
Università degli Studi di Padova
Dipartimento di Ingegneria Industriale

Corso di Laurea Magistrale in Ingegneria Aerospaziale

Preliminary design of a cold gas
aerospike engine experiment

Internal Supervisor External Supervisor

Prof. Daniele Pavarin Dr.-Ing. Christian Bach

Università degli Studi di Padova Technische Universität Dresden

Candidate

Giorgio Tesser

Matricola : 1157041

A.A. 2018-2019

ii

Abstract

This paper shows a preliminary design of a cold gas engine, equipped with
an aerospike nozzle, for space applications. Aerospike nozzles, toroidal or
linear ones, have altitude compensation properties that recall the possibility
of creating a single stage to orbit (SSTO) aircraft. Aerospike nozzles, in fact,
have higher performance than a common bell nozzle when operating with
lower expansion ratios than the optimal one.

Although they are best known for their altitude compensating capabili-
ties, the advantages of using an aerospike nozzle for purely space applications
are numerous, including the possibility of designing the nozzle for a higher
expansion ratio, achieving better vacuum performances without significantly
increasing mass and size. This work is part of the MACARONIS project,
which aims to develop, manufacture and qualify a ceramic aerospike nozzle
for future space missions. An analysis on state of the art cold gas thruster
is developed and then the critical components of the system are analysed
individually.

In preparation for MACARONIS project, a first definition of objectives,
requirements and constraints is presented. Then, two designs are developed,
one consisting of a single fluid line and one featuring redundant components.
A genetic algorithm was developed to optimize the two configurations and
to provide a decision-making, flexible tool for the team. Finally, the results
obtained are presented and some possible ideas for the development of this
work are listed.

Keyword: aerospike, genetic algorithm, cold gas thruster

iii

iv

Abstract in italiano

In questo elaborato viene mostrato un design preliminare di un motore cold
gas, dotato di ugello aerospike, per applicazioni spaziali.

Un ugello aerospike, toroidale o lineare, presenta delle proprietà di com-
pensazione dell’altitudine che richiamano alla possibilità di realizzazione di
un velivolo single stage to orbit (SSTO). Gli ugelli aerospike infatti, per rap-
porti di espansione inferiori rispetto a quello ottimale, hanno performance
più elevate rispetto ad un comune ugello a campana. Benchè siano maggior-
mente noti per la loro capacità di compensazione dell’altitudine, i vantaggi
connessi all’impiego un ugello aerospike per applicazioni puramente spaziali
sono numerosi, tra cui la possibilità di progettare l’ugello per un rapporto di
espansione maggiore, ottenendo prestazioni migliori senza aumentare consid-
erevolmente peso e ingombro e un migliore sfruttamento dello spazio disponi-
bile. Questo lavoro si sviluppa nell’ambito del progetto MACARONIS, che
ha l’obiettivo di sviluppare, produrre e qualificare un ugello aerospike in ce-
ramica per future missioni spaziali.

Un’analisi dello stato dell’arte riguardante i propulsori a gas freddo viene
redatta. Questa tecnologia, data la sua semplicità, viene considerata la più
matura e adatta ai piccoli spacecraft. Successivamente, i componenti critici
del sistema vengono individuati e analizzati singolarmente.

In preparazione del progetto MACARONIS, viene presentata una prima
definizione di obiettivi, requisiti e vincoli riguardante il sistema propulsivo.

Successivamente, sono sviluppati due progetti, uno costituito da una sin-
gola linea fluida e uno con componenti ridondanti. Mentre il primo progetto
consta dei componenti minimi per la realizzazione di un propulsore a gas
freddo, il secondo progetto, prendendo spunto dai satelliti GRACE, segue
il concetto di redundancy e reliability, mantenendo la propria funzionalità
anche in caso di malfunzionamenti.

v

vi

Viene poi stilata una lista di design drivers, basati sull’analisi dello stato
dell’arte e sull’esperienza pregressa maturata alla TU Dresden nell’ambito del
ceramic 3D printing. Per ottimizzare il sistema, un algoritmo genetico è stato
sviluppato. La caratteristica peculiare di questi algoritmi, non comprendendo
processi di derivazione, sta nel poter lavorare in spazi non convessi. Gli in-
put possono essere sia valori continui, come una temperatura all’interno di un
range definito, sia non continui, come un numero identificativo di una carat-
teristica. Nello spazio cos̀ı definito, l’algoritmo compara numerose stringhe
di design per trovare la configurazione ottimale. La versatilità di un algo-
ritmo genetico è stata verificata in questo elaborato producendo anche una
versione alternativa dell’algoritmo che consente all’utente di ottenere risul-
tati specificando un target obiettivo, in questo caso di spinta. É stato scelto
un algoritmo genetico poichè si voleva fornire un tool decisionale facilmente
modificabile e adattabile alle esigenze future del team. I risultati ottenuti
dalle due versioni di algoritmo vengono presentati, commentati e successiva-
mente vengono stilati dei possibili spunti per lo sviluppo di questo lavoro.

Index

List of figures ix

Acronyms xi

1 Introduction 1
1.1 Space Propulsion . 1
1.2 The aerospike nozzle . 7
1.3 The project . 13

2 Research 17
2.1 State of the art of cold gas thrusters 17

2.1.1 Cold Gas Micro Thruster 19
2.1.2 SSTL: DMC and SNAP-1 19
2.1.3 CNAPS . 22
2.1.4 POPSAT . 23
2.1.5 MEMS . 24
2.1.6 CPOD . 26
2.1.7 VACCO: CGPS . 27
2.1.8 GRACE . 28

2.2 Main components . 30
2.2.1 Feed system . 30
2.2.2 Tank . 31
2.2.3 Propellant . 34
2.2.4 Filters . 37
2.2.5 Pressure sensor . 37
2.2.6 Pressure regulator . 39
2.2.7 Latching valve . 39
2.2.8 Relief valve . 39

3 Design 41
3.1 Objectives . 41

vii

viii INDEX

3.2 Requirements and Constraints 42
3.2.1 Functional Requirements 42
3.2.2 Performance Requirements 42
3.2.3 Design Requirements 44
3.2.4 Operational Requirements 44
3.2.5 Constraints . 44

3.3 Raw design of the system . 45
3.3.1 OLC . 45
3.3.2 DLC . 48
3.3.3 Design Drivers . 50

4 Genetic Algorithm 51
4.1 The algorithm . 51
4.2 Initial Population . 54
4.3 Fitness Evaluation . 56

4.3.1 Tank Properties . 56
4.3.2 Thruster Performance 57
4.3.3 Fitness Level . 63

4.4 Termination Criterion, Crossover and Mutation 66
4.5 Outer cycle . 67

5 Results and Conclusions 69
5.1 Optimized solution . 70
5.2 Target solution . 73
5.3 Spike contour . 75
5.4 Conclusions . 76

A Code 77
A.1 Main . 77
A.2 Data . 87
A.3 Solver . 90
A.4 Fitness Function . 101
A.5 GA . 110
A.6 Rerun . 113

Bibliography 117

List of Figures

1.1 Schematic rappresentation of the Ariane 5G 2
1.2 Dimensionaless bornout speed vs payload ratio 5
1.3 Flow phenomena and loss sources in rocket nozzle 5
1.4 Comparison between a conventional bell nozzle and an aerospike

nozzle . 7
1.5 Pressure profile and flow pattern along the ramp of an aerospike

nozzle . 8
1.6 Classical toroidal plug (a) and toroidal plug with clustered

chambers (b) . 9
1.7 Flow phenomena, at off-design pressure ratios (top, bottom)

and design pressure ratio (center), of a plug nozzle with full
length (left) and truncated central body (right) 10

1.8 Performance of numerically simulated plug nozzle with trun-
cated central body . 11

1.9 Arca(a) and ESA FESTIP Technology Program(b) linear aerospike
nozzles . 12

2.1 Illustration of the CGMT device 19
2.2 DMC butane propulsion system 20
2.3 Schematic of the DMC butane propulsion system 21
2.4 Schematic of the SNAP-1 propulsion system 21
2.5 Interior view of CNAPS . 22
2.6 Position of the thruster in POPSAT 23
2.7 Block Diagram of the POPSAT-HIP1 propulsion system . . . 23
2.8 Complete cold gas propulsion system based on MEMS tech-

nology and the interface electronics board, which connects to
the spacecraft power bus and data bus 24

2.9 Details of the MEMS propulsion system 25
2.10 Internals of CPOD showing 1U of RPOD Payload (Left), 1U

of Propulsion (Middle) and 1U of Avionics (Right) 26
2.11 Flight system schematic . 27

ix

x LIST OF FIGURES

2.12 Schematic of the GRACE cold gas subsystem 29

3.1 Schematic of the OLC . 45
3.2 Schematic of the DLC . 48

4.1 Schematic of the GA . 52
4.2 Schematic of the Killer Queen Method 53
4.3 Schematic of the outer cycle 53
4.4 Schematic of the Tank Properties section 56
4.5 Model characteristics and expansion fan 58
4.6 Nozzle geometry and velocity vector rotation 59
4.7 Plug contour nodes and Mach lines 61
4.8 Composition of the following generation 66

5.1 Spike contour(a) and render(b) 75

Acronyms

ADCS Attitude Determination and Control System. 42

ASME American Society of Mechanical Engineers. 32, 33

ATH attitude control thruster. 29

CGMT Cold Gas Micro Thruster. 19

CGPS Cold Gas Propulsion System. 27, 30

CNAPS Canadian Nanosatellite Advanced Propulsion System. 22

COTS Components of the shelf. 50, 71

CPOD CubeSat Proximity Operations Demonstration. 26

DLC Double line configuration. 48, 57, 72

FF Fitness Function. 52, 54, 56, 63–65, 69–71, 73, 74, 76

GA Genetic algorithm. 51–56, 60, 63, 65, 69–71, 73, 75–77

GRACE Gravity Recovery and Climate Experiment. 28, 37, 45

HPLV high pressure latching valve. 28

HPT high pressure transducer. 28

Isp Specific impulse. 14, 34, 62

LPF low pressure filter. 29

LPT low pressure transducer. 28

OLC One line configuration. 45, 48, 57, 70, 72, 75

xi

xii Acronyms

OTH orbit control thruster. 29

PR pressure regulator. 28

RV relief valve. 28

SSTL Surrey Satellite Technology Ltd. 19, 36

SSTO Single Stage to Orbit. 1, 3, 6, 13, 14

Chapter 1

Introduction

In this chapter, a brief introduction on space propulsion concepts and Single
Stage to Orbit (SSTO) is given. The two main typologies of aerospike nozzles
are presented and then the objective of this work is stated.

1.1 Space Propulsion

The common characteristic of all space vehicle launched from Earth is that
they are actuated by a rocket motor, that uses the chemical energy of solid or
liquid propellants to steadily and rapidly produce a large quantity of hot high-
pressure gas, which is then expanded and accelerated through a nozzle. This
large mass of combustion products flowing out of the nozzle at supersonic
speed possesses a lot of momentum and, leaving the vehicle behind, causes
the vehicle itself to acquire a momentum in the opposite direction. This is
represented as the action of the force we know as thrust.

Each space launch vehicle has a specific flight objective, such as a specific
orbit or a moon landing. It uses between two and six stages [2], each with
its own propulsion system and each fired sequentially after the lower stage
is expended. Multistage rocket vehicles permit higher vehicle velocities and
more payload for space vehicles.

As represented in figure 1.1, rockets have multiple stages in order to reach
maximum efficiency.

Once the propellant of a particular stage is finished, the mass of that
stage is no longer useful and therefore, by releasing this mass, it is possible
to accelerate the other stages with its useful payload to a higher terminal
velocity than would be attained if multiple staging were not used.

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: Schematic rappresentation of the Ariane 5G [3]

In order to avoid the usage of propellant to accelerate a useless mass, the
empty mass of an expended stage is separated from the vehicle. Increasing
the number of stages leads to a decrease of the takeoff mass, until the number
of the physical mechanisms get so numerous and complex, that the vehicle
becomes heavy and unreliable. As already said, usually the number of stages
is between 2 and 6.

Moreover, the payload mass is essentially proportional to the takeoff mass.
If a payload of 50 kg requires a 6000 kg multistage rocket, a 500 kg payload
would require a 60000 kg rocket unit with an identical number of stages, and
a similar configuration with the same payload fraction.

1.1. SPACE PROPULSION 3

The total ideal velocity of a multistage vehicle (in tandem or series-
staging) consists of the sum of the individual stage velocity increments.

For n stages, the final velocity increment ∆vf is:

∆vf =
n∑
i=1

∆vi = ∆v1 + ...+ ∆vn (1.1)

For a simplified case of a vacuum flight in a gravity-free field the total ∆vf
required is presented in Eqn.1.2 [2], where c1, ..., cn are the effective exhaust
velocities of the respective stage.

∆vf = c1 ln
(
m01

mf1

)
+ ...+ cn ln

(
m0n

mfn

)
(1.2)

An attractive concept is the SSTO vehicle, because it avoids the cost and
complexity of staging and is expected to have improved reliability, having
fewer components and a simpler structure.

The reduction of Earth-to-orbit launch costs in conjunction with an in-
crease in launcher reliability and operational efficiency are the key demands
on future space transportation systems, like SSTO [4].

At the moment, no Earth-launched SSTO launch vehicle has been built
and tested. An explanation of that resides in the Tsiolkovsky rocket equation.

Neglecting drag and gravitational attraction, the Tsiolkovsky equation
can be written as:

∆v = Ispg0 ln
(
m0

mf

)
(1.3)

We define m0 as the initial mass of the rocket. It consists of the payload
mass mPL, the empty mass mE and the propellent mass mp.

m0 = mPL +mE +mp (1.4)

The empty mass is the also called structural mass, because it consists of
the mass of the fuel tanks, the engines, the structures, etc.

It is convenient to define two coefficients, the payload ratio

λ = mPL

mE +mp

= mPL

m0 −mPL

(1.5)

and the structural ratio

ε = mE

mE +mp

= mE

m0 −mPL

(1.6)

4 CHAPTER 1. INTRODUCTION

The mass ratio n, assuming all the propellant is consumed, can be written
as

n = mPL +mE +mp

mPL +mE

(1.7)

λ, ε and n are correlated by the equation

mE = ε

1− εmp (1.8)

whereas Eqn 1.5 gives

mPL = λ(mE +mP) = λ
(

ε

1− εmp +mp

)
= λ

1− εmp (1.9)

Substituting Eqns 1.8 and 1.9 into Eqn 1.7 leads to

n = 1 + λ

ε+ λ
(1.10)

Setting the ∆v equal to the burnout speed vbo, when the propellants have
been used up, and using the relation in Eqn 1.10, yields

vbo = Ispg0 lnn = Ispg0 ln 1 + λ

ε+ λ
(1.11)

This equation is plotted in figure 1.2.
The objective is to increase the payload mass while while keeping the

structural weight to a minimum. Current materials technology places a lower
limit on ε of about 0.1. For ε = 0.05, Eqn 1.10 yields

vbo = 1.94Ispg0 = 0.019Isp (1.12)

A classical rocket is characterized by a specific impulse of about 300s,
providing in this case ∆v = 5.7 km/s, a value inferior than the circular
orbital velocity at earth’s surface, that is 7.905 km/s. Therefore, a standalone
booster with these characteristics could not orbit the payload.

In order to reach orbit with one stage, a minimum specific impulse of 416s
would be required, and only most advanced liquid hydrogen/liquid oxygen
engines have this kind of performance but they are extremely complex and
expensive.

Moreover, performance data for rocket engines are practically always
lower than the theoretical ones. This difference is related to imperfections in
the mixing process, combustion and expansion of the propellant. Different
loss sources are shown in figure 1.3.

1.1. SPACE PROPULSION 5

Figure 1.2: Dimensionaless bornout speed vs payload ratio [5]

Figure 1.3: Flow phenomena and loss sources in rocket nozzle [4]

Table 1.1 summarize the performance losses in the thrust chambers and
nozzles of typical high-performance rocket engines: The SSME- and Vulcain
1 engine [4]. It is the Space Shuttle main engine, Rocketdyne hydrogen
– oxygen engine and hydrogen – oxygen core engine of European Ariane-5
launcher.

6 CHAPTER 1. INTRODUCTION

As it is possible to see from table 1.1, the nonadaptation of the exhaust
flow, due to the different ambient pressures at different altitudes, induces a
significant negative thrust contribution. Moreover, ambient pressures that
are higher than nozzle wall exit pressures increase the risk of flow separation
inside the nozzle. The flow separation may cause the generation of side loads.

Losses Vulcain 1 [%] SSME [%]

Chemical nonequilibrium 0.2 0.1

Friction 1.1 0.6

Divergence, nonuniformity of exit flow 1.2 1.0

Imperfection in mixing and combustion 1.0 0.5

Nonadapted nozzle flow 0− 15 0− 15

Table 1.1: Losses in high-performance rocket nozzles

Increasing the efficiency of the thrust chamber is crucial in order to make
a SSTO vehicle feasible.

1.2. THE AEROSPIKE NOZZLE 7

1.2 The aerospike nozzle
Conventional bell-type nozzles, which are used in practically every rocket,
induce significant performance losses when used in off-design operation. This
means that both overexpanded, during low altitude operations with ambient
pressures higher than the nozzle exit pressure, and underexpanded, during
high altitude operations with ambient pressures lower than the nozzle exit
pressure, situations induce performance losses. These losses rise up to 15%[4].

Moreover, it is ideally possible to design the nozzle with a much higher
area ratio in order to achieve better vacuum performance, but the flow would
then separate inside the nozzle in overexpanded conditions, with the gener-
ation of side-loads that would modify the rocket attitude.

Unlike conventional bell-shaped nozzles, which show optimal performances
at one particular pressure (thus altitude), aerospike nozzles are well known
for their altitude compensating capabilities. Aerospike nozzles can be de-
scribed as inverted bell nozzles where the flow expands on the outside of
the nozzle instead of being completely constrained by the nozzle walls. As
shown in figure 1.4a, in the aerospike nozzle, the flow is not bound by an
outer contour, but an inner contour.

(a) (b)

Figure 1.4: Comparison between a conventional bell nozzle and an aerospike
nozzle[6]

8 CHAPTER 1. INTRODUCTION

Aerospike nozzles therefore adapt to the outer pressure, operating at an
optimum nozzle expansion ratio for a range of altitudes [7]. This is particu-
larly critical for Single-Stage-to-Orbit (SSTO) vehicles, which operate both
in the atmosphere and in vacuum, but it is important to notice that this
improvement over conventional bell-shaped nozzles only occurs at altitudes
lower than the design pressure ratio. At altitudes higher than the design
altitude (or pressure ratio), plug nozzles essentially operate similarly to bell
nozzles [8]. This is shown in figure 1.4b.

Figure 1.5 shows different behaviour of the aerospike nozzle at high and
low pressure levels. As it is possible to see, the diameter of the exhaust flow
plume increases with altitude.

Figure 1.5: Pressure profile and flow pattern along the ramp of an aerospike
nozzle [2]

1.2. THE AEROSPIKE NOZZLE 9

It is possible to divide the aerospike nozzles into two different categories:
the toroidal aerospike and the linear one.

The toroidal aerospike

Circular plug nozzles, called also toroidal nozzles, have been mainly designed
in two configurations(Fig.1.6). The first one, illustrated in figure 1.6a, is char-
acterised by a toroidal chamber and throat while the second one (Fig.1.6b)
uses a cluster of circular (or quasirectangular) nozzle modules.

There are multiple benefits using the cluster configuration over the toroidal
one. Firstly, the cluster design does not require to control a constant gap
throat during manufacturing and thermal expansion during operations. Vari-
ation of the throat area can cause a variation in performance, side-loads and
thrust vectoring deviations. Moreover, the cooling of a toroidal throat and
the control of the combustion instabilities are challenging problems. The fur-
ther losses introduced by a cluster design are induced by the gaps between
the nozzle modules and the flowfield interactions downstream of the module
exits, but they can be minimized.

(a) (b)

Figure 1.6: Classical toroidal plug (a) and toroidal plug with clustered cham-
bers (b)

Figure 1.7 shows the main characteristics of the flow along a full length
spike nozzle (left side) and a truncated spike nozzle (right side). While the
central images represent the behaviour of the systems under design pres-
sure ratio, the top and the bottom ones show two off-design configurations,
respectively overexpanded and underexpanded ones.

Firstly, the full length spike behaviour is characterized. When the pres-
sure ratio is lower than the design one, the full length spike assures that the
flow expands near the central plug body without separation.

10 CHAPTER 1. INTRODUCTION

Figure 1.7: Flow phenomena, at off-design pressure ratios (top, bottom) and
design pressure ratio (center), of a plug nozzle with full length (left) and
truncated central body (right) [4]

The flow adapts to the ambient pressure through a system of recompres-
sion shocks and expansion waves, which interact with the shear level forming
the characteristic barrel-like shape of the exhaust. Expansion and recom-
pression phenomena are connected to the up- and down-variations of spike
wall pressure profiles, causing several inflections of the shear-layer, which is
enlarged by the turbolent diffusion along the spike.

The design pressure ratio is shown in Fig.1.7 (left column, center). The
characteristic with the design Mach number should be a straight line, starting
from the tip of the central plug body, and the shear layer is parallel to the
centreline. The exit flow profile is influenced by the nonhomogeneous flow in
the throat region. It has to be said that usually this aspect is not considered
while designing the spike contour, especially in early-phases of the design.
For pressure ratios higher than the design pressure ration, the wall pressure
distribution remains constant and the plug nozzle behave like a conventional
nozzle, losing its altitude adaptation capabilities (this aspect is also shown
in figure 1.8).

1.2. THE AEROSPIKE NOZZLE 11

In some cases the spike can be extremely long, causing an increase in the
overall mass and, more important, poor mechanical properties of the spike
itself (the longer, the thinner). The truncation of the central plug body is
an advantage because it can reduce the mass of the system, increase the
machinability and the reliability of the nozzle. Moreover, if not truncated,
it is hard to properly cool the central end part of the central body. On the
other hand, the flow changes its behaviour because of the missing of a part
of the plug. Firstly, where before there was the full spike, an open wake flow
appears at lowe pressure ratios, characterized by a pressure near the ambient
one (Fig.1.7, right column, top).

When the pressure ratio gets close to the design pressure ratio, a close
wake forms, characterized by a constant base pressure that is independent
from the ambient pressure (Fig.1.7, right column, center).

The pressure in the wake is below ambient pressure and the base area
induces a negative thrust, proportionally to the percentage of truncation
and the total size of the base area. Decreasing the length of the plug body
increases the negative thrust because the total base area increases.

Decreasing the ambient pressure, the pressure within the closed wake
remains constant but becomes higher than the ambient pressure, resulting in
a positive thrust contribution of the total base area.

Figure 1.8: Performance of numerically simulated plug nozzle with truncated
central body [4]

In figure 1.8, performance of a numerically simulated plug nozzle are
compared to the same plug nozzle with full-length central body and a con-
ventional bell nozzle. It is possible to appreciate the altitude compensating
capabilities of the aerospike nozzle when the pressure ratio is lower than the
design pressure ratio and the performance decrease induced by the trunca-
tion.

12 CHAPTER 1. INTRODUCTION

Linear plug nozzles

Flow field characteristics and performance of a linear plug nozzles are similar
to those of circular plug nozzles and their behaviour, as a function of the
ambient pressure, is similar to the one depicted in Fig.1.8.

However, the surrounding flow disturbs the exhaust flow at both side of
the linear plug. These disturbances results in an undesirable expansion of the
flow normal to the main direction (i.e. the axial direction) and, consequently,
in an effective performance loss. For truncated nozzles, the wake flow be-
haviour could be strongly influenced by the penetration of ambient pressure.
The implementation of end plates at both side of the spike can avoid the
penetration of ambient pressure. A possible implementation is shown in fig-
ure 1.9a, representing a prototype realized by Arca. Figure 1.9b shows a
baseline model of an aerospike nozzle, developed within the framework of
the Esa FESTIP Technology Program, charactirezed by a linear throat.

(a) Arca linear aerospike proto-
type [9]

(b) Design of linear subscale plug
nozzle of the ESA FESTIP Tech-
nology Program (plug size: 192
mm high, 214 mm wide)[4]

Figure 1.9

In summary, the performance of circular and linear plug nozzle is ad-
versely affected by external airflow. The altitude compensation capability
is indisputable and the design pressure should be chosen as high as possi-
ble, because for pressure ratio above the design pressure ratio the nozzle
lose this capability. In addition, plug nozzle have ease in vehicle and engine
integration [4].

1.3. THE PROJECT 13

1.3 The project
The objective of this work is to complete a preliminary study of a cold gas
aerospike engine experiment for orbital and space applications. The intensive
scientific investigation of aerospike nozzles and the possibilities of their thrust
vector control form an essential part of the research field Space Transporta-
tion at the Chair of Space Systems at the Technische Universität Dresden. In
previous projects, the functionality of an aerodynamic thrust vector control
for small and medium thrust classes of aerospike nozzles could be confirmed.
The aim of the follow-up project MACARONIS is to develop and produce a
qualified cold gas satellite engine with an additively manufactured ceramic
nozzle for future space missions. Within the scope of this master thesis, a
research on state of the art cold gas thruster and a first sketch of such a cold
gas engine are made in preparation for the project. Computer-aided iterative
design adaptations are carried out in order to determine an optimized config-
uration for a first experimental engine setup with regard to defined boundary
conditions.

Although aerospike nozzles altitude compensating capabilities have been
historically associated with SSTO, recent studies show that they could have
also a significant impact on deep space missions.

According to ESA investigation [10], aerospike nozzles represent an over-
all better package prospect than comparable bell nozzle. This aspect is re-
lated to their high mass efficiency and the form factor ensured via trunca-
tion. These reasons mark aerospike nozzles as particularly attractive for the
emerging small satellite market.

Moreover, previous studies have shown the need for higher thrust engines
for small planet missions to mitigate the significant gravity losses of insertion
manoeuvres. In those cases, classical bell nozzles would have large form fac-
tors, causing a difficult integration in the spacecraft itself and in the interface
area with the launcher. In addition, these large form factors often cause the
adoption of deployable shields for these engines, because they are a target
for micro meteorites with very high strike probabilities.

Quoting ESA, “aerospikes offer an alternative route to high thrust engines
for inter-planetary missions and compact and high thrust options for small
satellite missions” and more “this compact packaging also makes aerospike
configurations interesting for lander vehicles”.

14 CHAPTER 1. INTRODUCTION

To better understand the possibilities of aerospike nozzles, a brief list of
advantages, not related with SSTO, is given below ([11] and [12]):

• A conventional bell nozzle exit radius is usually limited by the footprint
of the vehicle. On the other hand, this consideration doesn’t apply to
an aerospike nozzle, since the flow is not bound by an outer geometrical
surface. It can be said that an aerospike nozzle allows a better vehicle
base area utilization

• For the same reason, an aerospike nozzle allows higher expansion ratios
compared to bell nozzles, given a fixed vehicle base area

• Consequently, the higher expansion ratio leads to better vacuum per-
formance (i.e. higher thrust) compared to conventional bell nozzles

• Some application have shown that the high expansion ratio produces
a vacuum Specific impulse (Isp) increase of more than 10%, resulting
in 10–18% propellant mass and 8–12% system mass reduction [13],
whereas others[14] shows a 8-9% mass reduction

• The absence of the external surface and the implementation of trunca-
tion lead to a very compact form factor

• Exploration and interplanetary missions would make use of the altitude
compensating capabilities of aerospike engines

According to ESA, the diffusion of aerospike nozzles has been drastically
limited in the past by two major disadvantages: the cooling of the spike and
the manufacturing of the engine layout.

The central spike is subject to a much higher thermal load than a conven-
tional bell nozzle. This could be solved by cooling the spike using propellant
circulation, heat exchangers or transpiration cooling, or directly truncating
the spike to limit the exposed area (or a combination of them). MACARO-
NIS project solves the thermal issue through the implementation of a cold
gas engine.

In the past, the manufacture of an aerospike engine was more difficult
and extremely more expensive than a classical rocket nozzle. According to
ESA investigation, the advent of additive manufacturing is supposed to ease
the manufacturing of such nozzles and, more importantly, the advance in
ceramic materials could resolve or at least mitigate the thermal issue.

1.3. THE PROJECT 15

Ceramic 3D-printing could make possible the realization of a ceramic
nozzle, with integrated features such as coolant channels inside the spike,
without the need of drilling channels with CNC machines. Regarding this
topic, MACARONIS team has a partnership with state of the art ceramic
3D-printing companies.

16 CHAPTER 1. INTRODUCTION

Chapter 2

Research

The purpose of this chapter is to identify and analyse the current develop-
mental status of cold gas propulsion technologies for small spacecraft and to
present an overview of the available systems. Critical components of a cold
gas thruster are then identified and analysed.

2.1 State of the art of cold gas thrusters
Cold gas thruster, thus providing limited space propulsion, are one of the
most mature technologies for small spacecraft due to their simplicity. These
system have been used intensively in small satellites, from 60’s to the present
day. Thrust is produced by the expulsion of an inert, non-toxic propellant
which can be stored in high pressure gas or saturated liquid forms. As op-
posed to traditional rocket engines, in cold gas thrusters no combustion takes
place and so the amount of thrust produced is lower compared to conventional
rocket engines. Cold gases are used in small buses due to their simplicity,
low costs and reliability, but more importantly, they are used when a small
total input is required, for example for attitude control applications and the
association of small volume and low weight.

Anis [15] says that cold gas propulsion “ has proven to be the most suitable
and successful low thrust space propulsion for LEO maneuvers, due to its low
complexity, efficient use of propellant which presents no contamination and
thermal emission besides its low cost and power consumed ” and that “ the
major benefits obtained from this system are low budget, mass, and volume”.

Table 2.1 shows the current state-of-the-art for cold and warm gas propul-
sion systems for small spacecraft, selected by NASA Ames’ Mission Design
Division [16].

17

18 CHAPTER 2. RESEARCH

Product ManufacturerThrust
Specific
Impulse
[s]

Propellant TRL
status

MicroThruster Marotta 0.05-2.36 N 65 Nitrogen 9

Butane
Propulsion
System

SSTL 0.5 N 80 Butane 9

Nanoprop
3U

Gomspace/
NanoSpace 0.01-1 mN 60*-110 Butane 9

Nanoprop
6U

Gomspace/
NanoSpace 4-40 mN 60*-110 Butane 9

MiPS Cold
Gas VACCO 53 mN 40 Butane 7

MarCO-A
and B MiPS VACCO 25 mN 40 R236FA 9

CPOD VACCO 10 mN 40 R236FA 7

POPSAT-
HIP1 Micro Space 0.083-

1.1mN 32-43 Argon 8

CNAPS UTIAS/SFL 12.5 − 40
mN 40 Sulfur Hex-

afluoride 9

CPOD VACCO 25 mN 40 R134A/
R236FA 6

Table 2.1: Cold gas propulsion system.
*Information was taken from brochure and may need to be updated by vendor

2.1. STATE OF THE ART OF COLD GAS THRUSTERS 19

2.1.1 Cold Gas Micro Thruster
Marotta [17] built and qualified the Cold Gas Micro Thruster (CGMT) that
flew on the NASA ST-5 mission for fine attitude control. The CGMT is
shown in figure 2.1. The ST-5 micro-satellite (launch mass 55kg) successfully
launched on March 22, 2006. When coupled with its control electronics, this
Thruster achieves < 1 Watt Peak Power, has a response time of 5ms and it
uses gaseous nitrogen as propellant. The CGMT system consists of a high-
pressure tank, a pressure sensor and a thruster in blow-down configuration,
producing ∼ 2.36 N thrust at 154 bar that becomes ∼ 105 mN at 7 bar, near
exhaustion. Including tubing, its maximum length is 65.8 mm.

Figure 2.1: Illustration of the CGMT device [17]

2.1.2 SSTL: DMC and SNAP-1
Surrey Satellite Technology Ltd (SSTL) used a butane propulsion system
in several small spacecraft missions. It has been used in a wide range of
applications in Low Earth Orbit (LEO) and Medium Earth Orbit (MEO).
Traditionally, nitrogen is a very common propellant for cold gas thruster but,
as Gibbon says [18], from a small satellite point of view there are more ad-
vantages on using liquefied gases. Nitrogen stores at a relatively low density,
even at high pressure, and consequently the tank has to be heavy and large.
Butane is the propellant used by SSTL because it can be store as a liquid,
its theoretical Isp is just 10% inferior than nitrogen one but its density Isp
is much higher, 362 Ns per litre compare to 165 Ns per liter for nitrogen.
One of the SSTL propulsion system is shown in Fig.2.2, the DMC propulsion
system [19]. This propellant system has a dry mass of < 6 kg and the pro-
pellant mass is 2.35 kg. Each propulsion system has two butane propellant
tank with a storage pressure of 200 bar.

20 CHAPTER 2. RESEARCH

Figure 2.2: DMC butane propulsion system [19]

The butane is stored in liquid phase. As it is possible to see in figure
2.3, the outlet of one of these tanks is connected to a series of solenoid
valves, isolating the single resistojet thruster. Moreover, a heater is used to
vaporize the propellant and improve the specific impulse performance with
respect to the cold gas mode. In fact, a drawback of using butane is that it
must be expelled in gaseous form, vice versa the Isp is reduced dramatically.
Another advantage of butane is that at 20 ◦C, its vapour pressure is 2.1 bar
absolute. This has two significant advantages: firstly, a traditional thin wall
spacecraft tank (storage pressure 20 bar) will be suitable, with high safety
factors. Secondly, it is possible to use 2.1 bar as a chamber pressure, avoiding
the use of complex pressure regulators.

This system has been in design for more than five years and uses a RS-
422 electrical interface. The propellant flow under its own vapor pressure,
approximately 2 bar absolute, and it is ejected by a conventional conver-
gent/divergent nozzle with a throat diameter of 0.42 mm. Every machined
component is made of stainless steel.

Another low cost butane propulsion system (Fig.2.4) has been built by
SSTL and flown on its first nano-satellite: SNAP-1. This spacecraft was
equipped with a small cold gas propulsion system utilising 32.6 grams of
butane propellant, which, since launch, has been used to raise the spacecraft’s
semi-major axis by over 3 kilometres.

2.1. STATE OF THE ART OF COLD GAS THRUSTERS 21

Figure 2.3: Schematic of the DMC butane propulsion system [19]

Figure 2.4: Schematic of the SNAP-1 propulsion system [18]

22 CHAPTER 2. RESEARCH

2.1.3 CNAPS
In June 2014, two 15 kg small spacecraft were lauched by Space Flight Lab-
oratory at University of Toronto Institute to demonstrate formation flying.
The Canadian Nanosatellite Advanced Propulsion System (CNAPS) [20] is
shown in Figure 2.5. It was used for orbital control maneuvers, as orbit ac-
quisition and phasing, station keeping and formation control. CNAPS used
liquid sulfur hexafluoride, a non-toxic propellant. Its high vapor pressure
and density were crucial for making CNAPS a self-pressurizing system [21].

Two filters were included in the system to remove contaminants that
would damage the solenoid valves. A pressure relief valve on the storage tank
was used in order to assure safety on the ground or the launch vehicle, in
case of an overpressure event. CNAPS was designed with for thrusters, which
nozzles are located on a single face of the spacecraft bus. Attitude control
was possible because the nozzle were located at a certain distance from the
center-of-mass, allowing the system to be used for momentum management.

Figure 2.5: Interior view of CNAPS [20]

2.1. STATE OF THE ART OF COLD GAS THRUSTERS 23

2.1.4 POPSAT
POPSAT-HIP1 Cubesat mission was launched in June 2014, featuring a mi-
cropropulsion system designed by Microspace Rapid Pte Ltd in Singapore.
Microspace micropopulsion system is composed by 8 micro-nozzles, 6 of them
placed on the same face and the other 2 along one of the long side of the
satellite, as shown in figure 2.6. Each nozzle provides 1mN nominal thrust
at 5 bar of Argon propellant. An electromagnetic microvalve operates each
thruster, assuring an opening time of 1 ms and unlimited longest opening
time. The total delta-V has been estimated from laboratory data to be be-
tween 2.25 and 3.05 m/s [22]. The block diagram of the propulsion system
is shown in Fig.2.7.

Figure 2.6: Position of the thruster in POPSAT [22]

Figure 2.7: Block Diagram of the POPSAT-HIP1 propulsion system [22]

24 CHAPTER 2. RESEARCH

2.1.5 MEMS
Nanospace developed a micro-electromechanical systems (MEMS) featuring
four butane propellant thruster, suitable for cubesat platform. Closed loop
thrust control is implemented in the system, which means that the thruster
is capable of proving a thrust magnitude from zero to full capacity 1mN with
5 µN resolution, with a feedback of the delivered thrust in real time.

The propulsion module dimensions are 10x10x3 cm and the dry mass of
the system is 0.220 kg, with an average power consumption of 2 W during
operation. Figures 2.8 and 2.9a show the block schematics and the design of
the propulsion module. The module contains four complete microthrusters,
a propellant tank and a fill/drain valve. A single microthruster, as shown in
figure 2.9b includes the isolation valve, the proportional flow control valve,
that assures continuous thrust regulation, the thrust chamber including the
gas heaters, the mass flow sensor, providing the real-time feedback, and the
nozzle [23].

Figure 2.8: Complete cold gas propulsion system based on MEMS technology
and the interface electronics board, which connects to the spacecraft power
bus and data bus [23]

2.1. STATE OF THE ART OF COLD GAS THRUSTERS 25

(a) Mechanical design of the
cold gas propulsion module

(b) A single microthruster with all
components

Figure 2.9: Details of the MEMS propulsion system [23]

26 CHAPTER 2. RESEARCH

2.1.6 CPOD
Tyvak Nano-Satellite Systems developed the CubeSat Proximity Operations
Demonstration (CPOD) mission, which exploits two cubesat for maturing
rendezvous, proximity operations and docking maneuvers. The cubesats uti-
lizes a reliable cold gas propulsion system developed and build by Vacco
Industries. It uses self pressuring R134a propellant, that provides high vol-
ume efficiency. The system provides up to 186 N-s of total impulse, with a
specific impulse of 40 s and a nominal thrust of 10mN. Eight thrusters are
distributed in pairs at the four corners of the module. The system has been
tested extensively in vacuum environment, up to 70000 firings. Figure 2.10
shows the propulsion system in the central unit [24].

Figure 2.10: Internals of CPOD showing 1U of RPOD Payload (Left), 1U of
Propulsion (Middle) and 1U of Avionics (Right) [24]

2.1. STATE OF THE ART OF COLD GAS THRUSTERS 27

2.1.7 VACCO: CGPS
Vacco [25] built another interesting cold gas propulsion system, based on the
principles of simplicity and cost-effectiveness. The Cold Gas Propulsion Sys-
tem (CGPS) uses a simple blowdown system, without need of the traditional
pressure regulator. Thus, the propulsion system operates at a pressure up to
the full storage pressure. This required the development of thrusters capable
of functioning with inlet pressures to 207 bar. The thruster utilizes latch-
ing valves that require a single electrical pulse to open or close, minimizing
the power consumption because between pulses the thruster is magnetically
latched in either the open or closed position. In figure 2.11 the flight system
schematic is shown.

Figure 2.11: Flight system schematic [25]

The 8 liter tank stores gaseous nitrogen at a pressure of 207 bar. The
system then features a Fill & Drain Valve, facilitating filling and venting
operations. A filter is inserted to protext the 4 thruster from particle con-
tamination.

28 CHAPTER 2. RESEARCH

2.1.8 GRACE
Although not on NASA’s list, Gravity Recovery and Climate Experiment
(GRACE) cold gas attitude control, flown on Grace Mission, is particularly
interesting. The primarily driving requirements for the cold gas propulsion
system were [26]:

• No single point of failures are allowed with the exception of fracture of
tank and pipe, cloaking of filters and fill and drain valve opening

• For a mass balanced spacecraft the tanks shall be located symmetri-
cally about the center of mass (a design with only one tank is not
possible because it is required that accelerometer must be located in
the spacecraft’s center of mass)

• The variation of the spacecraft’s center of mass shall be less than ± 2
µm over one orbit (∼ 90 minutes) and less than ±0.1 mm during the
time the two satellites are in scientific operational mode (∼6 months)

• The budget of a small satellite mission requires the cost to be minimized

The resulting design, as shown in Fig.2.12, is composed by two independent
branches, each one characterized by the following components:

• one tank, that stores 16 kg of gaseous nitrogen (GN2), operating at a
pressure of 320 bar and a temperature of 30◦C and equipped with three
thermistores for temperature monitoring

• one high pressure transducer (HPT), which records of the pressure out-
side the tank are used for failure detection and monitoring of the ni-
trogen mass

• one high pressure latching valve (HPLV), which purpose is to isolate
the branch in case of malfunctioning of some components

• one pressure regulator (PR) that links the 320 bar storage pressure to
the thruster’s feed operating pressure of 1.5 bar

• one relief valve (RV) protects the lower pressure part form over-pressure
in case of a pressure regulator leakage, opening at 3.5 bar

• one low pressure transducer (LPT) evaluates the thruster’s feed pres-
sure and it’s used for failure detection and for determination of the
thruster performance

2.1. STATE OF THE ART OF COLD GAS THRUSTERS 29

• one low pressure filter (LPF) protects the thruster from contaminants

• one orbit control thruster (OTH) is used for delta-v maneuvers and it̀ıs
capable of providing 40 mN thrust, pointing in opposite flight direction

• six attitude control thruster (ATH) are used for attitude control, pro-
viding 10mN each

Figure 2.12: Schematic of the GRACE cold gas subsystem [26]

30 CHAPTER 2. RESEARCH

2.2 Main components
In this section the main components of a cold gas thruster are presented and
described. Moreover, for each component some possible design options are
analysed and discussed.

2.2.1 Feed system
Two categories of pressurized feed systems with stored inert gas have been
developed and flown, a pressure regulated one and the so called blowdown
system. The first one uses a pressure regulator to reduce the pressure from
the high-pressure gas storage tank to the operating pressure. This system
allows constant chamber pressure and nearly constant thrust, but needs a
pressure regulator that sometimes can be complex to design or expensive to
buy. The second category is called blowdown system, in which, without a
pressure regulator, the gas expands at storage pressure. Vacco’s CGPS is
part of this category. The gas is stored under pressure inside the propellant
tank and during operation, the gas expands and the tank pressure decrease
steadily down to 25 to 45% of the initial values [27]. This configuration
is simpler and has less components, but the major drawbacks are that the
average specific impulse is lower, the tank bigger and all the components
of the thruster has to be designed to withstand the storage pressure. Re-
garding cold gas thruster, both configurations have been used, with both
monopropellant and bipropellant systems. In this work pressure regulated,
monopropellant systems will be analyzed, due to the higher performance of
a pressure regulated system coupled with the simplicity of a monopropellant
thruster. Blowdown configuration could be implemented if the development
of a pressure regulated thruster proves to be too complex or expensive. Only
gas storage is studied in this work due to its simplicity and reliability, thus
liquid (butane,R124a) propellant, as said in the state of the art analysis,
proved to be a good choice sometimes.

The main components of pressure regualated cold gas propulsion system
are shown in Tab.2.2.

Tank, including Fill/Vent valve Propellant Heaters, if needed

Filters Pressure sensors Pressure regulator

Control valves/latching valves Relief valve Nozzle

Table 2.2: Main component of a cold gas pressure regulated system

2.2. MAIN COMPONENTS 31

2.2.2 Tank
The type of propellant has to be considered when designing the tank, but
the storage of gases is relatively simple. In general, spherical tanks are used,
which are designed for high pressures up to 300 bar. In the past, all-titanium
tanks were produced form the heat-treated alloy Ti6AI4V. In some cases,
aluminum tanks are used, for their manufacturing simplicity and affordability
[15]. Nowadays, composite tanks have spread in many fields, from aerospace
to industrial and firefighting industry , which are thin-walled titanium tanks
with Kevlar or carbon fiber reinforcements. The tanks have usually only one
port for loading the gas and its withdrawal during the mission.

The space, zero-g environment has a significant influence on the orienta-
tion of liquid propellant, thus the storage of liquid propellant is more com-
plex. A short list of possible options is given below [28].

• In spin-stabilized satellites, the centrifugal force could be enough to
orient the propellant.

• For nonspinning satellites, the tank has to be designed to orient the
propellant towards the feeding port

– It is possible to use diaphragms inside the propellant tank, in or-
der to separate the liquid propellant and the pressuring gas. This
method is reliable and have several advantages. They can be qual-
ified for up to 100 loading and unloading cycles, so they can be
tested on component and subsystem level. They avoid sloshing
and force the propellant towards the outlet. Disadvantages oc-
curs for rubber diaphragms, like pressurizing gas penetration and
permeability. On the other hand, metallic diaphragms have been
developed by the US company ARDE Inc. They have near zero
permeation rates, they can store propellant that are incompati-
ble with rubber and they are compatible with severe requirements
concerning sloshing and center of gravity stability.

– It is possible to use blader tank. The propellant is stored in a
cylindrical bladder tank and ejected through a perforated tube in
the center of the tank.

– Surface tension tanks have been developed as a competitive al-
ternative involving monopropellant and bipropellant propulsion
systems. Surface tensions are rather low, but in low gravity con-
ditions they can become a predominant component of the liquid
dynamics. They exploit narrow gaps, vanes and sponge-like struc-
tures to move the propellant towards the tank outlet.

32 CHAPTER 2. RESEARCH

From a structural point of view, satellite propellant tanks used in cold
gas propulsion systems are either spherical or cylindrical in shape. For a
spherical tank, the force F tending to separate the tank tending to separate
the tank is:

F = Pπr2 (2.1)

The stress σ can be compute as,

σ = Pπr2

2πrt = Pr

2t (2.2)

The thickness of the tank is accurately calculated by including joint effi-
ciency in Eqn.2.3 and is given as follows,

t = Pr

2σe (2.3)

where σ is the allowable tension, t is the thickness, r is the internal radius,
P is the design pressure and e is the joint efficiency.

Eqn.2.4, developed by American Society of Mechanical Engineers (ASME),
introduce an additional term of 0.2P in the denominator [29]. This term was
added to take into consideration the non linearity in stress that develops in
thick spherical shells.

t = Pr

2σe− 0.2P (2.4)

Eqn.2.4 is valid for t < 0.365r and P < 0.0665σe. It has to be said that
Eqn.2.4 estimate the thickess based on pressure only. Another equation given
by ASME, for the design of spherical shells due to internal pressure is the
following.

t = D

2 [e0.5P/σe − 1] (2.5)

where D is the internal diameter. Eqn.2.5 is derived from plastic analysis
and is applicable to all thickness and pressures.

In case of cylindrical pressure vessel, the hoop stress is twice that in spher-
ical one. The longitudinal stresses in cylindrical tank the same as in spherical
one. Theoretically, the hoop stress σh is computed from the equilibrium of
forces on a cut along the longitudinal axis as,

2σhtdx = 2prdx (2.6)

Thus,
σh = Pr

t
(2.7)

2.2. MAIN COMPONENTS 33

Eqn.2.8, introduced by ASME, include the joint efficiency and calculate the
required thickness in the circumferential direction due to internal pressure,

t = Pr

σe− 0.6P (2.8)

Eqn.2.8 is valid for t < 0.5r and P < 0.385σe. In this case, the additional
term of 0.6P was added to take in consideration the nonlinearity in stress
that develops when the thickness of a cylinder exceeds 0.1r. Similarly, the
equation for the required thickness in the longitudinal direction, due to in-
ternal pressure is given as,

t = Pr

2σe+ 0.4P (2.9)

Eqn.2.9 is valid for t < 0.5r and P < 1.25σe. Another equation given by
ASME, for the design of cylindrical shells due to internal pressure is the
following.

t = D

2 [eP/σe − 1] (2.10)

Eqn.2.10 is derived from plastic analysis and is applicable to all thickness
and pressures.

Equations 2.2 through 2.9 are applicable to solid wall as well as layered
wall constructions. For layered vessel, the Joint Efficiency Factor is calculated
as,

e =
∑
eiti
t

(2.11)

Cilindrical shells need to be close by two head. Head configurations in-
clude hemispherical, torispherical and ellipsoidal shapes. As a reference,
hemisferical and torispherical head formulas are reported. The design of an
hemisferical head follow the same equations of the sferical shells, so Eqn.2.4
or Eqn.2.5 can be applied.

A commonly used ellipsoidal head has a ratio of 2:1 (base radius to depth).
The required thickness is given by the following equation:

t = PD

2σe− 0.2P (2.12)

Ellipsoidal heads with a radius-to-depth ratio other than 2:1 follow the
following equation:

t = PDK

2σe− 0.2P (2.13)

34 CHAPTER 2. RESEARCH

where
K = 1

6

[
2 + (D2h)2

]
(2.14)

and D/2h varies between 1.0 and 3.0.
Torispherical heads can be designed using the following equation:

t = PLM

2σe− 0.2P (2.15)

where
M = 1

4

[
3 +

(
L

r

)1/2]
(2.16)

and L/r varies between 1.0 and 16.67

2.2.3 Propellant
The choice of the propellant determines the performance of a propulsion
system, as well as the design and optimization of the thruster. A cold gas
thruster is characterized by two conditions: the propellant has to be in gas
phase when ejected from the thruster and no combustion should occur. The
choice of the propellant is guided by some characteristics, such as an higher
atom weight and moderate low boiling and melting temperature. It has to
be said that mass efficient storage of the gas is a major concern. Other con-
siderations, regarding for example price and toxicity, may be important in
most cases. Table 2.2.3 shows the performance of the cold gas propellant
analysed [30]. Xenon, an heavy and inert gas, is a potential cold gas propel-
lant, due to its high density and molecolar weight. However, the viscosity
increases with temperature within a certain range, creating some challenges
when using this gas and decreasing the overall Isp, that becomes very low if
heating Xenon. On the other hand, helium and hydrogen have much higher
specific impulse but they are lighter than Xenon. Their low density leds to
bigger tanks, and their temperature for liquid or solid storage are technically
demanding. For example, hydrogen would be an ideal propellant with an ex-
tremely high Isp, but it requires cryogenic storage or extremely large tanks.
Generally, nitrogen is the first choice in choosing gases. This is because its
storage is simpler than helium and hydrogen and its higher molecular size
allows a minor leakage percentage. Gaseous nitrogen, GN2 is inert, colorless,
odorless, nontoxic, noncorrosive, and nonflammable. Since gaseous nitrogen
is inert, special materials of construction are not normally required. The use
of gaseous nitrogen instead of liquid cryogenic nitrogen, involves lower costs
for hardware development and production as will be the costs associated with
maintaining a less complex storage system.

2.2. MAIN COMPONENTS 35

Propellant Ispa Ispa ρ Mw Tm Tb

s s g/cm3 kg/kmol ◦C ◦C

H2, Hydrogen 296 272 0.02 2.0 -259 -253

He, Helium 179 165 0.04 4.0 -272 -269

Ne, Neon 82 75 0.19 20.4 -249 -246

N2, Nitrogen 80 73 0.28 28 -210 -196

Ar, Argon 57 52 0.44 39.9 -189 -186

Xe, Xenon 31 28 2.74b 131.3 -112 -108

CH4, Metane 114 105 0.19 16 -182.5 -161.5

C3H8, Propane Liquid 41.1 -187.7 -42.1

C4H10, Butane Liquid 58.1 -138.3 -0.5

CO2, Carbon Diox-
ide, 67 61 Liquid 44 ... -78 (S)

SF6, Sulfur hexafluo-
ride 146.1 ... -64 (S)

R134A 71.61 65.1 1.225 102 ... -26.1

R236FA 58.7 53.4 1.373 152 ... -1.44

Table 2.3: Cold gas propulsion system.
a At 25◦C. Assume expansion to zero pressure in the case of the theoretical value
b Likely stored at lower pressure value (138 bar) to maximize propellant-to-tank
weight ratio (S) stands for sublimation

Although gaseous nitrogen storage is simpler, it requires larger and thicker
pressure vessel designs. On the other hand, cryogenic tanks are lighter and
smaller. VACCO [25] used a nitrogen propulsion system, storing nitrogen at
207 bar in the 8.0 liters tank. Ghasemi and Rezaeiha [31] designed a gaseous
nitrogen propulsion system, storing 6 kg at 330 bar in a 16.5 liters empty
tank volume. Grace mission [26] used 16 kg of gaseous nitrogen stored at a
pressure of 320 bar and a temperature of 30◦C.

Propane, C3H8, was used as cold gas propellant in microsatellites in the
past.

36 CHAPTER 2. RESEARCH

Butane, C4H10, has been used in many mission recently due to the possi-
bility to store it in liquid form and its self-pressurizing capabilities. However,
these gases are organic compounds and hazard classified, so it is more com-
plex to handle, rising the costs. SSTL [18] used butane in several small
spacecraft mission.

Carbon dioxide, CO2, theoretically has the advantage to sublimate di-
rectly from -78◦C at a pressure of 1 bar. Moreover it provides a fairly high
specific impulse. Thus, up to now there are no small spacecraft that used
a low temperature or cryogenic CO2 thruster. On the other hand, Lev and
Herscovitz [32] used 500g of CO2, stored in liquid phase at a pressure of 150
bar and a temperature of 80◦C when heated. Each time before operating the
propulsion system, the entire propellant tank is heated until the propellant
is fully vaporized. The use of the heated gas propulsion system holds a few
key advantages over the two previously described conventional systems:

• Most gases, near their critical temperature, have a compressibility fac-
tor below one (Z< 1), reducing tank pressure, when the propellant is
fully vaporized

• The propellant is liquid during the majority of the mission and it is
vaporised only during operations. When the propellant is liquid, it is
self-pressurized at the vapour pressure related to the cold tank temper-
ature

• Controlling the propellant temperature makes possible steady and con-
tinuous firing since all the propellant is in gaseous form

The drawbacks related to the heating are:

• A meticulous thermal design is required to limit the power losses in-
duced by the heating of the entire tank that inevitably transfer some
heat to the rest of the system, reducing the power efficiency of the
overall propulsion system.

• This design reduces the firing readiness level because, prior each oper-
ation, the tank has to be heated and the propellant vaporized. This
action may take tens of minutes

• Due to repetitive thermal cycles, the requirement on the heating system
are severe and this makes the heating system more complex and less
reliable than a common cold gas propulsion system

2.2. MAIN COMPONENTS 37

Lastly, sulfur hexafluoride, SF6, has a molecular weight higher than Xenon,
sublimates at -64◦C at a pressure of 1 bar. Moreover, it is non-flammable
and not toxic. These characteristics makes it an interesting candidate for
new cold gas thruster technologies.

Gas storage

Ley [28] suggests a simple method to compute the tank volume using the
general gas equation:

P · VT = mG ·R · T · Z (2.17)

where P is the maximum allowed tank pressure [N/m2], VT is the tank vol-
ume [m3], R is the gas constant [m2/(s2K)], T is the gas temperature [K] and
Z is the compressibility factor. The compressibility factor adjusts the ideal
gas law to account for the real gas behaviour. It is important to not forget
the influence of pressure on the compressibility factor, since for nytrogen it
amounts to 0.9954 at 20 bar and 293 K, while it amounts to 1.1182 at 280 bar
and 293 K, corresponding to a volume increase of about 11 %. The compress-
ibility factor for specific gases can be read from generalized compressibility
charts that plot Z as a function of pressure at constant temperature.

Liquid storage

The propellant is stored in liquid phase while the pressure is the vapor pres-
sure at the storage temperature. Propellant is let out from the tank into a
plenum, where it is vaporized through expansion or external heating. In some
cases, like [32], liquid propelland is vaporized inside the propellant tank. For
simplicity, only gas storage will be evaluated in this project.

2.2.4 Filters
Thus they are usually included in the pressure regulator, a filter in the high
pressure section protects the pressure regulator from particle contamination.
Most of the low pressure filters has a 2 µm mesh, thus high pressure ones
reach 20 µm mesh. As a reference, table 2.2.4 shows some of the properties
of a filter produced by Omnidea-RTG [33].

2.2.5 Pressure sensor
A pressure sensor, or pressure transducer, is a device that generates a sig-
nal as a function of the pressure imposed. More complex systems, like
GRACE [26], have an high pressure trasducer and a low pressure trasducer.

38 CHAPTER 2. RESEARCH

Operating Media Inert gas

Maximum expected operating
pressure 350 bar

Leakage Rate 0 ssc/s (all welded design)

Maximum Flow Rate 17 l/min at ∆P of 1 bar

Filter Mesh Size 2 µm

Mass 0,076 Kg

Dimensions 50 x 30 x 30 mm

Materials Stainless Steel

Table 2.4: Filter produced by Omnidea-RTG

ETM/ETL-422(X)-375 (M) SERIES, made by Kulite Sensors Ltd., it is a
miniature threaded pressure transducer that can be configured in both high
and low pressure mode. It weighs maximum 80 grams. The hexagonal head
and o-ring seal make it easy to mount and simple to apply. It’s operating
temperature range is -55◦C to +135◦C. A solid state piezoresistive sensing
element is located behind a metal diaphragm that behaves like a force collec-
tor. A film of non-compressible silicone oil transfer the force to the sensing
element. This design makes the device highly stable, reliable and rugged,
maintaining the advantages of microcircuit, such as miniaturization, repeata-
bility, low power consumption and high natural frequencies, which makes the
device suitable for shock pressure measurements. A version of this has been
used in SSTL nano-satellite SNAP-1 (2.1.2).

2.2. MAIN COMPONENTS 39

2.2.6 Pressure regulator
A pressure regulator is a control valve that reduces the input pressure of
a fluid to a desired value at its output. Regulators are used for gases and
liquids, and can be an integral device with an output pressure setting, a
restrictor and a sensor all in the one body, or consist of a separate pres-
sure sensor, controller and flow valve. VACCO Aerospace Products offers a
compact, pre-integrated Pressure Regulator and Relief Valve that is ideally
suited to cold gas propulsion systems. It weighs about 360 grams.

2.2.7 Latching valve
A latching valve takes a momentary electrical signal and delivers a constant
pneumatic output, until a second signal is delivered. For this reason, it
is usually called bi-stable valve. In other words, latching valves open or
close after receiving an electrical input. Vacco produces both high and low
pressure titanium latching valves maintaining the weight low(340 grams for
both configurations). Most latching valves have a preferred state and they
are called “normally open” or “normally closed”.

2.2.8 Relief valve
Most components are designed to operate within a precise pressure range.
A relief valve is crucial to protect these components from overpressure and
avoid possible damages to the entire system. They are the safeguards which
limit maximum pressure in a system and they are implemented in most re-
liable designs. Vacco Aerospace produces space qualified relief valves, with
over 10 years of successful flight heritage. Low leakage, over a wide range
of temperatures, is guarantee thanks to the implementation of a teflon set
design.

40 CHAPTER 2. RESEARCH

Chapter 3

Design

In this chapter, a preliminary definition of objectives, requirements and con-
straints is presented. Then, two raw configurations are shown and the design
drivers for the optimization algorithm tabled.

3.1 Objectives

Within the framework of the MACARONIS project, the cold gas thruster
will be launched in orbit and will operated in space environment. The aim
of this work is not to design the entire experiment, but is to develop a first
iteration of the thruster including all its components. Usual subsystems
like the power distribution and the thermal control system are not taken into
account in the evaluation but they are included in the mass estimation. Thus,
the requirements and constraints presented in section 3.2 do not include
structural, thermal, electronic or communication considerations.

The objectives of the MACARONIS project are to:

• design a cold gas aerospike engine with an additively manufactured
ceramic nozzle

• measure its performance in space environment

• qualify the additively manufactured ceramic aerospike engine

41

42 CHAPTER 3. DESIGN

3.2 Requirements and Constraints

3.2.1 Functional Requirements
F.1:
F.2:

F.3:

F.4:

F.5:
F.6:

F.7:

The experiment shall operate the thruster.
The experiment shall measure the acceleration of the satel-
lite*.
The experiment shall measure the pressure of the thrust
chamber.
The experiment shall measure the temperature of the thrust
chamber.
The experiment shall measure the pressure of the gas tank.
The experiment shall measure the temperature of the gas
tank.
The experiment shall keep the tank at a constant temperature.

*:at the moment, it is not clear if the experiment is allowed to change the
attitude of satellite. In order to measure the force produced by the thruster,
the experiment requires the measurement of the acceleration of the satellite
or in alternative, of the counter force produce by the Attitude Determination
and Control System (ADCS) of the satellite itself.

3.2.2 Performance Requirements
Relate to F.1

P.1.1:

P.1.2:
P.1.3:
P.1.4:

The thruster shall produce a minimum acceleration of 0.01
m/s2*
The thruster shall operate for at least 30 s.
The thruster should operate for 60 s.
The response time should be maximum 100 ms.

*: at the moment, it is not clear the mass of the satellite in which the experi-
ment is going to be mounted. This requirement has been written considering
a small satellite of mass less than 500 kg.

Relate to F.2

P.2.1:

P.2.2:

The acceleration measurement shall be made with a resolu-
tion at least 0.001 m/s2.
Sample the acceleration with a frequency of 1 KHz.

3.2. REQUIREMENTS AND CONSTRAINTS 43

Relate to F.3

P.3.1:

P.3.2:

P.3.3:

The experiment shall measure the pressure inside the thrust
chamber with a minimum resolution of 10 mbar
The experiment shall measure the pressure inside the thrust
chamber with a frequency of 1 KHz, when the thruster is
switched on.
The experiment shall measure the pressure inside the thrust
chamber with a frequency of 10 Hz, when the thruster is
switched off.

Relate to F.4

P.4.1:

P.4.2:

P.4.3:

The experiment shall measure the temperature inside the
thrust chamber with a minimum resolution of 0.1 K.
The experiment shall measure the temperature inside the
thrust chamber with a frequency of 1 KHz, when the thruster
is switched on.
The experiment shall measure the temperature inside the
thrust chamber with a frequency of 10 Hz, when the thruster
is switched off.

Relate to F.5

P.5.1:

P.5.2:

The experiment shall measure the pressure inside the gas
tank with a minimum resolution of 10 mbar
The experiment shall measure the pressure inside the gas
tank with a frequency of 1 KHz.

Relate to F.6

P.6.1:

P.6.2:

The experiment shall measure the temperature inside the
tank with a minimum resolution of 0.1 K.
The experiment shall measure the temperature inside the
tank with a frequency of 1 KHz.

Relate to F.7

P.7.1: The tank temperature variation shall not exceed ± 1 K.

44 CHAPTER 3. DESIGN

3.2.3 Design Requirements
D.1:
D.2:
D.3:
D.4:
D.5:

The experiment shall have a maximum mass of 12Kg.
The thruster shall be able to operate in vacuum environment.
The thruster shall produce a measurable force.
The thruster should be able to perform multiple shots.
The nozzle shall be designed for ceramic additive manufac-
turing.

3.2.4 Operational Requirements
O.1:

O.2:

The experiment shall be able to activate the thruster au-
tonomously.
The experiment shall be able to acquire and store data
autonomously.

3.2.5 Constraints
C.1: The experiment cost shall not exceed the defined cost budget

of 25’000 e, including a 10 % safety margin.

3.3. RAW DESIGN OF THE SYSTEM 45

3.3 Raw design of the system
Two schematic configuration were developed, based on the research on the
state of the art and following the requirements and constraints, in order to
complete the objectives. The design of both configuration is based on the
cold gas subsystem used on the two satellites of the GRACE mission.

3.3.1 OLC

Figure 3.1: Schematic of the OLC

The first configuration, as shown in Fig.3.1, is composed by a single flu-
idline, called One line configuration (OLC), from the tank to the nozzle and
consists of:

46 CHAPTER 3. DESIGN

• A tank, equipped with a Fill/Drain valve.

• An high pressure filter is inserted to protect the pressure transducer
from contamination. It has to be said that most pressure transducer
are equipped with filters, so this component may be deleted in future
analysis.

• An high pressure transducer for failure detection. If the high pressure
transducer indicates that the high pressure decreases by a certain value,
it means an high leakage in the low pressure part of the systems.

• An high pressure latching valve, normally opened and used for isolation
in case of failure. For example, in case of leakage of the low pressure
part, it is possible to close the line with the high pressure latching valve,
avoiding the diffusion of the gas inside of the satellite.

• A pressure regulator, used to reduce the pressure from the storage
pressure to the operating pressure of the thrust chamber.

• A low pressure transducer, coupled with a relief valve. The low pressure
transducer measures the pressure at the nozzle’s inlet and it is used for
performance evaluation. Moreover, one relief valve is introduced and
opens at a certain pressure above the operating pressure, protecting
the low pressure part from overpressure in case of a pressure regulator
leakage.

• A low pressure latching valve, normally closed and opened during op-
erations.

• A low pressure filer, to protect the thruster from contamination

• A toroidal aerospike nozzle was chosen because of its simplicity. It
doesn’t suffer from surrounding flow side disturbs (like a linear one)
and the drawbacks connected to the thermal expansion of the toroidal
thrust chamber doesn’t apply to cold gas thrusters. It’s easier to design,
to simulate and to manufacture.

Table 3.1 shows a mass budget for this configuration. As already said,
the total mass of the experiment is up to 12 Kg. The optimization program
calculates the best combination between the gas mass, tank mass and nozzle
characteristics in the given maximum mass, so it is important to give an
estimation of the other components mass.

3.3. RAW DESIGN OF THE SYSTEM 47

The program uses the Maximum Estimated mass, that is calculated from
the Current Best Estimated Mass, with a 30 % increase due to the fact that
it is a preliminary estimation. The ceramic nozzle mass is included in the
30%. The pipes mass has been estimated as a proportion with other state of
the art cold gas thruster.

Component Mass [kg]

Fill/Vent Valve1 0,113

Pressure regulator1 0,360

High pressure transducer2 0,080

High pressure Latching Valve1 0,340

2xFilter3 0,152

Low pressure transducer2 0,080

Low pressure Latching Valve1 0,340

Relief Valve1 0,280

Piping4 0.25

Other Sensors4 0.5

Electronics4 0.5

Current Best Estimated Mass 3.245

Maximum Estimated Mass 3.8935

Available Mass 8.1065

Table 3.1: Mass estimation of the principal components
1 : data based on Vacco Aerospace products
2 : data based on Kulite Sensors Ltd. products
3 : data based on Omnidea-RTG products
4 : mass budget for non designed elements

48 CHAPTER 3. DESIGN

3.3.2 DLC
A second configuration was developed, based on the principle of redundancy,
and it is formed by two fluid lines composed by the same components of
the OLC, hence the name Double line configuration (DLC). In this design,
presented in Fig.3.2, no single points of failure are allowed with the exception
of the fracture of the tank or pipe, cloaking of filters and Fill/Drain valve
opening.

Figure 3.2: Schematic of the DLC

One fluid line is set as the primary one. The other is set as the secondary
one and it is meant to be used in case of malfunctioning of the primary one.
If the high pressure transducer indicates that the high pressure decreases by
a certain value, it means an high leakage in the low pressure part of the
systems. In this case, it is possible to close the high pressure latching valve
and use the redundant fluid line. This configuration is far more safe then
the first one, but the increased number of component increases the overall
costs and decreases the available gas mass. The new mass budget is shown
in Tab.3.2

3.3. RAW DESIGN OF THE SYSTEM 49

Component Mass [kg]

Fill/Vent Valve1 0,113

Pressure regulator1 0,720

High pressure transducer2 0,160

High pressure Latching Valve1 0,68

2xFilter3 0,152

Low pressure transducer2 0,160

Low pressure Latching Valve1 0,680

Relief Valve1 0,560

Solenoid Valve1 0,36

Piping 0.54

Other Sensors 0.54

Electronics 0.74

Current Best Estimated Mass 5.285

Maximum Estimated Mass 6.8705

Available Mass 5.1295

Table 3.2: Mass estimation of the principal components
1 : data based on Vacco Aerospace products
2 : data based on Kulite Sensors Ltd. products
3 : data based on Omnidea-RTG products
4 : mass budget for non designed elements

50 CHAPTER 3. DESIGN

3.3.3 Design Drivers
The design drivers obtained from the analysis of the state of the art, the
requirements and previous knowledge developed at TU Dresden are shown
in Tab.3.3. These values are used in the optimization program illustrated in
Chapter 4.

Design Driver Values

Tank shape Spherical | Cylindrical

Tank Material Aluminium | Stainless Steel

Maximum total mass* OLC:8.1065 Kg | DLC:5.1295 Kg

Gas Mass 0-6 Kg

Propellant Nitrogen|Helium|Argon|Xenon|Methane

Tank Temperature 283-313 K

Tank Pressure 100-300 Bar

Trust chamber pressure 2-6 Bar

Expansion Ratio 2-8

Nozzle exit radius 10-20 mm

Throat width >1 mm

Table 3.3: Design drivers of the optimization program
*: maximum total mass available to the program, where OLC refers to the
one line configuration and DLC refers to the double line configuration

According to paragraph 2.2.2, most popular vessels are cylindrical or
spherical. The tank material can be chosen between aluminium and stain-
less steel. Components of the shelf (COTS) industrial vessels are mostly
composed by an aluminium or stainless steel part wrapped by a composite
reinforcement. On the other hand, the evaluation of this complex structure
is difficult and time consuming, especially since commercial vessel composi-
tion is not precisely known. Thus, in the framework of this work, the results
obtained from the tank mass are for reference and the 30% added margin for
the Maximum Estimated Mass takes in account this uncertainty. The anal-
ysed propellant was decided according to paragraph 2.2.3 evaluations and
considering a gas storage, pressure regulated configuration.

Chapter 4

Genetic Algorithm

In this chapter, a brief introduction about Genetic algorithm (GA) is pre-
sented. Then, the logic behind the implemented optimization algorithm is
discussed and every characteristic detailed.

4.1 The algorithm
A GA is part of a family of algorithms called evolutionary computation.
Evolutionary computation is inspired by biological evolution, and is a branch
of artificial intelligence. In other words, they are a family of trial and error
problem solvers, a population-based metaheuristic optimization algorithms.
There are many types of evolutionary algorithms, including:

• Ant colony optimization

• Artifical immune system

• Cultural algorithm

• Genetic algorithm

• Memetic algorithm

• Neuroevolution

• Particle swarm optimization

• Swarm intelligence

The listed methods represent a small fraction of all evolutionary algorithms.
The optimization algorithm used to evaluate the characteristics of the

cold gas thruster is based on the genetic algorithm theory.

51

52 CHAPTER 4. GENETIC ALGORITHM

GAs are an efficient tool for solving problems in which both continuous
and discrete variables, but also discontinuous and non-convex design spaces
are involved. For this type of problems, standard nonlinear programming
techniques are inefficient and computationally expensive[34]. This is possible
because GAs are a zeroth order method and so derivatives are not involved in
the calculation of the optimized solution. GAs evaluate a lot combinations
in the design space by simulating the processes of evolution and natural
selection, such as reproduction, mutation, recombination, and selection. A
design string of variables is selected, and a population of design strings is
rated on how well it performs in an Fitness Function (FF).

The objective of the FF is to test the solutions, such as the environment
selects the organisms based on their ability to live within it. The better the
solution, the highest is the probability to reproduce and so, to pass its genes
to the following generation. Poor designs score bad results, so the probability
to survive and reproduce is low. In this way, bad genes, i.e. useless or bad
characteristics, are not transmitted to the following generation.

For this application, a custom designed GA has been implemented, com-
bining traditional GA theory and some Killer Queen Method principles. The
algorithm involves two cycles, an inner cycle and an outer one. The inner
cycle of the GA is shown in Fig.4.1.

Figure 4.1: Schematic of the GA

Each step of this cycle will be explained further on. The result of the
inner cycle is called Queen, i.e. the best best solution of the cycle. The
concept of the Queen is taken from the Killer Queen Method, which generic
schematic is shown in Fig.4.2.

4.1. THE ALGORITHM 53

In the Killer Queen method, a Queen is selected for each generation and
the other solutions are deleted. The next generation is formed by the queen
itself and the offspring, generated by mutation, i.e random variation, of the
queen design string. It is possible to understand that this method rely
uniquely on large quantities of mutations to generate the new population.
This process mimics some insect colonies where a single queen generates the
next population by itself.

Figure 4.2: Schematic of the Killer Queen Method

In the implemented GA, the inner cycle last population is deleted, except
for the Queen, that is the only information passed from the inner to the outer
cycle.

Fig.4.3 shows the outer cycle. It consists on the repetition of n inner
cycles (in this case 10), in order to produce n queens that are the input for
the last cycle.

Figure 4.3: Schematic of the outer cycle

54 CHAPTER 4. GENETIC ALGORITHM

Inner Cycle
As shown in Fig.4.1 the inner cycle is composed by:

• Creation of the initial population

• Evaluation of the population using a FF

• Termination criterion, that leads to the identification of the queen (or
optimal result) or to the continuing of the cycle

• Selection of the best individuals of the generation, or in other words
the creation of a breeding pool

• Crossover of the design strings of the selected breeding pool individuals

• Mutation, a random variation of some element of the design strings of
some individual

• Creation of the new generation

4.2 Initial Population
The design string is the core of a GA and its purpose is to represent every
possible combination of attributes in a mixed design field, composed by both
discrete and continuous variables. The peculiar aspect of a GA is that the
initial population is composed by n individuals, each one featuring m genes.
Each gene represents one design driver presented in Tab.3.3, by means of a
discrete or continuous variable.

Genes are chosen from the design drivers table (Tab.3.3). Some of the de-
sign drivers are selected as genes (Tab.4.1), so that each individual represents
a combination of values extracted randomly from the ranges, and others are
used as bonus-malus conditions (see 4.3.3). The initial parameters influence
both the convergence and the rate of convergence of the algorithm.

These initial ranges can be refined in order to reduce the simulation time,
after multiple trial simulations. Since a GA evaluates a large number of
combination, it is crucial to provide meaningful design ranges to avoid local
maxima and not to waste time and resources.

4.2. INITIAL POPULATION 55

Gene Values

Tank shape Spherical | Cylindrical

Tank Material Aluminium | Stainless Steel

Gas Mass 0-6 Kg

Propellant Nitrogen|Helium|Argon|Xenon|Methane

Tank Temperature 283-313 K

Tank Pressure 100-300 Bar

Trust chamber pressure 2-6 Bar

Expansion Ratio 2-8

Nozzle exit radius 10-20 mm

Table 4.1: Genes of the GA

Some guidelines are listed here:

• In some cases, for example the tank temperature, only integers are el-
igible as a gene. This means that each design string has an integer,
randomly generated inside the range, as a value for the tank tempera-
ture

• The tank pressure range has been restricted to 250-300 Bar because
every trial simulation showed no solution in the 100-250 Bar range

• It is possible to fix some parameters to get the desired solution. For
example, it is possible to fix Helium as the propellant and the solution
will shape accordingly.

Tab.4.1 defines the design space in which the GA has to work.

56 CHAPTER 4. GENETIC ALGORITHM

4.3 Fitness Evaluation
The FF is a subroutine of the GA that, for each individual of the population,
has to estimate the performance of that particular design string and has
to rank the individuals based on their score. This subroutine is divided
into three sections, called Tank Properties, Thuster Performance and Fitness
Level.

The first part calculates the properties of the tank, including its overall
mass, dimensions and the mass of the propellant. The second part evaluates
the thruster performance, in particular focussing on the aerospike nozzle
properties and geometry. The last part include the evaluation of the fitness
score, namely the fitness level of each design string. This needs the definition
of function, and the related coefficient, that calculates the fitness level.

4.3.1 Tank Properties
The Tank Properties section takes as input some of the design drivers, such
as the tank shape, the tank material, the gas mass, the propellant, the tank
temperature and the tank pressure, marked in red in Fig.4.4. The tank
volume has been calculated using the ideal gas law (see 2.2.3), with the
compressibility factor Z fixed at 1. The geometrical properties of the tank
derive from its volume and its shape. A fixed ratio of was used between the
height and the radius of the cylindrical tank, since most commercial tanks
have similar ratios (h = 5÷ 7 · r).

The calculation of the thickness of the vessel is based on the model shown
in paragraph 2.2.2.

Figure 4.4: Schematic of the Tank Properties section

4.3. FITNESS EVALUATION 57

A mass check has been implemented at the end of the subroutine. Since
the input parameters, marked in red in Fig.4.4, are random values in the
design space, unrealistic solutions are very frequent. In this case, an unreal-
istic solution is stated as a solution in which the mass of the tank, calculated
from the thickness and the shape parameters (namely radius and height),
plus the propellant mass is higher than the available mass. The available
mass is what was called maximum total mass in Tab.3.3, and is different for
the two configurations (i.e.OLC and DLC). A design string that produces an
unrealistic design gets an high malus that greatly influences its fitness level,
as it is described in paragraph 4.3.3.

4.3.2 Thruster Performance
The evaluation of the thruster performance is based on MIT RocketTeam’s
Spike Contour Algorithm[35]. This algorithm is used for designing the con-
tour of the spike of an aerospike nozzle. The algorithm also evaluates the
thermodynamic properties of the working fluid along the spike, and the per-
formance of the nozzle.

Model summary

The algorithm analyses the flow through the supersonic section of the aerospike
nozzle. The flow, along the spike, accelerates and expands through the expan-
sion fan and the spike contour is found by posing the constancy of the mass
flow. The underlying assumptions of the thermodynamic model are that the
expansion is adiabatic and isentropic, and the ratio of specific heat γ and the
molar mass of the working fluid are constant through the aerospike nozzle.
The generated spike contour is cylindrically symmetric and this algorithm
doesn’t include the concept of truncation. Naturally, the errors introduced
by these simplification are considered adequate to the early state of the de-
sign. The approach of the model is based on a paper written by C.C. Lee for
NASA’s Marshal Space Flight Center [36].

Algorithm details

Though the inner contour consists of the spike, the outer solid contour is
formed by the shroud. As it possible to see in Fig.4.5a, the throat is formed
by the corner of the shroud, namely the lip and the spike. The exit plane is
perpendicular to the centreline and includes the tip of the spike.

58 CHAPTER 4. GENETIC ALGORITHM

(a) (b)

Figure 4.5: Model characteristics and expansion fan [36]

As depicted in Fig.4.5b, the flow is expanded in the supersonic part of
the nozzle by a Prandtl-Meyer expansion fan, represented in blue dashed
line, that emanates form the corner of the nozzle shroud. The input of the
algorithm and the related value are listed in Tab.4.2.

Input Description Value

pc Combustion chamber pressure Design string gene

Tc* Combustion chamber temperature Design string gene

pa Ambient pressure Vacuum

Ae/At = ε Expansion ratio Design string gene

N Number of points of the mesh along the spike 100

γ Ratio of specific heats 1.4

mmolar Molar mass of the working fluid Design string gene

Table 4.2: Required Input for the algorithm
*:Tc is not directly known. For simplicity, has been imposed Ts ≈ Tc, where Ts is
the tank temperature

4.3. FITNESS EVALUATION 59

The exit Mach number Me can be found using the inversion of Stodola’s
Aera-Mach Equation, described in [37]. This method takes as an input the
expansion ratio ε, which is a gene. The exit pressure can be found using the
isentropic expansion equation (4.1), knowing ε and Me.

pe = pc ·
(

1 + γ − 1
2 ·M2

e

) −γ
γ−1 (4.1)

Before the throat the velocity of the flow ~vt is parallel to the shroud sur-
face, inclined by δ in respect to the horizontal. The expansion fan accelerates
the flow from M = 1, at the throat, to the exit Mach Me and rotates the
velocity vector by an angle equal to θ = 90◦ − δ, so that the exit velocity ~ve
is parallel to the centerline of the nozzle.

Fig.4.6a represents the nozzle geometry, highlighting the angle δ, the
throat width ht and the exit radius Re. Fig.4.6b shows the rotation of the
velocity vector, from ~vt to ~ve, through the expansion fan.

(a) Nozzle geometry [36] (b) Velocity vector rotation [36]

Figure 4.6

60 CHAPTER 4. GENETIC ALGORITHM

The turning angle νe can be found via the Prandtl-Meyer relation:

νe =
√
γ + 1
γ − 1 · atan

(√
γ − 1
γ + 1 · (M

2
e − 1)

)
− atan

(√
M2

e − 1
)

(4.2)

and according to what was stated,

νe + δ = π

2 (4.3)

and so,
δ = π

2 − νe (4.4)

The ratio between the throat width and the exit radius, which is a design
string element, is given by Eqn.4.5

ht
Re

=
ε−

√
ε · (ε− sin(δ))
ε · sin(δ) (4.5)

As explained in paragraph 4.3.3, a limitation on the throat width was
implemented in the GA. Due to expertise on the realization on small ceramic
objects, the minimum possible nozzle throat width ht is limited to 1 mm.

The flow, passing through the expansion fan, expands through an infinite
number of Mach lines. Every Mach line starts from the corner of the shroud
and intersects the spike contour. N points are considered in the algorithm,
which consist of N intersections on the spike contour and so, N Mach lines.

Every Mach line is correlated to a Mach number Mx, and is inclined of a
particular angle φx = νe−νx+µx (see Fig.4.7), where νe is the Prandtl-Meyer
angle at the exit Mach number (Eqn.4.2), νx is the Prandtl-meyer angle at
the current Mach number

νx =
√
γ + 1
γ − 1 · atan

(√
γ − 1
γ + 1 · (M

2
x − 1)

)
− atan

(√
M2

x − 1
)

(4.6)

and µx is the Mach angle at the current Mach number Mx (Eqn.4.7).

µx = asin
1
Mx

(4.7)

Since the expansion fan is cylindrically symmetrical about the centreline
of the nozzle, each Mach line can be revolved about the centreline forming a
frustum.

4.3. FITNESS EVALUATION 61

Figure 4.7: Plug contour nodes and Mach lines [38]

The circular inferior base of the frustum has a radius Re, and on the other
hand the top base is where each Mach line intersects the plug contour, at a
radius Rx. The side of the frustum makes an angle φx with the centreline
and the flow passes through the frustum at a Mach number Mx.

From the continuity, the mass flow through the throat ṁt equals the mass
flow through each frustum, ṁx. So,

ṁt = ṁx (4.8)

ρtvtAt = ρxvxAx (4.9)

and
Ax =

ρt

ρc
· At

ρx

ρc

νx

νt
· sin(µx)

(4.10)

where ρc refers to the density of the fluid in the combustion chamber.
Eqn. 4.11 is used to calculate the side area of the frustum.

Ax = π · (R2
e −R2

x)
sin(φx)

(4.11)

By equating Eqn.4.10 and Eqn.4.11, the ratio Rx

Re
can be found as a

function of Mx, as shown in Eqn.4.12. The complete derivation can be found
in [37].

Rx

Re

=

√√√√√
1−

[
(2
γ+1 · (1 + γ−1

2) ·M2
x)
] γ+1

2(γ−1) sin(νe − νx + µx)
ε

(4.12)

62 CHAPTER 4. GENETIC ALGORITHM

The height of the frustum Xx, defined as the axial distance from the
shroud lip to the intersection between the Mach line and the spike contour,
can be found as:

Xx = Re −Rx

tan(φx)
(4.13)

By computing N Mach lines in the range [1,Me), N points are found,
each one defined by Rx and Xx, and so the spike contour can be drawn.

This model can also calculate the specific impulse. The thrust force pro-
duced by the engine, integrating the spike pressure over the spike area, is:

Fx = ṁtvtsin(δ) + (pt − pa)Atsin(δ) +
∫ Ax

0
(px − pa) dA (4.14)

Eqn.4.14 can also be used to estimate the Isp loss in case of truncation
at a certain axial distance Xx. Dividing by the mass flow, it is possible to
explicit the Isp,

Ispx = vtsin(δ) + (pt − pa)Atsin(δ)
ρtvtAt

+
∫ Ax

0

(px − pa)
ρtvtAt

dA (4.15)

and after some steps[37],

Ispx = vtsin(δ)
1 + 1

γ

1−
γ + 1

2

γ
γ−1

(
pa
pc

)+vt
γ

(
γ + 1

2

) γ
γ−1

(
ε

2

)
·

N∑
x=1

[(
px−1 − pa

pc

)
+
(
px − pa
pc

)] [(
Rx−1

Re

)2
−
(
Rx

Re

)2]
(4.16)

This model allows the calculation of the most important parameters of
an aerospike nozzle, including its pressure profile, geometry, thrust and Isp.

4.3. FITNESS EVALUATION 63

4.3.3 Fitness Level
The calculation of the Fitness Level is the last part of the FF subroutine.
The purpose of this section is to evaluate and rank the individuals of the
population based on the results obtained by Tank Properties and Thruster
Performance sections.

Usually, for a GA, the principles that rule the ranking system are the
creator’s footprint. The ranking system is the core of the algorithm, it is the
section that decides what solution will be rewarded and what solution will
be deleted.

The underlying idea of this ranking system is based on the objective of
the experiment, that is, summing up, testing a cold gas aerospike engine
(see Chapter 3). Based on that, the design principles of the Fitness Level
subroutine are:

• The produced force should be measurable. Given that, it’s not impor-
tant the entity of the produced thrust, since a particular target is not
required

• In order to collect a meaningful amount of data, the thruster should
operate for the longest possible time

• The subroutine shall follow the design driver table (Tab.3.3). Each
design string that features a value that exceeds the ranges, shall be
penalized

• The subroutine shall that in account the cost diversity between different
design drivers. Since it is mainly related to the choice of the propellant,
from an this algorithm point of view, the subroutine shall take into
account the cost of the propellant

These guidelines led to following FF (Eqn.4.17), where FL refers to the
Fitness Level (i.e. the total score of the design string), αi are the coefficients
that multiply the FLi variables.

Tab.4.3 sum up the meaning of the subscripts.

FL = αm ∗ FLm + αTI ∗ FLTI + αNT ∗ FLNT + αcost ∗ FLcost+
αER ∗ FLER + αṁ ∗ FLṁ (4.17)

The flat negative variables involving mass and nozzle throat (i.e. FL−
m

and FLNT) represent constraints. Usually, in GA, constraints are included as
high negative values that limit the reproduction possibility to the solutions
that don’t respect those constraints.

64 CHAPTER 4. GENETIC ALGORITHM

Flat Variables

Mass FL−
m If the system mass, obtained by the combination of the

design string elements, is higher than the available mass,
this design string scores a negative FLm. The exact
amount is calculated in order to delete that solution, even
in case every other FL score is high

Nozzle Throat FLNT Design strings that lead to a nozzle throat width lower
than 1 mm get a penalty. The exact amount is calculated
in order to delete that solution, even in case every other
FL score is high

Cost FLcost The higher the cost, the higher the penalty, but two
design strings with the same propellant get the same
penalty

Proportional Variables

Mass FL+
m If the system mass, obtained by the combination of the

design string elements, is lower than the available mass,
this design string scores a positive FLm. In this case, the
lower is the difference, i.e. the closer are the two values,
the higher is the score

Total Impulse FLTI The higher the total impulse Itot, the higher the bonus

Expansion Ratio FLER The higher the expansion ratio, the higher the bonus

Mass Flow FLṁ The lower the mass flow, the higher the bonus

Table 4.3: Description of the FF variables

The total impulse is the only parameter requested by the client of the
research and it represents an important parameter for various reasons. The
total impulse It is the thrust force F integrated over the burning time t.

Itot =
∫ t

0
Fdt (4.18)

Equation 4.18 shows that Itot can be easily correlated with experimental
data. During a static bench test, it is possible to measure the thrust and the
burning time, plot the data and the total impulse corresponds to the area
under the curve.

4.3. FITNESS EVALUATION 65

Since the total impulse is not dependant on the combustion parameters,
the amount of thrust produced nor the type of propellant burned, it is used as
a useful indicator to compare different rocket motors [39]. The GA compares
drastically different solutions, so the total impulse has been found as a good
comparing parameter, taking into account the early stage of the research.
Moreover, according to the guidelines laid down at the beginning of this
subsection, Itot gives information about the thrust, the burning time and
their relationship.

The condition on the Itot doesn’t specify the ratio between F and ∆t, so
multiple solutions with the same Itot are possible. In order to have only one
optimal solution, two conditions were implemented, one on the mass flow
and one on the expansion ratio. The condition on the mass flow leads to the
fact that solutions with low mass flow are rewarded with high bonuses. This
means that those solutions, considering the same mass stowed, are character-
ized by a greater ”burning” time. Moreover, configurations with high expan-
sion ratio, are rewarded with high bonuses. As conventional bell nozzles, in
vacuum environment the gains obtained from increasing the expansion ratio
are limited. Moreover, for aerospike nozzles (with truncation) the increase
of the expansion ratio leads to a slower increase of the volume compared to
bell nozzle.

As it is possible to notice, the conditions imposed with this FF leads to a
precise solution, the one with the highest allowed expansion ratio and lowest
allowed throat area.

Instead of building a simple algorithm involving fixed expansion ratio and
throat area (and so throat width and exit radius), it was decided to build a
GA for future improvements and definition of the requirements. The early
state of the research doesn’t allow the definition of strict requirements, but
the purpose of this work is also to build a decision-making tool. As shown in
paragraph 5.2, the FF can be adjusted easily to generate a design string that
matches a particular objective. In that case, the use of a genetic algorithm
allowed the user to change the algorithm with few steps, instead of building
another algorithm from scratch.

66 CHAPTER 4. GENETIC ALGORITHM

4.4 Termination Criterion, Crossover and Mu-
tation

As an output of the Fitness Evaluation, the algorithm has built an ordered
matrix of design strings. On top there are the best design strings, i.e. the
design strings that produce an higher fitness level, and at the bottom the
worst design strings.

The termination criterion is implemented here. The algorithm stores the
best solution of each generation and after a minimum number of generations,
if the best solution of the last X generations is the same, the cycle stops. In
other words, set as Queen the best solution of a generation, if that design
string remains Queen for X generations, the cycle breaks, that solution is
marked as the optimal result of that inner cycle and that solution is passed
to the outer cycle. In the algorithm, X is set as 15.

Figure 4.8: Composition of the following generation

If the termination criterion is not satisfied, the ordered matrix of design
strings is used to create the mating pool, that consists of the top 20% of each
generation. This group is named as parents and, via crossover and mutation,
generates the subsequent generation. The parents matrix is randomly shuf-
fled and then the design strings are mixed in pairs. A child gets half of the
genes from parent1 and the other half from parent2. This process is called
crossover and generates 60 % of the following generation.

4.5. OUTER CYCLE 67

Mutation takes place during the mating process. 20% of the children are
characterized by a mutation that involves some of the core parameters of
the design string, such as expansion ratio and tank temperature. Finally,
the last 20% is composed by new design strings, randomly generated in the
exact same process as the first generation.

These new random solutions and the mutation principle are two ways
to avoid the algorithm to converge to local maxima. Fig.4.8 sum up the
composition of the subsequent generation.

4.5 Outer cycle
It has been said that, when the termination criterion is satisfied, that solu-
tion, called Queen is passed to the outer cycle. Figure 4.3 shows the outer
cycle, that consists of n inner cycles and after each inner cycle, the algorithm
stores the corresponding Queen. At the moment, n is set as 10. Then, after
collecting n different Queens, the algorithm compares them and prepares a
new population for the last cycle.

Table 4.4 shows some elements of a typical collection of 10 Queens. As
it is possible to see, some elements repeat themselves throughout the design
strings, some elements are similar but few of them varies.

The algorithm prepares a new population following these principles:

• For identification numbers, the algorithm takes the most frequent num-
ber and sets that value as fixed for the new population

• In case of repeated or similar values, the algorithm sets that value (or
the mean value) as fixed for the new population

• If there is a variability in a particular gene of the design strings, the
algorithm will limit the design range using the minimum and maximum
number found in the Queens collection. The restricted range is used in
the last cycle to randomly produce elements of that design string.

Referring to Tab.4.4, the identification number that characterizes the
propellant is always the same, so the algorithm sets this value as fixed. Every
design string of the new population is going use nitrogen (0 means nitrogen)
as its propellant.

Looking to the propellant mass, it is possible to see that there’s a slight
variability, negligible for the purposes of this work, so the algorithm uses the
mean value.

The exit radius column has a more evident variability. The original design
strings have been built from a wide range [10-20]mm, the subroutine looks at

68 CHAPTER 4. GENETIC ALGORITHM

the maximum and minimum value and set a new,limited range [15-20]mm,
from which the new population will be derived.

The last cycle subroutine is identical to the one of the inner cycles, but
the starting population has fixed parameters and shrunk ranges, so that it
focuses the variable parameters.

Propellant ... Propellant Mass [kg] ... Exit Radius[mm]

0 ... 2.99486 ... 20

0 ... 2.99599 ... 17

0 ... 2.92212 ... 19

0 ... 2.99599 ... 17

0 ... 2.98162 ... 18

0 ... 2.97228 ... 15

...

Table 4.4: Example of some genes of the Queens collection

Chapter 5

Results and Conclusions

In this chapter some solutions of the algorithm are shown and discussed. Two
solutions for each configuration (i.e. OL e DL configuration) are presented,
the algorithm optimized solution and a target solution.

The algorithm optimized solution is the solution obtained using the FF
explained in Chapter 4. This solution is used as a reference and a validation
of the method, since, as is explained in paragraph 5.1, the results could be
predicted analysing the FF. This solution also matches the research client
requests.

Then, a target solution is presented in order to show the possibilities of
the algorithm and what future improvements can lead to.

It is easily understandable that the solutions of a GA are in direct rela-
tionship with the FF and the initial design ranges. To modify one of those
subject leads to a drastically different solution. The definitive FF should
be implemented once the objective and the requirements of the experiment
are fixed, but the value of a flexible algorithm (such as a GA) is that it
can be used as a decision-making tool for finding the requirement and the
initial parameters of the experiment. This argument is expanded in para-
graph 5.2, where the algorithm is used to understand what the definition of
a requirement means for the other parameters.

69

70 CHAPTER 5. RESULTS AND CONCLUSIONS

5.1 Optimized solution
The following solutions have been derived using the FF presented in para-
graph 4.3.3 and, as already said, the imposed conditions lead uniquely to a
solution characterized by the maximum expansion ratio and the minimum al-
lowed throat area (i.e width). If the solution given from the GA matches the
expected results, it can be said that the algorithm has proven its reliability.

OLC results
Table 5.1 shows the output of the algorithm for the OLC.

Propellant Nitrogen

Tank Material Aluminum

Tank Shape Spherical

Thickness 5 mm

Radius 148 mm

Storage pressure 295 bar

Storage temperature 306 K

Gas mass 4.4 Kg

Full tank mass 8.1 kg

Chamber pressure 2 Bar

Exit radius 17 mm

Nozzle Throat 1 mm

Expansion Ratio 8

Mass flow 0.046 kg/s

Force ∼ 35 N

Isp ∼ 78 s

Exit mach number 3.3

Table 5.1: Optimized results of the OLC

As it possible to understand , the results agree with the expected output.

5.1. OPTIMIZED SOLUTION 71

The optimisation based on the highest possible total impulse Itot and the
minimum mass flow leads to the lowest possible throat width and to the
highest possible expansion ratio.

These considerations are correlated with the chamber temperature. As an
initial simplification, the chamber temperature is equal to the storage tem-
perature. From Eqn.5.1, representing the mass flow of a chocked bell nozzle,
it is possible to understand that an increase of the chamber temperature Tc
leads to a decrease of the mass flow. On the other hand, an increase of the
storage temperature leads to an increase in the volume of the tank (i.e. mass)
or a decrease in the storable mass (keeping the storage pressure constant).
The algorithm has to find a balance between these considerations.

ṁ

At
=
√
k

R
· p0

T0
·
(2
k + 1

) k+1
2(k−1) (5.1)

Nitrogen as a propellant was requested by the research client. Thus a GA
is capable of taking constant parameters as an input, it was not necessary,
because the FF selected nitrogen over the other available propellants. In this
case, the optimized solution matches the requested output. The first rows
of Tab.5.1 give an estimation of the tank properties, as mass, volume and
geometry. As stated in chapter 3.3.3 these results can be used as a reference
to find suitable COTS, since it was not possible to simulate commercial
composite tanks, that represent the state of the art for pressure vessels.

The implemented Bonus-Malus system works and no solution possesses
a mass higher than the available one, matching the mass requirement D.1
(3.2.3), or a throat width lower than imposed one. As already said, the
chamber pressure was fixed to a common value and other analyses are needed
to estimate the influence of the pressure on a ceramic, 3D printed structure.
The produced force, as requirement D.3 (3.2.3) states, is measurable and with
the assumption of a satellite mass lower than 500 kg, matches the acceleration
requirement P.1.1 (3.2.2). The algorithm also calculates the exit properties
of the gas, such as exit pressure, exit temperature and exit Mach number.
As a first estimation, considering the mass flow constant, the thruster should
operate for ∼ 100 s, matching the requirement P.1.3 (3.2.2).

72 CHAPTER 5. RESULTS AND CONCLUSIONS

DLC results
Table 5.2 shows the results for the DLC. As expected, the tank properties
are different, due to the minor available mass. The performance outputs can
be considered equivalent and this solution matches the requirements too.
The small differences between some OLC and DLC outputs, such as the 1 N
difference in thrust produced, are considered negligible.

Propellant Nitrogen

Tank Material Aluminum

Tank Shape Spherical

Thickness 4.2 mm

Radius 127 mm

Storage pressure 295 bar

Storage temperature 305 K

Gas mass 2.8 Kg

Full tank mass 5.1 kg

Chamber pressure 2 Bar

Exit radius 17 mm

Nozzle Throat 1 mm

Expansion Ratio ∼ 8

Mass flow 0.044 kg/s

Force ∼ 34 N

Isp ∼ 78 s

Exit mach number 3.3

Table 5.2: Optimized resultsof the DLC

5.2. TARGET SOLUTION 73

5.2 Target solution
The next solution is presented as an example of the GA capabilities. As
already said, the final version of the FF should be implemented once the re-
quirements and constraints of the experiment are fully defined. This solution
shows how easy is to implement new requirements in a GA.

The target solution has to fulfil the following requests:

• DL configuration

• Cylindrical vessel

• Xenon as propellant

• A thrust target, 18N ≤ Fobj ≤ 19N

The first condition can be implemented by commenting out the proper
line:
#maximum_tank_mass = 8.1065 # OL configuration
maximum_tank_mass = 5.1295 # DL configuration

The second and the third conditions can be imposed with the following lines:
ID of the tank shape, spherical=0, cylindrical=1
tank_min=1
tank_max=2
ID of the propellant
0=Gaseos nitrogen, 1=Helium, 2=Argon,
3=Xenon, 4=Methane
prop_min = 3
prop_max = 4
Propellant
population[0:,0] = numpy.random.randint(low=prop_min,
high=prop_max, size=size)
Tank shape
population[0:,1] = numpy.random.randint(low=tank_min,
high=tank_max, size=size)

In Python, the Numpy function numpy.random.randint(a,b,n) select n
random integer in range [a,b). Conditions can be imposed by appropriately
changing the initial intervals.

For example, an initial interval [prop_min,prop_max) means that every
solution will use prop_min (in this case prop_min =3,i.e. Xenon). The same
consideration can be applied for the selection of the tank shape.

74 CHAPTER 5. RESULTS AND CONCLUSIONS

The thrust target represents a completely new condition. This can be
implemented by adding few lines to the FF. First of all, the chamber pressure
value was unfixed and an initial range has been set as [1,3] bar. Then a new
condition, penalizing all solutions producing a force out of the requested
range, was added to the FF as follows, where F[i] represents the thrust
produced by the i-th solution and FL_F[i] the respective (negative) fitness
level entry.
for i in range (0,sol_per_pop):

if F[i] < 18 or F[i] > 19:
FL_F[i]= -6e10

This condition is sufficient to exclude every solution that doesn’t match
the request and to make the algorithm adjust the initial parameters in order
to fulfil the request. The target solution is presented above(Table 5.3).

Propellant Xenon Tank Material Stainless steel

Tank Shape Cylindrical Radius 40 mm

Height 201 mm Radial thickness 2.5 mm

Axial thickness 2 mm Storage pressure 274 bar

Storage temperature 303 K Gas mass 3.9 Kg

Full tank mass 5 kg Chamber pressure 1.09 Bar

Exit radius 17 mm Nozzle Throat 1 mm

Expansion Ratio ∼ 8 Mass flow 0.055 kg/s

Thrust ∼ 18.9 N Isp ∼ 36 s

Exit Mach number 3.3

Table 5.3: Target solution

5.3. SPIKE CONTOUR 75

5.3 Spike contour
The MIT RocketTeam’s Spike Contour Algorithm[35] integrated into the GA
is capable of plotting the spike contour. In Fig.5.1a, the spike contour of the
OLC, target solution is presented, where the x-axis represents the distance
from the shroud tip and the y-axis represents the relative radius. The axis
are normalized by the external radius Re. Negative values on the x-axis are
possible because the spike contour is plotted from the throat area which, as
can be seen from Fig.4.5a, is located before the vertical line passing through
the shroud tip, which represents the zero of the x-axis. These information
can be easily imported into a CAD program, like Solidworks R©, in order
to design a 3D model of the nozzle(Fig.5.1b). Note that, while the spike
contour has been designed using the tool, the inner part of the nozzle is just
representative of a possible shape of the nozzle and it is inspired by existing
aerospike nozzles. Fig.5.1b clearly shows that the final portion of the spike
would be too complex to manufacture and the result would be very fragile.
In other words, truncation is always needed in order to have a feasible and
robust design.

(a) Spike contour of the OL target solution (b) Spike contour render of the OL target
solution

Figure 5.1

76 CHAPTER 5. RESULTS AND CONCLUSIONS

5.4 Conclusions
In the framework of the project MACARONIS, a preliminary study of a cold
gas aerospike engine was performed. A research was conducted on the current
state of the art cold gas thrusters, critical components were discussed and two
raw systems were designed. An optimization tool was developed, its func-
tionality as a decision-making tool validated and three solutions presented.
This work represents a good starting point for several improvements. The
objectives, requirements and constraints listed in Chapter 3 are just a first
proposal and several discussions between future team members are needed in
order to complete the chapter. Once the requirements are fully defined, the
final version of the FF should be implemented (as stated in 4.3.3 and 5.2) in
order to obtain the desired solution. In section 5.2, the GA proved to be a
versatile tool, easy to adjust for the MACARONIS team. The implementa-
tion of some structural calculation evaluating the influence of the operating
pressure on the thrust chamber clearly represents a possible improvement of
the algorithm, as well as the introduction of more complex tanks such as
composite or multi-layer vessels.

The author takes this opportunity to thank Professor Daniele Pavarin for
the help and patience shown during the period abroad. A special thanks
goes to the supervisor of this work, Dr.-Ing. Christian Bach, and to his
colleagues Dipl.-Ing. Martin Propst and Dipl.-Ing. Jan Sieder-Katzmann,
for the support, professionality and friendliness.

A thought goes to my family, who supported me during these years of
study, and to all friends.

Appendix A

Code

In this appendix the GA code is presented. To avoid repetition, the following
code concerns the optimized solution, while section 5.2 shows how to modify
the code to get the target solution.

A.1 Main

"""
@author: Giorgio Tesser
mail: giorgio.tesser@studenti.unipd.it
"""
GENETIC ALGORITHM
#---

Run Main.py

#---

List of libraries
import numpy
import math
from scipy.optimize import fsolve
from collections import namedtuple
from collections import Counter
import timeit

Import other scripts
import Data

77

78 APPENDIX A. CODE

import Fitness
import GA
import aero_solver
import re_run

Timer; calculates the simulation time
start = timeit.default_timer()

INITIALIZATION

"""Number of variables
Propellant, tank shape, pressure of the tank, mass of the gas

, temperature of the
tank, chamber pressure, exit radius, expansion ratio,

material of the tank"""

The maximum mass of the experiment consists of the
available mass for the

tank and the propellant
There are two possibilities, based on the mass budget (

Chapter 3)
One line configuration -----> maximum_tank_mass = 8.1065 Kg
Double line configuration -----> maximum_tank_mass = 5.1295

Kg

Select the desidered configuration by commenting the other
one

maximum_tank_mass = 8.1065

maximum_tank_mass = 5.1295
num_genes=9 # The design string consist in 9 genes
sol_per_pop= 50 # Number of random solution for each

generation

Initial parameters
It is possible to change the following parameters in order

to change the
design space of the algorithm

chamber_pressure_min=2 # Operating pressure

A.1. MAIN 79

chamber_pressure_max=3
Re_min=15 # Minimum Exit Radius
Re_max=20 # Maximum Exit Radius
er_min=6 # Minimum Expansion Ratio
er_max=8 # Maximum Expansio Ratio
ps_min=295 # Minimum Storage Pressure
ps_max=296 # Maximum Storage Pressure
T_min=283
T_max=310

ID of the tank shape, spherical=0, cylindrical=1

tank_min=0
tank_max=2

ID of the propellant
0=Gaseos nitrogen, 1=Helium, 2=Argon, 3=Xenon, 4=Methane
prop_min = 0
prop_max = 5
Minimum and maximum gass mass. To improve velocity of the

algorihm put
feasible numbers, in order to avoid the calculation of

irrealistic solutions.
(i.e. gas_mass_max = 6 when maximum_tank_mass = 5.1295)

Check the desidered configuration (OL or DL), read the
maximum_tank_mass and

then check these two values accordingly
My experience: 2.5-5 for OL, 1.5-3 for DL

gas_mass_min=1
gas_mass_max=4

Coeffcient for the fitness function. Change the values to
adjust ratio

between the coefficient of the fitness function
See chapter 4 for the explanation of the Bonus/Malus system

coeff_FL_epsilon = 2 # Mass Ratio coefficient
coeff_FL_it = 5 # Total impulse coefficient

80 APPENDIX A. CODE

coeff_FL_ht = 1 # Nozzle Throat coefficient
coeff_FL_cost = 100 # Cost coefficient
coeff_FL_er = 1 # Expansion Ratio coefficient
coeff_FL_m_dot = 2 # Mass flow coefficient

N = 10 # Number of Queens
pop_size = (sol_per_pop,num_genes) # Defining the population

size
sol_size = (1,num_genes) # Defining the solution size
sol = numpy.zeros(sol_size) # Initializing the solution vector
Initializing an empty vector. It is necessary at the end of

the loop to store
N Queens (i.e N solution of the inner cycle, see Chapter 4)

, in one matrix
sol_add = numpy.zeros(sol_size)

#List of propellant: 0=Gaseos nitrogen, 1=Helium, 2=Argon, 3=
Xenon, 4=Methane

for it in range (0,N): # CREATION OF THE INITIAL POPULATION
new_population = Data.population(pop_size, prop_min,

prop_max,tank_min,tank_max,ps_min,
ps_max,gas_mass_min,gas_mass_max,T_min,T_max,

chamber_pressure_min,
chamber_pressure_max, Re_min, Re_max, er_min,

er_max)

The following lines are the initialization of the
termination criterion, when the last n best solution
are the same, toll = 0

toll = 2
generation=0
condition1=True
Best_solution_size = (1,num_genes)
Queens = numpy.zeros(Best_solution_size)
Queens_add = numpy.zeros(Best_solution_size)
while 1:

if toll==0:
condition1=False

if condition1==True:

A.1. MAIN 81

zn = Data.parameters (new_population,sol_per_pop) #
Matrix contaiing gas parameters R,M,Z

V = Fitness.tank (new_population,zn) # Volume of the
tank

t = Fitness.tank_design(V,sol_per_pop,new_population
,zn) # Include both width and radii

empty_tank_mass = Fitness.empty_tank_mass (t,
sol_per_pop,new_population,zn) # Empty tank mass

gas_size = (sol_per_pop,1)
gas_mass=numpy.zeros(gas_size)
gas_mass [0:,0] = new_population[0:,3] # Gas mass
full_tank_mass = empty_tank_mass + gas_mass # Full

tank mass
m_diff= maximum_tank_mass - full_tank_mass

Initialization of the vectors for : performance
evaluation and creation of the new generation

parents_num = int(0.2*sol_per_pop)
random_solutions = int(0.2*sol_per_pop) # 20% random

solutions
random_sol_shape = (random_solutions,num_genes)
performance_size=[sol_per_pop,16]
performance_matrix = numpy.zeros(shape=

performance_size)
EngineParameters = namedtuple(’EngineParameters’, ’

Tc␣Pc␣molar_m␣gamma␣Re␣er␣Ps’)
for j in range (0,sol_per_pop):

T = new_population[j,4]
p_chamber = new_population[j,5]
p_storage = new_population[j,2]
Re = new_population[j,6]
er = new_population[j,7]
molar_mass = gas_mass[j]*1000/zn[j,1]
params = EngineParameters(Tc=T, Pc=p_chamber,

molar_m=molar_mass, gamma=1.4, Re=Re, er=er,
Ps= p_storage)

performance = aero_solver.aerosolver(params)
The namedtuple values will be inserted in a

Performance Matrix.

82 APPENDIX A. CODE

Note that performance returns ’delta Re ht At
er Pc Tc m_dot F Isp Pe Me Cf’"

performance_matrix[j,0] = performance.delta
performance_matrix[j,1] = performance.Re
performance_matrix[j,2] = performance.ht
performance_matrix[j,3] = performance.At
performance_matrix[j,4] = performance.er
performance_matrix[j,5] = performance.Pc
performance_matrix[j,6] = performance.Tc
performance_matrix[j,7] = performance.m_dot
performance_matrix[j,8] = performance.F
performance_matrix[j,9] = performance.Isp[-1]
performance_matrix[j,10] = performance.Pe
performance_matrix[j,11] = performance.Te
performance_matrix[j,12] = performance.Me
performance_matrix[j,13] = performance.Cf
performance_matrix[j,14] = performance.Ps
performance_matrix[j,15] = full_tank_mass[j]

Calculation of the fitness level of the current
generation

FL= Fitness.FL_calc(new_population,m_diff,
sol_per_pop,parents_num,performance_matrix,
coeff_FL_it,coeff_FL_cost,coeff_FL_er,
coeff_FL_m_dot,coeff_FL_epsilon,coeff_FL_ht)

Sum of each entries of the FL
fl= FL[:,0] + FL[:,1] + FL[:,2] + FL[:,3] + FL[:,4]

+ FL[:,5]
old_pop=numpy.copy(new_population)
Finding the maximum fitness level of the current

generation
fl_max = numpy.where(fl == numpy.max(fl))
fl_max_idx = fl_max[0][0]
Store the best solution of the current generation

in the vector Queen
Queens[generation,:] = old_pop[fl_max_idx,:]
Queens = numpy.r_[Queens,Queens_add]
Selecting parents
parents = GA.select_mating_pool(fl,sol_per_pop,

parents_num,new_population,num_genes)
numpy.random.shuffle(parents)

A.1. MAIN 83

offspring_size=[pop_size[0]-parents.shape[0]-
random_solutions,num_genes]

Crossover
offspring_crossover = GA.crossover(parents,

offspring_size)
Mutation
offspring_mutation = GA.mutation(

chamber_pressure_min,chamber_pressure_max,
offspring_crossover,offspring_size)

Creation of the new population: 20% parents, 20%
random, 60% crossover (20% of these mutated)

new_population[0:parents.shape[0], :] = parents
new_population[parents.shape[0]:sol_per_pop-

random_solutions, :] = offspring_mutation
new_population[sol_per_pop-random_solutions:,:] =

Data.population (random_sol_shape,prop_min,
prop_max,tank_min,tank_max,ps_min,
ps_max,gas_mass_min,gas_mass_max,T_min,T_max,

chamber_pressure_min,
chamber_pressure_max, Re_min, Re_max, er_min,

er_max)
numpy.random.shuffle(new_population)
generation=generation+1
#print(generation)

Termination criterion
if generation>10:

toll1=0
for i in range (2,20):

toll_v = (Queens[Queens.shape[0]-i,:]-
Queens[Queens.shape[0]-(i+1),:])

toll1=toll1+numpy.sum(toll_v)
toll=toll1

else:
break

Results of the inner cycle

Finding the highest fitness level
fl_max = numpy.where(fl == numpy.max(fl))
fl_max_idx = fl_max[0][0]
and the best solution of the inner cycle

84 APPENDIX A. CODE

Best_solution = old_pop[fl_max_idx]
Best_performance = performance_matrix[fl_max_idx,:]
Results = namedtuple(’Results’, ’Idx␣fl␣FL␣Propellant_Type␣

Tank_Type␣Tank_material␣Tank_Dimensions␣Storage_Pressure
␣gass_mass␣full_tank_mass␣Tank_temperature␣
Chamber_Pressure␣delta␣Re␣ht␣At␣er␣Pc␣Tc␣m_dot␣F␣Isp␣Pe␣
Te␣Me␣Cf␣Ps’)

Final_results = Results(Idx=fl_max_idx, fl=fl[fl_max_idx],
FL=FL[fl_max_idx], Propellant_Type=Best_solution[0],
Tank_Type = Best_solution [1],Tank_material =
Best_solution[8], Tank_Dimensions = t[fl_max_idx,:],
Storage_Pressure = Best_solution[2],

gass_mass = Best_solution[3],
full_tank_mass = Best_performance
[15], Tank_temperature =
Best_solution[4], Chamber_Pressure
= Best_solution[5],

delta = Best_performance[0], Re =
Best_performance[1], ht =
Best_performance[2], At =
Best_performance[3], er =
Best_performance[4],

Pc = Best_performance[5],Tc =
Best_performance[6], m_dot =
Best_performance[7], F =
Best_performance[8], Isp =
Best_performance[9],

Pe = Best_performance[10], Te =
Best_performance[11], Me =
Best_performance[12], Cf =
Best_performance[13], Ps =
Best_performance[14])

storing the solution of the inner cycle in a vector
called "sol"

sol[it,:] = old_pop[fl_max_idx,:]
sol = numpy.r_[sol,sol_add]

sol = numpy.delete(sol, (sol.shape[0]-1), axis=0)

A.1. MAIN 85

Evaluation of the variance of the term sol, use it to
calibre the fitness function or the fitness function
parameters

#for i in range (0,sol.shape[1]):
mean_value = numpy.mean(sol[:,i])
xi = sol[:,i] - mean_value
variance[0,i] = (numpy.sum (numpy.power(xi,2)))/(sol.shape

[0]-1)
variance[1,i] = numpy.power(variance[0,i],0.5)

Inizializing the last population
new_population = numpy.zeros (shape=pop_size)
As stated in chapter 4, here the algorithm uses:
- most frequent value for identification numbers
- mean value for values with small variance
- shrink the design range for values that vary a lot
most_freq_prop = Counter(sol[:,0])
propellant_type = most_freq_prop.most_common(1)[0][0]
most_freq_tank_material= Counter(sol[:,8])
tank_material = most_freq_tank_material.most_common(1)[0][0]
most_freq_er = Counter(sol[:,7])
err = most_freq_er.most_common(1)[0][0]
new_population[0:,0] = propellant_type # Propellant type
new_population[0:,1] = numpy.mean(sol[:,1]) # Tank type
new_population[0:,2] = numpy.mean(sol[:,2]) # Storage pressure
new_population[0:,3] = numpy.mean(sol[:,3]) # Gas_Mass
new_population[0:,4] = numpy.mean(sol[:,4]) # Tank temperature
new_population[0:,5] = numpy.mean(sol[:,5]) # Chamber pressure
Re_min_r = numpy.min (sol[:,6]) * 1000
Re_max_r = numpy.max (sol[:,6]) * 1000
new_population[0:,6] = numpy.random.randint(low=Re_min_r,high=

Re_max_r, size=pop_size[0]) # Exit radius in m (so from 10
to 20 mm)

new_population[0:,6] = new_population[0:,6]/1000
er_min = numpy.min (sol[:,7])
er_max = numpy.max (sol[:,7])
#new_population[0:,7] = numpy.random.randint(low=er_min*10,

high=er_max*10, size=pop_size[0]) # Expansion ratio
#new_population[0:,7] = new_population[0:,7]/10

new_population[0:,7] = err # Propellant type

86 APPENDIX A. CODE

new_population[0:,8] = tank_material # Tank material
Final inner cycle using the new defined population
Optimized_results = re_run.rerun (new_population,sol_per_pop,

maximum_tank_mass,coeff_FL_it,coeff_FL_cost,coeff_FL_er,
coeff_FL_m_dot,num_genes,coeff_FL_epsilon,coeff_FL_ht)

stop = timeit.default_timer() # timer
print(’Time:␣’, stop - start)
print(Optimized_results)

A.2. DATA 87

A.2 Data

"""
@author: Giorgio Tesser
mail: giorgio.tesser@studenti.unipd.it
"""
List of libraries
import numpy

Calculation of some properties : propellants and materials
def parameters (new_population,sol_per_pop):

zn_size = (sol_per_pop,4)

zn = numpy.zeros (zn_size)
gas_mass = new_population[0:,3]
Calculation of the property of the gasses
Compressibility factor fixed as 1, as an improvement it

is possible to
implement Z = f (pressure, temperature)
for i in range(0,sol_per_pop):

if (new_population[i,0] == 0):
Gaseos Nitrogen
zn[i,0]=1 # Z = compressibility
molar_mass=28 ## g/mol
zn[i,1]= gas_mass[i]*1000/molar_mass # n mol

if (new_population[i,0] == 1):
Helium
zn[i,0]=1 # Z = compressibility
molar_mass= 4 # g/mol
zn[i,1]= gas_mass[i]*1000/molar_mass # n mol

if (new_population[i,0] == 2):
Argon
zn[i,0]=1 # Z = compressibility
molar_mass=39.9 # g/mol
zn[i,1]= gas_mass[i]*1000/molar_mass # n mol

if (new_population[i,0] == 3):
Xenon
zn[i,0]=1 # Z = compressibility
molar_mass=131.3 # g/mol
zn[i,1]= gas_mass[i]*1000/molar_mass # n mol

88 APPENDIX A. CODE

if (new_population[i,0] == 4):
Methane
zn[i,0]=1 # Z = compressibility
molar_mass=16 # g/mol
zn[i,1]= gas_mass[i]*1000/molar_mass # n mol

Tank material properties
for i in range(0,sol_per_pop):

if (new_population[i,8] == 0):
aluminium tank
zn[i,2] = 503e6 * 0.00014504 # conversion from Pa

to KSI
zn[i,3] = 2810 # density

if (new_population[i,8] == 1):
stainless steel
zn[i,2] = 650e6 * 0.00014504 # conversion from Pa

to KSI
zn[i,3] = 7900 # density

if (new_population[i,8] == 2):
composite, carbon fiber
zn[i,2] = e6 * 0.00014504 # conversion from Pa to KSI
zn[i,3] = 2699 # density

return zn

def population(pop_size, prop_min, prop_max,tank_min,tank_max,
ps_min,

ps_max,gas_mass_min,gas_mass_max,T_min,T_max,
chamber_pressure_min,

chamber_pressure_max, Re_min, Re_max, er_min,
er_max):

population = numpy.zeros (shape=pop_size)
size = pop_size[0] # Initializing the matrix
population[0:,0] = numpy.random.randint(low=prop_min,

high=prop_max, size=size) # Propellant
population[0:,1] = numpy.random.randint(low=tank_min,

high=tank_max, size=size) # Tank type
population[0:,2] = numpy.random.randint(low=ps_min,high

=ps_max, size=size) # Tank pressure [bar]
population[0:,2] = population[0:,2]*1e5 # Converted to

[Pa]

A.2. DATA 89

population[0:,3] = numpy.random.uniform(low=
gas_mass_min,high=gas_mass_max, size=size) #
Propellant Mass

population[0:,4] = numpy.random.randint(low=T_min,high=
T_max, size=size) # Tank temperature; initial range
283-313 K

population[0:,5] = numpy.random.randint(
chamber_pressure_min,chamber_pressure_max, size=size
) # Operating Pressure

population[0:,5] = population[0:,5]*1e5
population[0:,6] = numpy.random.randint(low=Re_min,high

=Re_max, size=size) # Exit radius in [mm]
population[0:,6] = population[0:,6]/1000 # Converted in

[m]
new_population[0:,7] = numpy.random.randint(low=er_min*10,

high=er_max*10, size=colomn_size)
new_population[0:,7] = new_population[0:,7]/10

population[0:,7] = numpy.random.randint(low=er_min,high
=er_max+1, size=size) # Expansion Ratio

population[0:,8] = numpy.random.randint(low=0,high=2,
size=size)

return population

90 APPENDIX A. CODE

A.3 Solver

Aerospike Nozzle Design Solver
Matthew Vernacchia - MIT Rocket Team
2014 Jan 15

Modified by Giorgio Tesser, mail: giorgio.tesser@studenti.
unipd.it

from math import atan, sin, tan, pi, asin
import numpy as np
from matplotlib import pyplot as plt
from collections import namedtuple

Warning logging
import logging
formatter = logging.Formatter(’%(levelname)s␣{%(pathname)s:%(

lineno)d}:␣%(message)s’)
ch = logging.StreamHandler()
ch.setFormatter(formatter)
logger = logging.getLogger(’simple_example’)
logger.addHandler(ch)

Physical Constants
Molar Gas Constant [J molˆ-1 Kˆ-1]
R_mol = 8.314
Acceleration due to gravity at surface [m sˆ-2]
g = 9.81

Set up the engine parameters tuple
EngineParameters = namedtuple(’EngineParameters’, ’Tc␣Pc␣

molar_m␣gamma␣Re␣er␣Ps’)
params = EngineParameters(Tc=1900, Pc=4e5, molar_m=20.18, gamma

=1.4, Re=0.015, er=12, Ps=200e5)
zero_params = EngineParameters(Tc=0, Pc=0, molar_m=0, gamma=0,

Re=0, er=0, Ps=0)
def aerosolver(params):

Number of points along spike to solve for
N = 100

A.3. SOLVER 91

the mach numbers to examine
M = np.zeros((N,))
the radius of the plug at some point x, normalized by

the outer radius
RxRe = np.zeros((N,))
The axial distance from the lip to point x, normalized

by the outer
radius
X = np.zeros((N,))
The flow velocity to mach wave angle [rad]
mu = np.zeros((N,))
the turning angle [rad]
nu = np.zeros((N,))
the pressure at point x [Pa]
P = np.zeros((N,))
the temperature at point x [K]
T = np.zeros((N,))
the cumulative Isp up to point x [s]
Isp = np.zeros((N,))
Thrust force [N]
F = 0
Throat mass flow [kg sˆ-1]
m_dot = 0
Throat Area [mˆ2]
At = 0
Throat gap width [m]
ht = 0
Angle between shroud surface and a plane normal to the

nozzle axis [rad]
delta = 0
Ambient pressure [Pa]
Pa=1
Nozzle Thrust Coefficent [-]
Cf = 0
’’’ Solve for the spike contour and nozzle conditions

given the engine parameters.params
Engine Parameters namedtuple Pa Ambient pressure [Pa]

’’’
#last_params = params
#gamma
y=params.gamma

92 APPENDIX A. CODE

#massa molare
molar_m = params.molar_m
Find the Specific Gas Constant
R = R_mol / molar_m * 1000

Compute the Exit Mach Number
Me = get_Mach(params)
use this to find the exit (tip-plane) pressure (assumung

isetropic expansion)
Pe = params.Pc * (1 + (y-1)/2*Me**2)**(-y/(y-1))

Find the total flow turning angle [rad]
nu_e = ((y+1)/(y-1))**0.5 * atan(((y-1)/(y+1)*(Me**2-1))

**0.5) \
- atan((Me**2-1)**0.5)

use this to find the angle of the shroud edge with the
normal to

the axial direction [rad]
delta = pi/2 - nu_e

Find the throat gap width / outer radius ratio []
####

htRe = (params.er - (params.er*(params.er-sin(delta)))
**0.5) \

/ (params.er*sin(delta))
Find the velocity and temperature at the throat (

assuming M=1) ####
throat thermo temperature [K]
Tt = params.Tc / (1 + (y-1)/2)
throat pressure [Pa]
Pt = params.Pc * (1 + (y-1)/2) ** (-y/(y-1))
throat fluid velocity [m sˆ-1]
vt = np.sqrt(y*R*Tt)
Examine a range of Mach numbers to determine the

shape of the nozzle
the Mach numbers to examine
M = np.linspace(1, Me, N)
the Isp due to momentum flux and pressure at the throat

[sec]
Isp[0] = vt*sin(delta)*(1 + 1/y*(1-((y+1)/2)**(y/(y-1))*Pa

/params.Pc)) / g

A.3. SOLVER 93

for x in range(N):
mu[x] = asin(1/M[x]) # See Lozano’s Fall2012 Lec17

Notes
use the Prandtl-Meyer equation to find nu[x]
nu[x] = ((y+1)/(y-1))**0.5 * atan(((y-1)/(y+1)*(M[x

]**2-1))**0.5) \
- atan((M[x]**2-1)**0.5)
use CC Lee Eqn (26) to find Rx/Re for the point
RxRe2 = (1 - (2/(y+1)*(1+(y-1)/2*M[x]**2))**((y+1)

/(2*y-2)) \
* sin(nu_e - nu[x] + mu[x]) / params.er)

if RxRe2 > 0:
RxRe[x] = RxRe2**0.5

else: RxRe[x] = 0
find the X (axial) coordinate of the point. CC Lee

Eqn (19)
X[x] = (1 - RxRe[x]) / tan(nu_e - nu[x] + mu[x])
find the pressure
P[x] = params.Pc * (1 + (y-1)/2*M[x]**2)**(-y/(y-1))
if x > 0:

Isp[x] = Isp[x-1] + (vt/y*((y+1)/2)**(y/(y-1)) * \
params.er/2 * ((P[x-1]-Pa)/params.Pc + (P[x]-Pa

)/params.Pc) * \
(RxRe[x-1]**2 - RxRe[x]**2)) / g

#find the temperature
T[x] = params.Tc / (1+ (y-1)/2 * M[x]**2)

Te = T[N-1]
throat width [meter]
ht = htRe * params.Re
I added this function to avoid the presence of

unreasonable numbers like 1.05
ht = ht * 1000
if ht > 1 :

ht = np.floor(ht)
ht = ht / 1000
throat area [meterˆ2]
At = pi*ht*(2*params.Re - ht*sin(delta))
fluid density at the throat [kg mˆ-3]
rho_t = Pt / (R*Tt)
throat mass flow [kg secˆ-1]
m_dot = rho_t*At*vt

94 APPENDIX A. CODE

Find the thrust [N]
F = Isp[-1] * m_dot * g
Find the thrust coefficient [-]
Cf = F / (params.Pc*At)
#---
Performance_results = namedtuple(’Performance_results’, ’

delta␣Re␣ht␣At␣er␣Pc␣Tc␣m_dot␣F␣Isp␣Te␣Pe␣Me␣Cf␣Ps’)
delta = delta*180/pi
Re = params.Re * 1000
ht = ht * 1000
Pc = params.Pc/1e5
Ps = params.Ps/1e5

performance = Performance_results(delta=delta, Re=Re, ht=ht
, At=At, er=params.er, Pc=Pc, Tc=params.Tc, m_dot=m_dot,
F=F, Isp=Isp, Te=Te, Pe=Pe, Me=Me, Cf=Cf, Ps=Ps)

results_string = \
’Engine Geometry:’ \
+ ’\n’ + ’\tShroud angle, delta = %.1f degrees’%(delta*180/

pi) \
+ ’\n’ + ’\tShroud lip radius, Re = %.1f mm’%(params.Re

*1000) \
+ ’\n’ + ’\tThroat width, ht = %.2f mm’%(ht*1000) \
+ ’\n’ + ’\tThroat area, At = %.8f mˆ2’%(At) \
+ ’\n’ + ’\tExpansion ratio, er = %.2f’%(params.er) \
+ ’\n’ + ’Chamber Conditions:’ \
+ ’\n’ + ’\tChamber pressure, Pc = %.3f MPa’%(params.Pc/1.0

e6) \
+ ’\n’ + ’\tChamber temperature, Tc = %.0f K’%(params.Tc) \
+ ’\n’ + ’\tExhaust Avg Molar Mass = %.1f g molˆ-1’%(params

.molar_m) \
+ ’\n’ + ’Engine Performance:’ \
+ ’\n’ + ’\tMass flow rate, m_dot = %.3f kg secˆ-1’%(m_dot)

\
+ ’\n’ + ’\tThrust force, F = %.1f N’%(F) \
+ ’\n’ + ’\tSpecific impulse, Isp = %.1f sec’%(Isp[-1]) \
+ ’\n’ + ’\tExit pressure, Pe = %.2f Pa’%(Pe) \
+ ’\n’ + ’\tExit Mach number, Me = %.2f’%(Me) \
+ ’\n’ + ’\tThrust coefficient, Cf = %.2f’%(Cf)

return performance
""" Giorgio’s comment:

A.3. SOLVER 95

Uncomment the following part and add properly the plot
function to the main.py

to plot the spike contour
Alternatively it is possible to launch the Aerospike

Nozzle Design Solver
from terminal, fill the UI with the requested parameters

and then copy the
spike contour"""

def plot(self):
’’’Plot the current solution results for the nozzle

conditions.’’’
plt.suptitle(’Simulated Nozzle Conditions vs Axial Distance

from Throat Normalized by Exit Radius’)
plt.subplot(2,3,1)
plt.cla()
plt.plot(X, RxRe)
plt.ylabel(’Rx / Re’)
plt.grid(True)
#
plt.subplot(2,3,4)
plt.cla()
plt.plot(X, M)
plt.ylabel(’Mach Number’)
plt.xlabel(’Xx / Re’)
plt.grid(True)
#
plt.subplot(2,3,2)
plt.cla()
plt.plot(X, P/1.0e6)
plt.plot(X, np.ones((N,))*Pa/1.0e6, ’r’)
plt.ylabel(’Pressure [MPa]’)
plt.grid(True)
#
plt.subplot(2,3,5)
plt.cla()
plt.plot(X, T)
plt.ylabel(’Temperature [K]’)
plt.xlabel(’Xx / Re’)
plt.grid(True)

96 APPENDIX A. CODE

#
plt.subplot(2,3,3)
plt.cla()
plt.plot(X, Isp)
plt.ylabel(r’Cumulative I_{sp}’)
plt.xlabel(’Xx / Re’)
plt.grid(True)
#
plt.subplot(2,3,6)
plt.cla()
plt.text(0.1,0.8, r’A_e/A_t = %.1f’%(last_params.er))
plt.text(0.1,0.7, r’$P_c =$ %.2f MPa’%(last_params.Pc/1e6))
plt.text(0.1,0.6, r’$T_c =$ %.0f K’%(last_params.Tc))
plt.text(0.1,0.5, r’$M_{molar} =$ %.1f g molˆ-1’%(

last_params.molar_m))
plt.text(0.1,0.4, r’$\gamma =$ %.2f’%(last_params.gamma))
#
plt.show(block=False)

Utility Thermofluids Functions

def get_Mach(params):
’’’
Find the exit Mach number given the engine parameters.
This function uses the params.er (expansion ratio) and

params.gamma (gas specific heat ratio)

Explicit Inversion of Stodola’s Area-Mach Equation
Source: J. Majdalani and B. A. Maickie
http://maji.utsi.edu/publications/pdf/HT02_11.pdf
’’’
n = 5 # order of the aproximation
X = np.zeros((n,))
M = np.zeros((n,))

e = 1/float(params.er) # expansion ratio
y = params.gamma # ratio of specific heats
B = (y+1)/(y-1)
k = np.sqrt(0.5*(y-1))
u = e**(1/B) / np.sqrt(1+k**2)
X[0] = (u*k)**(B/(1-B))

A.3. SOLVER 97

M[0] = X[0]

for i in range(1,n):
lamb = 1/(2*M[i-1]**(2/B)*(B-2) + M[i-1]**2 *B**2*k

2*u2)
X[i] = lamb*M[i-1]*B*(M[i-1]**(2/B) - M[i-1]**2*B*k

2*u2 \
+ (M[i-1]**(2+2/B)*k**2*u**2*(B**2-4*B+4) \
- M[i-1]**2*B**2*k**2*u**4 + M[i-1]**(4/B)*(2*B-3) \
+ 2*M[i-1]**(2/B)*u**2*(2-B))**0.5)

M[i] = M[i-1] + X[i]
if abs(np.imag(M[n-1])) > 1e-5:

logger.warning(’Exit␣Mach␣Number␣has␣nonzero␣imaginary␣
part!’)

Me = np.real(M[n-1])
return Me

#---

""" Giorgio’s comment:
Unused part of the Aerospike Nozzle Design Solver, but it

may be useful in future """

#def get_Pe(params):
’’’ Find the nozzle exit static pressure, given the engine

parameters.
returns nozzle exit pressure [Pa]
’’’
Find the exit Mach number
Me = get_Mach(params)
y = params.gamma
Use this to find the exit (tip-plane) pressure (assumung

isetropic expansion)
Pe = params.Pc * (1 + (y-1)/2*Me**2)**(-y/(y-1))
return Pe

#def get_Pa_from_alt(alt):
’’’ Find the ambient atmospheric pressure, given the

altitude above mean sea level in Earth’s atmosphere.
This functionnis only valid for input altitudes up to 44 km

.

98 APPENDIX A. CODE

alt Altitiude above mean sea level [m]
returns Atmospheric pressure [Pa]
’’’
if alt < 44331:
Pressure (http://psas.pdx.edu/RocketScience/

PressureAltitude_Derived.pdf, eqn 9)
Pa = 100 * ((44331.514 - alt)/(11880.516))**(1/0.1902632)
return Pa
else:
logger.warning(’Atmospheric pressure model does not extend

to the altitude requested. returning 0 Pa pressure’)
return 0

#def get_alt_from_Pa(Pa):
’’’ Given the ambient atmospheric pressure, find the

altitude above mean sea level in Earth’s atmosphere.
This functionnis only valid for input altitudes up to 44 km

.
alt Altitiude above mean sea level [m]
returns Atmospheric pressure [Pa]
’’’
if Pa > 0:
Altitude (http://psas.pdx.edu/RocketScience/

PressureAltitude_Derived.pdf, eqn 10)
alt = 44331.5 - 4946.62*Pa**0.190263
return alt
else:
logger.warning(’Negative pressure input. returning zero

altitude’)
return 0

#def get_Re_from_thrust(params, F):
’’’ Find the shroud radius, given the thrust force and the

other parameters.
F Desired pressure-matched thrust force [N]
returns Needed shroud radius [m]
’’’
y = params.gamma
Pe = get_Pe(params)
Find the pressure-matched thrust coefficient, using
Rocket Propulsion Elements 7th Ed, Equation 3-30

A.3. SOLVER 99

C_F = ((2*y**2)/(y-1) * (2/(y+1))**((y+1)/(y-1)) \
* (1-(Pe/params.Pc)**((y-1)/y)))**0.5
Use the thrust coefficient to find the throat area

required
At = F / (C_F * params.Pc)
Ae = At * params.er
The Exit Area is a circle of radius Re
Re = (Ae/pi)**0.5
return Re

#def get_thrust(params):
’’’ Find the pressure-matched thrust of the engine, given

the engine parameters.
returns Thrust force at matched pressure (Pa=Pe) [N]
’’’
y = params.gamma
Pe = get_Pe(params)
Find the pressure-matched thrust coefficient, using
Rocket Propulsion Elements 7th Ed, Equation 3-30
C_F = ((2*y**2)/(y-1) * (2/(y+1))**((y+1)/(y-1)) \
* (1-(Pe/params.Pc)**((y-1)/y)))**0.5
Find the throat area
Ae = pi*params.Re**2
At = Ae/params.er
F = C_F*At*params.Pc
return F
#
#def get_Re_from_mass_flow(params, m_dot):
’’’ Find the shroud radius, given the mass flow and the

other parameters.
m_dot Desired mass flow [kg / s]
returns Needed shroud radius [m]
’’’
y = params.gamma
Find the Specific Gas Constant
R = R_mol / params.molar_m * 1000
Find the Throat Area require for the specified mass flow,

using
Eocket Propul;sion Equations 7th Ed, Equation 3-24
At = m_dot / (params.Pc * y * (2/(y+1))**((y+1)/(2*y-2)) \
/ (y*R*params.Tc)**0.5)

100 APPENDIX A. CODE

Use the Throat Area and the Expansion Ratio to find the
Exit Area

Ae = At * params.er
The Exit Area is a circle of radius Re
Re = (Ae/pi)**0.5
return Re
#
#def get_er_from_Pe(params, Pe):
’’’ Find the needed expansion ratio, given a desired exit

pressure and the other engine parameters.
Pe Desired exit pressure [Pa]
returns Needed expansion ratio [-]
’’’
y = params.gamma
Rocket Propulsion Elements 7th Ed, Equation 3-25
AtAe = ((y+1)/2)**(1/(y-1)) * (Pe/params.Pc)**(1/y) \
* ((y+1)/(y-1)*(1 - (Pe/params.Pc)**((y-1)/y)))**0.5
er = 1/AtAe
return er

A.4. FITNESS FUNCTION 101

A.4 Fitness Function

"""
@author: Giorgio Tesser
mail: giorgio.tesser@studenti.unipd.it
"""
import math
import numpy
from scipy.optimize import fsolve

Calculation of the volume of the tank
def tank (new_population,zn):
Z = numpy.zeros (shape=colomn_size)
Mm = numpy.zeros (shape=colomn_size)
Rp = numpy.zeros (shape=colomn_size)

tank_pressure = new_population[0:,2]
T = new_population[0:,4]
Z = zn[0:,0]
n = zn [0:,1]
R=8.314472
Vt = (n*R*T*Z)/tank_pressure
return Vt

Geometry of the tank. Section based on
Ames R. Farr and Maan H. Jawad.
"Guidebook for the design of asme section VIII pressure

vessels"
Imperial units used

def tank_design (V,sol_per_pop,new_population,zn):
t_size = (sol_per_pop,4)
t = numpy.zeros (t_size)
for i in range(0,sol_per_pop):

if (new_population[i,1] == 0): # sphere
Depending on the solution (i), can be aluminum

or stainless steel
sigma = zn[i,2] # evoking zn from "data.py"
r=((3/4.0)*V[i]/math.pi) # radius of the sphere
r=math.pow(r,(1/3.0))
r=r*39.37008

102 APPENDIX A. CODE

P=new_population[i,2]*1.3*0.00014504 # Pressure
in PSI

e= (P/sigma)/0.0665
t[i,0]=(P*r)/((2*sigma*e)-(0.2*P))
t[i,1]=numpy.copy(t[i,0])
t[i,2]=r
t[i,3]=numpy.copy(t[i,2])
0 and 1 are the thickness of the sphere (that

are equal)
2 and 3 are the radii of the sphere (that are

equal)
else: # cylinder

Depending on the solution (i), can be aluminum
or stainless steel

sigma = zn[i,2] # evoking zn from "data.py"
Most common ratio between h and r is in range

[6.5-7]
r=math.pow((V[i]/6.75*math.pi),(1/2.0)) # in

meters
h=6.75*r
h=h*39.37008 # in inches
r=r*39.37008 # in inches
P=new_population[i,2]*1.3*0.00014504 # Pressure

in PSI
e_circ= (P/sigma)/0.385
t_circ=(P*r)/((sigma*e_circ)-(0.6*P))
t[i,0]=t_circ
e_long= (P/sigma)/1.25
t_long=(P*h)/((2*sigma*e_long)+(0.4*P))
t[i,1]=t_long
t[i,2]=r
t[i,3]=6.75*(t[i,2])
0 and 1 are the thickness of the cylinder
2 is the radius of the cylinder
3 is the height of the cylinder

t=t*0.0254 # in meters
return t

Calculation of the empty tank mass, based on density of teh
material,

thickness and shape

A.4. FITNESS FUNCTION 103

def empty_tank_mass (t,sol_per_pop,new_population,zn):
etm_size = (sol_per_pop,1)
empty_tank_mass = numpy.zeros (etm_size)
for i in range(0,sol_per_pop):

if (new_population[i,1] == 0):
density = zn[i,3]
solid_volume1=((4/3.0)*math.pi*math.pow(t[i

,2],(3.0)))
solid_volume2=((4/3.0)*math.pi*math.pow((t[i,2]-t

[i,0]),3))
empty_tank_mass[i] = density*(solid_volume1-

solid_volume2)
0 and 1 are the thickness of the sphere (that

are equal)
2 and 3 are the radii of the sphere (that are

equal)
else:

density = zn[i,3]
solid_volume1=math.pi*math.pow(t[i,2],2)*t[i,3]
solid_volume2=math.pi*math.pow((t[i,2]-t[i,0]),2)

*(t[i,3]-t[i,1])
empty_tank_mass[i] = density*(solid_volume1-

solid_volume2)
0 and 1 are the thickness of the cylinder
2 is the radius of the cylinder
3 is the height of the cylinder

return empty_tank_mass

Evaluation of the fitness level

def FL_calc(new_population,m_diff,sol_per_pop,parents_num,
performance_matrix,coeff_FL_it,coeff_FL_cost,coeff_FL_er,
coeff_FL_m_dot,coeff_FL_epsilon,coeff_FL_ht):

Constant of the fitness calculation

x1=11
x1_i=11
x2=12
x3=11
x4=11

104 APPENDIX A. CODE

x4_i=11
x5=11
x5_i=10
g0 = 9.81

Initialization of the vectors

size1= (sol_per_pop)
FL_epsilon = numpy.zeros(size1)
FL_er = numpy.zeros(size1)
FL_cost = numpy.zeros(size1)
It = numpy.zeros (size1)
FL_it = numpy.zeros (size1)
FL_ht = numpy.zeros(size1)
FL_m_dot = numpy.zeros(size1)
m_diff_abs = abs(m_diff)

Difference between the available mass and the calculated
mass

for i in range (0,sol_per_pop):

Finding the lowest difference in mass, i.e. the
solution that

exploits all the available mass

best_m = numpy.where(m_diff_abs == numpy.min(m_diff_abs
))

best_m_idx = best_m[0][0]
m_diff_abs[best_m_idx] = math.pow (10,10)

Bonus for the solution that respect the condition.
Proportional bonus, higher for the lowest mass

difference

if m_diff[best_m_idx] > 0 and m_diff[best_m_idx] <5 :
FL_epsilon[best_m_idx] = math.pow (math.e,x1)
x1=x1-x1_i/(sol_per_pop+1)

Flat malus for solutions that don’t respect the
condition

A.4. FITNESS FUNCTION 105

else:
FL_epsilon[best_m_idx] = -6e10

Total Impulse
for i in range (0,sol_per_pop):

Isp = performance_matrix[i,9]
propellant_mass = new_population[i,3] #propellant_mass

= gas_mass
It[i] = Isp * propellant_mass * g0
It2 = numpy.copy(It)# I use a fake It to calculate the

maximum at each iteration
Proportional bonus, higher for higher It

for i in range (0,sol_per_pop):
best_it = numpy.where (It2 == numpy.max(It2))
best_it_idx = best_it[0][0]
It2[best_it_idx] = 1
FL_it[best_it_idx] = math.pow(math.e,x3)
x3 = x3 - 0.01

Flat penalizations for solution with ht<1mm and small
bonus for the

solutions that respect the condition

for i in range (0, sol_per_pop):
ht_ev = performance_matrix[i,2]
if ht_ev < 1:

FL_ht[i] = -6e10
else:

FL_ht[i] = +1e4

Flat malus for propellant cost

for i in range (0, sol_per_pop):
propellant_cost = [0,0,0,0,0,0]
propellant_cost[0]=275 #nitrogen
propellant_cost[1]=275 #helium
propellant_cost[2]=275 #argon
propellant_cost[3]=1585 #xenon
propellant_cost[4]=295 #methane
gas_type = new_population[i,0]
if gas_type==0:

106 APPENDIX A. CODE

FL_cost[i] = -propellant_cost[0]
if gas_type==1:

FL_cost[i] = -propellant_cost[1]
if gas_type==2:

FL_cost[i] = -propellant_cost[2]
if gas_type==3:

FL_cost[i] = -propellant_cost[3]
if gas_type==4:

FL_cost[i] = -propellant_cost[4]

Bonus for expansion ratio
Proportional bonus, higher for the higher expansion

ratios
exp_ratio =numpy.copy(new_population[:,7])
for i in range (0, sol_per_pop):

best_er = numpy.where(exp_ratio == numpy.max(exp_ratio)
)

best_er_idx = best_er[0][0]
exp_ratio[best_er_idx] = 0
FL_er[best_er_idx] = math.pow (math.e,x4)
x4=x4-x4_i/(sol_per_pop+1)

Malus for mass flow
Proportional bonus, higher for the higher mass flows
m_dot1 =numpy.copy(performance_matrix[:,7])
for i in range (0, sol_per_pop):

best_m_dot1= numpy.where(m_dot1 == numpy.max(m_dot1))
best_m_dot1_idx = best_m_dot1[0][0]
m_dot1[best_m_dot1_idx] = 0
FL_m_dot[best_m_dot1_idx] = -math.pow (math.e,x5)
x5=x5-x5_i/(sol_per_pop+1)

Initialization of a global FL vector

FL_dim = [sol_per_pop,6]
FL = numpy.zeros(FL_dim)

Definition of a FL vector, using coefficient stated at
the beginning of

Main.py and FL defined here
FL[:,0] = coeff_FL_epsilon*FL_epsilon

A.4. FITNESS FUNCTION 107

FL[:,1] = coeff_FL_it*FL_it
FL[:,2] = coeff_FL_ht*FL_ht
FL[:,3] = coeff_FL_cost*FL_cost
FL[:,4] = coeff_FL_er*FL_er
FL[:,5] = coeff_FL_m_dot*FL_m_dot
return FL

Calculation of the fitness level for the rerun
It’s similar but it takes into account less parameters
def FL_calc_rerun(new_population,m_diff,sol_per_pop,parents_num

,performance_matrix,coeff_FL_it,coeff_FL_cost,coeff_FL_er,
coeff_FL_m_dot,coeff_FL_epsilon):

Constant of the fitness calculation

x1=10.0
x1_i=10.0
x2=11

Initialization of the parameters

size1= (sol_per_pop)
FL_m_dot = numpy.zeros(size1)
FL_ht = numpy.zeros(size1)
m_diff_abs = abs(m_diff)
FL_epsilon = numpy.zeros(size1)

Flat penalizations for solution with ht<1mm and small
bonus for the

solutions that respect the condition

for i in range (0, sol_per_pop):
ht_ev = performance_matrix[i,2]
if ht_ev < 1:

FL_ht[i] = -6e10
else:

FL_ht[i] = +1e4

Malus for mass flow
Proportional bonus, higher for the higher mass flows

108 APPENDIX A. CODE

m_dot1 =numpy.copy(performance_matrix[:,7])
for i in range (0, sol_per_pop):

best_m_dot1= numpy.where(m_dot1 == numpy.max(m_dot1))
best_m_dot1_idx = best_m_dot1[0][0]
m_dot1[best_m_dot1_idx] = 0
FL_m_dot[best_m_dot1_idx] = -math.pow (math.e,x1)
x1 = x1-x1_i/(sol_per_pop+1)

for i in range (0,sol_per_pop):

Finding the lowest difference in mass, i.e. the
solution that

exploits all the available mass

best_m = numpy.where(m_diff_abs == numpy.min(m_diff_abs
))

best_m_idx = best_m[0][0]
m_diff_abs[best_m_idx] = math.pow (10,10)

Bonus for the solution that respect the condition.
Proportional bonus, higher for the lowest mass

difference

if m_diff[best_m_idx] > 0 and m_diff[best_m_idx] <5 :
FL_epsilon[best_m_idx] = math.pow (math.e,x1)
x1=x1-x1_i/(sol_per_pop+1)

Flat malus for solutions that don’t respect the
condition

else:
FL_epsilon[best_m_idx] = - math.pow (math.e,x2)

Initialization of a global FL vector

FL_dim = [sol_per_pop,3]
FL = numpy.zeros(FL_dim)

Definition of a FL vector, using coefficient stated at
the beginning of

A.4. FITNESS FUNCTION 109

Main.py and FL defined here

FL[:,0] = FL_ht
FL[:,1] = coeff_FL_m_dot*FL_m_dot
FL[:,2] = coeff_FL_epsilon*FL_epsilon
return FL

110 APPENDIX A. CODE

A.5 GA

"""
@author: Giorgio Tesser
mail: giorgio.tesser@studenti.unipd.it
"""
List of libraries
import math
import numpy

Selection of the parents based on the 20% best FL
def select_mating_pool(fl,sol_per_pop,parents_num,

new_population,num_genes):
FL_parents = numpy.copy(fl)
parents = numpy.empty((parents_num, num_genes))
for i in range(0,parents_num):

max_FL = numpy.where (FL_parents == numpy.max(
FL_parents))

max_FL_idx = max_FL[0][0]
parents[i,:] = new_population [max_FL_idx,:]
FL_parents[max_FL] = -1e5

return parents

Crossover
def crossover(parents,offspring_size):

offspring = numpy.empty (offspring_size)
for k in range (offspring_size [0]):

parent1_idx = k%parents.shape[0] #index of the first
parent to mate

parent2_idx = (k+1)%parents.shape[0] #index of the
second parent to mate

#The new offspring will have half of its genes from
parent 1 and the other half from parent 2

offspring [k,0:offspring_size[0]:2] = parents[
parent1_idx,0:offspring_size[0]:2]

offspring [k,1:offspring_size[0]:2] = parents[
parent2_idx,1:offspring_size[0]:2]

return offspring

Mutation, uncomment lines with ## to add mutation

A.5. GA 111

def mutation(chamber_pressure_min,chamber_pressure_max,
offspring_crossover,offspring_size):
mutation=numpy.int(0.2*offspring_size[0])
random_mutation5=numpy.random.randint(0,offspring_size[0],

mutation)
random_mutation7=numpy.random.randint(0,offspring_size[0],

mutation)
for i in range(mutation):

Mutation of the chamber pressure
##idx5 = random_mutation5[i]
##if (offspring_crossover[idx5,5]<(pcmax-5e4) and

offspring_crossover[idx5,5]<(pcmin-5e4)):
##random_value5 = numpy.random.randint(-5e4, 5e4,

1)
##offspring_crossover[idx5, 5] =

offspring_crossover[idx5, 5] +random_value5

Mutation of the expansion ratio
idx7 = random_mutation7[i]
random_value7 = numpy.random.randint(-0.5, 1.5, 1)
offspring_crossover[idx7, 7] = offspring_crossover[idx7

, 7] +random_value7
return offspring_crossover

Generation of random solution in the design ranges
def random_gen(random_sol_shape,chamber_pressure,ps_min,ps_max,

tank_min,tank_max,gas_mass_min,gas_mass_max,Re_min,Re_max,
er_min,er_max,prop_min,prop_max):
random_solutions= random_sol_shape[0]
random_gen=numpy.zeros(random_sol_shape)
Propellant type
random_gen[0:random_solutions,0] = numpy.random.randint(low

=prop_min,high=prop_max, size=random_solutions)
Tank type
random_gen[0:random_solutions,1] = numpy.random.randint(low

=tank_min,high=tank_max, size=random_solutions)
Tank pressure in bar
random_gen[0:random_solutions,2] = numpy.random.randint(low

=ps_min,high=ps_max, size=random_solutions)
converted to Pa

112 APPENDIX A. CODE

random_gen[0:random_solutions,2] = random_gen[0:
random_solutions,2]*1e5

Gas_Mass
random_gen[0:random_solutions,3] = numpy.random.uniform(low

=gas_mass_min,high=gas_mass_max, size=random_solutions)
Tank temperature
random_gen[0:random_solutions,4] = numpy.random.randint(low

=283,high=313, size=random_solutions)
Thrust chamber pressure
random_gen[0:random_solutions,5] = chamber_pressure
Exit radius in mm
random_gen[0:random_solutions,6] = numpy.random.randint(low

=Re_min,high=Re_max, size=random_solutions)
converted in m
random_gen[0:random_solutions,6] = random_gen[0:

random_solutions,6]/1000
Expansion ratio
random_gen[0:random_solutions,7] = numpy.random.randint(low

=er_min,high=er_max+1, size=random_solutions)
Tank material:0=aluminum,1=stainless steel
random_gen[0:random_solutions,8] = numpy.random.randint(low

=0,high=2, size=random_solutions)
return random_gen

A.6. RERUN 113

A.6 Rerun

"""
@author: Giorgio Tesser
mail: giorgio.tesser@studenti.unipd.it
"""
List of libraries
import numpy
import math
from scipy.optimize import fsolve
import Data
import Fitness
import GA
import aero_solver
from collections import namedtuple

Definition of the re_run cycle.

It’s not commented becuase it’s the exact same copy of the
main.py, see that

for explanation of the functions

def rerun(new_population,sol_per_pop,maximum_tank_mass,
coeff_FL_it,coeff_FL_cost,coeff_FL_er,coeff_FL_m_dot,
num_genes, coeff_FL_epsilon,coeff_FL_ht):

Defining the population size
pop_size = (sol_per_pop,num_genes)
num_parents_mating = 4
toll = 2
generation=0
condition1=True
Best_solution_size = (1,num_genes)
Queens = numpy.zeros(Best_solution_size)
Queens_add = numpy.zeros(Best_solution_size)
colomn_size= (sol_per_pop)

while 1:
if toll==0:

condition1=False

114 APPENDIX A. CODE

if condition1==True:
zn = Data.parameters (new_population,sol_per_pop)
V = Fitness.tank (new_population,zn)
t = Fitness.tank_design(V,sol_per_pop,new_population

,zn)
empty_tank_mass = Fitness.empty_tank_mass (t,

sol_per_pop,new_population,zn)
gas_size = (sol_per_pop,1)
gas_mass=numpy.zeros(gas_size)
gas_mass [0:,0] = new_population[0:,3]
full_tank_mass = empty_tank_mass + gas_mass
m_diff= maximum_tank_mass - full_tank_mass
parents_num = int(0.2*sol_per_pop)
performance_size=[sol_per_pop,16]
performance_matrix = numpy.zeros(shape=

performance_size)
EngineParameters = namedtuple(’EngineParameters’, ’

Tc␣Pc␣molar_m␣gamma␣Re␣er␣Ps’)
for j in range (0,sol_per_pop):

T = new_population[j,4]
p_chamber = new_population[j,5]
p_storage = new_population[j,2]
Re = new_population[j,6]
er = new_population[j,7]
molar_mass = gas_mass[j]*1000/zn[j,1]
params = EngineParameters(Tc=T, Pc=p_chamber,

molar_m=molar_mass, gamma=1.27, Re=Re, er=er,
Ps= p_storage)

performance = aero_solver.aerosolver(params)
performance_matrix[j,0] = performance.delta
performance_matrix[j,1] = performance.Re
performance_matrix[j,2] = performance.ht
performance_matrix[j,3] = performance.At
performance_matrix[j,4] = performance.er
performance_matrix[j,5] = performance.Pc
performance_matrix[j,6] = performance.Tc
performance_matrix[j,7] = performance.m_dot
performance_matrix[j,8] = performance.F
performance_matrix[j,9] = performance.Isp[-1]
performance_matrix[j,10] = performance.Pe
performance_matrix[j,11] = performance.Te

A.6. RERUN 115

performance_matrix[j,12] = performance.Me
performance_matrix[j,13] = performance.Cf
performance_matrix[j,14] = performance.Ps
performance_matrix[j,15] = full_tank_mass[j]

FL= Fitness.FL_calc(new_population,m_diff,
sol_per_pop,parents_num,performance_matrix,
coeff_FL_it,coeff_FL_cost,coeff_FL_er,
coeff_FL_m_dot,coeff_FL_epsilon,coeff_FL_ht)

Sum of each entries of the FL
fl= FL[:,0] + FL[:,1] + FL[:,2] + FL[:,3] + FL[:,4]

+ FL[:,5]
old_pop=numpy.copy(new_population)
fl_max = numpy.where(fl == numpy.max(fl))
fl_max_idx = fl_max[0][0]
Queens[generation,:] = old_pop[fl_max_idx,:]
Queens = numpy.r_[Queens,Queens_add]
parents = GA.select_mating_pool(fl,sol_per_pop,

parents_num,new_population,num_genes)
offspring_size=[pop_size[0]-parents.shape[0],

num_genes]
offspring_crossover_rerun = GA.crossover(parents,

offspring_size)
new_population[0:parents.shape[0], :] = parents
new_population[parents.shape[0]:sol_per_pop, :] =

offspring_crossover_rerun
numpy.random.shuffle(new_population)
generation=generation+1

if generation>10:
toll1=0
for i in range (2,20):

toll_v = (Queens[Queens.shape[0]-i,:]-
Queens[Queens.shape[0]-(i+1),:])

toll1=toll1+numpy.sum(toll_v)
toll=toll1

else:
break

fl_max = numpy.where(fl == numpy.max(fl))
fl_max_idx = fl_max[0][0]
Best_solution = old_pop[fl_max_idx]

116 APPENDIX A. CODE

Best_performance = performance_matrix[fl_max_idx,:]

Results = namedtuple(’Results’, ’Idx␣fl␣FL␣Propellant_Type␣
Tank_Type␣Tank_material␣Tank_Dimensions␣Storage_Pressure
␣gass_mass␣full_tank_mass␣Tank_temperature␣
Chamber_Pressure␣delta␣Re␣ht␣At␣er␣Pc␣Tc␣m_dot␣F␣Isp␣Pe␣
Te␣Me␣Cf␣Ps’)

Optimized_results = Results(Idx=fl_max_idx, fl=fl[
fl_max_idx], FL=FL[fl_max_idx], Propellant_Type=
Best_solution[0],Tank_Type = Best_solution [1],
Tank_material = Best_solution[8], Tank_Dimensions = t[
fl_max_idx,:], Storage_Pressure = Best_solution[2],

gass_mass = Best_solution[3],
full_tank_mass = Best_performance
[15], Tank_temperature =
Best_solution[4], Chamber_Pressure
= Best_solution[5],

delta = Best_performance[0], Re =
Best_performance[1], ht =
Best_performance[2], At =
Best_performance[3], er =
Best_performance[4],

Pc = Best_performance[5],Tc =
Best_performance[6], m_dot =
Best_performance[7], F =
Best_performance[8], Isp =
Best_performance[9],

Pe = Best_performance[10], Te =
Best_performance[11], Me =
Best_performance[12], Cf =
Best_performance[13], Ps =
Best_performance[14])

return Optimized_results

Bibliography

[1] T. D. Thompson. Trw space log. Vol. 32 to 34, TRW Space and Elec-
tronics Group, 1996 and 1997-1998.

[2] George P. Sutton. Rocket Propulsion Elements. John Wiley & Sons,
Inc., New York, 2001. (Cited at pages 1, 3 e 8)

[3] ESA-European Space Agency. Components of an ariane 5g
launcher. https://www.esa.int/spaceinimages/Images/2004/04/
Components_of_an_Ariane_5G_launcher, 2004. Online; accessed 29
March 2019. (Cited at page 2)

[4] Gerald Hagemann, Hans Immich, Thong Van Nguyen, and Gennady E.
Dumnov. Advanced rocket nozzles. JOURNAL OF PROPULSION
AND POWER, September-October 1998. (Cited at pages 3, 5, 7, 10, 11
e 12)

[5] Howard D. Curtis. Orbital Mechanics for Engineering students. Elsevier
Ltd., Oxford, 2014. (Cited at page 5)

[6] Stephen Corda, Bradford A. Neal, Timothy R. Moes, Timothy Cox,
Richard J. Monaghan, Leonard S. Voelker, Griffin P. Corpening, and
Richard R. Larson. Flight Testing the Linear Aerospike SR-71 Experi-
ment (LASRE). 1998. (Cited at page 7)

[7] M. Propst, V. Liebmann, J. Sieder-Katzmann, C. Bach, and M. Taj-
mar. Maximizing side force generation in aerospike nozzles for attitude
and trajectory control. 69th International Astronautical Congress, 2018.
(Cited at page 8)

[8] Eric Besnard and John Garvey. Aerospike engines for nanosat and small
launch vehicles. Space 2004 Conference and Exhibit, 28 - 30 September
2004. (Cited at page 8)

[9] Arca. http://www.arcaspace.com/. Accessed: 24-4-2019. (Cited at
page 12)

117

https://www.esa.int/spaceinimages/Images/2004/04/Components_of_an_Ariane_5G_launcher
https://www.esa.int/spaceinimages/Images/2004/04/Components_of_an_Ariane_5G_launcher
http://www.arcaspace.com/

118 BIBLIOGRAPHY

[10] ESA. Investigation on the key issues for the realisation of an aerospike
rocket engine. ESA-GSTP-TECMPC-SOW-015959, 8 October 2019.
(Cited at page 13)

[11] J. Sieder-Katzmann, C. Bach, M. Propst, and M. Tajmar. Evaluation of
the performance potential of aerodynamically thrust vectored aerospike
nozzles. 67th International Astronautical Congress, 2016. (Cited at
page 14)

[12] C. Bach, S. Schöngarth, B. Bust, M. Propst, J. Sieder-Katzmann, and
M. Tajmar. How to steer an aerospike. 69th International Astronautical
Congress, 2018. (Cited at page 14)

[13] N. M. Erni, S. A. Whitemore, and D. J. Baker. Closed-loop attitude
control using fluid dynamic vectoring on an aerospike nozzle. IREASE,
2012. (Cited at page 14)

[14] T. et al. Bui. Flight research of an aerospike nozzle using high power solid
rockets. 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference &
Exhibit, 2005. (Cited at page 14)

[15] Assad Anis. Cold gas propulsion system – an ideal choice for remote
sensing small satellites. NED University of Engineering and Technology
Pakistan. (Cited at pages 17 e 31)

[16] Ames’ Mission Design Division. Small Spacecraft Technology State of
the Art. NASA, Moffet Field, California, 2015. (Cited at page 17)

[17] D. Tate Schappell, Pete Smith, and Nick Solway. Advances in
marotta electric and small satellite propulsion fluid control activities.
41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit,
2005. (Cited at page 19)

[18] D. Gibbon and Dr C. Underwood. Low cost butane propulsion systems
for small spacecraft. 15th AIAA / USU Conference on Small Satellites,
2001. (Cited at pages 19, 21 e 36)

[19] Dmc-1g (disaster monitoring constellation- first generation)
missions. https://directory.eoportal.org/web/eoportal/
satellite-missions/d/dmc. Accessed: 12-4-2019. (Cited at
pages 19, 20 e 21)

 https://directory.eoportal.org/web/eoportal/satellite-missions/d/dmc
 https://directory.eoportal.org/web/eoportal/satellite-missions/d/dmc

BIBLIOGRAPHY 119

[20] Grant Bonin, Niels Roth, Josh Armitage, and E. Robert Risi, Ben
ad Zee. Canx-4 and CanX-5 precision formation flight: Mission ac-
complished! 29th Annual AIAA/USU, Conference on Small Satellites,
2015. (Cited at page 22)

[21] R. S. Pauliukonis. Fuel system comprising sulfur hexafluoride and
lithium containing fuel. https://patents.google.com/patent/US3325318.
(Cited at page 22)

[22] G. Manzoni and Y. L. Brama. Cubesat micropropulsion characterization
in leo. 29th Annual AIAA/USU Conference on Small Satellites, 2015.
(Cited at page 23)

[23] Urmas Kvell, Marit Puusepp, Franz Kaminski, Jaan-Eerik Past, Kristof-
fer Palmer, Tor-Arne Grönland, and Mart Noorma. Nanosatellite or-
bit control using mems cold gas thrusters. Proceedings of the Estonian
Academy of Sciences, 2014. (Cited at pages 24 e 25)

[24] John Bown, Marco Vila, and Austin Williams. Cubesat based ren-
dezvous, proximity operations, and docking in the cpod mission. Tyvak
Nano-Satellite Systems nc., 2015. (Cited at page 26)

[25] Joseph M. Cardin and J. Acosta. Design and test of an economical cold
gas propulsion system. 14 th Annual AIAA/USU Conference on Small
Satellites. (Cited at pages 27 e 35)

[26] Markus Schelkle. The grace cold gas attitude and orbit control system.
3rd International Conference on Spacecraft Propulsion, Cannes, 2000.
(Cited at pages 28, 29, 35 e 37)

[27] George P. Sutton. History of Liquid Propellant Rocket Engines. Amer-
ican Institute of Aeronautics and Astronautics, Inc., Reston, Virginia,
2006. (Cited at page 30)

[28] Wilfried Ley, Klaus Wittmann, and Willy Hallmann. Handbook of Space
Technology. John Wiley & Sons, Inc., 2009. (Cited at pages 31 e 37)

[29] Ames R. Farr and Maan H. Jawad. Guidebook for the design of asme
section VIII pressure vessels. Asme, 2010. (Cited at page 32)

[30] Hugo Nguyen, Johan Köhler, and Lars Stenmark. The merits of cold
gas micropropulsion in state-of-the-art space missions. IAC-02-S.2.07,
2002. (Cited at page 34)

120 BIBLIOGRAPHY

[31] Mojtaba Ghasemi and Abdolrahim Rezaeiha. Flight qualification tests
of a cold gas propulsion system for a small satellite. Conference on
Propulsion and Power, 2012. (Cited at page 35)

[32] Dan R. Lev and Jacob Herscovitz. Carbon dioxide heated gas propul-
sion system for nano-satellites. 31th AIAA / USU Conference on Small
Satellites, 2017. (Cited at pages 36 e 37)

[33] Inert gas filter. http://omnidea-rtg.de/site/index.php. Accessed:
24-4-2019. (Cited at page 37)

[34] Mohammad Fatehi, Mehran Nosratollahi, Amirhossein Adami, and
S.M.Hadi Taherzadeh. Designing space cold gas propulsion system us-
ing three methods: Genetic algorithms, simulated annealing and particle
swarm. International Journal of Computer Applications, 2015. (Cited
at page 52)

[35] Matt Vernacchia. Spike contour algorithm. MIT RocketTeam - Pyralis
Rocket Engine, 2013. (Cited at pages 57 e 75)

[36] C.C. Lee. Fortran programs for plug nozzle design. Prepared for the Ad-
vanced Propulsion Section, Propulsion and Mechanics Branch, P&VE
Division of the George C Marshall Space Flight Center by Brown Engi-
neering Company, 1963. (Cited at pages 57, 58 e 59)

[37] J. Majdalani and B. A. Maickie. Explicit inversion of stodola’s area-
mach number equation. Transactions of the ASME, 2011. (Cited at
pages 59, 61 e 62)

[38] Khalid Khan. Theoretical and numerical simulation analyses of the
inviscid and the viscous flowfields of an aerospike nozzle. 2018. (Cited
at page 61)

[39] Timothy S. Van Milligan. Model Rocket Propulsion. Apogee. (Cited at
page 65)

http://omnidea-rtg.de/site/index.php

	List of figures
	Acronyms
	Introduction
	Space Propulsion
	The aerospike nozzle
	The project

	Research
	State of the art of cold gas thrusters
	Cold Gas Micro Thruster
	SSTL: DMC and SNAP-1
	CNAPS
	POPSAT
	MEMS
	CPOD
	VACCO: CGPS
	GRACE

	Main components
	Feed system
	Tank
	Propellant
	Filters
	Pressure sensor
	Pressure regulator
	Latching valve
	Relief valve

	Design
	Objectives
	Requirements and Constraints
	Functional Requirements
	Performance Requirements
	Design Requirements
	Operational Requirements
	Constraints

	Raw design of the system
	OLC
	DLC
	Design Drivers

	Genetic Algorithm
	The algorithm
	Initial Population
	Fitness Evaluation
	Tank Properties
	Thruster Performance
	Fitness Level

	Termination Criterion, Crossover and Mutation
	Outer cycle

	Results and Conclusions
	Optimized solution
	Target solution
	Spike contour
	Conclusions

	Code
	Main
	Data
	Solver
	Fitness Function
	GA
	Rerun

	Bibliography

