is a topological space and T > 0 a finite time horizon.
The optimality condition in optimal control is defined via an objective cost func-
tion, e.g.

J(x0, t0, α) =

∫ T

t0

l(y(t), α(t))dt+ g(y(T ))

with l : RN×A→ R and g : RN → R two given functions. This function quantifies
the quality of the control inputs and the resulting system behavior. The objective
is to find the control law that minimizes (or maximize) this cost function over the
set of admissible controls. When the control is governed by a stochastic equation
we call this problem stochastic optimal control.

Mean field game (MFG for short) theory is closely related to optimal control,
and extends it to a setting where identical players simultaneously try to minimize
some cost function.
Its birth dates back to 2006 when paper [18] by Lasry and Lions was published.
The main idea behind MFGs is the following: when the number of players N
in a game is so big that it can be approximated by one with infinitely many
indistinguishable agents, the analysis can be reduced to the study of a control
problem with a single player representing the whole system.
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2 INTRODUCTION

In particular, in our case of interest the formalization of such a problem is the
following. The dynamics of the state of the population is affected by the movement
of an average control α via

dXt = αtdt+
√
2Bt,

where Bt is a standard Brownian motion.
The representative agent aims to minimize the cost functional

E

[∫ T

t0

L(Xs, αs,m(s))ds+G(XT ,m(T ))

]
.

The following system of equations can be used to model a typical mean field game:





∂tu−∆u+H(x,m,Du) = 0 in (t0, T )× R
d,

∂tm−∆m− div(Hp(x,m,Du)m) = 0 in (t0, T )× R
d,

m(t0) = m0, u(T, x) = G(x,m(T )) in R
d,

(2)

where L : R
d × R

d → R is the Lagrangian and its convex conjugate,
H(p) = maxa∈Rd{a · p − L(a)}, is the Hamiltonian, and G : Rd × P(Rd) → R

d

is the terminal cost.
In the above system (2), the map u can be interpreted as the value function of a
player, while m(t) is understood as the evolving probability density of the player
at time t.

Mean field control (MFC) is a concept closely related to mean field games. In
this case, a social planner controls the distribution of states and chooses a control
strategy. MFC problems are control problems where the dynamic of the state Xt

satisfies an equation depending on the law of the state L(Xt) itself. This is known
as a Mckean-Vlasov equation:

dXt = b(t,Xt,L(Xt))dt+ a(t,Xt,L(Xt))dBt,

where σ(t,Xt,L(Xt)) and b(t,Xt,L(Xt)) are measurable functions, a(t,Xt,L(Xt)) =
σ(t,Xt,L(Xt))σ(t,Xt,L(Xt))

T and Bt denotes a Brownian motion.
Furthermore the optimality conditions for MFC and MFG coincide in the case of
potential MFG, i.e. when the costs come from a derivative.

In this thesis we investigate and discuss the regularity of the value function
for a class of MFC problems naturally arising as limits of some large particle
systems. Then, using the regularity of this function, we obtain a propagation of
chaos property that connects the behaviour of the optimal trajectories for the N -
particle system and the one of the limit problem. We also show a convergence rate
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for the value functions of the two problems.
In particular, we focus on the following setting. Let (Ω,F,P) be a probability
space and let T > 0 be a fixed time horizon. Set t0 ∈ [0, T ] be the initial time
and x0 = (x10, ..., x

N
0 ) ∈ (Rd)N be the initial position of the system at time t0. In

order to control a N -particle system, we first focus on the minimization, over the
set AN of admissible controls α = (αk)Nk=1 ∈ L2([0, T ]×Ω; (Rd)N), of the following
functional:

JN(t0, x0, α) = E

[
1

N

∫ T

t0

N∑

i=1

L(X i
t , α

i
t)dt+

∫ T

t0

F(mN
Xt
)dt+ G(mN

XT
)

]
, (3)

where the process Xt satisfies

Xk
t = xk0 +

∫ t

t0

αksds+
√
2(Bk

t − Bk
t0
), for t ∈ [t0, T ],

with (Bi)i=1,...,N independent d-dimensional Brownian motions. In Equation (3),
F and G are given data, mN

Xt
corresponds to the empirical measure of the process

Xt, and L = L(x, α) : Rd ×R
d → R is the Legendre transform of the Hamiltonian

H and it is assumed to be convex with quadratical growth in α.
Then, the value function for the problem is defined as

VN(t0, x0) = inf
α∈AN

JN(t0, x0, α). (4)

We show the convergence of the empirical measure of the optimal trajectories of
(4), mN

XN
t
, to the optimal solutions of the MFC problem. This last corresponds to

minimizing the following functional

J∞(t0,m0, α) = E

[∫ T

t0

L(Xt, αt) + F(L(Xt))dt+ G(L(XT ))

]
,

where m0 is the initial distribution of the particles at time t0, L(Xt) is the law of
Xt, α is an admissible control square integrable R

d-valued processes adapted to a
Brownian motion B and to an initial condition X0, which is independent of B and
of the law m0 and the process (Xt)t∈[t0,T ] satisfies the following equation

Xt = X0 +

∫ t

t0

αsds+
√
2(Bt − Bt0) for t ∈ [t0, T ].

Finally, the value function of this last problem is

U(t0, x0) = inf
α∈A

J∞(t0,m0, α).
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The rest of the thesis is structured as follows.
Chapter 1 is devoted to a recap of some basic definitions on Wasserstein distances,
derivatives in the space of measures and basic results on MFC problems. In par-
ticular, we prove that any minimizer (m,α) of J∞ corresponds to a solution to the
following potential MFG system ( i.e. the coupling functions F and G derive from
potentials, that is F = δF

δm
(m, x) and G = δG

δm
(m, x)):





−∂tu−∆u+H(x,Du) = F (x,m(t)) in (t0, T )× R
d,

∂tm−∆m− div(Hp(x,Du)m) = 0 in (t0, T )× R
d,

m(t0) = m0, u(T, x) = G(x,m(T )) in R
d.

(5)

In chapter 2 we show a result on the convergence rate of VN to U, as N tends
to infinity. The rate is obtained in a setting where the value function U does not
need to be smooth.
First of all, we present some regularity estimates for VN and U. The second step
consists in bounding from above VN by U: we define the function

V̂N(t,m) =

∫

(Rd)N
VN(t, x)

N∏

j=1

m(dxj),

and, comparing U with V̂N and V̂N with VN , we obtain the thesis. The core of
this chapter is the proof of the opposite inequality: we divide, via an appropriate
partition, the players into subgroups in order to get that the optimal controls
for the agents in each of them are close. We show the inequality holds for each
subgroup.
So, we obtain that there exist β ∈ (0, 1] and a constant C > 0 such that, for any
(t, x) ∈ [0, T ]× (Rd)N ,

|VN(t, x)− U(t,mN
x )| ≤ CN−β(1 +M

1/2
2 (mN

x )),

where M
1/2
2 (mN

x ) =
1
N

∑N
i=1 |xi|2.

Chapter 3 represents the core of the work. We introduce the linearized version
of the system (5)




−∂tz −∆z +Hp(x,Du) ·Dz = δF
δm

(x,m(t))(µ(t)) in (t0, T )× R
d,

∂tµ−∆µ− div(Hp(x,Du)µ)− σdiv(Hpp(x,Du)Dzm) = 0 in (t0, T )× R
d,

µ(t0) = 0 and z(T, x) = δG
δm

(x,m(T ))(µ(T )) in R
d.

(6)
We exploit the notion of stability, that is when the only solution to (6) is the
trivial one, to show that, in an open and dense set O of initial times and measures,
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the value function U is smooth and it is a classical solution in O of the master
Hamilton-Jacobi equation

−∂tU(t,m)−
∫

Rd

div(DmU(t,m, y))m(dy)+

∫

Rd

H(y,DmU(t,m, y))m(dy) = F(m).

Chapter 4 focuses on the proof of the propagation of chaos property, that de-
scribes the limit behavior of the particle system when the number of particles
grows to infinity.
We study the properties of the optimal trajectories of the interacting N -particle
system exploiting the results obtained in the previous chapter. So, for every
(t0,m0) ∈ O, taking a sequence of independent random variables with law m0, Z =
(Zk)k=1,...,N , a sequence of independent Brownian motions independent of Z, B =
(Bk)k=1,...,N , and a sequence of optimal trajectories for VN , Y N = (Y N,k)k=1,...,N ,
such that

Y N,k
t = Zk −

∫ t

t0

Hp(Y
k
s , DVN(s, Y N

s ))ds+
√
2(Bk

t − Bk
t0
),

we show that there exist γ ∈ (0, 1) and C > 0 such that

E[ sup
t∈[t0,T ]

d1(m
N
Y N
t
,m(t))] ≤ CN−γ.

Some additional material is collected in the Appendix. In particular, in Appendix
A we show a result on the Wasserstein distance using only analytical tools. In
Appendix B we present the Kantorovich duality theorem that we use to prove
the Kantorovich-Rubistein theorem. Finally, in Appendix C we recall the Lions-
Malgrange-type argument: a result to prove uniqueness of solution for general
linear forward-backward systems given the initial data.
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Chapter 1

Definitions and preliminary facts

In this chapter we provide the necessary notations and the consequent definitions
that will then be used in the rest of the work.

1.1 General notation

Let d ∈ N. We work on R
d. Let BR be the ball of radius R centred at the origin.

We use the notation P(Rd) to denote the set of Borel probability measures on R
d.

Let m in P(Rd) and p ≥ 1 and we call Mp(m) =
∫
Rd |x|pdm the pth-moment of m.

We denote by Pp(R
d) the set of m in P(Rd) such that Mp(m) <∞.

In what follow, we use positive constants C that may change from line to line.

1.1.1 The Wasserstein distance

Let p ≥ 1, we endow Pp(R
d) with the Wasserstein metric dp defined in the following

way:

dpp(m,m
′) := inf

π∈Π(m,m′)

∫

Rd

|x− y|pdπ(x, y),

where Π(m,m′) is the set of all π ∈ P(Rd × R
d) with marginals m and m′.

In particular, for p = 1, we have

Theorem 1.1 (Kantorovich-Rubinstein Theorem). For any m,m′ ∈ P1(R
d), then

d1(m,m
′) = sup

ϕ: 1−Lip

∫

Rd

ϕ d(m−m′).

For the proof, we refer to the last part of Appendix B.

7
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Proposition 1.2. Let µ, ν ∈ P1(R
d) and Xµ, Xν be a stochastic variable whose

law is µ and ν respectively. It holds that

d1(µ, ν) ≤ E[|Xµ −Xν |].
Proof. Let f : Rd → R be a Lipschitz function with its Lipschitz constant C ≤ 1.
We have

|f(x)− f(y)| ≤ C|x− y| ≤ |x− y|.
Hence,
∫

Rd

f(x)µ(dx)−
∫

Rd

f(y)ν(dy) = E[f(Xµ)]− E[f(Xν)] ≤ |E[f(Xµ)− f(Xν)]|

≤ E[|f(Xµ)− f(Xν)|] ≤ E[|Xµ −Xν |].
This means that

d1(µ, ν) = sup
f : 1−Lip

∫

Rd

f d(µ− ν) = sup
f : 1−Lip

{∫

Rd

f(x)µ(dx)−
∫

Rd

f(y)ν(dy)

}

≤ E[|Xµ −Xν |].

Remark 1.3. One can show that

d1(µ, ν) = inf
Xµ,Xν

E[|Xµ −Xν |],

where the infimum is taken over random variables Xµ and Xν such that the law of
Xµ (resp. Xν) is µ (resp. ν).

Remark 1.4. Another useful distance on the space of measures is the Wasserstein
distance d2. It is defined on the space P2(R

d) of Borel probability measures m with
a finite second order moment (i.e.,

∫
Rd |x|2m(dx) < +∞) by

d2(m1,m2) = inf
π

(∫

R2d

|x− y|2dπ(x, y)
)1/2

,

where the infimum is taken over the Borel probability measures π on R
d×R

d with
first marginal given by m1 and second marginal by m2:∫

R2d

ϕ(x)dπ(x, y) =

∫

Rd

ϕ(x)dm1(x) and

∫

R2d

ϕ(y)dπ(x, y) =

∫

Rd

ϕ(y)dm2(y).

The distance can be defined equivalently by

d2(m1,m2) = inf
X,Y

(
E[|X − Y |2]

)1/2
,

where the infimum is taken over random variables X and Y with law m1 and m2

respectively.
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Remark 1.5. By Hölder inequality Pr(R
d) ⊂ Ps(R

d), for any 1 ≤ s ≤ r, and

ds(m,m
′) ≤ dr(m,m

′) ∀m,m′ ∈ Pr(R
d).

1.1.2 Derivatives in the space of measures

Let U : P(Rd) → R. We, first, restrict the function U to the elements m ∈ P(Rd)
which have a density in L2(Rd) and assume that the function is defined in a
neighborhood O ⊂ L2(Rd) of L2(Rd) ∩ P(Rd). We write

δU

δm
(p)(q) = lim

ϵ→0

1

ϵ
(U(p+ ϵq)− U(p)) p ∈ O; q ∈ L2(Rd).

We can identify δU
δm

(p) with an element of L2(Rd). We set, when possible

DmU(m, y) = Dy
δU

δm
(m, y) and D2

mmU(m, ·, y, y′) = D2
y,y′

δU

δm
(m, y, y′).

In the same way, we denote by δ2U
δ2m

the second derivative of U

δ2U

δm2
(p)(q, q′) = lim

ϵ→0

1

ϵ

(
δU

δm
(p+ ϵq)(q′)− δU

δm
(p)(q′)

)
p ∈ O; q, q′ ∈ L2(Rd).

We can also consider, in a more general way, the derivatives out of L2 in P(Rd).

Definition 1.6. We say that U : P(Rd) → R is C1 if there exists a continuous
map δU

δm
: P(Rd)× R

d → R such that, for any m,m1 ∈ P(Rd),

lim
s→0+

U((1− s)m+ sm1)− U(m)

s
=

∫

Rd

δU

δm
(m, y)d(m1 −m)(y).

Since δU
δm

is defined up to an additive constant, we adopt the normalization

convention ∫

Rd

δU

δm
(m, y)dm(y) = 0.

1.2 Assumptions

We state now some assumptions on the data that will be involved in the work:
some are more standard than others but will be important to prove the regularity
of the value function U.
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Let H : Rd × R
d → R, F : P1(R

d) → R and G : P1(R
d) → R.

We define L : Rd × R
d → R as the Legendre transform of H with respect to the

second variable as
L(x, α) = sup

p∈Rd

[−a · p−H(x, p)].

We assume that:

� H ∈ C4
loc and strictly convex with respect to the second variable,

� ∃C > 0 constant such that, ∀(x, p) ∈ R
d × R

d C−1
Id ≤ Hpp(x, p) ≤ C Id,

−C + C−1|p|2 ≤ H(x, p) ≤ C(1 + |p|2) and |DxH(x, p)| ≤ C(|p|+ 1),

� F ∈ C2 with F, DmF, D
2
ymF and D2

mmF uniformly bounded and, moreover,

x → δF
δm

(m, x) is bounded in C2 uniformly in m, while y → δ2F
δm2 (m, x, y) is

bounded in C2 uniformly in (m, x),

� G ∈ C4 with all derivatives up to order 4 uniformly bounded.

For convenience, in what follow, we will call all the assumptions on H, F and G

(1.1)
An example of a Hamiltonian satisfying (1.1) is

H(x, p) = |p|2

and a typical F is the class of cylindrical functions of the form

F(m) = F

(∫

Rd

F1(x)dm(x), . . . ,

∫

Rd

Fk(x)dm(x)

)
,

where F and the Fi, for 1 ≤ i ≤ k, are smooth with bounded derivatives.

Remark 1.7. We note that the strict convexity of H with respect to the second
variable implies that L has the same regularity as H.
The uniform bounds on DmF and DmG imply that both maps are Lipschitz contin-
uous in P1(R

d).

Remark 1.8. Since L is the Legendre transform of H and for |a| ≤ R, x ∈ R
d and

p = DaL(x, a), in view of the hypothesis (1.1), we have L(x, a) = −a · p−H(x, p)
and that

−R|p| − C +
1

c
|p|2 ≤ L(x, a) ≤ sup

p′
{−a · p′ + C − c|p′|2} ≤ C +

R2

4c
.

So, we have that for every R > 0, there exists CR > 0 such that

|DaL(x, a)| ≤ CR for all (x, a) ∈ R
d × BR. (1.2)
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1.3 Background

In this part we present the mean field control (MFC for short) problems obtained
as the limit of optimal control problem for large particle systems.

Let (Ω,F,P) be a probabilistic space, X = (X1, ..., XN) the trajectories that
satisfy, for each k ∈ 1, ..., N ,

Xk
t = xk0 +

∫ t

t0

αksds+
√
2(Bk

t − Bk
t0
) for t ∈ [t0, T ], (1.3)

where the (Bi)i=1,...,N are independent d-dimensional Brownian motions and
α = (αk)Nk=1 ∈ L2([0, T ] × Ω; (Rd)N) are admissible controls adapted to the fil-
tration generated by them.
We define the empirical measure of the process Xt, where δx is the Dirac mass
center in x :

mN
Xt

:=
1

N

N∑

k=1

δXk
t
.

Let T > 0 be a fixed time horizon, t0 ∈ [0, T ] the initial time and
x0 = (x10, ..., x

N
0 ) ∈ (Rd)N the initial position of the system at time t0.

We want to minimize the following problem over the set AN of admissible controls
α = (αk)Nk=1 ∈ L2([0, T ]× Ω; (Rd)N) in order to control a system of N particles

JN(t0, x0, α) := E

[
1

N

∫ T

t0

N∑

i=1

L(X i
t , α

i
t)dt+

∫ T

t0

F(mN
Xt
)dt+ G(mN

XT
)

]
, (1.4)

where L = L(x, α) : Rd × R
d → R is a convex function with quadratically

growth in α and (Bi)i=1,...,N are independent d-dimensional Brownian motions.

For this problem, the value function is

VN(t0, x0) := inf
α∈AN

JN(t0, x0, α)

= inf
α∈AN

E

[
1

N

∫ T

t0

N∑

i=1

L(X i
t , α

i
t)dt+

∫ T

t0

F(mN
Xt
)dt+ G(mN

XT
)

]
.

(1.5)

It can be proved that (see [17]), in a more general framework and under slightly
different hypothesis on the data, the empirical measure mN

XN
t

in the optimal tra-

jectories of (1.5) converges to the weak optimal solutions of the mean field control
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problem which consists of minimizing the following functional

J∞(t0,m0, α) = E

[∫ T

t0

L(Xt, αt)dt+

∫ T

t0

F(L(Xt))dt+ G(L(XT ))

]
, (1.6)

where m0 is the initial distribution of the particles at time t0, L(Xt) is the law
of Xt, α ∈ A, where A is the set of admissible controls that are square integrable
R
d-valued processes adapted to a Brownian motion B and to an initial condition

X0, which is independent of B and of the law m0.
The process (Xt)t∈[t0,T ] satisfies the following equation:

Xt = X0 +

∫ t

t0

αsds+
√
2(Bt − Bt0) for t ∈ [t0, T ]. (1.7)

The value function of this last problem is

U(t0, x0) := inf
α∈A

J∞(t0,m0, α)

= inf
α∈A

E

[∫ T

t0

L(Xt, αt)dt+

∫ T

t0

F(L(Xt))dt+ G(L(XT ))

]
.

(1.8)

1.4 Preliminary facts

We call M(t0,m0) the set of controls defined by

M(t0,m0) :=





(m,α) ∈ C0([t0, T ],P1(R
d))× L0([t0, T ]× R

d;Rd)∫ T
0

∫
Rd |α|2m <∞

∂tm−∆m+ div(mα) = 0 in (t0, T )× R
d andm(t0) = m0 in R

d



 ,

for each initial point (t0,m0) ∈ [0, T ) × P1(R
d) with the equation understood in

the sense of distributions.
We can rewrite the value function in (1.8) as

U(t0,m0) = inf
(m,α)∈M(t0,m0)

{∫ T

t0

∫

Rd

L(x, α(t, x))m(t, dx) + F(m(t))dt+ G(m(T ))

}
.

(1.9)
We also define the set O

O := {(t0,m0) ∈ [t0, T ]×P2(R
d) : ∃! stable minimizer in the definition of U(t0,m0)}.

(1.10)
In what follows, we will prove that U is smooth in O.
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Let (t0,m0) ∈ [0, T ) × P2(R
d). We have [see section 1.5] that for U(t0,m0)

there exists at least one minimizer and, if (m,α) ∈ M(t0,m0) is a minimizer, there
exists a multiplier u : [t0, T ] × R

d → R such that α = −Hp(x,Du) and the pair
(u,m) solves the mean field game system





−∂tu−∆u+H(x,Du) = F (x,m(t)) in (t0, T )× R
d,

∂tm−∆m− div(Hp(x,Du)m) = 0 in (t0, T )× R
d,

m(t0) = m0, u(T, x) = G(x,m(T )) in R
d,

(1.11)

where

F (x,m) =
δF

δm
(m, x) and G(x,m) =

δG

δm
(m, x)

The system is made by a pair formed by a backward Hamilton-Jacobi equation,
describing the dynamics of the value function of any of the players, and a forward
Kolmogorov equation, describing the dynamics of the distribution of the popula-
tion. We can think of F as a running cost and G as a terminal cost.
Since the hypothesis of strict convexity on H, given (m,α), Du is defined uniquely
by the relation α = −Hp(x,Du).

Lemma 1.9. Assume (1.1) and let (u,m) be a solution of (1.11).Then,

i) for any δ ∈ (0, 1) and t, t′ ∈ [0, T ] there is a constant C > 0 independent of
(t0,m0) such that

||u||C(δ+1)/2,δ+1 + sup
t ̸=t′

d2(m(t),m(t′))

|t− t′|1/2 ≤ C, (1.12)

ii) there exists a constant C such that

sup
t∈[t0,T ]

∫

Rd

|x|2m(t, dx) ≤ (1 + CT )

∫

Rd

|x|2m0(t, dx) + CT. (1.13)

Proof. i)The C(1+δ)/2,1+δ local regularity of u is a consequence of the classical
parabolic regularity theory, since

� the map x→ G(x,m) is bounded C4

� the map x→ δF
δm

(x,m(t)) is of class C2

� using the fact that m is a solution (see Proposition 1.13) to

∂tm−∆m− div(Hpm) = 0
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and the divergence theorem we have

d

dt
F (x,m(t)) =

∫

Rd

δF

δm
(m(t), x, y)∂tm(t, y)dy

=

∫

Rd

δF

δm
(m(t), x, y)∆m+

δF

δm
(m(t), x, y)div(Hp(y,Du(t, y))m(t, y))dy

=

∫

Rd

(∆y
δF

δm
(m(t), x, y)−Hp(y,Du(t, y)) ·Dy

δF

δm
(m(t), x, y)m(t, y)dy

that implies the map t→ F (x,m(t)) is C(1+δ)/2 for any δ ∈ (0, 1) for the fact
that y → δ2F

δm2 (m, x, y) is bounded in C2 uniformly in (m, x).

This regularity holds globally in space since there exists a constant C > 0 such
that for every x, y ∈ R

d

sup
t∈[t0,T ]

|F (x,m(t))− F (y,m(t))|+ |G(x,m(t))−G(y,m(t))| ≤ C|x− y|

for the uniform boundedness of D2
mmF and D2

mmG.
Applying the maximum principle, recalling that for T terminal time we have
u(T, x) = G(x,m(T )), we get that u is Lipschitz continuous in the space variable.
The same argument applied to the equation satisfied by uxi for each i = 1, . . . , d,
implies that Du is Lipschitz in the space variable.

To prove the bound on d2, let us assume t′ = 0. Consider

{
∂tm−∆m− div(Hp(x,Du(t, x)m) = 0 in R

d × (0, T ),

m(0) = m0 in R
d,

(1.14)

with

m(t, x) =

∫

Rd

µ(t, x, y)dy

and

∂tµ−∆xµ− divx(Hp(x,Du(t, x))µ(t, x, y)) = 0 in R
2d × (0, T ). (1.15)

Multiplying (1.15) by |x− y|2 and integrating over R2d we obtain

∫

R2d

∂tµ · |x− y|2dxdy −
∫

R2d

∆xµ · |x− y|2

−
∫

R2d

divx(Hp(x,Du(t, x))µ(t, x, y)) · |x− y|2dxdy = 0.
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Notice that, applying twice the divergence theorem since ∆xµ = divx(∇xµ),

−
∫

R2d

∆xµ · |x− y|2dxdy = 2

∫

R2d

∇xµ · (x− y)dxdy = −2d,

where we used that
∫
R2d µ(t, x, y)dxdy = 1. Using the divergence theorem, we have

that

−
∫

R2d

divx(Hp(x,Du)µ(t, x, y)) · |x− y|2dxdy = 2

∫

R2d

Hp(x,Du)µ(t, x, y)(x− y)dxdy,

and so
∫

R2d

∂tµ · |x− y|2dxdy − 2d+ 2

∫

R2d

Hp(x,Du)µ(t, x, y)(x− y)dxdy = 0.

Using the Young’s inequality

∫

R2d

µ(t, x, y)|x− y|dxdy =

∫

R2d

(
√
µ(t, x, y)|x− y|)

√
µ(t, x, y)dxdy

≤ 1

2

(∫

R2d

|x− y|2µ(t, x, y)dxdy +
∫

R2d

µ(t, x, y)dxdy

)
,

and that Hp(Du) is bounded, we have

2

∫

R2d

Hp(x,Du)µ(t, x, y)|x− y|dxdy ≤ 2||Hp(x,Du)||∞
∫

R2d

µ(t, x, y)|x− y|dxdy

≤ ||Hp(x,Du)||∞
(∫

R2d

|x− y|2µ(t, x, y)dxdy +
∫

R2d

µ(t, x, y)dxdy

)

≤ C

(∫

R2d

|x− y|2µ(t, x, y)dxdy + 1

)
,

and so, putting everything together, we have

∫

R2d

∂tµ · |x− y|2dxdy − 2d ≤ C

(∫

R2d

|x− y|2µ(t, x, y)dxdy + 1

)
,

and applying the Gronwall’s lemma and knowing that d2 is a distance and so there
exist µ such that d2(m,m) =

∫
R2d |x− y|2µ(0, x, y)dxdy = 0 we get

∫

R2d

µ(t, x, y) · |x− y|2dxdy ≤ C(−t− 1 + et) + Ct
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and, there exists a K > 0 such that
∫

R2d

µ(t, x, y) · |x− y|2dxdy ≤ Kt

The last inequality follow since we assumed t ∈ (0, T ).
Using that

d22(m(t),m(0)) = inf
π∈Π(m(t),m(0))

∫

R2d

|x− y|2dπ(x, y) ≤
∫

R2d

|x− y|2µ(t, x, y)dxdy,

and so we have that
d2(m(t),m(0)) ≤ C

√
t,

and we get the thesis.

ii)Using Lemma 2.2 in [1] with ψ ∈ C∞(Rd), ψ(x) = |x|2 outside B1(0), we get
the thesis.

In what follow, we state a stability estimate for minimizers of (1.9) when they
are unique.

Lemma 1.10. Assume (1.1) and fix (t0,m0) ∈ [0, T )×P2(R
d). Let u be the asso-

ciated multiplier to the unique minimizer (m,α) of U(t0,m0). If (t
n
0 ,m

n
0 ) converges

to (t0,m0) and if the associated multiplier to a minimizer (mn, αn) for U(tn0 ,m
n
0 )

is un, then un converges to u, Dun to Du and D2un to D2u in Cδ/2,δ. In addition,
if, ∀n, tn0 = t0, the convergence of (un) holds in C(2+δ)/2,2+δ.

The following result will be useful in the proofs of the main results.

Lemma 1.11. Assume (1.1) and let t0 ∈ [0, T ) and m0 ∈ P2(R
d). Call (m,α) a

minimizer for U(t0,m0). Fix β ∈ C0([t0, T ] × R
d;Rd) or β ∈ L∞([t0, T ] × R

d;Rd)
with β vanishing in a neighborhood of t0 and let ρ ∈ C0([t0, T ], (C

2+δ(Rd))′) be the
solution to {

∂tρ−∆ρ+ div(mβ) = 0 in (t0, T )× R
d,

ρ(t0) = 0 in R
d,

(1.16)

with the equation understood in the sense of the distributions.
Then
∫ T

t0

(

∫

Rd

Lα,α(x, α(t, x))β(t, x) · β(t, x)m(t, dx) + ⟨ δF
δm

(·,m(t), ·)(ρ(t)), ρ(t)⟩)dt+

+ ⟨ δG
δm

(·,m(T ), ·)(ρ(T, ·)), ρ(T, ·)⟩ ≥ 0.

(1.17)
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For the proof of the previous two lemmas, see Lemmas 1.5 and 1.6 of [10].

We know that VN , defined in (1.5), solves the Hamilton-Jacobi-Bellman (HJB)
equation [see [5]]
{
−∂tVN(t, x)−

∑N
j=1 ∆xjV

N(t, x) + 1
N
H(xj, NDxjV

N(t, x)) = F(mN
x ) in (0, T )× (Rd)N ,

VN(T, x) = G(mN
x ) in (Rd)N .

1.5 Existence of U

Let us begin with some definitions.

Definition 1.12. We define

M(Rd,Rd) = {w : w is a Borel vector measure with finite mass |w|}.

Let us call E(t0) the set of pairs (m(t), w(t)) ∈ P(Rd) × M(Rd,Rd) such that
t→ m(t) is continuous and

∫ T

0

|w(t)|dt <∞,

and the following equation holds in the sense of distributions

∂tm−∆m+ div(w) = 0 in R
d × [t0, T ] and m(t0) = m0.

We denote by E2(t0) the subset of (m(t), w(t)) ∈ E(t0) such that w(t) is abso-

lutely continuous with respect to m(t) with a density dw(t)
dm(t)

satisfying

∫ T

0

∫

Rd

∣∣∣ dw(t)
dm(t)

(x)
∣∣∣
2

m(dx, t)dt <∞

Then, we define J on E(t0) by

J(t0,m0, ·) :=
{∫ T

t0

∫
Rd L(x,

dw(t)
dm(t)

(x))m(dx) +
∫ T
t0
F(m(t))dt+ G(m(T )) if (m,w) ∈ E2(t0),

+∞ otherwise.

The next proposition shows that minimizers of the functional J correspond to
solution of the MFG system.

Proposition 1.13. Under our standing assumptions:

i) For any t0 ∈ [0, T ] and m0 ∈ P(Rd) there exists a minimum (m,w) ∈ E2(t0)
of J(t0,m0, ·),
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ii) Let (m,w) be minimum of J(t0,m0, ·). Then there exists u such that (u,m)
is a classical solution to the MFG system





−∂tu−∆u+H(x,Du) = F (x,m(t)) in (t0, T )× R
d,

∂tm−∆m− div(Hp(x,Du)m) = 0 in (t0, T )× R
d,

m(t0) = m0, u(T, x) = G(x,m(T )) in R
d,

where F (x,m) = δF
δm

and G(x,m) = δG
δm

, and w(x, t) = −m(x, t)Hp(x,Du).
In particular, any minimizer is a classical solution of the above system.

Proof. Let us start proving i).
Let (mn, wn) ∈ E2(t0) be a minimizing sequence. By the definition of J , we have
J(mn, wn) ≤ C and, by the assumption on H in (1.1), there exists C ≥ 0 such
that

C−1
Id ≤ Hpp(x, p) ≤ C Id.

This assumption on H implies the following uniform bound

∫ T

t0

∫

Rd

∣∣∣ dwn(t)
dmn(t)

∣∣∣
2

mn(dx, t)dt ≤ C.

We can then argue as in [7, Lemma 3.1] to conclude that the sequence (mn) is
uniformly bounded in C1/2([0, T ],P(Rd)). In particular,

∫ T

t0

|wn(t)|dt ≤
(∫ T

t0

∫

Rd

∣∣∣ dwn(t)
dmn(t)

∣∣∣
2

mn(dx, t)dt

)1/2(∫ T

t0

∫

Rd

mn(dx, t)dt

)1/2

≤ C.

So, up to a subsequence,wn → w in M((0, T ) × R
d,Rd) and (mn) converges in

C0([0, T ],P(Rd)) to m. Then, we can conclude that the pair (m,w) belongs to
E2(t0).
Since J is lower semicontinuous

lim inf
n→∞

J(mn, wn) = lim
n→∞

J(mn, wn) ≤ J(m,w),

and we have that the couple (m,w) is a minimum of the functional J .

Let us pass to ii). We define on E(t0) the functionals Φ(m,w) and Ψ(m) such
that J(m,w) = Φ(m,w) + Ψ(m), so

Φ(m,w) :=

{∫ T
t0

∫
Rd L(x,

w(t)
m(t)

)m(dx, t)dt if (m,w) ∈ E2(t0),

+∞ otherwise,
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and

Ψ(m) :=

∫ T

t0

F(m(t))dt+ G(m(T )).

Let (m,w) be a minimum of J. Recall from i) that, since it is a minimum,
m ∈ C1/2([0, T ],P(Rd)).
Let mλ and wλ be the convex combination of m and m and w and w respectively.
So we have mλ := (1 − λ)m + λm and wλ := (1 − λ)w + λw with λ ∈ (0, 1). By
minimality of (m,w)

Φ(mλ, wλ) + Ψ(mλ) ≥ Φ(m,w) + Ψ(m),

and so
Φ(mλ, wλ)− Φ(m,w) ≥ Ψ(m)−Ψ(mλ).

Thus, by the convexity of Φ

Φ(mλ, wλ) ≤ λΦ(m,w) + (1− λ)Φ(m,w),

and so

λ(Φ(m,w)− Φ(m,w)) ≥ Φ(mλ, wλ)− Φ(m,w) ≥ Ψ(m)−Ψ(mλ).

Thus, by the regularity assumptions on F and G, we get

λ(Φ(m,w)− Φ(m,w))

≥ λ

(
−
∫ T

t0

∫

Rd

F(x,m(t))(m−m)(dx, t)−
∫

Rd

G(x,m(T ))(m−m)(dx, T )

)
+ o(λ).

(1.18)

Then dividing (1.18) by λ and letting λ tends to 0, we obtain, for any (m,w) ∈
E(t0),

−
∫ T

t0

∫

Rd

F(x,m(t))(m(dx, t)−m(dx, t))−
∫

Rd

G(x,m(T ))(m(dx, T )−m(dx, T ))

≤ Φ(m,w)− Φ(m,w).

(1.19)

Let us define

J̃(m,w) = Φ(m,w) +

∫ T

0

∫

Rd

F(x,m(t)m(dx, t)dt+

∫

Rd

G(x,m(T ))m(dx, T ).

Note that this functional is convex.
By (1.19), the pair (m,w) is a minimizer of J̃ on E(t0).
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Note also that the problem of minimizing J̃ on E(t0) is the dual problem (in the
sense of the Fenchel-Rockafellar duality theorem B.3 [see [7] for the details]) of the
problem

inf
u∈C2

{−
∫

Rd

m0(x)u(x, 0)dx : −∂tu−∆u+H(x,Du) ≤ F(x,m(t))

and u(x, T ) ≤ G(x,m(x, T ))}.
(1.20)

By comparison, there is an obvious minimum to this problem which is the solution
u to {

−∂tu−∆u+H(x,Du) = F(x,m(t)) in R
d × (0, T ),

u(x, T ) = G(x,m(x, T )) in R
d.

This solution is C2,α because m ∈ C1/2([0, T ),P(Rd)). By the Fenchel-Rockafellar
duality theorem, we have that

0 = J̃(m,w)−
∫

Rd

m0(x)u(x, 0)dx.

Using the definition of J̃ , the equation for u and the equation for (m,w), we have
that

0 =

∫ T

t0

∫

Rd

(
L

(
x,
dw(t)

dm(t)

)
+ F(x,m(t))

)
m(dx, t)dt+

∫

Rd

G(x,m(T ))m(dx, T )

−
∫

Rd

m0(x)u(x, 0)dx =

∫ T

t0

∫

Rd

(
L

(
x,
dw(t)

dm(t)

)
+ (−∂tu−∆u+H(x,Du))

)
m(dx, t)dt

+

∫

Rd

G(x,m(T ))m(dx, T )−
∫

Rd

m0(x)u(x, 0)dx

=

∫ T

t0

∫

Rd

(
L

(
x,
dw(t)

dm(t)

)
+H(x,Du) +Du ·

(
dw(t)

dm(t)

))
m(dx, t)dt.

Recalling that L is the convex conjugate of H which is uniformly convex, we find

dw(t)

dm(t)
= −Hp(x,Du) m− a.e..

This means that m solves the Kolmogorov equation

∂tm−∆m− div(mHp(x,Du)) = 0 and m(·, t0) = m0

which has a regular drift: thus m is of class C2,α by Schauder theory. Therefore w
is also smooth and the proof of ii) is complete.



Chapter 2

The convergence of VN to U

This chapter is devoted to an algebraic rate of convergence of the value function
VN of N -particle control problems to the value function U of the corresponding
MFC problem.
With VN defined by (1.5) and U by (1.8), we have the following result.

Theorem 2.1. Assume (1.1). There exists β = β(d) ∈ (0, 1) and a constant
C > 0 depending on the smoothness of the data such that, ∀(t, x) ∈ [0, T ]× (Rd)N ,

|VN(t, x)− U(t,mN
x )| ≤ C

1

Nβ
(1 +M2(m

N
x )). (2.1)

The proof of Theorem 2.1 requires several steps: we first obtain uniform in N
regularity estimates on VN , then we show how to bound from above VN by U plus
an error term and, finally, we prove the converse estimate.

Here we present a result on the regularity of VN and of U.

Lemma 2.2. Assume (1.1). There exists a constant C > 0, which depends on the
data, such that

||VN ||∞ +N sup
j=1,...,N

||DxjV
N ||∞ + ||∂tVN ||∞ ≤ C, (2.2)

and, ∀(t′,m′), (t′′,m′′) ∈ [0, T ]× P1(R
d),

|U(t′,m′)− U(t′′,m′′)| ≤ C(|t′ − t′′|+ d1(m
′,m′′)). (2.3)

Proof. The bound on VN follows by the assumptions on the data.

21
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Call wj = DxjV
N . Then wj satisfies





− ∂tw
j(t, x)−

N∑

k=1

∆xkw
j(t, x) +

1

N
DxH(xj, NDwj(t, x))

+
N∑

k=1

Hp(xk, NDxkV
N(t, x)) ·Dxkw

j(t, x) =
1

N
DmF(m

N
X , xj) in (0, T )× (Rd)N ,

wj(T, x) = 1
N
DmG(m

N
X , xj) in (Rd)N .

(2.4)
Using the maximum principle we can conclude that N ||DxjV

N ||∞ are uniformly
bounded in N and j.
In the same way, wt = ∂tV

N satisfies





− ∂tw
t(t, x)−

N∑

k=1

∆xkw
t(t, x)+

+
N∑

k=1

Hp(xk, NDxkV
N(t, x)) ·Dxkw

t(t, x) = 0 in (0, T )× (Rd)N ,

wt(T, x) = − 1

N

N∑

k=1

tr

[
D2
ymG(m

N
X , xk) +

1

N
D2
mmG(m

N
X , xk, xk)

]

+
1

N

N∑

k=1

H(xk, DmG(m
N
X , xk)− F(mN

X) in (Rd)N ,

and the uniform bound on ||∂tVN ||∞ follows again from the maximum principle.

For the second part, fix (t′,m′) ∈ [0, T ] × P1(R
d). So there exist at least

(see Proposition 1.13) a pair (m,α) optimal in the definition of U(t′,m′) and a
multiplier u : [t0, T ]× R

d → R and such that (u,m) solves the system





−∂tu−∆u+H(x,Du) = δF
δm

(m(t), x) in (t0, T )× R
d,

∂tm−∆m− div(Hp(x,Du)m) = 0 in (t0, T )× R
d,

m(t′) = m′ and u(T, x) = δG
δm

(m(T ), x) in R
d.

(2.5)

Arguing as before for VN , there exists a constant C > 0 such that

||Du||∞ ≤ C

and, since α = −Hp(x,Du), ||α||∞ ≤ C and so we have

||Dα||∞ = ||D[Hp(·, Du(·, ·))]||∞ ≤ C.
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Let m′′ ∈ P1(R
d) and µ be the solution to

∂tµ−∆µ+ div(µα) = 0 in (t0, T )× R
d with µ(t′) = m′′.

Arguing as in Theorem A.1, one can prove that

sup
t∈[t0,T ]

d1(µ(t),m(t)) ≤ Cd1(m
′,m′′).

Thus, for some constant C depending on the data

U(t′,m′′) ≤
∫ T

t′

(∫

Rd

L(x, α(t, x))µ(t, dx) + F(µ(t))

)
dt+ G(µ(T ))

≤
∫ T

t′

(∫

Rd

L(x, α(t, x))m(t, dx) + F(m(t))

)
dt+

+ G(m(T )) + C sup
t∈[t0,T ]

d1(µ(t),m(t))

≤ U(t′,m′) + Cd1(m
′,m′′).

We can conclude that

|U(t′,m′)− U(t′,m′′)| ≤ Cd1(m
′,m′′).

Finally, fix t′′ > t′, and we choose (m,α) optimal in the definition of U(t′′,m′′).
By dynamic programming principle, we have

U(t′′,m′′) = U(t′,m′) +

∫ t′

t′′
(

∫

Rd

L(x, α(t, x)m(t, dx) + F(m(t)))dt),

and so

|U(t′′,m′′)− U(t′,m′′)| ≤ |
∫ t′

t′′
(

∫

Rd

L(x, α(t, x))m(t, dx) + F(m(t))dt)|

+ |U(t′′,m′)− U(t′′,m′′)| ≤ C(t′′ − t′) + Cd1(m
′,m′′).

(2.6)

This completes the proof.

The next lemma is about a key estimate on VN .

Lemma 2.3. Assume (1.1). There exists a constant C independent of N , such
that, for any N ≥ 1 ξ = (ξi) ∈ (Rd)N and ξ0 ∈ R,

N∑

i,j=1

D2
xjxj

VN(t, x)ξi · ξj + 2
N∑

i=1

D2
xjt

VN(t, x) · ξiξ0 +D2
ttV

N(t, x)(ξ0)2

≤ C

N

N∑

i=1

|ξi|2 + C(ξ0)2.

(2.7)
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Proof. For 1 ≤ i, j, k ≤ N , let
{
wi = DxiV

N · ξi, wi,j = D2
xixj

VNξ · ξj, w0,i = wi,0 = ∂tDxiV
N · ξ0ξi,

w0,0 = ∂ttV
N(ξo)2, w0 = ∂tV

Nξ0, w̃ =
∑N

i,j=1w
i,j and σk =

∑N
i=0Dxkw

i.

(2.8)
Since VN(t, x) solves
{
−∂tVN(t, x)−

∑N
j=1 ∆xjV

N(t, x) + 1
N
H(xj, NDxjV

N(t, x)) = F(mN
x ) in (0, T )× (Rd)N ,

VN(T, x) = G(mN
x ) in (Rd)N ,

a simple computation gives

− ∂tw̃ −
N∑

k=1

∆xkw̃ +
n∑

k=1

Dxkw̃ ·Hp(xk, NDxkV
N(t, x))

= −N
N∑

k=1

Hpp(xk, NDxkV
N(t, x))σk · σk

− 2
N∑

k=1

Hxp(xk, NDxkV
N(t, x))ξk · σk −

1

N

N∑

i=1

Hxx(xi, NDxiV
N(t, x)ξi · ξi

+
1

N2

N∑

i,j=1

D2
mmF(m

N
X , xi, xj)ξ

i · ξj + 1

N

N∑

i=1

D2
ymF(m

N
X , xi)ξ

i · ξi.

(2.9)

Denote by ⋆ the right-hand-side of the equality above.
Recalling that H is strictly convex in the second argument and that, by Lemma
2.2, N∂xkV

N is bounded, we have, for all 1 ≤ k ≤ N ,

−NHppσk · σk − 2Hxpξ
k · σk ≤

C

N
|ξk|2.

We can use again the Lipschitz bounds on VN and the hypothesis on H:
for any R > 0, there exists CR > 0 such that

|Hxx(x, p)|+ |Hxp(x, p)| ≤ CR ∀(x, p) ∈ R
d × BR,

to deduce that

⋆ ≤ C

N

∑

k

|ξk|2. (2.10)

Next, fix (t0, x0) and consider the weak solution mN to




∂tm
N(t, x)−

∑N
k=1 ∆xkm

N(t, x)

−
∑N

k=1 div(Hp(xk, NDxkV
N(t, x))mN) = 0 in (t0, T )× (Rd)N ,

mN(t0, ·) = δx0 in (Rd)N .

(2.11)
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After summing equation (2.9) multiplied by mN and equation (2.11) multiplied by
w̃ and integrating in space and time, using (2.10) and that

∫
R
mN(t, x)dx = 1, we

get

w̃(t0, x0) ≤ sup
x

||w̃(T, x)||∞ +
C

N

N∑

k=1

|ξk|2.

In order to bound the right-hand side of the inequality above, we first note that,
by the equation satisfied by VN , we have

∂tV
N(T, x) = −

N∑

k=1

∆xkG
N(x) +

1

N

N∑

k=1

H(xk, NDxkG
N(x))− F(x),

where FN(x) := F(mN
X) and GN(x) := G(mN

X), and, similarly,

∂2ttV
N(T, x) = −

N∑

k=1

∆xk∂tV
N(T, x) +

N∑

k=1

Hp(xk, NDxkG
N(x)) ·Dxk∂tV

N(T, x).

Using the following proposition to express the derivatives of FN and GN in function
of the derivatives of F and G,

Proposition 2.4. If u : P2(R
d) → R is continuously diffentiable, then its empirical

projection uN , that is the function uN = u
(

1
N

∑N
i=1 δXi

)
, is differentiable on (Rd)N

and, for all i ∈ {1, . . . , N},

∂xiu
N(x1, . . . , xN) =

1

N
Dmu

(
1

N

N∑

j=1

δxj

)
(xi),

it can be show that, under our standing assumptions on F and G, for some
C ≥ 0,

sup
x

||w̃(T, x)||∞ ≤ C

N

N∑

i=1

|ξi|2 + C(ξ0)2

The second step in the proof of Theorem 2.1 is an upper bound of VN in terms
of U. Our strategy will be to first compare U to V̂N , where

V̂N(t,m) :=

∫

(Rd)N
VN(t, x)

N∏

j=1

m(dxj). (2.12)
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Lemma 2.5. Let V̂N be given by (2.12). Then V̂N is smooth and satisfies the
inequality





−∂tV̂N(t,m)−
∫
Rd div(DmV̂

N(t,m, y))m(dy),

+
∫
Rd H(y,DmV̂

N(t,m, y))m(dy) ≤ F̂N(m) in (0, T )× P1(R
d),

V̂N(T,m) = ĜN(m) in P1(R
d),

(2.13)

where

F̂N(m) :=

∫

(Rd)N
F(mN

X)
N∏

j=1

m(dxj) and ĜN(m) :=

∫

(Rd)N
G(mN

X)
N∏

j=1

m(dxj)

For the proof see [8, Proposition 3.1].

Next we prove the easier inequality in Theorem 2.1.

Proposition 2.6. There exist constants C depending on the data and β depending
only on d such that, for all (t, x0) ∈ [0, T ]× (Rd)N

VN(t0,m
N
x0
) ≤ U(t,mN

x0
) +

C

Nβ
(1 +M

1/2
2 (mN

x0
)). (2.14)

Proof. Using the following theorem (for the proof see [15, Theorem 1])

Theorem 2.7. Let m ∈ P(Rd and let p > 0. Assume that for some q > p,
Mq(m) ≤ ∞. There exists a constant C = C(p, q, d) such that, for all N ≥ 1,

∫

Rd

dp(m,m
N
X) ≤ CMp/q

q (m)





N−1/2 +N−(q−p)/q if p > d/2 and q ̸= 2p

N−1/2log(1 +N) +N−(q−p)/q if p = d/2 and q ̸= 2p

N−p/d +N−(q−p)/q if p ∈ (0, d/2) and q ̸= d/(d− p),

(2.15)

we have that, there exist β and C constants such that

∫

(Rd)N
d1(m

N
X ,m)

N∏

i=1

m(dxi) ≤
C

Nβ
M

1/2
2 (m).

Let (t0,m0) ∈ [0, T ) × P2(R
d) and the infimum in U(t0,m0) is achieved by α∗.

Applying Lemma 2.5 and Itô’s formula, we have that

V̂N(t0,m0) ≤ inf
α∈A

{∫ T

t0

(∫

Rd

L(x, α(t, x))m(t, dx) + F̂N(m(t))

)
dt+ Ĝ(m(T ), x)

}
,
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and, using the optimality of α∗,

V̂N(t0,m0) ≤
∫ T

t0

(∫

Rd

L(x, α∗(t, x)) + F̂N(m(t))

)
dt+ Ĝ(m(T ), x). (2.16)

Using the Lipschitz continuity of F with respect to d1 we get

F̂N(m(t)) ≤ F(m(t)) + C

∫

(Rd)N
d1(m

N
X ,m(t))

N∏

j=1

m(t, dxj)

≤ F(m(t)) +
C

Nβ
M

1/2
2 (m(t)) ≤ F(m(t)) +

C

Nβ
(1 +M

1/2
2 (m0)),

where, in the last inequality, we used the following formula in Lemma 1.9

sup
t∈[t0,T ]

∫

Rd

|x|2m(t, dx) ≤ (1 + CT )

∫

Rd

|x|2m0(t, dx) + CT. (2.17)

Similarly,

ĜN(m(T )) ≤ G(m(t)) +
C

Nβ
(1 +M

1/2
2 (m0)).

Since α∗ is optimal for U(t0,m0), putting together the estimates (2.16) and the

ones of F̂N and ĜN we obtain

V̂N(t0,m0) ≤ E

[∫ T

t0

(L(Xt, α
∗(t)) + F(L(Xt)))dt+ G(L(XT ))

]
+

C

Nβ
(1 +M

1/2
2 (m0))

≤ U(t0,m0) +
C

Nβ
(1 +M

1/2
2 (m0)).

(2.18)

Fix now x0 ∈ (Rd)N . Then the Lipschitz estimate on VN and the same argument
as above yield

∣∣∣VN(t0, x0)− V̂N(t0,m
N
x0
)
∣∣∣ ≤ C

Nβ
(1 +M

1/2
2 (mN

x0
)). (2.19)

Putting the equations (2.18) and (2.19) together

∣∣∣U(t0,m0)− VN(t0,m0)
∣∣∣ ≤

∣∣∣U(t0,m0)− V̂N(t0, x0)
∣∣∣+
∣∣∣VN(t0,m0)− V̂N(t0,m

N
x0
)
∣∣∣

≤ C

Nβ
(1 +M

1/2
2 (mN

x0
)).
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The difficult step of the proof is to show the opposite inequality.

We continue estimating in the next lemma the error related to the penalization.
For the proof see Lemma 3.9 of [5].

Lemma 2.8. Assume (1.1). There exists C ≥ 0 such that, for any i ∈ {1, . . . , N}
and for θ, λ ∈ (0, 1)

1

N

N∑

i=1

|xi0 − yi0|2 + |s0 − t0|2 ≤ Cθ2 and
1

N

N∑

i=1

|yi0|2 ≤
C

λ
.

Lemma 2.9. For each δ > 0 there exist a constant C depending only on the data,
and a partition (Cj)j∈{1,...,J} of {1, . . . , N} and, for j = 1, . . . , J , αj ∈ R

d such
that J ≤ Cδ−d and, for all k ∈ Cj ,

|H(xk0, NDxkV
N(t0, x0)) + αj · (NDxkV

N(t0, x0)) + L(xk0, αj)| ≤ Cδ. (2.20)

Proof. Let α̂k(t, x) = −Hp(xk, NDxkV
N(t, x)) be the optimal feedback for particle

k. It follows from the estimate on DxjV
N that the optimal feedback of the problem

remains uniformly bounded, and so there exists R depending only on the data such
that |α̂k(t, x)| ≤ R.

Given δ > 0, we can find a δ-covering of BR ⊂ R
d consisting of J ≤ Cδ−d balls

of radius δ centered at (αj)j∈{1,...,J} ∈ R
d.

We select the partition (Cj)j∈{1,...,J} so that, for each k ∈ Cj , |α̂k(t, x)−αj| ≤ δ.
Using that L is the Legendre transform of H, we get

|H(xk0, NDxkV
N(t0, x0)) + αj · (NDxkV

N(t0, x0)) + L(xk0, αj)|
= |(αj − α̂k(t, x)) · (NDxkV

N(t0, x0)) + L(x0k, αj)− L(xk0, α̂k(t, x))|
≤ (NDxkV

N(t0, x0)) + ||DαL||L∞(Rd×BR))|α̂k(t, x)− αj| ≤ Cδ.

where in the last inequality we used the estimate in (1.2).

Fix j ∈ {1, . . . , J}, set αk = αj if k ∈ Cj, let

Xk
t0+τ

= xk0 + ταk +
√
2Bk

τ and Y k
s0+τ

= yk0 + ταk +
√
2Bk

τ ,

mj
Xt0+τ

=
1

nj

∑

k∈Cj

δY k
s0+τ

and mj
Ys0+τ

=
1

nj

∑

k∈Cj

δXk
t0+τ

,
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consider the solution mj to

∂tm
j −∆mj + αj ·Dmj = 0 in (s0, T )× R

d and mj(s0, ·) = mj
y0

in R
d

and, finally, set m(s) = 1
N

∑N
j=1 n

jmj(s).

We state next the concentration inequality we need for the proof.

Lemma 2.10. There exist positive constants β ∈ (0, 1/2) depending on d and C,
which depends only on supj |αj|, d and T , such that, for all h ≥ 0,

E

[
d1(m

j(s0 + h),mj
Ys0+h

)
]
≤ C(1 +M

1/2
2 (mj(s0)))

hβ

(nj)β
, (2.21)

and

E

[
d1(m

j(s0 + h),mj
Xt0+h

)
]
≤ 1

nj

∑

k∈Cj

|xk0−yk0 |+C(1+M
1/2
2 (mj(s0)))

hβ

(nj)β
, (2.22)

and, as a consequence,

E

[
d1(m(s0 + h),mN

Ys0+h
)
]
≤ Cδ−dβ(1 + λ−1/2)

hβ

(nj)β
, (2.23)

and

E

[
d1(m(s0 + h),mN

Xt0+h
)
]
≤ Cθ + Cδ−dβ(1 + λ−1/2)

hβ

(nj)β
. (2.24)

Proof. We define

L = {ϕ : Rd → R | ϕ is 1− Lipschitz},

LR = {ϕ : BR ⊂ R
d → [−R,R] | ϕ is 1− Lipschitz},

and, for any ϕ ∈ LR, the extension ϕ̃ : Rd → [−R,R] given by

ϕ̃(x) =





ϕ(x) if |x| ≤ R
2R−|x|
R

ϕ( R
|x|
x) if R < |x| < 2R

0 if |x| ≥ 2R.

Without loss of generality, we can assume s0 = 0.
Fix R > 0. Note that any ψ ∈ L with ψ(0) = 0 can be rewritten as ψ = ϕ̃ + φ
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with ϕ ∈ LR and |φ| ≤ |x|IBC
R
.

For any h ∈ (0, 1], we have

E[d1(m
j(h),mj

Yh
)] = E[sup

ϕ∈L

∫

Rd

ϕ(mj(h)−mj
Yh
)]

≤ E[ sup
ϕ∈LR

∫

Rd

ϕ̃(mj(h)−mj
Yh
)] +

∫

Rd

|x|IBC
R
mj(h) + E[

∫

Rd

|x|IBC
R
mj
Yh
]

≤ E[ sup
ϕ∈LR

∫

Rd

ϕ̃(mj(h)−mj
Yh
)] +

M2(m
j(h))

R
+
M2(m

j
Yh
)

R

≤ E[ sup
ϕ∈LR

∫

Rd

ϕ̃(mj(h)−mj
Yh
)] + C

(1 +M2(m
j(0))

R
,

where we used theorem 1.1 in the first equality, the characterization of ϕ ∈ L
written above, the definition of M2(m) and the inequality in (1.13).
Finally, using the following lemma

Lemma 2.11. There exists a constant C such that, for any j ∈ {1, . . . , J} and
R > 0,

E[ sup
ϕ∈LR

∫

Rd

ϕ̃(mj(h)−mj
Yh
)] ≤ C(1 +R

d
d+2 )(nj)

−1
d+2h

1
d+2 ,

we get

E[d1(m
j(h),mj

Yh
)] ≤ C(1 +R

d
d+2 )(nj)

−1
d+2h

1
d+2 + C

(1 +M2(m
j(0))

R

≤ C(1 +R)(nj)
−1
d+2h

1
d+2 .

Taking R = (nj)
1

2d+4h−
1

2d+4

√
1 +M2(mj(0)), we get the first thesis with β = 1

2d+4
.

We, now, show the proof of the third inequality.

E

[
d1(m(s0 + h),mN

Xt0+h
)
]
≤

J∑

j=1

nj

N
E

[
d1(m

j(s0 + h),mj
Ys0+h

)
]

≤ C

J∑

j=1

nj

N
(1 +M

1/2
2 (mj(s0)))

hβ

(nj)β

≤ Chβ
J∑

j=1

(nj)1−β

N
+ Chβ(

J∑

j=1

nj

N
M2(m

j(s0)))
1/2(

J∑

j=1

nj

N(nj)2β
)1/2

≤ Chβ
|J |
N

(
J∑

j=1

nj

|J |

)1−β

+ CM
1/2
2 (m(s0))h

β

√
|J |
N

(
J∑

j=1

1

|J |(n
j)1−2β)1/2

≤ C

(
Jh

N

)β
(1 +M

1/2
2 (m(s0))),
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where we used the definition of m(s), the inequality (2.21), the Cauchy-Schwarz
inequality, the concavity of the maps n → n1−β and n → n1−2β, the fact that∑

j n
j = N , and the assumption that β ∈ (0, 1/2) and J ≤ Cδ−d and the estimate

of M2(m(s0)) in Lemma 2.8.

To continue, we need a dynamic programming-type argument, which is stated
next.

Lemma 2.12. With the notation above, we have

U(s0 + h,m(s0 + h)) ≥ U(s0,myN0
)

−
∫ s0+h

s0

(
J∑

j=1

∫

Rd

1

N
njL(x, αj)m

j(s, x)dx+ F(m(s)))ds.

(2.25)

Proof. Let K ∈ N and be m1
0, . . . ,m

K
0 non-negative integrable functions on R

d

such that
∑K

k=1m
k
0 ∈ P(Rd).

Define

UK(t0,m
1
0, . . . ,m

K
0 ) := inf

(m1,β1),...,(mK ,βK)

∫ T

t0

(

∫

Rd

K∑

k=1

L(x,
βk(t, x)

mk(t, dx)
)mk(t, x)dx

+ F(
K∑

k=1

mk(t)))dt+ G(
K∑

k=1

mk(T )),

where the infimum is taken over the tuple of measures (mk, βk) (the βk being a
vector measure) with βk absolutely continuous with respect to mk and such that
(mk, βk) solve in the sense of distributions,

∂tm
k −∆mk + div(βk) = 0 in (t0, T ]× R

d and mk(t0) = mk
0 in R

d.

We note that

UK(t0,m
1
0, . . . ,m

K
0 ) ≤ U(t0,m

1
0 + · · ·+mK

0 )

since U is an infimum.
Set β =

∑K
k=1 β

k and m(t) =
∑K

k=1m
k(t), and fix ϵ > 0. Let (m1, β1, . . . ,mK , βK)

be ϵ-optimal for UK(t0,m
1
0, . . . ,m

K
0 ).

Then (m, β) solves

∂tm−∆m+ div(β) = 0 in (t0, T ]× R
d and m(t0) = m0 in R

d,
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and using the convexity of the map (β,m) → mL(x, β
m
) and the definition of U,

we have

ϵ+ UK(t0,m
1
0, . . . ,m

K
0 )

≥
∫ T

t0

(

∫

Rd

K∑

k=1

L(x,
βk(t, x)

mk(t, x)
)
mk(t, x)

m(t, x)
m(t, x)dx+ F(

K∑

k=1

mk(t)))dt+ G(
K∑

k=1

mk(T ))

≥
∫ T

t0

(

∫

Rd

L(x,

∑K
k=1 β

k(t, x)

mk(t, x)
)m(t, x)dx+ F(

K∑

k=1

mk(t)))dt+ G(
K∑

k=1

mk(T ))

≥ U(t0,m0).

(2.26)

We proved that

UK(t0,m
1
0, . . . ,m

K
0 ) = U(t0,m

1
0 + · · ·+mK

0 ).

Using the following dynamic programming principle.

Proposition 2.13. Assume (1.1). Then, for any 0 ≤ t0 ≤ t1 ≤ T ,

U(t0,m0) = inf
(m,α)∈A

{∫ t1

t0

∫

Rd

L(x, α(t, x))m(t)dx+ F(m(t))dt+ U(t1,m(t1))

}
.

we have,

UK(s0,m
1
0, . . . ,m

K
0 ) = U(s0,m

1
0 + · · ·+mK

0 ) =

inf
(m,α)∈A

{∫ s0+h

s0

∫

Rd

L(x, α(t, x))m(t)dx+ F(m(t))dt+ U(s0 + h,m(s0 + h))

}

≤
∫ s0+h

s0

∫

Rd

L(x, αj)m(t)dx+ F(m(t))dt+ U(s0 + h,m(s0 + h)),

and recalling that m(t) = 1
N

∑
j n

jmj(t) and mj(s0, ·) = mj
y0
, we get the thesis.

Lemma 2.14. For any (t, x) ∈ [0, T ]× (Rd)N

N∑

k=1

|DxkV
N(t, x)−DxkV

N(t0, x0)|

≤ C

N

N∑

k=1

|xk − xk0|+
(
C

Nθ

N∑

k=1

(|xk − xk0|+ |xk − xk0|2)
)1/2

+
C

θ1/2
|t− t0|1/2.

(2.27)
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Proof. For θ, λ ∈ (0, 1), we set

M := max
(t,x),(s,y)∈[0,T ]×(Rd)N

es(U(s,mN
y )−VN(t, x))− 1

2θN

N∑

i=1

|xi−yi|2−
1

2θ
|s−t|2− λ

2N

N∑

i=1

|yi|2.

We denote by ((t0, x0), (s0, y0)) a maximum point in the expression above.

Set pk = DxkV
N(t0, x0) and pt = ∂tV

N(t0, x0). Using Lemma 2.3, for any
(t0,m0), (t, x) ∈ [0, T ]× (Rd)N , we have,

VN(t, x)−VN(t0,m0)−
N∑

k=1

pk · (xk−xk0)−pt(t− t0) ≤
C

N

N∑

k=1

|xk−xk0|2+C(t− t0)2.

Since ((t0, x0), (s0, y0)) is optimal, for any (t, x),

1

2Nθ

N∑

i=1

|xi−yi0|2+
1

2θ
(t−s0)2+VN(t, x) ≥ 1

2Nθ

N∑

i=1

|xi0−yi0|2+
1

2θ
(t0−s0)2+VN(t0, x0).

(2.28)
In (2.28) putting x = x0 and t = t0+h , dividing by h and letting h tends to zero,
we get that

lim
h→0

VN(t0 + h, x0)− VN(t0, x0)

h
= ∂tV

N(t0, x0) = pt ≥ lim
h→0

( |t0 − s0|2
2θh

− |t0 + h− s0|2
2θh

)

= lim
h→0

2s0 − 2t0 − h

2θ
=
s0 − t0
θ

,

and putting x = x0 and t = t0 − h , dividing by h and letting h tends to zero, we
get that

pt ≤ s0 − t0
θ

,

and so

pt =
s0 − t0
θ

.

Similarly, letting t = t0 and first x = x0 + hek, and then x = x0 − hek, letting h
going to zero, we get

pk =
yk0 − xk0
θN

.

Furthermore, rearranging (2.28), using the triangular inequality and the definition
of pk and pt, we have
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VN(t, x)− VN(t0, x0) ≥
1

2θN

N∑

k=1

|xk0 − yk0 |2 −
1

2θ
|t0 − s0|2 −

1

2θ
|t− s0|2

=
1

2θN

N∑

k=1

|xk0 − yk0 |2 −
1

2θN

N∑

k=1

|(xk − xk0) + (xk0 − yk0)|2 +
1

2θ
|t0 − s0|2

− 1

2θ
|(t− t0) + (t0 − s0)|2

≤ 1

2θN

N∑

k=1

|xk0 − yk0 |2 −
1

2θN

N∑

k=1

|xk − xk0|2 −
1

2θN

N∑

k=1

|xk0 − yk0 |2

− 1

2θN

N∑

k=1

|xk0 − yk0 ||xk − xk0|+
1

2θ
(t0 − s0)

2

− 1

2θ
|t0 − s0|2 −

1

2θ
(t− t0)

2 − 1

θ
(t0 − s0)(t− t0)

=
N∑

k=1

pk · (xk − xk0) + pt(t− t0)−
N∑

k=1

1

2θN
|xk − xk0|2 −

1

2θ
(t− t0)

2,

and, putting some addends on the left hand side,

VN(t, x)−VN(t0, x0)−
N∑

k=1

pk·(xk−xk0)−pt(t−t0) ≥ − 1

2Nθ

N∑

k=1

|xk−xk0|2−
1

2θ
(t−t0)2.

Assuming that θ ≤ (2C)−1,we define

w(t, x) := VN(t0, x0)−VN(t, x)+
N∑

k=1

pk·(xk−xk0)+pt(t−t0)+
C

N

N∑

k=1

|xk−xk0|2+C(t−t0)2.

Note that w(t, x), since it is sum of convex and linear functions, is convex and
satisfies

0 ≤ w(t, x) ≤ 1

θN

N∑

k=1

|xk − xk0|2 +
1

θ
(t− t0)

2.
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Thus, using that w(t, x) ≥ 0 for any (t, x) and any (s, y), we have

N∑

k=1

Dxkw(t, x) · (yk − xk) + ∂tw(t, x)(s− t)

≤ w(t, x) +
N∑

k=1

Dxkw(t, x) · (yk − xk) + ∂tw(t, x)(s− t)

≤ w(s, y) ≤ 1

Nθ

N∑

k=1

|yk − xk0|2 +
1

θ
(s− t0)

2,

where we used the inequality satisfied by w(t, x).
Let

yk = xk0 +
1

2
θNDxkw(t, x) and s = t0 + θ∂tw(t, x)

in the inequality above, we obtain

θN

4

N∑

k=1

|Dxkw(t, x)|2 ≤
N∑

k=1

Dxkw(t, x) · (xk − xk0) + ∂tw(t, x)(t− t0),

and, using the Cauchy-Schwarz inequality and the inequality found above,

N∑

k=1

|Dxkw(t, x)| ≤ N1/2

(
N∑

k=1

|Dxkw(t, x)|2
)1/2

≤ N1/2

(
4

Nθ

N∑

k=1

|xk0 − xk||Dxkw(t, x)|+
4

Nθ
|∂tw(t, x)||t− t0|

)1/2

.

(2.29)

By the definition of w and since we proved that that |DxkV
N | ≤ C

N
and |∂tVN | ≤ C,

we find

|Dxkw(t, x)| = | −DxkV
N(t, x) + pk +

2C

N
(xk − xk0)| ≤

C

N
+

2C

N
|xk − xk0|,

and
|∂tw(t, x)| = | − ∂tV

N(t0, x0) + pt + 2C(t− t0)| ≤ C,

returning to (2.29), we have

N∑

k=1

|−DxkV(t, x)+p
k+

2C

N
(xk−xk0)| ≤

C

Nθ

(
N∑

k=1

(|xk0 − xk|+ |xk0 − xk|2) +N |t− t0|
)1/2

,

and then, by the definition of pk, we get the thesis.
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Proposition 2.15. Assume (1.1). There exists β ∈ (0, 1] depending only on the
dimension and C > 0 depending on the data, such that, for any N ≥ 1 and any
(t, x) ∈ [0, T ]× (Rd)N

U(t,mN
x0
)− VN(t, x) ≤ C

Nβ
(1 +

1

N

N∑

i=1

|xi|2). (2.30)

Remark 2.16. Dividing the players into subgroups in such a way that the opti-
mal controls for the agents in each subgroup are close and showing a propagation
of chaos-type result for each subgroup using a concentration inequality, it can be
overcome the main difficulty: transform an optimal control for the VN that depends
on each particle into a feedback for U.

Proof of Theorem 2.15. We employ the technique, quite standard for viscosity so-
lutions, to double the variables and we define, for θ, λ ∈ (0, 1),

M := max
(t,x),(s,y)∈[0,T ]×(Rd)N

es(U(s,mN
y )−VN(t, x))− 1

2θN

N∑

i=1

|xi−yi|2−
1

2θ
|s−t|2− λ

2N

N∑

i=1

|yi|2.

We denote by ((t0, x0), (s0, y0)) a maximum point in the expression above and we
continue estimating the error related to the penalization.

We begin creating the subgroups based on an appropriate partition of {1, . . . , N}
as stated in Lemma 2.9.

Using that M is a max, thanks to the Lipschitz regularity of U we have

M ≥ E[es0+h(U(s0 + h,mN
Ys0+h

)− VN(t0 + h,Xt0+h))

− 1

2θ

(
1

N

N∑

k=1

|Y k
s0+h

−Xk
t0+h

|2 + (t0 − s0)
2

)
− λ

2N

N∑

i=1

|Y i
s0+h

|2]

≥ E[es0+h(U(s0 + h,m(s0 + h))− VN(t0 + h,Xt0+h))]− Cδ−dβ(1 + λ−1/2)
hβ

Nβ

− 1

2θ

(
1

N

N∑

k=1

|yk0 − xk0|2 + (s0 − t0)
2

)
− λ

2N

N∑

i=1

(|yi0|+ Ch1/2)2,

where we used definition of Xt and Yt so that |Xk
t0+h

−Y k
s0+h

| = |xk0+ταk+
√
2Bk

τ −
(yk0 + ταk+

√
2Bk

τ )| = |xk0 − yk0 | and |t0 +h− (s0 +h)| = |t0 − s0| and the equation
(2.23).



37

At this point, we using the dynamic programming-type argument in Lemma
2.12 and Itô’s formula for VN , we find

M ≥ es0+hU(s0,m
N
y0
)− es0+h

∫ s0+h

s0

(

∫

Rd

J∑

j=1

1

N
njL(x, αj)mj(s, x)dx+ F(m(s)))ds

−es0+hE
[
VN(t0, x0) +

∫ t0+h

t0

(∂tV
N(t,Xt) +

N∑

k=1

(∆xkV(t,X − t) + αk ·DxkV(t,Xt))dt

]

−Cδ−dβ(1 + λ−1/2)
hβ

Nβ
− 1

2θ

(
1

N

N∑

k=1

|yk0 − xk0|2 + (s0 − t0)
2

)
− λ

2N

N∑

i=1

(|yi0|+ Ch1/2)2.

Since the αj are uniformly bounded, the map L(·, αj) is uniformly Lipschitz
independently of j. Hence, using lemmas 2.10 and 2.8, a change of variables in the
integral and the fact that αj = αk if k ∈ Cj, we find

∫ s0+h

s0

∫

Rd

J∑

j=1

1

N
njL(x, αj)mj(s, x)dxds

≤ E

[∫ s0+h

s0

J∑

j=1

(
∑

k∈Cj

1

N
L(Xk

t0−s0+s
, αj) + C

1

N
njd1(m

j(s),mXj
t0−s0+s

))ds

]

≤ E

[∫ t0+h

t0

N∑

k=1

1

N
L(Xk

s , α
k)ds

]
+ Cθh+ C

J∑

j=1

1

N
nj(1 +M

1/2
2 (mj

s0
))

hβ

(nj)β

≤ E

[∫ t0+h

t0

N∑

k=1

1

N
L(Xk

s , α
k)ds

]
+ Cθh+ Cδ−dβ(1 + λ−1/2)

hβ

Nβ
.

Note that in the last inequality we used exactly the same argument as for the proof
given above for the third inequality of Lemma 2.10.

Hence, recalling the optimality for M of ((t0, x0), (s0, y0)) and employing the
equation for VN , we get

0 ≥ (es0+h − es0)(U(s0,m
N
y0
)− VN(t0, x0))− Cδ−dβ(1 + λ−1/2)

hβ

Nβ

− Cλh1/2N−1

N∑

i=1

|yi0| − Cθh− es0+hE

[∫ s0+h

s0

(F(m(s))− F(mN
Xs0−t0+s

))ds

]

− es0+hE

[
1

N

∫ t0+h

t0

N∑

k=1

(L(Xk
s , α

k) + αk · (NDxkV
N(s,Xs)) +H(Xk

s , NDxkV
N(s,Xs)))ds

]
.
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Using the Lipschitz regularity of F and Lemma 2.10 to deal with the difference of
the F and Lemma 2.8 to deal with the term in

∑
i |yi0|, we find

0 ≥ es0h(U(s0,m
N
y0
)− VN(t0, x0))− Cδ−dβ(1 + λ−1/2)

hβ

Nβ
− Cλ1/2h1/2 − Cθh− Ch2

− es0+hE

[
1

N

∫ t0+h

t0

N∑

k=1

(L(Xk
s , α

k) + αk · (NDxkV
N(s,Xs)) +H(Xk

s , NDxkV
N(s,Xs)))ds

]
.

(2.31)

Noting that, for s ≥ t0

|Xk
s − xk0| = |xk0 + (s− t0)αk +

√
2Bk

s−t0
− xk0| = |(s− t0)αk +

√
2Bk

s−t0
|,

and, thanks to the regularity of L and H, the uniform boundedness of the αk, that

− es0+hE[
1

N

∫ t0+h

t0

N∑

k=1

(L(Xk
s , α

k)± L(xk0, α
k)

+H(Xk
s , NDxkV

N(s,Xs))±H(xk0, NDxkV
N(s,Xs)))ds]

≥ −es0+hE[ 1
N

∫ t0+h

t0

N∑

k=1

L(xk0, α
k) +H(xk0, NDxkV

N(s,Xs)))ds]

− es0+hE[
1

N

∫ t0+h

t0

N∑

k=1

(|L(Xk
s , α

k)− L(xk0, α
k)|

+ |H(Xk
s , NDxkV

N(s,Xs))−H(xk0, NDxkV
N(s,Xs))|)ds]

≥ −es0+hE[ 1
N

∫ t0+h

t0

N∑

k=1

L(xk0, α
k) +H(xk0, NDxkV

N(s,Xs)))ds]

− es0+hE[
1

N

∫ t0+h

t0

N∑

k=1

(C|Xk
s − xk0|+ C|Xk

s − xk0|)ds]

= −es0+hE[ 1
N

∫ t0+h

t0

N∑

k=1

L(xk0, α
k) +H(xk0, NDxkV

N(s,Xs)))ds]

− es0+hE[
1

N

∫ t0+h

t0

N∑

k=1

(C|(s− t0)αk +
√
2Bk

s−t0
|+ C|(s− t0)αk +

√
2Bk

s−t0
|)ds]
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= −es0+hE[ 1
N

∫ t0+h

t0

N∑

k=1

L(xk0, α
k) +H(xk0, NDxkV

N(s,Xs)))ds]

− es0+hE[|αk|
1

N

∫ t0+h

t0

N∑

k=1

(C(s− t0))ds]

= −es0+hE[ 1
N

∫ t0+h

t0

N∑

k=1

L(xk0, α
k) +H(xk0, NDxkV

N(s,Xs)))ds]

− es0+hE[|αk|
1

N
NC(

t20
2
+
h2

2
+ t0h− t20

2
− t20 − t0h+ t20)]

≥ −es0+hE[ 1
N

∫ t0+h

t0

N∑

k=1

L(xk0, α
k) +H(xk0, NDxkV

N(s,Xs)))ds]

− Ces0+h
h2

2
.

Adding and subtracting the term
∑

k

(
L(xk0, α

k) +H(xk0, NDxkV
N(s,Xs))

)
in the

inequality (2.31), using the last inequality and that, for h ≤ 1, −Ceh h2
2
≥ −Ch3/2,

we get

0 ≥ es0h(U(s0,m
N
y0
)− VN(t0, x0))− Cδ−dβ(1 + λ−1/2)

hβ

Nβ

− Cλ1/2h1/2 − Cθh− Ch2 − Ch3/2

− es0+hE

[
1

N

∫ t0+h

t0

N∑

k=1

(L(xk0, α
k) + αk · (NDxkV

N(s,Xs)) +H(xk0, NDxkV
N(s,Xs)))ds

]
,

and, in view of (2.20),

0 ≥ es0h(U(s0,m
N
y0
)− VN(t0, x0))− Cδ−dβ(1 + λ−1/2)

hβ

Nβ
− Cλ1/2h1/2 − Cθh− Ch3/2

− CE[
1

N

∫ t0+h

t0

N∑

k=1

|NDxkV
N(s,Xs))−NDxkV

N(s, x0))|ds]−
Chδ

N
.

(2.32)

The semiconcavity of VN and the penalization by the term in θ give the Lemma
2.14.

Inserting the estimate of Lemma 2.14 in (2.32) and using that Chδ
N

≤ Cθh, we
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obtain

0 ≥ es0h(U(s0,m
N
y0
)− VN(t0, x0))− Cδ−dβ(1 + λ−1/2)

hβ

Nβ

− Cλ1/2h1/2 − Cθh− Chδ

N
− Ch3/2

− CE



∫ t0+h

t0

(
C

N

N∑

k=1

|Xk
s − xk0|+

(
C

Nθ

N∑

k=1

(|Xk
s − xk0|+ |Xk

s − xk0|2)
)1/2

+
1

θ1/2
|s− t0|1/2)ds




≥ es0h(U(s0,m
N
y0
)− VN(t0, x0))− Cδ−dβ(1 + λ−1/2)

hβ

Nβ

C(θ + δ)h− Cλ1/2h1/2 − Cθ−1/2h(h1/2 + h)1/2.

Dividing by h we find, for each choice of θ, λ, δ > 0 and 0 < h ≤ (T −s0)∧(T − t0),
that

es0h(U(s0,m
N
y0
)−VN(t0, x0)) ≤ C

hβ−1

Nβδdβ
(1+λ−1/2)+C(θ+δ)+Cλ1/2h−1/2+Ch1/4θ−1/2,

we take

θ = hα1 , δ =

(
λ−1/2hβ−1

Nβ

)α2

, λ = N−α3 and h = Nα4 .

Making appropriate choices of α1, α2, α3 and α4 we deduce that

es0h(U(s0,m
N
y0
)− VN(t0, x0)) ≤ CN−β̃ (2.33)

holds for some β̃ = β̃(β) ∈ (0, 1/2) and for all values of N such that h = N−α4 ≤
(T − s0) ∧ (T − t0).
For those values of N such that h = N−α4 ≥ (T − s0) ∧ (T − t0), we have by
Lemma 2.8 that (T − s0) ∨ (T − t0) ≤ h + Cθ, so, noting that U(T,m) = G(m)
and VN(T, x) = G(mN

x ) and using Lemma 2.2, we find

|U(s0,mN
y0
)− VN(t0, x0)|

≤ |U(s0,mN
y0
)− G(mN

y0
)|+ |G(mN

y0
)− G(mN

x0
)|+ |G(mN

x0
)− VN(t0, x0)|

≤ C(h+ θ) + Cθ + C(h+ θ) ≤ CN−β̃,

where in the last line we choose β̃ even smaller if necessary. With this choice of β̃,
we have now established that (2.33) holds for all values of N .
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Finally, using the optimality of ((t0, x0), (s0, y0)) in M , we conclude that, for
all (t, x) ∈ [0, T ]× (Rd)N ,

et|U(t,mN
x )− VN(t, x)| ≤ es0(U(s0,m

N
y0
)− VN(t0, x0)) +

λ

2N

N∑

i=1

|xi|2

≤ CN−min(β̃,α3)(1 +
1

N

N∑

i=1

|xi|2).

Proof of Theorem 2.1. Combining Proposition 2.6 and Proposition 2.15 we know
that there exist β ∈ (0, 1] depending on dimension and C > 0 depending on the
data such that, for any (t, x) ∈ [0, T ]× (Rd)N ,

|U(t,mN
x )−VN(t, x))| ≤ CN−β(1+M

1/2
2 (mN

x )+M2(m
N
x )) ≤ CN−β(1+M2(m

N
x )).
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Chapter 3

The regularity of U

In this chapter, to show the regularity of U, we analyze a linearized version of
the system (1.11). We also introduce the concept of stability and strong stability
which are used to define and analyze the open and dense set O in which the map
U should be smooth.
We use this result to obtain the propagation of chaos property analyzed in Chapter
4.

3.1 The linearized system

Let m be the solution to

{
∂tm−∆m− div(V m) = 0 in (t0, T )× R

d,

m(t0) = m0 in R
d,

(3.1)

with t0 ∈ [0, T ), m0 ∈ P2(R
d) and V : [t0, T ] × R

d → R
d such that ||V ||C1,3 ≤ C0,

C0 > 0 constant.

In order to prove the regularity of the value function U, we want to show that
U has a derivative with respect to m. To do so we have to differentiate the system
(1.11) and we study the new system that we have obtained.
We call it the inhomogeneous linearized system of (1.11)





∂tz −∆z + V (t, x) ·Dz = δF
δm

(x,m(t))(ρ(t)) +R1(t, x) in (t0, T )× R
d,

∂tρ−∆ρ− div(V ρ)− σdiv(mΓDz) = div(R2) in (t0, T )× R
d,

ρ(t0) = ξ and z(T, x) = R3 + δG
δm

(x,m(T ))(ρ(T )) in R
d,

(3.2)

43
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where

σ ∈ [0, 1] and δ ∈ (0, 1),

Γ ∈ C0([0, T ]× R
d;Rd×d) with ||Γ||∞ ≤ C0,

R1 ∈ Cδ/2,δ, R2 ∈ L∞([t0, T ], (W
1,∞)′(Rd,Rd)), R3 ∈ C2+δ and ξ ∈ (W 1,∞)′.

(3.3)

If z ∈ C0,1([t0, T ] × R
d) and ρ ∈ C0([0, T ], (C2+δ)′) satisfy respectively the first

and the second equation in the sense of distributions, then the pair (z, ρ) is a
solution to (3.2).
Note that, the maps (t, x) → δF

δm
(x,m(t))(ρ(t)) and x → δG

δm
(x,m(T ))(ρ(T )) are

continuous and bounded because of the regularity of ρ and the assumptions on F

and G.
We will use the system in (3.2) with V (t, x) = Hp(x,Du(t, x)) and Γ(t, x) =
Hpp(x,Du(t, x)), where (u,m) is a classical solution to (1.11).

The system





∂tz −∆z + V (t, x) ·Dz = δF
δm

(x,m(t))(ρ(t)) in (t0, T )× R
d,

∂tρ−∆ρ− div(V ρ)− σdiv(mΓDz) = 0 in (t0, T )× R
d,

ρ(t0) = 0 and z(T, x) = δG
δm

(x,m(T ))(ρ(T )) in R
d

(3.4)

is the homogeneous version of (3.2).

Definition 3.1. We say that the system (3.4) is strongly stable if, for any σ ∈
[0, 1], the unique solution to the system is (z, ρ) = (0, 0).

We will use a weaker notion of stability for (3.4) with σ = 1 when dealing with
the optimal control system. We need, however, the notion of strong stability with
σ ∈ [0, 1] for Proposition 3.5 below in order to prove the existence of a solution to
(3.2).

Lemma 3.2. Assume (1.1) and the system (3.4) strongly stable.
There exist a neighborhood V of (V,Γ) in the topology of locally uniform conver-
gence, and η, C > 0 such that, for any (V ′, t′0,m

′
0,Γ

′, R1,′ , R2,′ , R3,′ , ξ′, σ′) with

(V ′,Γ′) ∈ V, |t′0 − t0|+ d2(m
′
0,m0) ≤ η, ||V ′||C1,3 + ||Γ′||∞ ≤ 2C0, σ′ ∈ [0, 1],

R1,′ ∈ Cδ/2,δ, R2,′ ∈ L∞([t0, T ], (W
1,∞)′(Rd,Rd)), R3,′ ∈ C2+δ, ξ′ ∈ (W 1,∞)′,

(3.5)
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any solution (z′, ρ′) to (3.2) associated with these data on [t′0, T ] and m
′ the solution

to (3.1) with drift V ′ and initial condition m′
0 at time t′0 satisfies

||z′||C(2+δ)/2,2+δ + sup
t∈[t′0,T ]

||ρ′(t, ·)||(C2+δ)′+sup
t′ ̸=t

||ρ′(t′, ·)− ρ′(t, ·)||(C2+δ)′

|t′ − t|1/2 ≤ CM ′, (3.6)

where

M ′ := ||ξ′||(W 1,∞)′ + ||R1,′ ||Cδ/2,δ + ||R3,′ ||C2+δ + sup
t∈t′0,T ]

||R2,′(t)||(W 1,∞)′ . (3.7)

The idea of the proof of Lemma 3.2 follows some of the ideas of [6], where a
similar system is studied. For the rigorous proof, see Lemma 2.1 of [10]

An immediate consequence is the following corollary.

Corollary 3.3. Assume (1.1) and that the system (3.4) strongly stable.
Then, for any (V ′,m′

0,Γ
′) satisfying (3.5), the corresponding homogeneous lin-

earized system is strongly stable.

Now we state a new lemma very similar to Lemma 3.2: the difference between
the estimate below and the one of previous lemma is the right hand side of the
former which depends on the solution itself.

Lemma 3.4. Assume (1.1) and let (z, ρ) be a solution to (3.4).
There is a constant C > 0, depending only on the regularity of F, G and on
||V ||C1,3 + ||Γ||∞, such that

||z||C(2+δ)/2,2+δ + sup
t∈[t0,T ]

sup
t′ ̸=t

||ρ(t′, ·)− ρ(t, ·)||(C2+δ)′

|t′ − t|δ/2 ≤ C(M + sup
t∈[t0,T ]

||ρ(t)||(C2+δ)′),

(3.8)
where

M := ||ξ||(W 1,∞)′ + ||R1||Cδ/2,δ + ||R3||C2+δ + sup
t∈t0,T ]

||R2(t)||(W 1,∞)′ .

For the proof see [10, Lemma 2.3].

We complete the section with an existence result for system (3.2) given a solu-
tion m to (3.1).

Proposition 3.5. Assume (1.1) and the system (3.4) strongly stable.
Then, for any ξ, δ, Γ, R1, R2, R3 as in (3.3), there exists a unique solution to the
linearized system (3.2) with σ = 1.
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Proof. let us use a continuation method.
Let us call

Σ = {σ ∈ [0, 1] : the system (3.2) has a solution for any data ξ, R1, R2, R3 satisfying (3.3)}

We want to prove that Σ is non-empty, open and closed in [0, 1], to conclude that
Σ = [0, 1].

Σ is non-empty since, letting σ = 0 the equation for ρ has a unique solution
ρ = 0 and we get also the solution z = 0. Hence, 0 ∈ Σ.

We now check that Σ is closed. Let σn → σ ∈ [0, 1] and (zn, ρn) be the
associated solution to (3.2) given some ξ, R1, R2 and R3. In view of Lemma 3.2,
we have

||zn||C(2+δ)/2,2+δ + sup
t∈[t′0,T ]

||ρn(t, ·)||(C2+δ)′ + sup
t′ ̸=t

||ρn(t′, ·)− ρn(t, ·)||(C2+δ)′

|t′ − t|1/2 ≤ C.

Then, passing to the limit in system (3.2), we find a solution for the system for σ
as a limit (up to subsequence) of the (zn, ρn)’s. By Lemma 3.2, we get that this
solution is also unique, and so Σ is closed.

Finally, we have to prove that Σ is open. We fix ξ, R1, R2 and R3 and σ ∈ Σ.
Let σ′ ∈ [0, 1] be close to σ and (z′, ρ′) ∈ C(2+δ)/2,2+δ × C0([t0, T ], (C

2+δ)′). Let
(z′′, ρ′′) be a solution to





−∂tz′′ −∆z′′ + V (t, x) ·Dz′′ = δF
δm

(x,m(t))(ρ′′(t)) +R1(t, x) in (t0, T )× R
d,

∂tρ
′′ −∆ρ′′ − div(V ρ′′)− σdiv(mΓDz′′) = div(R2 + (σ′ − σ)mΓDz′) in (t0, T )× R

d,

ρ′′(t0) = ξ and z′′(T, x) = R3 + δG
δm

(x,m(T ))(ρ′′(T )) in R
d,

which is uniquely solvable since σ ∈ Σ. Call ϕ the map such that ϕ((z′, ρ′)) =
(z′′, ρ′′). ϕ is a contraction, indeed, let (z′′1 , ρ

′′
1) and (z′′2 , ρ

′′
2) be such that ϕ((z′1, ρ

′
1)) =

(z′′1 , ρ
′′
1) and ϕ((z

′
2, ρ

′
2)) = (z′′2 , ρ

′′
2). The difference (z

′′
2−z′′1 , ρ′′1−ρ′′2) satisfies an equa-

tion of the form (3.2) with σ and R1 = R3 = ξ = 0 and R2 = (σ′ − σ)mΓ(z′2 − z′1).
By Lemma 3.2, we have

||z′′2 − z′′1 ||C(2+δ)/2,2+δ + sup
t∈[t′0,T ]

||(ρ′′1 − ρ′′2)(t, ·)||(C2+δ)′

+ sup
t′ ̸=t

||(ρ′′1 − ρ′′2)(t
′, ·)− (ρ′′1 − ρ′′2)(t, ·)||(C2+δ)′

|t′ − t|1/2
≤ C|σ′ − σ| sup

t
||(mΓD(z′1 − z′2)(t, ·)||(W 1,∞)′ ≤ C|σ′ − σ|||z′2 − z′1||C(2+δ)/2,2+δ .
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If |σ′ − σ| is small enough, ϕ is a contraction and, for Banach-Caccioppoli’s The-
orem, there exists a unique fixed point for ϕ. Thus, (z′, ρ′) fixed point for ϕ is a
solution to (3.2) with σ′ and so σ′ ∈ Σ. Therefore, Σ is open. By the definition of
Σ and strongly stable solution, we get the thesis.

3.2 The stability property

Let (t0,m0) ∈ [0, T ]× P2(R
d) and the associated multiplier u to (m,α) minimizer

for U(t0,m0), that is, the pair (u,m) solves (1.11) and α(t, x) = −Hp(x,Du(t, x)).

Definition 3.6. The solution (u,m) is strongly stable (resp. stable), if ∀σ ∈ [0, 1]
(resp. σ = 1) the only solution (z, µ) ∈ C(1+δ)/2,1+δ × C0([t0, T ]; (C

2+δ(Rd))′) to the
linearized system





−∂tz −∆z +Hp(x,Du) ·Dz = δF
δm

(x,m(t))(µ(t)) in (t0, T )× R
d,

∂tµ−∆µ− div(Hp(x,Du)µ)− σdiv(Hpp(x,Du)Dzm) = 0 in (t0, T )× R
d,

µ(t0) = 0 and z(T, x) = δG
δm

(x,m(T ))(µ(T )) in R
d

(3.9)
is (z, µ) = (0, 0).
Moreover, we say that the minimizer (m,α) is strongly stable (resp. stable) if
(u,m) is strongly stable (resp. stable).

We point out that, for the choice of V (t, x) = Hp(x,Du(t, x)) and Γ(t, x) =
Hpp(x,Du(t, x)), the system (3.9) is the linearized version of the one studied in
the previous subsection. To emphasize that we are working with this particular
system and also be consistent with other references, for the solutions, we use the
notation (z, µ) instead of (z, ρ).

The following lemma asserts that the minimizers from an initial point in O are
strongly stable.

Lemma 3.7. Assume (1.1).
Fix (t0,m0) ∈ O and let (m,α) be the unique stable minimizer associated to
U(t0,m0). Then (m,α) is strongly stable.

Proof. Let (z, ρ) be a solution to (3.4). For σ = 1, (m,α) by hypothesis is the
unique stable minimizer and so (z, ρ) = (0, 0) is the unique solution of the system.
For σ = 0, the first equation in (3.4) does not depend on z and ρ(t0) = 0, therefore
ρ = 0 and thanks to this z(T, x) = 0 and z = 0.
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Let assume σ ∈ (0, 1). Thanks to Lemma 3.2 we have that z ∈ C(2+δ)/2,2+δ.
By duality

⟨z(t, ·), µ(t)⟩ = −
∫ t

t0

(

∫

Rd

(σHpp(x,Du)Dz ·Dzmdx)+ ⟨ δF
δm

(·,m(t))(µ(t)), µ(t)⟩)dt,

and, for t = T ,

∫ T

t0

(

∫

Rd

(σHpp(x,Du)Dz ·Dzmdx) + ⟨ δF
δm

(·,m(t))(µ(t)), µ(t)⟩)dt+

+ ⟨ δG
δm

(·,m(T ))(µ(T )), µ(T )⟩ = 0.

(3.10)

From (1.17), with ρ = µ and β = σHpp(x,Du)Dz we have

∫ T

t0

∫

Rd

(Lα,α(x, α(t, x))σHpp(x,Du)Dz · σHpp(x,Du)Dzmdx)+

+

∫

Rd

δF

δm
(x,m(t), y)(µ(t, x)), µ(t, y))dy)dxdt+

+

∫

R2d

δG

δm
(x,m(T ), y)(µ(T, x)), µ(T, y)dydx =

∫ T

t0

∫

Rd

(σ2Hpp(x,Du)Dz ·Dzmdx)+

+

∫

Rd

δF

δm
(x,m(t), y)(µ(t, x)), µ(t, y))dy)dxdt+

+

∫

R2d

δG

δm
(x,m(T ), y)(µ(T, x)), µ(T, y)dydx ≥ 0,

(3.11)

where we used that, since α = −Hp(x,Du), Lα,α(x, α(t, x))Hpp(x,Du(t, x)) = Id.
Combining the last two results, we obtain

(σ − σ2)

∫ T

t0

∫

Rd

Hpp(x,Du)Dz ·Dzmdx ≤ 0.

Since σ < 1 then σ − σ2 > 0 and by assumption Hpp > 0, we have Dzm = 0 and
we can conclude that (z, µ) = (0, 0).

The next lemma establishes that O is not empty.

Lemma 3.8. Assume (1.1).
Fix (t0,m0) ∈ [0, T )× P2(R

d) and let (m,α) be a minimizer for U(t0,m0). Then,
∀t ∈ (t0,m0), we have (t,m(t)) ∈ O.
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Proof. Fix (t0,m0) ∈ [0, T ) × P2(R
d) and let (m,α) be a minimizer for U(t0,m0)

and u its associated multiplier.
For t1 ∈ (t0, T ), set m(t1) = m1 and let (m̃, α̃) be an optimal solution for U(t1,m1)
with associated multiplier ũ. Thanks to the dynamic principle

(m̂, α̂) =

{
(m,α) on [t0, t1)× R

d,

(m̃, α̃) on [t1, T ]× R
d

is optimal for U(t0,m0). By Lemma 1.9, α̂ ∈ C(1+δ)/2,1+δ and so α(t1, ·) = α̃(t1, ·)
and Du(t1, ·) = Dũ(t1, ·).

Let us call

gk(t, x) =Hxk(x,Du)−Hxk(x,Dũ) +Hp(x,Du) ·D(∂xku)−Hp(x,Dũ) ·D(∂xk ũ)

− Fxk(x,m(t)) + Fxk(x,m1(t)),

and
h = Hp(Du)m−Hp(Dũ)m̃.

Then, the pair ((zk)k=1,...,d, µ = ((∂xk(u− ũ))k=1,...,d,m− m̃) solves the system




−∂zk −∆zk + gk(t, x) = 0 in (t1, T )× R
d,

∂µ−∆µ+ div(h) = 0 in (t1, T )× R
d,

µ(t1) = 0 and zk(t1, ·) = 0 on R
d.

(3.12)

Since t1 > t0 and m, m̃ ∈ C1,2([t1, T ] × R
d) and m(t, ·), m̃(t, ·) are bounded in

L2 we have the following estimates :

d∑

k=1

|gk(t, x)|2 ≤ C(|z(t, x)|2 + |Dz(t, x)|2 + ||µ(t)||2L2),

|h(t, x)|2 ≤ C(|z(t, x)|2 + |µ(t, x)|2),
|div(h(t, x))|2 ≤ C(|z(t, x)|2 + |Dz(t, x)|2 + |µ(t, x)|2 + |Dµ(t, x)|2).

(3.13)

Then a Lions-Malgrange-type argument [see Appendix C], we can conclude that
the solution to (3.12) is (zk, µ) = (0, 0) and so the solution starting from (t1,m1)
is unique.

Let σ = 1 and (z, µ) be a solution to (3.9) in [t1, T ]× R
d

As in the previous Lemma in (3.10)

∫ T

t1

(

∫

Rd

(Hpp(x,Du(t, x))Dz ·Dzmdx) +
〈 δF
δm

(·,m(t))(µ(t)), µ(t)
〉
)dt+

+
〈 δG
δm

(·,m(T ))(µ(T )), µ(T )
〉
= 0.

(3.14)
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By Lemma 1.11, for (1.17) we have ∀β ∈ L∞([t0, T ]× R
d;Rd) such that β = 0

in a neighborhood of t0 and ρ solution in the sense of distributions to (1.16) in
[t0, T ]× R

d

J̃(β) =

∫ T

t0

(

∫

Rd

Lα,α(x, α(t, x))β(t, x) · β(t, x)m(t, dx)+

+
〈 δF
δm

(·,m(t), ·)(ρ(t)), ρ(t)
〉
)dt+

+
〈 δG
δm

(·,m(T ), ·)(ρ(T, ·)), ρ(T, ·)
〉
≥ 0.

(3.15)

Let β be a map such that

β =

{
0 in [t0, t1),

−Hpp(x,Du)Dz on [t1, T ],

and ρ be the solution to (1.16) associated to β.
Thus,

ρ(t) =

{
0 in [t0, t1)× R

d,

µ(t) on [t1, T ]× R
d.

It follows from (3.14) that J̃(β) = 0, and, β is a minimizer for J̃ . It can be
proved that [see [2]] that this implies β is a continuous function and soDz(t1, ·) = 0.

Differentiating with respect to the space variable the first equation in (3.9) we
have that (∂xkz)k=1,...,d, µ) solves a system of the form (3.12) with zero initial con-
dition and data g and h satisfying (3.13). Then a Lions-Malgrange-type argument
[see Appendix C] implies that ((∂xkz)k=1,...,d, µ) = (0, 0). Now we obtain that (z, µ)
solution to (3.9) is equal to (0, 0) and thus the solution is stable.

The next theorem establishes the key property of the set O.

Theorem 3.9. Assume (1.1).
The set O is open and dense in [0, T )× P2(R

d).

Proof. O is a non-empty dense set in [0, T )× P2(R
d) for Lemma 3.8.

We want to show that O is open. We argue by contradiction: fix (t0,m0) ∈ O

and assume that (tn,mn
0 ) /∈ O which converge to (t0,m0) in [0, T ] × P2(R

d). Let
(m,α) be the unique and stable minimizer for U(t0,m0) and u be the associated
multiplier.
Since (tn,mn

0 ) /∈ O, there are two cases:
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1) ∀n, there exist several minimizer for U(tn,mn
0 ),

2) ∀n, there exists a unique minimizer not stable.

2) is ruled out by Lemma 3.2 and the strong stability of (m,α).
It remains to consider 1). Let (mn,1, αn,1) and (mn,2, αn,2) be two distinct minimizer
for U(tn,mn

0 ) with associated multipliers un,1 and un,2 respectively.
Lemma 1.10 and the fact that the problem with initial condition (t0,m0) has a
unique minimizer imply that, for i = 1, 2,

(mn,i, αn,i) −→ (m,α) in C0([0, T ];P1(R
d))× Cδ/2,δ,

and
un,i, Dun,i, D2un,i → u,Du,D2u in Cδ/2,δ respectively.

Since mn,1 and mn,2 are distinct, we have supt d1(m
n,1(t),mn,2(t)) > 0 and setting

θn = ||Dun,1 −Dun,2||Cδ/2,δ + sup
t∈[t0,T ]

d1(m
n,1(t),mn,2(t)),

we have θn > 0 and θn
n→∞−−−→ 0.

Since supt∈[tn,T ] d1(m
n,1(t),mn,2(t)) ≤ ||Du1 −Du2||∞ [the proof is deducible from

Appendix A], supt∈[tn,T ] d1(m
n,1(t),mn,2(t)) is controlled by C||Dun,1−Dun,2||Cδ/2,δ

and we have
θn ≤ C||Dun,1 −Dun,2||Cδ/2,δ . (3.16)

Let us call

zn =
un,1 − un,2

θn
and µn =

mn,1 −mn,2

θn
.

Observe that (zn, µn) are solution to





−∂tzn −∆zn +Hp(x,Du
n,1) ·Dzn = δF

δm
(x,mn,1(t))(µn(t)) +Rn,1,

∂tµ
n −∆µn − div(Hp(x,Du

n,1)µn)− div(Hpp(x,Du
n,1)Dznmn,1) = div(R2,n),

µn(t0) = 0 and z(T, x) = R3,n + δG
δm

(x,mn,1(T ))(µn(T ))

(3.17)
with

Rn,1 =(θn)−1[(H(x,Dun,2)−H(x,Dun,1)−Hp(x,Du
n,1) · (Dun,2 −Dun,1))+

−
(
F (x,mn,2(t))− F (x,mn,1(t))− δF

δm
(x,mn,1(t))(mn,2(t)−mn,1(t))

)
],

Rn,2 =− (θn)−1[Hp(x,Du
n,2)mn,2 −Hp(x,Du

n,1)mn,1 −Hp(x,Du
n,1)(mn,2 −mn,1)

−Hpp(x,Du
n,1) · (Dun,2 −Dun,1)mn,1)],
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Rn,3 = − [G(x,mn,2(T ))−G(x,mn,1(T ))− δG
δm

(x,mn,1(T ))(mn,2(T )−mn,1(T ))]

θn
.

It follows from the regularity of F , G and H and the definition of θn that

||Rn,1||Cδ/2,δ + sup
t∈[t0,T ]

||Rn,2||(W 1,∞)′ + ||Rn,3||C2+δ ≤ Cθn. (3.18)

For Lemma 3.2, zn → 0 in C(1+δ)/2,1+δ which is a contradiction with (3.16), so O

is open.

3.3 The smoothness of U in O

We prove now a preliminary lemma that is needed to establish the regularity of
U, which will allow us to compute its derivative with respect to m.

Lemma 3.10. Assume (1.1).
Fix (t0,m0) ∈ O. There exist δ, C > 0 such that ∀t′0,m1

0,m
2
0 satisfying (t

′
0,m

i
0) ∈ O,

|t′0 − t0| < δ, d2(m0,m
i
0) < δ, if (mi, αi) is the unique minimizer starting from

(t′0,m
i
0) with associated multiplier ui for i = 1; 2, then

||u1 − u2||C(δ+2)/2,δ+2 + sup
t∈[t′0,T ]

d2(m
1(t),m2(t)) ≤ Cd2(m

1
0,m

2
0). (3.19)

Proof. Let u be the multiplier associated to the unique minimizer (m,α) starting
from (t0,m0).
We call V = −Hp(x,Du) and Γ = −Hpp(x,Du) and consider the neighborhood V

of (V,Γ) given in Lemma 3.2. Choosing δ > 0, for anym1
0 such that d2(m0,m

1
0) < δ

letting (m1, α1) be the unique stable minimizer starting from (t0,m
1
0) with mul-

tiplier u1 and calling V 1 = −Hp(x,Du
1) and Γ1 = −Hpp(x,Du

1), we have that
(V 1,Γ1) ∈ V.
If δ > 0 is small, the above is possible thanks to Lemma 1.10, since u1 is close to
u in Cδ/2,δ.
At this point, if it is necessary, choosing δ even smaller, for any t′0,m

i
0, (m

i, αi) and
ui as above such that |ti0 − t0| < δ and d2(m0,m

i
0) < δ for i = 1, 2, for some η > 0

that will be chosen later

||u1 − u2||C(2+δ)/2,2+δ + sup
t∈[t′0,T ]

d2(m
1(t),m2(t)) ≤ η. (3.20)

For t′0,m
i
0, (m

i, αi) and ui as above, we have [see Appendix A] for a constant C
depending on T,H and ||D2ui||∞ which is uniformly bounded by Lemma 3.4

sup
t∈[t′0,T ]

d2(m
1(t),m2(t)) ≤ C(d2(m

1
0,m

2
0) + ||Du1 −Du2||∞). (3.21)
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Then, the pair

(z, µ) = (u1 − u2,m1 −m2)

satisfies the system (3.2) with

V (t, x) = −Hp(x,Du
2),

Γ = −Hpp(x,Du
2),

ξ = m1
0 −m2

0,

R1(t, x) =− (H(x,Du1)−H(x,Du2)−Hp(x,Du
2) · (Du1 −Du2))

+ F (x,m1)− F (x,m2)− δF

δm
(x,m2(t))(m1(t)−m2(t)),

R2(t, x) =Hp(x,Du
1)m1 −Hp(x,Du

2)m2 −Hp(x,Du
2)(m1 −m2)

−Hpp(x,Du
2) · (Du1 −Du2)m2,

R3(x) = G(x,m1(T ))−G(x,m2(T ))− δG

δm
(x,m2(T ))(m1(T )−m2(T )).

Note that we can rewrite R2 as

R2(t, x) =(Hp(x,Du
1)−Hp(x,Du

2))(m1 −m2)

+ (Hp(x,Du
1)−Hp(x,Du

2)−Hpp(x,Du
2) · (Du1 −Du2))m2.

Thus,

M = ||ξ||(W 1,∞)′ + ||R1||Cδ/2,δ + ||R3||C2+δ + sup
t∈t0,T ]

||R2(t)||(W 1,∞)′

≤ d1(m
1
0,m

2
0) + C{||Du1 −Du2||2

Cδ/2,δ + sup
t
d22(m

1(t),m2(t))}.

It follows from Lemma 3.2 that

||u1 − u2||C(2+δ)/2,2+δ ≤ C{d1(m1
0,m

2
0) + ||Du1 −Du2||2

Cδ/2,δ + sup
t
d22(m

1(t),m2(t))}.

Hence, choosing η > 0 small enough we find

||u1 − u2||C(2+δ)/2,2+δ ≤ C{d1(m1
0,m

2
0) + sup

t
d22(m

1(t),m2(t))},

and inserting the last inequality in (3.21) we obtain

sup
t
d2(m

1(t),m2(t)) ≤ C{d2(m1
0,m

2
0) + sup

t
d22(m

1(t),m2(t))}.
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Noting that supt d2(m
1(t),m2(t)) ≤ η supt d2(m

1(t),m2(t)) then, for η > 0 such
that 1− Cη > 0, we have

sup
t
d2(m

1(t),m2(t)) ≤ C[d2(m
1
0,m

2
0) + η sup

t
d2(m

1(t),m2(t))],

and so
sup
t
d2(m

1(t),m2(t)) ≤ Cd2(m
1
0,m

2
0).

Going back to the previous inequality on ||u1−u2||C(2+δ)/2,2+δ , since d1 < d2 we can
conclude the proof.

Here we state a simple criterion for the differentiability of the function U.

Lemma 3.11. Let U : P2(R
d) → R be continuous. For (s,m, y) ∈ [0, 1]×P2(R

d)×
R
d, we define

Û(s,m, y) := U((1− s)m+ sδy).

If the map s → Û(s,m, y) has a derivative at s = 0 and if its derivative at 0
d
ds
|s=0Û : P2(R

d)× R
d → R is continuous and bounded, then U is of class C1 with

δU

δm
(m, y) =

d

ds
Û(0,m, y).

Remark 3.12. Let us note that, replacing m by (1 − s)m + sδy, the continuity

assumption of d
ds
|s=0Û implies its continuity at any s ∈ [0, 1].

Proof. Let us start by considering the case where m0 is fixed and, for some N ∈ N,
N ≥ 1 and yk ∈ R

d, m1 =
1
N

∑N
k=1 δyk is an empirical measure.

Let us define the set

K := {α0m0 +
N∑

k=1

αkδyk : αk ≥ 0,
N∑

k=0

αk = 1}.

All the measures we will use belong to K, which is compact in P2(R
d).

Since the map d
ds
Û is continuous, for ϵ > 0, there exist δ ∈ (0, 1/2) such that, for

m,m′ ∈ K so that d2(m,m
′) < δ and s ∈ [0, δ], we have

sup
k

| d
ds

Û(s,m, yk)−
d

ds
Û(0,m′, yk)| ≤ ϵ. (3.22)

Let us define
αk =

s

N − (N − k)s
for k = 0, . . . , N,
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and noting that 1− αk =
N−(N−k+1)s
N−(N−k)s

, we get

N∏

l=k

(1− αl) =
N − (N − k + 1)s

N − (N − k)s
· N − (N − k)s

N − (N − k − 1)s
· · · N − s

N

=
N − (N − k + 1)s

N
= 1− (N − k + 1)s

N
.

(3.23)

We now define by induction

m0 := m and mk := (1− αk)mk−1 + αkδyk , (3.24)

and using (3.23) we get

mN =
N∏

k=1

(1− αk)m+ αnδyN +
N−1∑

k=1

αkδyk

N∏

l=k+1

(1− αl)

(1− s)m+
N∑

k=1

δyk
s

N − (N − k)s

(
1− (N − k)s

N

)
= (1− s)m+ smN

y .

(3.25)

So, by definition of mk+1 in function of mk in (3.24),

U((1− s)m+ smN
y )− U(m) =

N−1∑

k=0

(U(mk+1)− U(mk))

=
N−1∑

k=0

Û(αk+1,mk, yk+1)− Û(0,mk, yk+1) =
N−1∑

k=0

∫ αk+1

0

d

ds
Û(τ,mk, yk+1)dτ.

Let us assume that s ∈ (0, δ). Since s < 1/2, we get for any k αk ≤ 2s/N , and
thus there exists a constant C = C(m0, yk) > 0 such that

d2(mk,m) ≤ Cs

we now require that s is so small that Cs < δ. Using (3.22), ∀k and ∀τ ∈ (0, αk),
we get

| d
ds

Û(τ,mk, yk+1)−
d

ds
Û(0,m, yk+1)| ≤ ϵ.

We deduce from this

|U((1− s)m+ smN
y )− U(m)−

N−1∑

k=0

αk+1
d

ds
Û(0,m, yk+1)| ≤ Cϵ

N−1∑

k=0

αk+1.
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Since |αk − s
N
| ≤ Cs2

N
, we conclude that

|U((1− s)m+ smN
y )− U(m)− s

∫

Rd

d

ds
Û(0,m, y)mN

y (dy)| ≤ C(ϵs+ s2). (3.26)

At this point, let T ∈ N be large and we define, for n ∈ {0, . . . , T}

mn =

(
1− 1

N

)n
m0 +

(
1−

(
1− 1

T

)n)
mN
y ,

and so

mn+1 =

(
1− 1

N

)n+1

m0 +

(
1−

(
1− 1

T

)n+1
)
mN
y

=

(
1− 1

T

)
[

(
1− 1

T

)n
m0 −

(
1− 1

T

)n
mN
y ] +mn

y ±
1

T
mN
y

=

(
1− 1

T

)
mn +

1

T
mN
y .

So, by (3.26)

|U(mT )− U(m0)− T−1

T−1∑

n=0

∫

Rd

d

ds
Û(0,mn, y)m

N
y (dy)|

≤
T−1∑

n=0

|U
((

1− 1

T

)
mn +

1

T
mN
y

)
− U(mn)−

1

T

∫

Rd

d

ds
Û(0,mn, y)m

N
y (dy)|

≤ C

T−1∑

n=0

(
ϵ

T
+

(
1

T

)2
)

≤ C

(
ϵ+

1

T

)
.

Recalling that limn→∞

(
1 + 1

n

)n
= e, letting T → ∞ and then ϵ→ 0 by continuity

of U and of d
ds
Û we can conclude that

U(e−1m0 + (1− e−1)mN
y )− U(m0) =

∫ 1

0

∫

Rd

d

ds
Û(0, e−sm0 + (1− e−s)mN

y , y)m
N
y (dy)ds

=

∫ e−1

0

∫

Rd

d

ds
Û(0, (1− τ)m0 + τmN

y , y)m
N
y (dy)

dτ

1− τ
.

(3.27)

By the continuity of U and of d
ds
Û and by the density of the empirical measures,

from (3.27), ∀m0,m1 ∈ P2(R
d), we obtain

U(e−1m0+(1−e−1m1)−U(m0) =

∫ e−1

0

∫

Rd

d

ds
Û(0, (1−τ)m0+τm1, y)m1(dy)

dτ

1− τ
.

(3.28)
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For m1 = m0, we have
∫

Rd

d

ds
Û(0,m0, y)m0(dy) = 0 for any m0 ∈ P2(R

d).

In particular, this yields
∫

Rd

d

ds
Û(0, (1−τ)m0+τm1, y)m1(dy) = (1−τ)

∫

Rd

d

ds
Û(0, (1−τ)m0+τm1, y)(m1−m0)(dy).

Using this relation in (3.28) we get

U(e−1m0+(1−e−1)m1)−U(m0) =

∫ e−1

0

∫

Rd

d

ds
Û(0, (1−τ)m0+τm1, y)(m1−m0)(dy)dτ.

Using again the continuity of U and of d
ds
Û, one can deduce from this the desired

equality.

Theorem 3.13. Assume (1.1).
The value function U is globally Lipschitz continuous on [0, T ] × P1(R

d) and of
class C1 in the set O. In addition, U is a classical solution in O of the master
Hamilton-Jacobi equation

−∂tU(t,m)−
∫

Rd

div(DmU(t,m, y))m(dy)+

∫

Rd

H(y,DmU(t,m, y))m(dy) = F(m).

(3.29)
Moreover, ∀(t0,m0) ∈ O, ∃ ϵ > 0 and a constant C = C(t0,m0) > 0 so that,
∀t ∈ [0, T ], x,y ∈ R

d and m1,m2 ∈ P2(R
d) with |t − t0| < ϵ, d2(m0,m

1) < ϵ and
d2(m0,m

2) < ϵ

|DmU(t,m
1, x)−DmU(t,m

2, y)| ≤ C(|x− y|+ d2(m
1,m2)). (3.30)

Proof. Let us divide the proof in three parts.

First part: The regularity of U

By Lemma 2.2, U is Lipschitz continuous. We want to show that U is dif-
ferentiable at any (t0,m0) ∈ O. Let us fix (t0,m0) ∈ O and be u the associated
multiplier to (m,α) unique minimizer for U(t0,m0).
Let δ > 0 and 0 < δ′ < δ be such that the δ-neighborhood of the [0, T ] ×
P2(R

d)-compact set {(t,m(t)) : t ∈ [t0, T ]} ⊂ O, and, for any m1
0 ∈ B(m0, δ

′),
supt∈[t0,T ] d1(m(t),m1(t)) < δ, where u1 is the associated minimizer to (m1, α1)
minimizer for U(t0,m

1
0).
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Let (z, µ) the solution to the linearized system (3.9) with initial condition µ(0) =
m1

0 −m0.
Set

(w, ρ) = (u1 − u− z,m1 −m− µ), (3.31)

and it is the solution of the system (3.2) with

ξ = 0

R1(t, x) =− (H(x,Du1)−H(x,Du)−Hp(x,Du) · (Du1 −Du))+

+ F (x,m1)− F (x,m)− δF

δm
(x,m(t))(m1(t)−m(t)),

R2(t, x) =Hp(x,Du
1)m1 −Hp(x,Du)m−Hp(x,Du)(m

1 −m)+

−Hpp(x,Du) · (Du1 −Du)m,

R3(x) = G(x,m1(T ))−G(x,m(T ))− δG

δm
(x,m(T ))(m1(T )−m(T )).

We can rewrite R1(t, x) in the following way R1(t, x) = r11(t, x) + r12(t, x) with

r11(t, x) = −
∫ 1

0

(Hp(x, sDu
1 + (1− s)Du)−Hp(x,Du)) · (Du1 −Du)ds,

and

r12(t, x) =

∫ 1

0

∫

Rd

(
δF

δm
(x, sm1(t) + (1− s)m(t), y

)
d(m1(t)−m(t))(y)ds

−
∫ 1

0

∫

Rd

(
δF

δm
(x,m(t), y)

)
d(m1(t)−m(t))(y)ds.

We have

||R1||Cδ/2,δ ≤ ||r11||Cδ/2,δ + ||r12||Cδ/2,δ .

Since

||r11||Cδ/2,δ ≤ C||u1 − u||2
Cδ/2,δ

and

||r12||Cδ/2,δ ≤ ||Dy
δF

δm
(·,m1, ·)−Dy

δF

δm
(·,m, ·)||Cδ/2,δd(m1,m) ≤ Cd21(m

1,m)

by Lemma 3.10 and the fact that d1 < d2

||R1||Cδ/2,δ ≤ Cd22(m
1
0,m0).
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Noting that

Hp(x,Du
1)m1 −Hp(x,Du)m = [Hp(x,Du

1)−Hp(x,Du)]m
1 +Hp(x,Du

1)(m1 −m),

and

[Hp(x,Du
1)−Hp(x,Du)]m

1 +Hpp(x,Du)(Du
1 −Du)m =

m1

∫ 1

0

Hpp(x, sDu
1 + (1− s)Du) · (Du1 −Du)ds−Hpp(x,Du)(Du

1 −Du)m.

We can rewrite

R2(t, x) =m1

∫ 1

0

(
Hpp(x, sDu

1 + (1− s)Du)−Hpp(x,Du)
)
· (Du1 −Du)ds

+Hpp(x,Du)(Du
1 −Du)(m1(t)−m(t)).

By definition

sup
t∈[t0,T ]

||R2(t)||(W 1,∞)′ ≤ sup
t∈[t0,T ]

(
sup

||ξ||W1,∞≤1

⟨ξ, R2(t)⟩W 1,∞,(W 1,∞)′

)

and

⟨ξ, R2(t)⟩W 1,∞,(W 1,∞)′ =

∫

Rd

⟨ξ, (m1 −m)Hpp(·, Du(t, ·))(Du1 −Du)(t, ·)

+m1(t)

∫ 1

0

(
Hpp(·, [sDu1 + (1− s)Du](t, ·)

)
(Du1 −Du)(t, ·)ds

−m1(t)

∫ 1

0

(Hpp(·, Du(t, ·))) (Du1 −Du)(t, ·)ds⟩W 1,∞,(W 1,∞)′

≤ C(||ξ||W 1,∞ ||u1 − u||2d1(m1,m) + ||ξ||W 1,∞ ||u1 − u||21).

Finally, using Lemma 3.10 and the previous estimates

sup
t∈[t0,T ]

||R2(t)||(W 1,∞)′ ≤ Cd22(m
1
0,m0).

Lastly, rewriting R3 as

R3(x) =

∫ 1

0

∫

Rd

(
δG

δm
(x, sm1(T ) + (1− s)m(T ), y)

)
d(m1(T )−m(T ))(y)ds

−
∫ 1

0

∫

Rd

(
δG

δm
(x,m(T ), y)

)
d(m1(T )−m(T ))(y)ds,
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and noting that

||R3||C2+δ ≤ ||Dy
δG

δm
(·,m1(T ), ·)−Dy

δG

δm
(·,m(T ), ·)||C2+δd21(m

1(T ),m(T ))

≤ Cd21(m
1,m),

using again Lemma 3.10, we obtain that

||R1||Cδ/2,δ + sup
t∈[t0,T ]

||R2(t)||(W 1,∞)′ + ||R3||C2+δ ≤ Cd22(m
1
0,m0).

Then, for Lemma 3.2 and noting that z = u1 − u− w and ρ = m1 −m− µ

||u1 − u− w||C(2+δ)/2,2+δ + sup
t∈[t0,T ]

||m1(t)−m(t)− µ(t)||(C2+δ)′ ≤ Cd22(m
1
0,m0).

Recall that α1 = −Hp(x,Du
1). Thus

α1 = α−Hpp(x,Du) ·Dw + o(d1(m
1
0,m0)),

where o(·) is small in uniform norm.
It follows that

U(t0,m
1
0) =

∫ T

t0

(∫

Rd

L(x, α1)m1 + F(m1)

)
dt+ G(m1(T ))

= U(t0,m0) +

∫ T

t0

∫

Rd

(Lα(x, α) · [−Hpp(x,Du)]Dwm+ L(x, α)µ(t, x)+

+ F (x,m(t))µ(t, x))dxdt+

∫

Rd

G(x,m(T ))µ(T, x)dx+ o(d2(m
1
0,m0)).

Using duality on the equations satisfied by u and µ
∫

Rd

G(x,m(T ))µ(T, x)dx−
∫

Rd

u(t0, x)(m
1
0 −m0)(dx) =

=

∫ T

t0

∫

Rd

((H(x,Du)− F (x,m(t))−Hp(x,Du) ·Du)µ−Hpp(x,Du)Du ·Dwm) .

Thus,

U(t0,m
1
0) = U(t0,m0) +

∫

Rd

u(t0, x)(m
1
0 −m0)(dx)

+

∫ T

t0

∫

Rd

((H(x,Du)−Hp(x,Du) ·Du+ L(x, α))µ− (Hpp(x,Du)Du ·Dw

+ Lα(x, α) · (Hpp(x,Du)Dw))m)dxdt+ o(d2(m
1
0,m0)).
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Since α = −Hp(x,Du), in view of the definition of H and L we have

H(x,Du)−Hp(x,Du) ·Du+ L(x, α) = 0,

and knowing that Lα(x, α) = −Du we get

Hpp(x,Du)Du ·Dw + Lα(x, α) · (Hpp(x,Du)Dw) = 0.

Combining all these results, we obtain

U(t0,m
1
0) = U(t0,m0) +

∫

Rd

u(t0, x)(m
1
0 −m0)(dx) + o(d2(m

1
0,m0)).

Rewriting m1
0 as m1

0 = (1 − s)m0 + sδy for some y ∈ R
d and s ∈ (0, 1) and using

it in the above equality we get that the following limit exists:

u(t0, y) = lim
s→0+

1

s
(U(t0, (1− s)m0 + sδy)− U(t0,m0)).

This limit depends in a continuous way on (m0, y) since the stability of the
map m0 → (u,m) proved in Lemma 1.10.
We have that

DmU(t0,m0, x) = Du(t0, x),

since, in view of Lemma 3.11, U(t0, ·) has a linear derivative in a neighborhood of
m0 given by u(t0, ·).
Using again the stability of the mapm0 → (u,m), we actually have that (t0,m0) →
DmU(t0,m0, ·) is continuous in O with respect to the d2-distance for the measure
variable into C2.

Second part: The Hamilton-Jacobi equation

Here we shows that U is a classical solution to (3.29).
Let h > 0 small. The dynamic programming principle gives

U(t0,m0) =

∫ t0+h

t0

(∫

Rd

L(x, α(t, x))m(t, x)dx+ F(m(t))

)
dt+U(t0+h,m(t0+h)),

and, since U is C1,

U(t0 + h,m(t0 + h))− U(t0 + h,m0) =

∫ t0+h

t0

∫

Rd

(TrD2
ymU(t0 + h,m(t), y)+

+DmU(t0 + h,m(t), y) ·Hp(t,Du(t, y)))m(t, dy)dydt.



62 CHAPTER 3. THE REGULARITY OF U

It follows that ∂tU(t0,m0) exists and is given by

∂tU(t0,m0) = −
∫

Rd

L(x, α(t0, x))m0(dx)− F(m0)+

−
∫

Rd

(TrD2
ymU(t0,m0, y) +DmU(t0,m0, y) ·Hp(t0, Du(t0, y)))m0(dy).

Since we provedDmU(t0,m0, x) = Du(t0, x) and we used α(t0, x) = −Hp(x,Du(t0, x)),
by the definition of H with the Legendre transform and knowing that the diver-
gence of DmU is the trace of D2

ymU, (3.29) is satisfied.

Third part: The regularity of DmU

Let δ > 0 and C > 0 be such that for any t,m1
0,m

2
0 satisfying (t,mi

0) ∈ O,
|t − t0| < δ, d2(m0,m

i
0) < δ and for any x1, x2 ∈ R

d, let (mi, αi) the unique
minimizer for U(t,mi

0) with associated multiplier ui for i = 1, 2 and

||u1 − u2||C(δ+2)/2,δ+2 + sup
t∈[t′0,T ]

d2(m
1(t),m2(t)) ≤ Cd2(m

1
0,m

2
0).

Since DmU(t,m
1
0, x

1) = Du1(t, x1) and DmU(t,m
2
0, x

2) = Du2(t, x2)

|DmU(t,m
1
0, x

1)−DmU(t,m
2
0, x

2)| = |Du1(t, x1)−Du2(t, x2)|
≤ |Du1(t, x2)−Du2(t, x2)|+ |Du1(t, x1)−Du1(t, x2)|
≤ |Du1(t, x2)−Du2(t, x2)|+ ||D2u1||∞|x1 − x2| ≤ C(d2(m

1
0,m

2
0) + |x1 − x2|),

where we used lemmas 1.9 and 3.10.



Chapter 4

The propagation of chaos

The aim of this chapter is to show the following propagation of chaos property.

Theorem 4.1. Assume (1.1).
There exists a constant γ = γ(d) ∈ (0, 1) such that, ∀(t0,m0) ∈ O withMd+5(m0) <
+∞, there is a constant C = C(t0,m0) > 0, such that, if Z = (Zk)k=1,...,N

is a sequence of independent random variables with law m0, B = (Bk)k=1,...,N

is a sequence of independent Brownian motions independent of Z, and YN =
(Y N,k)k=1,...,N is the optimal trajectory of VN(t0, (Z

k)k=1,...,N), that is, for each
k = 1, . . . , N and t ∈ [t0, T ]

Y N,k
t = Zk −

∫ t

t0

Hp(Y
k
s , DVN(s, Y N

s ))ds+
√
2(Bk

t − Bk
t0
). (4.1)

Then
E[ sup

t∈[t0,T ]

d1(m
N
Y N
t
,m(t))] ≤ CN−γ.

Remark 4.2. We note that this theorem exploit the regularity of the function U

in O obtained in the results of chapter 3 to get a convergence of the optimal tra-
jectories of the N particle system to the one of the limit problem.
In chapter 2 we show a different kind of convergence, one more variational: the
convergence of the two value functions that holds not only in O, but in
[0, T )× P2(R

d).

4.1 Introduction

For large particle systems, the notion of propagation of chaos was initially intro-
duced by Boltzmann in statistical physics: the idea is that the correlations between
two (or more) given particles for large systems, which are due to the interactions
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become negligible. It means that only an averaged behaviour can be observed
instead of the detailed correlated trajectories of each particle.

The mathematical formalisation is due to Kac and McKean and dates back to
the 20th century. It has recently spread out in many areas of mathematics.

The propagation of chaos property describes the limit behaviour of the particle
system when the number of particles grows to infinity: any subsystem of the N -
particle system asymptotically behaves as a system of i.i.d processes with common
law m.

Definition 4.3. Let E a separable metric space, uN a sequence of symmetric
probabilities on EN . We say that uN is u-chaotic, u probability on E, if for
ϕ1, . . . , ϕk ∈ Cb(E), k ≥ 1,

lim
N→∞

⟨uN , ϕ1 ⊗ · · · ⊗ ϕk ⊗ 1⊗ · · · ⊗ 1⟩ =
k∏

i=1

⟨u, ϕi⟩, (4.2)

where we use ⊗ for the product measure.

The notation of u-chaotic means that the empirical measures of the coordinate
variables of EN , under uN tend to concentrate near u, as the next proposition
shows.
Condition (4.2) can also be restated as the convergence of the projection of uN
as Ek to u⊗k when N goes to infinity. In the next proposition, we suppose uN
symmetric.

Proposition 4.4. uN is u-chaotic is equivalent to XN = 1
N

∑N
i=1 δXi

converges in
law to the constant random variable u.

4.2 The propagation of chaos property

Let Z = (Zk)k=1,...,N be a sequence of independent random variables with law m0,
B = (Bk)k=1,...,N a sequence of independent Brownian motions independent of Z,
and YN = (NN,k)k=1,...,N the optimal trajectory of VN(t0, (Z

k)k=1,...,N), that is, for
each k = 1, . . . , N and t ∈ [t0, T ]

Y N,k
t = Zk −

∫ t

t0

Hp(Y
k
s , DVN(s, Y N

s ))ds+
√
2(Bk

t − Bk
t0
). (4.3)

It follows from the Theorem 3.13 and the compactness of the curve {(t,m(t)) :
t ∈ [t0, T ]} that there exists δ, C > 0 such that, for any t1 ∈ [t0, T ], |t − t1| < δ
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and m1
0, m

2
0 ∈ P2(R

d) with d2(m(t1),m
1
0) < δ, d2(m(t1),m

2
0) < δ, (t1,m

1
0) ∈ O and

(t1,m
2
0) ∈ O, and x1, x2 ∈ R

d

|DmU(t1,m
1
0, x

1)−DmU(t1,m
2
0, x

2)| ≤ C(|x1 − x2|+ d2(m
1
0,m

2
0)) (4.4)

Definition 4.5. Let σ ∈ (0, δ). We define

Vσ = {(t,m′) ∈ [t0, T ]× P2(R
d) : d2(m

′,m(t)) < σ}

and

V N
σ = {(t, x) ∈ [0, T ]× R

d : (t,mN
X) ∈ Vσ}.

Definition 4.6. The stopping time τN is defined by

τN =

{
inft∈[t0,T ]{(t,XN

t ) /∈ V N
δ/2}

T if there is no such a t,

and

τ̃N =

{
inft∈[t0,τN ]{(t, Y N

t ) /∈ V N
δ }

τN if there is no such a t.

We consider the solution (XN
t )t∈[t0,T ] = (XN,1

t , . . . , XN,N
t )t∈[t0,T ] to

dXN,j
t = Zj −

∫ t

t0

Hp(X
N,j
s , DmU(s,m

N
XN

s
, XN,j

s ))ds+
√
2(Bj

t − Bj
t0) on [t0, τ

N ].

(4.5)

Theorem 4.7. Let Md+5(m0) <∞, then there exists a constant C > 0 such that

E[ sup
t∈[0,T ]

d22(m
N
XN

t
,m(t))] ≤ CN− 2

d+8 .

Proof. Let us construct i.i.d. copies of the unique solutions to

dX̃N,i
t = −Hp(X̃

N,i
t , DmU(t,m(t), X̃N,i

t ))dt+
√
2dBi

t and X̃N,i
t0 = Zi,

with µ̃(t) law of X̃N,i
t . So,

|XN,i
t − X̃N,i

t | ≤
∫ T

t0

|Hp(s,X
N,i
s ,mXs)−Hp(s, X̃

N,i
t , µ̃s)|ds

≤
∫ T

t0

(|XN,i
s − X̃N,i

s |+ d2(m
N
Xs
, µ̃s))ds,
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since Hp is Lipschitz.
By Gronwall’s inequality

|XN,i
t − X̃N,i

t | ≤ C

∫ T

t0

d2(m
N
Xs
, µ̃s)ds.

Taking the power 2 and averaging the left-hand side

d22(m
N
Xt
,mN

X̃t
) ≤ 1

N

∑

i

|XN,i
t − X̃N,i

t |2 ≤ C

∫ T

t0

d22(m
N
Xs
, µ̃s))ds.

Using the triangle and the Gronwall’s inequality

d22(m
N
Xt
,mN

X̃t
) ≤ C

∫ T

t0

d22(m
N
X̃s
, µ̃s)ds,

using again the triangle inequality

d22(m
N
Xt
, µ̃t) ≤ Cd22(m

N
X̃t
, µ̃t) + C

∫ T

t0

d22(m
N
X̃s
, µ̃s)ds.

By Theorem 1.3 in [16], we get the thesis.

Lemma 4.8. Assume (1.1).
There is a constant C = C(t0,m0) > 0 such that

E[ sup
t∈[t0,τN ]

d1(m
N
XN

t
,m(t))] ≤ CN− 1

d+8 (4.6)

and
P[τn < T ] ≤ CN− 1

d+8 . (4.7)

Proof. Using Theorem 4.7, we have that

E[ sup
t∈[0,T ]

d22(mXN
t
,m(t))] ≤ CN− 2

d+8 .

Since d1 ≤ d2 we can conclude that

E[ sup
t∈[t0,τN ]

d1(m
N
XN

t
,m(t))] ≤ CN− 1

d+8

Then

P[τN < T ] ≤ P

[
sup

t∈[t0,τN ]

d1(m
N
XN

t
,m(t)) ≥ δ

2

]
≤ Cδ−1N− 1

d+8 .
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Another way to understand the derivatives in the space of measures is to
project the map U to the finite dimensional space (Rd)N via the empirical measure
mN
x = 1

N

∑N
j=1 δxj with x = (x1, . . . , xN) ∈ (Rd)N .

Let us call

UN(t, x) = U(t,mN
x ) for (t, x) ∈ V N

δ .

From preposition 6.2 in [6]

DxjU
N(t, x) =

1

N
DmU(t,m

N
x , xj)

and

D2
xj ,xj

UN(t, x) =
1

N
D2
ymU(t,m

N
x , xj) +

1

N2
D2
mmU(t,m

N
x , xj).

By the Theorem 3.13, we have the regularity of U and we can easily conclude that,
on V N

δ , UN is C1 in time-space with DxjU
N Lipschitz continuous in space.

We get

|D2
xjxj

UN(t, x)− 1

N
D2
ymU(t,m

N
x , xj)| ≤

C

N2
a.e. in V N

δ .

Let ON(t, x) be such that

|ON(t, x)| ≤ C

T
a.e. in V N

δ . (4.8)

Then UN satisfies





−∂tUN(t, x)−∑N
j=1 ∆xjU

N(t, x) +ON(t, x)

+ 1
N

∑N
j=1H(xj, NDxjU

N(t, x)) = F(mN
x ) a.e. in V

N
δ ,

UN(T, x) = G(mN
x ) on (Rd)N .

(4.9)

Lemma 4.9. Let YN = (Y N,i)i=1,...,N defined by (4.3).
Calling RN = ||UN − VN ||∞, then

E[

∫ τ̃N

t0

N−1
∑

j

|Hp(Y
N,j
t , NDxjU

N)−Hp(Y
N,j
t , NDxjV

N)|2dt] ≤ C(N−1 +RN).

(4.10)
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Proof. Let t ∈ [t0, τ̃
N ] then

dUN(t, Y N
t ) = (∂tU

N +
∑

j

∆xjU
N −

∑

j

Hp(Y
N,j
t , NDxjV

N) ·DxjU
N)dt

+
√
2
∑

j

DxjU
N · dBj

t

= (
1

N

∑

j

H(Y N,j, NDxjU
N(t, Y N

t ))−
∑

j

Hp(Y
N,j
t , NDxjV

N) ·DxjU
N

+ON − F(mN
Y N
t
))dt+

√
2
∑

j

DxjU
N · dBj

t

≥ (
1

N

∑

j

(−L(Y N,j,−Hp(Y
N,j
t , NDxjV

N)) + C−1|Hp(Y
N,j
t , NDxjU

N)

−Hp(Y
N,j
t , NDxjV

N)|2)− CN−1 − F(mN
Y N
t
))dt+

√
2
∑

j

DxjU
N · dBj

t ,

where we used that |ON(t, x)| ≤ CN−1 and the uniform convexity of H in bounded
sets:

L(−Hp(p
∗)) = p∗ ·Hp(p

∗)−H(p∗).

We take expectations and integrate between t0 and τ̃N above and get

E[UN(τ̃N , Y N
τ̃n )]− E[UN(t0, Z

N)]

≥ E[

∫ τ̃N

t0

(
1

N

∑

j

(−L(Y N,j,−Hp(Y
N,j
t , NDxjV

N)) + C−1|Hp(Y
N,j
t , NDxjU

N)

−Hp(Y
N,j
t , NDxjV

N)|2)− CN−1 − F(mN
Y N
t
))dt].

Rearranging, using the definition of RN , the dynamic programming principle
and the optimality of Y N for VN(t0, Z

N) we find

E[UN(t0, Z
N)] + E[

∫ τ̃N

t0

(
1

CN

∑

j

|Hp(Y
N,j
t , NDxjU

N)−Hp(Y
N,j
t , NDxjV

N)|2dt]

≤ E[

∫ τ̃N

t0

(
1

N

∑

j

(L(Y N,j,−Hp(Y
N,j
t , NDxjV

N)) + CN−1 + F(mN
Y N
t
))dt+

+ VN(τ̃N , Y N
τ̃N )] +RN

≤ E[VN(t0, Z
N)] + CN−1 +RN ,

and using once more the definition of RN , we get

E[

∫ τ̃N

t0

(
1

CN

∑

j

|Hp(Y
N,j
t , NDxjU

N)−Hp(Y
N,j
t , NDxjV

N)|2dt] ≤ CN−1 + 2RN .
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Lemma 4.10. For XN = (XN,i) and YN = (Y N,i) defined by (4.5) and (4.3)
respectively, we have

E[ sup
s∈[t0,τ̃N ]

N−1
∑

j

|XN,j
s − Y N,j

s |] ≤ C(N−1 +RN)1/2 (4.11)

and

P[τ̃N < T ] ≤ C(N− 1
d+8 + (RN)1/2). (4.12)

Proof. From Lemma 4.9, the regularity of UN in (4.4)

E[ sup
s∈[t0,t∧τ̃N ]

N−1
∑

j

|XN,j
s − Y N,j

s |]

≤ E[

∫ t∧τ̃N

t0

N−1
∑

j

|Hp(Y
N,j
t , NDxjU

N(t, Y N
t ))−Hp(Y

N,j
t , NDxjV

N(t, Y N
t ))|dt]+

E[

∫ t∧τ̃N

t0

N−1
∑

j

|Hp(Y
N,j
t , NDxjU

N(t, Y N
t ))−Hp(X

N,j
t , NDxjU

N(t,XN
t ))|dt]

≤ C(N−1 +RN)1/2 + CN−1
∑

j

E[

∫ t∧τ̃N

t0

|XN,j
s − Y N,j

s |ds],

and Gronwall’s inequality gives

E[ sup
s∈[t0,τ̃N ]

N−1
∑

j

|XN,j
s − Y N,j

s |] ≤ C(N−1 +RN)1/2.

Then by definition of τ̃N , Lemma 4.8 and 4.10

P[τ̃N < T ] ≤ P[τN < T ] + P[ sup
s∈[t0,τ̃N ]

N−1
∑

j

|XN,j
s − Y N,j

s | > δ

2
]

≤ CN− 1
d+8 + Cδ−1(N−1 +RN)1/2.

We are ready to prove Theorem 4.1.
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Proof of Theorem 4.1. We can notice that using the triangular inequality of the
distance and the additive interval property

E[ sup
s∈[t0,τ̃N ]

d1(m
N
Y N
s
,m(s))]

≤ E[ sup
s∈[t0,τ̃N ]

d1(m
N
Y N
s
,mN

XN
s
)] + +E[ sup

s∈[t0,τ̃N ]

d1(m
N
XN

s
,m(s))]

≤ E[ sup
s∈[t0,τ̃N ]

N−1
∑

j

|XN,j
s − Y N,j

s ] + E[ sup
s∈[t0,τ̃N ]

d1(m
N
XN

s
,m(s))]

≤ C(N−1 +RN)1/2 + CN− 1
d+8 ,

(4.13)

where in the second inequality we used that mN
XN

s
and mN

Y N
s

are the laws respec-

tively of XN
s and Y N

s and in the last one we used lemmas 4.10 and 4.8.

Thanks to Theorem 2.1 we can estimate RN :

RN = ||UN − VN ||∞ ≤ CN−β such that ∃β > 0. (4.14)

Thus, ∃γ′ = γ′(d) and C = C(t0,m0)

E[ sup
s∈[t0,τ̃N ]

d1(m
N
Y N
s
,m(s))] ≤ CN−γ. (4.15)

Finally, we have

E[ sup
s∈[t0,T ]

d1(m
N
Y N
s
,m(s))]

≤ E[ sup
s∈[t0,τ̃N ]

d1(m
N
Y N
s
,m(s)] + E[ sup

s∈[t0,T ]

d21(m
N
Y N
s
,m(s))]1/2P[τ̃N < T ]1/2

≤ CN−γ′ + C(N− 1
d+8 + (RN)1/2)1/2,

(4.16)

where we used the Holder inequality, Lemma 4.10 and that m(s) has a uni-
formly bounded second order moment and by Lemma 2.2 the drift of the process
Y N is also uniformly bounded:

E[ sup
s∈[t0,T ]

d21(m
N
Y N
s
,m(s))] ≤ C.

Thanks to Theorem 2.1, there exists a constant γ′′ = γ′′(d) ∈ (0, 1) and a new
constant C ′ = C ′(t0,m0) > 0 so that we can conclude

E[ sup
s∈[t0,T ]

d1(m
N
Y N
s
,m(s))] ≤ C ′N−γ′′ .



Appendix A

The Wasserstein distance

Theorem A.1. Let, for i = 1, 2
{
∂tm

i −∆mi − div(bimi) = 0 in R
d × (0, T ),

mi(0) = mi
0 in R

d
(A.1)

with

bi(x) = Hp(x,Du
i) and mi(t, x) =

∫

Rd

µ(t, x, y)dy.

Then,

sup
t∈[0,T ]

d2(m
1(t),m2(t)) ≤ C

(
||Du1 −Du2||∞ + d2(m

1
0,m

2
0)
)
. (A.2)

Proof. We write

∂tµ−∆xµ−∆yµ−2∇2
xyµ−divx(b

1(x)µ(t, x, y))−divy(b
2(y)µ(t, x, y)) = 0 in R

2d×(0, T ).
(A.3)

Multiplying (A.3) by |x− y|2 and integrating over R2d we obtain
∫

R2d

∂tµ · |x− y|2dxdy −
∫

R2d

∆xµ · |x− y|2 +∆yµ · |x− y|2 − 2∇2
xyµ · |x− y|2dxdy

−
∫

R2d

divx(b
1(x)µ(x, y)) · |x− y|2dxdy −

∫

R2d

divy(b
2(y)µ(x, y)) · |x− y|2dxdy = 0.

Notice that, using the divergence theorem,
∫

R2d

∆xµ · |x− y|2 +∆yµ · |x− y|2 − 2∇2
xyµ · |x− y|2dxdy = 0.

Using the divergence theorem, we obtain
∫

R2d

∂tµ · |x− y|2dxdy +
∫

R2d

2[b1(x)− b2(y)]µ(x, y)|x− y|dxdy = 0,

71



72 APPENDIX A. THE WASSERSTEIN DISTANCE

and so
∫

R2d

∂tµ · |x− y|2dxdy = 2

∫

R2d

[b2(y)− b1(x)]µ(x, y)|x− y|dxdy,

and, now, recalling that b1(x) = Hp(x,Du
1) and b2(y) = Hp(y,Du

2) and using
that Hp is Lipschitz continuous

∫

R2d

∂tµ · |x− y|2dxdy = 2

∫

R2d

[b2(y)− b1(x)]µ(x, y)|x− y|dxdy

≤ 2

∫

R2d

|b2(y)− b1(x)|µ(x, y)|x− y|dxdy

≤ 2

∫

R2d

C(|x− y|+ |Du1(t, x)−Du2(t, y)|)µ(x, y)|x− y|dxdy

≤ C

∫

R2d

(|x− y|+ |Du1(t, x)−Du2(t, x)|+ |Du2(t, x)−Du2(t, y)|)µ(x, y)|x− y|dxdy

≤ C

∫

R2d

(|x− y|+ ||Du1 −Du2||∞ + ||D2u2||∞|x− y|)µ(x, y)|x− y|dxdy

≤ C

(∫

R2d

|x− y|2µ(x, y) + ||Du1 −Du2||∞
∫

R2d

µ(x, y)|x− y|
)
.

(A.4)

Using Holder’s inequality and the assumptions on µ

∫

R2d

µ(x, y)|x− y|dxdy ≤
(∫

R2d

|x− y|2µ(x, y)dxdy
)1/2(∫

R2d

µ(x, y)dxdy

)1/2

≤ C

(∫

R2d

|x− y|2µ(x, y)dxdy
)1/2

,

and by Young’s inequality

||Du1 −Du2||∞
(∫

R2d

|x− y|2µ(x, y, t)dxdy
)1/2

≤ 1

2
||Du1 −Du2||2∞ +

1

2

∫

R2d

|x− y|2µ(x, y, t)dxdy.

Going back to (A.4) and using the previous estimates we get

∂t

∫

R2d

µ(x, y, t) · |x− y|2dxdy ≤ C||Du1 −Du2||2∞ + C

∫

R2d

|x− y|2µ(x, y, t)dxdy,
(A.5)
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and, now, applying the Gronwall’s lemma we obtain

∫

R2d

µ(t, x, y)·|x−y|2dxdy ≤ C

(
||Du1 −Du2||2∞ +

∫

R2d

µ(0, x, y) · |x− y|2dxdy
)
.

(A.6)
Knowing that d22(m

1
0,m

2
0) = infπ∈Π(m1

0,m
2
0)

∫
R2d |x−y|2dπ(x, y) and so ∃π∗ ∈ Π(m1

0,m
2
0)

such that d22(m
1
0,m

2
0) =

∫
R2d |x− y|2dπ∗(x, y) and so

∫

R2d

µ(t, x, y) · |x− y|2dxdy ≤ C
(
||Du1 −Du2||2∞ + d22(m

1
0,m

2
0)
)
. (A.7)

Recalling that by definition

d22(m
1,m2) = inf

π∈Π(m1,m2)

∫

R2d

|x− y|2dπ(x, y) ≤
∫

R2d

|x− y|2µ(x, y)dxdy.

As all factors involved are positive and taking the supremum on the left-hand side,
we get

sup
t
d2(m

1(t),m2(t)) ≤ C
(
||Du1 −Du2||∞ + d2(m

1
0,m

2
0)
)
. (A.8)
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Appendix B

Kantorovich duality theorem

In this section, we investigate a powerful duality formula due to Kantorovich. It
will used to prove the Kantorovich-Rubistein Theorem 1.1 state in the first Chap-
ter 1.

We need some definitions and a theorem to prove the Kantorovich duality the-
orem.

Definition B.1. Let E be a normed vector space, E∗ its the topological dual and
Θ : E → R ∪ {+∞} a convex function. The Legendre-Fenchel transform of Θ is
given by the function Θ∗ defined on E∗ with the formula

Θ∗(z∗) = sup
z∈E

[⟨z∗, z⟩ −Θ(z)].

Definition B.2. A Polish space is a separable completely metrizable topological
space.

Theorem B.3 (Fenchel-Rockafellar duality theorem). Let E be a normed vector
space, E∗ its topological dual space and two convex functions Θ,Ξ : E → R∪{+∞}
. Let Θ∗, Ξ∗ be the Legendre-Fenchel transform of Θ, Ξ respectively.
Assume that there exists z0 ∈ E, such that Θ continuous at z0, Θ(z0) < +∞ and
Ξ(z0) < +∞. Then,

inf
E
[Θ + Ξ] = max

z∗∈E∗

[−Θ∗(−z∗)− Ξ∗(z∗)].

For the proof, see Theorem 1.9 in [20].

Finally, we state and prove a dual formulation for linear minimization problem
that was introduced by Kantorovich in 1942.
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Theorem B.4 (Kantorovich duality theorem). Let X and Y be Polish spaces and
µ, ν two probability measures such that µ ∈ P(X) and ν ∈ P(Y ).
Let c : X × Y → R+ ∪ {+∞} be a lower semicontinuous cost function.
Call

I[π] =

∫

X×Y

c(x, y) dπ(x, y),

and

J(ϕ, ψ) =

∫

X

ϕ dµ+

∫

Y

ψ dν,

with π ∈ P(X × Y ) and (ϕ, ψ) ∈ L1(dµ)× L1(dν).
Let us define the set Π(µ, ν) of Borel probability measures on X×Y with marginals
µ and ν, and Φc the set of measurable functions (ϕ, ψ) ∈ L1(dµ) × L1(dν) such
that

ϕ(x) + ψ(y) ≤ c(x, y) (B.1)

for dµ-almost all x ∈ X and dν-almost all y ∈ Y .
Then .

inf
π∈Π(µ,ν)

I[π] = sup
(ϕ,ψ)∈Φc

J(ϕ, ψ)

Sketch of the proof. (≤) Let (ϕ, ψ) ∈ Φc and π ∈ Π(µ, ν). By definition of Π(µ, ν)

J(ϕ, ψ) =

∫

X

ϕ dµ+

∫

Y

ψ dµ =

∫

X×Y

[ϕ(x) + ψ(y)]dπ(x, y).

(B.1) holds only almost everywhere and so, let NX and NY such that µ(NX) = 0
and ν(NY ) = 0. Then (B.1) holds for any (x, y) ∈ NC

X ×NC
Y . Since π[NX × Y ] =

µ(NX) = 0 and π[X ×NY ] = ν(NY ) = 0, we have that π[(NC
X ×NC

Y )
C ] = 0. As a

consequence
∫

X×Y

[ϕ(x) + ψ(y)]dπ(x, y) ≤
∫

X×Y

c(x, y)dπ(x, y) = I[π].

Taking the supremum on the left-hand side and the infimum on the right-hand
side in the last inequality we get the thesis.

(≥) Let us divide the proof in three parts.

(1) X and Y compact sets and c continuous function on X × Y .
Set E the set of bounded continuous functions on X×Y equipped with the supre-
mum norm || · ||∞. Using the Riesz’ theorem, the dual of E is E∗ = M(X × Y ),
the set on Radon measures. Let us define

Θ : u ∈ E ↦→
{
0 if u(x, y) ≥ −c(x, y)
+∞ else,
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and

Ξ : u ∈ E ↦→
{∫

x
ϕ dµ+

∫
Y
ψ dν if u(x, y) = ϕ(x) + ψ(y)

+∞ else.

The assumption of Theorem B.3 are satisfied with z0 = 1.
Note that

inf

{∫

X

ϕ dµ+

∫

Y

ψ dν : ϕ(x) + ψ(y) ≥ −c(x, y)
}

= − sup{J(ϕ, ψ) : (ϕ, ψ) ∈ Φc}.

Let π ∈M(X × Y ). We compute the Legendre-Fenchel transform of Θ and Ξ.

Θ∗(−π) = sup
u∈E

{
−
∫
u(x, y) dπ(x, y) : u(x, y) ≥ −c(x, y)

}

= sup
u∈E

{∫
u(x, y) dπ(x, y) : u(x, y) ≤ c(x, y)

}
.

Thus

Θ∗(−π) =
{∫

X×Y
c(x, y) dπ(x, y) if π is non negative

+∞ else.

Similarly, calling Cb(A) the set of bounded continuous function on A and setting
D = Cb(X)× Cb(Y ),

Ξ∗(π) =

{
0 if ∀(ϕ, ψ) ∈ D :

∫
X×Y

(ϕ(x) + ψ(y))dπ(x, y) =
∫
x
ϕdµ+

∫
y
ψdν

+∞ else.

Noting that Cb(X) × Cb(Y ) ⊂ L1(dµ) ∩ L1(dν), putting everything together and
changing signs, we recover

inf
Π(µ,ν)

I(π) = sup
Φc

J(ϕ, ψ).

(2) c is bounded and uniformly continuous.
We define

||c||∞ = sup
X×Y

c(x, y).

Let π∗ ∈ Π(µ, ν) such that I[π∗] = infπ∈Π(µ,ν) I[π]. Let δ > 0 small. We have
that X × Y is a Polish space since X and Y are so. π∗ is tight and so there exist
X0 ⊂ X and Y0 ⊂ Y so that µ(X \X0) ≤ δ and ν(Y \ Y0) ≤ δ. It can be proved
that π∗[(X × Y ) \ (X0 × Y0)] ≤ 2δ.
Define

π0∗ =
IX0×Y0

π∗(X0 × Y0)
π∗,
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and let µ0 and ν0 be the marginals of π0∗ onto X0 and Y0 respectively.
We define Π0(µ0, ν0) the set of probability with marginals µ0 and ν0.
Let us define

I0[π0] =

∫

X0×Y0

c(x, y)dπ0(x, y).

Let π̃0 ∈ Π(µ0, ν0) be such that

I[π̃0] = inf
Π0(µ0,ν0)

I0[π0].

We construct from π̃0,

π̃ = π∗(X0 × Y0)π̃0 + I(X0×Y0)Cπ∗.

We calculate I(π̃)

I(π̃) = π∗(X0 × Y0)I0(π̃0) +

∫

(X0×Y0)C
c(x, y)dπ∗(x, y) ≤ I0(π̃0) + 2||c||∞δ

= inf I0 + 2||c||∞δ.

Thus
inf

Π(µ,ν)
I[π] ≤ inf I0 + 2||c||∞δ.

Let

Jo(ϕ0, ψ0) =

∫

X0

ϕ0 dµ0 +

∫

Y0

ψ0 dν0 defined on L1(dµ0)× L1(dν0).

By (1) we have inf I0 = sup J0.

There exists a couple of function (ϕ̃0, ψ̃0) such that J0(ϕ̃0, ψ̃0) ≥ sup J0 − δ.

We ensure that ϕ̃0(x)+ ψ̃0(y) ≤ c(x, y) for all x and y allowing that ϕ̃0 and ψ̃0 take
values in R∪{−∞}. Without loss of generality, we assume δ ≤ 1. Since J0(0, 0) = 0

then sup J0 ≥ 0 and so J0(ϕ̃0, ψ̃0) ≥ −δ ≥ −1. So exists (x0, y0) ∈ X0 × Y0 such

that ϕ̃0(x0) + ψ̃0(y0) ≥ −1. We have ϕ̃0(x0) ≥ −1
2
and ψ̃0(y0) ≥ −1

2
. We get that,

∀(x, y) ∈ X0 × Y0,

ϕ̃0(x) ≤ c(x, y0)− ψ̃0(y0) ≤ c(x, y0) +
1

2
,

ψ̃0(y) ≤ c(x0, y)− ϕ̃0(x0) ≤ c(x0, y) +
1

2
.

Let us define
ϕ0(x) = inf

y∈Y0
[c(x, y)− ψ̃0(y)].
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We have ϕ̃0 ≤ ϕ0 on X0 and so J0(ϕ0, ψ̃0) ≥ J0(ϕ̃0, ψ̃0) and

ϕ0(x) ≥ inf
y
[c(x, y)− c(x0, y)]−

1

2
,

and

ϕ0(x) ≤ c(x, y0)− ψ̃0(y0) ≤ c(x, y0) +
1

2
.

We define
ψ0(y) = inf

x∈X0

[c(x, y)− ϕ0(x)],

and we still have (ϕ0, ψ0) ∈ Φc and J0(ϕ0, ψ0) ≥ J0(ϕ0, ψ̃0) ≥ J0(ϕ̃0, ψ̃0).
We have

ψ0(y) ≥ inf
x
[c(x, y)− c(x, y0)]−

1

2
,

and

ψ0(y) ≤ c(x0, y)− ϕ0(x0) ≤ c(x0, y)− ϕ̃0(x0) ≤ c(x0, y) +
1

2
.

In particular

ϕ0(x) ≥ −||c||∞ − 1

2
,

and

ψ0(y) ≥ −||c||∞ − 1

2
.

With some simple inequality we get

J(ϕ0, ψ0) ≥ (1− 2δ)[inf I − 2(2||c||∞ + 1)δ]− 2(2||c||∞ + 1)δ.

Since δ is arbitrary we can conclude that sup J(ϕ, ψ) ≥ inf I.

(3) General case
We write c = supn cn, where cn is a non-decreasing sequence of non-negative
uniformly continuous cost functions. Replacing cn by infn(cn, n) one can assume
that cn is bounded.
Let

In[π] =

∫

X×Y

cn dπ for π ∈ Π(µ, ν).

By (2) we have
inf

π∈Π(µ,ν)
In[π] = sup

(ϕ,ψ)∈Φcn

J(ϕ, ψ). (B.2)

Since cn ≤ c by construction, it follows that Φcn ⊂ Φc, then

sup
(ϕ,ψ)∈Φcn

J(ϕ, ψ) ≤ sup
(ϕ,ψ)∈Φc

J(ϕ, ψ). (B.3)



80 APPENDIX B. KANTOROVICH DUALITY THEOREM

Since In is a non-decreasing sequence of functional, then In is a non-decreasing
sequence bounded above by inf I. Π(µ, ν) is tight and relatively compact for the
weak topology.
In particular, if (πkn)k∈N is any minimizing sequence for the problem inf In[π] then,

up to a subsequence, πkn
k→∞−−−→ πn ∈ P(X × Y ) weakly and so ∀θ bounded and

continuous function
∫
θ(x, y) dπkn(x, y)

k→∞−−−→
∫
θ(x, y) dπn(x, y),

and we see that πn ∈ Π(µ, ν) and

inf In = lim
k→∞

∫
cn dπ

k
n =

∫
cn dπn.

By compactness of Π(µ, ν), the sequence (πn)n admits a cluster point π∗. Whenever
n ≥ m

In[πn] ≥ Im[πn].

By continuity
lim
n→∞

In[πn] ≥ lim sup
n→∞

Im[πn] ≥ Im[π∗].

By monotone convergence Im[π∗]
m→∞−−−→ I[πk] and so

lim
n→∞

In[πn] ≥ lim
m→∞

Im[π∗] = I[π∗] ≥ inf
π∈Pi(µ,ν)

I[π],

which proves
lim
n→∞

inf
π∈Π(µ,ν)

In[π] ≥ inf
π∈Π(µ,ν)

I[π].

By invoking the monotone convergence theorem for the increasing sequence (cn)n,
we have

I[π∗] = lim
n→∞

In[π∗] ≤ lim
n→∞

lim sup
k→∞

In[πk] ≤ lim sup
k→∞

I[πk] = inf I.

Combining all these results, we get the thesis.

Definition B.5. Let c : X × Y → R ∪ {+∞} be a bounded lower semicontinuous
function. Let ϕ : X → R be a bounded function. We define

ϕc(y) = inf
x
[c(x, y)− ϕ(x)]

and
ϕcc(x) = inf

y
[c(x, y)− ϕc(y)].

The couple (ϕcc, ϕc) is called conjugate c-concave functions.
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Now we are ready to prove Theorem 1.1.

Proof of theorem 1.1. Let us call d(x, y) the metric on X×Y and be dn := d
1+n−1d

.

Since 1+dn−1 ≥ 1, we note that dn ≤ d and for all x, y ∈ R
d, dn(x, y)

n→∞−−−→ d(x, y)
monotonically. Finally, let us point out that the set of 1-Lipschitz functions for dn
is included in the set of 1-Lipschitz functions for d since dn ≤ d and so

|f(x)− f(y)| ≤ dn(x, y) ≤ d(x, y).

So, by that, we can use Theorem B.4 with d bounded (otherwise we can reason
with dn) and we only have to check that

sup
(ϕ,ψ)∈Φc

J(ϕ, ψ) = sup
ϕ:1−Lip

{∫

Rd

ϕ d(m−m′)

}
,

recalling that J(ϕ, ψ) =
∫
X
ϕd µ+

∫
Y
ψ dν.

Let (ϕdd, ϕd) be the d-concave conjugate functions. We have that ϕd is 1-Lipschitz
since is the infimum of ϕ that is a 1-Lipschitz function. It follows from the proof
of Theorem B.4 (with d bounded) that

sup
(ϕ,ψ)∈Φc

J(ϕ, ψ) = sup
ϕ∈L1(dm)

J(ϕdd, ϕd),

and noting that, using the lipschitzianity,

−ϕd(x) ≤ inf
y
[d(x, y)− ϕd(y)] ≤ −ϕd(x),

where in the last inequality we put x = y. We conclude that

ϕdd = −ϕd.

It can also proved that (ϕdd)d = ϕd. Then

sup
(ϕ,ψ)∈Φc

J(ϕ, ψ) = sup
ϕ∈L1(dm)

J(ϕdd, ϕd) = sup
ϕ∈L1(dm)

J(−ϕd, ϕd)

≤ sup
ϕ:1−Lip

J(−ϕ, ϕ) ≤ sup
Φc

J(ϕ, ψ),

and we get the thesis.
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Appendix C

Lions-Malgrange-type argument

In this part we show the Lions-Malgrange-type argument : we prove the uniqueness
of solution a general linear forward-backward system with given initial data. This
result is used several times in the thesis.

Let the pair ((zk)k=1,...,d, µ) = ((∂xk(u− ũ))k=1,...,d,m− m̃) solves the system




−∂tzk −∆zk + gk(t, x) = 0 in (t1, T )× R
d,

∂tµ−∆µ+ div(h) = 0 in (t1, T )× R
d

µ(t1) = 0 and zk(t1, ·) = 0 on R
d.

(C.1)

Assuming that

d∑

k=1

|gk(t, x)|2 ≤ C(|z(t, x)|2 + |Dz(t, x)|2 + ||µ(t)||2L2),

|h(t, x)|2 ≤ C(|z(t, x)|2 + |µ(t, x)|2),
|div(h(t, x))|2 ≤ C(|z(t, x)|2 + |Dz(t, x)|2 + |µ(t, x)|2 + |Dµ(t, x)|2).

(C.2)

Let us point out that the system in (C.1) is different to the classical MFG and
MFC systems since the data are both given in an initial point t1 and the two
equations are one forward and the other one backward.

Theorem C.1. Under the above assumptions, (zk, µ) = (0, 0) on [t1, T ]× R
d

Proof. Without loss of generality, let us assume that t1 = 0 and it is sufficient to
prove that, for T > 0 sufficiently small, ((zk)k=1,...,d, µ) = (0, 0) on [0, T/2].
Let θ : [0, T ] → [0, 1] be a smooth non decreasing function so that ||θ′(t)||∞ ≤ C/T
and

θ(t) =





1 on [0, T/2],

θ(t) on (T/2, 2T/3),

0 on [2T/3, T ].

83
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For c ≥ 1, we set

z̃k(x, t) = ec(t−T )
2/2θ(t)zk(x, t) and µ̃(x, t) = ec(t−T )

2/2θ(t)µ(x, t).

Then, ((z̃k)k=1,...,d, µ̃) satisfies




(i) −∂tz̃k −∆z̃k + c(t− T )z̃k + ec(t−T )
2/2θ′zk + ec(t−T )

2/2θgk = 0,

(ii) ∂tµ̃−∆µ̃− c(t− T )µ̃− ec(t−T )
2/2θ′µ+ ec(t−T )

2/2θdiv(h) = 0,

(iii) z̃k(x, 0) = µ̃(x, 0) = z̃k(x, T ) = µ̃(x, T ) = 0.

(C.3)

Multiplying (C.3)-(ii) by ∂tµ̃ and integrating in time-space, we obtain

∫ T

0

∫

Rd

∂tµ̃·∂tµ̃−∆µ̃·∂tµ̃−c(t−T )µ̃·∂tµ̃−ec(t−T )
2/2θ′µ·∂tµ̃+ec(t−T )

2/2θdiv(h)·∂tµ̃ = 0,

and after integrating by parts the second term and using that ∂t(µ̃)
2 = 2µ̃ ·∂tµ̃

∫ T

0

∫

Rd

(∂tµ̃)
2−1

2
∂t|Dµ̃|2−

c

2
(t−T )∂t(µ̃)2−(ec(t−T )

2/2θ′µ−ec(t−T )2/2θdiv(h))∂tµ̃ = 0.

Integrating the second term in time and by parts in time the third one (using
the boundary conditions)

∫ T

0

∫

Rd

(∂tµ̃)
2 +

c

2
(µ̃)2 − (ec(t−T )

2/2θ′µ− ec(t−T )
2/2θdiv(h))∂tµ̃ = 0.

Using the Young’s inequality on the third term

∫ T

0

∫

Rd

(∂tµ̃)
2 +

c

2
(µ̃)2 ≤ C

∫ T

0

∫

Rd

(ec(t−T )
2

(θ′)2µ2 + ec(t−T )
2

θ2|div(h)|2)

+
1

2

∫ T

0

∫

Rd

(∂tµ̃)
2,

(C.4)

and so
∫ T

0

∫

Rd

1

2
(∂tµ̃)

2 +
c

2
(µ̃)2 ≤ C

∫ T

0

∫

Rd

(ec(t−T )
2

(θ′)2µ2 + ec(t−T )
2

θ2|div(h)|2). (C.5)

Repeating the same steps for (C.3)-(i) multiply by ∂tz̃k and integrating in
time-space

∫ T

0

∫

Rd

1

2
(∂tz̃k)

2 +
c

2
(z̃k)2 ≤ C

∫ T

0

∫

Rd

(ec(t−T )
2

(θ′)2(zk)2 + ec(t−T )
2

θ2g2k). (C.6)
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Consider (C.3)-(ii) multiply by µ̃ and integrating in time-space

∫ T

0

∫

Rd

∂tµ̃ · µ̃−∆µ̃ · µ̃− c(t− T )µ̃ · µ̃− ec(t−T )
2/2θ′µ · µ̃+ ec(t−T )

2/2θdiv(h) · µ̃ = 0,

and considering the bounding conditions, integrating by parts the first and the
second term and using the divergence theorem on the last one we get

∫ T

0

∫

Rd

|Dµ̃|2 − c(t− T )(µ̃)2 + (−ec(t−T )2/2θ′µ) · µ̃− (ec(t−T )
2/2θh) ·Dµ̃ = 0.

Hence, by Young’s inequality

∫ T

0

∫

Rd

1

2
|Dµ̃|2 ≤

∫ T

0

∫

Rd

(µ̃)2 + C(ec(t−T )
2

(θ′)2µ2 + ec(t−T )
2

θ2h2). (C.7)

Repeating the same steps multiplying (C.3)-(i) by zk and integrating in time-
space

∫ T

0

∫

Rd

|Dz̃k|2 + c(t− T )(z̃k)2 + (ec(t−T )
2/2θ′zk + ec(t−T )

2/2θgk) · z̃k = 0.

Then, for ϵ ∈ (0, 1) to be chosen later

∫ T

0

∫

Rd

|Dz̃k|2 ≤
∫ T

0

∫

Rd

(cT + ϵ−1)(z̃k)2 + Cϵ(ec(t−T )
2

(θ′)2(zk)2 + ec(t−T )
2

θ2g2k).

(C.8)
Since the assumption on h, gk and |div(h)|2, the result obtain in (C.5) becomes

c

2

∫ T

0

||µ̃(t)||22 ≤ C

∫ T

0

∫

Rd

(ec(t−T )
2

(θ′)2||µ(t)||22

+ ec(t−T )
2

θ2(||z(t)||22 + ||Dz(t)||22 + ||µ(t)||22 + ||Dµ(t)||22)).

Rearranging, noting that ec(t−T )
2
θ2 ≤ 1 and using that ||v(t)||2H1 := ||v(t)||22 +

||Dv(t)||22,

c

∫ T

0

||µ̃(t)||22 ≤ C

∫ T

0

(ec(t−T )
2

(θ′)2||µ(t)||22 + ||z̃(t)||2H1 + ||µ̃(t)||2H1). (C.9)

The same argument for (C.6) yields to

c

∫ T

0

||z̃k(t)||22+ ≤ C

∫ T

0

ec(t−T )
2

(θ′)2||zk(t)||22 + ||z̃(t)||2H1 + ||µ̃(t)||2H1 . (C.10)
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Then (C.7) becomes

∫ T

0

||Dµ̃(t)||22 ≤ C

∫ T

0

ec(t−T )
2

(θ′)2||µ(t)||22 + ||z̃(t)||22 + ||µ(t)||22, (C.11)

and (C.8)

∫ T

0

||Dz̃k(t)||22 ≤
∫ T

0

(cT + ϵ−1)||z̃k(t)||22

+ Cϵ(ec(t−T )
2

(θ′)2||z̃k(t)||22 + ||z̃(t)||2H1 + ||µ̃(t)||2H1).

(C.12)

Summing (C.12) over k, for ϵ > 0 small enough

∫ T

0

||Dz̃(t)||22 ≤ C

∫ T

0

(cT + 1)||z̃(t)||22 + ec(t−T )
2

(θ′)2||z(t)||22 + ||µ̃(t)||2H1 .

Plugging (C.11) into the above inequality gives

∫ T

0

||Dz̃(t)||22 ≤ C

∫ T

0

(cT +1)||z̃(t)||22+ ec(t−T )
2

(θ′)2(||z(t)||22+ ||µ(t)||22)+ ||µ̃(t)||22.
(C.13)

Sum over k the inequality in (C.10) and collecting (C.9), (C.11) and (C.13)

c

∫ T

0

||µ̃(t)||22 + ||z̃(t)||22 ≤ C

∫ T

0

ec(t−T )
2

(θ′)2(||µ(t)||22 + ||z(t)||22) + ||z̃(t)||2H1 + ||µ̃(t)||2H1

≤ C

∫ T

0

ec(t−T )
2

(θ′)2(||µ(t)||22 + ||z(t)||22) + (cT + 1)||z̃(t)||22 + ||µ̃(t)||22
.

We can now fix T > 0 small enough, so that, for any c large enough

c

2

∫ T

0

||µ̃(t)||22 + ||z̃(t)||22 ≤ C

∫ T

0

ec(t−T )
2

(θ′)2(||µ(t)||22 + ||z(t)||22).

By the definition of θ

c

2

∫ T/2

0

ec(t−T )
2

(||µ(t)||22 + ||z(t)||22) ≤
C

T

∫ T

T/2

ec(t−T )
2

(||µ(t)||22 + ||z(t)||22).

Hence,

c

2
ec(T/2)

2

∫ T/2

0

(||µ(t)||22 + ||z(t)||22) ≤
C

T
ec(T/2)

2

∫ T

T/2

(||µ(t)||22 + ||z(t)||22).
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Dividing both terms in the last inequality by ec(T/2)
2
and letting c→ ∞ yields

to (z, µ) = (0, 0) on [0, T/2].
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