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Introduction

The last decade witnessed a technological revolution in which Artificial Intelligence (AI), and in
particular the branch of Machine Learning (ML), played a central role. The modern idea of ML,
the branch of computer science that studies how to develop machines that are capable of learning
information from data, dates back more than sixty years ago. However, it is only recently that
the Big Data revolution and the modern hardware for parallel computing allowed to train powerful
deep learning models. Nowadays, deep neural network models proved successful in many fields of
knowledge, from science to engineering and economy. The problem with these architectures is that, in
many cases, they are treated like black boxes over which we are not able to tell what they have learned
from the data and why they make certain choices. Understanding what are the principles guiding the
functioning of ML models is crucial in those fields in which even a small error might be critical, or
where important decisions that might be aided by AI have to be taken. For this reason, in the last
years, researchers have put a lot of effort in the direction of explainable machine learning, namely the
development of methods and ML architectures that can be interpreted by humans.

The object of this thesis is the Restricted Boltzmann Machine (RBM), a neural network model which
is inspired by the spin systems studied in the field of Statistical Physics. The main advantage of using
this type of architecture is that we can apply the tools developed in the study of disordered systems
for providing a macroscopic description of the model and for understanding how the machine learns
from the data. Throughout this work, we will always put the accent on the explainability rather
than on the performances. Among the practical applications of the RBM, a particular interest here is
dedicated to biological datasets, and in particular to protein sequences.

This thesis is structured as follows. In chapter 1 we present the basic RBM and we discuss some possible
extensions of the model that have been implemented in this thesis work, such as the possibility to deal
with categorical (Potts) variables and to train the model in a semi-supervised fashion. Eventually, we
present some theoretical results taken from the literature that help the understanding of the learning
process. Chapter 2 is dedicated to the training of the RBM. Here we enter into the more technical
aspects of the training and we present some experiments done with the model. In chapter 3 we discuss
the mean-field theory and we extend it to the case of the Potts RBM. Finally, in chapter 4 we present
a new method for generating relational trees of data by using the mean-field theory and the learning
dynamics of the model, an application of the RBM that is particularly interesting for protein datasets.

The scientific contribution of this work consists in the algorithm presented in chapter 4 and in the
derivation of the TAP equations for the Potts RBM that is discussed in chapter 3 which, to our
knowledge, was not yet present in the literature. We also adapted the training program to work with
categorical labels instead of one-hot vectors, and implemented the semi-supervised learning procedure.
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Chapter 1

The Restricted Boltzmann Machine

In this chapter we present the Restricted Boltzmann Machine (RBM). Instead of starting with the
most general case, we choose to begin our exposition with a short introduction to the learning of
energy-based models and then to describe the most simple case of an RBM, in which both the visible
and the hidden units are binary variables. We then progressively add complexity to this base model,
first by generalizing the visible layer to the case of categorical variables and then allowing for a generic
potential acting on the hidden units. Eventually, we will present the most general case coherent with
the scopes of this work, in which we consider a semi-supervised setting where partially annotated data
are used for the training. The last section of this chapter aims at showing how a physics-inspired
approach can be profitable to study the model from a theoretical perspective, and in this context we
will have the opportunity to introduce a useful language for describing the model that is borrowed
from the field of disordered systems.

1.1 Definition of The Model

1.1.1 Unsupervised Learning with Energy-Based Models

In the framework of unsupervised Machine Learning (ML), we are given a datasetD = {x(k)
d }k=1,...,Ndata

,

where x
(k)
d is a M -dimensional real vector, and we assume that the data are identically and indepen-

dently distributed (i.i.d.) according to an unknown probability distribution p(x). Our goal is to learn
the empirical distribution of the data and to encode it in a computational model pθθθ(x), parametrized
by some parameters θ, by properly tuning the parameters of the model. The procedure of fitting the
model on the data is called training. Once the model is properly trained, it is then possible to use it
in a generative way, by sampling new data that have the same statistics as the training dataset.

We will restrict ourselves to the particular family of energy-based models, which is defined by a prob-
ability distribution written in the form

pθθθ(x) =
1

Zθθθ
e−E(x;θθθ), (1.1)

where E is called energy function or Hamiltonian. Zθθθ is called partition function, an it is the normal-
ization factor of the probability distribution:

Zθθθ =
∑
x

e−E(x,θθθ). (1.2)

In the expression above and throughout all the exposition of this work, we conventionally indicate
as
∑

x (with a bold symbol as a subscript) the trace operator, which has to be intended either as a
sum over all the configurations of the system if the variables are discrete, or as a multi-dimensional
integral if the variables are continuous. It follows, then, that to define the probability distribution of
an energy-based model it is sufficient to specify an energy function E(x;θθθ). In Statistical Physics, the
probability distribution (1.1) is known under the name of Boltzmann distribution.
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1.1. DEFINITION OF THE MODEL CHAPTER 1. THE RBM

Figure 1.1: Probabilistic graph of a Boltzmann Machine: each node represent a random variable xj and it is
subject to a local bias (field) bj . The graph is fully-connected, and the edges represent the interactions among
variables. The entity of the interaction is described by the weights matrix w.

At this point, it is yet not clear how to choose the functional form of the energy function. The
inspiration comes from the Ising model in Statistical Physics, where a set of spin variables si ∈ {−1, 1}
interact on a lattice through the Hamiltonian

E(s) = −
∑
(i,j)

Jijsisj −
∑
i

bisi, (1.3)

where J is the interaction matrix, b is an external magnetic field and the sum runs over all the
connected pairs of spins (Jij ̸= 0). Physically, the interaction term rewards those configurations where
two interacting spins si and sj are aligned if Jij > 0, and anti-aligned if Jij < 0. On the other hand,
the second term competes for aligning the spins along the direction of the field at each site, and we
therefore say that the field acts as a bias. The probability distribution of the configurations of a spin
system at equilibrium is exactly given by the Boltzmann distribution (1.1), where the parameters of
the model are θθθ = (J , b).

Following the Ising model analogy, we can think of describing our data by using an undirected graph
made of M connected nodes, where the nodes of the graph represent random variables associated
with the M components of the data vectors. The edges of the graph represent statistical interactions
among the variables, and the strength of the interactions is described by the weight matrix w = {wij}
(we change notation to be coherent with the computer science community), such that wii = 0 ∀i =
1, . . . ,M . Finally, we consider an “external field”, b, that acts as a local bias for the variables. In this
way, we can introduce an effective energy function,

E(x;θθθ) = −
∑
i,j

wijxixj −
∑
i

bixi, (1.4)

and define a probability function over the graph given by Equation (1.1). Instead of considering spin
variables, i.e. that can assume values in {−1, 1}, we move to the computer science representation of
binary variables xi ∈ {0, 1}. The Hamiltonian (1.4) does not carry any physical meaning about the
data, but it has to be intended as an effective model that we use as a tool for extracting information
from the data. A computational model that implements the probability distribution associated with
an energy function of the kind (1.4) is generally called Boltzmann Machine (BM) [13].

1.1.2 Boltzmann Machine Learning

Given a set of examples D = {x(k)
d }k=1,...,Ndata

, we are interested in adjusting the parameters θθθ of the
generative model so that it approximates the empirical distribution of the data

pdata(x) =
1

Ndata

Ndata∑
k=1

δ
(
x− x

(k)
d

)
, (1.5)

where δ(x − y) = 1 if x = y and 0 otherwise. A standard way of doing this is to translate the
inference into an optimization problem, where the parameters are tuned in such a way to minimize

8



CHAPTER 1. THE RBM 1.1. DEFINITION OF THE MODEL

the Kullback-Leibler (KL) divergence between the empirical distribution and the inferred one with
respect to the parameters θθθ:

DKL(pdata||pθθθ) =
∑
x

pdata(x) log

(
pdata(x)

pθθθ(x)

)
=

=
∑
x

pdata(x) log pdata(x)−
∑
x

pdata(x) log pθθθ(x). (1.6)

The first term is (minus) the Shannon entropy of the empirical distribution, and it does not depend
on the parameters of the model. This means that minimizing the KL divergence is equivalent to
maximizing the term

L(θθθ|D) =
∑
x

pdata(x) log pθθθ(x)

∝
Ndata∑
k=1

∑
x

δ
(
x− x

(k)
d

)
log pθ(x) =

=

Ndata∑
k=1

log pθθθ(x
(k)
d ) = log

(
Ndata∏
k=1

pθθθ(x
(k)
d )

)
, (1.7)

which is nothing but the Log-Likelihood (LL) of the model with respect to the dataset D. The
presence of the partition function prevents us from directly evaluating the LL (or, equivalently, the
KL divergence), and therefore standard optimization routines do not help. However, we can still
maximize the LL using the Gradient Ascent (GA) method, which consists of iteratively updating the
parameters of the model by moving in the direction of the gradient of the LL evaluated on the data:

θi(t+ 1)← θi(t) + η∆θi with ∆θi ≡
∂L(θθθ|D)

∂θi
, (1.8)

where η is a (small) hyper-parameter called learning rate and t = 1, . . . , Nupd. This optimization
method can be made stochastic – and in this case we talk about Stochastic Gradient Ascent (SGA)
– by subdividing the data into branches, called minibatches, and evaluating the gradient on these
subsets rather than on the whole dataset. In this way, we introduce a sort of “effective temperature”
in the system that helps the algorithm escape local maxima and improves the speed of the learning.

Now, for each parameter θi, we can associate a conjugate variable defined as

Cθi(x) ≡ −
∂E(x;θθθ)

∂θi
. (1.9)

Then, for a Boltzmann-like probability distribution, the gradient of the LL with respect to its param-
eters is particularly simple to write down:

∂L(θθθ|D)

∂θi
=

∂

∂θi

[
1

Ndata

Ndata∑
k=1

(
−E(x

(k)
d ;θθθ)− logZθθθ

)]
=

=
1

Ndata

Ndata∑
k=1

Cθi(x
(k)
d )−

∑
x

Cθi(x)
e−E(x;θθθ)

Zθθθ
=

= ⟨Cθi⟩D − ⟨Cθi⟩E , (1.10)

where we denoted as ⟨·⟩D the average over the empirical distribution (1.5) and as ⟨·⟩E the average
according to the probability distribution of the generative model. In particular, the gradient of the
LL associated with the model (1.4) is

∆wij =
∂L(θθθ|D)

∂wij
= ⟨xixj⟩D − ⟨xixj⟩E ,

∆bi =
∂L(θθθ|D)

∂bi
= ⟨xi⟩D − ⟨xi⟩E .

(1.11)
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From these equations, we can see that the parameters of the model are tuned in such a way as to
make the one-point and two-point correlation functions predicted by the model coincide with the
empirical ones obtained from the data. This is not a coincidence, since it can be directly shown that
the Boltzmann distribution associated with the Hamiltonian (1.4) is the maximum entropy model that
matches the firsts two moments of the data.

The first term of the gradient (1.10), the so-called positive term, is readily evaluated from the data.
The difficult part comes when we want to evaluate the second part – the negative term – because the
presence of the intractable partition function prevents us from computing the average. This problem
can be overcome if we renounce computing the negative term exactly and we rather try to approximate
it using dynamic Monte Carlo methods. Indeed, if we are able to sample N i.i.d. random variables
from a probability distribution p(x), the average of a generic function f under p can be estimated by
the empirical mean, i.e.,

⟨f⟩ =
∑
x

f(x)p(x)
N→∞
≈ 1

N

N∑
k=1

f
(
x(k)

)
= f with x(k) ∼ p(x). (1.12)

In this way, the problem of evaluating an intractable probability distribution translates into the prob-
lem of sampling i.i.d. samples from the model.

We can sample configurations from pθθθ by running a Markov Chain Monte Carlo (MCMC) process with
(Boltzmann-)Gibbs sampling. The dynamics of the chain consists of picking up a node randomly, say
xk, and considering all the other nodes, that we indicate as x−k, as fixed. Then, we update the state
of the node using heat-bath dynamics, i.e. according to the conditioned probability

pθθθ(xk = 1|x−k) =
pθθθ(x)

pθθθ(x−k)

∣∣∣∣
xk=1

=
exp

[∑
i xi

(
bi +

∑
j wijxj

)]
∑

xk=0,1 exp
[∑

i xi

(
bi +

∑
j wijxj

)]
∣∣∣∣∣∣
xk=1

=

=
exp

[
xk

(
bk +

∑
j wkjxj

)]
∑

x=0,1 exp
[
x
(
bk +

∑
j wkjxj

)]
∣∣∣∣∣∣
xk=1

=

=
1

1 + e−(bk+Ik(x−k))
= sigmoid(bk + Ik(x−k)), (1.13)

where we introduced the sigmoid function sigmoid(x) = 1
1+e−x and we defined the total “current”

coming from the other nodes as

Ik(x−k) ≡
∑
j

wkjxj with wkk = 0. (1.14)

We will refer to the total current arriving at a node plus the contribution of the local field as the
activation of the node, and we will call activation function the mapping from the activation to the
probability of the node to be active (the sigmoid function, in this specific case).

The algorithm for sampling from pθθθ(x) is described in Algorithm 1. It can be proven that the algorithm
satisfies the detailed balance condition, which in turn guarantees the convergence of the chain toward
the target equilibrium distribution.

Under mild conditions, the previous algorithm is guaranteed to converge to the distribution pθθθ(x) in
the limit t → ∞. We therefore have to make sure that NGibbs is large enough to permit the Markov
Chain to reach the equilibrium, that is, we want the final state of the chain to be de-correlated from the
initial condition x0. Once the BM is successfully trained, we can use the Algorithm 1 for generating
new data starting from a random initial state.

The Boltzmann Machine has the advantage of being a simple model whose learning dynamics is easily
interpretable: just match the firsts two moments of the distribution with the empirical ones. An

10



CHAPTER 1. THE RBM 1.1. DEFINITION OF THE MODEL

Algorithm 1 Gibbs sampling MCMC for BMs

Input: Initial state: x0, Number of steps: NGibbs

Output: Final state: x ∼ pθθθ(x)
for t = 1, . . . , NGibbs do

pick k randomly, k ∈ {1, . . . ,M}
set xk = +1 with probability pθθθ(xk = 1|x−k) = sigmoid(bk + Ik(x−k))
otherwise set xk = 0

end for

example of the application of BMs to biological data is the determination of contact maps in protein-
protein interactions [10].
On the other hand, this kind of model presents some serious drawbacks. First, the fact that we
are reproducing only the second-order statistics of the environment leaves out all the higher-other of
correlations. Although it has been shown that in some cases the BM is able to reproduce also the third
moment of the dataset [10], still the problem remains. The expressivity of the model can be improved
by introducing hidden variables that perform “feature extraction”, as we will see in the next section.
Second, training and sampling data from a BM is highly time-consuming. Indeed, Algorithm 1 is not
parallelisable (each variable xi must be updated sequentially since it interacts with all its neighbors),
and equilibrating requires a number of iterations NGibbs sufficiently high to run over all the nodes of
the graph multiple times. This means that the sampling time scales linearly with the input dimension,
M , thus making the training prohibitive for high-dimensional data.

1.1.3 The Restricted Boltzmann Machine

The Restricted Boltzmann Machine (RBM) [13] is a variant of the classical BM that aims at improving
the expressivity of the model while drastically reducing the training time. The first modification
consists of introducing a set of so-called hidden variables. Those variables do not have any physical
meaning (and for this reason we refer to them as hidden, or latent, units), but rather represent high-
order features of the “physical variables”. Roughly speaking, we can think of the latent variables as
representing hypotheses that the model produces over the data. As we will show in subsection 1.5.1,
this modification allows us to approximate the empirical distribution of the data up to any order of
correlations.
The second major change consists on defining the model on a bipartite graph, where a layer of Nv

visible units, v = {vi}i=1,...,Nv , – the “physical variables” – is connected with a layer of Nh hidden
units, h = {hµ}µ=1,...,Nh

, through the weight matrix w = {wiµ}, but no direct connection is present
within each layer. A schematic representation of the RBM is shown in Figure 1.2. Throughout the
present work, we will conventionally use a latin index when we refer to visible units, and a greek index
when dealing with hidden units.
For ease of exposition, let us focus for the moment on the particular case in which both the visible
and the hidden variables can take a binary value in {0, 1}; we will generalize this setting in the later
sections.
We call a the field interacting with the visible variables and b the field acting on the hidden layer.
The parameters of the model are therefore θθθ = {w,a, b}. Overall, the Hamiltonian of the RBM can
be written as

E(v,h;θθθ) = −
∑
i

aivi −
∑
µ

bµhµ −
∑
iµ

viwiµhµ. (1.15)

All the results we derived for the BM remain valid once we properly consider the role of the visible
and hidden units in the equations. Once we redefine the average over the data of an observable O as

⟨O⟩D =
∑
v,h

O(v,h) p(h|v)pdata(v), (1.16)

11
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Hidden layer

Visible layer

Figure 1.2: Schematic representation of an RBM. Each visible node vi interacts through the matrix w with all
the hidden units, but it is independent of all the other visible nodes.

the gradient of the LL can be written as

∆ai = ⟨vi⟩D − ⟨vi⟩E ,
∆bµ = ⟨hµ⟩D − ⟨hµ⟩E ,

∆wiµ = ⟨vihµ⟩D − ⟨vihµ⟩E .
(1.17)

In the particular case of binary variables vi ∈ {0, 1}, hµ ∈ {0, 1}, the conditioned probability distri-
bution for a single node can be easily derived along the line of what we have done for the BM. Let
us define Iν(v) =

∑
iwiνvi as the input current coming from the visible layer to the hidden node hν .

Then:

p(hν = 1|v) =
∑
h−ν

p(h,v)

p(v)
=
∑
h−ν

e−E(h,v;θθθ)∑
h e

−E(h,v;θθθ)
=

=
exp (bν +

∑
iwiνvi)∑

hν=0,1 exp (hνbν +
∑

i viwiνhν)
= sigmoid (bν + Iν(v)) . (1.18)

Symmetrically, one can write the probability distribution of a visible node conditioned to the knowledge
of the hidden state as

p(vi = 1|h) = sigmoid (ai + Ii(h)) , (1.19)

where Ii(h) =
∑

µwiµhµ.
The advantage of using a bipartite structure for the underlying probabilistic graph is that the proba-
bility distribution of one layer conditioned to the knowledge of the state in the other layer factorizes,
and this allows for parallelization. We therefore have

p(v|h) =
Nv∏
i=1

p(vi|h) and p(h|v) =
Nh∏
µ=1

p(hµ|v). (1.20)

This difference with the BM is crucial when it comes to estimating the negative term of the gradient
of the LL. In fact, Equations (1.20) implies that the nodes of a layer are independent of each other
when conditioned on the state of the opposite layer. This means that we can run a MCMC in which,
iteratively, we clump the variables of one layer to the previous values of the chain and we sample the
variables of the opposite layer all at once:

ht+1 ∼ p(h|vt),
vt+1 ∼ p(v|ht+1).

(1.21)

for t = 1, . . . , NGibbs. This method is called alternating or block Gibbs sampling, and the computational
time is – up to the parallelization capabilities of the hardware – independent of both the size of the
input and the number of hidden units. In Figure 1.3 we present a sketch of the sampling procedure.
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1) 2)

Figure 1.3: Sketch of the alternating Gibbs sampling: One generates hidden variables at time t+ 1 all at once
by just knowing the state of the visible vector at time t. Subsequently, one can use this latent vector in order
to generate all visible configurations in parallel at time t+ 1.

Algorithm 2 Alternating Gibbs Sampling for RBMs

Input: Initial state: (v0,h0), Number of steps: NGibbs

Output: Final state: (v,h) ∼ pθθθ(v,h) (if converging to equilibrium)
for t = 1, . . . , NGibbs do

sample ht ∼ sigmoid(b+ I(vt−1))
sample vt ∼ sigmoid(a+ I(ht))

end for

To sum up, we can sample visible and hidden configurations from pθθθ(v,h) using the Algorithm 2.
There are different ways of choosing the initial conditions of the chain throughout the training, and
each method differs considerably from the others both in terms of the training’s dynamics and the
properties of the trained machine. We will address this problem in chapter 2.

As a final remark, let us point out that Algorithm 2 can be employed, once the RBM has been
properly trained, to generate new samples distributed according to the data distribution. This is
typically done by initializing a Markov Chain with a random state and by running tG Gibbs-steps.
Random initialization is crucial to ensure an independent generation and to evaluate the correctness
of the learnt model.

1.2 Generalization to Categorical Variables

In the previous section, we introduced the RBM model in the most basic setup in which both the
visible and the hidden layers are binary random vectors. There are many cases, though, in which
the data we want to train our model on are not sequences of Ising variables, but rather chains of
categorical variables that can take Nq possible values (in this sense, the Ising variables are a special
case in which Nq = 2). This is often the case, for instance, when one wants to study sequences of
proteins (which are chains made of 20 possible amino acids) or nucleotide sequences in the case of
DNA (4 possible nucleotides). It is always possible to employ the binary RBM model for studying
these kinds of datasets by first applying a one-hot encoding of the data. This consists of encoding
each possible value of the sequence in a Nq-dimensional vector with just one entry set to 1 and all the
others set to 0:

{0, . . . , Nq} ∋ a 7→ vj =

{
1 if j = a,

0 otherwise
for j = 1, . . . , Nq.

By itself, this transformation does not prevent us to create states with more than one possible label,
which adds up mainly to unphysical states (in the sense that they do not exist in the database). One
standard solution is to impose the one-category constraint in the model by hand. However, there is a
much simpler and elegant approach that we discuss below.

13
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h

Figure 1.4: Scheme of the Potts RBM. Now the weights matrix is a 3-dimensional tensor w = {wq
iµ}. When an

input data v enters the machine, it selects at each site i the connection with the hidden component µ that has
the proper color vi.

1.2.1 Potts RBM

A better option is to redefine the model such that it can handle directly categorical variables. In
statistical mechanics, the extension of the Ising model to categorical variables is called the Potts
model. Here, spins are replaced with nodes that can assume one of the Nq possible values (called
colors in the jargon), si ∈ {1, . . . , Nq}, and that interact through the Hamiltonian

Ep(s) = −
∑
(i,j)

wijδsi,sj −
∑
i

hsi , (1.22)

where the first sum runs over all the connected nodes, δ is the Kronecker delta and h is an external
magnetic field. In other words, in the Potts model, two nodes interact through the matrix w only
when they are connected and when they assume the same color. We can generalize the RBM by
using Potts variables in the visible layer, and by introducing a local field, a = {aqi }, that can assume
different values for different colors. The Hamiltonian of the Potts RBM with binary hidden units is
therefore defined as

E(v,h;θθθ) = −
Nv∑
i=1

Nh∑
µ=1

Nq∑
q=1

hµw
q
iµδvi,q −

Nv∑
i=1

Nq∑
q=1

aqi δvi,q −
Nh∑
µ=1

bµhµ, (1.23)

where i is an index that runs over the input sequence and vi is the color of the state v at position i.
A scheme of the structure of the Potts RBM is shown in Figure 1.4.

1.2.2 Marginal distributions and gradient of the Log-likelihood

Analogously to what we did for the binary RBM, we can compute the conditional distributions of
hidden and visible variables. For the latent variables (which remain binary) the computation remains
the same, and we end up with a sigmoid activation function:

p(hν = 1|v) = sigmoid (bν + Iν(v)) with Iν(v) =
∑
iq

δvi,qw
q
iµ. (1.24)

For the visible layer, instead, the activation function becomes the generalization of the sigmoid to
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categorical variables, also known as the softmax function. Let r ∈ {1, . . . , Nq}, then:

p(vj = r|h) =
∑
v−j

exp
(∑

iq a
q
i δvi,q +

∑
iqµ hµw

q
iµδvi,q

)
∑

v exp
(∑

iq a
q
i δvi,q +

∑
iqµ hµw

q
iµδvi,q

)
=

exp
(
arj +

∑
µ hµw

r
jµ

)
∑Nq

q=1 exp
(
aqj +

∑
µ hµw

q
jµ

)
= softmaxr

(
arj + Irj (h)

)
with Irj (h) =

∑
µ

hµw
r
jµ, (1.25)

where we put a subscript in the softmax definition in order to track the index over which the argument
has to be normalized:

softmaxi(xij) ≡
exij∑
k e

xkj
. (1.26)

Applying Equation (1.10), the gradient of the LL can be written as

∆aqi = ⟨δvi,q⟩D − ⟨δvi,q⟩E ,
∆bµ = ⟨hµ⟩D − ⟨hµ⟩E ,

∆wqiµ = ⟨δvi,qhµ⟩D − ⟨δvi,qhµ⟩E .
(1.27)

1.2.3 Gauge freedom

It is a known fact in the literature, that the Potts model is not completely defined, but brings some
degree of arbitrariness [29]. To see this in the case of the Potts RBM, consider the conditional
probability distribution (1.25). The arbitrariness emerges by noticing that the probability distribution
remains unchanged under the gauge transformations

wqiµ ← wqiµ +Aiµ ∀i = 1, . . . , Nv, ∀µ = 1, . . . , Nh

aqi ← aqi +Bi ∀i = 1, . . . , Nv

(1.28)

with {Aiµ} and {Bi} constants, so that there are Nv ·Nh +Nv degrees of freedom. To fix them, two
gauge-fixing choices are typically used in the literature:

• Zero-sum gauge: ∑
q

aqi = 0,
∑
q

wqiµ = 0 ∀i = 1, . . . , Nv, ∀µ = 1, . . . , Nh, (1.29)

• Lattice-gas gauge:

a
Nq

i = 0, w
Nq

iµ = 0 ∀i = 1, . . . , Nv, ∀µ = 1, . . . , Nh, (1.30)

which is equivalent to measuring the energy with respect to the configuration 1Nq.

Although the two gauge-fixing choices are equivalent from a theoretical perspective, the zero-sum
gauge is convenient in the algorithmic implementation, because centring the parameters of the model
at zero is beneficial for numerical stability. The lattice-gas gauge, on the other hand, is convenient in
analytical computations, and we will make use of it in Chapter 3.

Fixing the gauge is not just a mathematical requirement to have a well-defined model, as we empirically
verified that implementing zero-sum gauge leads to a significant improvement in terms of performance.

Once we have chosen a gauge, we still have to make sure that it is preserved by the dynamics of the
learning. The parameters update rule preserves the zero-sum gauge for the local visible field. Indeed,
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if we assume aqi (t) to fulfill (1.29), then aqi (t + 1) will do it as well only if
∑

q∆a
q
i = 0. It is easy to

show that this last condition is indeed true in the update (1.27):∑
q

∆aqi =
∑
q

⟨δvi,q⟩D −
∑
q

⟨δvi,q⟩E =

=
∑
q

(
1

Ndata

Ndata∑
k=1

δ
v
(k)
d,i ,q

)
−
∑
q

∑
vi
δvi,q e

a
vi
i +

∑
µ w

vi
iµhµ∑

p e
api+

∑
µ w

p
iµhµ

=

=
1

Ndata

Ndata∑
k=1

(∑
q

δ
v
(k)
d,i ,q

)
︸ ︷︷ ︸

=1

−
∑

q e
aqi+

∑
µ w

q
iµhµ∑

p e
api+

∑
µ w

p
iµhµ︸ ︷︷ ︸

=1

= 0.

The same reasoning shows that the gradient ascent update does not preserve the zero-sum gauge for
the weight tensor. That has to be fixed by hand, by re-centring the weight tensor along the color
dimension after each parameter update:

wqiµ ← wqiµ −
1

Nq

Nq∑
p=1

wpiµ. (1.31)

1.2.4 Weights and biases Initialization

In order to achieve better performances and faster convergence of the training, the weights of the RBM
must be properly initialized. A typical way of initializing the interaction tensor is to independently
sample its entries from a normal distribution centred at zero and with small variance (∼ 10−4). It
is important to start with small weights in order to initialize the system in its paramagnetic phase,
because if the weights are too large the system may find itself in a spin glass phase and remain stuck
there. The criterion is that the eigenvalues of the weights matrix should be much smaller that the
learning-threshold (which is 4 for {0, 1} variables and 1 for {−1, 1} variables). We will discuss more
in detail these points in chapter 2.

If the weights of the interaction tensor are small, we can assume that, at the very beginning of the
training, the RBM can be approximated by the non-interacting model defined by the Hamiltonian

E0(v,h;θθθ) = −
∑
iq

δvi,qa
q
i −

∑
µ

hµbµ. (1.32)

Hence, a clever choice is to initialize the local fields in such a way as to minimize the distance between
the empirical frequencies and the averages predicted by the non-interacting model. For the visible
field, we have

⟨δq,vi⟩D =
ea

q
i∑

p e
api

=
ea

q
i

Zi
⇒ aqi = log ⟨δvi,q⟩D + ci, (1.33)

where ci = logZi. Imposing the zero-sum gauge
∑

q a
q
i = 0, we get

Nq∑
q=1

aqi =
∑
q

log ⟨δvi,q⟩D +Nq ci ⇒ ci = −
1

Nq

∑
q

log ⟨δvi,q⟩D ,

aqi = log ⟨δvi,q⟩D −
1

Nq

∑
q

log ⟨δvi,q⟩D . (1.34)

The hidden local field, on the other hand, can be initialized by setting all entries at zero, because at
the beginning of the learning no latent representation of the data is meaningful.
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1.2.5 Centring Trick

The first idea of removing the mean from the nodes was originally proposed for feed-forward neural
networks [19]. The idea is that the stability of the learning should be enhanced if the gradient of the
LL is evaluated with respect to a new set of variables whose mean is centred at zero, so that it is less
dependent on the dataset parameterization. To do this, we can rewrite the Hamiltonian of the RBM
in terms of a new set of parameters θ̃θθ = (w̃, ã, b̃) that interact only with the centered variables, and
then derive the change of variables between the old “un-centred” parameters and the new ones [20].
The Hamiltonian in the new coordinates is

−E(v,h; θ̃θθ) =
∑
iq

ãqi
(
δvi,q − ⟨δvi,q⟩D

)
+
∑
µ

b̃µ
(
hµ − ⟨hµ⟩D

)
+
∑
iµq

w̃qiµ
(
δvi,q − ⟨δvi,q⟩D

) (
hµ − ⟨hµ⟩D

)

=
∑
iq

δvi,q

(
ãqi−

∑
µ

w̃qiµ ⟨hµ⟩D

)
+
∑
µ

hµ

b̃µ−∑
iq

w̃qiµ ⟨δvi,q⟩D

+
∑
iµq

w̃qiµhµδvi,q+f(θ̃θθ),

(1.35)

where the last term does not depend on v and h. That is equivalent to the un-centred Hamiltonian
if we impose 

aqi = ãqi −
∑

µ w̃
q
iµ ⟨hµ⟩D ,

bµ = b̃µ −
∑

iq w̃
q
iµ ⟨δvi,q⟩D ,

wqiµ = w̃qiµ.

(1.36)

Now we want to write the gradient of the LL of the original uncentered machine in terms of the
gradient computed on the centred system. To do this, we can write

aqi (t+ 1) = ãqi (t+ 1)−
∑
µ

w̃qiµ(t+ 1) ⟨hµ⟩D

= ãqi (t) + η∆ãqi −
∑
µ

(
w̃qiµ(t) + η∆w̃qiµ

)
⟨hµ⟩D

= aqi (t) +
��������
∑
µ

w̃qiµ(t) ⟨hµ⟩D + η∆ãqi −
��������
∑
µ

w̃qiµ(t) ⟨hµ⟩D − η
∑
µ

∆w̃qiµ ⟨hµ⟩D . (1.37)

Therefore, we obtain

∆aqi = ∆ãqi −
∑
µ

∆w̃qiµ ⟨hµ⟩D ,

where

∆ãqi =
〈
(δvi,q − ⟨δvi,q⟩D)

〉
D
−
〈
(δvi,q − ⟨δvi,q⟩D)

〉
E
= ⟨δvi,q⟩D − ⟨δvi,q⟩E . (1.38)

The same kind of computation leads to the following update of the parameters in terms of the centred
gradient:

∆wqiµ =
〈
(δvi,q − ⟨δvi,q⟩D)(hµ − ⟨hµ⟩D)

〉
D
−
〈
(δvi,q − ⟨δvi,q⟩D)(hµ − ⟨hµ⟩D)

〉
E
,

∆aqi = ⟨δvi,q⟩D − ⟨δvi,q⟩E −
∑

µ∆w
q
iµ ⟨hµ⟩D ,

∆bµ = ⟨hµ⟩D − ⟨hµ⟩E −
∑

iq∆w
q
iµ ⟨δvi,q⟩D .

(1.39)

1.3 Generalization to a Generic Hidden Potential

So far, for simplicity, we dealt with a Hamiltonian of the form (1.23), where we assumed the hidden
nodes to be binary variables hµ ∈ {0, 1}, at variance with the visible variables that could be categorical.
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Now we want to extend the discussion to a more general setting in which the latent variables can be
continuous and interact with a generic potential Uµ(hµ;ϑϑϑµ):

E(v,h;θθθ) = −
∑
iq

aqi δvi,q +
∑
µ

Uµ(hµ;ϑϑϑµ)−
∑
iqµ

δvi,qw
q
iµhµ. (1.40)

The new set of parameters that define the model is θθθ = (w,a,ϑϑϑ), with ϑϑϑ = {ϑϑϑµ}µ=1,...,Nh
being the

parameters of the hidden potential. The analytical form of U can be obtained by first assuming a
specific distribution P over the hidden variables, and then writing the potential as

U(h;ϑϑϑ) = − logP (h;ϑϑϑ). (1.41)

1.3.1 Bernoulli Potential

For instance, the Hamiltonian (1.23) can be obtained by assuming h to be binary variables following
a Bernoulli distribution,

P (h; ρ) = ρh (1− ρ)1−h with ρ ∈ [0, 1], (1.42)

where we just have to reparametrize ρ = sigmoid(b) with b ∈ R. For this reason, from now on we will
refer to the RBM with binary hidden variables as “Bernoulli RBM”.

1.3.2 Truncated Gaussian Potential

The use of a binary hidden layer brings several advantages. For instance, its simplicity allows for a
relatively easy analytical treatment of the model, the algorithmic implementation is simple and the
training of the RBM is generally quite stable. Nevertheless, one can argue that having units that can
only be active or idle, without giving any additional information such as the intensity of the activation,
may result in a quite poor expressive power of the model. A step toward enhancing the expressivity
of the model is to consider for the hidden layer a set of continuous random variables definite in the
positive real line, h ∈ [0,+∞), which are distributed according to the Truncated Gaussian (TG)
probability density function [22, 28, 29]. This is typically defined in the literature in the form

P (h;µ, σ, a, b) =
1

σ

√
2

π

e−
1
2(

h−µ
σ )

2

erf
(
b−µ√
2σ

)
− erf

(
a−µ√
2σ

)1[a,b], (1.43)

where µ and σ are the parameters of a Gaussian distribution, 1 is the indicator function and a and b
are respectively the lower and the upper bounds of the domain of the distribution. erf indicates the
error function, defined as

erf(x) =
2√
π

∫ x

0
dz e−z

2
. (1.44)

Now, in order to have a handier notation for our purposes, let us define the transformation of param-
eters

σ 7→ 1
√
γ
; µ 7→ − b

γ
. (1.45)

If we make this change and we set a = 0, b = +∞, we can rewrite the expression (1.43) as:

P (h; b, γ) =

√
2γ

π

e−
1
2
γh2−bh

1− erf
(

b√
2γ

)1[0,+∞]. (1.46)

Once we neglect inessential normalization factors, this allows us to identify the hidden potential

Uµ(hµ; γµ, bµ) =
γµh

2
µ

2
+ bµhµ. (1.47)
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Marginal Distributions

For practical purposes, let us define the function

Φ(x) =

√
π

2
e

x2

2

(
1− erf

(
x√
2

))
, (1.48)

such that the normalization of the Truncated Gaussian distribution can be written as

Zµ =

∫ ∞

0
dh exp (−Uµ(h; γµ, bµ)) =

∫ ∞

0
dh exp

(
−γµh

2

2
− bµh

)
=

1
√
γµ

Φ

(
bµ√
γµ

)
. (1.49)

The probability distribution of the visible nodes conditioned on the latent variables is not affected
by the particular distribution of h, and it is therefore given by Equation (1.25). Concerning the
conditioned probability of the hidden nodes, it is again a Truncated Gaussian but with a shift parameter
bµ that gets shifted by the input current coming from the visible layer:

p(hµ|v) =
e−

γµh2µ
2

−hµ(bµ−Iµ(v))∫
dh exp

(
−γµh2

2 − (bµ − Iµ(v))h
) =

e−
γµh2µ

2
−hµ(bµ−Iµ(v))

1√
γµ
Φ
(
bµ−Iµ(v)√

γµ

) . (1.50)

To sample the hidden state from (1.50) we can use the method of the inverse cumulative density
function, which consists on sampling uniform variables z ∼ U(0, 1) and then transforming them as

hµ|v =

√
2

γµ
erf−1

[
z + erf

(
bµ − Iµ(v)√

2γµ

)
(1− z)

]
− bµ − Iµ(v)

γµ
. (1.51)

Unfortunately, using this method for sampling the latent variables leads to a series of numerical issues,
mainly devoted to the instability of the inverse erf function when its argument is close to 1. This is
why sampling from the Truncated Gaussian is typically done through other methods, such as rejection
sampling. The problem with those methods is that they rely on for cycles, which heavily slow down
the computation and are not suitable for training an RBM. For this reason, we still implemented
the formula (1.51) by using some careful tricks in order to avoid numerical issues. More about the
technicality of the sampling is described in the Appendix B.

An approximation that is often found in the literature consists on avoiding to sample directly from
(1.50) by considering the mode of the distribution, hmax = I(v)−b

γ , and extracting

h = max (0, hmax + n) = ReLU (hmax + n) with n ∼ N(0, σ), (1.52)

where N(0, σ) is a Normal distribution with mean 0 and standard deviation σ. That is the reason why
people often refer to the RMB with Truncated Gaussian potential as “ReLU” RBM. Nevertheless, we
chose to stick with the “exact” sampling in order to keep the training as controlled as possible.

To conclude this part, we point out the existence of many other versions of RBM, depending on the
type of data one has to deal with (discrete/continuous) and the type of potential one chooses in the
visible and hidden layers. Here, we treated only those cases that are interesting for our scopes, and
we remand to [7] for a review of all the other models.

1.4 Semi-supervised Learning with RBMs

RBMs are typically trained in a purely unsupervised way, namely, they are fed with the data without
providing any additional information about them (e.g. labels). By doing this, we let the model
discover what the statistics of the data are and what the relevant features are without biasing it with
our prior beliefs. Although this approach is, in principle, the safest one (we want the model to tell
us something new about the data, and we had better avoid the risk of fooling it with our possibly
wrong assumptions), in practice it happens that some features that we know are present in the data
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are not detected by the model. This can happen because the model has not been trained enough,
or the hyper-parameters were sub-optimal (learning rate, number of hidden units, batch size, etc.),
or maybe simply because the expressive power of the model is not enough for catching what we are
interested in. Another possibility is that the internal classification of data learned by the machine is
not the one we were looking for: it could be either too fine or too coarse. Finally, there is also the
non-trivial issue of how to extract the learned features encoded in the parameters of the model once
the learning is complete.

In many cases, though, we are not completely agnostic about the data, and we may have specific
targets that we hope our model detects. For instance, if we train the RBM on the handwritten digits
dataset, we expect our model to be able to “understand” that two images of the same digit are closer
(in a sense that will be clearer in the next chapters) than two images of distinct digits. Or again, if
we are studying a protein and we have experimental functional annotations on some sequences of the
dataset, we want that two sequences having the same annotations to be recognized as “similar”. In
all those cases in which we have a well-defined objective in mind, it would be helpful to provide the
RBM with those labels while it is learning the statistics of the data. In this way, we might nudge the
model to recognize the features we are interested in, without with this compromising the exploration
of unknown properties of the data.

Eventually, if the trained machine learned how to associate labels to the data, we would like to define
a simple procedure to enquire the RBM about the probability that a given piece of data has a certain
label.

It turns out that there is a simple and elegant way of doing all this with RBMs. If we assume to have
Nℓ possible classes classifying our data, we can introduce a new categorical variable ℓ ∈ {1, . . . , Nℓ}
that interacts with the hidden layer through a Nℓ ×Nh matrix d and that is subject to the local field
c. A simplified sketch of the implementation is represented in Figure 1.5.

cv

h

Figure 1.5: Sketch of the RBM in semi-supervised mode: the label ℓ selects the row of the matrix d that has to
interact with the hidden layer. The net effect is an additional current in the activation of the hidden nodes.

The Hamiltonian of the Potts RBM in its semi-supervised version is

E(v,h, ℓ;θθθ) = −
∑
iq

δvi,qa
q
i +

∑
µ

Uµ(hµ;ϑϑϑµ)−
∑
n

δℓ,ncn −
∑
iµq

δvi,qw
q
iµhµ −

∑
nµ

δℓ,ndnµhµ. (1.53)

In practice, the effect of the label is to introduce a new current that steers the activation of the hidden
units toward the desired direction. The functional form of the conditional distributions for visible and
hidden variables remains the same, but now we have to account for a new contribution to the hidden
current:

p(vi = q|h) = softmaxq (a
q
i + Iqi (h))

p(hµ = 1|v, ℓ) = sigmoid (bµ + Iµ(v, ℓ))

p(ℓ = l|h) = softmaxl (cl + Il(h))

(1.54)

where
Iµ(v, ℓ) =

∑
iq

wqiµδvi,q +
∑
n

δℓ,ndnµ and Il(h) =
∑
µ

dlµhµ. (1.55)

20



CHAPTER 1. THE RBM 1.4. SEMI-SUPERVISED LEARNING WITH RBMS

If every data point brings a label, the new dataset will be made of the set of pairs D = {(v(k)
d , ℓ

(k)
d )}

for k = 1, . . . , Ndata, and we can compute the gradient of the LL using (1.10), where the empirical
distribution is now

pdata(v, ℓ) =
1

Ndata

Ndata∑
k=1

δ
(
v − v

(k)
d

)
δ
(
ℓ− ℓ(k)d

)
. (1.56)

Now, in a realistic and interesting setting, it happens that only a fraction of the data is associated
with a label. For example, experimentally classifying proteins according to their biological function
is a difficult, time-consuming and expensive task, and therefore only a few proteins among the whole
genome have been classified in a laboratory. How can we handle the fact that only a fraction of the
training data is endowed with a label?

When the label is missing, we have to infer it together with the latent representation of the data. The
gradient of the LL with respect to the parameter θi is now written as

∂L

∂θi
=
〈
⟨Cθi⟩p(h,ℓ|v)

〉
D
− ⟨Cθi⟩E (1.57)

where the negative term of the gradient is computed as usual, while the positive term is averaged over

p(h, ℓ|v) pdata(v) =
1

Ndata

Ndata∑
k=1

p(h, ℓ|v(k)
d ) δ

(
v − v

(k)
d

)
. (1.58)

In order to sample from p(h, ℓ|v(k)
d ), we can run a MCMC using the alternating Gibbs Sampling

method:

h(k)µ (t+ 1) ∼ p(hµ|ℓ(k)(t),v(k)
d ) = sigmoid

(
bµ + Iµ(v

(k)
d , ℓ(k)(t))

)
,

ℓ(k)(t+ 1) ∼ p(ℓ|h(k)(t+ 1)) = softmaxℓ

(
cℓ + Iℓ(h

(k)(t+ 1))
)
,

(1.59)

for t = 1, . . . , NGibbs.

The update rule for the centered gradient, valid only for the case of a Bernoulli hidden potential,
becomes

∆wqiµ =
〈
(δvi,q − ⟨δvi,q⟩D)(hµ − ⟨hµ⟩D)

〉
D
−
〈
(δvi,q − ⟨δvi,q⟩D)(hµ − ⟨hµ⟩D)

〉
E

∆dℓµ =
〈
(δℓ,ℓd − ⟨δℓ,ℓd⟩D)(hµ − ⟨hµ⟩D)

〉
D
−
〈
(δℓ,ℓg − ⟨δℓ,ℓd⟩D)(hµ − ⟨hµ⟩D)

〉
E

∆aqi = ⟨δvi,q⟩D − ⟨δvi,q⟩E −
∑

µ∆w
q
iµ ⟨hµ⟩D

∆bµ = ⟨hµ⟩D − ⟨hµ⟩E −
∑

iq∆w
q
iµ ⟨δvi,q⟩D −

∑
ℓ∆dℓµ ⟨δℓ,ℓd⟩D

∆cℓ = ⟨δℓ,ℓd⟩D −
〈
δℓ,ℓg

〉
E
−
∑

µ∆dℓµ ⟨hµ⟩D

(1.60)

where ⟨δℓ,ℓd⟩D represents the empirical frequency of the label ℓ in the data, while
〈
δℓ,ℓg

〉
E

is the
empirical frequency of the label ℓ computed on the labels generated by the model through Equation
(1.59).

Once the RBM has been trained with the labelled dataset, there are two things that we might want

to do. First, given a real-world example v
(k)
d , we would like to ask the model what label to assign to

it. This is readily obtained by iterating Equations (1.59) conditioned only on v
(k)
d . Notice that this

method, by construction, is only capable of yielding a category among those used for the training. In
other words, no new categories are found by the algorithm.

The second task we aim to tackle is, given a label ℓ̃, we want the model to generate a sample belonging
to that category. To do this, we can iterate the following simple Algorithm 3.
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Algorithm 3 Conditioned sampling of data

Input: Initial random state: v0, Number of steps: NGibbs

Output: Final state: v|ℓ̃ ∼ p(v|ℓ̃)
for t = 1, . . . , NGibbs do

sample ht ∼ p(h|vt−1, ℓ̃)
sample vt ∼ p(v|ht)

end for

1.5 Theoretical Insights

In this section, we want to summarize some theoretical results that the physics of disordered systems’
community has achieved toward the understanding of the learning in RBMs. First of all, we will prove
that the introduction of hidden variables into the model allows, in principle, to reproduce the empirical
correlations in the data potentially up to any k-body order. Secondly, we will present a study based
on the replica theory that permits investigating the thermodynamic properties of the RBM and the
different phases in which the model can be found. Finally, in the third and fourth subsections, we will
focus on the linear regime of the training for understanding what happens when the RBM starts to
learn from the dataset.

1.5.1 Expressivity of the RBM

First of all, let use justify the claim we made in the previous chapter about the improvement brought
to the expressivity of the model by the introduction of hidden variables. For simplicity, let us consider
the binary-binary RBM without local biases defined by the energy function

E(v,h;w) = −
∑
iµ

viwiµhµ, (1.61)

with vi ∈ {0, 1} and hµ ∈ {0, 1}. We are interested in the probability distribution that the model
assigns to the physical variables only, the visible ones, which is obtained by marginalizing the joint
probability distribution over the hidden variables:

pw(v) =
∑
h

pw(v,h) =
1

Zw

∑
h

exp

[∑
µ

hµ

(∑
i

wiµvi

)]
=

=
1

Zw

∏
µ

∑
h=0,1

exp

[
h

(∑
i

wiµvi

)]
=

1

Zw

∏
µ

[
1 + exp

(∑
i

wiµvi

)]
. (1.62)

The exponential can be expandend in Taylor series,

exp

(∑
i

wiµvi

)
= 1 +

∑
i

wiµvi +
1

2

(∑
i

wiµvi

)2

+
1

6

(∑
i

wiµvi

)3

+ . . . ,

and this yields a probability distribution pw(v) ∝ exp(−Eeff(v;w)) defined by the effective Hamilto-
nian

Eeff(v;w) = −
∑
µ

log

2 +∑
i

wiµvi +
1

2

(∑
i

wiµvi

)2

+
1

6

(∑
i

wiµvi

)3

+ . . .


≈ −1

2

∑
iµ

wiµvi −
1

8

∑
ijµ

wiµwjµvivj +
1

192

∑
ijklµ

wiµwjµwkµwlµvivjvkvl + . . . (1.63)

As we can see, as opposed to the Hamiltonian (1.4), the effective energy function (1.63) contains infinite
terms of interaction in the series expansion. This means that the associated probability distribution
is able to catch correlations among visible variables (present in the data) up to any order. This result
that we have heuristically justified here has been rigorously proven in [17].
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1.5.2 Phase Diagram

In this part, we want to get some insights on the thermodynamics of the RBM. To this aim, we will
follow the work presented in [6] and we remand to the main article for further details. Let us consider
the Bernoulli-Bernoulli RBM defined by the Hamiltonian (1.15)

E(v,h;θθθ) = −
∑
i

aivi −
∑
µ

bµhµ −
∑
iµ

viwiµhµ.

The idea is to study the statistics of an ensemble of RBMs, each one characterized by a random
matrix w, that will provide us with a phase diagram describing the macroscopic behaviour of the
model. The characterization of the phase diagram is based on the determination of the free energy in
the thermodynamic limit, which can be obtained through replica computations [21]. To simplify the
derivation, both the visible and the hidden units are interpreted as spin variables vi ∈ {−1, 1}, hµ ∈
{−1, 1}.

The per-node free energy of the system is given by

f(o) = lim
L→∞

1

L
(−Ew logZθ) , (1.64)

where o are some order parameters, L =
√
NhNv and Ew indicates the average over the quenched

disorder represented by the matrix w. At the core of the replica computations there is the so-called
replica trick, namely the observation that we can express the average of the logarithm in terms of the
average of a replicated partition function:

Ew logZθθθ = lim
n→0

EwZ
n
θθθ − 1

n
. (1.65)

The typical approach to carry out the computations is to assume the entries of the matrix w to be
i.i.d. according to the same probability distribution. However, this assumption does not take into
account the fact that, during the learning, the weights become correlated between each other. Thus,
as a better assumption, the authors consider instead a low-rank decomposition of the weight matrix
of the form

wiµ =

K∑
α=1

xαi wαy
α
µ + riµ, (1.66)

where K ≪ L and r is a random matrix of i.i.d. elements distributed according to a centered Gaussian
of variance σ2/L. In this decomposition, we are assuming that the eigenvalues wα encode the infor-
mation learned by some dataset, while xα and yα are random vectors approximately corresponding
to the left and right eigenvectors of the matrix w. Hence, r,x and y represent the quenched disorder
of the system, and we have to average the replicated partition function over them.

The replicated partition function reads

Znθθθ =
∑
v,h

exp

 n∑
p=1

∑
i

vpi ai +
∑
µ

hpµbµ +
∑
iµα

vpi x
α
i wαy

α
µh

p
µ +

∑
iµ

vpi riµh
p
µ

 , (1.67)

where p is the replica index. The average over r gives a term

Er exp

∑
iµ

riµ

(∑
p

vpi h
p
µ

) =
∏
i

∏
µ

[
1√
2πσ

∫ +∞

−∞
dr exp

(
− L

2σ2
r2 + r

∑
p

vpi h
p
µ

)]
=

= exp

 σ2
2L

∑
iµ

(∑
p

vpi h
p
µ

)2
 = exp

 σ2
2L

nL2 +
∑
iµ

∑
p ̸=q

vpi v
q
i h

p
µh

q
µ

 .
(1.68)
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We can handle the second term in the exponent through a Hubbarad-Stratanovich (HS) transformation

exp

 σ2
2L

∑
iµ

∑
p ̸=q

vpi v
q
i h

p
µh

q
µ

 =

=

∫ ∏
p ̸=q

dQpqdQ̄pq
2π

exp

[
−Lσ

2

2

∑
p ̸=q

(
QpqQ̄pq −

Qpq
Nv

∑
i

vpi v
q
i −

Q̄pq
Nh

∑
µ

hpµh
q
µ

)]
. (1.69)

Similarly, we can disentangle the interaction term by means of another HS transformation:

exp

∑
iµα

vpi x
α
i wαy

α
µh

p
µ

 = exp

[
L
∑
α

(
1√
L

∑
i

vpi x
α
i

)
wα

(
1√
L

∑
µ

hpµy
α
µ

)]
=

= exp

(
L
∑
α

vpαwαh
p
α

)
=

=

∫ ∏
α

dmp
αdm̄

p
α

2π
exp

[
−L

∑
α

wα(m
p
αm̄

p
α −mp

αv
p
α − m̄p

αh
p
α)

]
, (1.70)

where we introduced the projections of the states along the modes of the weight matrix

vpα ≡
1√
L

∑
i

vpi x
α
i and hpα ≡

1√
L

∑
µ

hpµy
α
µ . (1.71)

By denoting, for simplicity,

Dm ≡
∏
α

dmp
αdm̄

p
α

2π
and DQ ≡

∏
p ̸=q

dQpqdQ̄pq
2π

, (1.72)

the average over the replicated partition function takes the form, up to constant terms,

Ex,y,rZ
n
θθθ = Ex,y

∑
v,h

∫
DmDQ exp

[∑
ip

vpi ai +
∑
µp

hpµbµ − L
∑
αp

wα(m
p
αm̄

p
α −mp

αv
p
α − m̄p

αh
p
α)+

− Lσ2

2

∑
p̸=q

(
QpqQ̄pq −

Qpq
Nv

∑
i

vpi v
q
i −

Q̄pq
Nh

∑
µ

hpµh
q
µ

)]
. (1.73)

Let us introduce the projections of the fields along the principal directions of the weights matrix:

aα ≡
1√
L

∑
i

aix
α
i and bα ≡

1√
L

∑
µ

bµy
α
µ . (1.74)

For simplicity, we will neglect the orthogonal components. Then, let’s consider the part that depends
on the visible variables. We can write:

logEx

∑
v

∏
i

exp

∑
p

vpi ai +
√
L
∑
αp

wαm
p
αv

p
i x

α
i +

Lσ2

2Nv

∑
p ̸=q

Qpqv
p
i v
q
i

 = NvA(m,Q)

with

A(m,Q) ≡ log

 ∑
sp∈{−1,1}

Ex exp

√κσ2
2

∑
p̸=q

Qpqs
psq + κ

1
4

∑
αp

(mp
αwα + aα)x

αsp

 . (1.75)

Similarly, the contribution of the hidden variables is:

logEy

∑
h

∏
µ

exp

∑
p

hpµbµ +
√
L
∑
αp

wαm̄
p
αh

p
µy

α
µ +

Lσ2

2Nh

∑
p ̸=q

Q̄pqh
p
µh

q
µ

 = NhB(m̄, Q̄)
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with

B(m̄, Q̄) ≡ log

 ∑
sp∈{−1,1}

Ey exp

√κσ2
2

∑
p ̸=q

Q̄pqs
psq + κ−

1
4

∑
αp

(m̄p
αwα + bα)y

αsp

 . (1.76)

In the previous equations, we denoted κ ≡ Nh/Nv, and we have rescaled the eigenvectors x 7→ x/
√
Nv,

y 7→ y/
√
Nh so as to consider an orthonormal base. In short, we can express the averaged replicated

partition function as

Ex,y,rZ
n
θθθ =

∫
DmDQ e−nLf̃(m,m̄,Q,Q̄) (1.77)

with

f̃(m, m̄,Q, Q̄) =
1

n

∑
αp

mp
αwαm̄

p
α +

σ2

2

∑
p̸=q

QpqQ̄pq −
1√
κ
A(m,Q)−

√
κB(m̄, Q̄)

 . (1.78)

At this point, we first have to take the thermodynamic limit L→∞ with κ fixed and, subsequently,
the replica limit n → 0. In the thermodynamic limit we can evaluate the integral (1.77) through
a saddle-point approximation, i.e. by approximating the integral with the maximum value of the
integrand. Hence, the per-node free energy is formally given by

f(o) = − lim
n→0

lim
L→∞

1

nL

[
e−nLf̃(m

∗,m̄∗,Q∗,Q̄∗) − 1
]
= f̃(m∗, m̄∗,Q∗, Q̄∗), (1.79)

where the order parameters are given by the integration variables computed at the saddle-point:
o = (m∗, m̄∗,Q∗, Q̄∗).

To move further, we need to make an assumption over the configurations’ space of the system. In
particular, we restrict ourselves to the Replica Symmetric (RS) case, where we assume that the
overlap between two replicas does not depend on the replica indices. In practice, this means assuming
Qpq = q, Q̄pq = q̄ ∀p, q and mp

α = mα, m̄
p
α = m̄α ∀p. Under this assumption, the A term of Equation

(1.78) becomes

A(m, q) = log

 ∑
sp∈{−1,1}

Ex exp

√κσ2q
2

∑
p̸=q

spsq + κ
1
4

∑
α

(mαwα + aα)x
α
∑
p

sp

 . (1.80)

We can disentangle the replicas in the quadratic term through a HS transformation. This yields:

exp

√κσ2q
2

∑
p ̸=q

spsq

 = exp

1
2

(
κ

1
4σ
√
q
∑
p

sp

)2
 exp

[√
κσ2q

2

∑
p

(sp)2︸ ︷︷ ︸
=n

]
=

= exp

(
n
√
κσ2q

2

)
1√
2π

∫
dz exp

[
−z

2

2
+ zκ

1
4σ
√
q
∑
p

sp

]
=

= exp

(
n
√
κσ2q

2

)
Ez exp

(
zκ

1
4σ
√
q
∑
p

sp

)
, (1.81)

where Ez represents the average over a standard normal random variable z. Substituting this back
into Equation (1.80), we get

A(m, q) =
n
√
κσ2q

2
+ n Ex,z log

 ∑
s∈{−1,1}

exp

[
κ

1
4 s

(
zσ
√
q +

∑
α

(mαwα + aα)x
α

)] =

=
n
√
κσ2q

2
+ n Ex,z log [2 cosh g(x, z)] , (1.82)

25



1.5. THEORETICAL INSIGHTS CHAPTER 1. THE RBM

where

g(x, z) = κ
1
4

(
zσ
√
q +

∑
α

(mαwα + aα)x
α

)
. (1.83)

Similarly, the B term becomes

B(m̄, q̄) =
n
√
κσ2q̄

2
+ n Ey,z log [2 cosh ḡ(y, z)] , (1.84)

with

ḡ(y, z) = κ
1
4

(
zσ
√
q̄ +

∑
α

(m̄αwα + bα)y
α

)
. (1.85)

Finally, the free energy of the system can be written as

f(o) =
∑
α

wαm
∗
αm̄

∗
α−

σ2

2
q∗q̄∗+

σ2

2
(q∗+ q̄∗)− 1√

κ
Ex,z log [2 cosh g

∗(x, z)]−
√
κEy,z log [2 cosh ḡ

∗(y, z)] .

(1.86)
The saddle-point conditions yield the following self-consistent equations:

m∗
α = κ

1
4 Ey,z [y

α tanh (ḡ∗(yyy, z))] q∗ = Ey,z

[
yα tanh2 (ḡ∗(yyy, z))

]
,

m̄∗
α = κ−

1
4 Ex,z [x

α tanh (g∗(xxx, z))] q̄∗ = Ex,z

[
xα tanh2 (g∗(xxx, z))

]
,

(1.87)

which can be solved numerically. In absence of biases, a = 0, b = 0, we can identify three different
phases:

• A paramagnetic phase: which corresponds to the solution q = q̄ = 0 and mα = m̄α = 0. In
this case the system is not magnetized toward any direction and the configurations have typically
zero overlap. The free energy presents a single minimum.

• A ferromagnetic phase: where mα, m̄α ̸= 0, q, q̄ ̸= 0. The configurations of the system
condensate along one or more principal directions of the weight matrix, and the free energy
presents multiple minima. This is the recall phase, where the RBM learns patterns from the
data and is able to sample them.

• A spin glass phase: with mα = m̄α = 0 but q, q̄ ̸= 0. The system is trapped in one of the
(exponentially) many minima of the free energy, and the states are totally uncorrelated with the
principal modes of the weights matrix.

The lines separating different phases correspond to second-order phase transitions, and can be detected
by performing a stability analysis of the linearized mean field equations. We do not reproduce here
the study of the transition lines – which can be found in the reference article – and we limit ourselves
at reporting a sketch of the phase diagram, which is shown in Figure 1.6. By looking at the phase
diagram, we can now justify the already mentioned need of initializing the weights matrix with small
couplings, in such a way to start the training outside the spin glass phase in which the system would
find itself trapped otherwise.

Let us conclude this part by observing that the self-consistency equations (1.87) depend on the chosen
distribution for the principal components of the weight matrix. In [6] the authors show that the
properties of the ferromagnetic phase, the most interesting one, are indeed affected by the kurtosis of
the chosen distribution. If we denote by γ thee relative kurtosis with respect to the normal distribution,
we find that for γ = 0 only the strongest mode of the weights matrix is stable, and the system will
condense along this single mode. If γ < 0 the weaker modes can be metastable, but the strongest
mode remains the stable one. Finally, if γ > 0 the weaker modes become stable, and the system
can condensate along many directions at the same time. This should correspond to the compositional
phase described by Tubiana et al in [29], and it is characterized by having many attractors not too far
from each other, so that one can easily move from one to the other by slightly changing the hidden
representation.
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Ferromagnetic 
phase

Paramagnetic 
phase

SpinGlass 
phase

AT

Figure 1.6: Phase diagram of the Bernoulli-Bernoulli RBM without biases. The two control parameters are
1/σ, which can be interpreted as a temperature, and wmax/σ, i.e. the rescaled maximum eigenvalue of the
weights matrix, which plays the role of the couplings among the variables. The dotted arrow represents a
typical trajectory of the learning, where the systems starts in the paramagnetic phase and, under the effect of
the training, moves into the ferromagnetic region. For completeness, we also reported the AT region, where
the RS assumption breaks down and one has to recover to the One-step Replica Symmetry Breaking (1RSB)
ansatz. The figure is a reproduction of the one present in [6].

1.5.3 Learning Threshold of the RBM

In the previous part we have seen that the RBM starts to learn the features of the dataset when it
moves from the paramagnetic to the ferromagnetic phase. Is there a marker that could tell us when
this phase transition takes place? Let us consider a binary-binary RBM with variables {0, 1}. In
section 3.1 we will show that, at the beginning of the training, the system can be described by the
visible and hidden magnetizations, respectively denoted as mv and mh, that satisfy the self-consistent
equations

mv
i = sigmoid

(
ai +

∑
µ

wiµm
h
µ

)
,

mh
µ = sigmoid

(
bµ +

∑
i

wiµm
v
i

)
,

(1.88)

which correspond to the traditional small-weights approximation of the Ising model. For simplicity,
let us consider the case in which there are no external fields, a = b = 0, but the computation with
the biases is not much more complicated. Again, we can express the weights matrix in terms of its
singular values as

wiµ =
∑
α

xαi wαy
α
µ , (1.89)

and define the projected deviations from the mean of the magnetizations of the system along the mode
α:

δm̂h
α =

∑
µ

yαµ

(
mh
µ −

1

2

)
and δm̂v

α =
∑
i

xαi

(
mv
i −

1

2

)
. (1.90)
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In this way, we get the following self-consistency equations projected along the mode α:

δm̂v
α =

∑
i

xαi

sigmoid

∑
β

xβi wβm̂
h
β

− 1

2

 ,
δm̂h

α =
∑
µ

yαµ

sigmoid

∑
β

yβµwβm̂
b
β

− 1

2

 .
(1.91)

In the early stage of the learning, we can assume the eigenvalues of the weight matrix to be small and
expand the sigmoid function at the first order as

sigmoid(x) =
1

1 + e−x
x→0
≈ 1

2

1

1− x
2

x→0
≈ 1

2
+
x

4
, (1.92)

so that we end up with

δm̂v
α =

1

4
wαm̂

h
α and δm̂h

α =
1

4
wαm̂

v
α. (1.93)

From these equations, we can see that as soon as wα > wth = 4 the iterative map diverges exponen-
tially, and the system polarizes along the mode α. On the contrary, if wα is below this threshold, we
have δm̂h

α = δm̂v
α = 0, and the system is not polarized. Figure 1.7 shows 20 iterations of the map

(1.93) for values of wα right below and above the threshold. The same reasoning shows that, in the
case of spin variables {−1, 1}, the learning threshold is instead wth = 1.

To sum up, in this subsection we showed that, for a binary RBM, the learning is triggered when
wα > 4, in the sense that the model starts to encode patterns. We discuss these early stages in the
next subsection.

Figure 1.7: 20 steps of the linearized map (1.93) for two values of the eigenvalue wα below and above the
learning threshold wth = 4. The x-axis represents the iteration time t, while the y-axis represent the deviation
from the mean of average magnetization along the mode α, δm̂α = (δm̂h

α + δm̂v
α)/2.

1.5.4 Early Dynamics of the Learning

In this part, we want to analyze the first stage of the learning in order to shed light on some aspects
of how the RBM learns from the data. The analysis we present here is taken from [5].
At the beginning of the training, the machine has not learnt yet how to couple the variables, and
therefore the eigenvalues of the weight matrix are small. In this sense, a proper initialization of the
weight matrix is also needed, as can be seen by looking at the phase diagram of Figure 1.6. As will
be stated more clearly in chapter 3, this is equivalent to assuming a high-temperature regime β → 0
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for which a mean field free energy can be derived.
At high temperature, the system finds itself in the paramagnetic phase, and whatever distribution
over the variables will present one single mode. If we expand the distribution around this mode up to
the second order, the magnetizations will have Gaussian fluctuations with covariance matrix

C =

1/σ2v −w

−wT 1/σ2h

−1

, (1.94)

where σ2v and σ2h are the prior variances of visible and hidden nodes. Using this approximation is
equivalent to considering a Gaussian-Gaussian RBM, in which both visible and hidden units take real
values and interact through the Hamiltonian

E(v,h;θθθ) = −
∑
i

v2i
2σ2v
−
∑
µ

h2µ
2σ2h
−
∑
iµ

viwiµhµ, (1.95)

where we are not considering any external field for simplicity. The model defined by the energy
function (1.95) represents a special case in which we can write down the gradient of the LL exactly.
The conditioned distribution of the hidden variables is a shifted Gaussian,

p(h|v) ∝
∏
µ

exp

(
−
h2µ
2σ2µ

+ hµ
∑
i

viwiµ

)
, (1.96)

which is centered at ⟨hµ⟩p(h|v) = σ2h
∑

i viwiµ.

The marginalized distribution of the visible units can be obtained as

pθθθ(v) =
1

Z
exp

(
−
∑
i

v2i
2σ2v

)∏
µ

∫
dh exp

(
− h2

2σ2h
+ h

∑
i

viwiµ

)
=

=
1

Z
exp

(
−
∑
i

v2i
2σ2v

)
exp

σ2h
2

∑
ij

vi

(∑
µ

wiµwjµ

)
vj

 =

=
1

Z
exp

[
−vT

(
1

2σ2v
−
σ2h
2
wwT

)
v

]
=

1

Z
exp

(
−vTAv

)
, (1.97)

where we defined the precision matrix

A =
1

2σ2v
−
σ2h
2
wwT . (1.98)

At this point, we rewrite the weights matrix w using the Singular Value Decomposition (SVD):

wiµ =
∑
α

xαi wαy
α
µ , (1.99)

where wα are the singular values of the matrix and xα, yα are the left and right eigenvectors. If we
introduce the change of variables that projects the states of the system along the principal directions
of w,

v̂α =
∑
i

xαi vi and ĥα =
∑
µ

yαµhµ, (1.100)

the Gaussian measure (1.97) factorizes as

pθθθ(v̂) =
1

Z

∏
α

exp

(
− v̂

2
α

2

1− σ2vσ2hw2
α

σ2v

)
. (1.101)
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The gradient of the LL projected along the α− β modes of the SVD maintains the usual form:

(∆w)αβ =
∑
iµ

xαi
∂L

∂wiµ
yβµ =

∑
iµ

xαi
(
⟨vihµ⟩D − ⟨vihµ⟩E

)
yβµ =

=
〈
v̂αĥβ

〉
D
−
〈
v̂αĥβ

〉
E
. (1.102)

If we neglect the fluctuations of the stochastic gradient and we consider a vanishing learning rate
such that the time interval between two updates can be considered infinitesimal, we can approximate
∆wiµ ∼ dwiµ

dt . This allows us to consider the time derivative of the weights matrix projected along its
eigenmodes: (

dw

dt

)
αβ

=
∑
iµ

xαi

(
d

dt

∑
γ

xγi wγy
γ
µ

)
yβµ =

=
∑
iµγ

(
xαi x

γ
i

dwγ
dt

yγµy
β
µ + xαi

dxγi
dt

wγy
γ
µy

β
µ + xαi x

γ
i wγ

dyγµ
dt

yβµ

)
=

= δα,β
dwα
dt

+ (1− δα,β)

[(
dxβ

dt

)T
xαwβ + wα

(
dyα

dt

)T
yβ

]
=

= δα,β
dwα
dt

+ (1− δα,β)
(
Ωxβαwβ +Ωyαβwα

)
, (1.103)

where we introduced the rotation matrices

Ωxαβ =

(
dxα

dt

)T
xβ and Ωyαβ =

(
dyα

dt

)T
yβ, (1.104)

which are anti-symmetric under the index exchange α ↔ β. This equation shows that the gradient
update of the weight matrix can be decomposed into two contributions: the evolution of the eigen-
values, and a rotation of the principal directions x and y. The time evolution of the modes can be
obtained through Equation (1.102):

dwα
dt

=

(
dw

dt

)
αα

=
〈
v̂αĥα

〉
D
−
〈
v̂αĥα

〉
E
=

= σ2hwα(
〈
v̂2α
〉
D
−
〈
v̂2α
〉
E
) =

= σ2hwα

(〈
v̂2α
〉
D
− σ2v

1− σ2vσ2hw2
α

)
. (1.105)

If we imagine to keep x and y fixed, we see that the machine tries to match the variance of the visible
units with the one of the dataset along the direction of the mode α. The stationary value of the mode
is

w2
α =

{
1
σ2
h

(
1
σ2
v
− 1

⟨v̂2α⟩D

)
if

〈
v̂2α
〉
D
> σ2v

0 if
〈
v̂2α
〉
D
≤ σ2v

, (1.106)

from which we can see that, if the empirical variance of the data along a certain mode is smaller than
the prior variance of the visible units, that mode gets suppressed.

To compute the time evolution of the rotation matrices, let us first notice that we can use Equation
(1.103) for writing

Ωxαβ = − 1

wα + wβ

(
dw

dt

)A

αβ

+
1

wα − wβ

(
dw

dt

)S

αβ

,

Ωyαβ =
1

wα + wβ

(
dw

dt

)A

αβ

+
1

wα + wβ

(
dw

dt

)S

αβ

,

(1.107)
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where the superscripts A and S indicate respectively the anti-symmetric and symmetric part of the
matrix. Let’s now compute the right-hand side of Equation (1.102). The average over the data
distribution for α ̸= β is

〈
v̂αĥβ

〉
D
=

〈
v̂α

〈
ĥβ

〉
p(h|v)

〉
pdata(v)

=

〈
v̂α
∑
µ

yβµ ⟨hµ⟩p(h|v)

〉
pdata(v)

=

= σ2h

〈
v̂α
∑
µ

yβµ
∑
i

wiµvi

〉
pdata(v)

= σ2h

〈
v̂α
∑
µiγ

yβµy
γ
µwγx

γ
i vi

〉
pdata(v)

=

= σ2h

〈
v̂α
∑
γ

δβ,γwγ

(∑
i

xγi vi

)〉
pdata(v)

= σ2hwβ ⟨v̂αv̂β⟩D , (1.108)

where

⟨v̂αv̂β⟩D =
∑
ij

xαi

(
1

Ndata

Ndata∑
k=1

v
(k)
i v

(k)
j

)
xβj . (1.109)

Similarly, the average over the model distribution can be written as〈
v̂αĥβ

〉
E
= σ2hwβ ⟨v̂αv̂β⟩E , (1.110)

where the last average is over the distribution (1.101). However, since this distribution factorizes,
there are no entries out of the diagonal, and this term do not enter in the definition of the Ω. From
the expressions (1.107) is now easy to obtain

Ωxαβ = (1− δα,β)
σ2h
2

(
wα − wβ
wα + wβ

+
wα + wβ
wα − wβ

)
⟨v̂αv̂β⟩D ,

Ωyαβ = (1− δα,β)
σ2h
2

(
−
wα − wβ
wα + wβ

+
wα + wβ
wα − wβ

)
⟨v̂αv̂β⟩D .

(1.111)

When inserting these expressions into (1.103), we find that the steady state is such that

0 = σ2hwβ ⟨v̂αv̂β⟩D
(1.108)
=

〈
v̂αĥβ

〉
D

for α ̸= β. (1.112)

To recap, Equations (1.105) and (1.112) tell us that, in the early stages of the learning, the RBM:

1. Rotates the principal axes of the weight matrix, x and y, so as to diagonalize the empirical
covariance matrix of the dataset. In other words, the eigenvectors of w align with the principal
directions of the dataset;

2. Along the principal directions, it suppresses those modes for which the empirical variance is
smaller than the prior variance and adjusts those modes above the threshold until the limit
value given by Equation (1.106) is reached.

This analysis allows us to say that, in the first part of the learning, the RBM is performing a sort
of SVD of the dataset by just keeping the modes above a certain threshold. Then, as the learning
evolves, it leaves the linear regime and the model starts to learn non-linear transformations of the
data over which we cannot say much. For what concerns us, this results tell us that, at the beginning
of the learning, the weight matrix “learns” the PCA of the dataset starting with the strongest modes,
because the vectors of the SVD of w align with those of the PCA.
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Chapter 2

Training and Testing RBMs

This chapter is dedicated to presenting the RBM from the point of view of the learning. The goal is
to show how the properties of this model allow us to get a partial theoretical understanding of it and
to have control over many aspects of the training. In the first section, we describe the three datasets
used during this work and we justify their adoption. Sections 2, 3 and 4 are more technical, and there
we discuss more in detail how to train an RBM and how to assess a trained model. Finally, in the
last section, we present some experiments done with RBMs, with the aim of showing the capabilities
of the model and its versatility in carrying out different tasks.

2.1 Datasets Description

In this section, we present the three datasets that we used for carrying out our numerical experiments
during this work. We chose to consider real-world datasets with different properties. The MNIST
dataset [18], which consists of images of handwritten digits, allows us to visualize the generated sam-
ples, hence allowing for a by-eye inspection of the results. The Human Genome dataset [1] represents
genomic mutations with respect to a reference sequence, and it provides us with two-level labelling
that gives us the possibility to check if the RBM is able to learn even sub-structures of the data (eth-
nic or population-level differences). Finally, the WW dataset [23, 14, 26], consisting of amino acidic
sequences of proteins, is the most interesting for practical applications and gives us the opportunity
of testing the Potts version of the RBM with more than two colors.

2.1.1 MNIST dataset

The MNIST dataset [18] consists of grey-scale images representing handwritten digits, from 0 to 9,
of dimension 28 × 28 pixels. The full training set contains 60000 images, while the full test set is
composed of 10000 images. Both datasets are completely annotated, namely, we have a label for each
sample indicating the represented digit. For our experiments, we extracted 10000 samples from the
training set and 2000 images from the test set. The images have been flattened and converted in binary
format by setting to 1 the pixels with a value above a certain threshold and to 0 otherwise. In this
way, the dataset we used was made of 784-dimensional binary vectors. Although dealing with binary
variables, instead of using the binary version of the RBM, we employed the Potts RBM with a number
of categories Nq = 2. The advantage of using this dataset is that, since it is made of images, we can
visualize the generated samples and check their quality through a by-eye inspection. This is also a
classical benchmark in Machine Learning. Some data extracted from the MNIST dataset are shown
in Figure 2.1 A). In Figure 2.1 B) we show the projection of the dataset along the two main principal
directions of the PCA. This plot shows that the MNIST dataset is not very much clusterized under
linear projections, in the sense that different categories tend to overlap. Hence, a correct classification
cannot be achieved from a clustering of the PCA projections.

33



2.1. DATASETS DESCRIPTION CHAPTER 2. TRAINING RBMS

Labels

A) B)

Figure 2.1: A): some examples extracted from the MNIST dataset. B): projection of 5000 samples from the
training set along the firsts two principal components of the PCA. Samples corresponding to different digits are
colored in different colors.

2.1.2 Human Genome (HG) Dataset

This dataset [1] represents human genetic variations of a population of 5008 individuals sampled from
26 populations in Africa, east Asia, south Asia, Europe and the Americas. Each sample is a sequence
of 805 binary variables, vi ∈ {0, 1}, representing the alteration or not of a gene with respect to a
reference genetic sequence. These data present two interesting aspects. The first one is that, as visible
in Figure 2.2, the dataset is quite clusterized, and this is often challenging for MCMC-based models [8,
2, 1]. The other peculiarity is that, for these data, we have a complete two-level hierarchical labelling.
At the higher level, the sequences are classified based on the continental origin of the individuals,
while at a finer level we also have a label for the particular ethnic population the data was sequenced
from. This allows us to test the discriminative capabilities of the RBM at different resolutions. We
reserved 90% of the data for the training set (Ndata = 4508) and we kept out 500 samples for the test
set.

2.1.3 WW domain dataset

TheWW dataset (Pfam Domain accession code: PF00397) is the most interesting one from the point of
view of the applications, because it allows us to test our RBM on a partially classified protein dataset.
From a structural point of view, proteins are chains of amino acids that fold into a well-defined 3d
structure. The structure of the protein determines its biological function, and it is thoroughly encoded
into the amino acidic sequence. This means that, in principle, one should be able to determine the
folding of a protein by just knowing the physical properties of its building blocks and how they
interact. For instance, some amino acids are hydrophobic, and they tend to position internally into
the structure, while others, which are hydrophilic, prefer to stay more exposed to the intracellular
medium. However, in practice, deriving the folding of a protein by just stating from its amino acid
sequence is a formidable task, and only recently it has been addressed with good accuracy by means
of machine learning methods [15]. This paradigmatic example shows that, instead of trying to derive
the properties of a protein by first principles, it is often convenient to exploit the statistics of large
datasets of homologous (proteins of common evolutionary ancestry) sequences to learn some emergent
properties. In fact, two homologous proteins can differ in more than 70% of the amino acidic sequence,
and yet present a very similar 3d structure. This means that, in nature, we can find a huge number
of different sequences that, once folded, show up the same protein. Those sets of sequences constitute
protein families, and they encode the evolutionary constraints that keep the protein functional [3].

Usually, large proteins are obtained by concatenating domains, which are functional units that can
fold independently of the rest of the sequence. The WW is one of the smallest domains, and it serves
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Figure 2.2: A): Projection of the HG dataset along the 1st and 2nd principal directions of the PCA (left) and
along the 3rd and 4th principal directions (right). Samples coming from different regions are shown in different
colors. The dataset appears to be clustered, and some ethnic groups are well distinguishable already at the
PCA level. B) Again, we project the data along the first two principal components but we show separately data
sampled in different regions. We highlight different ethnics in in different colors.

as a protein-protein interaction mediator. The domain does not show up in every protein the same,
because evolution produced a huge family of variants of the ancestor sequence (homologous). Those
sequences differ from one another for some substitutions or insertions and deletions of amino acids. In
particular, the WW domain can be classified into different groups depending on the binding affinity
it has with different motifs.

Apart from reconstructing protein folding, machine learning can be used in this context for several
other purposes, such as protein annotation. In fact, even if we had the 3d structure, still we are not
able to determine the exact function of the protein and its specificity, such as the binding affinity in
the case of the WW domain. Traditionally, proteins’ annotation based on their biological function has
been carried out in a laboratory, with lots of costs in terms of time and resources. In the last years
though, machine learning models, among which RBMs, started entering the tools of bioinformatics
with the purpose of classifying proteins based on the statistical similarity among sequences [29].

To be processed by the RBM, all sequences have first to be aligned through a procedure called Multiple
Sequence Alignment (MSA). In fact, because of the presence of insertions and deletions of sites, the
length of the sequences may change, whereas the RBM’s structure requires fixed-length input vectors.
There are several methods for performing the MSA, but the most common works by starting from
the most similar pair of sequences, i.e. those with the largest number of shared sites, and progressing
until the most distantly related. In this process, the algorithm inserts gaps within the sites of the
sequences in order to best match the position of the amino acids with the ones of the growing pile.
To perform the alignment, we used the MAFFT software (version 7) [25]. After performing the MSA,
the dataset was made of 15752 sequences of Nv = 37 sites. Among these, we kept 10% of the data
for the test set, and we trained the model over the remaining 90%. Each site is a categorical variable
that can take one of the Nq = 21 possible values, where q = 0 is reserved for the gaps and each of
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the remaining values q ∈ {1, . . . , 20} is associated to an amino acid. For this dataset, we have some
sequences annotated by experimental works [23, 14, 26] and some labels which have been inferred
by a previous study using an algorithm called ProfileView [31]. Figure 2.3 shows some of the data
represented using the PCA with super-impressed the experimentally annotated data, which are a very
reduced fraction of the total number of sequences (61 experimentally-classified sequences in total).

Otte et al.

Ingham et al.

Russ et al.

data

Figure 2.3: Projection of the WW dataset on 1st vs 2nd (left) and 3rd vs 4th (right) principal directions of its
PCA. The data points are in grey, while the colored dots represents the experimental annotations made by the
various authors.

2.2 Approximation of the Negative Term

In Algorithm 2 we outlined the procedure for sampling configurations from the joint probability
distribution of the RBM, pθθθ(v,h), in order to estimate the negative term of the gradient of the LL
(or, alternatively, to generate samples once the training is finished). In the SGA scheme, for each
minibatch of data we initialize Nchains MCMC chains and we update them in parallel using the block
sampling method for k steps. The set of final points of the chains will be then used for evaluating the
average in the negative term. It remains unsaid, though, how to choose the initial conditions of the
Markov Chains, {(v0,h0)r}r=1,...,Nchains

, at each gradient’s update. The classical choices are:

• Contrastive Divergence (CD)-k: This method was first proposed by Hinton [12], and it
consists in initializing the MC chains on the data of the minibatch and then performing k ∼ O(1)
MCMC updates. This means that Nchains must correspond to the chosen batch size. The idea is
that the data should be close to the equilibrium distribution of the model, and therefore starting
from them should allow to cover the entire distribution. The problem with this method is that it
prevents the chains from exploring regions of the states’ space that lay far from the dataset, thus
limiting the generalization capabilities of the learned RBM. It has been shown [9] that RBMs
trained with CD-k do not produce good quality samples, especially when k is small. The reason
is that this method creates local free energy wells around the datapoints, which get separated
by high free energy barriers. This decreases progressively the ergodicity of the Markov Chains
as training progresses, thus degrading the quality of the approximation of the LL’s gradient.

• Persistent CD (PCD)-k: In this scheme, Nchains chains are initialized randomly at the be-
ginning of the training. Then, at each gradient’s update, the chains are initialized with the final
values of the previous update, and k new steps are performed. This is equivalent of collecting
samples every k steps from a very long MCMC chain that runs throughout all the learning.
It has been observed that this method is able to generate samples very similar to the data of
the dataset, with the advantage with respect to the previous method to allow for a broader
exploration of the configurations’ space. This method seems to be quite good in the first part
of the training, when the mixing time of the chains is small. However, in the advanced phase of
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the training, the energy landscape becomes steeper and the mixing time increases. This means
that the chains might get stuck in the local minima of the free energy, hence over-representing
certain modes of the distribution and introducing a distortion in the estimate of the negative
term of the gradient that undermines training. Running many chains in parallel mitigates this
problem, but it does not completely solve it.

• Parallel Tempered MCMC (PT)-k: This method was first introduced in [9] for overcoming
the aforementioned problem with PCD. The idea is to introduce an ordered set of temperatures
T0 < T1 < · · · < TK−1 < TK , with T0 = 1, and to put a replica of the model at each of those
temperatures. Then, we run in parallel a PCD chain for each of them. At high temperatures
it is easier to explore the energy landscape and the PCD chains mix well, but the probability
distribution we want to sample from is the one defined at T0. One can thus define a new Markov
Chain MC process where the temperature of neighbouring chains, Tk and Tk+1, is interchanged
once in a while. Detailed balance is guaranteed if the proposal is accepted with the following
rule

r = exp[(βk − βk+1)(E(vk,hk;θθθ)− E(vk+1,hk+1;θθθ))], (2.1)

where βk = 1/Tk. Hence, this algorithm gives to the chains at low temperatures the possibility
to escape from local minima of the free energy and forget the past history. Eventually, the
particles used for evaluating the negative term of the gradient are those at T0.

Although in many cases this algorithm performs very well and allows for a fast thermalization
of the MC chains, it nevertheless presents some drawbacks. First of all, the algorithm is quite
heavy to run, since we have to simulate K + 1 processes in parallel among which only one (the
RBM at T0 = 1) is used for extracting the samples. In the second place, PT performs very poorly
in highly-clustered datasets, namely when samples gather in few high-density regions of the data
space separated by large empty regions. The reason for this is that, for those kinds of datasets,
the annealing in temperature passes through a first-order phase transition that separates very
different configurations of the system. In that case, the exchange probability becomes too small
and the performances of the algorithm drop down. A pictorial representation of this phenomenon
is depicted in Figure 2.4.

Figure 2.4: Sketch of a first-order phase transition in 1d appearing when changing the temperature of the
model. In correspondence with a (possibly non-unique) coexistence point Tco, the energy function presents a
discontinuity, which separates two regions in which the configurations of the system are very different. When
crossing the transition temperature, the free energy of the system, f , abruptly presents a new stable minimum
which is separated by the others by high free energy barriers. The colored dots represent MC chains running
in parallel for a model at a given temperature. The model at temperature T < Tco displays a high probability
region of the data space that is not present in the models at T > Tco, hence determining a low exchange
probability since the configurations are very different. Another way of saying this is that chains at the two sides
of the transition line do no longer interchange temperatures, because what is stable at one side is no good at
the other side. The “thermalizing” flow gets broken and there is no net improvement.
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• Random (Rdm)-k: This setting consists on initializing the MC chains with random samples
at each gradient’s update and then performing k steps. In [8] it has been shown that an RBM
trained with this scheme learns a dynamical process in which, starting from the same initial
conditions and performing k MC steps, the model generates good samples similar to the data.
However, if the initialization of the chain or the rules of the dynamics are different from the
ones used for the training, the quality of the generated samples gets sensitively worse. The
reason of this behaviour is that, as the training proceeds, the mixing time of the Markov Chains
increases. This means that quite soon the number of MC steps k is not sufficient for reaching
equilibrium configurations, and the learning becomes a process out of equilibrium in which the
RBM memorizes the particular dynamics that allows it to produce good-quality samples.

2.3 Scores for Monitoring the Learning

In order to assess the quality of the learned model, we have to introduce some observables that
compare the properties of the training/test datasets with the ones of the samples generated by the
RBM during the learning. Traditionally, the most used measure for evaluating the performance of a
trained RBM is the Log-Likelihood. As we already discussed, this cannot be computed exactly, but it
is still possible to approximate it by estimating the partition function using the Annealed Importance
Sampling method [16]. The vast majority of the works in the literature until recently relied uniquely
on this measure. However, in [8] it has been shown that the LL alone is quite unreliable for assessing
the generative power of an RBM, since it might happen that images generated with models with a high
LL are quite bad under visual inspection, and the opposite might happen too (low LL machines can
produce high-quality samples). On top of this, in unsupervised machine learning it is generally hard
to assess the quality of the generative model. In the Machine Learning community, people nowadays
use measures such as the Frechet Inception Distance [11] or the Inception Score [27]. While these
two measures can have benefits and drawbacks, we excluded them because they rely on yet another
trained deep neural network and they are in general used for images. Since we will not be dealing
only with images, these measures would not be very useful, nor we would be satisfied with a measure
based on an uninterpretable complex function. For these reasons, in the experiments we performed we
decided not to use the LL nor the aforementioned scores as quality indicators, and we propose instead
the following observables.

• Error in the energy ϵEϵEϵE : It is given by the Mean Squared Error (MSE) between the energy
function of the model computed on the data and the one evaluated on the generated samples.
Since at equilibrium the generated set and the dataset should be statistically indistinguishable,
we expect this score to go to zero for properly trained models and adequate generation times.

• Error of the first moment ϵ(1)ϵ(1)ϵ(1): We want to check that the empirical frequency of the color
q ∈ {1, . . . , Nq} at the site i ∈ {1, . . . , Nv} is the same between the dataset and the generated
set. This score is the MSE between the two sets of frequencies.

• Error of the second moment ϵ(2)ϵ(2)ϵ(2): With this observable we want to see if the empirical second
moment of the dataset has been learned properly. It is given by the MSE between the covariance
matrix of the dataset and the one computed on the generated samples.

• Error on the spectrum ϵSϵSϵS: After performing the SVD of the dataset and the generated set,
we compute the MSE between the two ordered sets of eigenvalues.

• Error in the Adversarial Accuracy Indicator (AAI) ϵAAIϵAAIϵAAI: This score [4] aims at assessing
the ability of the generative model to produce data which are statistically identical to the ones of
the dataset, but without merely copying them. The idea is to compute a matrix of (Euclidean)
distances on the set of points obtained by merging the dataset and the generated set. Then, for
each point, we check whether its nearest neighbor belongs to the dataset or to the generated
set. In this way we can obtain two indicators: ϵAAI

gen , which measures the probability that the

nearest neighbor of a generated sample is a generated sample, and ϵAAI
data, which represents the

probability of a sample from the dataset to have as a nearest neighbor another sample from the
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dataset. The optimal condition is when ϵAAI
gen = ϵAAI

data = 0.5, because it means that the two sets
of points are statistically very similar, but not overlapping. Notice that this score is also a good
indicator for detecting overfitting, because if the generated samples were identical to the dataset
samples we would have ϵAAI

gen = ϵAAI
data = 0, which is far from optimality.

2.4 Equilibrium and Non-equilibrium Properties

In Figure 2.5 we show the aforementioned scores as a function of the generation time and for different
ages of the RBM in two different settings: one in which the training was carried out in Rdm mode,
and the other in which the PCD mode was used instead. The first thing that catches the eye, is the
very different profile that the score curves display in the two cases.

In the Rdm case, all scores indicate a well-defined generation time in which the performances of the
machine are bests, and it corresponds to the number of Gibbs steps, NGibbs, that has been used for
training the RBM (tG = 10, in the present case). Generating the data earlier or later would result in
worse outcomes. This phenomenon is a clear sign that the RBM has learnt a non-equilibrium process
in which the LL had to be maximized in a specific number of steps starting from random initial
conditions. In Figure 2.6, on the left, we show the generated images after tG = 10 for different ages
of the machine. Notice how the oldest RBM (tage = 5000 epochs) is able – with only 10 MCMC steps
– to generate very good images (such as the 5 and 6 digits in the 3rd and 4th rows) but also samples
that do not resemble to any existing digit at younger ages.

For the RBM trained in PCD mode, instead, we see how, after an initial transient period in which
the scores improve in an almost monotonic way, the MC Markov chains thermalize and the scores
become stationary around their equilibrium value. The curves in Figure 2.5 assure us that, after
O(104) updates, the chains are independent of the random initial conditions and the generated images
are correctly sampled from the equilibrium probability distribution. In Figure 2.6, on the right, we
report some images generated with tG = 105 chain updates for different ages of the RBM, and one can
appreciate how the oldest machine is capable of generating really good images. From Figure 2.5 we
can also notice how the thermalization time increases with the age of the RBM, and this is devoted
to the free energy barriers that become higher and higher as the training proceeds, so that the chains
struggle exploring the data space. To help visualizing this point, we reported in Figure 2.7 an example
of 5 chain’s trajectories initialized at random. Clearly, the number of steps performed is too small
for this RBM, because the chains are mostly confined in specific regions and did not have the time to
visit the whole data space. The message is that we can improve the quality of the generated samples
by training the machine for longer times, but this comes with the cost of having to wait longer and
longer in the generation phase before sampling at equilibrium.

Let us observe how the oldest machines typically improve the scores we considered, but this is not
always the case. In particular, it might happen that the majority of the scores assign a preference
for certain models (normally the oldest ones), but some of them reward others instead. That is why
it is important to use multiple metrics for assessing the quality of the training and to have a broad
overview of the process.
As a final remark, we stress the fact that a properly balanced RBM must display one of the behaviours
shown in Figure 2.5, depending on the training mode chosen. Atypical trends, such as the appearance
of local minima at different generation times in the PCD mode, must be considered as an alarm bell
for a wrong choice of hyper-parameters. Changing the number of hidden units or the learning rate
properly should fix the problem.

2.5 Experiments in Semi-Supervised Mode

In this section, we want to test the capabilities of an RBM trained in semi-supervised mode and we
want to study how the performances depend on the amount of labels that we use during the training.
The results we present are obtained on the MNIST dataset using a Potts-Bernoulli RBM. We will
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Figure 2.5: Scores profiles for two Potts-Bernoulli RBMs trained on the MNIST dataset, one in Rdm mode
(leftmost column) and the other in PCD mode (rightmost column). The two machines share the same hyper-
parameters: learning rate = 10−3, Nh = 500, NGibbs = 10 (k = 10), minibatch size = 500. Each row shows the
behaviour of one of the scores described in the main text with respect to the generation time tG (number of
MCMC steps for generating the images). The different colored lines correspond to different ages of the RBM
expressed in gradient updates. The scores have been computed by comparing 2000 generated samples with the
same number of images extracted from the test set, and all the chains have been initialized with random initial
conditions.

profit from this part to also present some of the observables that can be monitored during the training
of an RBM.

2.5.1 Observables of the Training

In Figure 2.8 we show how the eigenvalues of the weight matrix and of the label matrix evolve
during the training. After about 100 epochs the first mode gets expressed, and the RBM enters the
ferromagnetic phase. Then, also the other eigenvalues reach the learning threshold and the other
modes of the distribution are learnt, first gradually and then many at the same time. We underlie the
fact that the learning threshold is not 4 as derived in subsection 1.5.3, because here are present also
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Figure 2.6: Examples of 5 images generated by the RBM trained in Rdm mode (left) and the one trained in
PCD mode (right) at different ages. In the Rdm case, we generated the images using tG = 10 MCMC steps,
which is where the scores are bests, while in the PCD case we waited for tG = 105 MCMC steps, when we are
sure that all machines have thermalized. The age of the RBM, tage, is here expressed in terms of epochs. Each
epoch corresponds to 20 gradient updates for the MNIST dataset.

the external fields and the structure of the weight matrix is different since we are using Potts variables
with 2 colors.

The features learnt by the machine can be visualized into the 20 randomly selected feature maps
shown in Figure 2.9, which represent the filters that act on the visible layer to produce the hidden
representation. We can recognize several profiles of digits impressed on top of each other. Also, we
can notice how some of the features are quite localized since they are characterized by small intense
regions. Comparing the two rows, we see that there is a clear correlation between w0

iµ and w1
iµ.

2.5.2 Data Clustering

A trained RBM can be used for subdividing data into different categories. The idea is the same as
projecting the dataset along the principal directions of the PCA, but this time we can use the principal
components of the weight matrix instead. Moreover, rather than doing this directly with the data,
we might use instead the hidden representation that the machines assigned to the dataset. In fact,
in many cases the hidden variables appear more clustered than the visible ones, hence allowing for a
better classification. As we demonstrated in subsection 1.5.4, the result obtained for early ages of the
RBM should be the same as performing a simple PCA of the data. This is nicely proved by comparing
the panel B) of Figure 2.10 with the first plot in panel A). As the learning advances, the machine
starts to learn non-linear transformations of the data, and the projections along the weight matrix
start to differ from the PCA. At the very late stages of the learning, the projected data merge together
and the clusters are almost indistinguishable. Empirically, one observes that the best performances in
the data classification are reached when applying a clustering algorithm at the intermediate stages of
the learning. For instance, this strategy has been applied in [29] for inferring protein annotations.

2.5.3 Label Inference and Conditioned Sampling

Once the RBM has been trained in semi-supervised mode, we can enquire it on the labels to assign
to a presented image as described in section 1.4. In Figure 2.11 we tested the accuracy of the RBM
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Visualization of 5 MCMC paths

Figure 2.7: Five MCMC trajectories of 1000 steps with random initialization visualized on the PCA projection
along the first and second principal components (left) and third and fourth principal components (right). The
starting point of the each chain is indicated with a star. The grey points are the data, and the different plots
represent the projections of the dataset onto the spaces defined by couples of PCA principal components. The
figure shows a sampling that cannot be at equilibrium, because the chains visited only a small volume of the
data space and are still correlated with their initial conditions.

Figure 2.8: Evolution of the eigenvalues of the weight matrix (on the left) and of the label matrix (on the right)
as a function of the training epochs. Each epoch correspond to 20 gradient updates.

Weigth matrix visualization

color: 0

color: 1

Figure 2.9: Representation of some of the feature maps learned from the RBM after 5000 epochs. Each feature
map corresponds to the weights that connect a randomly selected hidden unit with the visible layer once we
reshape the vector to form a 28× 28 image. The first row shows the connection with the “0” Potts state of the
visible layer, while the second row represents the connections with the state “1” for the same hidden unit.

as a function of the age for models trained with a different amount of labels. We can appreciate how
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Figure 2.10: A) Projections of the hidden representation of the data along the first two principal components
of the weight matrix for different ages of the RBM. The age of the machine is indicated in terms of epochs (1
epoch = 20 gradient updates in this case). The grey points represent the data, while the colored ones are the
data classified by [31]. B) First two components of the PCA of the hidden variables. The RBM used here was
trained in unsupervised mode for a total of 104 epochs.

slightly increasing the number of labels – from 1% to 5% – results in a sensitive improvement of the
performances, approaching an impressive 80% of accuracy on the test set with just 5% of the labels.
In the most favourable case, where we had at disposal 50% of the labels, the mostly trained machine
reaches a remarkable 90% of accuracy.

Figure 2.11: Accuracy reached on inferring the correct labels of the train set (left plot) and of the test set (right
plot) for different RBMs as a function of the age. The RBMs differ for the percentage of labelled data that were
used during the training, from 1% to 50%.

The other interesting task that this type of model can tackle is to generate samples conditioned on
a given label specified by us. We described how to implement this feature into Algorithm 3. In
Figure 2.12 we show the images generated by a model for different target labels. The machine is
mostly able to produce coherent images, although in some cases the returned digit does not fulfill
the delivery. This is very likely due to the fact that the Gibbs Markov chains, sometimes, might not
be able to overcome the free energy barriers in the limited amount of updates that we set, hence
remaining stuck in a representation that is not the desired one.
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Figure 2.12: Some conditioned samples generated by an RBM trained with 100% of the labels after 104 Gibbs
updates.
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Chapter 3

Mean Field Approach

In the previous chapters, we already demonstrated how a physics-inspired computational model offers
the possibility of applying methods developed in the Statistical Physics community in order to unveil
many aspects of the functioning of the model, paving the way to a explainable machine learning
approach.

In this chapter, we present yet another method borrowed from Statistical Physics that allows us to
estimate the intractable free energy of the model through the so-calledmean field (MF) approximation.
This approach can be interpreted as an expansion of the system’s free energy up to a certain order in
the high temperature limit β → 0. Since the temperature regulates the relative contribution of the
entropy versus the energy in the free energy, F = E − TS, we can interpret the high-temperature
regime as a stage in the training dynamics in which the energy, that mediates the interactions among
variables, is negligible compared to the entropy of the system. This approximation is therefore valid
in the early stages of the learning, where the couplings among the nodes of the RBM are small.

This derivation is not just instructive for a better understanding of the model at the beginning of the
learning, but it is also at the core of the algorithm for constructing relational trees of data that we
will present in the next chapter.

In the first section of this chapter, we apply one of the standard MF techniques in order to derive
a first-order approximation of the RBM model that we refer to as naive MF. In the second section,
instead, we present a generalization of this approach that allows – in principle – to compute the mean
field approximation of the free energy up to any order, the so called Plefka expansion [24].

3.1 Naive Mean Field

In this section, for clarity and simplicity, we derive the naive mean field equations for the case of an
RBM with Potts variables in the visible layer and binary variables {0, 1} with Bernoulli potential in
the hidden layer. We recall the Hamiltonian of the model:

E(v,h;θθθ) = −
∑
iq

aqi δvi,q −
∑
µ

bµhµ −
∑
iµq

δvi,qw
q
iµhµ, (3.1)

and we introduce the inverse temperature parameter β = 1/T , so that the probability distribution of
the model is written as

p(v,h;θθθ) =
1

Z
e−βE(v,h;θθθ). (3.2)

Our aim is to make use of the variational method in order to approximate the probability distribution
(3.2) with a simpler one – which we call test distribution – parametrized by some variational parameters
πππ. We arbitrary choose the test distribution to be in a Boltzmann-like form:

p0(v,h;πππ) =
1

Z0
e−βE0(v,h;πππ), (3.3)

45



3.1. NAIVE MEAN FIELD CHAPTER 3. MEAN FIELD APPROACH

where E0 is the test-Hamiltonian of a system put at the same temperature T of the original model. The
Kullback-Leibler divergence between the probability distribution of the model and the test distribution
is

DKL(p0||p) =
∑
v,h

p0(v,h;πππ) [log p0(v,h;πππ)− log p(v,h;θθθ)] = −S0 + β ⟨E⟩0 + logZ, (3.4)

where S0 is the Shannon entropy of the test distribution and we denoted as ⟨·⟩0 the average over (3.3).
Now we can use the fact that the KL divergence is a non-negative function, and write a variational
equation for the free energy of the model:

F = − 1

β
logZ ≤ ⟨E⟩0 −

1

β
S0 ≡ Fvar. (3.5)

If we rewrite S0 = β ⟨E0⟩0 − βF0, with F0 = −1/β logZ0 being the free energy of the test model, the
inequality (3.5) can be written in the equivalent form

F ≤ Fvar = ⟨E − E0⟩0 + F0. (3.6)

At this point we have to choose the test Hamiltonian. The simplest choice is to use a model in which
all variables are independent, namely

E0(v,h;πππ) = −
∑
iq

δvi,qϕ
q
i −

∑
µ

hµψµ, (3.7)

where πππ = ({ϕqi }, {ψµ}) are the variational parameters of the test model. The goal is to find the optimal
values of the variational parameters such that the variational free energy is as close as possible to the
real one:

F ≤ F ∗
var ≡ min

πππ

{
Fvar(πππ,θθθ)

}
. (3.8)

For simplicity, let us define the magnetizations f qi = ⟨δvi,q⟩0 and mµ = ⟨hµ⟩0. Then, the variational
free energy (3.6) becomes

Fvar = −
∑
iq

(aqi − ϕ
q
i )f

q
i −

∑
µ

(bµ − ψµ)mµ −
∑
iµq

f qi w
q
iµmµ + F0. (3.9)

We can explicitly compute the magnetizations:

mµ = ⟨hµ⟩0 = −
∂F0

∂ψµ
=

∑
hµ=0,1 hµe

βψµhµ∑
hµ=0,1 e

βψµhµ
=

1

1 + e−βψµ
= sigmoid (βψµ) ,

f qi = ⟨δvi,q⟩0 = −
∂F0

∂ϕqi
=

∑
vi
δvi,q e

βϕ
vi
i∑

p e
βϕpi

=
eβϕ

q
i∑

p e
βϕpi

= softmaxq (βϕ
q
i ) .

(3.10)

The variational parameters {ϕqi } and {ψµ} must minimize the variational free energy, hence we have

0 =
∂Fvar
∂ϕqi

= −
∂f qi
∂ϕqi

(
aqi − ϕ

q
i +

∑
µ

wqiµmµ

)
,

0 =
∂Fvar
∂ψµ

= −∂mµ

∂ψµ

bµ − ψµ +∑
iq

wqiµf
q
i

 ,

(3.11)

which yield the optimal values:

ϕqi = aqi +
∑
µ

wqiµmµ,

ψµ = bµ +
∑
iq

wqiµf
q
i .

(3.12)
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If we substitute these expressions into Equations (3.10), we obtain the self-consistent equations

f qi = softmaxq

(
βaqi + β

∑
µ

wqiµmµ

)
, (3.13)

mµ = sigmoid

βbµ + β
∑
iq

wqiµf
q
i

 . (3.14)

At this point we can evaluate the variational free energy at its minimum. To do so, we first need to
express the auxiliary fields in terms of the magnetizations by inverting equations (3.14) and (3.13).
The first one gives straightforwardly

βψµ = log

(
mµ

1−mµ

)
, (3.15)

while the second case is less trivial. Indeed, the direct inversion of equation (3.13) is defined up to an
arbitrary constant c

βϕqi = log f qi + c, (3.16)

which is a consequence of the gauge freedom of the independent model (3.7). To uniquely define
the constant, we need to specify a convenient gauge choice, which in this case turns out to be the
lattice-gas gauge:

ϕ
Nq

i = 0⇒ c = − log f
Nq

i . (3.17)

In this way we obtain the inverse relation of the softmax function (3.13) as

βϕqi = log

(
f qi

f
Nq

i

)
. (3.18)

Substituting these relations into (3.9) and using the normalization constraint
∑

q f
q
i = 1 we get

F ∗
var =−

∑
iq

aqi f
q
i −

∑
µ

bµmµ −
∑
iqµ

f qi w
q
iµmµ+

− 1

β

−∑
iq

f qi log f
q
i −

∑
µ

[mµ logmµ + (1−mµ) log(1−mµ)]

 , (3.19)

where in the first line we recognize the average energy of the model over the non-interacting model
and in the second line, in the brackets, there is the entropic contribution of categorical variables (first
term) and of binary variables (second term). Let us point out that the variational free energy (3.19)
is a valid approximation of the true free energy only when the magnetizations {mµ} and {f qi } satisfy
the self-consistent conditions (3.13) and (3.14). To obtain those values, we can start with a generic
initial condition ({mµ(0)}, {f qi (0)}) and iterate

f qi [t]← softmaxq

(
βaqi + β

∑
µ

wqiµmµ[t− 1]

)
,

mµ[t]← sigmoid

βbµ + β
∑
iq

wqiµf
q
i [t]

 ,

(3.20)

for t = 1, . . . , N . The recursion rule (3.20) is guaranteed to converge to one of the possible fixed points
of F ∗

var [24].

The derivation of the naive mean-field free energy does not make explicit that this approach is equiv-
alent to approximating the real free energy at the first order in the high-temperature regime β → 0;
this will become clearer in the next section. Notice, however, that in this limit the entropic term of
equation (3.19) becomes the dominant one, and the interactions among variables are negligible.

47



3.2. PLEFKA EXPANSION CHAPTER 3. MEAN FIELD APPROACH

3.2 Plefka Expansion and TAP Equations

The so-called Plefka expansion was first introduced in [24] to show how the Thouless, Anderson
and Palmer (TAP thereafter) equations for the Sherrington–Kirkpatrick model could be derived, and
generalized, as a second-order expansion in the couplings of a proper Gibbs free energy. In the following
section, we derive the TAP equations for the Potts RBM with generic hidden potential by generalizing
the approach presented in [28] to the case of categorical variables.

At the core of the Plefka expansion there is the aforementioned observation that a series expansion
of the free energy in the high-temperature regime is equivalent to an expansion in the weak-couplings
limit, that is w → 0. Hence, instead of interpreting β as an inverse temperature, it is convenient to
define an Hamiltonian in which β plays the role of an expansion parameter coupled with the weights
tensor:

−βE(v,h;θθθ) =
∑
iq

aqi δvi,q −
∑
µ

Uµ(hµ;ϑϑϑµ) + β
∑
iµq

δvi,qw
q
iµhµ. (3.21)

The free energy of the model is then defined as

−βAβ = log
∑
v,h

exp (−βE(v,h;θθθ)) . (3.22)

Since this is just a mathematical trick for expanding in the w → 000 limit, after the derivation of the
mean-field free energy we will set β = 1.

The strategy of the derivation is the following. First, we define an extended system by introducing
some auxiliary fields. We then derive a Gibbs free energy by taking the Legendre transform of the
Helmholtz free energy of the extended system. This will allow us to introduce a new set of variational
parameters, the magnetizations, that must match the first two moments of the probability distribution
of the system. Since the obtained Gibbs free energy is as intractable as the true free energy, we rather
consider a power series expansion in the β → 0 limit. If we stop at the second-order and we impose
the stationary conditions to the approximated Gibbs free energy, we obtain a set of recursive relations
that are the TAP equations we are looking for.

First of all, let us introduce the temperature-dependent auxiliary fields ΛΛΛ = {Λi} = ({ϕqi }, {ψµ}, {ξµ})
and write the Helmholtz free energy of an extended system:

−βFβ(ΛΛΛ) = log
∑
v,h

exp

−βE(v,h) +
∑
iq

ϕqi (β)δvi,q +
∑
µ

ψµ(β)hµ +
∑
µ

ξµ(β)h
2
µ

 . (3.23)

Notice that when the auxiliary fields disappear we recover the true free energy of the system: Fβ(000) =
Aβ. It can be shown that (3.23) is a convex function of ΛΛΛ [28]. We can therefore take its Legendre
transform, which is again a convex function (and thus it has a unique minimum), obtaining a Gibbs
free energy that depends on the conjugate variables ΩΩΩ = {Ωi} = ({f qi }, {mµ}, {Vµ}),

Γ(β) ≡ −βGβ(ΩΩΩ) = −β sup
ΛΛΛ

Fβ(ΛΛΛ) + 1

β

∑
iq

ϕqi (β)f
q
i +

1

β

∑
µ

ψµ(β)mµ +
1

β

∑
µ

ξµ(β)(Vµ +m2
µ)

 =

= −βFβ(ΛΛΛ∗(ΩΩΩ))−
∑
iq

ϕqi (ΩΩΩ, β)f
q
i −

∑
µ

ψµ(ΩΩΩ, β)mµ −
∑
µ

ξµ(ΩΩΩ, β)(Vµ +m2
µ)

(3.24)

where, by definition of Legendre transform,

Ωi =
∂(−βFβ)
∂Λi

(ΛΛΛ∗) → Λ∗
i (ΩΩΩ) =

(
∂(−βFβ)
∂Λi

)−1

(ΩΩΩ), (3.25)

and we indicated as ΛΛΛ∗ the supremum values of the auxiliary fields.
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Equation (3.25) implies that the following relations among conjugate variables must hold:

f qi =
∂

∂ϕqi
(−βFβ(ΛΛΛ∗)) = ⟨δvi,q⟩ ,

mµ =
∂

∂ψµ
(−βFβ(ΛΛΛ∗)) = ⟨hµ⟩ ,

Vµ =
∂

∂ξµ
(−βFβ(ΛΛΛ∗))−m2

µ =
〈
h2µ
〉
− ⟨hµ⟩2 ,

(3.26)

Here, the average ⟨·⟩ are taken at ΛΛΛ∗. From now on, for ease of notation, we will omit the superscript
*. The relations (3.26) tell us that the Gibbs free energy (3.24) is valid only when the conjugate
variables ΩΩΩ represent the firsts two moments of the marginal distribution of the extended system, and
for that reason we will refer to them as magnetizations.

We are interested in the case in which the auxiliary fields vanish, since Fβ(ΛΛΛ = 000) correspond to the
true free energy of the model. It turns out that this corresponds to finding the stationary conditions
of Γ with respect its arguments. In fact:

0 =
∂Γ

∂Ωi
=

∂

∂Ωi

[
−βFβ(ΛΛΛ(ΩΩΩ))−

∑
k

Λk(ΩΩΩ)Ωk

]
=

=
∑
k

∂(−βFβ)
∂Λk︸ ︷︷ ︸
Ωk

∂Λk
∂Ωi

−
∑
k

∂Λk
∂Ωi

Ωk − Λi(ΩΩΩ) =

= −Λi(ΩΩΩ), (3.27)

which implies that, at the minimum of the Gibbs free energy, ϕqi = ψµ = ξµ = 0 ∀i, q, µ. But this
means that, in that point, the inverse Legendre transform gives Fβ(000) = Aβ, and we obtain the true
free energy of the system. This suggests that, rather than try to directly evaluate the free energy
of the model, we can work with the system Γ(β,ΩΩΩ) instead. However, evaluating Γ is as difficult as
evaluating Aβ, so we may rather study a high-temperature expansion of the Gibbs free energy around
β = 0. To do so, let us first rewrite (3.24) in the equivalent form

Γ(β) = log
∑
v,h

exp(−βE −K(β)) =

= log
∑
v,h

exp

(∑
iq

aqi δvi,q −
∑
µ

Uµ(hµ;ϑϑϑ) + β
∑
iµq

δvi,qw
q
iµhµ+

+
∑
iq

ϕqi (β) (δvi,q − f
q
i ) +

∑
µ

ψµ(β) (hµ −mµ) +
∑
µ

ξµ(β)
(
h2µ − Vµ −m2

µ

))
,

(3.28)

where we distinguished between the original Hamiltonian and the part coming from having extended
the system:

K(β) ≡ −
∑
iq

ϕqi (β) (δvi,q − f
q
i )−

∑
µ

ψµ(β) (hµ −mµ)−
∑
µ

ξµ(β)
(
h2µ − Vµ −m2

µ

)
. (3.29)

Our aim is to find a second-order expansion in β of the Gibbs free energy around its minimum:

Γ(β) = Γ(0) + β
∂Γ

∂β

∣∣∣∣
β=0

+
β2

2

∂2Γ

∂β2

∣∣∣∣
β=0

+ O(β3). (3.30)
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Zeroth Order The zeroth order is readily evaluated as

Γ(0) =−
∑
iq

ϕqi (0)f
q
i −

∑
µ

ψµ(0)mµ −
∑
µ

ξµ(0)(Vµ +m2
µ)+

+
∑
i

log

[∑
v

exp

(∑
q

δv,q(a
q
i + ϕqi (0))

)]
+
∑
µ

log

[∑
h

Pµ(h,ϑϑϑµ)e
ψµ(0)h+ξµ(0)h2

]
(3.31)

where we expressed the hidden potential in terms of the probability distribution P = e−U.

First Order Let us denote the interaction term as

I ≡ −
∑
iµq

δvi,qw
q
iµhµ. (3.32)

Then, the first-order term can be computed as

∂Γ

∂β

∣∣∣∣
β=0

=

〈∑
iqµ

wqiµδvi,qhµ +
∑
iq

∂βϕ
q
i (β)(δvi,q − f

q
i ) +

∑
µ

∂βψµ(β)(hµ −mµ)+

+
∑
µ

∂βξµ(β)(h
2
µ − Vµ −m2

µ)

〉∣∣∣∣
β=0

=

= ⟨−I− ∂βK(β)⟩|β=0 = −⟨I⟩ =
∑
iµq

f qi w
q
iµmµ, (3.33)

where we have used ⟨∂βK⟩ = 0, which comes directly from (3.26).

Second Order To compute the second derivative we have first to evaluate the derivative of the
probability distribution with respect to β. We have

∂

∂β
p(v,h) =

∂

∂β

(
e−βE−K

Z(β)

)
= (−I− ∂βK)

e−βE−K

Z(β)
− 1

Z2(β)

∂Z(β)

∂β
e−βE−K, (3.34)

where

∂Z(β)

∂β
=

∂

∂β

∑
v,h

e−βE−K =
∑
v,h

(−I− ∂βK)e−βE−K = Z(β)(−⟨I⟩ − ⟨∂βK⟩︸ ︷︷ ︸
=0

). (3.35)

Thus

∂

∂β
p(v,h)

∣∣∣∣
β=0

= (⟨I⟩ − I− ∂βK) p(v,h)|β=0 . (3.36)

In general, if we have a function f(β,v,h), then

∂

∂β
⟨f⟩ =

〈
∂f

∂β

〉
+ ⟨f⟩ ⟨I⟩ − ⟨fI⟩ − ⟨f∂βK⟩ . (3.37)

Now we can proceed by computing the second derivative of the free energy:

∂2Γ

∂β2
=

∂

∂β

∑
v,h

(−I− ∂βK(β))p(v,h) =

=
〈
∂2βK

〉︸ ︷︷ ︸
=0

+
∑
v,h

(−I− ∂βK(β))
∂

∂β
p(v,h) =

=
〈
(I+ ∂βK)2

〉
− ⟨I⟩2 =

〈
I2
〉
− ⟨I⟩2 +

〈
(∂βK)2

〉
+ 2 ⟨I ∂βK⟩ . (3.38)
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When expanding the terms in (3.38), we need to compute the pair correlation functions with respect
to the extended probability function at β = 0. In the infinite-temperature limit the interaction term
disappears, so the variables of the system becomes independent. For {0, 1} variables, this yields:

⟨hµhν⟩ = mµδµν + (1− δµν)mµmν ,〈
δvi,qδvj ,p

〉
= f qi δijδqp + (1− δij)f qi f

p
j .

(3.39)

After some computation, we arrive at the expression

∂2Γ

∂β2

∣∣∣∣
β=0

=
∑
µ

(〈
h2µ
〉
−mµ

)∑
iq

(wqiµ)
2f qi +

∑
iqp

wqiµw
p
iµf

q
i f

p
i + (∂βψµ(0))

2 + 2
∑
iq

wqiµ(∂βψµ(0))f
q
i

+

+
∑
iqp

(f qi δpq − f
q
i f

p
i )

[∑
µν

wqiµw
p
iνmνmµ + (∂βϕ

q
i (0))(∂βϕ

p
i (0)) + 2

∑
µ

wqiµmµ(∂βϕ
q
i (0))

]
.

(3.40)

To compute the derivative of the auxiliary fields at β = 0 we can exploit the Schwarz’s theorem for
the Gibbs free energy:

∂βψµ(0) = −
∂

∂β

∂Γ

∂mµ

∣∣∣∣
β=0

= − ∂

∂mµ

∂Γ

∂β

∣∣∣∣
β=0

= − ∂

∂mµ

∑
iµq

f qi w
q
iµmµ

 = −
∑
iq

f qi w
q
iµ,

∂βϕ
q
i (0) = −

∂

∂β

∂Γ

∂f qi

∣∣∣∣
β=0

= − ∂

∂f qi

∂Γ

∂β

∣∣∣∣
β=0

= − ∂

∂f qi

∑
iµq

f qi w
q
iµmµ

 = −
∑
µ

mµw
q
iµ,

∂βξµ(0) = −
∂

∂β

∂Γ

∂(Vµ +m2
µ)

∣∣∣∣
β=0

= − ∂

∂(Vµ +m2
µ)

∂Γ

∂β

∣∣∣∣
β=0

= − ∂

∂(Vµ +m2
µ)

∑
iµq

f qi w
q
iµmµ

 = 0.

(3.41)

After inserting these expressions into (3.40), we obtain

∂2Γ

∂β2

∣∣∣∣
β=0

=
∑
µ

Vµ

∑
iq

(wqiµ)
2f qi −

∑
i

(∑
q

f qi w
q
iµ

)2
 . (3.42)

From now on, to lighten the notation, we drop the β = 0 specification in the auxiliary fields. Putting
all pieces together, the Gibbs free energy of the model can be expanded at the second order in β as

Γ(2)(β) =−
∑
iq

ϕqi f
q
i −

∑
µ

ψµmµ −
∑
µ

ξµ(Vµ +m2
µ)+

+
∑
i

log

[∑
v

exp

(∑
q

δv,q(a
q
i + ϕqi )

)]
+
∑
µ

log

[∑
h

Pµ(h;ϑϑϑµ)e
ψµh+ξµh2

]
+

+ β
∑
iµq

f qi w
q
iµmµ+

+
β2

2

∑
µ

Vµ

∑
iq

(wqiµ)
2f qi −

∑
i

(∑
q

f qi w
q
iµ

)2
 . (3.43)

In order to obtain the auxiliary fields, we can impose the stationary conditions to equation (3.43) with
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Figure 3.1: Sketch of the effect of propagating the TAP equations by starting from different initial conditions.
In the drawing we assume the free energy to have 3 local minima, whose basins of attraction are represented
by the colored shaded areas. All the points that belong to a given basin of attractions are dragged toward the
local minima by the effect of the TAP dynamics.

respect to f qi , Vµ and mµ. At β = 1 this yields, respectively,

ϕqi =
∑
µ

wqiµmµ +
1

2

∑
µ

(wqiµ)
2Vµ −

∑
µp

fpi w
p
iµw

q
iµVµ,

ξµ =
1

2

∑
iq

(wqiµ)
2f qi −

1

2

∑
i

(∑
q

f qi w
q
iµ

)2

,

ψµ =
∑
iq

f qi w
q
iµ − 2mµξµ.

(3.44)

Similarly, since the Gibbs free energy does not depend on the auxiliary fields, we can obtain the
magnetizations by differentiating equation (3.43) with respect to respectively ϕqi , ψµ and ξµ. We
obtain:

f qi =
∂

∂ϕqi

∑
i

log

[∑
v

exp

(∑
q

δv,q(a
q
i + ϕqi )

)]
= softmaxq(a

q
i + ϕqi ),

mµ =
∂

∂ψµ

∑
µ

log

[∑
h

Pµ(h,ϑϑϑµ)e
ψµh+ξµh2

]
= ⟨hµ⟩P̃µ

,

Vµ =
∂

∂ξµ

∑
µ

log

[∑
h

Pµ(h,ϑϑϑµ)e
ψµh+ξµh2

]
−m2

µ = VarP̃µ
(hµ),

(3.45)

where we defined the modified probability distribution

P̃µ(h;ϑϑϑµ, ψµ, ξµ) ≡
Pµ(h,ϑϑϑµ)e

ψµh+ξµh2∑
h Pµ(h,ϑϑϑµ)e

ψµh+ξµh2
. (3.46)

By inserting Equations (3.44) into (3.45) we obtain the self-consistency equations that allow us to find
the fixed points of the approximated free energy of the RBM. At the second order of the expansion,
those are called TAP equations.

Now, while the exact Gibbs free energy is a convex function of the magnetizations ΩΩΩ, the TAP free
energy may present several stationary points that increase with β. For fixed β = 1 this still holds true
as the training advances, because the growing variance of the weights acts as an inverse temperature.

52



CHAPTER 3. MEAN FIELD APPROACH 3.2. PLEFKA EXPANSION

This means that the learning produces the same effect as if we were cooling the system. The interesting
observation is that, if we start from a given initial condition (f qi [0],mµ[0], Vµ[0]) and we run the TAP
equations, the magnetizations will converge toward the nearest solution of the TAP free energy. In
other words, each solution of the TAP free energy corresponds to a mode of the associated distribution,
and all initial conditions that lay in the basin of attraction of this solution will be dragged by the TAP
dynamics toward it (Figure 3.1). At the very beginning of the training, the RBM is in a paramagnetic
phase in which all initial conditions converge toward the unique mode corresponding to the unique
minimum of the TAP free energy. As the learning proceeds, several other modes are learnt and the
number of TAP solutions increases, until the point in which the number of minima is comparable with
the number of data samples. This last regime might be interpreted as overfitting the data, but we
have also to consider that, at this stage, the TAP approximation starts to fail in reproducing the real
free energy of the system, and some fixed points might be spurious solutions. Figure 3.2 shows the
fixed points of the TAP free energy at different stages of the learning.

Figure 3.2: Projection of the WW dataset along the first two principal components of the PCA (colored points)
for different ages (expressed in terms of epochs) of the training. Each epoch correspond to 28 gradient updates.
The fixed points (indicated with the colored stars) are obtained by using as initial conditions the data (colored
dots) and propagating the TAP equations until convergence. All points with the same color end up in the same
fixed point. Under the effect of the TAP equations, the points collapse toward the “closest” solution of the
TAP equations, which can be interpreted as the must resembling internal representation of the machine for that
data. We can notice how the number of modes increases with the age of the RBM. This will be used later first
to identify all the main clusters visible in the PCA and then to find finest sub-structures of the data.

In the following part, we derive the TAP equations for the specific cases of Bernoulli and Truncated
Gaussian hidden potentials and we generalize the approximated Gibbs free energy to the case of
semi-supervised learning.

3.2.1 Bernoulli Hidden Potential

Let’s start by considering binary hidden variables, h ∈ {0, 1}, distributed according to the Bernoulli
distribution

PB
µ (h; ρµ) = ρhµ (1− ρµ)1−h with ρµ ∈ [0, 1]. (3.47)

By reparametrizing ρµ = 1
1+e−bµ

, we obtain the equivalent form

PB
µ (h; bµ) =

ehbµ

1 + ebµ
where bµ ∈ R. (3.48)

Using h2 = h for binary variables, the modified probability distribution (3.46) remains a Bernoulli
distribution with a shifted parameter, P̃B

µ (h; b̃µ), where

b̃µ = bµ + ψµ + ξµ = bµ +
∑
iq

f qi w
q
iµ −

(
mµ −

1

2

)∑
i

(∑
q

f qi w
q
iµ

)2

−
∑
iq

(wqiµ)
2f qi

 . (3.49)
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Then, using the expressions for the moments of a Bernoulli distribution, we get

mµ = ⟨hµ⟩P̃B
µ
= ρ̃µ = sigmoid(b̃µ),

Vµ = VarP̃B
µ
(hµ) = ρ̃µ (1− ρ̃µ) = mµ −m2

µ.
(3.50)

Inserting these expressions into Equations (3.45), we get the TAP equations for the Potts RBM with
binary hidden variables:

mµ[t]← sigmoid

(
bµ +

∑
iq

f qi [t− 1]wqiµ −
(
mµ[t− 1]− 1

2

)[∑
i

(∑
q

f qi [t− 1]wqiµ

)2

+

−
∑
iq

(wqiµ)
2f qi [t− 1]

])
,

f qi [t]← softmaxq

(
aqi +

∑
µ

wqiµmµ[t] +
∑
µ

(mµ[t]−m2
µ[t])

[
1

2
(wqiµ)

2 + wqiµ
∑
p

fpi [t− 1]wpiµ

])
,

(3.51)

for t = 1, . . . , N . Notice that, in the case of a Bernoulli distribution, we do not need to compute also
the magnetization Vµ, because the second moment of the distribution is fully determinated by the first
moment.

3.2.2 Truncated Gaussian Hidden Potential

Let’s now consider a Truncated Gaussian distribution in the form (1.46):

PTG
µ (h; bµ, γµ) =

√
2γµ
π

e−
1
2
γµh2−bµh

1− erf

(
bµ√
2γµ

)1[0,+∞]. (3.52)

We immediately see that the modified distribution (3.46) is again a Truncated Gaussian with param-
eters:

γ̃µ = γµ − 2ξµ and b̃µ = bµ − ψµ. (3.53)

The expressions for the firsts two moments of the Truncated Gaussian yield:

mµ = ⟨h⟩P̃TG
µ

= − b̃µ
γ̃µ

+
1√

γ̃µΦ

(
b̃µ√
γ̃µ

) ,

Vµ = VarP̃TG
µ

(h) =
1

γ̃µ

1 + b̃µ√
γ̃µΦ

(
b̃µ√
γ̃µ

) −
 1

Φ

(
b̃µ√
γ̃µ

)


2 ,
(3.54)
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where Φ is the auxiliary function (1.48). The iteration of the TAP equations for the Potts RBM with
TG hidden potential can be broke down as:

2ξµ[t]←
∑
iq

(wqiµ)
2f qi [t− 1]−

∑
i

(∑
q

f qi [t− 1]wqiµ

)2

,

ψµ[t]←
∑
iq

f qi [t− 1]wqiµ −mµ[t− 1]2ξµ[t],

γ̃µ[t]← γµ − 2ξµ[t],

b̃µ[t]← bµ − ψµ[t],

mµ[t]← −
b̃µ[t]

γ̃µ[t]
+

1√
γ̃µ[t]Φ

(
b̃µ[t]√
γ̃µ[t]

) ,

Vµ[t]←
1

γ̃µ[t]

1 + b̃µ[t]√
γ̃µ[t]Φ

(
b̃µ[t]√
γ̃µ[t]

) −
 1

Φ

(
b̃µ[t]√
γ̃µ[t]

)


2 ,
ϕqi [t]←

∑
µ

wqiµmµ[t] +
∑
µ

Vµ[t]

[
1

2
(wqiµ)

2 − wqiµ
∑
p

fpi [t− 1]wpiµ

]
,

f qi [t]← softmaxq(a
q
i + ϕqi [t]),

(3.55)

for t = 1, . . . , N . In practice, though, dealing with the Truncated Gaussian case is quite tricky. Indeed,
when iterating the TAP equations it can happen that γ̃µ = γµ−2ξµ becomes negative. To handle this
case, one has to write the TG distribution in terms of the imaginary error function

erfi(x) = −ierf(ix) = 2√
π

∫ x

0
dt t2. (3.56)

We remand the details of the application to the Appendix of [28]. In the present work, we have not
implemented yet the TAP equations for the ReLU RBM.

3.2.3 TAP Equations in Semi-Supervised Mode

Similarly to what we have done so far, we can derive a TAP Gibbs free energy also in the case of the
Potts RBM trained in semi-supervised mode. To do this, we simply have to assume a high temperature
/ small weights expansion also for the label matrix d. We therefore consider the Hamiltonian

−βE(v,h, ℓ;θθθ) =
∑
iq

δvi,qa
q
i −

∑
µ

Uµ(hµ;ϑϑϑµ) +
∑
n

δℓ,ncn + β
∑
iµq

δvi,qw
q
iµhµ + β

∑
nµ

δℓ,ndnµhµ (3.57)

and we introduce an auxiliary field {λℓ} and a magnetization {gℓ} representing the average frequency
of the label ℓ. Eventually, we end up with the following TAP Gibbs free energy:
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Γ
(2)
ssl (β) =−
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∑
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q
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+
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µ
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(wqiµ)
2f qi −

∑
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q

f qi w
q
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+
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ℓ

(dℓµ)
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(∑
ℓ
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)2
 . (3.58)

By imposing the stationary conditions with respect to the fields and the magnetizations we obtain the
corresponding TAP equations. We do not report them here because the results are analogous o those
of section 3.2.
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Chapter 4

Generating Relational Trees by
Exploiting the Dynamics of the
Learning

In chapter 2 we discussed the use of RBM models for data classification. The central idea is that
projecting the data (or their hidden representation) along the principal components of the weight
matrix might provide us with a separation of the data into feature-related clusters that may vary
along the learning. Starting from this representation, we can then exploit one of the main clustering
algorithms (e.g. DBSCAN) in order to put the labels on the data without specifying the number
of clusters. Such an approach was exploited by Tubiana et al in [30] in the context of functional
characterization of protein sequences. However, this method presents a number of shortcomings,
among which the principal are:

1. It is not clear how much trained the RBM should be in order to maximize the accuracy of the
classification. As we justified theoretically in subsection 1.5.4, in the first part of the training
the RBM learns how to perform the PCA of the data, and to classify the data at this stage
it makes no point using an RBM. On the other hand, a very old machine has learnt a highly
non-linear transformation of the data that makes all the clusters overlap when we visualize the
data projections using the PCA of the weight matrix. Experimentally, one finds that the best
results in the classification task are obtained for intermediate ages of the RBM, which by the
way have to be determined by later inspection. Still, the use of intermediate ages makes sense
because we are not seeking a very fine classification, but a separation over broad and general
classes;

2. Given that one has found a nearly optimal age of the model for performing the classification,
a new arbitrariness comes into play when choosing the parameters of the clustering algorithm.
For instance, if using the K-means algorithm, one has to decide a priori how many clusters
are present. This choice is instead automatized in density-based clustering algorithms such as
DBSCAN, where one has nevertheless to tell the algorithm when to consider two points to be
“close together”.

The main contribution of this thesis work goes in the direction of overcoming those issues and pushing
even further the goal of data characterization. In particular, we want to address the following question:
can we gather information by looking at the whole learning history in order to construct a relational
tree that could tell us which are the relations among data in a hierarchical way?

4.1 General Idea of the Algorithm

The algorithm we propose here is based on the idea that, when learning from data, the RBM first
learns how to recognize the most relevant, high-level features and then, as the training goes on, it
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progressively starts recognizing and encoding finer and finer differences between the samples. Then,
we can pictorially imagine a sort of “relay race” in which different versions of the same RBM with
different ages run for the same team. The youngest RBM starts the race, splits the data doing its
best, and then passes the baton to the next RBM, which is older than the previous one. The baton
passing can be interpreted as the following question: “Given that I managed to perform this splitting
of the data, what more can you tell me about the samples inside each category I made?” If we do this
with several RBMs and we keep track of the splittings that each model made, what we obtain at the
end is a relational tree of the dataset. The first branches of the tree correspond to the most “evident”
differences between the data that even the most “immature” RBM could recognize, while the deeper
we go into the tree the more the detected features are subtle. In this way, we leverage the information
brought by different RBMs at different stages of the learning, which is a more sophisticated approach
compared to a naive annealing in β on an old RBM.

To put into practice this idea, we have to address the following problems:

1. Specify a procedure for classifying the data at each stage of the learning;

2. Define how to perform the “baton passing” between two RBMs;

3. Find some criteria to assess the quality of the obtained relational tree;

4. Identify a method for choosing what ages of the training to use for the tree construction.

In the following sections, we will tackle those technical points one by one.

4.1.1 Classification Procedure

The method we used for classifying the data totally relies on the mean-field theory we developed in
chapter 3. As we already pointed out in that chapter, the interesting effect of iterating the TAP
equations when starting from the data is that the trajectories will converge toward the various local
minima of the TAP free energy, which approximate the internal representations of the model for those
data. Stated differently, all points that belong to the same basin of attraction of a free energy’s local
minimum are represented in the same way by the RBM, and under the effect of iterating the TAP
equations they collapse in the same point of the magnetizations’ space.
Therefore, one can think of first iterating the TAP equations until convergence, and then applying the
DBSCAN algorithm to the endpoints of the trajectories in order to classify the data into categories.
The main advantage of this procedure is that, in practice, it is parameter-free. In fact, since the data
collapse on very restricted regions of the magnetizations’ space, they constitute several isolated and
high-density clusters. In that situation, the DBSCAN can classify the data without any ambiguity,
for we empirically verified that the result of the classification is independent of the algorithm’s hyper-
parameters under reasonable choices. Finally, from a conceptual point of view, this procedure allows
us to know exactly what the RBM “thinks” about each data point at its level of the training and also
to visualize the basins of attractions of the free energy minima.

This idea is not a new one, and it can be found in several works, such as [28, 7]. The reasons that
might prevent someone from using this approach to classify data are easy to guess. The point is that
the Plefka expansion – at any order – is just an approximation of the actual model, valid only in the
first stages of the learning when the interactions among variables are weak. Also, to apply this method
one has to derive the corresponding self-consistent equations in the first place, which could prove to
be a hard task for more complex models than the simple Bernoulli version.

That being said, we argue that often many features of interest in real-world datasets are mostly de-
tectable already by using quite young models. Traditional clustering methods are typically used when
the projection of the data (or the hidden representation) along the principal directions of the weight
matrix is sufficiently clustered to allow for a reliable classification, but this problem does not show up
at all in the mean-field method we discussed. On top of this, we have empirical reasons for arguing
that already the second order (TAP) approximation of the free energy does a really good job even at
moderate stages of the learning.
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This argument justifies our adoption of this clustering method as part of the tree construction algo-
rithm. In addition, we believe that the way we implement this procedure enhances the accuracy of
the resulting classification, because (as will be discussed in the next subsection) we do not just rely
on a single snapshot of the system, but we integrate also the information coming by other stages of
the learning.

4.1.2 The Baton Passing

The relay race analogy we outlined in the introduction of this section is useful for describing the spirit
of the tree algorithm, but it is not actually the best strategy to use. Indeed, by strictly interpreting this
analogy, we would proceed by categorizing the data with the youngest RBM and then, at the following
step, we would enquire the next RBM on the labels to put on the data restricted to the data subsets
obtained at the previous step. The critical part of this approach is that we are charging with the
most important splits of the tree – the creation of the first branches – the youngest, most inaccurate
models. As a consequence, it might happen that some data points find themselves in a completely
wrong branch of the tree even for a slight inaccuracy in the classification by the first “inexperienced”
RBM.

A much better approach is to look at the process backward in time. In other words, we start with the
oldest machine and we cluster the data into the many fixed points that the free energy will have at
that stage of the learning. Then, we move to a younger RBM and we run the clusterization by using
as initial conditions not the original data, but the fixed points obtained in the previous step. This
is like constructing the tree starting from the leaves and then moving toward the roots rather than
the contrary. Proceeding this way assures us that the youngest machines find the initial conditions
already close to their fixed points, and there is no issue in the accuracy of classifying points that lay at
the boundary between two basins of attraction. The two approaches to the baton passing are depicted
in Figure 4.1, while the resulting tree construction is sketched in Figure 4.2.

At this point, a legitimate objection would be to point out that the first clustering steps are performed
by old machines that we know are badly approximated by the mean-field free energy. This observation
is indeed true but, nevertheless, it only means that we cannot rely too much on the separation of the
data at the level of the leaves of the tree. The splittings that are closer to the tree’s root are made
by machines for which the mean-field free energy provides a good approximation, and very often the
relevant features of the data that we are mostly interested in are located at this level.

4.1.3 Scoring the Trees

Once we have built the tree, we need a quality assessment procedure that acts on two different levels.
At inter-tree level, it has to tell us which tree is better among many generated on the same dataset
but with different hyper-parameters, such as the choice of the ages for constructing the tree or the
RBM model itself. At intra-tree level, instead, it has to provide us with the optimal depth of the tree
that better describes the categories of the data. Indeed, if the tree is too shallow we do not have a
proper separation of the data into categories and we do not get much useful information out of it.
On the other hand, if the tree is too deep we might find substructures of the data that are not really
meaningful nor trustworthy, as we discussed above. The optimal depth of the tree will tell us how to
identify the categories in the data, and besides that, we will also have a relational structure of the
dataset.
Clearly, there is no way of evaluating any kind of inference about the data without having some
“ground-truth” information about them. In our case, the assessment procedure we developed relies
on the labels of the data that we have beforehand. It is sufficient to have only a fraction of labelled
data, although the more labels we have and the more reliable the quality of the measure is.

Before moving further, let us introduce some notation. Suppose that we chose an ordered set of ages,
{tkage}k=1,...,NT

, such that tkage < tk+1
age . Those ages correspond to the same RBM model but trained until

different times. We call those RBMs constructors and we denote the ordered set of constructors as R.
Running the tree construction algorithm from t1age until t

k
age generates a tree of depth k that we indicate
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A)

B)

: fixed points

: initial conditions

Figure 4.1: A) Wrong method of constructing the tree. The first “young” machine classifies the data into the
three colors represented here: blue, red and green. Then we start again from each of those subsets, for example
the blue one in this case, and we classify again the data using an older machine. The problem with this method
is that the most important splits are the first ones, and they are performed by the most poorly trained machine.
B) Correct approach to the baton passing. We start by clustering and classifying the data with the most trained
machine, and then we repeat the procedure with the younger RBMs, each time starting from the fixed points
obtained at the previous step.

A) B)

... ...

... ...

Figure 4.2: A) Wrong method of constructing the tree corresponding to panel A) of Figure 4.1. The tree is
constructed starting from the root and proceeding down toward the leaves. B) Correct way of constructing the
tree corresponding to panel B) of Figure 4.1. The tree is generated starting from the leaves and progressively
aggregating the branches until the root is reached. The colors of the nodes correspond to those of Figure 4.1.

as τk. We can therefore define the set of trees that can be generated using R as T = {τk}k=1,...,NT
with

τk ⊂ τk+1, meaning that τk+1 is obtained adding one more layer to τk. Hence, NT can be interpreted
as the number of levels of the deepest tree in T.

To evaluate the trees τk ∈ T, we constructed two scores that address the two competing requirements
we would like to fulfil.

• Accuracy Score (AS): This score accounts for the wish that all the leaves connected with
the same branch should have the same label. Let us define B = {Bi}i=1,...,NB

as the set of
NB branches in the deepest level of the tree τk and L as the set of possible labels. For each
i = 1, . . . , NB, we denote as Niℓ the number of leaves in Bi ∈ B that have label ℓ ∈ L. Notice
that we are requiring that only a subset of the leaves has to bring the labels, so

∑
iℓNiℓ is the

total number of labelled data in the tree, not the total system’s size. From the set {Niℓ}ℓ∈L we
can compute N∗

i = maxℓ{Niℓ} as the number of leaves that have the mostly present label in the
branch Bi and Mi =

∑
ℓNiℓ, which is the total number of leaves with a label inside the branch.

Then, we define the Accuracy Score of the tree as

AS(τk) =

∑
i siMi∑
iMi

with si =
N∗
i

Mi
=

N∗
i∑

ℓNiℓ
, (4.1)
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which is positive definite and bounded from above at 1. Note that weighting the sum with the
branch sizes serves for enhancing the role of big branches with respect to the smallest ones. If
a branch does not contain any leaves with a label, it does not contribute to the score. Also, it
is easy to realize that, by construction, this score is a never-decreasing function of the depth of
the tree. To see this, one can consider the extreme case of a tree in which every leaf has its own
branch, in which case we have AS(τk) = 1. To distinguish this case from the perfect one we
need to consider another score that counterbalances the AS.

• Entropy Score (ES): The undesired characteristic of the “one-leaf-one-branch” tree we just
mentioned is that all leaves having a given label are spread around into different branches. We
therefore need a score that rewards those configurations in which all the data having the same
label find themselves in the same branch of the tree.
Let us consider the label ℓ ∈ L and let us call NL the total number of categories we have. Then,
from the set of branches B we can define the vector

rℓ = ({riℓ})i=1,...,NB
with riℓ =

Niℓ

Nℓ
=

Niℓ∑
iNiℓ

. (4.2)

In words, riℓ is the fraction of leaves with label ℓ that are attached to the branch Bi. Since
rℓ is a vector belonging to the NB-dimensional simplex, i.e. it is a positive and normalized
vector, its squared norm has the interesting property of being maximum when riℓ = δi,j for some
j ∈ 1, . . . , NB and minimum for riℓ = 1/NB ∀i ∈ 1, . . . , NB. But that is exactly the property we
were looking for, so we can define the Entropy Score as

ES(τk) =

∑
ℓ sℓ
NL

with sℓ = ||rℓ||22 =
∑
i

(riℓ)
2. (4.3)

Let us notice that this score is a sort of measure of the entropy of the tree, because in some sense
it assesses “how ordered” the tree is. In fact, starting from the vectors rℓ we could have also
computed the Shannon entropy of the tree, but this would have yielded an increasing function
of the tree’s depth. Instead, the ES we defined decreases as the tree becomes deeper, and this
behaviour is needed to contrast the trend of the AS measure.

For a given set of trees T, we can plot the AS and ES scores as a function of the tree depth, as
shown in Figure 4.3 for an example of tree construction using MNIST data. By taking the average
of the two measures as a global score, we find a nicely peaked function which displays a maximum
in correspondence to the optimal depth. Through a by-eye inspection of several examples, we can
confirm that the depth prescribed by this scoring procedure seems to be indeed the best compromise
between simplicity and resolution in the data classification. We can therefore take as a global score of
the tree set T the maximum value of the average score, and we can classify the data using the branches
of the optimal tree with the optimal depth, τopt.

4.1.4 Choosing the Ages

The tree construction we described above is uniquely defined, i.e. parameter-free, once the set of
ages of the RBM to use has been specified. However, the choice of the ages is crucial for the proper
functioning of the algorithm, and it has to balance between accuracy requirements and computational
costs. Choosing the ages too coarsely brings the risk of losing some important parts of the training
dynamics, and the final result might be inaccurate. On the other hand, we cannot afford to use too
many ages for constructing the tree, both because saving all those models has a not negligible weight in
terms of memory and, above all, because the computational time needed to run the algorithm becomes
too long (although we are still talking about a linear increase with the number of ages). Ideally, one
would like to find a relation between the geometry of the free energy landscape (e.g. the number of
fixed points that are present) and some observable that can be monitored during the training, such as
the spectra of the weight matrix, so as to decide optimally and automatically when to save the state
of the RBM. Unfortunately, from a first study of the learning dynamics, we were not able to find any
such a convincing relation. We leave more extensive studies in that direction for possible future works.
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tree dataset epochs
minibatch

size
total gradient

updates1
NGibbs

learning
rate

Nh

Figure 4.4 MNIST 5000 500 105 50 10−3 500

Figure 4.5 MNIST 5000 500 105 50 10−3 500

Figure 4.7 HG 10000 500 9 · 104 50 10−3 500

Figure 4.8 HG 10000 500 9 · 104 50 10−3 500

Figure 4.10 WW 5000 500 1.4 · 105 50 10−3 500

Table 4.1: Technical specifics of the RBMs used for generating the trees reported below. All machines have
been trained in the PCD mode and implement a Bernoulli hidden potential.

Instead, we stuck with the following “common sense” approach. First of all, during the training, we
saved a certain number of linearly time-separated models (e.g. ∼ 100). Then, we performed a first
sifting by running the naive mean field self-consistent equations (3.20) until convergence for each age,
starting from the oldest model. Each time, we counted the number of fixed points and we added the
model to the set of tree constructors R only if the number of fixed points had decreased with respect
to the last constructor. In general, the naive mean field equations converge way faster than the TAP
version, but they tend to produce additional spurious solutions quite soon. For that reason, when
constructing the tree, we added a new layer only when the number of fixed points found with the TAP
equations decreased from the previously added layer.

4.2 Results

In this section, we present the results obtained by applying the proposed tree construction algorithm
to the three datasets we described in section 2.1. In Table 4.1 we report the technical specifics of the
RBMs used for constructing each tree.

4.2.1 MNIST Dataset

In Figures 4.4 and 4.5 we report the trees obtained by running the tree algorithm on 1000 samples from
the test set of the MNIST dataset using two different RBMs: the first was trained in semi-supervised
mode using all the labels, while for the second only 1% of the available labels were used. In Figure 4.3,
instead, we show the scoring profiles of the two trees. An interesting question here was to check if
using a larger fraction of data with the label during the training would improve the quality of the
tree and to what extent. Quite surprisingly, the tree “trained” with fewer labels has a global score of
0.74, which is higher than the 0.69 of the other one. A visual inspection of the two trees confirms the
score’s judgment, in that the tree with 1% of labels seems to better recognize the true categories of
the data. However, from a first superficial study of the quality of the trees obtained by changing the
labels’ proportion during the training, we did not find any clear relation, and further studies in this
direction are needed.

If we focus now on the hierarchical relation of the data found by the algorithm, we might gain some
qualitative information on how the machine discriminates the different digits. Moreover, the internal
nodes of the tree represent actual points in the magnetizations’ space, and thus we can visualize
them to see how the data representation evolves during the training. In Figure 4.6, for clarity of
visualization, we summarized the splittings done by the algorithm on the tree in Figure 4.5.
We observed that the first thing the RBM learns is how to represent the digit 0. Then, when the
second mode emerges, it divides the dataset into either the representation of the digit 0 or 1. This
splitting does not seem to have topological nature, because the digit 9 – which has a hole – is classified
differently than the digit 0. This might be reasonable if we think that the images enter the RBM

1total updates = train set size × epochs / minibatch size.
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flattened, and the machine does not have any convolutional layer that might effectively catch local
features such as holes. A hypothesis is that the RBM is rather sensitive to the symmetries of the
digits which, once the image is flattened, translate into repeated patterns of the nodes’ values 0 and 1.
Proceeding down the tree, it becomes quite risky to make a hypothesis on how the model discriminates
the data based only on a few trees. For instance, in Figure 4.4 the digit 1 is nicely isolated, while the
digits 5 and 3 are often confused. On the other hand, in the tree of Figure 4.5 the digit 3 is readily
recognized (as illustrated in Figure 4.6), while the 5 and the 1 are separated only at a deeper level of
the tree. This suggests that semi-supervised learning might alter the way the machine would naturally
subdivide the data, and not always in the correct direction.

4.2.2 Human Genome Dataset

In Figure 4.7 we report the trees obtained on the test set and part of the training set for the Human
Genome dataset with an RBM trained in semi-supervised mode with 100% of the major labels given.
Concerning the ethnic groups, in all cases, our RBM was not able to discriminate between Americans
and Europeans at any level of the tree. This result seems quite plausible, at least from a superficial
analysis. On the other hand, in both cases, there is a subgroup of Americans that are classified
differently from the rest, and those individuals seem to belong to the same one or two sub-populations.
Apart from this, both machines give impressive accuracy in identifying the different ethnic groups,
with a perfect classification in the most favourable case of the training set. Concerning the sub-labels,
apart from the already mentioned group of Americans, the machine can identify a part of the members
of an East Asian community. The resolution of the model is not enough to find any other sub-structure
at this stage.
In Figure 4.8 we show the result yielded by an RBM trained in a purely unsupervised way. We recover
almost all the information we get from the machines trained with the labels, although this time the
model is not able to properly distinguish between South Asian and East Asian. Hence, in this case,
using the labels for the training seems to enhance the discriminative power of the RBM. As a final
comment on this part, we notice that the semi-supervised training has been carried out with only
the information on the major labels. It would be straightforward, though, to incorporate also the
sub-labels in the training process and see if this can be decisive for increasing the resolution of the
model.

4.2.3 WW Dataset

In Figure 4.10 we report the tree obtained on all the WW protein domain sequences already classified
by previous works for a direct comparison. We remark that the RBM employed was trained without
any supervision, so no labels were used. The score curves in Figure 4.11 define, for each set of
labels, which is the most compatible classification inside the tree. By looking at the scores over the
experimental labels, in all three cases we find quite good results, although these measures are not very
robust given the scarce amount of data. The main comparison has to be done with the classification
provided by ProfileView [31], whose results, however, have to be taken carefully since those labels are
inferred and not obtained experimentally.
Of the six categories identified by ProfileView, two of them (the yellowish and the blueish ones) are
mostly classified accordingly. A third category (indicated in light blue) is clearly recognizable, but it is
discovered deeper in the tree. A future improvement of the current method might go in the direction
of allowing the recognition of categories at different levels in the tree. Apart from these three classes,
the remaining three are not clearly recognized by our method, and are mostly grouped in a branch
constituting a fourth category. Also Tubiana et al in [30] managed to clearly recognize three classes
but, as opposed to our method, they needed prior knowledge to be able to do this.

4.3 Discussion

In this chapter, we presented a new approach for generating relational trees of data and identifying
different categories by leveraging the learning dynamics of RBMs. As always, each newly introduced
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method brings its own strengths and limitations. We discuss here the pros and the cons of the method
we developed, and eventually we sketch some possible improvements that can be implemented in future
works.

4.3.1 Strengths of the Method

Among the advantages of this method we have:

• As silly as it may seem as an observation, our method allows us to construct a relational tree
of the data. This means that, even in the most favourable conditions in which we train the
RBM with 100% of data having a label and we apply the algorithm to the training set, still the
information that we get about the relational structure of the dataset is valuable.

• The tree construction conceptually resembles the learning process of intelligent beings, where
increasing levels of abstraction are added on top of each other.

• Once the particular RBM model has been chosen and the ages for the construction of the tree
have been specified, the algorithm is totally parameter-free and no further choices are needed.
In particular, we do not have to worry about tuning the parameters of the clustering algorithm,
as opposed to other classification methods.

• The algorithm is based on the estimation of the free energy of the model, which embeds all the
information extracted from the data by the RBM. In particular, this means that the clustering
of the data makes use also of the information provided by the learned external fields, which is
not considered in those methods that uniquely rely on the projections of the dataset along the
principal components of the weight matrix.

• As opposed to other hierarchical clustering algorithms, there is no notion of distance entering
in the proposed method2, hence we do not have to make any assumption over the geometrical
properties of the data space.

• As far as the tree is concerned, the RBM does not need to be trained for too long. The interesting
splittings of the data are found quite early in the learning.

• The method is very general, and it applies to any type of dataset. Other algorithms, such as
ProfileView, are instead domain-specific.

• The internal nodes of the tree are not just abstract constructions, but they represent actual
points in the magnetization space. This means that we can generate samples that represent
intermediate states of the data, and this might have possible interesting applications in biology.

4.3.2 Limitations of the Method

The main limitations of this method are instead:

• At the actual state, there is no optimal nor unique recipe for choosing the ages of the RBMs that
will construct the tree. It also seems that a proper choice of the ages is important for obtaining
good results. The method we proposed here yields satisfactory results, but it might be improved
in the future.

• Considering the time needed to sufficiently train the RBM (approximately from 1 to 6 hours on
a GPU, depending on the dataset and the chosen number of Gibbs steps, k, for the gradient
evaluation) and the time required for the tree construction (from few minutes to half an hour on
a GPU for a batch of ∼ 1000 samples, depending on the dataset), the overall procedure is quite
time-consuming. However, we observe that it is still competitive with other proposed methods

2More precisely, the DBSCAN algorithm we use to recognize the different fixed points of the free energy internally
uses the euclidean distance. However, since at this stage the points are collapsed in very small regions of the space,
whatever metrics on the data manifold can be nicely approximated by the euclidean one.
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such as ProfileView [31] (around 9 hours for classifying the whole WW dataset, according to the
authors).

The fact that one has to save several models during the training (∼ 100 in our implementation)
requires the allocation of several Gigabytes of disk memory for running the algorithm. Also,
executing the code on a GPU is needed for having acceptable processing times.

• The accuracy of the method depends on the degree of approximation with which we can ap-
proximate the free energy of the model at different ages. In all the datasets we tested, the
second-order expansion of the free energy was enough for properly classifying the data based on
the main features of interest. However, for catching finer structures of the dataset and improving
the accuracy and reliability of the generated trees, it might be necessary a further step in the
Plefka expansion of the free energy.

• The approach presented here is based on the computation of the TAP equations starting from a
Hamiltonian of the form (3.21). We developed our implementation based on the simplest case
of a Bernoulli potential in the hidden layer, and we presented a general formula at the second
order that applies to any distribution of the hidden variables. However, each time we aim at
generalizing the model (3.21) (for instance, by introducing a regularization term), we have also
to re-derive the corresponding TAP equations, and this might not be an easy task. Also, we
found that dealing with more sophisticated distributions, such as the Truncated Gaussian one,
might bring computational problems that have to be handled properly.

• The splittings that the RBM performs at the various stages, as far as we can tell, are not related
to any universal concept (e.g. a distance between data points), but rather they depend on the
way the machine learns from the data. This means that to better understand the criteria of the
tree construction, we should investigate further the properties of the learning dynamics of the
RBM model. On top of this, the tree that we get is the result of a specific trajectory of the
learning, and the result might change across different training episodes. To what extent this
might influence the tree’s structure remains unexplored.

4.4 Future Developments

To conclude, let us delineate some possible directions of improvement for the presented method. First
of all, we would like to study more closely the dynamics of the learning with the aim of finding a
way to relate some observables to the desired properties we want to have. In particular, this relates
to our wish to find an optimal way of selecting the constructors to save during the training. Second,
the Plefka expansion might be computed up to the third order, so as to improve the accuracy of the
method in estimating the true free energy. Another feature we would like to implement is a criterion
for identifying classes of data at different levels in the tree. Indeed, as exemplified in Figure 4.10, not
all the features of interest are found at the same “level of abstraction” in the hierarchical structure
of the dataset. Finally, it might be interesting to construct trees from an ensemble of RBMs and
compare them to see how the result is sensitive to the particular trajectory of the learning.
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A)

B)

Figure 4.3: Scoring profiles of the trees shown in Figure 4.4 (plot A) and Figure 4.5 (plot B). The Entropy
Score tends to decrease as we go deeper into the tree, while the Accuracy Score tends to increase. The best
compromise is found as the maximum of the mean between the two scores, and it is indicated with a red star.
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MNIST test set, training with 100% labels

Figure 4.4: Tree of 1000 MNIST images taken from the test dataset. It is obtained using a Bernoulli RBM
trained in semi-supervised mode with 100% of the labels. The external colored tags represent the true labels,
while the colored regions inside the tree correspond to the classification inferred by the algorithm. The depth
chosen for the classification is the best one prescribed by the scoring profile of Figure 4.3 A).
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MNIST test set, training with 1% labels

Figure 4.5: Tree of 1000 MNIST images taken from the test dataset. It is obtained using a Bernoulli RBM
trained in semi-supervised mode with 1% of the labels. The external colored tags represent the true labels,
while the colored regions inside the tree correspond to the classification inferred by the algorithm. The depth
chosen for the classification is the best one prescribed by the scoring profile of Figure 4.3 B). We also reported
some images of the data at different branches of the tree for a visual comparison.
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0, 8, 2 1, 3, 4, 5, 6, 7, 9

0 8, 2

8 2

3 1, 4, 5, 6, 7, 9

4, 9, 7 4, 5, 6, 5, 1

0, 1, 2, 3, 4, 5, 6, 7, 8, 9

4, 9 5, 67 4 5, 1

Figure 4.6: Simplified representation of the tree in Figure 4.5 extracted from the training of an RBM using 1%
of the labels.
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European

Human Genome train set, training with 100% labels

Human Genome test set, training with 100% labels

A)

B)

Figure 4.7: Trees obtained on the Human Genome dataset using an RBM trained in semi-supervised mode with
100% of the labels. Plot A is obtained on 1000 samples from the training set, while plot B is obtained on the
test set. The two external rings of colored tags represent, from the inner to the outer one, the true labels of
the coarser and finer categorization. There are two multi-coloured regions inside the tree. The most internal
one corresponds to the optimal depth for the categorization of the coarser labels, as prescribed by the score
curves of the left column in Figure 4.9, Plots B and C. The external region is instead the best categorization
for the sub-features given by the best scores in the right column of Figure 4.9, Plots B and C. In the legend,
we indicated only the meaning of the major labels.
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African

American

East Asian

South Asian

European

Human Genome test set, training with 0% labels

Figure 4.8: Tree obtained from the test set of the Human Genome Dataset using an RBM trained in a purely
unsupervised way, i.e. without labels. The two external rings of colored tags represent, from the inner to the
outer one, the true labels of the coarser and finer categorization. There are two multi-coloured regions inside
the tree. The most internal one corresponds to the optimal depth for the categorization of the coarser labels,
as prescribed by the score curves of the left column in Figure 4.9, plot A. The external region is instead the
best categorization for the sub-features given by the best scores in the right column of Figure 4.9, Plot A. In
the legend, we indicated only the meaning of the major labels.

71



4.4. FUTURE DEVELOPMENTS CHAPTER 4. GENERATING RELATIONAL TREES

A)

B)

C)

Figure 4.9: Score profiles corresponding to the trees in Figure 4.8 (plot A) and Figure 4.7 (plots B and C). On
the leftmost column, we report the scores evaluated on the major labels, namely those concerning the ethnic
groups. The rightmost column represents instead the scores obtained on the sub-labels that distinguish the
different populations inside the same ethnic groups.
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Ingham et al

Otte et al

Russ et al

WW classified data, training with 0% labels

Figure 4.10: Tree obtained on all the previously classified data of the WW dataset, taken both from the test
set and training set. The RBM used was trained in a purely unsupervised way (no labels were given). The four
external rings of colored tags represent the annotations previously identified by, in order from the inside out,
ProfileView [31] (inferred), Ingham et al [14], Otte et al [23], and Russ et al [26] (the last tree are experimental).
The two internal multi-coloured regions correspond to the categories identified by our algorithm using the
scores in Figure 4.11. The most internal classification gives the best score compatible with Russ et al, while the
external one gives the best agreement with the other three works. For each leaf, we also reported the name of
the specific WW domain sequence.
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Figure 4.11: Score profiles of the tree in Figure 4.10 based on the labels given by [31, 14, 23, 26].
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Conclusions

In this thesis work we presented the Restricted Boltzmann Machine, a generative machine learning
model which is unique in combining expressiveness, explainability and flexibility.

In the first part, we tried to condense some of the main theoretical results from the literature that allow
us to understand some of the aspects that rule the learning process of the model, and we extended
some of them to deal with categorical variables.

Then, we discussed some of the recent advances in the assessment of the quality of the learned models
and we presented the advantages and limitations of the main training protocols. We showed how the
RBM can be easily modified in order to make it work in a semi-supervised fashion, hence allowing for
label inference and conditioned generation of data.

We continued by discussing the use of the mean-field theory for approximating the free energy of the
model up to any order in the large-temperature limit, and we derived the TAP equations for the Potts
RBM with a generic hidden potential. By iterating the TAP equations until convergence, we showed
how it is possible to have a clue about the free energy landscape of the RBM and to cluster the data
according to the closest internal representations learned by the model.

Finally, in the last chapter, we presented a novel algorithm based on the mean-field theory that
allows us to generate relational trees of the data. The proposed method makes use of the information
contained in the learning dynamics of the model, a topic that is still not very well studied in the
literature. The interest in this new approach is double. On one side, it represents a new promising
way of producing hierarchical descriptions of the datasets under study, finding interesting applications
in particular in the field of genomics. On the other hand, the trees obtained through the algorithm
can be inspected with the aim of qualitatively understanding what are the guiding principles that
enter during the learning process. The proposed method proved promising on all the tested datasets,
and there is room left for future improvements.
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Appendix A

PCA and SVD

In this work, the concepts of Principal Component Analysis (PCA) and Singular Value Decomposition
(SVD) are used many times, and sometimes the two terms are interchanged. In this appendix we show
how the two methods are connected.

Suppose to have a dataset D, which is a Ndata ×Nv real valued matrix. For simplicity, suppose that
the dataset has been centered, so that the columns of the matrix have zero mean. The PCA consists
on decomposing the covariance matrix of the data according to

Cov(D) = DTD =WΣW T , (A.1)

where Σ is a Nv×Nv diagonal matrix and W is a Nv×Nv matrix whose columns are the eigenvectors
of the covariance matrix. Projecting a data sample vd along the principal directions of the covariance
matrix means obtaining a vector ud = W Tvd whose components are independent from each other.
The ordered set of eigenvalues in Σ represent the variability of the dataset along the corresponding
components, meaning that we can reduce the dimensionality of the data vectors by just keeping the
first few projected components, which normally contain the large part of the information present into
the dataset.

The SVD, instead, is a decomposition of the data matrix of the form

D = USV T , (A.2)

where S is a diagonal matrix and U and V are, respectively, a Ndata × Nv and a Nv × Nv matrices.
We can relate the two transformation by computing

DTD = (USV T )T (USV T ) = V ST UTU︸ ︷︷ ︸
1

SV T = V S2V T , (A.3)

which compared with equation (A.1) gives Σ = S2 and V = W . The elements on the diagonal of
S are just the square root of the eigenvalues of the covariance matrix, and they are called singular
values. Since the projection matrices between PCA and SVD are the same, projecting a data sample
along the principal directions of D is the same as projecting it along the eigenvectors of the covariance
matrix.
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Appendix B

Technical Notes on the Truncated
Gaussian Potential

Implementing the TG potential into the RBM brings the disadvantage of having to compute the erf
function and the inverse erf function, which is quite of an expensive task in terms of computational
time. To overcome this issue, instead of using the exact definitions, we rather used the following
approximations that are fast to evaluate and easy to parallelize:

c =
8(π − 3)

3π(4− π)
, (B.1)

erf(x) ≈ sgn(x)

√√√√1− exp
(
− 4x2

π+cx2

)
1 + cx2

, (B.2)

b = − 2

πc
− 1

2
log
(
1− x2

)
, (B.3)

erf−1(x) ≈ sgn(x)

√
b+

√
b2 − 1

c
log (1− x2). (B.4)

In Figure B.1, insets B) and C), we show that the two approximations are indeed really good if
compared with the true functions. However, when computing the Φ function (1.48), we verified that
the approximated erf function displays an instability in the interval 2 < x < 7. For this reason, we
used the exact erf function provided by the Pytorch library when we had to compute Φ, and the
approximated version when computing the inverse cumulative density function (1.51). In the inset B)
of Figure B.1 we show how we can use the approximated version of (1.51) to correctly sampling from
a Truncated Gaussian with parameters b = σ = 1. Using the naive ReLU activation function would
instead produce a very high peak at h = 0, hence altering the true shape of the distribution.

Another issue that enters when computing Φ is the numerical instability that shows up when x ≳ 7,
as shown in the inset A) of Figure B.1. To handle this problem, we evaluated the function using the
definition (1.48) when x ≤ 7, and the asymptotic expansion

Φ(x) ≈ 1

x
− 1

x3
+

3

x5
(B.5)

when x > 7.

The last technical problem of this implementation is about sampling from the Truncated Gaussian
using (1.51) when b − I(v) ≳ 6. In this case, indeed, it may happen that the inverse erf function
has to be evaluated very close to the asymptotes x ∈ {−1, 1}. In that scenario, the limited precision
of the computer prevents us form correctly compute the function (1.51), yielding infinite or negative
values of h. We overcame this issue by clamping at b− I(v) = 6 the shift parameter of the Truncated
Gaussian. The assumption is that the distortion introduced by doing so should not be relevant, since
for b− I(v) = 6 the probability of sampling far from h = 0 is already very small.
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A) B)

C) D)

Figure B.1: A): Comparison between the true Φ function (1.48) and the corrected version with the asymptotic
expansion (B.5) when x > 7. B): The lines represent the exact evaluation of the TG (blue line) and the
approximated version using (B.2) (red dashed line). The shaded area represents the histogram obtained by
sampling from the TG using (1.51) and the approximated functions (B.2) and (B.4). C) and D): Comparison
between the true and approximated erf and inverse erf functions.
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