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Abstract

Modern LiDAR sensors simplify the collection of large 3D point-clouds. This three-
dimensional mapping of the surrounding environment can be used both for object recog-
nition or topography.

Storage and transmission of data generated by LiDAR sensors are one of the most
challenging aspects of their deployment.

The objective of this thesis was to efficiently compress point-clouds from the LiDAR
Velodyne VLP-16 sensor. The data have been collected in different modes: static scenario,
dynamic scenario and moving sensor.

Two main different techniques for LiDAR frame compression were compared and im-
plemented: the 2D- and the 3D-oriented one. Their performance was analyzed in terms
of compression efficiency and quality of the decompressed frame compared to the original.

Moreover, several archiving and compression methods (based on the representation of
the clouds through two-dimensional matrices) have been studied: image-based or video-
based formats (both intra- and inter-frame) and finally a solution based on dictionary
compression.

Only lossless compression methods have been examined for both the techniques.
This thesis also presents some advanced strategies based on spherical coordinates to

improve image-based compression results.
We demonstrated that, thanks to the matrix form in which LiDAR frames are saved,

compression methods already known like those for two-dimensional images have given
equivalent results, if not better, than those designed for three-dimensional point-clouds.
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Sommario

I moderni sensori LiDAR semplificano la raccolta di grandi nuvole di punti 3D. Que-
sta mappatura tridimensionale dell’ambiente circostante é impiegata sia per tecniche di
riconoscimento degli oggetti sia nella topografia.

L’archiviazione e la trasmissione della grande mole di dati generata da questi sensori
é uno degli aspetti più impegnativi del loro sviluppo.

L’obbiettivo di questa tesi é comprimere efficentemente le nuvole di punti acquisite
dal sensore LiDAR Velodyne VLP-16. I dati sono stati raccolti con diverse modalitá:
scenario statico, scenario dinamico e sensore in movimento.

Sono state confrontate e implementate due metodologie di compressione di frame
LiDAR: una 2D-, l’altra 3D-oriented. Se ne sono analizzate le prestazioni in termini di
efficienza di compressione e qualità del frame decompresso rispetto all’originale.

Entrambe le metodologie sono esclusivamente lossless.
Inoltre si sono studiate tecniche (2D-oriented, dove la nuvola é rappresentata attra-

verso matrici bidimensionali) di archiviazione e compressione: basate su formati standard
per immagini o video (sia intra- sia inter-frame) ed infine si é proposta una soluzione
basata su compressione a dizionario.

Questa tesi presenta anche delle strategie volte a migliorare i risultati della compres-
sione, utilizzando le coordinate sferiche al posto delle classiche coordinate cartesiane.

Grazie alla forma matriciale in cui vengono salvati nativamente i frame LiDAR, i
metodi di compressioni già noti per immagini bidimensionali hanno dato risultati in linea,
se non migliori, di quelli pensati per nuvole di punti tridimensionali.
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Chapter 1

Introduction

LiDAR (Laser Imaging Detection and Ranging) is a remote scanner technique that allows to
determine the distance from an object or surface using a laser pulse.

Similar to a radar, which uses radio waves instead of light, the distance is determined by
measuring the time elapsed between the emission of the pulse and the reception of the back-
scattered signal. It has terrestrial, airborne, and mobile applications.

A LiDAR sensor is equipped with various laser beams on different inclinations. These rays
are able to rotate several times per second allowing to make a digital 3D representation of the
target.

Therefore, each rotation produces a point-cloud which represents the mapping of the space
surrounding the sensor.

A point-cloud consists of a set of individual 3D points. Each point, in addition to having a
3D (x,y,z) position, i.e., spatial attribute, may also contain a number of other attributes such
as color, reflectance, surface normal, etc. There are no spatial connections or ordering relations
specified among the individual points.

1.1 Applications
Today the combination of GPS (Global Positioning System) and airborne LiDAR systems is
widely used to monitor glaciers (this sensor has the ability to reveal the slightest growth or
decrease) or to study the tree coverings of a forest, measuring the foliage density.

LiDAR also has many uses in archaeology, geo-morphology or architecture due to its abilities
to detect subtle topographic features.

However, in the future, autonomous vehicles may use LiDAR for obstacle detection and
avoidance to navigate safely through environments thanks to computer vision and/or object
detection techniques.

Combining the use of LiDAR sensors with both radar and color camera lead to a more
precise detection of pedestrians, cyclists and other vehicles. In [LKK19] the V2X (vehicle to
everything) concept is introduced: each vehicle is able, thanks to a special network, to share
with others the collected information.

This hypothetical scenario is based on the speed of 5G (fifth generation standard for cellular
networks) technology [DS17]. The key is that each vehicle equipped with this sensor will not
process the data collected in a local computer. Rather, it will send them in real-time to a data
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center from where, once processed, instructions will be sent back (thanks to the low latency of
5G) to the on-board computer for driving the vehicle.

1.1.1 The Importance of Compression

In order to avoid buffering problems and reduce the storage costs for this amount of information,
it is important to compress the data generated by the LiDAR sensor as much as possible before
sending it through the 5G network [Mäm+19].

A LiDAR can generate tons of thousands to millions of points every second (for example in
our tests it generated about 300 000 point

s , in a 1200 RPM configuration).
Another challenge is represented by the real-time compression required to send frames to

the data center and get an immediate response. Therefore, the compression must take as
short time as possible and cannot be based on future frames, but only on the present one and,
possibly, the past ones.

1.2 State of Art
Currently, there is not a compression standard for point-clouds. However, the most commonly
used formats are PCD (Point Cloud Data) [Lib11] and LASzip [Ise13]. The performance of
these two solutions will be discussed in Sec. 2.1.

Since point-clouds have a three-dimensional nature, geometric compression methods are
the most common in the literature. Some of them, such as octree and triangular meshes are
described in Sec. 2.3.

Other methods, described in Subsec. 2.4.1, are based on image compression. They usually
give better results than geometric-based methods, as confirmed also by the results (presented
in Sec. 4.4) of the trials proposed in this thesis.

1.3 Improvements
Instead of implementing already existing image-based and geometric-based compression meth-
ods, in this thesis some improvements are proposed to 2D-oriented compressions. Using spheri-
cal coordinates instead of cartesian ones, thus the maintenance of a bi-dimensional matrix data
form (the correlation between the coordinate angles and the point position are saved in the 2D
projection). This solution achieves better compression results, as we can see in Chapter. 4.

Furthermore, the spherical coordinates can be improved with an angle linear interpolation
(Subsec. 3.3.2). Predicting the angles and computing the differences with the original one
allows us to save only the prediction error, and so to achieve a better quality, as can be seen
in Subsec. 4.4.2.

Finally, an evolution of the image-based method was studied. The best results were indeed
achieved through either a video-encoding or a customized image-encoding based on Lempel-
Ziv-Welch (LZW) and Huffman compression.
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1.4 Thesis Overview
First, the related works and the currently state of art about lossless point-cloud compression
will be introduced (Ch. 2).

Secondly, we will describe in detail the tests carried out and specifically the various com-
pression methodologies developed by us (Ch. 3).

Finally, the performance metrics and our results will be shown and compared (Ch. 4).
As said before, some 2D-oriented compression methods give better results than the 3D-

oriented ones. With the improvements proposed the results are beyond enhanced (Ch. 5).





Chapter 2

Related Works

In this chapter previous works related to both two-dimensional and three-dimensional compres-
sion methods will be introduced.

The following methods represent the starting point on which we developed our algorithm:
some of them were directly designed for point-clouds while others such as image or video
methods have been adapted to our study case.

2.1 PCD and LASzip
In the introduction (Ch. 1) the currently most used formats for storing and processing point
clouds were mentioned. The PCD format [Lib11] and LASzip [Ise13].

Now we describe these formats and express some considerations on their limits.

2.1.1 PCD
First of all, the PCD (Point Cloud Data) is directly supported by Matlab’s Computer Vision
ToolBox and it has three different encoding: ’ascii’, ’binary’ or ’compressed’.

We tried to compress the data by using the compressed PCD format and the results are
reported in (Sec. 4.2).

The results were even worse than the standard Velodyne data format (PCAP) because PCD
is not a real compression algorithm: it saves all the points coordinates, beam after beam in a
dedicated file for each frame1.

2.1.2 LASzip
LASzip is an evolution of the ZIP, an archive file format that usually uses the Deflate algorithm
(lossless) [Deu96], specifically designed to compress point-clouds.

The results of this method are available in [Ise13] and reported in (Sec. 4.2).
They are comparable with those obtained during our tests, instead of classical ZIP where

the overall compression is not very efficient.

1All the cartesian coordinates from a frame are saved in a table with only three row (x, y, z) with ’ascii’
and Huffman encoding.
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2.2 LASComp
A further compression method is LASComp, which is based on predicted coordinates (x, y, z)
of a point from the previous one, and the prediction error is saved with a VLC (variable length
code) encoding.

The results (shown in [MŽ11]) are intermediate between the Cartesian and the Spherical
compression obtained by us in PNG, JPEG-LS and TIFF formats (Sec. 3.3).

As mentioned LASComp main advantage from the previous methods is the coordinates (x,
y, z) prediction. Then the error between the prediction and the "true" (original) position of the
point is computed and saved.

A similar technique will be described in Subsec. 3.3.2 (spherical coordinates), where a small
errors, within a restricted domain of possible values, allow us to use a more efficient saving
format.

However, the 3.3.2 strategy offers better results as we have implemented the elevation angle
prediction. This prediction is perfect, resulting in the benefit of not having to save any errors,
which obviously implies less storage space.

2.3 Geometric Methods
Due to the three-dimensional nature of point-clouds, geometric compression methods are the
most common in the literature.

2.3.1 Triangular Meshes
The pioneering work of compressing geometrical data was carried out by Taubin and Rossignac
(1998) [TR98], who published a method for compressing triangular meshes. Their algorithm
divided the triangle mesh into triangular strips. The vertices were then arranged according to
their appearances in the triangular strips and coded with a linear prediction schema. In this
way, instead of storing the absolute coordinates, only differences between the predicted and the
actual positions of vertices were stored. Needing a topology, this algorithm cannot be directly
applied to LiDAR datasets.

2.3.2 Octree
The geometric-based algorithms usually exploit the spatial organization of the points to encode
them in a structure like an octree in order to reduce the amount of information.

Octrees are an extension of binary trees, useful for partitioning three-dimensional spaces.
Specifically, an octree is a tree in which each internal node has exactly eight children. Each child
represents 1/8 of the parent space (analogously with binary search tree, each level of the space
is half splitted along each axis, therefore in 23 = 8 partitions) [Sam88]. Each point collected by
the LiDAR is represented by the leaf which contains it, so the encoding precision grows with
the growing of the number of levels. [SK06]. However, there is always a quantization error: the
only way to avoid it would be to have unlimited levels, which is impossible.

The geometry-based solution presented in this thesis (Sec. 3.2) is based on octree compres-
sion.
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2.3.3 Other geometrical structures
A structure similar to the octree approach is the Voxel Grid (VG). The VG sub-sampling
technique is based on a grid of 3D voxels2.

This technique has been traditionally used in the area of computer graphics to subdivide
the input space and reduce the number of points [KB04]. VG algorithm defines a Voxel Grid
in the 3D space and for each voxel a centroid is chosen as the representative of all the points
that lie on that voxel (LiDAR compression on voxel in [Kam+12]).

Moreover in [SPS12], considering the voxels as spheres, a fast algorithm was developed.
The use of a structure allows to perform some operations like fast searching of the neighbors

to reduce the amount of points visualized or to get a more or less precise representation of
the point-cloud. In this case the key point is to find an efficient representation by removing
redundancy.

Hence a lossy compression system based on plane extraction which represent the points of
each scene plane as a Delaunay triangulation and a set of points/area information is discussed
in [Mor+14].

2.4 Image Methods
As mentioned, this thesis is based also on the use of classical image compression techniques
and therefore on the conversion from point-clouds to two-dimensional images.

This expedient is already used in scientific papers but is quite rare compared with the
geometric one.

In [HN15] the mapping of spherical coordinates to 2D coordinates was deeply analyzed,
from cartographic considerations to equirectangular projection maps and then a compression
based on panoramas was discussed.

An alternative solution is presented in [GK15] based on height map encoding over a planar
(2D) domain as a basis.

Anyway, after the conversion process, these methods propose to compress those images by
well-known file formats, like PNG, TIFF or JPEG-LS.

2.4.1 Matrix form
In [Bee19] a different strategy that outperform the previous methods and standards is described.
Although LiDAR data is often visualized as point-clouds in a 3D space, it is important to note
that the raw measurement is simply a distance value (at specific angles) and it is no longer
necessary to choose a wise 3D into 2D mapping.

Since LiDAR frames have a matrix form, as will discuss in Ch. 3.3, it is very easy to apply
the existing algorithms for 2D image compression. In fact 2D images are processed as one
(grayscale) or three (RGB) matrices, therefore seeing the matrix of tuples (x, y, z) given by
the LiDAR like three matrices (one per coordinate) allows us to apply the already existing
algorithms for 2D image compression.

Because the matrix form is determinated by the data collecting method3, there is a strong
correlation between a field content and its position, which grants a value continuity and so a

2A voxel is a volumetric picture element, the equivalent of a 2D-image pixel but on a regular grid in a
3-Dimensional space.

3In fact, as we will see in Sec. 3.1, each row corresponds to a beam and each column to a sequential measure.
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proper functioning of the image compression algorithms, as can be proved by the results (visible
in Sec. 4.4).

To treat the matrix like an image, it is needed to cast the coordinates from float to unsigned
integers (in our trials we opted for 16 bits because 32 bits did not show any improvement).
This causes a data quantization (Subsec. 4.4.2) and so a limited but, still very high, PSNR
(Peak Signal to Noise Ratio) (not infinite like in the theoretical lossless).

Before the casting, the coordinates must be remapped as in eq. 2.1 in order to reduce the
quantization error on the 16 bits encoding.

IMG =
⌊︄

original − min
max − min · (216 − 1)

⌉︄
(2.1)

where max e min are respectively the maximum and minimum coordinate value in the frame.
However as can be seen in the results (Subsec. 4.4.2), very high PSNR are obtained (in

Matlab) due to an estimator function (eq. 2.2). This function takes the value range and
estimates the scale and offset factors. These allow to avoid as much as possible a quantization
rounding, hence enhancing the PSNR.

The casting from float to uint16 (unsigned integer of 16 bits) is done by means of:

IMG = uint16(round(XY Z ∗ scale) + offset) (2.2)

where XY Z is the original tensor with float coordinates.
The image-based solution presented in this thesis (Sec. 3.3) is based on this stratagem.

2.5 Video Methods
As already mentioned, in this thesis we developed a video-based compressor directly derived
from that of images.

In 2017, the MPEG4 group issued a call for proposals on Point Cloud Compressor (PCC),
and since then it has been evaluating and improving the performances of the proposed PCC
video compressors.

PCC is an open standard for compactly representing 3D point-clouds, which are the 3D
equivalent of the very well-known 2D pixels.

In [Sch+19] the main developments and technical aspects of this ongoing standardization
effort are described.

Similarly to what was done in this thesis, the research immediately differentiated three
scenarios based on the dynamic or static nature of the 3D sensor or of the subject.

Currently the standard is still under development (which means that the performances are
not yet known) but two different classes are foreseen.

The first class is totally based on a video of still images and it’s well suited for static
scenarios. However, as we will establish in Ch. 3.4, the traditional motion estimation based
on 2D macro-blocks is not well suited to compensate color patches having forms and locations
that vary with high frequencies and it has limitations in exploiting temporal correlations.

The second class is hybrid and is based both on voxels and images. A point-cloud is encoded
in an octree structure through levels of detail (LoD)5. Then an instantiation from the geometry

4Moving Picture Experts Group.
5The points are grouped into voxels and the voxels have a size given by the level of detail.
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decoder is passed to an image encoder, where the re-coloring module assigns colors to the
refined vertices, by taking colors from the original (uncompressed) point-cloud.

2.6 Dictionary Methods
A dictionary coder operates by searching for matches between the text to be compressed and
a set of strings contained in a data structure (called ’dictionary’) maintained by the encoder.

When the encoder finds a match, it substitutes a reference to the string’s position in the
data structure.

2.6.1 Lempel–Ziv–Welch
Lempel–Ziv–Welch (LZW) is a universal lossless data compression algorithm created by Abra-
ham Lempel, Jacob Ziv, and Terry Welch. It was published by Welch in 1984 [Wel84] as an
improved implementation of the LZ78 algorithm published by Lempel and Ziv in 1978 [ZL78].

The method described by Welch encodes sequences of 8-bit data as fixed-length 12-bit codes.
The codes from 0 to 255 represent 1-character sequences consisting of the corresponding 8-bit
character, and the codes 256 through 4095 are created in a dictionary for sequences encountered
in the data as it is encoded.

At each stage in compression, input bytes are gathered character by character until a se-
quence is formed with no code yet in the dictionary. The code for the sequence (without the
last character) is added to the output, and a new code (for the sequence with the last character)
is added to the dictionary.

2.6.2 Deflate
The Huffman code [Huf52] is a particular type of optimal prefix code, meaning that there is no
whole code word in the system that is a prefix (initial segment) of any other code word in the
system.

The output from Huffman’s algorithm can be viewed as a variable-length code table for
encoding a source symbol (such as a character in a file). The algorithm derives this table from
the estimated probability or frequency of occurrence (weight) for each possible value of the
source symbol. As in other entropy encoding methods, more common symbols are generally
represented using fewer bits than less common symbols.

In [Deu96], the LZW compression standard combined with the Huffman coding is presented.
This lossless technique is called deflate and is one of the most used for both image ([W3C03])
and ZIP compression.

In fact, it manages to combine the advantages of a dictionary compression such as the
elimination of duplicate strings together with the advantages of a Huffman coding such as the
reduction of the number of bits required.

In this thesis we implemented this combination of algorithms (Sec. 3.5). The results (Sec.
4.6) are indeed good, as redundancies are removed and entropy is reduced in the data stream
to be compressed.
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2.7 Further Methods
Other interesting methods that we have not considered because they do not match with the
specifications of this research are:

1. [CD19]: A bit mask is applied on the raw data packet in order to set to zero the n
least significant bits of each measurement, thus creating repeating zero patterns. A
conventional lossless data compression algorithm is then used to compress the raw data.
This simple method is designed to be used in embedded applications with low available
processing power (compatible with existing processing chains) but it introduces a loss of
accuracy.

2. [Tu+19a]: it uses a neural network for prediction, but this does not guarantee that the
encoding is lossless.

3. [Tu+19b]: designed for real-time application, it uses a neural network and also inter-frame
compression.

4. [Al213]: the distribution of the LiDAR points is approximated in one or more planes
and the further away points are discarded, reducing the storage space for the dataset.
Compression ratios of 17.8% are reported. Since the methods we tested have better
performance, this method was not tested.



Chapter 3

LiDAR Point-Cloud Compression

In this chapter we describe the acquisition of the datasets and the involved compression meth-
ods. The LiDAR frames obtained from five different ambient condition (datasets) are com-
pressed using the octree method as 3D-based compression and various strategies (image, video
and dictionary coding) as 2D-based compression.

The datasets collection and the used compression methods will be now detailed described.

3.1 Data Acquisition

3.1.1 Datasets
The results presented in this thesis are the outcome of the compression performed on five
different datasets created with the frames acquired from a LiDAR Velodyne VLP-16 (16 beam)
in dual mode (two points are saved for each beam: the nearest and that with the strongest
intensity; if the points coincide only one point is saved).

Three datasets were collected at 600 RPM1. At each rotation of the beams one frame is
collected, so that 600 RPM correspond to 600 frame/ min or 10 fps2 and 1200 RPM to 20 fps.
For each rotational speed, a dataset was captured both in a static scenario and in a movement
scenario (of people, the LiDAR remained stationary) plus a last dataset at 600 RPM with a
shaking sensor and a static scenario.

In every dataset, the LiDAR was located on a table in an internal environment (a small
conference room in the Department of Information Engineer of the University of Padova, which
can be seen in Fig. 3.1) with multiple objects (chairs, table, etc.). In the dynamic datasets
there are also moving people.

Each dataset was saved in PCAP format with the VeloView application, then opened in
Matlab thanks to the velodyneFileReader module and converted in CSV or Binary PCD3 to be
used in Python, C++ and Matlab.

Each CSV or PCD file represents a frame that is organized in a 16-line matrix (corresponding
to the 16 beams) whose inputs are tuples (x, y, z, i) containing the coordinates and the intensity
of the point detected by that beam and whose columns represent the temporal instants of sample
collection.

1Rotations per Minute.
2Frame per Second.
3One CSV or PCD per frame.
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Figure 3.1: Real and LiDAR scanned environment during data collection.
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In the CSV files, the intensity was not taken into consideration as the objective was to
compress only the information relative to the position of the points while in the PCD ones
the intensity was saved and subsequently processed to obtain a feedback from the compression
algorithms and to be able to view the point-clouds, as shown in the results.

3.1.2 Points Extraction
The Matlab module imports the PCAP files produced by the LiDAR, and organizes the point-
cloud in a tensor whose format is not documented. To the best of our ability we have re-
constructed the possible scheme used to store the data into tensor and an extractor has been
implemented from it.

We have experimentally verified that this scheme allows us to distinguish the dual points 4

from the normal ones and to obtain a final tensor with only valid points.
However in Matlab this "filtering" has not occurred, therefore all the valid and invalid points

have been compressed without distinction.

3.2 Geometry-based
In the trials, the PCL (Point Cloud Library) library5 [RC11] was used to do a geometry-based
compression using octrees (as described in Subsec. 2.3.2).

This library offers 12 different resolution profiles (see Tab. 3.1). Each profile sets the most
suitable number of levels for a fixed resolution. All the profiles were tested.

1. LOW_RES_ONLINE_COMPRESSION_WITHOUT_COLOR 1 cm3 resolution, without color, online fast encode

2. LOW_RES_ONLINE_COMPRESSION_WITH_COLOR 1 cm3 resolution, color, online fast encode

3. MED_RES_ONLINE_COMPRESSION_WITHOUT_COLOR 5 mm3 resolution, without color, online fast encode

4. MED_RES_ONLINE_COMPRESSION_WITH_COLOR 5 mm3 resolution, color, online fast encode

5. HIGH_RES_ONLINE_COMPRESSION_WITHOUT_COLOR 1 mm3 resolution, without color, online fast encode

6. HIGH_RES_ONLINE_COMPRESSION_WITH_COLOR 1 mm3 resolution, color, online fast encode

7. LOW_RES_OFFLINE_COMPRESSION_WITHOUT_COLOR 1 cm3 resolution, without color, offline efficient encode

8. LOW_RES_OFFLINE_COMPRESSION_WITH_COLOR 1 cm3 resolution, color, offline efficient encode

9. MED_RES_OFFLINE_COMPRESSION_WITHOUT_COLOR 5 mm3 resolution, without color, offline efficient encode

10. MED_RES_OFFLINE_COMPRESSION_WITH_COLOR 5 mm3 resolution, color, offline efficient encode

11. HIGH_RES_OFFLINE_COMPRESSION_WITHOUT_COLOR 1 mm3 resolution, without color, offline efficient encode

12. HIGH_RES_OFFLINE_COMPRESSION_WITH_COLOR 1 mm3 resolution, color, offline efficient encode

Table 3.1: List of octree compression profiles.

4The dual points are those for which a single incident ray sent by LiDAR returns two distinct echoes.
5A C++ library for point-clouds management.
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3.3 Image-based
The image-based compressor (in the matrix form presented in Subsec. 2.4.1) has been imple-
mented both in Python and in Matlab, using traditional lossless image compression algorithms.

In Python the involved codecs were PNG, TIFF, JPEG-LS, PPM and zipped PPM6, in
Matlab only PNG was used. These formats were selected in order to compare the trial results
(Ch. 4) with those in [Bee19].

Different strategies had been used to pack LiDAR points into images. Each of them is
presented below.

3.3.1 Cartesian compressions
In the cartesian compression the point-cloud coordinates are simply packed into one or three
images. From the matrix of tuples (x, y, z) three matrices are extracted: one per coordinate
(X, Y and Z). Then each matrix is remapped and processed as explained in Subsec. 2.4.1.

Cartesian single-channel compression

The points have been saved in three single-channel images, assigning each coordinate (X, Y
and Z) to the unique channel of the three images.

Cartesian tri-channel compression

The points have been saved in a tri-channel (RGB) image, assigning the X coordinate to channel
R, Y to G and Z to B.

3.3.2 Spherical compressions
As said in Subsec. 1.3, some improvements in image-based compression have been made. They
are now presented in this subsection.

To achieve the results reported in Sec. 4.4, the points were converted into spherical coor-
dinates: the radius (ρ) and the two angles (elevation θ and azimuth ϕ), using the following
formulas:

ρ =
√︂

x2 + y2 + z2

θ = arctan
√

x2 + y2

z

ϕ = arctan y

x

(3.1)

Real angles

The previously defined radius and azimuth were saved in different grayscale images. During
decompression, the elevation angle is linearly interpolated from the row index. This trial was
implemented only in Python.

6An PPM file (non compressed standard) saved with a ZIP compression.
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Angle prediction

This methods only saves the radius in a grayscale image.
In fact during the decompression, the elevation and azimuth angles are linearly interpolated

from the row and column indexes. To be more precise, given the LiDAR FOV (Field Of View)
(the angle between two outer beams) and the image shape N × M , it is possible to estimate
azimuth and elevation angles (in radians) of the point in the i-th row and j-th column of the
image:

θ̂ = FOV
2 − i

FOV
N

(3.2)

ϕ̂ = π

2 − j
2π

M
(3.3)

The Eq. 3.2 and 3.3 are linear interpolations. The extreme values are the same of that given
by Matlab library; other environments (or other LiDARs) could organize data in a different
way, however this does not affect the goodness of the linear approximation just described.

Angles differences

Furthermore, an advantage from the prediction of the elevation and azimuth channels could be
achieve.

Unlike the previous trial, the absolute angle was not saved, instead its difference with the
value obtained by a linear interpolation, it was. This allows us to save some space and to
increase the PSNR (about 5 dB) due to a value cast in a much restricted domain.

To minimize the dispersion and achieve values close to zero, the angles differences were
remapped in (−π, π].

3.4 Video-based
The video-based compressor was implemented in Matlab and represents an evolution of the
previous image-based compressor (presented in Ch. 3.3).

As already mentioned in Subsec. 2.4.1, Each frame from the LiDAR source is represented in
a matrix of tuples (x, y, z) from which we can extract two-dimensional matrices, i.e.7 images.

Now instead of directly saving single-color images or a three-color image for each single
frame, all the images relating to a dataset can be sequenced and compressed as if they were a
single colored video or three grayscale videos.

However instead of casting the coordinates from float to 16 bits unsigned integers we have
to use only 8 bits per integer due to the specific limit of the chosen video format. So eq. 2.1
holds with the 2 powered by 8 instead of 16. The results of these extreme quantization is shown
in the next chapter.

Matlab’s VideoWriter library was used to write the video object. This class uses different
lossless video compression method and codec as AVI, MJ2 or MPEG-4.

7Id est.
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3.4.1 Inter-frame
An inter-frame is a frame in a video compression stream which is expressed in terms of one or
more neighboring frames (through prediction). This kind of prediction tries to take advantage
of the temporal redundancy between neighboring frames to enable higher compression rates.

The MPEG-4 (also known as MP4) is a digital multimedia container format most commonly
used to store video and audio. In this thesis we chose to use the recent H264 codec (compatible
with the MPEG-4 container) to compress still images.

This video compression standard requires particular specifications such as images with 8-bit
color depth and precise dimensions (height and width) for the frames.

Therefore, in order to comply with these conditions it was necessary to standardize all the
frames within a dataset and carry out a re-shape operation. So a procedure (using null points)
capable of reconstructing the original matrix structure during the lossless decompression was
developed.

Despite all the efforts, in the results, it will be clear the extreme importance, both in term
of quantization error and inter-frame prediction, of a lossless video compression.

3.4.2 Intra-frame
Motion JPEG 2000 (MJ2) was always intended to coexist with MPEG. Unlike MPEG, MJ2
does not implement inter-frame coding; each frame is coded independently using JPEG 2000
(similar with what happened in Sec. 3.3).

This makes MJ2 more resilient to propagation of errors over time, more scalable, and better
suited to networked and point-to-point environments, with additional advantages over MPEG
with respect to random frame access, but at the expense of increased storage and bandwidth
requirements, as we will see in Chapter 4.

3.4.3 Cartesian compression
In the cartesian compression the point-cloud coordinates are simply packed into one or three
sequences of frames. From the matrix of tuples (x, y, z) three matrices are extracted: one per
coordinate (X, Y and Z). Then each matrix is remapped and processed as previously explained.

Then, in the same way as described in Subsec. 3.3.1, two different approaches were devel-
oped: either a video with 24 bits color depth (8 bits per channel) or three grayscale (8 bits
color depth) videos are saved.

3.4.4 Spherical compression
In Subsec. 3.3.2 we presented different ways to represent or interpolate angles. However after
an image-based compressor result analysis we ended considering only the method which uses
angles differences from the prediction.

As mentioned, the error between the prediction and the original position of the point is
really small, so a restricted domain of possible values, allow us to cast and save the difference
in a more efficient way.

Therefore, depending on the strategy (grayscale o colored video), frame streams containing
radius and azimuth angle prediction error have been saved.
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3.5 Dictionary-based
In this thesis the Deflate algorithm introduced in Sec. 2.6 was implemented in Matlab using
the algorithm from [Bar20] and the Huffman Coding library.

3.5.1 Video-based method analogies
Within this method, the compression is similar to the video-based one (Sec. 3.4), where the
coordinates need to be casted from float to 8 bits unsigned integers, in order to fulfill the
[Wel84] specifications.

Another similarity with the video encoder it’s represented by the inter-frame compression.
In fact from each datasets we were able to extract a sequence of frames and from them a
sequences of matrices representing the bi-dimensional matrix X, Y or Z which are the absolute
position (x, y, z) in a 3D space.

As in the previous method (video), this one uses the matrices described in Subsec. 2.4.1,
and the expedients described in Ch. 3.3. So we tested:

• Cartesian Compression: the point-cloud coordinates (matrices X, Y and Z) are simply
packed into three different sequences of frames.

• Spherical Compression: frame streams containing radius and azimuth angle prediction
error have been saved.

However, instead of being able to create tri-channel video objects, here the compression can
only be done one channel at a time.

3.5.2 Lempel-Ziv-Welch coding
A given sequences of matrices (within all the dataset) was linearized (row-major8 order) and
became the text described by Welch [Wel84]. In this text the characters are the unsigned
numbers represented exactly by 8 bits. These means that each matrix sequences of properties
in a specific dataset needs only one dictionary for all the frames. This common dictionary
represents the inter-frame aspect of this compression.

3.5.3 Huffman coding
To the dictionary defined above is then applied the Huffman coding to remove any remaining
redundancy. Cleverly the symbols of Huffman’s coding ([Huf52]) are none other than the words
contained in the LZW dictionary. This allows us to exploit and reduce the entropy.

Finally from this coding we were able to save a binary file for each property of a dataset.
Note that a property can be the succession of all X matrices (x coordinate of the points within a
point cloud) as well as the succession of a reflection characteristic matrix due to the versatility
and power of this lossless method.

8It’s a method for storing multidimensional arrays in a linear ones. In row-major order, the consecutive
elements of a row reside next to each other.





Chapter 4

Performance Results

In this chapter the results from the previous compression methods (Ch. 3) will be presented.
First, in order to compare the trials, we will introduce some performance metrics as com-

pression efficiency and quality of compression.
Then this chapter will be ended by a comparison between all the methods.

4.1 Performance Metrics
The following metrics have been used to measure the performance of our algorithms:

1. Savings rate: let compr be the size (in bytes) of the compressed dataset and raw be
the size of the raw dataset, which is the PCAP file from the LiDAR. The savings rate is
given by the following formula:

savings rate = 1 − compr
raw (4.1)

2. Bpp (Bytes per Point): let compr be the size (in bytes) of the compressed dataset
and p be the total number of points contained in it. The Bpp is defined by the following
formula:

Bpp = compr
p (4.2)

3. PSNR: the MSE is the mean squared error between two matrices, I and K of equal size,
defined as follows:

MSE (Mean Squared Error)(I, K) = 1
m n

m−1∑︂
i=0

n−1∑︂
j=0

[I(i, j) − K(i, j)]2

The PSNR, used to quantitatively evaluate the introduced error, is defined by the follow-
ing formula:

PSNR(I, K) = 20 · log10

⎛⎝ MAXI,K√︂
MSE(I, K)

⎞⎠ (4.3)

where MAXI,K = the maximum value in matrices I and K
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For each method we will see the following graphs:

1. Compression efficiency
The plots of the Saving rates and Bpp: for each format/profile it is shown the mean on
all the datasets of these metrics.

2. Compression quality
For each strategy/profile it is shown the mean of the PSNR on all the frames from all the
datasets.

4.2 PCD and LASzip Compression
PCD

We tried to compress the data by using the compressed PCD format and the results are reported
in (Tab. 4.1):

Savings Rate [%] Bytes per Point [byte] PSNR [dB]
−104.8 7.10 ∞

Table 4.1: PCD rates, Bpp and PSNR using the compressed format

PCD is a format that has the advantage of a quick saving time compared to other standards.
It is lossless, as evidenced by the PSNR, but it has a negative Savings Rate (defined in Sec. 4.1).
This implies that it needs more than double the storage space compared to the original file
saved in PCAP. Obviously this is not a good result for a compression algorithm.

LASzip

The results of this method are available in [Ise13] and reported in (Tab. 4.2).
The savings rate is referred to the original uncompressed file of [Ise13] which is LAS (LASer):

a binary format for archiving point-cloud data. In term of comparison the bit-rate (Bpp) seems
to be quite more interesting since as mentioned is comparable with the image-based cartesian
methods.

Savings Rate [%] Bytes per Point [byte] PSNR [dB]
85 2.15 ∞

Table 4.2: LASzip compression rates, Bpp and PSNR

However, note that from a comparison between LASZip and image-based compression
(Sec. 4.4), the 2D-oriented methods based on PNG or JPEG-LS will result more effective.
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4.3 Geometry-based Compression

4.3.1 Compression efficiency
As shown in Fig. 4.1 the octree savings rate decreases with the increasing of the resolution1.

In the color (even numbered) and without color (odd numbered) profiles the rate is the
same, since there is not any stored information about the point color. Between the online (the
first six profiles, which favor encoding speed) and the offline (the last six, which favor encoding
efficiency) modes there is only little difference.

The profiles with the best resolution (5, 6, 11 and 12) do not give good results as they save
little more than half space.

1 2 3 4 5 6 7 8 9 10 11 12

85.6% 85.6%
79.8% 79.8%

54.3% 54.3%

85.6% 85.6%
80.5%79.83%

53.11%54.3%
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Figure 4.1: Octree savings rates.

According to the saving rates, the bytes required to store a point (Fig. 4.2) increase with
the resolution increasing. They are however limited from 1 to 4 bytes per point.

1 2 3 4 5 6 7 8 9 10 11 12

1.16 1.16
1.64 1.64

3.75 3.75

1.16 1.16
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Profile
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Figure 4.2: Octree Bytes per Point.

1As can be seen in Tab. 3.1, profiles 5, 6, 11 and 12 have the higher resolution, while 1, 2, 7 and 8 the
lowest.



22 CHAPTER 4. PERFORMANCE RESULTS

4.3.2 Compression quality
In order to compare the geometry-based compressor with the image-based one, it was chosen
to use PSNR as quality metric. However, with octree, it is not feasible to use the usual PSNR
definition (eq. 4.3), due to the possible merging of two, or more, points. As a matter of fact,
if some points are very close to each other (the distance between them is in the same order of
the quantization one), they are merged in only one point of the octree (and consequently in
the final cloud, obtained after the decompression); this makes not clear how to calculate the
MSE (which is required to evaluate the PSNR).

The solution is to pair each point in the original cloud with the corresponding one in the
final cloud, even if more than one point of the original is matched with the same point of the
final cloud.

Unfortunately, the used library (PCL), does not offer any tool to allow this pairing.
For the implementation, it was necessary to resort some approximate methods for matching

the points between the two clouds. As mentioned above, these methods do not provide the
real PSNR, but they can yield a good estimation of it. The trials have been made with the
following two methods:

1. Clouds with unique point: for each point of the original cloud a new cloud with
only that point is generated. The new cloud is then compressed in an octree and then
decompressed; eventually the MSE is evaluated between the point in question and the
one in the final cloud.

2. Minimum Euclidean distance: Each point from the original cloud is paired with the
point from the final cloud at the minimum Euclidean distance.

The achieved results are very similar. In Fig. 4.3 are reported the PSNRs obtained with
the second method. The color and without color profiles gave the same results, so we grouped
them into one column.

1, 2 3,4 5, 6 7, 8 9, 10 11, 12

75 dB 75 dB

108 dB

75 dB 76 dB

110 dB

Profile
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]

Figure 4.3: Octree compression PSNRs.

As we can see the best results are obtained with profiles 5, 6, 11, 12, which gave also the
worst result in savings rate. Anyhow, all profiles are over 75 dB and can thus be considered
lossless.
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4.4 Image-based Compression

4.4.1 Compression efficiency
Firstly we can observe that saving three grayscale images gives slightly better results than
saving one tri-channel image, both for cartesian (Fig. 4.4, 4.5) and spherical (Fig. 4.7, 4.8)
methods.
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Figure 4.4: Frame packed in three single-channel images, the first for the X coordinate, the
second for Y and the last for Z.
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Figure 4.5: Frame packed in a tri-channel image, where the coordinates XYZ have been saved
in the three color channels.
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With savings rates over 70 % for cartesian methods (Fig. 4.5) and over 85 % for spherical
ones (Fig. 4.8) PNG and TIFF give an excellent compression level, and nowadays they are
both, two of the most common codecs. On the other hand, the JPEG-LS is not much used, but
obtains results comparable with those of PNG and TIFF. Finally PPM is not a compression
codec2, so it gives much worse results compared to the other investigated methods; however its
zipped version obtains results only slightly lower than the other formats.

Looking at all the previous results (Fig. 4.4, 4.5), we can exploit an interesting comparison
in terms of savings rate between algorithms implemented in Python and Matlab. In Subsec.
3.1.2 we explained that rough data are saved in PCAP files, which contains tensors with valid
(numerically) or invalid (NaN) points. In Matlab no distinction has been made about point
validity and so all the points have been compressed. This preserves the original data structure,
but, as can be seen in the results, it penalizes the savings rate. This happened because the
compressed frames, storing more points, have a greater dimension (in bits) than the Python
counterpart and so a lower percentage, in relation to the original PCAP. Instead the bytes per
point results (Fig. 4.4, 4.5) are only slightly different, because the greater file size is balanced
by the higher number of compressed points.

Saving the points using absolute spherical coordinates, instead of cartesian ones, gives better
results in terms of compression (Fig. 4.6). The higher savings rate is due to the elevation angle,
which is constant for each beam (every row in the matrix has the same elevation angle).
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Figure 4.6: Frame packed into three single-channel images, in the first has been saved the
radius, in the second the absolute elevation and in the third the absolute azimuth.

Furthermore saving the difference between angles and their prediction allows to further raise
the savings rate, in particular for JPEG-LS and zipped PPM, because the difference is often
null and these codecs work well with zeros numbers (Fig. 4.7 and 4.8).

2PPM uses always 6 Byte to store a point: 3 coordinates as 16 bit integers.
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Figure 4.7: Frame packed in three single-channel images, the first containing the radius, the
second the difference between real elevation and its interpolation and the third the difference
between real azimuth and its interpolation.
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Figure 4.8: Frame packed in a tri-channel image, the first channel containing the radius, the
second the difference between real elevation and its interpolation and the third the difference
between real azimuth and its interpolation.

Finally, a solution based exclusively on angles predictions is presented in Tab. 4.3. The
points have been converted into spherical coordinates and only the radius has been saved in a
single-channel image. This trial has been implemented only in Matlab (PNG encoding).

Savings rate [%] Bytes per point [Bytes]
79.93 0.69

Table 4.3: Frame packed in a single-channel image, containing only the radius, azimuth and
elevation angles are predicted during decompression.
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4.4.2 Compression quality
We conclude the image-based section by examining and evaluating the losses due to compres-
sion. Two sources of errors can be identified, due to the packing methods used:

1. Quantization errors: the type of LiDAR generated points is a single precision floating
point; so it is necessary to remap them in the range of 16 bit unsigned integers and round
the result to the nearer integer (Eq. 2.1 in Subsec. 2.4.1).

2. Prediction errors: in the strategy with spherical coordinates without storing azimuth,
an error in its approximation is done.

However, the codecs used to compress the images, are all lossless, therefore they don’t introduce
any loss.
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Figure 4.9: Image-based compression PSNRs.

As can be seen in Fig. 4.9, using cartesian coordinates (XYZ) or spherical ones (angles)
with real angles leads to similar PSNRs. Instead, saving the differences between real angles
and their prediction gives a higher PSNR because the difference is very slight3 and so we are
able to achieve a smaller quantization error on the angles.

PSNR values exceed 100 dB for all packing strategies, so this compression method can be
considered lossless.

Furthermore the very high PSNR (118dB) in Matlab cartesian compression (XYZ in fig.
4.9) is due to an estimator function. This function takes the value range and estimates the
scale and offset factors. This allows, if possible, to avoid a quantization rounding, hence
enhancing the PSNR. The casting from float to uint16 (Unsigned 16bit) is done by means of:
IMG = uint16(round(XY Z ∗ scale) + offset) where XY Z is the original tensor with float
coordinates.

3the difference is null for elevation and in the order of 1 % of the real value for azimuth.
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Finally snapshots made in Matlab are shown in Fig. 4.10, to subjectively evaluate the
quality of the frame after compression. All images are referred to the last frame of the 600
RPM dynamic dataset. The compression method was the spherical one with the azimuth
difference illustrated in Subsec. 3.3.2.

(a) Original Frame (b) Final Frame

(c) Original Detail (d) Final Detail

Figure 4.10: Comparison between original and decompressed frame with intensity map.

Quantization error

As said before, most of the error is due to quantization. There is a way to calculate the theo-
retical uniform quantization error via the quantization SNR (Signal to Noise Ratio) Λq [Lau11]:

Λq = 3 Ma

V 2
sat

22b (4.4)

where Ma = σ2
a +m2

a is the statistical power of the coordinates, Vsat = max−min
2 half of the range

of coordinate values and b the number of bits used in the coding.
The quantization PSNR4 can be estimated from the SNR in this way:

PSNRq
∼= Λq

max2

Ma

(4.5)

Where max is the maximum coordinate value. In the proposed trials the estimated PSNRq is
107 dB5, which is coherent with the obtained result (Fig. 4.9).

4In linear scale.
5Evaluated on the original tensors, so valid for cartesian methods.
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4.5 Video-based Compression

4.5.1 Compression efficiency

In figure 4.11 the savings rate and the Bpp are shown for both cartesian and spherical with
difference methods. Firstly we can observe that saving three grayscale images gives slightly
better results than saving one tri-channel image (RGB) for the spherical method and the
opposite for the cartesian one.
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Figure 4.11: Frames sequence packed in three grayscale video or in a single colored (RGB)
video.

4.5.2 Compression quality

We already discussed the sources of errors (Subsec. 4.4.2): since videos are a succession of
images the errors continue to be the same. However video’s frames need a 24 bit color depth
re-parted as 8 bit per channel. This means that the original matrices have to be casted (Eq.
2.1) into 8 bit unsigned integers data format, hence worsening the performance (Fig. 4.12).

The MJ2 codec involved to compress the videos, is intra-frame and lossless, therefore it not
introduce any loss.

Although the PSNR is still high (78 dB) and can be defined as lossless, such a large quanti-
zation error necessarily introduces artifacts for both the cartesian (Fig. 4.13c) and the spherical
(Fig. 4.13b) compressor.

Another important result has been achieved within this thesis: in figure 4.13d it is possible
to notice the results of a not completely lossless compression. In fact, this screen-shot was
collected in Matlab using the MPEG-4 container with H264 inter-frame codec. This standard
can guarantee compressions for point-clouds with saving rates up to 97% compared to the
original PCAP file.
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Figure 4.12: Video-based compression PSNRs.

However, even when the lossless mode is set, it is evident from the figure (Fig. 4.13d) that
this compression is not lossless, but the inter-frame compression almost completely ruins the
data structure (during playback, the dataset visually appears as a rotating vortex of dots).

(a) Original Frame (b) Spherical Compression

(c) Cartesian Compression (d) Inter-frame Compression

Figure 4.13: Comparison between original and decompressed frame to underline the artifacts.
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4.6 Dictionary-based Compression

4.6.1 Compression efficiency
As mentioned in Sec.3.5 this strategy of compression could be considered inter-frame since it
shares the same dictionary for all the frames. Hence the mean results are shown both in term
of static and dynamic datasets (differences defined in Sec. 3.1).

In figure 4.14 are shown the savings rate and the Bpp for both the cartesian and the spherical
difference methods.

Firstly, we can observe that there are no substantial differences between static and dynamic
frames. The inter-frame technique is effective in video compression because the differential
information is less than the original. In dictionary compression this is not the case, so no
tangible differences are exploited.
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Figure 4.14: Frames sequence compressed with Lempel-Ziv-Welch algorithm and Huffman en-
coding

With savings rates over 76 % for cartesian methods and over 85 % for spherical ones (Fig. 4.14)
Deflate gives an excellent compression level. However what should be noticed is the bitrate: 0.5
byte per point represents the best results from this thesis. The savings rate are not the absolute
best, because as already specified (Subcap. 3.1.2), the implementation in Matlab maintains
the original structure of the matrix without eliminating invalid points.

4.6.2 Compression quality
There is a strong quantization error due to the LZW specification ([Wel84]) which requires
only 8-bit words. This leads to the same conclusions already covered for the video compressor
(Subsec. 4.5.2) with the artifacts seen above (Fig. 4.13b and 4.13c).

Lempel-Ziv-Welch and Huffman coding are both lossless, therefore they do not introduce
any deterioration.
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Figure 4.15: Dictionary-based compression PSNRs.

As can be seen in Fig. 4.15, using cartesian coordinates or spherical ones with differential
angles leads to similar PSNRs.

PSNR values exceed 74 dB for both strategies and datasets, so this compression method
can be considered lossless.
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4.7 Comparison

The results between the various datasets were comparable. This fact could be expected for
intra-frame compression (as image-based and video-based compressor), however it’s interesting
for inter-frame compression (as dictionary-based) which managed to remove all the redundancy.

In fact, intra-frame compression does not involved adjacent frames and for the inter-frame
one there are no differences between static or dynamic scenarios, also the number of frames
per minute (collected) does not affect the efficiency of compression. For this reason only the
average results will be show in the summary graph.
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Figure 4.16: Overall Rates.

Let’s now compare the results of the 3D-oriented compressor (octree), which is specific for
3D point-clouds like LiDAR observations, with the most efficients 2D-oriented compressors
(image-based, video-based, dictionary-based), specifically designed for 2D frames.

In terms of savings rate (Fig. 4.16) the best solution are spherical coordinates with angles
differences coded via PNG, which obtains a savings rate of 87 %.

Considering the structure integrity, and the Bpp from Fig. 4.17: Deflate (LZW in the graph)
is the most efficient one. However the dictionary-based results are perfectly aligned with those
of the image-based one if we consider that a matrices of 8 bit unsigned integers requires half of
the space than a 16 bit unsigned integers one.

In general all the results of image-based compression using differential spherical coordinates,
except PPM, are the best of all, since video-based inter-framee solution isn’t able to preserve
the data structure and intra-frame is coded on MJ2, an outdated profile compared to PNG.

There are several results over 80 % both in geometry-based and in image-based, excluding
the cartesian methods. Though, leaving out PPM, all the image-based methods deliver better
saving rates than the profiles which offer the highest PSNR among octree.
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Figure 4.17: Overall Bpp.

In Fig. 4.18, XYZ represents the cartesian coordinates; Abs. and Diff. represent absolute
and prediction difference spherical compression, respectively.

Clearly, only four profiles achieve a PSNR in the order of that of image-based algorithms.
Video-based and dictionary-based suffers from a strong quantization error.

While in image-based methods the PSNR grows with the growing of the savings rate, using
octrees the PSNR is lower for higher savings rate.
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Figure 4.18: Overall PSNRs.
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Finally, after all this analysis, a subjective point of view (Fig. 4.19d) confirms that the
2D-oriented method that involved PNG as image-based compressor is the best possible choice.

Both Fig. 4.19b and 4.19d refer to compression based on spherical coordinates. The dif-
ference is that the first uses a dictionary-based Deflate encoding that requires matrices with
unsigned 8-bit integers, while the latter uses a PNG compression with 16-bit color depth images.

Unfortunately, the strong quantization has led to the following artifact: concentric spherical
planes are seen due to too low resolution.

(a) Original Frame (b) Spherical Compression 8 bit u-int

(c) Cartesian Compression 8 bit u-int (d) Spherical Compression 16 bit u-int

Figure 4.19: Comparison between original and decompressed frame to underline the compres-
sion quality.
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Conclusion

In this thesis the Velodyne VLP-16 sensor was used to collect point-clouds in different modes
(static scenario, dynamic scenario and moving sensor) which had to be compressed efficiently.

Two different techniques for frame compression were compared and implemented, 2D- and
3D-oriented.

The first one is a transformation of the points within a frame into two-dimensional pictures,
then compressed via traditional image or video (both intra-frame and inter-frame) compression
techniques or using the Deflate algorithm. The second one consists of point-cloud codification
into a tree structure called octree, which allows us to save disk space compared to a direct
coding.

This thesis also presented some advanced strategies based on spherical coordinates to im-
prove image-based compression results. Anyway, only lossless compression methods have been
examined.

The performance of these these techniques were analyzed in terms of compression efficiency
and quality of the decompressed frame compared to the original.

Compression by images (2D-oriented) and by octree (3D-oriented) lead to similar results.
This fact is explained by the nature of the LiDAR frames which, despite being clouds of three-
dimensional points, are collected by 16 rotating lasers. Hence they are like two-dimensional
images with the projection of the surrounding space; instead of colors, distances are saved as
information.

In general the results of image-based compression using differential spherical coordinates
and PNG encoding are the best of all since video-based intra-frame compression is coded on
MJ2, an outdated profile compared to PNG.

Moreover we demonstrated the importance of lossless compression, as inter-frame lossy
prediction wasn’t able to preserve the data structure.

In particular, the video-based compression may be unsuitable. The noise from the quanti-
zation of the coefficients during the DCT (discrete cosine transform), even in the lossless mode,
is not negligible (or rather, it is for images, but not for data of other nature).

Good performance were obtained with our algorithms: in particular the image compression
with PNG codec reaches 87% of Savings Rate, while the octree compression with profiles 1 and
2 reaches 85.6% of Savings Rate.
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Considering the structure integrity, and the Bpp, the Deflate strategy is the most efficient
one. However the dictionary-based results are perfectly aligned with those of the image-based
one if we consider that a matrix of 8 bit unsigned integers requires half of the space than a 16 bit
unsigned integers one. In fact the PNG standard uses Deflate flat as a compression method.

Finally, as PSNR values exceed 100dB for the image compressor and 70dB for the octree,
video and dictionary compressor, they can all be considered lossless.

A possible future development should be based on dictionary compression. In fact, the
performance of an algorithm of this type strictly depends on the text to be compressed.

Therefore, in order to exploit repetitive patterns in a succession of point-clouds, it is possible
to privilege some data "reading" directions over others.

The best way to sequence the coordinates values (characters) in a text is an interesting
subject for further study.
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