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Chapter 1

Introduction

In this work we aim to study the gradient flow on the space of probability measures
on Rd generated by the sliced Wasserstein distance with respect to a fixed ªtargetº
probability measure: this distance was first introduced by M. Bernot and others
in [10], and we are going to present it briefly in the following, trying to explain
why it is interesting and useful to study its properties. Our goal is to answer the
following three questions regarding the curve (ρt)t≥0 which arises as the gradient

flow for the functional F ≔
SW2

2(·,ν)
2 , SW2 being the sliced Wasserstein distance,

which will be presented in chapter 3:

• Conjecture 1. Does the curve ρt converge to any distribution with respect
to the sliced Wasserstein or (even better) the Wasserstein distance? In this
case, what can we say about the limit measure ρ∞ = limt→∞ ρt? Is it true that
ρ∞ = ν?

• Conjecture 2.(Lagrangian point of view) Fix an initial particle x ∈ Rd. We
want to study the qualitative behavior of the ODE



















ẏ = v(t, y),

y0 = x,

where v is the velocity field (4.4). In particular we would like to know
existence and uniqueness results, and if the limit map T = limt→∞ yt is well
defined (at least for a.e. x ∈ Rd).

• Conjecture 3. Finally, assuming the previous two questions admit a positive
answer, what can we say about the map y∞ = limt→∞ yt? In particular, is it
true that this map is optimal in the sense of optimal transport between the
initial datum ρ0 and the target measure ν (which, under these assumptions,
coincides with the limit of the curve ρt)?

Conjecture 3 was actually the starting point of the present work, since the
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article [8] by F. Santambrogio and H. Lavenant suggests a strategy to find a
counterexample to the optimality in the case of the gradient flow for the Fokker
Planck functional. Adapting this article to our case, we managed to prove that
the gradient flow generated by the Sliced Wasserstein distance does not provide
optimal transport, even if numerical computations in the discrete case suggest
that this map is a good approximation of the optimal one. We then focused on the
problem of the convergence of the gradient flow, namely on conjecture 1, finding
some cases that show different behaviors of the convergence of the gradient flow
depending on the initial data (i.e. the starting and target measures).

This work is structured as follows: in the two following chapters we will
present some basic-knowledge results about optimal transport and Wasserstein
spaces, then we will present the sliced Wasserstein distance and its first properties;
in the fourth chapter we will discuss the theory of gradient flows in the space of
probability measures. Chapters 5 and 6 contain the original results we obtained
in this project: we will build the counterexample which proves that conjecture 3 is
false and we will present some convergence results, which give a partial answer
to conjecture 1. Among the 3 conjectures presented, the second one is the most
difficult to treat: some aspects regarding it will be discussed in the final chapter of
this work, which will also contain other possible directions for a further research
on these topics.
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Chapter 2

Optimal transport - basic knowledge

During the last decades, optimal transport has been rediscovered as one of most
flourishing branches of mathematics: the theory was born in the Eighteenth
century in order to answer some very concrete questions regarding the transport
of material from french mines, and nowadays it has become so rich and developed
that it has revealed its importance in lots of mathematical disciplines like PDEs,
fluid mechanics, geometry, probability theory and also applied mathematics like
economics, and image processing (see [7]).

2.1 Monge and Kantorovich problems

Gaspard Monge (1746-1818) is considered to be the father of optimal transport: his
ªMémoire sur la théorie des déblais et des remblaisº (1781) is the seminal paper for
this subject since here, for the first time, the following problem was investigated:
we want to transport a fixed mass of material from an initial configuration (or
distribution) to another in the optimal way with respect to the linear cost, namely
minimizing the average displacement of the moved particles. The problem can
be formulated as follows: given two probability densities µ and ν in Rd, we want
to find a map T:Rd → Rd such that

ν(A) = µ(T−1(A)) (2.1)

for any Borel set A ⊂ Rd (this means that the first distribution is pushed onto the
other) and minimizing the quantity

∫

Rd

|T(x) − x|dµ(x). (2.2)

Condition (2.1) can be written as T#µ = ν, where T#:P(Rd) → P(Rd) is called the
pushforward of the map T.

7



2.1. MONGE AND KANTOROVICH PROBLEMS

Remark 1 (Properties of the push-forward). One can check that

• (T ◦ S)# = T# ◦ S#

• If T is invertible, then (T−1)# = (T#)−1

Problem (2.2) can also be formulated for a generic cost function c:Rd → Rd.
Solving the Monge problem

(MP)
∫

Rd

c(T(x), x)dµ(x)

is non trivial. For starters, there may not be feasible (i.e. admissible) maps T, as it
is shown in the following

Example 1. Let a, b ∈ Rd, a ̸= b. Define µ = δa, ν =
δa

2 +
δb

2 . If a feasible map

T:P(Rd)→ P(Rd) exists, then taking the Borel set A = {a}, we should have

1
2
= µ(T−1(A)) =



















1 if a ∈ T−1({a}),
0 otherwise,

which is a contradiction.

Moreover, even when the set of admissible maps is not empty, the existence
of a minimizer is not guaranteed, since the constraint given by (2.1) is not closed
under weak convergence. Here is an example contained in [11] for the quadratic
cost c(x, y) = |x − y|2:

Example 2. Consider µ = H1
⌞A, ν = (H1

⌞B +H1
⌞C)/2 where A,B and C are three

vertical parallel segments in R2 having for abscissas respectively y = 0, y = 1, y = −1.

Obviously the transport cost can not be less than 1 (that’s exactly how much each point

needs at least to be displaced horizontally). Consider then the sequence of maps Tn defined

in the following way: divide A in 2n equal segments (Ai)i=1,...,2n, and B and C in n equal

segments (Bi)i=1,...,n, (Ci)i=1,...,n, ordered downward. The map Tn is defined as a piecewise

affine map seding A2n−1 onto Bi and A2i onto Ci. In this way, the cost of the map Tn is less

then 1 + 1/n, so that the infimum in the Monge problem is 1. On the other hand, a map

T realizing this infimum can’t exisist, since this would imply that all the points are sent

horizontally from A to B and C, but this can’t satisfy the condition T#µ = ν.

Finally, even if the quantity to minimize may seem ªsimpleº, the constraint
given by (2.1) is highly non linear: this makes the problem really difficult to
treat, even from the numerical point of view. These are the main reasons why the
natural way to formulate the optimal transport problem is the so called Kantorovich

formulation. In presenting it, we will also consider two general Polish spaces (i.
e. complete metric spaces) X and Y in place of Rd as the ambient space in which
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2.1. MONGE AND KANTOROVICH PROBLEMS

the starting and final probabilities µ and ν are defined. Finally, we will denote
by πX: X × Y → X and πY: X × Y → Y the natural projections. The problem
reads as follows: given µ ∈ P(X) and ν ∈ P(Y), we aim to find γ ∈ Π(µ, ν) ≔
{

ρ ∈ P(X × Y):πX
# ρ = µ, π

Y
#ρ = ν

}

minimizing

(KP)
∫

X×Y

c(x, y)dγ(x, y).

The setΠ(µ, ν) is called the set of transport plans betweenµ and ν. This formulation,
the relaxation of the Monge problem, is obtained via a duality method:

(MP) inf
T#µ=ν

{∫

c(x,T(x))dµ(x)
}

= inf
T Borel















∫

c(x,T(x))dµ(x) + sup
φ∈Cb(X)

{∫

φ(T(x))dµ(x) −
∫

φ(y)dν(y)
}















≥ sup
φ∈Cb(X)

inf
T Borel















∫

c(x,T(x))dµ(x) + sup
φ∈Cb(X)

{∫

φ(T(x))dµ(x) −
∫

φ(y)dν(y)
}















= sup
φ∈Cb(X)

{∫

inf
y∈Y

(

c(x, y) − φ(y)
)

dµ(x) +
∫

φ(y)dν(y)
}

= sup
φ∈Cb(X),ψ∈Cb(Y)
φ(x)+ψ(y)≤c(x,y)

{∫

ψ(x)dµ(x) +
∫

φ(y)dν(y)
}

(DP).

The condition

φ ∈ Cb(X), ψ ∈ Cb(Y) and φ(x) + ψ(y) ≤ c(x, y) for any x ∈ X, y ∈ Y

is usually denoted by
φ ⊕ ψ ≤ c.

Finally one can apply the Fenchel-Rockafeller theorem: under some mild assump-
tions (the cost function should be l.s.c. and bounded from below) the dual of the
formulation called (DP) - i.e. the bidual of the (MP) - is exactly the Kantorovich
formulation of the Problem (KP), and so we recover that a minimizer for the Kan-
torovich problem exists and the duality gap is zero. This motivates the choice of
considering (KP) as the natural formulation for the optimal transport problem:
minimizers (which are called optimal plans) always exist. Furthermore, when they
exist, optimal maps (i.e. minimizers for (MP)) are optimal plans of the form

γ(dx, dy) = δ0(y − T(x))µ(dx).
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2.2. BRENIER THEOREM AND MONGE - AMPÈRE EQUATIONS

Finally, we observe that in the problem (DP) one can choose

ψ(y) = φc(y) ≔ inf
x∈X

c(x, y) − φ(x).

We thus obtain that

(DP) = sup
φ∈Cb(X)

{∫

X

φ(x)dµ(x) +
∫

Y

φc(y)dν(y)
}

.

When they exist, the maps φ realizing the supremum above are called Kantorovich

potentials of the problem.

2.2 Brenier theorem and Monge - Ampère equations

In the following we will present without giving proofs some classical results on
the existence and the properties of (optimal) transport maps and plans. For a
complete and detailed discussion on these topics, one can for example consult the
books by C. Villani on this subject ([12], [13]).

Theorem 2.2.1. Let µ, ν ∈ P(Rd), and assume µ is atomless. Then there exists at least

one transport map T such that T#µ = ν.

Theorem 2.2.2 (Brenier 1). Let K ⊂ Rd be a compact set such that ∂K is negligible,

and let c(x, y) = h(x − y), with h strictly convex. Let µ, ν ∈ P(K) and assume that µ is

absolutely continuous with respect to the Lebesgue measure. Then the Monge Problem

(MP) admits a unique solution T which is characterized as the unique Borel map such that

ν = µ ◦ T−1 and for which there is a convex function u: K → R such that T(x) = ∇u(x)
µ − a.e. . Furthermore, there exists a Kantorovich potential φ and we have

T(x) = x − (∇h)−1 (∇φ(x)). (2.3)

The map u: K→ R introduced above is called Brenier map of the problem.

Theorem 2.2.3 (Brenier 2). Let c(x, y) = 1
2 |x − y|2. Let µ, ν ∈ P(Rd) have finite second

moments and assume that µ does not give mass to d − 1 surfaces of class C2. Then the

Monge problem (MP) admits a unique solution T which is characterized as the unique

Borel map such that ν = µ◦T−1 and for which there is a convex function u:Rd → R such

that T(x) = ∇u(x) µ − a.e.

The case in which c(x, y) = 1
2 |x − y|2 is called the quadratic-cost case, and we can

deduce by (2.3) that in this situation ∇u = id − ∇φ.

Remark 2. Actually, in theorem 2.2.3, one should just check that µ gives no mass to the

set ∂({u < ∞}) which, actually, is a (d − 1)-rectifiable set of class C2, since u is a convex

map, and therefore {u < ∞} is convex too.

10 Chapter 2



2.3. THE ONE-DIMENSIONAL CASE

The case of the quadratic cost is the most interesting for our purposes, since
(among other reasons) this is exactly the cost involved in the definition of the W2

and SW2 distances that we will present in the following chapters. This is also
the case in which, by a change of variable prcedure, we can obtain the so called
Monge-Ampère equations in their most elegant form:

Theorem 2.2.4 (Monge-Ampère equation). LetΩ ∈ Rd, and suppose thatµ, ν ∈ P(Ω)
are absolutely continuous of densities f , g respectively. Let u be the Brenier map for the

quadratic-cost transport problem from µ to ν. If we suppose that u:Ω → R is strictly

convex and such that det(D2u) ̸= 0 a.e. on {ρ > 0}, then we have

det(D2u(x)) =
f (x)

g(∇u(x))
∀x ∈ Ω. (2.4)

Equation (2.4) is a fully-non-linear PDE of (possibly degenerate) elliptic type
and since the 90’s it has been the object of regularity studies: still nowadays lots of
questions related to these problems are open, but here we present two remarkable
theorems by Caffarelli. For a general survey on the state of art of this subject, see
[6].

Theorem 2.2.5 (Caffarelli 1). Let Ω ⊂ Rd be open, and convex, and let µ, ν ∈ P(Ω) be

C0,α absolutely continuous densities, bounded from below and above by positive constants

on the whole Ω. Then the unique solution u of (2.4) belongs to C2,α(Ω) ∩ C1,α(Ω).

Theorem 2.2.6 (Caffarelli 2). Let K ⊂ Rd be a compact set, and let c(x, y) = |x − y|p,

for 1 < p < ∞. Let µ, ν ∈ P(K) and assume that µ(dx) = ρ0(x)dx, ν(dy) = ρ1(y)dy

with both ρ0, ρ1 ∈ C∞(K). Assume also that there exists α > 0 such that ρ0(x) ≥ α > 0,

ρ1(x) ≥ α > 0 for any x ∈ K. Let u: K → R be the Brenier map of the transport problem

from µ to ν. Then

1. u ∈ C∞(K)

2. u is uniformly strictly convex

3. ∇u: K→ Rd is a diffeomorphism.

2.3 The one-dimensional case

Theorem 2.2.3 and remark 2 from section 2.2 have an important consequence
in dimension one: suppose that µ ∈ P(R) has no atoms. Since every convex
ψ:R → R is differentiable a.e., it is differentiable µ − a.e.. Therefore, an optimal
transport map between µ and any ν ∈ P(R) must exist: since it is the derivative
of a convex function, it will be a monotone non-increasing map. Furthermore,
this transport map can be characterized via the pseudo-inverse of the cumulative
distribution function (CDF) of the probabilities µ and ν:

Chapter 2 11



2.3. THE ONE-DIMENSIONAL CASE

Definition 2.3.1 (Cumulative Distribution Function). Given a probability distribu-

tion µ ∈ P(R), we define its cumulative distribution function Fµ as

Fµ(x) ≔ µ(−∞, x].

It is well known that this map is monotone non decreasing and right continu-
ous. We are therefore lead to give the following

Definition 2.3.2 (Pseudo-Inverse map). Given a non decreasing and right continuous

map F:R→ [0, 1], its pseudo-inverse is the function F[−1]: [0, 1]→ R, defined by

F[−1](x) ≔ inf
t∈R
{F(t) ≥ x} .

If the above set is empty, the infimum is +∞; if instead the set is not bounded from below,

the infimum is −∞.

Now, given two probabilities µ, ν ∈ P(R) such that µ has no atoms, we can
prove (see [11]) that the map Tmon(x) ≔ F[−1]

ν (Fµ(x)) is the unique monotone non
decreasing map such that (Tmon)#µ = ν. Moreover, if the Kantorivich problem
(KP) has a finite value, Tmon is the unique optimal transport map. This fact allows
us to have an explicit formula for the optimal transport map between two given
measures, and this will turn out to be useful when building the counterexample
in chapter 4. By the considerations expressed above, it is useful to remark the
following result, which summarizes the properties of one dimensional transport
maps and whose proof can be found in [2]:

Theorem 2.3.1. Let P2(R) ≔ {µ ∈ P(R):
∫

R
|x|2dµ(x) < ∞}. Then, P2(R1) is isomet-

rically isomorphic to a closed convex subset of the Hilbert space L2(0, 1), precisely to the

space of square-integrable nondecreasing functions in (0, 1).

12 Chapter 2



Chapter 3

Wasserstein and sliced Wasserstein

distances

In this chapter we will introduce the Wasserstein distance on the space of prob-
ability measures, and we will define the sliced Wasserstein distance, which is the
main object involved in our work.

3.1 Wasserstein spaces

Let Ω ⊂ Rd. Thanks to the transport value associated with the costs of the form
c(x, y) = |x− y|p for 1 ≤ p < ∞we can define a distance called p-Wasserstein distance

over the space Pp(Ω) ≔
{

ρ ∈ P(Ω):
∫

|x|pdρ(x) < ∞
}

.
Wasserstein distances play a key role in many fields of applications, and seem

to be a natural way to describe distances between equal amounts of mass dis-
tributed on the same space.

Definition 3.1.1 (Wasserstein distance). Let 1 ≤ p < ∞, Ω ⊂ Rd. For µ, ν ∈ Pp(Ω)
define

Wp(µ, ν) = min
γ∈Π(µ,ν)

{∫

Ω×Ω
|x − y|pdγ(x, y)

}
1
p

.

It is interesting to compare Wp distances with the common Lp distances between
functions: one could observe that the behavior of Lp distances is ªverticalº whereas
Wasserstein distances are ªhorizontalº. Consider the following

Example 3. Let f , g be two bounded functions defined on [0, 1]. Define gh(x) = g(x−h):
as soon as |h|> 1, the Lp distance between f and gh is (∥ f ∥p

Lp + ∥g|pLp)1/p, not depending on

h, the ªhorizontalº displacement of gh. On the contrary, the Wp distances keep track of

this information, since the distance from f to gh is of the order of |h|, for |h|→ ∞.

Notice that, since the transport plans are probability measures (defined on the

13



3.1. WASSERSTEIN SPACES

product space Ω ×Ω), for p ≤ q < ∞we have

Wp(µ, ν) ≤Wq(µ, ν).

Moreover, by Hölder inequality, if Ω has a finite diameter, for any 1 ≤ p < ∞ we
have

Wp(µ, ν) ≤ diam(Ω)
p−1

p W1(µ, ν)
1
p .

Theorem 3.1.1. The Wasserstein distance Wp is indeed a distance over Pp(Ω).

Proof. See [11], proposition 5.1. □

We are now interested in the topology generated by this metric. The following
theorem links the Wasserstein notion of convergence with the usual weak* con-
vergence. Let us recall that if (X, d) is a Polish space, a sequence {µn}n∈N ⊂ P(X) is
said to weakly* converge to µ ∈ P(X) if, for any test function φ ∈ Cb(X), we have

lim
n→∞

∫

X

φ(x)dµn(x) =
∫

X

φ(x)dµ(x).

Remark 3 (Prokhorov compactness criterium). A subset K ⊂ P(X) is (sequentially)

relatively compact for the weak* convergence if and only if it is tight: for any ε > 0, there

exists a compact subset Y ⊂ X such that

sup
µ∈K

µ(Y \ K) ≤ ε.

Theorem 3.1.2. The following conditions are equivalent

1. µn → µ in Wp,

2. {µn}n∈N
∗
⇀ µ and

∫

Rd

|x|pdµn(x)→
∫

Rd

|x|pdµ(x),

3. {µn}n∈N
∗
⇀ µ and

lim
R→∞

sup
n

∫

Bc
R

(0)
|x|pdµn(x) = 0.

Proof. A sketch of proof for the case p = 1 can be found in [1], Proposition 1.1. □

Thanks the previous theorem, we can now characterize the sequentially com-
pact sets in Wasserstein spaces:

Theorem 3.1.3. Fix p ≥ 1, α > p and c > 0. Then the set

K ≔

{

µ ∈ Pp(Rd):
∫

Rd

|x|αdµ(x) ≤ c

}

14 Chapter 3



3.2. SLICED WASSERSTEIN DISTANCE

is sequentially compact in the metric space
(

Pp(Rd),Wp

)

.

Proof. Let {µn}n∈N be a sequence in K. Let us prove that {µn}n∈N is tight: for any
ε > 0 there exists a compact set K0 ⊂ Rd such that µn

(

Rd \ K0

)

≤ ε for any n ∈ N:

indeed, for any R > 0, we have that µn

(

Rd \ BR(0)
)

≤ c
Rα

, since

c ≥
∫

Rd

|x|αdµn(x) ≥
∫

Bc
R

(0)
|x|αdµn(x) ≥ Rαµn(Bc

R(0)).

Thus µn(Bc
R(0)) ≤ ε for R large enough, and so {µn}n∈N is tight. Therefore, by

Prokorov theorem, there exists a subsequence {µnk
}k∈N and a measure µ ∈ Pp(Rd)

such that µnk

∗
⇀k→∞ µ. Let us check that µ ∈ K: for any M > 0, consider the

continuous and bounded map x 7→ min{|x|α,M}. We have
∫

Rd

min{|x|α,M}dµ(x) = lim
k→∞

∫

Rd

min{|x|α,M}dµk(x).

By monotone convergence, letting M→∞we get

∫

Rd

|x|αdµ(x) ≤ lim
k→∞

∫

Rd

|x|αdµk(x) ≤ c.

By Hölder inequality we have
∫

Rd |x|pdµ(x) < ∞, so that µ ∈ K. Since we know that

µnk

Wp→ µ if and only if

µnk

∗
⇀ µ and lim

k→∞
sup

R

∫

Bc
R

(0)
|x|pdµnk

(x) = 0,

we now just need to check the second condition. We have

c ≥
∫

Rd

|x|αdµnk
(x) ≥

∫

Bc
R

(0)
|x|p|x|α−pdµnk

(x) ≥ Rα−p

∫

Bc
R

(0)
|x|pdµnk

(x).

Therefore

sup
k

∫

Bc
R

(0)
|x|pdµnk

(x) ≤ c

Rα−p
→R→∞ 0.

□

3.2 Sliced Wasserstein distance

Computing Wasserstein distances is not an easy task: this is indeed related to
the optimal transport problem that, as we already said, is difficult to treat from
the numerical point of view. This is why for many applications, in particular for
image processing, rather then finding the optimal transport map, people look for
ªgood approximationsº of it, that possibly are computationally easy to find and
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3.2. SLICED WASSERSTEIN DISTANCE

satisfy some monotonicity assumptions. Since, as we saw, in the particular case of
dimension d = 1, transport maps are nicely characterized and easier to compute,
one of the most common way of doing so is to build these approximations via 1D
constructions. The Iterative Distribution Transfer algorithm (IDT) uses this idea: a
source measure µ is given, together with a target ν; in order to approximate the
optimal map between µ and ν the following algorithm is developed: a sequence
of maps Tn is built and we set µn+1 = (Tn)#µn. The idea is that µn should converge
to ν, so that the map Tn ◦Tn−1 ◦ . . .T1 ◦T0 is a transport map from µ to µn+1 (which,
for large n, is a measure very close to ν). Each map Tn is constructed as follows: at
any step n, an orthonormal basis Bn of Rd is (randomly) selected. Then we define
T

j
n (for j = 1, . . . , d) as the monotone 1D transport map from (π j)#µn to (π j)#ν,

where π j is the canonical projection in the j-th coordinate of the basis Bn. The map
Tn is therefore defined as Tn(x) = (T1

n(x1), . . . ,Td
n(x)). The interesting thing is that,

if the bases Bn are chosen in a suitable way, then the algorithm stops at a constant
measure µn only if µn and ν have the same projection along all directions. This
implies that µ = ν thanks to the following

Lemma 3.2.1 (X-Ray transform). Given two measures µ, ν over Rd, if the two families

of measures parametrized by ϑ ∈ Sd−1

(πϑ)#µ and (πϑ)#ν

coincide, then µ = ν.

Proof. The proof can be found in [11], at Box 2.4. □

From this idea, which was first introduced in [9], M. Bernot defined a similar
construction in which instead of choosing Tn as the vector of optimal maps along
random directions, one takes Tn(x) =

>
Sd−1 Tϑn (x·ϑ)dHd−1(ϑ), where Tn

ϑ
is the optimal

map between (πϑ)#µn and (πϑ)#ν.
This construction is strictly related to the notion of Sliced Wasserstein distance,

which was introduced by M. Bernot himself and now we will present: in order to
get a nice approximation of the Wp distance via one-dimensional constructions,
the following definition based on the behavior of the measures ªdirection by
directionº is given:

Definition 3.2.1 (Sliced Wasserstein distance). Let µ, ν ∈ Pp(Rd), and let πϑ be the

projection on the direction of the unitary vector ϑ ∈ Sd−1. We define

SWp(µ, ν) ≔
(?
Sd−1

W
p
p((πϑ)#µ, (πϑ)#ν)dHd−1(ϑ)

)
1
p

.

Theorem 3.2.1. The Sliced Wasserstein distance is, indeed, a distance.
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Proof. The triangular inequality comes from the triangular inequality property
of the usual Wasserstein distance and of the Lp norm. The positivity and the
simmetry of SWp are evident. If SWp(µ, ν) = 0, then W

p
p((πϑ)#µ, (πϑ)#ν) = 0 for

almost any ϑ ∈ Sd−1. Since Wp is a distance, (πϑ)#µ = (πϑ)#ν for almost any
ϑ ∈ Sd−1. Since for any s ∈ R we can observe that, denoting by F the Fourier
transform on R, F ((πϑ)#µ)(s) = F µ(sϑ), we have

F µ(sϑ) = F ν(sϑ),

and by the injectivity of the Fourier transform, we get µ = ν. □

Proposition 1. If µ, ν ∈ Pp(Rd), then SWp(µ, ν)p ≤ mp,dWp(µ, ν)p, where mp,d is the

constant defined by ?
Sd−1
|ϑ · z|pdϑ = md,p|z|p

for any z ∈ Rd.

Proof. Let γ ∈ Π(µ, ν) be an optimal transport plan. Then (πϑ⊗πϑ)#γ is a transport
plan between πϑ#µ and πϑ#ν. So

Wp(πϑ#µ, π
ϑ
#ν)p ≤

∫

∣

∣

∣x · ϑ − y · ϑ
∣

∣

∣

p
dγ(x, y).

Hence

SWp(µ, ν)p ≤
∫ (?

∣

∣

∣x · ϑ − y · ϑ
∣

∣

∣

p
dϑ

)

dγ(x, y)

≤ md,p

∫

|x − y|pdγ(x, y)

≤ md,pWp(µ, ν)p.

□

Proposition 2. There exists a constant Cd > 0 such that, for all µ, ν supported in B(0,R)

W1(µ, ν) ≤ CdRd/(d+1)SW1(µ, ν)1/(d+1).

Proof. See [4], Lemma 5.1.4. □

As an immediate consequence of the two previous results, we have the fol-
lowing

Proposition 3 (Equivalence of Wp and SWp). There exists a constant Cd,p > 0 such

that, for all µ, ν supported in B(0,R)

SWp(µ, ν)p ≤ md,pW
p
p(µ, ν) ≤ Cd,pRp−1/(d+1)SWp(µ, ν)1/(d+1).
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3.3. CURVES IN WASSERSTEIN SPACES

3.3 Curves in Wasserstein spaces

In this section we want to study the properties of Lipschitz and absolutely con-
tinuous (AC) curves in Wasserstein spaces. The main difficulty when talking
about these objects is that our ambient space is not a vector space, hence the clas-
sical notion of velocity of a curve has no meaning. Nonetheless we can give the
following

Definition 3.3.1 (Metric derivative). Let (X, d) be a metric space. Let ω: [0, 1] → X.

We define the metric derivative of ω at time t, denoted by |ω′|(t), through

|ω′|(t) ≔ lim
h→0

d(ω(t + h), ω(t))
|h| ,

provided this limit exists.

The following Rademacher-type theorem guarantees the a.e. existence of the
above limit for Lipschitz continuous curves, i.e. mapsω: [0, 1]→ X such that there
exists a costant C > 0 for which d(ω(t), ω(s)) ≤ C|t − s|, for any t, s ∈ [0, 1]:

Theorem 3.3.1. Suppose that ω: [0, 1] → X is Lispschitz continuous. Then the metric

derivative |ω′|(t) exists for a.e. t ∈ [0, 1]. Moreover, we have, for t < s,

d(ω(t), ω(s)) ≤
∫ s

t

|ω′|(τ)dτ.

Proof. See [3], chapter 12. □

We give now the definition of absolutely continuous curves:

Definition 3.3.2 (AC curves). A curve ω: [0, 1] → X is defined absolutely continuous

if there exists g ∈ L1([0, 1]) such that d(ω(t0), ω(t1)) ≤
∫ t1

t0
g(s)ds for every t0 < t1.

Notice that any Lipschitz curve is also AC. In the following we present a the-
orem, whose proof can be found in [11], that identifies the absolutely continuous
curves in the Wp Wasserstein space as the solutions of a continuity equation for a
given Lp velocity field

Theorem 3.3.2. Let (µt)t∈[0,1] be an absolutely continuous curve in (P(Ω),Wp), for

Ω ⊂ Rd, p > 1. Then, for a.e. t ∈ [0, 1], there exists a vector field vt ∈ Lp(µt;Rd) such

that

• the continuity equation ∂tµt + ∇ · (vtµt) = 0 is satisfied in the weak sense: for any

test function ψ ∈ C1
c (Ω), the function t 7→

∫

ψdµt is absolutely continuous and,

for a.e. t we have
d

dt

∫

Ω

ψdρt =

∫

Ω

∇ψ · vtdρt.

18 Chapter 3



3.3. CURVES IN WASSERSTEIN SPACES

• for a.e. t, we have ∥vt∥Lp(µt) ≤ |µ′|(t).

Conversely, if (µt)t∈[0,1] is a family of measures in Pp(Ω) and for each t ∈ [0, 1] we have

a vector field vt ∈ Lp(µt;Rd) with
∫ 1

0
∥vt∥Lp(µt)dt < +∞ solving ∂tµt + ∇ · (vtµt) = 0,

then (µt)t∈[0,1] is absolutely continuous in (Pp(Ω),Wp) and, for a.e. t ∈ [0, 1], we have

|µ′|(t) ≤ ∥vt∥Lp(µt).

Remark 1. As a consequence of the second part of the theorem, the vector field vt must a

posteriori satisfy ∥vt∥Lp(µ) = |µ′|(t).

Definition 3.3.3. For a curve ω: [0, 1]→ X, let us define

Length(ω) ≔ sup















n−1
∑

k=0

d(ω(tk), ω(tk+1)): n ≥ 1, 0 = t0 < t1 < · · · < tn = 1















.

A metric space (X, d) is a length space if, for any x, y ∈ X, it holds

d(x, y) = inf{Length(ω):ω ∈ AC(X), ω(0) = x, ω(1) = y}.

Definition 3.3.4. Given a length space (X, d), a curve ω: [0, 1] → X is said to be a

geodesic between x0 and x1 ∈ X if it minimizes the length among all curves such that

ω(0) = x0, ω(1) = x1.

We say that ω is a constant-speed geodesic between x0 and x1 ∈ X if it satisfies

d(ω(t), ω(s)) = |t − s|d(ω(0), ω(1)),

for all t, s ∈ [0, 1]. A metric space (X, d) is said to be a geodesic space if it holds

d(x, y) = min
{∫ 1

0
|ω′|(t)dt:ω ∈ AC(X), ω(0) = x, ω(1) = y

}

.

Remark 2. We can easily check that any constant-speed geodesic is a geodesic.

The following proposition holds:

Proposition 4. Let (X, d) be a geodesic space. Fix an exponent p > 1, and consider curves

connecting x0 and x1. The following facts are equivalent:

1. ω is a constant-speed geodesic,

2. ω ∈ AC(X) and |ω′|(t) = d(ω(0), ω(1)) a.e.,

3. ω solves

min
{∫ 1

0
|ω′|(t)pdt:ω(0) = x0, ω(1) = x1

}

.
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Theorem 3.3.3. Let Ω ⊂ Rd be convex, take µ, ν ∈ Pp(Ω) and γ ∈ Π(µ, ν) be an

optimal transport plan for the cost c(x, y) = |x − y|p, p ≥ 1. Define πt:Ω ×Ω → Ω by

πt(x, y) = (1 − t)x + ty. Then the curve µt ≔ (πt)#γ is a constant-speed geodesic in the

Wasserstein space (Pp(Ω),Wp), connecting µ to ν.

Proof. The proof is contained in [11], Theorem 5.27. □

Remark 3. If γ comes from an optimal map, then the curve µt is obtained as ((1 − t)id +
tT)#µ.

Theorem 3.3.4. Consider the geodesic in
(

P2(Rd),W2

)

from µ to ν given by µt =

((1 − t)id + tT)#µ, where T is the optimal map transporting µ into ν. Then the velocity

field vt(y) ≔ (T − id)(T−1
t (y)) is well defined on spt(µt) for each t ∈]0, 1[ and satisfies

∂tµt + ∇ · (µtvt) = 0, ∥vt∥Lp(µt) = |µ′|(t) =Wp(µ, ν).

Proof. See [11], Proposition 5.30. □

Remark 4. The above theorem can be extended even to the case in which the transport

plan is not associated with a transport map. See as a reference [11].

3.4 Geodesic convexity

Thanks to theorem (3.3.3) and (3.3.4), we can see that (Pp(Ω),Wp) is a geodesic
space for Ω convex, p ≥ 1. In the following we will give an important notion of
convexity, related to the structure of the Wasserstein space (Pp(Ω),Wp):

Definition 3.4.1. In a geodesic metric space X, we define F: X → R ∪ {+∞} to be

geodesically convex if for every two points x0, x1 ∈ X there exists a constant-speed

geodesic ω connecting ω(0) = x0 and ω(1) = x1 such that [0, 1] ∋ t 7→ F(ω(t)) is convex.

Remark 5. A functional [0, 1] ∋ t 7→ G(t) is said to be convex if

G((1 − t)x + ty) ≥ (1 − t)G(x) + tG(y)

for any x, y ∈ [0, 1].

Remark 6. Definition (3.4.1) reduces to the usual notion of convexity when the space X

is Rd or any other normed vector space, where segments are the unique geodesics.

Consider the following functionals defined on Pp(Ω):

V(ρ) =
∫

Ω

V(x)dρ(x),

F (ρ) =
∫

Ω

F(ρ)dρ.
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Proposition 5. Using the notation above, the functionalV is geodesically convex if and

only if V is convex.

Proof. See [11], Proposition 7.24. □

Necessary and sufficient condition for the geodesic convexity of the functional
F are more difficult to get. We can state the following

Theorem 3.4.1. Using the notation above, suppose that F is convex and superlinear,

F(0) = 0, and that s 7→ s−dF(sd) is convex and decreasing. Suppose that Ω is convex and

take 1 < p < ∞. Then F is geodesically convex in Wp.

Proof. See [2], Proposition 9.3.9. □

Example 4. The following are common convex functionals satisfying the assumptions of

theorem (3.4.1):

• for any q > 1, F(t) = tq,

• E(t) = t log t (the Entropy),

• for any 1 − 1
d
≤ m < 1, F(t) = −tm.
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Chapter 4

Gradient flows

Gradient flows are a link between optimal transport theory and the world of
evolution PDEs: many evolution equations can be seen as a steepest descent
movement in the Wasserstein spaces. Thanks to the preliminaries of the previous
section, we are now able to discuss this topic and focus on the main subject of this
work.
In the following section we will briefly discuss where gradient flows come from
and why it is interesting and worthwhile to study them: without giving rigorous
proofs, we will see that they arise as the limit version of the implicit Euler scheme
for the minimization of a certain functional F in Wasserstein spaces. In order to
get a detailed proof of the construction below, one can consult [2], in which the
theory of Minimizing Movements and General Minimizing Movements built by
E. De Giorgi is widely presented.

4.1 Gradient flow as the limit of the JKO scheme

In this section we want to give an heuristic derivation of the structure and the
equation describing gradient flows on Wasserstein spaces: essentially, gradient
flows can be seen as the continuous-in-time version of a discrete minimization
scheme. Recall the time-discretization scheme associated with the Cauchy prob-
lem



















x′(t) = −∇F(x(t)) for t > 0,

x(0) = x0 :
(4.1)

fix a small time step parameter τ > 0 and look for a sequence of points {xτ
k∈N}k

given by the iterated scheme

xτk+1 ∈ arg min
x

F(x) +
|x − xτ

k
|2

2τ
.
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4.1. GRADIENT FLOW AS THE LIMIT OF THE JKO SCHEME

Under mild assumptions, the optimality conditions of the above minimization
scheme give

xτ
k+1 − xτ

k

τ
= −∇F(xτk+1),

which is the discrete-time implicit Euler scheme for (4.1). From this idea, the
following discrete minimization scheme can be developed in any metric space
(X, d) for a given functional F:

ρτ(k+1) ∈ arg min
ρ

F(ρ) +
d2(ρ, ρτ(k))

2τ
. (4.2)

This algorithm is called minimizing movements scheme, and when (X, d) is the usual
euclidean space, we recover the Euler implicit scheme. When instead the space
(X, d) is (P2(Ω),W2) for a given Ω ⊂ Rd, the minimizing movements scheme is
called Jordan-Kinderlehrer-Otto scheme (JKO).

Consider a functional F:P(Ω) → R ∪ {+∞}. Assume that F and Ω are such
that, for any τ > 0 the JKO scheme admits a solution. In order to properly write
the optimality conditions for these problems we need the following

Definition 4.1.1 (First Variation). Given a functional F:P(Ω) → R ∪ {+∞}, we say

that ρ ∈ P(Ω) is regular for F if F((1 − ε)ρ + ερ̃) < +∞ for every ε ∈ [0, 1] and every

ρ̃ ∈ P(Ω) ∩ L∞c (Ω).
If ρ is regular for F, we will denote by δF

δρ (ρ), if it exists, any measurable function such

that
d

dε
F(ρ + εχ)|ε=0=

∫

δF

δρ
(ρ)dχ

for every perturbation χ = ρ̃ − ρ with ρ̃ ∈ L∞c (Ω) ∩ P(Ω).

We will make use of the following result:

Proposition 6. Let Ω ⊂ Rd be compact and c:Ω ×Ω→ R be continuous. Define

Tc(µ, ν) ≔ min
{∫

c(x, y)dγ:γ ∈ Π(µ, ν)
}

.

Then the functional µ 7→ Tc(µ, ν) is convex. Moreover, if the Kantorovich potential ψ

from µ to ν is unique, then we have

δTc(·, ν)
δρ

(µ) = ψ.

Proof. Consider µε = µ + εχ, where χ = µ̃ − µ, and estimate the ratio (Tc(µε, ν) −
Tc(µ, ν))/ε:

Tc(µε, ν) − Tc(µ, ν)
ε

≥
∫

ψdµε +
∫

ψcdν −
∫

ψdµ −
∫

ψcdν

ε
=

∫

ψdχ,
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so that lim infε→0(Tc(µε, ν)−Tc(µ, ν))/ε ≥
∫

ψdχ. Then, consider a sequence of val-
ues εk realizing the lim sup, i.e. limk(Tc(µεk

, ν)−Tc(µ, ν))/εk = lim supε→0(Tc(µε, ν)−
Tc(µ, ν))/ε. Denoting by ψk the Kantorovich potential from µεk

to ν, we have

Tc(µεk
, ν) − Tc(µ, ν)
εk

≤
∫

ψkdµεk
+

∫

ψc
k
dν −

∫

ψkdµ −
∫

ψc
k
dν

ε
=

∫

ψkdχ.

Recall (see [11], theorem 1.52) that up to further extraction of a subsequence, we
have uniform convergence (ψk, ψc

k
) → (ψ̃, ψ̃c) and that (ψ̃, ψ̃c) must be optimal in

the Kantorovich formulation of the problem. By the assumption of uniqueness
of the Kantorovich potential, we have (ψ̃, ψ̃c) = (ψ,ψc). Passing to the limit for
k→∞, we have also lim supε→0(Tc(µε, ν) − Tc(µ, ν))/ε ≤

∫

ψdχ. □

Consider ρ̂ to be the solution to the JKO scheme at time τ > 0, i.e. to the
minimization problem (4.2) for (X, d) = (P2(Ω),W2). Taking any perturbation
measure of the form ρε = ρ̂ + ε(ρ − ρ̂) ≕ ρ̂ + εχ and differentiating w.r.t. ε > 0,
one gets

0 =
∫

Ω

δF

δρ
(ρ̂)dχ +

1
τ

∫

Ω

δW2
2(ρ̂, ρτ(k))

δρ
dχ

=

∫

Ω

δF

δρ
(ρ̂)dχ +

1
τ

∫

Ω

φdχ,

where φ is the Kantorovich potential for the quadratic cost transport problem
from ρ̂ to ρτ(k). Form this one can prove that

δF

δρ
(ρ) +

φ

τ
= constant

holds ρ̂ − a.e.. Now, recalling that T(x) = x − ∇φ(x), we get

T(x) − x

τ
= ∇

(

δF

δρ
(ρ)

)

(x).

We will denote by −vτ the vector field T(x)−x

τ , since it has the meaning of a velocity,
being a ratio between a displacement and a time step. The minus sign can be
justified by the fact that it is the displacement associated with the transport from
ρ̂ = ρτ(k+1) to ρτ(k), so we can see it as a backward velocity. Having seen that any
AC curve solves the continuity equation for a given velocity field, we are now
led to deduce that the continuity equation ruling the behavior of the curve (ρt)t≥0

which is obtained as a limit curve of the discrete time-step minimization scheme
presented above letting τ→ 0+ must be:

∂tρ − ∇ ·
(

ρ∇
(

δF

δρ
(ρ)

))

= 0,

with no flux boundary conditions on ∂Ω. We can finally give the following
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Definition 4.1.2 (Gradient Flow). Let Ω ⊂ Rd. Given a functional F:P(Ω) → R ∪
{+∞}we say that the curve (ρt)t≥0 is a gradient flow for the functional F if it is the solution

of the continuity equation

∂tρ − ∇ ·
(

ρ∇
(

δF

δρ
(ρ)

))

= 0.

Under mild assumptions, JKO algorithms are known to converge to the min-
imizer of the considered functional: having this new perspective in mind, the
conjectures presented in the introduction of the present work may now appear to
be the natural conjectures one can do investigating the gradient flow associated
to the sliced Wasserstein distance.

4.2 Sliced Wasserstein gradient flow

In this section we will present the model we studied and to which the rest of this
work is devoted. Fix a target measure ν ∈ P2(Rd): the Sliced Wasserstein gradient
flow (SWGF) is the gradient flow associated with the functional

F(ρ) ≔
SW2

2(ρ, ν)

2
.

From now on we will use the following notation: for any ϑ ∈ Sd−1,

ρϑ ≔ (πϑ)#ρ,

where πϑ is the canonical projection on the direction ϑR. Recall that ρϑ is a
one-dimensional probability measure, and one has

ρϑ(t) =
∫

ϑ⊥
ρ(tϑ + y)dy,

νϑ(t) =
∫

ϑ⊥
ν(tϑ + y)dy.

(4.3)

Using (6), and calling φϑ,t the Kantorovich potential for the quadratic-cost trans-
port problem from (µt)ϑ to νϑ, we can derive the associated continuity equation:
the velocity field vt is given by

(4.4)
vt(x) = −∇x

(

δSW2
2(ρt, ν)

2δρ
(ρ)

)

= −
?
Sd−1

φ′ϑ,t(x · ϑ)ϑdHd−1(ϑ).
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The ODE describing the Lagrangian interpretation of this model, for a starting
point x ∈ Rd is

(4.5)







































y′(t) =vt(y(t)) = −
?
Sd−1

φ′(y(t) · ϑ)ϑdHd−1(ϑ)

=

?
Sd−1

ϑ (Tϑ − id) (y(t) · ϑ)dHd−1(ϑ),

y(0) =x.
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Chapter 5

SWGF does not provide optimal

transport

This chapter contains a counterexample to the conjecture 3 presented in the intro-
duction, namely we show the following:

It is not true that, for any initial distribution ρ0 and any target distribution ν, the
sliced Wasserstein gradient flow converges to the target measure ν itself and the
limit of the flow map arising from the Lagrangian description of the model exists

and is the optimal transport map from ρ0 to ν.

Using the idea developed in [8], we can write a necessary condition which must
hold if we want conjecture 3 to be true: take ρ0 sufficiently smooth and quickly
decaying at infinity, and assume that conjecture 3 holds not only for ρ0 but for
all (ρt)t≥0. This means that the flow yt is well defined for any t ≥ 0, that the limit
limt→∞ yt ≕ T exists, and that it is the optimal transport map between ρ0 and ν.
Under these assumptions, we have that for any t ≥ 0 the SWGF provides optimal
transport from ρt to ν. That is, the map T◦y−1

t is an optimal transport map between
ρt and ν. Using remark 1 from section 2.1, yt ◦ T−1 is also an optimal transport
map between ν and ρt. Let us denote by S the map T−1. Making use of theorem
(2.2.3), we have that the following condition must hold

∀t ≥ 0,∀x ∈ Rd, the Jacobian of yt ◦ S(x) is a symmetric matrix . (5.1)

The Jacobian matrix reads Dyt(S)DS. Moreover, differentiating (4.5) with respect
to x, we see that

∂Dyt

∂t
= −

(?
Sd−1

φ′′t,ϑ(x · ϑ)ϑ ⊗ ϑ dϑ

)

,
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together with Dy0 = Id. Thus, differentiating the Jacobian of yt ◦ S with respect to
time, we have that condition (5.1) implies that

∀t ≥ 0,∀x ∈ Rd,

[?
Sd−1

φ′′t,ϑ (S(x) · ϑ)ϑ ⊗ ϑ
]

DS(x) is a symmetric matrix.

Valuating this expression at t = 0 and remembering that DS(x) is symmetric for
any x, since our assumption is that S is an optimal transport map between ν and
ρ0, we conclude that the matrices

?
Sd−1

φ′′ϑ (S(x) · ϑ)ϑ ⊗ ϑ and DS(x) should commute for any x

Composing both the matrices with S−1 = T on the right hand side and using the
identity DS(S−1) = [DT]−1, and the fact that a symmetric matrix A commutes with
an invertible matrix B if and only if it commutes with B−1, we conclude that:

∀x ∈ Rd,

?
Sd−1

φ′′ϑ (x · ϑ)ϑ ⊗ ϑ and DT(x) commute.

Using again the fact that T = Du for a convex map u:Rd → R (the Brenier map
of the problem), we can write the necessary condition for which we will build a
counterexample in the following section:

∀x ∈ Rd,

?
Sd−1

φ′′ϑ (x · ϑ)ϑ ⊗ ϑ and D2u(x) commute.

5.1 Counterexample

For the seek of simplicity we will call ρ0 = ρ in the following. We will also
denote by φϑ the Kantorovich potential between ρϑ and νϑ with respect to the 2-
Wasserstein distance and by Tϑ the quadratic-cost optimal transport map between
the two measures. By the previous discussion we aim to show that the matrix

Mi, j(x) ≔
(?
Sd−1

φ′′ϑ (x · ϑ)ϑiϑ j dHd−1(ϑ)
)

i, j

does not commute with D2u, where u : Rd → R is a convex function whose
gradient provides the transport map T : Rd → Rd between ρ and ν.

Call uϑ the Brenier map for the transport between ρϑ and νϑ. Writing the
Monge-Ampere equation for ρϑ and νϑ we have

u′′ϑ (t) =
ρϑ(t)

νϑ(u′
ϑ
(t))

.
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Since we have that φ′′ϑ (t) = 1 − u′′ϑ (t), we get that

Mi, j(x) =
? (

1 −
ρϑ(x · ϑ)

νϑ(Tϑ(x · ϑ))

)

ϑiϑ jdϑ =
Id
d
−
?

ρϑ(x · ϑ)
νϑ(Tϑ(x · ϑ))

ϑiϑ jdϑ.

If we choose ρ and ν to be symmetric measures (ρ(x) = ρ(−x), ν(x) = ν(−x) for all
x ∈ Rd), we have that Tϑ(0) = 0 for all ϑ ∈ Sd−1. So our goal can be rewritten as
follows: we want that the matrix

Id −M(0) =
?
ρϑ(0)(ϑ ⊗ ϑ)dϑ does not commute with D2u(0). (5.2)

Since we are free to choose any (symmetric) initial measure ρ, let us be free to
impose ρ = (∇u)−1

# ν, for u(x) = |x|2/2+εφ(x), withφ smooth, compactly supported
and symmetric. It is well known that, for ε small enough, u is convex and ∇u is
a C∞ diffeomorphism that coincides with the identity outside of a compact set.
Finally, asking φ to be symmetric guarantees that ρ is symmetric, since indeed in
this case the transport map T = ∇u is symmetric itself, and the pushforward of
a symmetric distribution via (the invrese of) a symmetric map is symmetric. We
seek for the expression of ρϑ(0) in terms of φ. We start by writing the Monge-
Ampere equation for u:

det D2u(x) =
ρ(x)

ν(∇(u(x)))
,

for every x ∈ Rd. Thus
ρ(x) = det D2u(x)ν(∇u(x)).

In our case ∇u(x) = x + ε∇φ(x) and det D2u(x) = 1 + ε∆φ(x) + O(ε2). By Taylor
expansion, for any x, z ∈ Rd:

ν(x + εz) = ν(x) + εDν(x) · z + O(ε2).

Thus

ρ(x) =
(

1 + ε∆φ + O(ε2)
)

(

ν(x) + εDν(x) · ∇φ(x)
)

+ O(ε2)

=ν(x) + ε
(

Dν(x) · ∇φ(x) + ∆φ(x)ν(x)
)

+ O(ε2).

So, remembering the expressions (4.3), we have

ρϑ(0) =
∫

ϑ⊥
ρ(y)dy =

∫

ϑ⊥

(

ν(y) + ε
(

Dν(y) · ∇φ(y) + ∆φ(y)ν(y)
))

dy + O(ε2).

We now impose φ(x) = εψ(x) + η(x), with ψ, η symmetric functions (so that φ is
symmetric) and such that supp(ψ) ⊆ B(0, 1) and supp(η) ⊆ B(Red, 1) ∪ B(−Red, 1)
for a fixed R >> 1, ed being the last vector of the canonical basis in Rd. In this
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way D2u(0) = ε2D2ψ(0) and so, by (5.2), our aim becomes to prove that the matrix>
ρϑ(0)ϑ ⊗ ϑ does not commute with D2ψ(0). We have

ρϑ(0) =
∫

ϑ⊥
ν(y)dy + ε

∫

ϑ⊥

(

Dν(y) · ∇η(y) + ∆η(y)ν(y)
)

dy + O(ε2)

=

∫

ϑ⊥
ν(y)dy + ε

∫

ϑ⊥
ν(y)ηϑϑ(y)dy + O(ε2),

after integration by parts. We deduce that our goal becomes now to prove the
following fact: "D2ψ(0) must commute with A", where

A =

? ∫

ϑ⊥
ν(y)ηϑϑ(y)(ϑ ⊗ ϑ)dydϑ

=

? ∫

ϑ⊥
ν(y)(ϑ ⊗ ϑ)D2η(y)(ϑ ⊗ ϑ)dydϑ

=2
? ∫

ϑ⊥
ν(y)(ϑ ⊗ ϑ)D2η̃(y)(ϑ ⊗ ϑ)dydϑ,

(5.3)

and η̃ is the restriction of η to B(Red, 1). For convenience, with a slight abuse of
notation, in the following we will call η this very function. Notice therefore that
η(x) = 0 if xd ≤ 0. Since the choice of D2ψ(0) is now completely free, we just have
to ensure that the matrix A is not a multiple of the identity matrix, in order to get
our claim. To do so, we can for example check that the diagonal elements of A are
not equal.

Counterexample in R2 If d = 2 we can just check that A11 − A22 ̸= 0. Take
η(y1, y2) = ar(y1)b(y2) for ar and b positive functions, even on their support and
of unitary integrals, supported respectively in [−r, r], R + [0, 1/2] (so that, if r is
small, supp(η) ⊆ B(Re2, 1)). Observe that ar ⇀ δ0 when r→ 0.

Using the notation ηi j = (D2η)i j, we have that

A11 = 2
? ∫

ϑ⊥
ϑ2

1(ϑ2
1η11 + 2ϑ1ϑ2η12 + ϑ

2
2η22)ν(y)dydϑ,

A22 = 2
? ∫

ϑ⊥
ϑ2

2(ϑ2
1η11 + 2ϑ1ϑ2η12 + ϑ

2
2η22)ν(y)dydϑ.

Since in dimension d = 2, for any y ∈ ϑ⊥ one has

(ϑ1, ϑ2) =
(

− y2

|y| ,
y1

|y|

)

(5.4)

(notice we could have chosen the opposite vector for ϑ, but by symmetry of the
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problem, this choice is not relevant), we have

A11 =2
? ∫

ϑ⊥

y2
2

|y|4 (y2
2η11 − 2y1y2η12 + y2

1η22)ν(y)dydϑ,

A22 =2
? ∫

ϑ⊥

y2
1

|y|4 (y2
2η11 − 2y1y2η12 + y2

1η22)ν(y)dydϑ.

(5.5)

We now need the following

Lemma 5.1.1. Given f :Rd → R, g: Sd−1:R such that the following integrals are well

defined, we have

∫

Sd−1

∫

ϑ⊥
f (y)g(ϑ)dydϑ =

∫

Rd

f (x)H(x; g)
|x| dx,

where

H(x; g) ≔
∫

Sd−2
x⊥

g(ϑ)dHd−2(ϑ),

Sd−2
x⊥ being the d − 2 dimensional unitary circle having center in x and orthogonal to the

vector x itself.

Proof. Split the sphere in the usual two charts covering it: Sd−1
+

and Sd−1
− . In each of

these domains we can define an orthonormal tangent smooth vector field to the
sphere itself Φ(ϑ) = (ϕ1(ϑ), . . . , ϕd−1(ϑ)) ∈ Md×(d−1). We can ask each map ϕi to be
a diffeomorphism with |detDϕi|= 1 on the domain. Furthermore, notice that for
fixed y ∈ Rd, z ∈ Rd−1, there exists only one ϑ ∈ Sd−1

+
(or Sd−1

− ) such that Φ(ϑ)z = y,
so that the map Az:Rd → Sd−1

+
such that Az(y) = ϑ is well defined. Moreover, if

|z|= 1, |detDzAz(y)|= 1 for any y. Using the formula

∫

Rd

h(x)dx =

∫ ∞

0

∫

Sd−1
h(ξρ)ρd−1dξdρ,

we have

(5.6)

∫

Sd−1

∫

ϑ ⊥
f (y)g(ϑ)dydϑ =

∫

Sd−1

∫

Rd−1
f (Φ(ϑ)z)g(ϑ)dzdϑ

=

∫ ∞

0

∫

Sd−1

∫

Sd−2
f (ρΦ(ϑ)ξ)g(ϑ)dξdϑρd−2dρ.

Defining also (h/r)(x) ≔ h(x/r), by (5.6), we deduce

∫

Sd−1

∫

ϑ⊥
f (y)g(ϑ)dydϑ

=

∫ ∞

0

∫

Sd−1

∫

Sd−2
f (ρΦ(ϑ)ξ)

(

g

ρ
◦ Aξ

)

(ρΦ(ϑ)ξ)dξdϑρd−2dρ.

(5.7)
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Define the change of variables

y = Ψξ(ϑ) ≔ Φ(ϑ)ξ.

We have thatΨξ: Sd−1 → Sd−1 for every ξ ∈ Sd−2. Ψξ is a diffeomorphism for every
ξ ∈ Sd−2 and

|detDΨξ(ϑ)|= 1

for every ξ ∈ Sd−2, ϑ ∈ Sd−1. By (5.7) and since |detDξAξ(y)|= |detΦ(y)|= 1 for every
y ∈ Sd−1, we get

∫

Sd−1

∫

ϑ ⊥
f (y)g(ϑ)dydϑ =

∫ ∞

0

∫

Sd−1
f (ρy)

(∫

Sd−2

(

g

ρ
◦ Aξ

)

(ρy)dξ
)

dyρd−2dρ

=

∫ ∞

0

∫

Sd−1
f (ρy)

(∫

Sd−2
g(Aξ(y))dξ

)

dyρd−2dρ

=

∫ ∞

0

∫

Sd−1
f (ρy)















∫

Sd−2
y⊥

g(η)dη















dyρd−2dρ

=

∫ ∞

0

∫

Sd−1
f (ρy)G(y)dyρd−2dρ

=

∫ ∞

0

∫

Sd−1
f (ρy)H(ρy)dyρd−2dρ

=

∫

Rd

f (x)H(x)
|x| dx,

where Sd−2
y⊥ is the d− 2 dimensional unit sphere orthogonal to the direction y ∈ Rd

and
∫

Sd−2
y⊥

g(η)dη ≕ G(y) and therefore G(y/|y|) ≕ H(y) is the integral of the function

g in the very same set Sd−2
y⊥ . □

Since in our 2-dimensional case, in equations (5.5) we have g = 1, we deduce

?
S1

∫

ϑ⊥
g(y)dydϑ =

H d−2(Sd−2)
|Sd−1|

∫

Rd

g(x)
|x| dx =

1
π

∫

Rd

g(x)
|x| dx.

Using these formulas, the difference between diagonal elements of the 2×2- matrix
A, up to multiplication by a constant, reads

A11 − A22 =

∫

R2

x2
2 − x2

1

|x|5 (x2
2η11 − 2x1x2η12 + x2

1η22)ν(x)dx1dx2.

Take η1(y1, y2) = ar(y1)b(y2) for ar and b positive functions, even on their support
and of unitary integrals, supported respectively in [−r, r], R + [0, 1/2] for R > 1/2,
so that, if r is small enough, supp(η) ⊆ B(Re2, 1). Observe that ar ⇀ δ0.
Since

gi(x) ≔
x2

i

|x|5ν(x)
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can be assumed smooth enough in R \ {0}, when we send r → 0 the integrals
defining A11 and A22 stay bounded (remembering that η is compactly supported).
Defining

f (x1, x2) ≔ g2(x) − g1(x) =
x2

2 − x2
1

|x|5 ν(x1, x2),

we have that

A11 − A22 =

∫

R2
f (x)(x2

2ar
11b − 2x1x2ar

1b2 + x2
1arb22)dx1dx2.

We need to be sure that this quantity is not zero as soon as r→ 0. Integrating by
parts with respect to the variable x1,

A11 − A22 =

∫ (

x2
2b

∫

f11ar
+ 2x2b2

∫

( f1x1 + f )ar
+ b22

∫

f (x)x2
1ar

)

dx2

Sending r→ 0, and (with a slight abuse of notation) still denoting f = f (0, x2),

A11 − A22 =

∫

x2
2b f11 + 2x2b2 f dx2.

Integrating by parts with respect to the remaining variable,

A11 − A22 =

∫

b
(

f11x2
2 − 2 f − 2x2 f2

)

dx2.

Remembering that x2 can be assumed strictly positive (due to the fact that η is
symmetric and supported away from zero), we have that

f1 = νx1
−2|x|2 − 5x2

2 + 5x2
1

|x|7 +
x2

2 − x2
1

|x|5 ν1,

then
f11|(0,x2) = −7

ν

|x|5 +
ν11

|x|3

and, by similar computations,

f2|(0,x2) = −3
ν

|x|4 +
ν2

|x|3 .

Therefore
A11 − A22 =

∫

b
(

−3
ν

|x2|3
+
ν11

|x2|
− 2

ν2

|x2|2
)

dx2.

Under the further assumption of ν to be radial, and thanks to the relations

(5.8)νi = ν
′ xi

|x|
and

(5.9)νi j =
ν′

|x|δi j +

(

ν′′

|x|2 −
ν′

|x|3
)

xix j,
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we get that A11 − A22 = 0 for any choice of b if and only if

−3
ν

|x|3 −
ν′

|x|2 = 0

holds for any x ∈ {0} × R: indeed, since b is free to be chosen, so is its support
(which we defined to be of the form R+ [0, 1/2]). Still remembering that x2 can be
assumed strictly positive, we get that this is equivalent to

3ν + |x|ν′ = 0,

but this can occur only if ν ∝ |x|−3, which implies that ν is not a probability distri-
bution, being not even integrable. We deduce that, for any radial target measure
ν, in dimension d = 2 the sliced Wasserstein gradient flow does not provide an
optimal transport map from the initial distribution to the target measure ν itself.

Counterexample in Rd Obtaining a similar result for any dimension d ≥ 2
is more difficult: the turning point in R2 was (5.5), namely the fact that we
can uniquely express the orthogonal direction to a given vector thanks to the
coordinates of the vector itself, and this was done in (5.4). In higher dimension
this ªtrickº can not longer be applied. The computation machinery will thus be
more sophisticated. For starters, still assuming ν to be radial, from relations (5.3)
we can now deduce that, for any 1 ≤ n ≤ d,

Ann = 2
? ∫

νϑ2
n

















∑

i, j

ϑiϑ jηi j

















dydϑ

=
2
|Sd−1|

∑

i, j

∫

Rd

H(x;ϑ2
dϑ jϑi)

ηi j

|x|ν(x)dx

=
2
|Sd−1|

















∑

i<d

∫

H(x;ϑ2
nϑ

2
i )
ηiiν(x)
|x| +

∫

H(x;ϑ2
nϑ

2
d)
ηddν(x)
|x|

+ 2
∑

i< j<d

∫

H(x;ϑ2
nϑiϑ j)

ηi jν

|x| + 2
∑

i<d

∫

H(x;ϑnϑiϑd)
ηidν

|x|

















.

In particular, for n = 1, after integration by parts and letting r→ 0 we have

(5.10)
|Sd−1|

2
A11 =

∑

i ̸=1,d

∫

R

b∂ii

(

H(x;ϑ2
1ϑ

2
i )
ν

|x|

)

∣

∣

∣

∣

∣

(0,xd)
+

∫

R

b∂11

(

H(x;ϑ4
1)
ν

|x|

)

∣

∣

∣

∣

∣

(0,xd)

+

∫

R

b∂dd

(

H(x;ϑ2
1ϑ

2
d)
ν

|x|

∣

∣

∣

∣

∣

(0,xd)

)

+

∑

i ̸= j;i, j ̸=1,d

∫

R

b∂i j

(

H(x;ϑ2
1ϑiϑ j)

ν

|x|

)

∣

∣

∣

∣

∣

(0,xd)

+ 2
∑

i̸=1,d

∫

R

b∂i1

(

H(x;ϑ3
1ϑi)

ν

|x|

)

∣

∣

∣

∣

∣

(0,xd)
+ 2

∑

i ̸=1,d

∫

R

b∂d

(

(

∂iH(x;ϑ2
1ϑiϑd)

ν

|x|

)

∣

∣

∣

∣

∣

(0,xd)

)

+ 2
∫

R

b∂d

(

(

∂1H(x;ϑ3
1ϑd)

ν

|x|

)

∣

∣

∣

∣

∣

(0,xd)

)

,
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and, for n = d

(5.11)
|Sd−1|

2
Add =

∑

i ̸=d

∫

R

b∂ii

(

H(x;ϑ2
dϑ

2
i )
ν

|x|

)

∣

∣

∣

∣

∣

(0,xd)
+

∫

R

b∂dd

(

H(x;ϑ4
d)
ν

|x|

∣

∣

∣

∣

∣

(0,xd)

)

+

∑

i ̸= j;i, j ̸=d

∫

R

b∂i j

(

H(x;ϑ2
dϑiϑ j)

ν

|x|

)

∣

∣

∣

∣

∣

(0,xd)
+ 2

∑

i ̸=d

∫

R

b∂d

(

∂i

(

H(x;ϑ3
dϑi)

ν

|x|

)

∣

∣

∣

∣

∣

(0,xd)

)

.

We can then continue thanks to the following

Lemma 5.1.2. It holds

|Sd−1|
2

A11 =

∫

R

bC(2,2),d

(

(1 − d2)
ν

|x|3 − (1 + d)
ν′

|x|2
)

,

|Sd−1|
2

Add =

∫

R

b6C(2,2),d(d − 1)2 ν

|x|3 ,

where

C(2,2),d =

∫

Sd−2
e⊥
d

ϑ2
i ϑ

2
j dHd−2(ϑ)

for any i ̸= j; i, j ̸= d.

Remark 4. Observe that, using the standard parametrization of the sphere,

∫

Sd−1
ϑ2

i ϑ
2
j dϑ

=

∫ π

0
· · ·

∫ 2π

0
sin(φ1)2 · · · sin(φd−1)2 · sin(φ1)2 · · · cos(φd−1)2dφ1 · · · dφd−1

=

∫ π

0
· · ·

∫ π

0
sin(φ1)4 · · · sin(φd−2)4dφ1 · · · dφd−2

∫ 2π

0
sin(φd−1)2 cos(φd−1)2dφd−1

=
1
3

∫ π

0
· · ·

∫ 2π

0
sin(φ1)4 · · · sin(φd−1)4dφ1 · · · dφd−1

=

∫

Sd−1
ϑ4

i dϑ ≕ C(4),d,

so that C(4),d = 3C(2,2),d.

Proof. Recalling the notation used in lemma 5.1.1, with a little abuse of notation,
denoting H(x, g) = H, observe we have

∂ jk

(

H

|x|ν
) ∣

∣

∣

∣

(0,xd)
=

(

∂k

(

∂ jH

|x| ν +
H

|x|∂ jν −
Hν

|x|3 x j

))

∣

∣

∣

∣

(0,xd)

= ∂ jkH
ν

|x| +H
∂ jkν

|x| − δ jkH
ν

|x|3 .
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Since ν is radial, we make use of (5.8) and (5.9) obtaining

(5.12)∂ jk

(

H

|x|ν
) ∣

∣

∣

∣

(0,xd)
= ∂ jkH(0, xd)

ν

|xd|
+

H(0, xd)
|xd|2

(

ν′ − ν

|xd|

)

δ jk,

and

(5.13)∂ j

(

H

|x|ν
) ∣

∣

∣

∣

(0,xd)
= ∂ jH(0, xd)

ν

|xd|
.

Now we proceed with an explicit computation of the terms ∂ jkH(x, g)
∣

∣

∣

∣

(0,x)
and

∂ jH(x, g)
∣

∣

∣

∣

(0,x)
. The result will thus follow by computing the expressions (5.10)

and (5.11) making use of relations (5.12) and (5.13). We start by computing
∂ jH(x, g)

∣

∣

∣

∣

(0,x)
: since the matrix

R
j

1 =









































I( j−1)×( j−1)
x√

x2 + h2
− h√

x2 + h2

I(d− j−1)×(d− j−1)
h√

x2 + h2
x√

x2 + h2









































provides a rotation that alignes the direction e j
h√

x2 + h2
+ ed

x√
x2 + h2

into the

direction ed, we have

∂ jH(xed, g) = lim
h→0

H(xed + he j, g) −H(xed, g)

h

= lim
h→0

1
h

















∫

S⊥
x+hej

g(ϑ)dϑ −
∫

S⊥
x̂

g(u)du

















== lim
h→0

1
h













∫

S⊥ed

g((R j

1)−1u)du −
∫

S⊥ed

g(u)du













=

∫

S⊥ed

lim
h→0

1
h























































g























































u1
...

x√
x2 + h2

u j

...
− h√

x2 + h2
u j























































− g

























u1
...
0















































































Thanks to a direct computation, we can then check that, for i ̸= j and i, j ̸= 1, d,
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the following expressions hold true:

∂ jH(xed, ϑ
3
dϑ j) = 0,

∂ jH(xed, ϑ
2
1ϑiϑ j) = −

C(2,2),d

|x| ,

∂ jH(xed, ϑ
2
1ϑ

2
j ) = 0,

∂ jH(xed, ϑ
2
dϑ

2
j ) = 0,

∂ jH(xed, ϑ
2
1ϑiϑ j) = 0,

∂1H(xed, ϑ
3
1ϑd) = −

C(4),d

|x| ,

∂1H(xed, ϑ
3
1ϑi) = 0,

∂iH(xed, ϑ
2
1ϑiϑd) = −

C(2,2),d

|x| ,

∂dH(xed, g) = 0 for any g.

We now continue with the explicit computation of the terms ∂iiH(x, g)
∣

∣

∣

∣

(0,x)
: to do

so, we start by computing ∂iH(xed +mei, g). Since the matrix

Ri
2 =

































I(i−1)×(i−1)

cosα − sinα
I(d−i−1)×(d−i−1)

sinα cosα

































with

cosα =
m(m + h) + x2

√
x2 +m2

√

x2 + (m + h)2
sinα =

hx√
x2 +m2

√

x2 + (m + h)2

provides a rotation that alignes the direction
(

ei
m+h

√

x2 + (m + h)2
+ ed

x
√

x2 + (m + h)2

)

into the direction
(

ei
m√

x2 +m2
+ ed

x√
x2 +m2

)

, we have

∂iH(xed +mei, g) = lim
h→0

H(x + (m + h)ei, g) −H(xed +mei, g)
h

=

∫

S⊥xed+mei

lim
h→0

1
h















































g















































u1
...

cosαu j + sinαud

...
sinαu j − cosαud















































− g

























u1
...

ud







































































du.
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Choosing g = ϑ2
i
ϑ2

1, we obtain

∂iH(xed +mei, g) =
2x

m2 + x2

∫

S⊥xed+mei

u2
1uiuddu ≕

2x

m2 + x2

∫

S⊥xed+mei

f (u)du.

Since for g = ϑ2
i
ϑ2

1, it holds ∂iH = 0, we have that

∂iiH(xed, ϑ
2
i ϑ

2
1) = lim

m→0

∂iH(xed +mei)
m

=

∫

S⊥ed

f ((Ri
1)−1v)dv

=

∫

S⊥ed

lim
m→0

2x

m(m2 + x2)

(

−v2
1

xvi√
x2 +m2

mvi√
x2 +m2

)

dv

= −
2C(2,2),d

|x|2

(5.14)

Choosing g = ϑ2
i
ϑ2

d
, we obtain

∂iH(xed +mei, g) = − 2x

m2 + x2

∫

S⊥xed+mei

(u3
i ud − u3

dui)du.

Since, for g = ϑ2
i
ϑ2

d
, it holds ∂iH = 0, with a computation similar to the one done

in (5.14), we have that

∂iiH(xed, ϑ
2
i ϑ

2
d) = lim

m→0

∂iH(xed +mei)
m

=
2C(4),d

|x|2 .

Finally, choosing g = ϑ4
1, we obtain

∂1H(xed +me1, g) =
4x

x2 +m2

∫

S⊥xed+me1

u3
1ud.

Since, for this g = ϑ4
1, it holds ∂1H = 0, we have that

∂11H(xed, ϑ
4
1) = lim

m→0

∂1H(xed +me1)
m

= −
4C(4),d

|x|2 .

Finally, notice that
∂ddH(xed, g) = 0

for any g. To conclude, we compute the second derivative of the form ∂i j for i ̸= j.
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5.1. COUNTEREXAMPLE

We start by computing the expression ∂ jH(xed +mei, g). Since the matrix

R
j,i

3 =























































I( j−1)×( j−1)

1 − h2

S
− hm

S
− h

R

I(i−1− j)×(i−1− j)

−hm
S

1 − m2

S
−m

R

I(d−1− j)×(d−1− j)
h
R

m
R

1 − h2+m2

S























































with
R ≔

√
x2 +m2 + h2, S ≔ R(R + x)

provides a rotation that alignes the direction
(

e j
h
R
+ ei

m
R
+ ed

x
R

)

into the direction ed,
we have

∂ jH(xed +mei, g) = lim
h→0

H(xed +mei + he j, g) −H(xed +mei, g)

h

=

∫

S⊥ed

lim
h→0

1
h

(

g
(

(

R
ji

3

)−1
v
)

− g
(

(

Ri
1

)−1
v
))

=

∫

S⊥ed

lim
h→0

1
h







































































g







































































v1
...

(

1 − h2

S

)

v j − hm
S

vi

...
−hm

S
v j +

(

1 − m2

S

)

vi

...
− h

R
v j − m

R
vi







































































− g







































































v1
...

x
r
vi

...
v j

...
−m

r
vi













































































































































,

with
r ≔

√
x2 +m2.

Choose g = ϑ2
1ϑiϑ j and we obtain

∂ jH(xed +mei, g) = −
mC(2,2),d

(r + x)r

(

2 − m2

(r + x)r

)

.

Since, for g = ϑ2
1ϑiϑ j, it holds ∂iH = 0, we have that

∂i jH(xed, ϑ
2
1ϑiϑ j) = lim

m→0

∂ jH(xed +mei)

m
= −

C(2,2),d

|x|2

.
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Similarly, choose g = ϑ3
1ϑi. We obtain

∂1H(xed +mei, g) = − m

(r + x)r

(

C(4),d + 3
(

1 − m2

(r + x)r
C(2,2),d

))

.

Notice that also for this g = ϑ3
1ϑi, it holds ∂1H = 0. Therefore, recalling that

C(4),d = 3C(2,2),d, we have

∂1iH(xed, ϑ
3
1ϑi) = lim

m→0

∂1H(xed +mei)
m

= −
C(4),d

|x|2 .

Finally choose g = ϑ2
d
ϑiϑ j and obtain

∂ jH(xed +mei, g) =
1
r2

(

2mC(2,2),d + o(m)
)

.

For this g = ϑ2
d
ϑiϑ j it holds ∂ jH = 0, so that we have

∂i jH(xed, ϑ
2
dϑiϑ j) = lim

m→0

∂ jH(xed +mei)

m
=

2C(4),d

|x|2 .

□

Thanks to the above result, we deduce that

|Sd−1|
2

(A11 − Add) =
∫

R

bC(2,2),d

[

(

(1 − d2) − 6(d − 1)2
) ν

|x|3 − (d + 1)
ν′

|x|2
]

,

and therefore, by the arbitrariness of b, A11 − Add = 0 if and only if

M1,d
ν

|x|3 +M2,d
ν′

|x|2 = 0,

for any x ∈ {0} ×Rd−1 for Mi,d > 0, but this can occur only if

ν =
c

|x|
M1,d
M2,d

for c ∈ R. This implies that ν is not integrable on the whole Rd (since it is a
negative power) and therefore it is not a probability measure.
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Chapter 6

Global and asymptotic properties of

the flow

This chapter is devoted to the study of the convergence of the SWGF. We are
interested in showing that (at least) two different situations can happen. The flow

• could converge, but not to the target measure,

• could converge to the target measure ν.

In the first section of this chapter we will give some estimates on the p-moments of
the gradient flow, which will turn out to be useful in the following. Then we will
present the example in which the flow doesn’t converge to the target measure.
After that, we will discuss the main example of SWGF we studied, namely the
Gaussian-target case, in which the flow converges to the target measure itself.
Finally we will treat the more general case in which the initial and target measures
are radial functions: our claim is that in that case the only radial stationary point
must be the target measure itself.

6.1 Bounds on the moments along the flow

In this section we provide some bounds to the p-moments and the ∞-moment
of the sliced Wasserstein gradient flow. We start by computing the derivative
with respect to time of the p-moment of the sliced Wasserstein gradient flow ρt
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associated with a given target measure ν: definingMp(ρ) ≔
∫

Rd |x|pdρ(x), we have

(6.1)

∂tMp(ρ) = ∂t

∫ |x|p
p
ρ

= −
∫ |x|p

p
∇(vρ)

=

∫

|x|p−2x · vρ

=

∫

|x|p−2x ·
(?

(Tϑ(x · ϑ) − x · ϑ)ϑ
)

ρ

=

? ∫

|x|p−2x · ϑ(Tϑ(x · ϑ) − x · ϑ)ρdϑ

≤ −
? ∫

|x|p−2 |x · ϑ|2
2

ρ +

? ∫

|x|p−2 |Tϑ|2
2
ρdϑ

= −1
2

∫

|x|p−2

(?
|x · ϑ|2

)

ρdϑ +
1
2

? ∫

|x|p−2|Tϑ(x · ϑ)|2ρdϑ

≤ −
∫

|x|p−2 |x|2
2d
ρ +

1
2

? 















(∫

|x|pρ
)

p−2
p

(∫

|Tϑ(x · ϑ)|pρ
)

2
p

















dϑ

≤ − 1
2d
Mp(ρ) +

1
2
Mp(ρ)1− 2

p

(∫ ?
|y · ϑ|pν

)
2
p

≤ − 1
2d
Mp(ρ) +

1
2
Mp(ρ)1− 2

p c
2
p

p,d
Mp(ν)

2
p ,

where we used the inequalities

x · ϑ(Tϑ(x · ϑ) − x · ϑ) ≤ |Tϑ(x · ϑ)|2
2

− |x · ϑ|
2

2
,

along with Jensen and Hölder’s inequalities, the equality

?
|x · ϑ|2dϑ =

|x|2
d
,

and the inequality ?
|x · ϑ|pdϑ ≤ |x|p

?
|ϑ|pdϑ ≕ cp,d|x|p.

From (6.1) we deduce that

Mp(ρt) ≤ max
{

Mp(ρ0), dp/2cp,dMp(ν)
}

. (6.2)

Indeed, (6.1) gives a differential inequality of the form

x′ ≤ − 1
2d

x + x1−2/p C2/p

2
,
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and the left hand side is negative for

x ≥ Cdp/2.

Moreover, denoting by

diam(µ) ≔ inf
{

r > 0: supp(µ) ⊂ C, where C is a ball of radius r
}

,

and recalling that diam(µ) = limp→∞M1/p
p (µ), we can see that

diam(ρt) = lim
p→∞
Mp(ρ)1/p ≤ max

{

lim
p→∞
Mp(ρ0)1/p, d1/2 lim

p→∞
c

1/p
p,d
Mp(ν)1/p

}

= max
{

diam(ρ0),
√

ddiam(ν)
}

,

since
lim
p→∞

cd,p = lim
p→∞
∥ϑ∥Lp(Sd−1) = ∥ϑ∥L∞(Sd−1) = 1

Obviously this estimate is vacuous when the initial and target measures are not
compactly supported. Notice however that in this case we can prove a slightly
better estimate: consider B(0,R) to be the smallest ball centered at zero in which
ν, the target measure, is supported. Observe that in this model, |Tϑ(x · ϑ)|≤ R

for every x ∈ Rd. Let x ∈ Rd, with |x|= c. By the symmetry in this construction,
we can consider x = ce1 without loss of generality. We want to compute what is
the maximum value of c for which the velocity field vt is pointing outwards with
respect to the ball B(0, c), i.e. the maximum radius of the trajectories. To do so, we
can just look at the behavior of the component e1 of the velocity field:

v1
t (x) =

?
(Tϑ(x · ϑ) − x · ϑ)ϑ1

≤
?

R|ϑ1|−cϑ2
1

=R

?
|ϑ1|−c

?
ϑ2

1

=R

?
|ϑ1|−c

?
|ϑ1|2.

Therefore, if c ≥ R
>
|ϑ1|>
|ϑ1|2

, v1
t (x) is negative and hence we deduce that in this setting,

if the initial datum ρ0 is a compactly supported measure,

diam(ρt) ≤ max
{

diam(ρ0),
b1,d

b2,d
diam(µ)

}

,
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where bp,d is the p-barycenter of the d-dimensional hemisphere:

bp,d ≔

?
|ϑ1|pdϑ.

This value can be computed explicitly: denoting by wd(r) the surface area of the
d-dimensional sphere of radius r,

bp,d = 2

∫ 1

0
ypwd−1(

√

1 − y2)dσ

wd(1)

= 2

∫ 1

0
ypwd−1(

√

1 − y2) dy
√

1 − y2

wd(1)

= 2Γ
(

d

2

)

∫ 1

0
yp 2π

d−1
2 (1−y2)

d−2
2

Γ( d−1
2 )

dy
√

1 − y2

2πd/2

= 2
Γ( d

2 )

Γ(d−1
2 )

∫ 1

0
yp(1 − y2)

d−3
2 dy

π1/2

=
2√
π

Γ(d
2 )

Γ( d−1
2 )

Γ( d−1
2 )Γ(p+1

2 )

2Γ( d+p

2 )

=
1√
π

Γ( d
2 )Γ( p+1

2 )

Γ(d+p

2 )
.

So in our case:

b1,d =
Γ(d

2 )
√
πΓ( d+1

2 )
,

and

b2,d =
Γ(d

2 )

2Γ(d
2 + 1)

=
1
2d
.

One can observe that
2dΓ( d

2 )
√
πΓ( d+1

2 )
<
√

d

for all values of d > 2, proving that this estimate is more accurate than the previ-
ous one.
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6.2 The flow may not converge to the target

We consider the following construction in R2: let the starting measure be

ρ0 =
δ(−1,0)

2
+
δ(1,0)

2

and the target measure

ν =
δ(0,a)

2
+
δ(0,−a)

2
,

for a certain a > 0 to be defined. We can show that there exists a > 0 such that
the configuration ρ0 is stable, i.e. the velocity field associated to the SWGF at time
zero is v0 = 0 and therefore the gradient flow is ρt = ρ0 for any t ≥ 0, so that the
flow does not converge to the target. Calling Tϑ the optimal transport map from
ρϑ and νϑ, we have

v0 =

?
(Tϑ(x · ϑ) − x · ϑ)ϑ

= 2
∫ π

2

0
(cosϑ − a sinϑ) (cosϑ, sinϑ) − 2

∫ 0

− π2
(cosϑ + a sinϑ) (cosϑ, sinϑ)

= 2
∫ π

2

0













cos2 ϑ − a sinϑ cosϑ
cosϑ sinϑ − a sin2 ϑ













− 2
∫ 0

−π
2













cos2 ϑ + a cosϑ sinϑ
cosϑ sinϑ + a sin2 ϑ













= 2















0
∫ π

2

− π2
sin(2ϑ)

2 sgn(ϑ) − a
∫ π

2

− π2
sin2 ϑ















.

All we have to do now is imposing the second row of the above matrix equal to
zero:

a =
2
π

∫ π
2

− π2

sin(2ϑ)
2

sgn(ϑ) =
2
π
.
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6.3 The Gaussian-target case

We prove that if the target measure ν used in the definition of

v(t, x) = −∇x

δSW(ρt, ν)
δρ

=

?
Sd−1

(Tt,ϑ(x · ϑ) − x · ϑ)dϑ

is the gaussian distribution, then limt→∞ Stρ ≔ ρ∞ exists and coincides with ν, the
guassian distribution itself.
We know that ∂tρ + ∇(vρ) = 0:

(6.3)

∂s

∫

ρs logρsdx =

∫

[∂sρs logρs + ∂tρs]dx

= −
∫

[∇(vsρs) logρs − ∇(vsρs)]dx

= −
∫

∇(ρsvs) logρsdx

=

∫

ρsvs
1
ρs
∇ρsdx

=

∫

vs∇ρsdx

=

? [∫

∇ρsϑ(Ts,ϑ(x · ϑ) − x · ϑ)dx

]

dϑ

=

? ∫

ρ′s,ϑ(r)(Ts,ϑ(r) − r)drdϑ

≤
?

[E(νϑ) − E(ρϑ)
]

dϑ,

where E(µ) =
∫

µ logµ is the entropy of the (probability) measure µ. The last
inequality comes from the geodesic convexity of the entropy in dimension d = 1:
consider the two one-dimensional measures ρs,ϑ and νϑ and define the geodesic
ω : [0, 1] 7→ P(R) with respect to the W2 distance connecting them. Since ω is a
geodesic, we know by (3.3.4) that it solves the the continuity equation

∂tω + ∂r(vtω) = 0

where the velocity field is v(t, r) = Ts,ϑ(S−1
t (r))−S−1

t (r), with St(y) ≔ (1−t)y+tTs,ϑ(y)
and Ts,ϑ still being the transport map between ρϑ,s and νϑ. We thus have

∂t

∫

R

ωt logωtdr =

∫

R

∂tωt logωtdr

= −
∫

R

∂r(vtωt) logωtdr =

∫

R

vt∂rωt

=

∫

R

[Ts,ϑ(S−1
t (r)) − S−1

t (r)]∂rωtdr,
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and valuating at t = 0 we obtain:

E′(ρs,ϑ) =
∫

R

ρ′s,ϑ(r)(Ts,ϑ(r) − r)dr.

Since the entropy is geodetically convex, and following the property that for a
convex function f one has f ′(0) ≤ f (1) − f (0), we have that

E′(ω(0)) = E′(ρϑ,s) =
∫

R

ρ′ϑ,s(r)(Ts,ϑ(r) − r)dr ≤ E(ω(1)) − E(ω(0)) = E(νϑ) − E(ρs,ϑ),

thus the last inequality in (6.3) is proved. Consider then the following:

∂t

∫

Rd

|x|2
2
ρs =

∫

Rd

|x|2
2
∂ρs

=

? ∫

Rd

(x · ϑ)(Ts,ϑ(x · ϑ) − x · ϑ)ρs(x) =
? ∫

R

r(Ts,ϑ(r) − r)ρs,ϑ(r)

and, using r(R − r) = R2/2 − r2/2 − |R − r|2/2, we obtain

∂t

∫

Rd

|x|2
2
ρs =

? ∫

R

|Ts,ϑ(r)|2
2

ρs,ϑ(r) −
? ∫

R

r2

2
ρs,ϑ(r) − 1

2

? ∫

R

|Ts,ϑ(r) − r|2ρs,ϑ(r)

=

? ∫ |Ts,ϑ(r)|2
2

ρs,ϑ(r) −
? ∫

r2

2
ρs,ϑ(r) − 1

2
SW2

2(ρs, ν).

(6.4)

Now notice that the gaussian measure minimizes the functional

ρ 7→
∫ [

ρ logρ + ρ
|x|2
2

]

.

Indeed f (s) = s log s is a convex function, and thus f (t) ≥ f (s) + f ′(s)(t − s) =
f (s) + (log s + 1)(t − s). Thus, for every ρ, and if ν is the gaussian distribution,

∫

ρ logρ ≥
∫

ν log ν +
∫

log ν(ρ − ν) +
∫

(ρ − ν)

=

∫

ν log ν −
∫ |x|2

2
ρ +

∫ |x|2
2
ν.

Therefore
∫ [

ρ logρ +
|x|2
2
ρ

]

≥
∫ [

ν log ν +
|x|2
2
ν

]

= 0.

Summing (6.3) and (6.4), and using the fact that νϑ is still a (one dimensional)
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gaussian, we obtain

∂t

(

E(ρs) +
∫ |x|2

2
ρs

)

≤
?

(E(νϑ) − E(ρs,ϑ)
)

+

? ∫ |r|2
2
νϑ −

? ∫ |r|2
2
ρs,ϑ −

1
2

SW2
2(ρs, ν)

=

? [(

E(νϑ) +
∫ |r|2

2
νϑ

)

−
(

E(ρs,ϑ) +
∫ |r|2

2
ρs,ϑ

)]

− 1
2

SW2
2(ρs, ν)

≤ −1
2

SW2
2(ρs, ν).

So, finally,

∫ T

0
SW2

2(ρt, ν)dt ≤ − [E(ρT) − E(ρ0)
] −

∫ [

|x|2
2
ρT −

|x|2
2
ρ0

]

dt

≤ E(ρ0) +
∫ |x|2

2
ρ0 ≔ C

for every T ≥ 0. Thus
∫ ∞

0
SW2

2(ρt, ν)dt ≤ C,

and therefore, since SW2 is decreasing along the flow,

lim
t→∞

SW2(ρt, ν) = 0.

Since, by (6.1), we have an information about the compactness of the measures set
{

ρt

}

t≥0 in the space P(Rd),Wp for every p ≥ 2 (recall theorem 3.1.3),we can deduce
that

ρt

Wp−−−→
t→∞

ν

for every p ≥ 2.

6.4 The radial-target case

In the present section we will use the notation and the results contained in [5] for
what concerns the theory of dynamical systems in Wasserstein spaces. Recall that
any gradient flow is a dynamical system and that the notion of curve of maximal

slope is precisely the one needed in order to discuss these topics properly: we can
cite [2] for a detailed presentation.

Beside the lucky Gaussian target case, we have another interesting situation in
which we claim that the only stationary point should be the target measure itself,
precisely the one in which the gradient flow is well posed (it admits existence and
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uniqueness for any t ≥ 0) and both the starting and target measure are radial.
In our setting, the function

E(ρ) =
SW2

2

2
(ρ, ν)

is a free energy of the dynamical system and the function

G(ρ) =















∫

∣

∣

∣

∣

∣

∣

∇
δSW2

2(ρ, ν)

2δρ

∣

∣

∣

∣

∣

∣

2

dρ















1/2

is a weak upper gradient both satisfying assumptions of theorem 2.12 of [5]. The
sliced Wasserstein gradient flow (ρt)t≥0 is therefore a curve of maximal slope. As
such, it must converge to the set of ω-limits of the system, which is a subset of the
set of stationary points.

Remark 7. Notice that one can prove the following two conditions to be equivalent:

1. ρ > 0 a.e. and G(ρ) = 0,

2. ρ = ν.

We could therefore be tempted to say that ν is the only stationary point, but we are not

considering all the stationary points that are not strictly positive.

By the theory of dynamical systems developed in [5], we know that the set of
stationary points coincides with the zeros of the function G, namely the set

S ≔
{

µ ∈ P(Rd) s. t.
ÅTµ→ν(x)

d
≔

?
Tµϑ→νϑ(x · ϑ)ϑdϑ =

x

d

}

.

If ν is radial, we claim that the only radial measure inS is ν itself. Indeed, suppose
that µ ∈ S is radial. For starters, recall the coarea formula

∫

E

h(ϑ)|∇ f (ϑ)|dϑ =
∫

R

(∫

E∩ f−1(s)
h(y)dHd−1

)

ds,

where E = Sd−1, f (ϑ) = x · ϑ and h(ϑ) = T(x·ϑ)ϑ
|∇ f (ϑ)| . We have therefore (notice that for

any ϑ, Tϑ is always the same map, that we will denote by T)

x

d
=

?
Tϑ(x · ϑ)ϑdϑ

=
1
ωd

∫

R

(∫

{y∈Sd−1:y·x=s}

T(x · y)y

|∇ f (y)| dHd−2(y)
)

ds,

and by a direct computation of the Hausdorff (d − 2)-dimensional measure of the
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set E ∩ f −1(s), we have

x

d
=
ωd−1

ωd

∫

R















∫

{y∈Sd−1:x·y=s}

T(x · y)y

|∇ f (y)|

(

1 − s2

|x|2
)

d−2
2

dy















ds

=
ωd−1

ωd

∫

R

(

1 − s2

|x|2
)

d−2
2

T(s)
(∫

{y∈Sd−1:x·y=s}

y

|∇ f (y)|dy

)

ds.

Since on the set E ∩ f −1(s) one has |∇ f (y)|=
√
|x|2−s2, we get

x

d
=
ωd−1

ωd

∫

R

(

1 − s2

|x|2
)

d−3
2 T(s)
|x|

(∫

{y∈Sd−1:x·y=s}
ydy

)

ds

=2
ωd−1

ωd

∫ |x|

−|x|

(

1 − s2

|x|2
)

d−3
2 T(s)
|x|2 sx̂ds.

Then, using the change of variables t = s|x|, we have

1
d
= 2

ωd−1

ωd

∫ 1

−1
(1 − t2)

d−3
2

T(t|x|)
|x| tdt = 4

ωd−1

ωd

∫ 1

0
(1 − t2)

d−3
2

T(t|x|)
|x| tdt.

Remark 8. From now on, our computations are formal, and there are some problems in

making them rigorous which we will explain in the following.

Take the derivative with respect to λ ≔ |x| of the above expression, and deduce
that

∫ 1

0
(tλT′(tλ) − T(tλ)) t(1 − t2)

d−3
2 dt = 0.

This expression must hold for all the x ∈ supp(µ) such that there exists a se-
quence {yn}n∈N ⊂ supp(µ) such that |yn|→ |x|. We call Λµ ≔ {λ ∈ [0,∞):∃x ∈
supp(µ),∃{yn}n∈N ⊂ supp(µ) s. t. |yn|→ |x|= λ}. Using the change of variables
tλ = s, and calling g(t) ≔ tλT′(tλ) − T(tλ), we get that

0 =
∫ λ

0
g(s)s(λ2 − s2)

d−3
2 ds

=

∫

R

g(s)s(λ2 − s2)
d−3

2
+

If the dimension d is even, by taking further derivatives with respect to λ and
using the Lebesgue derivation lemma under the integral sign, we obtain

0 =
∫

R

g(s)s(λ2 − s2)
d−1

2 −k
+ ds

and therefore
∫ λ

0
g(s)s(λ2 − s2)

d−1
2 −k
= 0
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for any λ ∈ Λµ, k ∈N.
By the change of variables u = λ2 − s2, we get

∫ λ

0
g(
√
λ2 − u)u

d−1
2 −kdu.

Use then the change of variables u = 1
x
, to deduce

∫ ∞

1/λ2
g













√

λ2 − 1
x













xk

x
d−1

2 +2
dx ≕

∫ ∞

1/λ2
fλ(x)xkdx = 0.

Now, what we would like to do is to invoke the Stone-Weierstrass theorem, in
order to deduce that the function fλ should be the zero function for any λ ∈ Λµ.
This would give us the claim, since it would imply g(x) = 0 for any x ∈ R and
therefore that the transport map T was linear, which in turn would imply T = id,
by a direct computation. As already pointed out, the above argument is just
formal, since some difficulties arise:

1. We don’t know if the function g is integrable and if the above integrals in
which it is involved make sense

2. For the same reason, the derivation under the integral sign could be a prob-
lem

3. We are trying to apply the Stone-Weierstrass theorem in a non bounded inter-
val: this could be done employing some more abstract tools, but nonetheless
doing this is a problem, since we are trying to use the theorem using with
not bounded functions.
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Chapter 7

Further perspectives

In this chapter we will present some issues that weren’t treated or fully understood
during this work, but for which we tried to develop some ideas.

Conjecture 2 We still haven’t discuss conjecture 2: the statement of this conjec-
ture is indeed very strong, as a positive answer to it would imply conjecture 1 is
true. Still, saying something about the convergence of the particles moved along
the sliced Wasserstein gradient flow is difficult. One of the approaches we tried
to develop was the following: subdivide the interval (0,∞) in intervals (tk, tk+1),
k ∈ N of a length |tk+1 − tk| to be determined. A standard result in gradient flows
theory tells us that

∫ tk+1

tk

|ρ′|2(t)dt ≤ SW2

2
(ρtk

) − SW2

2
(ρtk+1).

This property, indeed, essentially follows from the fact that, for the ODE

x′(t) = −∇F(x(t)),

which represents the Rd model for gradient flows, one has
∫ tk+1

tk

|x′(t)|2dt = −
∫ tk+1

tk

x′(t) · ∇F(x(t))dt = −
∫ tk+1

tk

d

dt
F(x(t))dt = F(x(tk)) − F(x(tk+1))

By Hölder inequality we have therefore the following estimate:

∫ ∞

0
|ρ′|(t)dt =

∞
∑

k=0

∫ tk+1

tk

|ρ′|(t) ≤
∞
∑

k=0

√
tk+1 − tk

√

∫ tk+1

tk

|ρ′|2(t)dt

≤
∞
∑

k=0

√
tk+1 − tk

√

SW2

2
(ρtk

) − SW2

2
(ρtk+1).

If we assume the decay of the term SW2(ρtk
)− SW2(ρtk+1) to be fast enough to have

∫ ∞
0
|ρ′|(t)dt < ∞ (and to obtain this we are free to model the choice of the intervals
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(tk, tk+1) in the most convenient way), thanks to theorem (3.3.2), we deduce

∫ ∞

0
∥vt∥L2(ρt)dt =

∫ ∞

0
|ρ′|(t)dt < ∞, (7.1)

whereas we recall that the result we would like to obtain in order give a positive
answer to conjecture 2 is

∫ ∞

0
∥vt∥L∞dt < ∞.

Even if it is still not clear how to deduce bounds on the L∞ norm from estimates
on the L2(ρt) norm, we think that obtaining (7.1) could be a starting point for a
research which aims to furnish a positive answer to conjecture 2. The biggest
problem in this plan is that providing an estimate for the decrease of the term
SW2 along the flow is very hard. One could for example use the following
argument: by equation (6.4) and using the notation x(t) ≔M2

2(ρt)/2 −M2
2(ν)/2 ,

g(t) ≔ SW2(ρt)/2, we have that

x′ = −x

d
− g.

Thanks to the monotonicity of g (recall that a functional F decreases along its
gradient flow) one can prove that x is either decreasing or (eventually) monotone
increasing, hence admits a limit x∞, that must be finite thanks to estimate (6.2).
Using the shortcuts y ≔ x − x∞ and w ≔ g − g∞, we have therefore the relation

w′ = −w

d
− h.

Now, if we could prove that w > 0, we would deduce the integrability of the
term SW2(t) − limt→∞ SW2(t), and this would be sufficient to obtain (7.1). This
is equivalent to ask that, along the flow, the second moment of the measure at
time t is larger than the second moment of the target measure. Under which
assumptions this happens?

The SWGF could not converge(?) Another interesting aspect we didn’t fully
treat is related to conjecture 1: we would like to provide an example in which the
flow does not converge to any measure. To fix the ideas, consider the following

Example 5. In R2 consider the following autonomous ODE expressed in polar coordi-

nates:
d

dt
(r cosϑ, r sinϑ) = −∇ f (r, ϑ),

where

f (r, ϑ) =



















1, r ≤ 1

1 + e−
1

r−1

[

sin
(

1
r−1 + ϑ

)

+ 2
]

, r > 1.
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Solutions starting in R2 \ ÅB1 spiral toward the unit circle, and we can find subsequences

along this trajectory that converge to different limits. From this example, we can construct

a gradient flow in (P2(R2),W2) which exhibits similar spiralling behavior, namely the

solution to the continuity equation

∂tρ − ∇ · (ρ∇ f ) = 0,

with initial datum δx0 for x0 ∈ R2 \ ÅB1, which is given by ρ(t) = δx(t).

Is it possible to choose an initial and target measure in such a way that the
velocity field associated with the SWGF, namely

vt(x) =
?
Sd−1

(Tt,ϑ(x · ϑ) − x · ϑ)dϑ

behaves similarly to the function f in the above example? Of course, here we
have a different situation from the one presented before, since the velocity field
v is depending on time and position and even on the curve ρt itself, namely the
ODE providing the Lagrangian description of the SWGF is non autonomous.

The positive measure case Beside the problems we already pointed out in the
last part of the work, let us mention a possible way (still unexplored by us)
to deduce a convergence result for positive measures: recalling remark 7 from
section 6.4, we would like to know under which hypothesis the following fact is
true: given an initial and a target measure both positive on the entire space, the
associated gradient flow is (uniformly in t) positive on the entire space. A positive
answer to this result (or to any similar result ensuring the uniform positivity of
the gradient flow) would give a straight-forward answer to the question of the
convergence of the SWGF associated with positive measures.
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