
UNIVERSITÀ DI PADOVA FACOLTÀ DI INGEGNERIA

DIPARTIMENTO DI INGEGNERIA DELL’INFORMAZIONE

Corso di Laurea Magistrale in Bioingegneria

Tesi di Laurea

ANALYSIS OF TRANSIENT FAILURES IN

CONTINUOUS GLUCOSE MONITORING

SENSORS:

DATA MODELING AND SIMULATION

Relatore: Prof. Giovanni Sparacino

Correlatori: Dott. Ing. Simone Del Favero

Dott. Ing. Andrea Facchinetti

Laureanda: Alessandra Khoury

Anno accademico 2011/2012

Padova, 23 Aprile 2012





A mamma, papà
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SOMMARIO

Una delle più promettenti recenti innovazioni tecnologiche nella terapia del diabete sono i

dispositivi per il monitoraggio quasi continuo della glicemia (CGM). Questi piccoli sensori

sottocutanei rendono disponibile una grande mole di dati, prima inacessibile, il cui utilizzo

consente a paziente e diabetologo di migliorare significativamente la qualità del controllo

glicemica. Questa tecnologia ha rinnovato l’intresse verso l’implementazione di un dispositivo

per il controllo automatico in catena chiusa della glicemia (Pancras Artificiale), che grazie ad

essa può diventare finalmente portatile e minimamente invasivo.

-

Un’altra tecnologia chiave nel campo per lo sviluppo del Pancreas Aritficiale è il simulatore

del paziente diabetico, uno strumento software che consente di evitare i lunghi e dispendiosi

trial sugli animali, una volta necessari prima di testare un dispositivo sugli esseri umani.

Visto il ruolo sempre più cruciale delle simulazioni in questo settore, è importante poter includere

in queste gli errori ed i faults a cui sono soggetti i dispositivi CGM cosı̀ da testare la robustezza

degli algoritmi a questi eventi e la loro efficacia nel gestirli.

-

Questa tesi si propone di rispondere alla necessità di modelli per gli errori e i faults che

comunemente si riscontrano nei dati CGM reali, da utilizzare nei test simulati di robustezza.

-

Dall’osservazione di un data set fornito da misure con sensori CGM Dexcom® (Capitolo 2)

sono stati individuate tre classi di errori e per ciascuna di queste è stato proposto un modello e

un modulo di simulazione. Le disconnessioni (Capitolo 3) consistono nella perdita di almeno un

campione, a causa di un malfunzionamento della comunicazione tra i componenti trasmissivi e

ricettivi del sensore. Un modello di Markov a due stati è stato proposto e validato. Gli errori

di tipo segnale non valido (Capitolo 4) sono stati associati all’indicazione del ricevitore pari a

9 o 10 mg/dl. Per questo tipo di errore un modello di Markov a due stati non è stato sufficiente

a descrivere l’intera casistica, che comprende errori di breve durata (meno di un’ora) e di lunga

durata (alcune ore). Infine, un terzo tipo di errore è assimilabile ad una perdita di sensitività

del sensore, a causa di una pressione sullo stesso. Il modello proposto e validato (Capitolo 5)

consiste nell’assimilare tale errore ad una funzione gradino filtrato da un sistema dinamico del
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primo ordine.

Per gli errori di disconnessione e di perdita di sensitività è stato possibile quindi proporre due

moduli di simulazione che permettono di avvicinare i profili glicemici simulati a quelli ottenuti

da misurazioni reali con sensori CGM; nel caso degli errori di tipo ‘segnale non valido’ la

simulazione è stata avviata sfruttando l’informazione statistica empirica dei dati (Capitolo 6).



SUMMARY

One of the most promising recent technological innovation in diabetes management are the

devices for continuous glucose monitoring (CGM). These small subcutaneous sensors give

us a large amount of information that was inaccessible before. Using these sensors allows

both patient and diabetologist to significantly improve the quality of the closed loop control of

glycemic levels. This technology has renewed the interest in the development of a device for

closed loop automatic control of glycemia (Artificial Pancreas), that can eventually be wearable

and minimally invasive.

-

Another key technology for the Artificial Pancreas development is the physiological simu-

lator of a diabetic patient, a software tool that allows to avoid expensive and time consuming

trials on animals, that once were necessary in order to test any device for human beings.

Since simulation is becoming more and more crucial in this field, it is important to involve the

most common failures that affects CGM devices, so that algorithms’ robustness to these events

can be tested together with their skill in managing them.

-

This thesis is meant to meet the need for models of the most common failures which can be

used for robustness simulated tests.

-

The observation of a data set of Dexcom® CGM measurements (Chapter 2) led us to

identify three kinds of failures and for each one of them a model was proposed. Disconnections

consists of the loss of at least one sample, caused by the interruption of communications between

transmitter and receiver. A two-state Markov model was proposed and validated. Invalid Outputs

(Chapter 4) were associated with the received CGM readings of 9 or 10 mg/dl. In this case, the

two-state Markov model was not suitable for the description of both short (less than one hour)

and long-lasting (several hours) failures. Lastly, a third kind of failure was classified as a loss of

sensitivity of the sensor, caused by a pressure on the sensor itself. The model, that was proposed

and validated (Chapter 5), described this failure as a step function filtered by a first order system.

For what concerns disconnections and losses of sensitivity we could build simulation tools that

allow us to make simulated glyceimic profiles more similar to the real ones. In order to simulate
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invalid outputs, the simulation was run with the empirical statistical information (Chapter 6).



1
Diabetes and Continuous Glucose Monitoring

Diabetes Mellitus is a metabolic disease characterized by either the insufficient produc-

tion of the insulin hormon to maintain the glucose level in the normal range (Type-1

diabetes), which is usually set between 70 and 180 mg/dl, or the inability of the body

to respond to the insulin formed within the system (Type-2 diabetes). To cover this

deficiency, conventional approach is to introduce insulin with subcutaneous injections.

In order to determine the proper dosage for their insulin injections patients have to

frequently monitor their blood glucose concentration by means of Self Monitoring Blood

Glucose (SMBG) therapy (i.e. 3-4 finger stick measurements per day). In the last few

years new sensors have been developed, allowing Continuous Glucose Monitoring

(CGM), e.g. a glucose measurement is obtained every 5 minutes and for several

days. These devices significantly improve diabetes management detecting more critical

episodes (i.e. hypo and hyperglycemia) rather than conventional SMBG.

In this chapter Diabetes and related complications, SMBG and devices for CGM will be

briefly introduced and described.

1.1 Diabetes Pathophysiology

Glucose is the main power source for the organism, and its concentration in blood circulation is

characterized by a dynamic equilibrium between its production and utilization.

Normally, the organism receives the amount of glucose he needs from food, while liver and

kidneys supply it in case of short fasting. In a healthy person, glycemia is accurately regulated

by the organism, and insulin, produced by pancreas, is the crucial hormon in glucose metabolism.

Diabetes is a chronic disease that occurs either when the pancreas does not produce enough

insulin or when the body cannot effectively use the insulin it produces. Hyperglycaemia, or

raised blood sugar, is a common effect of uncontrolled diabetes and over time leads to serious

damage to many of the body’s systems, especially the nerves and blood vessels.

Diabetes is classified into two types:

1



2 Chapter 1. Diabetes and Continuous Glucose Monitoring

1. Type-1 diabetes mellitus (T1DM): previously known as insulin-dependent, juvenile or

childhood-onset, is characterized by deficient insulin production and requires daily ad-

ministration of insulin. The cause of type 1 diabetes is not known and it is not preventable

with current knowledge.

Symptoms include excessive excretion of urine (polyuria), thirst (polydipsia), constant

hunger, weight loss, vision changes and fatigue. These symptoms may occur suddenly.

2. Type-2 diabetes mellitus (T2DM): formerly called non-insulin-dependent or adult-onset,

results from the body’s ineffective use of insulin. Type 2 diabetes comprises 90% of

people with diabetes around the world, and is largely the result of excess body weight and

physical inactivity.

Symptoms may be similar to those of Type 1 diabetes, but are often less marked. As a

result, the disease may be diagnosed several years after onset, once complications have

already arisen. Until recently, this type of diabetes was seen only in adults but it is now

also occurring in children.

1.2 Glucose monitoring and Diabetes Therapy

Diabetes therapy’s aim is that of keeping glucose levels in the euglycemic range (70-180 mg/dl),

so as to minimize or at least delay diabetes complications: over time, diabetes can damage

the heart, blood vessels, eyes, kidneys and nerves. At present, diabetes conventional therapy

relies on insulin and drug administration, diet and physical exercise: people with T1DM require

insulin, while people with T2DM may not need it and can be treated with oral medication. Until

the fifties insulin dosage was determined without considering real glucose levels of the patient.

Setting insulin dosage is a challenging subject, and starting from the eighties this decision was

up to new devices and technologies that could help Self Monitoring Blood Glucose (SMBG).

A typical SMBG test includes a drop of blood, obtained via a finger prick and applied to a

chemically treated reagent strip, which is analyzed by the device. The test provides discrete and

highly accurate data about current blood glucose levels. Insulin administrations rely then on

three or four measures of blood glucose level per day: accuracy of the therapy is user-dependent,

i.e. patients should be taught how to modify their food intake and therapy according to the

SMBG data and in order to realize their individual glycemic goals. The insulin therapy then can
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Figure 1.1 Comparison between CGM data (red profile) and SMBG measurements (blue

dots). The green area shows the normal range of blood glucose.

be administered in two ways:

Multiple injection regimen: multiple daily subcutaneous injection are perfomed with sy-

ringes. Injection sites are the tissue of the upper arm and the anterior and lateral aspects of the

thigh, buttocks, and abdomen. Short acting insulin should be injected within 30 min before a

meal or immediately after a meal, in order to oppose the quick rise of the glycemic level due to

the food intake, while Long acting insulin are administered to provide a basal insulinemia.

Continuous subcutaneous insulin infusion (CSII): a subcutaneous infusion pump injects

of short acting insulin, delivered via a needle or a catheter sited under the skin and connected to

a reservoir of insulin and a command module. This therapy is aimed at replacing long acting

insulin for basal needs, continuously delivering short acting micro boli of insulin. However,

insulin pumps are expensive, and at present they are available to a little amount of patients.

-

Nonetheless, the few SMBG samples do not give us enough information about critical

glycemic episodes, e.g postprandial hypoglycemia and hyperglycemia. We find an example of

this drawback in Figure 1.1. The several SMBG measurements performed (blue dots) could not

catch three episodes of severe hyperglycemia and two of mild hypoglycemia, which are instead

highlighted by the real glycemia data (red profile) and its excursions outside the range of normal

glucose level (green area).

The SMBG inefficiency to identify all glucose excursions out of the euglycemic range,

together with the pain associated with finger pricking, led during the last decade to the de-
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velopment of new electronic devices that allow a quasi-continuous and minimally-invasive

measurement of blood glucose concentrations, the so-called Continuous Glucose Monitoring

(CGM) wearable systems. CGM measurements provide relevant information about the diabetes

of a patient, and the importance of this technology will be discussed in Section 1.3.3, together

with its drawbacks.

1.3 CGM sensors

Continuous glucose monitoring systems are electronic devices that measure physiological

glucose levels. Glucose readings are provided every 1 to 5 minutes for several days (up to 7

days). Usually the device is made of a glucose sensor, that measures glucose levels of blood or

interstitial fluid, and a wireless (or wired) transmitter which communicates glucose readings

to a receiver that displays the current glucose data. CGM devices enable the identification of

the overall trend in the glucose level, and based on these trends, proximal glucose levels can

be forecast, along with hypo and hyperglycemia. The retrospective analysis of CGM direction,

frequency and magnitude supply trend information that assists in optimizing treatment plans,

adapting insulin regimens and facilitating clinical decisions.

Depending on the placement of the glucose sensor, we can define the degree of invasiveness

of a CGM device. From this point of view, they can be classified into two groups: minimally-

invasive and non-invasive devices.

1.3.1 Minimally-Invasive Devices

The minimally-invasive technologies measure glucose concentrations in the subcutaneous

tissue, where the sensor is partially sited. Hence this classification describes the fact that the

measurement does not draw from any blood vessel, but yet it compromises the skin barrier.

This type of CGM systems is usually made of two components: a subcutaneous glucose

sensor implanted on patient’s skin, which provides measurements of the interstitial glucose

concentration and is also a transmitter, and a small device that receives, stores and visualizes

CGM data.

The subcutaneous sensor can be based on different principles, e.g. microneedle technology

is made of silicon micro-needles that penetrate the skin and draw small samples of blood, while

micropore technology employs laser ablation to create microscopic holes on the outmost layer
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of the epidermis and draws interstitial fluid samples with a small local vacuum (for a complete

review of current technologies see [2]). From a glucose detection technology point of view,

most of the minimally-invasive sensors exploit a glucose-oxidase reaction to measure a raw

signal, proportional to the glucose concentration of the site in which the biosensor is sited, i.e.

in this case the interstitial tissue. This signal is usually a current given in mA. In order to read

glucose leveles in mg/dl, a calibration procedure is then to be performed, using one or more

SMBG samples. Some of the most important minimally-invasive CGM devices are:

• CGM System Gold (CGMS® System Gold™ Medtronic MiniMed, Northridge, CA,

USA), FDA approved in March 2001 [19];

• GlucoDay® (A. Menarini Diagnostics, Florence, Italy), which received CE mark in

Europe [20];

• Guardian® Real-Time (Medtronic MiniMed, Northridge, CA, USA), FDA approved in

June 2005 [21];

• FreeStyle Navigator™ (Abbott Laboratories, Alameda, CA, USA), FDA approved in

March 2008 [22];

• Seven® Plus (DexCom, San Diego, CA, USA), FDA approved in February 2009 [23]

The DexCom® Seven® Plus CGM system, which provided the data we analyzed in this

thesis, will be talked out in Section 1.4.

1.3.2 Non-Invasive Devices

The need to avoid wounds and risk of infection from penetrating the skin has led to the

challenging development of non-invasive sensors that measure glucose concentration from

external body fluids assesment, such as saliva and tears [5], or with transdermal sensor based

on optical approach. Focusing on the latter, the exploited detection technologies can involve

fluorophores and thus measure Forster Resonance Energy Transfer (FRET) lifetime or intensity.

Other optical techniques that do not use glucose-binding-fluorophore are e.g. Near Infrared

(NIR) kromoscopy, Raman spectroscopy, polarimetry, photoacoustic spectroscopy and optical

coherence tomography.

This kind of glucose monitoring is very promising, yet it will require several years before
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reaching the market place. This is mainly due to many drawbacks concerning accuracy, precision

and selectivity, i.e. the ability of the sensor to respond only to changes in glucose within the

pool of molecules present in the body, like albumin and ascorbic acid.

Hereafter some intersting non-invasive sensors are briefly discussed:

• The NBM (OrSense Ltd., Nes Ziona, Israel) device is a prototype, and is based on

occlusion spectroscopy [3]. The measurement is performed using an annular probe,

which is positioned on the finger’s root. The probe contains light sources and detectors

operating in the red/near-infrared (RNIR) spectral region and pneumatic cuffs that produce

oversystolic pressure to occlude blood flow. The occlusion of blood flow generates a

dynamic optical signal, which facilitates accurate glucose monitoring. The technology is

based on the direct effect of glucose on the scattering properties of the organ. Glucose

decreases the mismatch in refractive index between scatterers and their surrounding media,

leading to a smaller scattering coefficient and, consequently, a shorter optical path. As

a result, with the growing concentration of glucose, fewer photons are absorbed and

the light intensity increases. Development of this device is focused on improving the

performance and ease of use in the home-use setting.

• The Solianis Multisensor (Biovotion AG, Zürich, CH) device uses impedance spec-

troscopy in order to measure glucose levels [4, 18]. The principle of glucose detection

using this technology is: an increase in the local glucose concentration results in a de-

crease in the sodium levels and an increase in the potassium levels of the plasma, changing

the dielectric strength, permittivity and conductivity of the plasma.

• The HG1-c nCGM (C8 MediSensors Inc., San Jose, CA, USA) is an investigational

device, not cleared or approved for marketing in any jurisdiction [24]. This non-invasive

CGM uses a light-sensitive sensor when detecting body’s glucose levels and sends glucose

measurements to a smart phone or any other compatible display device. It exploits Raman

spectroscopy: the colours generated by Raman scattering, induced by illumination of a

sample, are very specific to the exact chemical structure of molecules in the sample. Since

glucose has its unique spectral fingerprint, it can be non-invasively measured beneath the

skin.
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1.3.3 Pros and Cons of CGM Devices

CGM devices have the great advantage to supply to both clinicians and diabetic patients a

more complete information about the glycemic profile rather than SMBG. The possibility to have

real-time information about the glycemic level and its trend is very useful in the management of

patient’s therapy, e.g. in the adjustment of the diet and the insulin dosage. Another significant

improvement in diabetes management is also represented by the embedding in many of the

CGM system of a tool able to generate visual and acoustic alerts when glucose concentration

exceeds the normal range thresholds.

The portability of these devices and the possibility to receive an alarm when some fixed glycemic

thresholds have been crossed, allow the diabetic patient to become more self-sufficient in the

management of both therapy and critical events, e.g. post-prandial hyperglycemia and nocturnal

hypoglycemia.

It is also important to remind that, nowadays, none of the CGM devices has been approved

to substitute SMBG as reference in both control and management of the therapy. This fact is

principally due to the lack of accuracy of CGM readings, accuracy which is crucial for the

correct working of such a devices. Another critical topic with all CGM systems is calibration,

i.e. relying on the glucose signal measured in interstitial fluid to blood glucose by means of

capillary blood glucose measurements. For instance, if this is performed while blood glucose

changes rapidly or if this is not performed with sufficient frequency to compensate for drift,

there might be an unnecessary difference between measured and real glucose levels.

1.4 Dexcom® SEVEN® PLUS

The SEVEN® PLUS CGM System is a glucose-monitoring device for detecting glucose trends in

adults with diabetes, and it is not approved for use on people aged less than 18, pregnant women

or people on dialysis. The system received FDA approval for up to 7 days of use, although it is

not designed to replace standard home glucose monitoring devices. Its use is helpful in order to

detect hypoglycemic events, since it emits an alarm if the measured concentration of glucose

reaches or goes under 55 mg/dl. The performances of the sensor were evaluated only for one

probe insertion site, which is the skin of the abdomen [23].
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Figure 1.2 Components of the SEVEN® PLUS System: on the left the Receiver,a cell-phone

sized device programmed to collect and process data from the sensor and to display the results

as a glucose values, in the middle the Sensor with the Transmitter, on the right the Sensor with

the applicator, used to insert the probe underneath the skin.

1.4.1 System components

The SEVEN® system consists of three major components.

1. The Sensor, sterilized by electron beam and made up of three parts

• Applicator: a disposable piece of the Sensor that you use to insert the Sensor Probe.

There is a needle inside the Applicator that is removed once the Sensor Probe is

inserted underneath the skin.

• Sensor Probe: is the portion of the sensor that is actually inserted under the skin and

measures glucose levels of the interstitial fluid in the sorroundings of the area in

which it is inserted.

• Sensor Pod: it sticks to the abdomen and holds the Transmitter in place. The Sensor

Pod and the Transmitter are the only components that are actually worn by the

patient during the glucose monitoring session.

2. The Transmitter, which snaps into the Sensor Pod and wirelessly sends glucose data to

the Receiver.

3. The Receiver, a cell-phone sized device programmed to collect and process data from the

Sensor and to display the results as a glucose value. Values above 400 mg/dl or below

39 mg/dl are not shown by the display.



1.5. Aim of the Work and Outline 9

1.4.2 Principle of operation

The SEVEN® PLUS Sensor exploits an electrochemical reaction with glucose. The reagent

used is glucose oxidase, obtained from a microorganism, and less than 0.4 µg is applied to each

Sensor Probe (for a further insight into enzyme for glucose monitoring applications see [7]).

The Sensor Probe is a round platinum electrode with a multi-layered membrane technology. The

reaction allows glucose to be converted into an electronic signal [2], which is sent wirelessly via

radio frequency (RF) to the Receiver by the Transmitter, with an average lag time of 5 minutes.

The Receiver converts the signal to a glucose reading that is displayed to the user.

1.5 Aim of the Work and Outline

In the previous Sections we have discussed capabilities and drawbacks of CGM devices. The

aim of this work is to classify, analyze and model three of the most common transient failures

we have found in CGM readings we were provided, in order to eventually simulate them.

-

Chapter 2 consists of the description of the two data sets we were provided and on which

we led our investigation.

-

Chapter 3 is dedicated to the first kind of fault we have found and analyzed, and we called

it disconnection. This failure is due to the loss of at least one sample from CGM readings for

technological reasons. The collected set of disconnections was statistically investigated, and a

model was proposed and validated.

-

Chapter 4 illustrates the second kind of fault we have found, and we called it invaid output.

This failure can be read as an ‘error code’ of the CGM signal, since the receiver displays a

glycemic level of 9 or 10 mg/dl. Along with a statistical investigation of the invalid outputs we

have detected, a model was proposed and demonstrated to be acceptable for short-lasting invalid

outputs.

-

Chapter 5 is the core of this work, and shows the most interesting results. The subject of

this Chapter is the analysis of a third kind of failure, that we have called loss of sensitivity of the
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CGM signal. This fault is not well-rendered like the other two, so it is important to detect it and

model it. Losses of sensitivity are due to a transitional pressure applied to the sensor that acts

as a low pass filter. Hence, a good model for this kind of failure is to consider it as a disturb

consisting of a step function filtered by a first order system. The model we have proposed was

eventually validated.

-

Chapter 6 shows the simulated transient failures with the previously discussed models, with

an application on simulated CGM profiles.



2
Features of the two datasets

In this chapter we will describe the two datasets available for modeling CGM faults. Both

the datasets were obtained with Dexcom® SEVEN® PLUS CGM sensors discussed

in chapter 1, in two different trials overall. We were provided with 94 CGM signals on

the whole, each of them lasting 7 days on average. For some shorter period frequent

BG samples were also available, and this information can be exploited to classify faulty

measurements.

2.1 First dataset

The first dataset we have taken into account is collected by the Artificial Pancreas (AP) at home

consortium. AP@home is an European research project funded by the European commission;

its aim is to improve treatment of patients with diabetes at home by enhancing closed-loop

algorithms for artificial pancreas (AP) system that can be used in daily practice. For a description

of the basic strategy that the European consortium AP@home plans to follow in its attempt to

develop an artificial pancreas system see [6, 25].

2.1.1 Study design

The study is a multinational open-label trial involving four Clinical Research Centres (CRC),

reported in Table 2.1. Sensor data were collected over the course of a 7 day period most of

which are in an outpatient setting; patients visited CRC on day 1 and day 7 for insertion and

removal of the two Dexcom® SEVEN® PLUS CGM sensors and on day 3 for Blood Glucose

(BG) measurements. Both sensors were calibrated right after the insertion, but then underwent

different calibration schedules, in order to compare the built-in calibration of the sensor with

the recalibration algorithms developed for the smart sensor, i.e. a CGM sensor provided with

algorithms able to generate alerts when glucose concentration is predicted to exceed the normal

range threshold [8].

Reference blood glucose samples were gathered during study day 3, from 7pm to 4pm of

11
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Academic Medical Centre Amsterdam The Netherlands, EU

Medical University Graz Austria, EU

Profile Institute for Metabolic Research GmbH Germany, EU

University of Padua Italy, EU

Table 2.1 European centres involved in the study

the day after. Blood samples were drawn every 15 minutes during the day and every 2 hours

during the night; all blood samples were analyzed using the blood glucose Analyzer from Yellow

Spring Instruments (YSI) laboratories. This kind of information is useful to our purposes as it

allows us to classify as faulty some CGM samples with a higher rate of certainty.

2.1.2 Subject demographics

This study included 12 patients with T1DM, 3 in each of the four participating clinical centres

of the consortium; all of them were aged at least 18 years, treated by basal-bolus insulin therapy

using Continuous Subcutaneous Insulin Infusion (CSII) for at least 3 months and trained in

carbohydrate counting; lastly, Body Mass Index (BMI) lower than 35 kg/m2 was an inclusion

criterion.

Furthermore, pregnant or breast feeding patients were not admitted to the study, nor patients with

a history of myocardial infarction, acute coronary sindrome, therapeutic coronary intervention

and coronary bypass.

Since 2 CGM sensors were inserted in each patient and one patient had withdrawn, we could

observe 22 signals from this first dataset. Figure 2.1 displays an example of the data collected in

Germany (see Table 2.1).

2.2 Second dataset

The second dataset that we used is the one considered in [1]: the aim of the study was to evaluate

whether continuous glucose monitor alerts are capable of both detecting and predicting low and

high BG events.
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Figure 2.1 CGM data from the 2 sensors on one patient (patient #1 in Germany). Time

flowing is measured from the insertion of the sensor.

2.2.1 Study design

Each subject wore the Dexcom® SEVEN® PLUS CGM sensor for 7 days and underwent an

8-hour in-clinic session on day 1, 4, or 7. During the in-clinic session, venous plasma samples

were taken every 15 minutes with a Yellow Springs Instruments (YSI)-2300. Patients involved

in the study were instructed to calibrate the sensor twice per day with a BG meter.

2.2.2 Subject demographics

CGM and reference BG data were collected from 53 adults with insulin-dependent diabetes,

81% of them affected by T1DM. These patients were gathered across three sites within the

United States, and wore 72 sensors: 18 people wore 2 sensors, 35 people wore 1 sensor and 1

sensor was replaced.

The mean age of patients is 47.3 years old, with a standard deviation of 12.4; 22 subjects

were female (42%), 50 were Caucasian (94%), 26 delivered insulin via multiple daily injections

and their mean BMI was 27.9kg/m2 with 7.7 as standard deviation.
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Figure 2.2 CGM data from the sensor on two different patients. Time flowing is measured

from the insertion of the sensor. The square markers reveal calibration events.



3
Analysis of the disconnection fault

In the previous chapter the two datasets have been described. We have shown that

the signals were approximately seven-days lasting data, with a sampling period of

5 minutes. BG samples were also gathered for a shorter period of time during the

CGM measurement, usually for 24 hours. In fact, BG measurement requires invasive

treatment that needs to be done in the hospital, where patients were admitted for short

periods of time during CGM monitoring. We investigated the CGM data in order to

detect any dysfunctional behaviour of the sensors with no forecast for the shapes we

would find, using BG as a reference when available.

The first kind of fault is hereinafter discussed, together with its main features and stastis-

tical parameters, gathered for simulation purposes. We will refer to it as disconnection.

This type of error consists of the loss of at least one sample, and it is detected by

investigating time occurances of the data. We found 3868 disconnections overall.

3.1 Disconnections

As discussed in Section 1.4, the SEVEN® PLUS Transimitter, mounted on the Sensor, sends

the glucose readings to the Receiver every 5 minutes approximately. If we find out that the

lag between two adjacent samples is significantly larger than 5 minutes, then we can state that

an error had occured, as shown in Figure 3.1. We shall call disconnection this type of fault,

since Transmitter and Receiver seem to interrupt their wireless communications for at least one

sample.

We consider this type of fault mainly due to a pure technological error of the sensor or to a

bad management of the sensor for a short period. This is why we chose not to include in our

analysis faulty intervals larger than 75 minutes, believing that if the signal is missing for a larger

interval it means that the patient has surely forgotten to keep the Receiver within the proper

radius. We cannot ignore that our decision is a critical topic and should be investigated taking

into account an analysis of patients’ compliance.

15
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Figure 3.1 The tips define two examples of disconnection fault. The X-coordinate displayed

by the labels is measured in minutes and show the faulty distance between two samples in a row.

All the 94 CGM signals described in Chapter 2 were considered in this first analysis. In

order to detect the errors, we investigated time occurrences of the data, by verifying if the lag

between one sample and the next was approximately equal to the sampling period of the sensor.

If this was not true, i.e we chose a 7-minutes minimum lag, we considered the interval between

the two samples as faulty, meaning that some data had got lost. With this isolation procedure,

3868 disconnections have been found.

For each detected fault we recorded its beginning and length, both measured in minutes from

the midnight of the day of insertion of the sensor. This information was then considered in a

statistical approach, as described later on in Sections 3.2, 3.5.1 and 3.5.2.
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Figure 3.2 Histogram of the number of lost samples due to disconnection error. The ordinate

is logarithmically scaled.

3.2 Duration of disconnections

As discussed in Section 3.1, we defined an upper bound to the length of the errors we were

detecting, i.e. the maximum length of a disconnection is of 75 minutes. Figure 3.2 shows

the histogram of the several lengths of the disconnections overall. In the abscissa we read the

number of samples that are missing in the faulty interval, i.e. if we detect a 10-minutes lag

between two samples in a row, that means that 1 sample had gone lost.

The highest number of disconnections consists in a loss of 1 sample (2875), and the

histogram suggests that durations exponentially decrease. On average, a disconnection consists

in the loss of 1.54 samples with a standard deviation of 1.2 samples (12.7055 minutes, with

a standard deviation of 6.4075 minutes), while mode and median coincide at 1 sample (10

minutes).



18 Chapter 3. Analysis of the disconnection fault
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Figure 3.3 Two-state Markov model for disconnections.

3.3 Data modeling

In this Section we propose a reasonable model for the CGM signal with which we can explain

the disconnection fault and we will show in Section 3.4 that our idea justified. CGM sensor

functioning can be modelled with a two-state Markov chain. A Markov chain is a mathematical

system that undergoes transitions from one state to another according to certain probabilities

(called transition probabilities), between a finite or countable number of possible states. The

“system” is a random process characterized as memoryless: the next state depends only on

the current state and not on the sequence of events that preceded it. This specific kind of

memorylessness is called Markov property.

Figure 3.3 shows the two-state Markov chain we consider in order to explain the transition

from the regularly working state (R) to a faulty state (F). Every regular sample is followed by

a faulty one with probability α, or by a regular one with probability 1− α, while every faulty

sample is followed by another faulty sample with probability β, or by a regular sample with

probability 1− β.

3.3.1 Estimate of α

The transition probability α corresponds to the probability of a faulty sample to succeed a

regular one. i.e. it allows us to compute when a failure occurs. It is estimated as follows:

α̂ =
# detected faults

# samples observed overall - #faulty samples
. (3.1)

The estimated value is α̂ = 0.0230.

3.3.2 Estimate of β

The transition probability β corresponds to the probability of a faulty sample to succeed another

faulty sample, i.e. it allows us to compute the duration of the failure once it has already started.
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Given that N is the number of possible durations we found in the statistical analisys 3.2, we can

compute N − 1 probabilities that a disconnection that lasted i samples, lasts i+ 1 samples. We

shall define this probability as:

β̂i =
#[d ≥ i+ 1]

#[d ≥ i]
, i = 1, . . . , N − 1. (3.2)

Assuming that the probability to remain in the faulty state does not depend on the duration of a

disconnection, we can evaluate an average value for the transition probability β as follows:

β̂ =
1

N

N∑
i=1

β̂i. (3.3)

The estimated value is β̂ = 0.5665.

Nevertheless, we can choose to rely mostly in shorter disconnections, where the sample is

larger, and compute the value for the transition probability β e.g. averaging only the first three

values of the {β̂i} set, or the first seven values of the {β̂i} set:

β̂3 =
1

3

3∑
i=1

β̂i, β̂7 =
1

7

7∑
i=1

β̂i. (3.4)

We will show in Section 3.4 which one of the three proposed values for β is the most appropriate,

but we have to point out that some other options are also available and not taken into account in

this work: for example, averaging among the {β̂i} can be done with a matrix that weights the

values differently according to their reliability.

The estimated values for the probabilities defined in Equation 3.4 are β̂3 = 0.4377 and β̂7 =

0.5126.

3.4 Validation

Observing the Markov chain described in Section 3.3 we can state that the probability for a

disconnection to last at least one sample is the transition probability α. Then, the probability for

a disconnection to last at least two samples is the product of the probability to fall into the faulty

state, that is α, and the probability to remain in the faulty state for the next sample, that is β. We

can write this as follows:

P [d ≥ 1] = α

P [d ≥ 2] = αβ
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P [d ≥ 3] = αβ2

and by induction:

P [d ≥ n] = αβn−1

Nevertheless, from the histogram discussed in Section 3.2 we can evaluate probabilities

such as P[duration is equal to k samples]. Hence:

P [d ≥ k] = P [d = k ∪ d ≥ k + 1] = P [d = k] + P [d ≥ k + 1]

P [d = k] = P [d ≥ k]− P [d ≥ k + 1].

If we introduce α and β in the notation we find:

P [d = 1] = P [d ≥ 1]− P [d ≥ 2] = α− αβ = α(1− β)

P [d = 2] = P [d ≥ 2]− P [d ≥ 3] = αβ − αβ2 = αβ(1− β)

P [d = 3] = P [d ≥ 3]− P [d ≥ 4] = αβ2 − αβ3 = αβ2(1− β)

and by induction:

P [d = k] = α(1− β)βk−1.

Therefore we obtain:

logP [d = k] = log
α(1− β)

β
+ klogβ. (3.5)

Equation 3.5 can be read as the equation of a line, whose slope is logβ and y-intercept is

logα(1−β)β . Hence, transition probabilities α and β could be computed from the histogram in

Figure 3.2 as the defining parameters of the line whose equation is 3.5.

Figure 3.4 shows the result (blue line) if we draw the line with α̂ and β̂ estimated in 3.3.1

and 3.3.2. The red line and the green one correspond to the estimated parameters defined in

Equation 3.4. We can observe that the three lines fit more precisly the values of the histogram

for # lost samples = 1, where the sample is larger. The red line seem to fit more precisly overall

than the other two estimated lines, so our choice is to consider β̂7 as the proper value for the

transition probability β.

3.5 Revising probabilities considering the day and the hour

We wonder if failures’ occurances depend on the hour of the day and on sensor day, i.e. the

moment from sensor insertion. In order to answer this question, we need to investigate whether
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Figure 3.4 Graphic validation of the model: the lines drawn with the estimated parameters

α̂ and β̂ fit the normalized histogram of disconnections’ durations. In the legend are displayed

the three estimated values of β̂, depending on the confidence we have in the data.

failures occur evenly both during the several days and during the several hours of the day,

exploiting a statistical analysis, that is hereinafter discussed.

3.5.1 Time from insertion

In order to visualize how the disconnection event occurs during the experiment, we plotted

the information about the start of each fault using a histogram as shown in Figure 3.5.1. The

starting points were measured from the insertion of the sensor, thus we are here analyzing

sensor’s behaviour during sensor life. During our investigation we did not consider those pieces

of CGM signal which were recorded after the end of the 7-th day of trial: in fact, even though

the approval of the SEVEN PLUS sensor is for up to 7 days of monitoring, some monitoring

session ended late.

During day-5 we observe the highest number of errors (693), and they are distributed over

the several days of trial with a mean value of 483.5 disconnections per day, standard deviation
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Figure 3.5 Distribution of disconnections over the several trial days, with failures’ starting

points measured from the insertion of the sensor. Left panel: histogram, each day involves 2 bins

of 12 hours, Mean: 3.5242, stdev: 1.9744, median: 3.5979. Right panel: probability density

function obtained via kenel density estimation.

of 206.9 and median of 519.5. On day-1 we found 569 disconnections, and this is probably due

to the inaccuracy of the sensor at the beginning of its monitoring session. During day-4 and

day-5 we recorded the two highest amounts of errors: we can assume that in this phase of the

trial the patient might have relaxed his careful behaviour in the management of the sensor.

The right panel of Figure 3.5.1 shows the probability density function obtained with kernel

density estimation approach, described in Appendix A. The estimation was done at 120 equally

spaced points, with a bandwidth of the smoothing window of 0.3074.

3.5.2 Distribution over 24 hours

In Section 3.5.1 we have investigated the time occurances of disconnections with respect to

sensor life. Now we want to understand how disconnections occur during 24hours-periods.

Firstly, we considered every single day of the trial as a case study. The results, displayed in

Figure 3.5.2, show the probability density function, obtained via kernel density estimation (see
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Figure 3.6 Left panel: probability density functions for disconnections occurrences during

days #2, #3, #4, #5 and #7. Middle panel and right panel: probability density functions

for disconnections occurrences during days #1 and #6. The estimation is obtained via kernel

density estimation approach.4

Appendix A), of disconnections during the several days. The left panel of the Figure shows

five estimated probability density functions overlapped, corresponding to days #2, #3, #4,

#5 and #7. We can see that these five curves are quite similar, while middle and right panel

separately show the ones corresponding to days #1 and #6. The curve in the middle panel is

spoiled by the fact that the time of sensor insertion is different for every trial, while the curve in

the right panel is biased because many trials ended by the afternoon of the sixth day. For these

reasons, we are showing them separately, and we can conclude that for the other days there is

no significant variability between one day and the other. Hence, we chose to analyze an average

value of the distribution, obtained considering all days to be equivalent.

Considering every disconnection as if they occurred in one single day, we could observe

the distribution of the errors depending on the hour of the day. As shown by the histogram

in the left panel of Figure 3.5.2, the highest number of disconnections occurs at 6am (217),

and they are distributed over the 24hours with a mean value of 154.7 disconnections per hour,
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Figure 3.7 Distribution of disconnections over 24 hours. Left panel: histogram; mean:

11.4629, st dev: 7.1441, median: 10.8504. Right panel: probability density function estimated

via kernel density estimation approach.

standard deviation of 40.5 and median of 154.7. The histogram shows that the highest number

of disconnection occur during night-time (from 9pm to 8am). In this phase of the day, the patient

is more likely to be in the sorroundings of the receiver, so we can assume that disconnections are

probably mainly due to a technological failure of the sensor, rather than improper management

of the device.

In the right panel of Figure 3.5.2 is the probability density function obtained with kernel

density estimation approach (see Appendix A). The estimation was done at 120 equally spaced

points, with a bandwidth of the kernel smoothing window of 0.3489.

3.5.3 Revising transition probability α

According to Sections 3.5.1 and 3.5.2, failures do not occur evenly neither during the several

days nor during the several hours of the day. This remark suggest we should take into account

revising the transition probability α described in Section 3.3.1. The transition probability from

the regular-state to the faulty-state should depend also on the hour and the day of the week of

the current state.
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Hence, we look for the probability of a failure event, given the fact that the current day is

day, that is, with the use of Bayes’ rule:

P [f |DAY = day] =
P [f ∩ DAY = day]

P [DAY = day]
=
P [DAY = day|f ]P [f ]

P [DAY = day]
.

From the histogram discussed in Section 3.5.1 we can compute P [DAY = day|f ], while P [f ]

is α̂ and P [DAY = day] is equal to 1/7. The probability we are looking for can be written as:

P [f |DAY = day] = 7 ·P [DAY = day|f ] · α̂.

The same argument still holds for the case of the different distribution of disconnections over

the 24hours, therefore we can conclude that the transition probability α we are looking for is:

P [f |DAY = day, HOUR = hour] = 24 · 7 ·P [DAY = day|f ]P [HOUR = hour|f ] · α̂. (3.6)





4
Analysis of the invalid output fault

After the analysis of a first type of error, the disconnection, we focus on a second type,

and we shall call it invalid output. The invalid output can be read as an ‘error code’ of

the CGM signal, since the receiver displays a glycemic level of 9 or 10 mg/dl.

We recorded time occurances of the errors, in order to analyze its main statistical

parameters for simulation purposes. Our investigation led us to find 173 invalid output

overall, and we discovered that only the signals from the data set 2.2 were corrupted

by this fault (72 CGM signals out of the 94 we were provided).

4.1 Invalid Outputs

As discussed in Section 1.4.1, the SEVEN® PLUS sensor does not display glucose values

outside the range 39-400 mg/dl, and every value below 39 mg/dl corresponds to an ‘error code’

reporting that a problem had occurred. At first glance the readings from the two data sets

(described in Chapter 2) show indeed frequent drops of the signals below the lower bound fixed

by Dexcom®. The value displayed by the receiver component in these cases is 9 or 10 mg/dl,

and we shall call invalid output this type of fault. Figure 4.1 depicts an example of CGM signal

corrupted by invalid outputs.

We can speculate that this kind of error depends on the data smoothing activity of the

sensor. Unfortunately, details on filtering strategy used by SEVEN® PLUS are not available

to the public. Nevertheless, assuming that the sensor embeds a moving average filter (or more

generically a finite impulse response filter), the residual between the current datum and the

latest previous samples is evaluated. If the residual is larger than a threshold, then the datum

is considered to be not reliable, and no valid datum is displayed until the residual lowers back

under the threshold [11].

27
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Figure 4.1 Portion of CGM signal with invalid outputs. The yellow area highlights the four

errors.

4.2 Duration of invalid outputs

Figure 4.2 shows the histogram of the number of faulty samples due to invalid output error. The

actual range of the abscissa is 2-180 samples, but since we recorded few events that involved

just one case each we chose not to depict them. The highest number of invalid outputs (22)

involves only 2 samples, and the histogram suggests that durations exponentially decrease.

On average, an invalid output consisits of 22 samples, i.e. 106.5202 minutes with a standard

deviation of 160.6207, while mode is 2 faulty samples,i.e. 5 minutes, and median is 8 faulty

samples, i.e. 40 minutes.

4.3 Data modeling

In this Section we propose a reasonable model for the CGM signal with which we can explain

the invalid output fault and we will show in Section 4.4 if our idea justified, just as previously

done for disconnections. CGM sensor functioning can be modelled with a two-state Markov

chain, and we redirect the reader to Section 3.3 for a formal definition of a Markov model. In

Figure 4.3 we show the two-state Markov chain we are proposing, with α and β as defined in
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Figure 4.2 Histogram of the number of faulty samples due to invalid output error. The Figure

is focused on the most interesting interval, #1 - #60.

Section 3.3.

4.3.1 Estimate of α

The transition probability α corresponds to the probability of a faulty sample to succeed a

regular one. i.e. it allows us to compute when a failure occurs. Once again, it is estimated as

follows:

α̂ =
# detected faults

# samples observed overall - #faulty samples
. (4.1)

The estimated value is α̂ = 0.0010.

R F 

α 

1 - β 

β 1 - α 

Figure 4.3 Two-state Markov model for invalid outputs.
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4.3.2 Estimate of β

The transition probability β corresponds to the probability of a faulty sample to succeed another

faulty sample, i.e. it allows us to compute the duration of the failure once it has already started.

As discussed in Section 3.3.2, given that N is the number of possible durations we found in the

statistical analisys 4.2, we can compute N − 1 probabilities that a disconnection that lasted i

samples, lasts i+ 1 samples. We shall define this probability as:

β̂i =
#[d ≥ i+ 1]

#[d ≥ i]
, i = 1, . . . , N − 1. (4.2)

Assuming that the probability to remain in the faulty state does not depend on the duration of an

invalid output, we can evaluate an average value for the transition probability β as follows:

β̂ =
1

N

N∑
i=1

β̂i. (4.3)

The estimated value is β̂ = 0.9727.

In this case as well, we can choose to rely mostly in shorter invalid outputs, where the

sample is larger, and compute the value for the transition probability β e.g. averaging only the

first three values of the {β̂i} set, or the first seven values of the {β̂i} set:

β̂3 =
1

3

3∑
i=1

β̂i, β̂7 =
1

7

7∑
i=1

β̂i. (4.4)

We will show in Section 4.4 which one of the three proposed values for β is the most appropriate,

but we have to point out that some other options are also available and not taken into account in

this work: for example, averaging among the {β̂i} can be done with a matrix that weighs the

values differently according to their reliability.

The estimated values for the probabilities defined in Equation 4.4 are β̂3 = 0.9160 and β̂7 =

0.9229.

4.4 Validation

In order to validate the model proposed in Section 4.3, we use the same procedure discussed in

Section 3.4. In Figure 4.4 we plot the three curves with equation:

P [d = k] =
α(1− β)

β
βk (4.5)
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Figure 4.4 Graphic validation of the model: the lines drawn with the estimated parameters

α̂ and β̂ do not fit the normalized histogram of invalid outputs’ durations. In the legend are

displayed the three estimated values of β̂, depending on the confidence we have in the data.

corresponding to the three different values of β estimated in Section 4.3.2.

We can point out that the fit required to the curves is not sufficient for a model validation:

the black one, corresponding to β̂, is biased by the several long-lasting invalid outputs (more

than 60 faulty samples), while the green and the red curves yet are not a good fit of the data.

Figure 4.5 shows that if we estimate β̂, β̂3, β̂7 considering only short-lasting invalid outputs, i.e.

failures consisting of 2− 21 faulty samples, the model can be considered reasonable and the

curves sim to better fit the data.

Hence, we can conclude that modelling invalid outputs is an open issue, and probably the

model needs to draw a distinction between short and long-lasting invalid outputs. From a

simulation point of view, since we could not infer a proper model, we will draw information

about invalid outputs’ duration from the sampling distribution discussed in Section 4.2.
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Figure 4.5 Graphic validation of the model: the lines drawn with the estimated parameters α̂

and β̂ fit the normalized histogram of invalid outputs’ durations. In the legend are displayed the

three estimated values of β̂, estimated considering only short lasting faults (2− 21samples).

4.5 Revising probabilities considering the day and the hour

As previously done for disconnections, we want to investigate whether invalid outputs occur

evenly during the hours of the day and in the several trial days. If this is not so, we will need to

revise transition probability α.

4.5.1 Distribution over the days of experiment

In order to visualize how the disconnection event occurs during the experiment, we plotted the

information about the start of each fault using a histogram as shown in Figure 4.6, left panel.

The highest number of invalid outputs happen during the first 24 hours of insertion (53), and

the second highest amount (32) is found during the last 24 hours. This behaviour reflects that

of a typical electronic device, which bad behaves at the beginning of its operative life, when

defects designed into or built into a product might surface, and at the end of it, because of
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Figure 4.6 Distribution of invalid outputs over the several trial days. Left panel: histogram;

mean: 3.2709, stdev: 2.3107, median: 3.3861. Right panel: probability density function

estimated via kernel density estimation.

the normal wear-and-tear of components in a system. In this particular case, we also have to

consider that the sensor probe needs some time to start its proper measurement because of the

chemical reaction on which it is based [2].

On average, 21.63 invalid outputs occurred every day of the experiment, with a standard

deviation of 15.93.

The right panel of Figure 4.6 shows the probability density function obtained with kernel

density estimation approach, described in Appendix A. The estimation was done at 120 equally

spaced points, with a bandwidth of the kernel smoothing window of 0.9468.

4.5.2 Distribution over 24 hours

As we have previously done in Section 3.5.2 for disconnections, we considered all the errors as

if they occured in one single day. The histogram in the left panel of Figure 4.7 shows that the

highest number of faults (15) occurred at 11pm, and the second highest number (14) at 8am. On
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Figure 4.7 Distribution of invalid outputs over 24 hours. Left panel: histogram; mean:

11.6216, st dev: 7.5320, median: 10.2275. Right panel: probability density function estimated

via kernel density estimation approach.

average, 6.92 invalid outputs are displayed every hour, with a standard deviation of 3.581 and

median 7.

From the histogram we can point out that the errors occur with a higher frequency during

nocturnal hours, as if they were induced by some kind of pressure while the patient is sleeping.

The right panel of Figure 4.7 shows the probability density function obtained with kernel

density estimation approach, described in Appendix A. The estimation was done at 120 equally

spaced points, with a bandwidth of the kernel smoothing window of 0.7414.

4.5.3 Remarks on the trend of the signal before faulty events

We have explored the 3 values of the signal before each invalid output occurred. Of these three

values, mean and derivative were calculated and depicted in a scatter plot (Figure 4.8) in order

to detect any possible correlation. The scatter plot shows that there is no correlation between

the two values, i.e. the trend of the signal previous to the error and the average CGM value at
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Figure 4.8 Scatter plot of mean and derivative of the 3 samples before the error. P-values

and Pearson’s correlation coefficients are also displayed.

which the error occurs are not correlated. The p-value (for testing the null hypothesis of no

correlation) and the Pearson’s correlation coefficient displayed in Figure 4.8 support the result.

In fact, the p-value is the probability of getting a correlation as large as the observed value by

random chance, when the true correlation is zero. If the p-value was small, say less than 0.05,

then the correlation would be significant. In this case, the p-value is 0.3933, hence significantly

larger than 0.05. Moreover, as the Pearson’s correlation coefficient approaches zero there is

less of a relationship (closer to uncorrelated): being R = −0.0653, we can state the absence of

correlation.

This fact simplifies our simulation step since it allows us to consider one parameter less.

4.5.4 Revising transition probability α

As previously done in Section 3.5.3, we want to revise transition probability α, in order to

describe its reliance on the hour and the day of the failure. We redirect the reader to Section

3.5.3 for the procedure, while we quote the result, that involves the estimated value α̂ from

Section 4.3.1:

P [f |DAY = day, HOUR = hour] = 24 · 7 ·P [DAY = day|f ]P [HOUR = hour|f ] · α̂. (4.6)





5
Analysis of the loss of sensitivity

Two types of CGM failures were discussed so far. The type of CGM failure described

in this Chapter is due to biomechanics, since it arises when a pressure is applied to

the sensor, and we shall call it loss of sensitivity of the CGM signal. Fault identification

was done with visual inspection using BG as a reference when available and led us

to 28 detected failures. The isolation of the faulty shapes was then done exploiting a

bayesian smoothing of the CGM signal, and this procedure also gave us an estimation

of the variance of the measurement error of the signal.

We proposed a model for losses of sensitivity, and estimated its parameters, discussing

their estimation precision as well. Finally, we validated our model showing that it

properly simulates the isolated shapes.

5.1 Main features

The loss of sensitivity is the third type of CGM failure we consider in this work. Its shape is

shown in Figure 5.1: the error consists of a rapid decrease of the signal, followed by an increase

that brings the signal back to the regular trend. This kind of fault was detected comparing the

CGM signal with the reference BG samples when available, and when not, we had to observe

the signal trend in the surroundings of the candidate failure in order to decide if it was so.

For what concerns the reasons that cause a loss of sensitivity, these are related more to

the biomechanics of the sensor-tissue interface has been taken into account rather than to

chemical biocompatibility [12]. Infact, biomechanical factors such as motion and pressure cause

interfacial stresses, which affect tissue physiology around a sensor and, in turn, impact sensor

performance. Motion artifacts can arise when acute forces temporarily impact sensor signal. It

is hypothesized that applying direct pressure on the sensor and surrounding tissue can cause

temporary reduction of localized blood flow, thus perturbing sensor readings. One common

cause of acute motion artifacts is the subject lying or sleeping on the sensor: in humans, pressure

at the sensor site is believed to be responsible for anomalous hypoglicemic measurements

37
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Figure 5.1 Example of two losses of sensitivity of the CGM signal, highlighted by the pink

area. Blood Glucose samples are used as a reference.

reported at night time, particularly when the patients lie on the sensor [13].

It is relevant to report an example of the acute effects from direct pressure on the sensor, observed

in a clinical trial (details in [14, 15]). CGM readings collected from patient wearing a Dexcom®

SEVEN® PLUS on his abdomen show signal drops as compared to the blood glucose levels, as

the patient laid on the sensor and compressed it.

5.2 Visual Identification

Unlike disconnections and invalid outputs, losses of sensitivity are not well-rendered. Hence,

the identification of these types of fault was done with visual inspection, using BG as a reference

when available. In order to isolate them, we followed this procedure:

1. visual identification of starting and ending point of the loss of sensitivity, exploiting BG

as a reference;

2. removal of the CGM piece affected by the loss of sensitivity identificated at step 1;
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3. interpolation of the CGM signal in the faulty interval that was cleared from the failure at

step 2;

4. the shape of the isolated loss of sensitivity is obtained as the difference between the

interpolated signal and the real CGM values in the faulty interval.

In the first place, we tried a linear interpolation of the CGM signal in the faulty interval (step

3). This technique demonstrated itself to be misleading, since the linear interpolation performs a

rough reconstruction of the CGM signal in the faulty interval, thus spoiling the amplitude of the

resulting isolated fault.

As a consequence, to improve interpolation a bayesian smoothing was applied to the CGM

signal. The procedure is hereinafter discussed, in Section 5.2.1

5.2.1 Bayesian smoothing

We can start by assuming that physiological processes are smooth signals. In order to give a

formal statement of the problem, we define the signal we are dealing with as

y = u+ v (5.1)

where y, u and v are three vectors containing a certain number of CGM measurements, real

(unknown) glycemic values and measurement errors, respectively. The reconstruction of the

real glycemic profile u(t) starting from noisy discrete observations y(t) is a classical smoothing

problem, that can be treated through classical regularization methods. As a consequence, the

first step is to introduce the problem into a stochastic context.

For what concerns Equation 5.1, we can assume, without loss of generality, that v and u are

zero-mean random vectors with Var[v] = σ2Σv, Var[u] = λ2Σu, where Σv and Σu are positive

define matrices, and σ2 and λ2 are positive scalars.

Matrices Σv and Σu express the prior knowledge of the unknown signals v(t) and u(t).

Assuming that the measurement errors are uncorrelated and have the same variance σ2, then the

measurement noise covariance matrix can be written as Σv = σ2I . Furthermore, assuming the

only a priori knowledge on u(t) is that it is a regular biological signal, we can think of it as a

multiple integration of a white noise process. In this way it is easily seen that its covariance

matrix becomes Σu = λ2(F TF )−1. F is a suitable design matrix:
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F = (∆)m (5.2)

where m represents the m-order derivative penalization of the signal u(t) and ∆ is a Toeplitz

matrix:

∆ =



1 0 0 . . . 0

−1 1 0 . . . 0

0 −1 1 . . . 0

. . . 0 −1 . . . . . .

0 . . . . . . . . . 1


(5.3)

The parameter m reflects the degree of smoothness of the signal, and our choice was m = 2, i.e.

we evaluated the second derivative of the signal. We justify this choice referring to [9]. Using

a linear mean-square estimator, given the measurement vector y, our purpose now is to find û

which minimizes E[‖u− û‖2]. The regularization theory says that ûR is:

ûR = argmin
û

{
(y − û)T (y − û) + γûTF TFû

}
(5.4)

where the scalar γ = σ2/λ2 > 0 is the so-called regularization parameter. The first term of the

cost function on the right-hand side of equation 5.4 measures the fidelity to the data while the

second term weights the roughness of the estimate. The solution of equation 5.4 is:

ûR = (I + γF TF )−1y (5.5)

Once m is fixed as previously described, the result is hence a function of the parameter γ.

Nevertheless, in our case, both σ2 and λ2 are unknown.

The estimation procedure for σ2 and λ2 refers to Criterion 2 discussed in [10]. When both

σ2 and λ2 are unknown, the minimization problem of equation 5.4 should be solved for several

trial values of γ = σ2/λ2 until:

WRSS(γ)

n− q(γ)
= γ

WESS(γ)

q(γ)
(5.6)

where n is the number of measurements collected in the predetermined interval considered,

WESS(γ):
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Figure 5.2 (a) CGM signal and its bayesian smoothing, with a focus on the faulty pieces. (b)

Isolated losses of sensitivity.

WESS(γ) = ûTF TFû, (5.7)

is the weighted estimates sum of squares, WRSS(γ):

WRSS(γ) = (y − û)T (y − û), (5.8)

is the weighted residual sum of squares, and q(γ):

q(γ) = trace[In + γF TF ]−1 (5.9)

which is termed degree of freedom, with In an n-size identity matrix.
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Figure 5.3 Top panel: Boxplot of the estimated values for σ2; red line shows the median;

mean = 8.8; st dev = 3.6; median = 8. Range of the box: 4.8-15.6. Bottom panel: probability

density function estimated via kernel density estimation.

The so-found value of γ maximizes the likelihood of the data. As γ is determined, the

estimations of σ2 and λ2 are given by:

σ2 =
WRSS(γ)

n− q(γ)
(5.10)

and

λ2 = σ2/γ. (5.11)

Figure 5.2.1 shows the result of a bayesian smoothing for the CGM signal and an example

of two isolated losses of sensitivity. Along with the isolation procedure, the bayesian smoothing

also gave us an estimate of the variance σ2 of the signals. With this information we can decide

whether a piece of signal is faulty or noisy. We found an average value of the estimated σ2

that is 8.8 mg2/dl2 with a standard deviation of 3.6 mg/dl. Therefore failures smaller than about

2SD ∼= 6 mg/dl were considered to be noise. Figure 5.3 shows the boxplot of the estimated

values for σ2.
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Figure 5.4 Step function with amplitude F and duration D, that is filtered by a first order

system with parameter τ . The overlapped curve shows the result of the filtered signal, with

amplitude A. The time requested by this curve to reach zero is 3τ .

5.3 Data modeling

The model for losses of sensitivity here proposed is based on biomechanical considerations

drawn in Section 5.1, i.e. the failure is due to a transitional pressure applied to the sensor

that acts as a low pass filter. Hence, a good model for this kind of failure is to consider it as

a disturb consisting of a step function filtered by a first order system with transfer function

G(s) = 1
1+τs . The τ parameter has to be estimated together with the two defining parameters

of the disturb, which are graphically described in Figure 5.3. The step function is characterized

by its amplitude, and we shall call this parameter F, and by its duration D. In the same Figure

we show the shape of a modelled loss, in order to describe the impact of the τ parameter. We

define τ as one third of the time needed by the failure to go from its maximum amplitude (A),

back to zero. The real amplitude A reached by the failure is connected to the amplitude F of the

step function by the relation F = A

1−e−
D
τ

.

The equation of the model is:

M(p, t) = −F (1− e
−(t+t0)

τ )1(t+ t0) + F (1− e
−(t−t0−D)

τ )1(t+ t0 +D) (5.12)

with p = [FDτ ]. We assumed that the parameters we want to estimate do not depend on the

hour of the day, and are mutually indipendent. Our model is non-linear in parameters as shown

by Equation 5.12, hence we solved a non linear least squares problem for each detected and
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isolated fault, in order to find the value:

p̂LS = argmin
p̂
‖z −M(p)‖2 (5.13)

with z being the faulty isolated CGM profile. Non-linear estimation techniques were used, such

as the iterative method of Gauss-Newton. The algorithm starts with an initial guess for the

minumum, p0, and the method proceeds by the iterations

repeat

• linearization of the model with respect of the parameters of the model, in the surroundings

of pi−1

• solution of the linear least-squares problem gives ∆p̂i

• the latest estimated p̂i = p̂i−1 + ∆p̂i

until

|∆p̂i/p̂i| < tol, with i iteration index and tol a fixed tolerance threshold.

The estimation can be biased by the initial guess, since the iterative procedure might fall into

a local, rather than absolute, minumum of the function. The starting vector p0 = [F0 D0 τ0]

for the algorithm was chosen as the average values of the same parameters evaluated for the

isolated losses.

5.3.1 Precision and Statistics of the estimated parameters

The solution of the non-linear least squares problem we have previously discussed, gives us

the Jacobian matrix J of the minimized function at the estimated vector p̂. In this case, we can

define the covariance matrix Σp in order to measure the estimation error:

Σp
∼= (JTΣ−1v J)−1. (5.14)

In our case, to each patient whose CGM signal is affected by losses of sensitivity corresponds

one matrix Σ−1v defined as
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Σ−1v =



1/σ2 0 0 . . . 0

0 1/σ2 0 . . .
...

... 0
. . . . . .

...
... 0 0

. . .
...

0 . . . . . . . . . 1/σ2


(5.15)

- with σ2 estimated along with the bayesian smoothing as discussed in Section 5.2.1. Hence,

for each one of the detected and isolated fault, we can compute the estimation precision of the

parameters using equation 5.14. Table 5.3.2 shows this result, highlighting those parameters

whose estimation precision is bad, while Table 5.3.2 shows five interesting parameters that

describe the goodness of fit for each simulated loss of sensitivity.

For what concerns failures 3, 4 and 10 shown in Figure 5.3.2, we can see that the the yellow

area of ±2 · confidence interval is large and the amplitudes of the isolated shapes are small.

Hence, a simpler model as well would predict a proper shape, while here we obtain bad results

for FIT parameters. Moreover, the isolated shapes are less similar to the expected one shown

in Figure 5.3, hence the empirical evaluation of F0, D0 and τ0 is less significant and gives bad

estimation precisions. We show in Figure 5.3.2 the original CGM signal where we isolated the

three failures we are discussing, in order to demonstrate that our visual detection was right, but

something spoiled the result during the isolation procedure.

Figure 5.3.2 shows other failures that are worth a further insight. Loss of sensitivity 12 is

simulated by the model with bad values for both MSE and FIT, even though the estimation

precision of the parameters of the model is good. The MSE is very high in this case because

our model simulates failures starting from a zero glycemic level, while the isolation procedure

does not always assure this. Also failure 22 is simulated with a bad FIT and good estimation

precision of the parameters, because its shape is irregular and hard for the model to follow.

Failure 16 instead is made of only 3 samples, hence the estimation of the 3 parameters of the

model on such little data is understandably hard, giving bad estimation precision and yet very

good FIT. Failure 24 has a very irregular shape that is hard for our model to follow, and lastly

failure 25 behaves in the opposite way of what we expect, since we have described the loss of

sensitivity as a rapid decrease of the signal (5.1).

We consider the other estimation precisions to be reasonably good.
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Figure 5.5 Scatter plot of the estimated parameters (F , τ ), (D, τ ), (F , D). P-values and

Pearson’s correlation coefficients are also displayed.

Figure 5.8 shows the histogram and the density function obtained via kernel density esti-

mation for both initial parameters p0 = [F0 D0 τ0] and the estimated ones p̂ = [F D τ ].

We found that the estimated parameter D, i.e. the time needed to reach the maximum amplitude

A, is on average 21.3 minutes, while the estimated amplitude of the step function F is on

average −41.8 mg/dl. The system parameter τ is on average 13.5 minutes.

We also tried to run the estimation algorithm with the same common initial guess p0 for all

faults. The vector p0 was chosen as the average of the empirical evaluated parameters F , D

and τ on each isolated fault, as described in Figure 5.3. The statistics results for the estimated

parameters is shown in Figure 5.9, in comparison to the previous estimation results displayed in

Figure 5.8. This result demonstrates that our estimation method is robust to the initial guess.

5.3.2 Correlation between F , D and τ

In Section 5.3 we made two assumption. The first deals with the relationship between the failure

and the moment of its occurrence: this issue will be explored in Section 5.5. The second is about

the statistical relationship between the three parameters D, F , τ . We investigated this issue
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with a scatter plot for each of the couples (F , τ ), (D, τ ), (F , D) and evaluating the p-value, for

testing the null hypothesis of no correlation, and the Pearson’s correlation coefficient R (we

refer the reader to Section 4.5.3 for the meaning of p-value and R). Figure 5.5 shows this result.

For what concerns the couples (D, τ ) and (F , D), in both cases the p-value is larger than

0.05 hence we can support the null hypothesis of no correlation. For couple (F , τ ) instead, the

p-value is lower than the threshold of 0.05, but |R| < 0.5, hence we can say that these two

parameters are partially correlated.

5.4 Validation

A first validation of the model we have previously described is given in Figure 5.4. We show

here with two examples that simulating the loss of sensitivity with this model leads us to a

signal that is similar to the isolated real failure, and is inside the area of ±2 · confidence interval,

which is obtained with the previously estimated σ2, as discussed in Section 5.2.1. The other

simulated losses of sensitivity are shown in Appendix B.

Furthermore, we chose pieces of CGM signal in which we had found no failure, and removed

them as described in Section 5.2. The whole signal then underwent bayesian smoothing, and

we expected the reconstructed signal to lie within the ±3 · confidence interval obtained with

the estimated σ2. Figure 5.4 shows four examples of the smoothed signal lying within the

±3 · confidence interval , which proves that isolating pieces of regular signal is not misleading.

5.5 Reliance on the hour and the day of experiment

As previously done for disconnections and invalid outputs, we wonder if transition probability

α̂ should be revised considering the hour and the day at which failure occurs. Figure 5.12 shows

the result for the distribution of losses of sensitivity over 24 hours and through the several days

of experiment. Considering that we found a small amount of pressure faults (28), we are not

revising the transition probability because we cannot gather significant information from such a



48 Chapter 5. Analysis of the loss of sensitivity

# loss MSE FIT (%) COD (%) VAPNIK VAPNIK FIT

(%)

1 4.4489 72.8399 92.6233 0.2583 93.2634

2 5.3979 58.6935 82.9377 0.11576 94.4345

3 20.0696 14.9614 27.6844 0 0
0

4 2.8256 59.3382 83.4662 0 0
0

5 17.2726 74.1279 93.3063 0 100

6 4.436 85.7085 97.9575 0 100

7 35.0123 60.8489 84.6719 0 0
0

8 35.5277 77.8835 95.1086 0 100

9 35.7024 68.6243 90.1557 0.54073 93.6721

10 24.0505 42.1049 66.4815 0 100

11 8.2897 77.0703 94.7423 0 100

12 20.036 29.5094 50.3107 0.69486 35.9385

13 6.9514 63.7941 86.8913 0.19665 94.9374

14 41.4536 41.8388 66.1728 1.5071 69.8901

15 13.2339 65.0399 87.7779 0.0042032 99.9129

16 0.2031 93.3686 99.5602 0 100

17 11.651 67.5585 89.4755 0.16306 96.6248

18 7.1542 70.5571 91.3312 0.14547 96.1511

19 4.9779 71.6762 91.9776 0 100

20 7.5477 72.7415 92.5697 0.13071 97.3613

21 20.5042 77.0219 94.7201 1.2697 90.5562

22 29.8898 32.6935 54.6983 0.57873 63.1904

23 0.67519 84.621 97.6349 0 0
0

24 11.348 39.0962 62.9073 0.50938 62.1821

25 41.7089 16.6987 30.6089 1.6655 34.6656

26 6.2978 71.049 91.6184 0 100

27 6.234 77.4247 94.9035 0 100

28 31.6266 75.6968 94.0935 1.4953 90.3779

Table 5.1 Interesting parameters describing the goodness of our model.
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# loss F (mg/dl), (%) D (min), (%) τ (min), (%)

1 -28.3, 7 22.3, 5 6.6, 18

2 -11.2, 20 12.7, 19 2.8, 73

3 -6, 646 20, 337 16.7, 1036

4 -78.4, 168 5.6, 95 26.3, 171

5 -73.5, 14 11.3, 10 9.4, 20

6 -36.6, 7 39.1, 3 7.4, 22

7 -38.4, 70 20.9, 54 10, 142

8 -104.3, 35 20.2, 25 14, 54

9 -68.8, 7 22.2, 6 6.9, 19

10 -40, 329 17.6, 77 46.8, 377

11 -43.8, 11 18.5, 6 8.2, 21

12 -22.5, 22 12.3, 20 3.6, 64

13 -34.1, 11 18, 6 17.1, 13

14 -20, 11 35, 9 11.1, 27

15 -27.5, 12 24, 6 9.3, 23

16 -14.9, 109 4.9, 109 1.2, 109

17 -35, 9 29.1, 5 13.2, 15

18 -246, 6 37.2, 4 9.2, 17

19 -23.7, 12 28.2, 6 8.8, 25

20 -33.6, 13 26.3, 8 16.2, 23

21 -82.2, 12 15, 13 14.3, 15

22 -128.3, 20 10.2, 13 39.5, 19

23 -19.7, 54 12.1, 38 6.4, 100

24 -25.2, 115 26.3, 27 39.1, 149

25 -5.7, 18 40.1, 1011 0.5, 1011

26 -32.6, 15 18.9, 8 9.4, 25

27 -31.3, 11 24.2, 5 8, 22

28 -79.3, 8 25, 5 15, 14

Table 5.2 Estimated parameters F, D, τ described in Section 5.3 and their estimation preci-

sion. The grey shadow highlights those parameters whose estimation precision is bad.
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Figure 5.6 Losses of sensitivity that gave bad estimation precision for the parameters F , D

and τ .
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Figure 5.8 Statistics of parameters F,D, τ : histogram and probability density function

obtained via kernel density estimation for p0 and p̂. (a) F0:mean: -35.36, median: -29.76, st

dev: 21.14, Fest:mean: -41.78, median: -33.08, st dev: 30.3; (b) D0:mean: 18.43, median: 17.5,

st dev: 8.79, Dest:mean: 21.33, median: 20.56, st dev: 9.36; (c) τ0:mean: 6.46, median: 5, st

dev: 3.91, τest:mean: 13.46, median: 9.41, st dev: 11.41.
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Figure 5.9 Robustness of the estimation of model parameters to the initial guess. The red

lines represent the probability density function of estimated parameters as discussed in Section

5.3.1 and shown in Figure 5.8.
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small sample. This matches our assumption in Section 5.3.
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Figure 5.10 Simulating two losses of sensitivity with the discussed model. The yellow area

highlights the ±2 · confidence interval, the blue line represents the isolated failure from the real

CGM data, the green line is the result with the best estimation of the parameters p̂. The red line

shows the simulated signal with the initial guess p0, defined in Section 5.3.
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Figure 5.11 The red lines show pieces of CGM signal with no failures, the black lines show

the result for the bayesian smoothing obtained as described in Section 5.4, the yellow area

highlights the ±2 · confidence interval.
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Figure 5.12 (a): Distribution of losses of sensitivity over the several trial days. Left panel:

histogram; mean: 2.1367, stdev: 1.5519, median: 2.0259. Right panel: probability density

function estimated via kernel density estimation. (b): Distribution of losses of sensitivity over

24 hours. Left panel: histogram; mean: 14.0718, st dev: 6.7086, median: 14.9315. Right panel:

probability density function estimated via kernel density estimation approach.



6
Simulation of CGM faults

In the previous chapters we have shown how to simulate three of the most common

failures one can detect in CGM real data. In this chapter, we show the results of the

simulated failures, and add them to glycemic profiles obtained with the Simulator GIM.

Testing control algorithms needs to cope with the most common failures one can find

in CGM real data, hence we provide simulation tools that can be embedded with the

simulated sensor block of the Simulator GIM.

6.1 Dalla Man et al. model

One of the most important application of CGM sensors is the Artificial Pancreas. The develop-

ment of the Artificial Pancreas was largely enhanced by the Simulator of the human metabolism,

i.e. the Glucose-Insulin Model (GIM) [16, 17]. This software realizes in silico mathematical

models for both the diabetic patient and hardware components that take part in the closed loop

control of glycemia in the Artificial Pancreas, i.e. the CGM sensor and the insulin pump. GIM

is used by the researchers in order to develop and validate control algorithms, which saves time

and money. In fact, this software was approved by Food and Drug Administration, the agency of

the USA responsible for regulation and supervision of food and drug, as a substitute for animal

trials. Hence, since 2008 control algorithms can be tested directly on human beings with no

intermediate steps.

6.2 Simulation of disconnections

Exploiting the model described in Chapter 3, we discuss in this Section the results of a discon-

nections’ simulation over 100 of 7-days lasting signals.

Figure 6.2 shows the statistical analysis of both the simulated disconnections and the real

ones. For what concerns failures’ duration, we can see from the histogram in the Figure (a) that

the estimated β̂ chosen in Section 3.3.2 gives a distribution of simulated disconnections similar

57
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to the real one.

Panel (b) and (c) of Figure 6.2 show the probability density function obtained via kernel

density estimation for failures’ occurances during the 24 hours and sensor life. From these

results, we can see that while for the 24 hours period we obtain a probability density function

similar to the real one, for the 7days period this does not happen. Infact, we used the revised

probability α̂, discussed in Section 3.5.3, but this is not a proper choice, since the probability

for a failure to happen at one specific hour of the day is not independent from the probability for

a failure to happen in one specific day of sensor life. Moreover, the probability density function

estimated in Section 3.5.1 describes failures’ occurances during sensor life, regardless of the

real hour of the day.

6.3 Simulation of invalid outputs

As previously done for disconnections, we are here simulating invalid outputs as discussed in

Section 4.4. We show the results for a simulation of 100 7-days lasting signals.

Figure 6.3 (a) shows the two histograms for simulated (left panel) and real (right panel)

invalid outputs, with a focus in durations smaller than 60 samples. As discussed in Section 4.4,

the information about durations was drawn from the sampling distribution of real failures, hence

we can see that the two results are significantly similar.

Panel (b) and (c) of Figure 6.3 show the probability density function obtained via kernel

density estimation for failures’ occurances during the 24 hours and sensor life. In both cases, we

see that the simulated distributions are similar to the real ones, demonstrating that our simulation

procedure is correct.

6.4 Simulation of losses of sensitivity

Finally, we want to show that we could simulate losses of sensitivity as well. In order to choose

the parameters F , D and τ , we used the statistical information of the estimated parameters.

Figure 6.4 shows that we obtained simulated probability density functions of the simulated

parameters similar to the real ones.
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Figure 6.1 (a) Left panel: durations’ distribution of simulated disconnections. Right panel:

durations’ distribution of detected disconnections. (b) The distribution of simulated disconnec-

tions over the 24 hours (black curve) is very close of the real distribution (grey curve). (c) The

distribution of simulated disconnections in the several days (black curve) is different from the

real one (grey curve).
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Figure 6.2 (a) Left panel: durations’ distribution of simulated invalid outputs. Right panel:

durations’ distribution of detected invalid outputs. (b)-(c) In both cases, the distribution of

simulated invalid outputs over the 24 hours and the several days (black curve) is very close of

the real distribution (grey curve).
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Figure 6.3 Probability density function of simulated parameters F , D and τ compared to

the real ones.
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Figure 6.4 Simulation of an invalid output, a loss of sensitivity and a disconnection on a

virtual diabetic patient.

6.5 Simulated failures applied to simulated CGM profile

Our purpose is to improve the simulated sensor block in the GIM simulator. Hence, adding the

simulated failures to the simulated glycemic profiles, we can realize CGM profiles more similar

to the real ones, so that robustness tests of control algorithms are more reliable.

Figure 6.5 an example of simulated diabetic (type-1) patient, and the scenario is:

• breakfast at 7 a.m. with 40 g of carbohydrates;

• lunch at 1 p.m. with 70 g of carbohydrates;

• dinner at 8 p.m with 80 g of carbohydrates.



7
Conclusions

CGM sensors are useful devices that supply several advantages and allow the development of

important applications for diabetes management, such as the Artificial Pancreas. In order to

test these applications, it is often used a physiological simulator of type-1 diabetic patient, that

provides CGM simulated data for virtual patients. Nevertheless, these simulated profiles are not

provided with the common failures we find instead in the real CGM signals (Dexcom® in this

thesis), such as those we discussed in Chapters 3, 4 and 5. The closer simulated profiles are to

the real ones, the more reliable are the testing results of these applications.

An investigation of the available data set led us to identify three main kinds of failures.

The first one, we called disconnection, consists of the loss of at least one sample during the

transmission of the signal between transmitter and receiver. We proposed and validated a

two-state markov model for this failure. The same model did not work for the second kind

of failure, which is an ‘error code’ displayed by the receiver, called invalid output. The third

failure we discussed is the loss of sensitivity, which was modelled as a step function filtered by

a first order system. We could simulate disconnections and losses of sensitivity and add the

result at the output signal of the simulator, in order to obtain more realistic CGM profiles. For

invalid outputs, we had to draw information from the empiric distribution since the model was

not appropriate.

For what concerns disconnections, we obtained a simulation tool that is ready for use.

Losses of sensitivity as well were described and simulated with a proper model, but still we can

emphasize some open issues where there is substantial room for improvement:

1. failures’ visual inspection is biased by the arbitrariness of the choice of starting and

ending points;

2. different interpolation techniques should be investigated, other than linear interpolation

and bayesian smoothing, since this step of the isolation procedure determines the shape

of the failure;

3. only a small amount of losses of sensitivity were found, hence a larger data set should
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be exploited in order to make our model more robust and statistically analyze time

occurances.

Lastly, the model proposed for invalid outputs did not satisfy our validation criteria, hence we

suggest two possible ways:

1. distinguishing between long and short-lasting invalid outputs, and modelling them sepa-

rately;

2. testing a two-exponential model to describe both long and short-lasting invalid outputs.

Sharing information about ‘error codes’ with manufacturing companies might be useful.



A
Kernel Density Estimation

The objective of many investigation is to estimate the probability density function (pdf), f(x),

from a sample of observation x1, x2, · · · , xn.

The parametric approach for estimating f(x) is to assume that f(x) is a member of some

parametric family of distributions, e.g. N(µ, σ2), and then to estimate the parameters of the

assumed distribution from the data. This approach has advantages as long as the distributional

assumption is correct, or at least is not seriously wrong. The main disadvantage of the parametric

approach is lack of flexibility. Each parametric family of distributions imposes restrictions on

the shapes that f(x) can have. For example the density function of the normal distribution is

symmetrical and bell-shaped, and therefore is unsuitable for representing skewed densities or

bimodal densities.

Methods that attempt to estimate the density directly from the data without assuming a

particular form for the underlying distribution are called non-parametric. The simplest form of

non-parametric estimation is the histogram, but it has several drawbacks, such as:

• the discontinuities of the estimate are an artifact of the chosen bin locations;

• the density estimate depends on the starting position of the bins.

Nevertheless, the histogram is useful for quick visualizations.

Kernel density estimation helps dealing with the two drawbacks we have just discussed.

From the definition of the pdf, f(x), of a random variable, X , one has that

P (x− h < X < x+ h) =

∫ x+h

x−h
f(t)dt ≈ 2hf(x)

and hence

f(x) ≈ 1

2h
P (x− h < X < x+ h) (A.1)

The probability in A.1 can be estimated:

f̂(x) =
1

2h

number of observation in(x− h, x+ h)

n
(A.2)
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and A.2 can be represented this way as well

f̂(x) =
1

n

n∑
i=1

w(x− xi, h), (A.3)

where x1, x2, · · ·xn are the realizations of the random variable and

w(t, h) =


1
2h , for |t| < h

0, otherwise

The function defined in A.3 has the properties of a pdf, i.e. f̂(x) is non-negative for all x

and the area between the x-axis and f̂(x) is equal to one. One way to interpret A.3 is to imagine

that a rectangle (height 1
2h and width 2h) is placed over each observed point on the x-axis. The

estimate of the pdf at a given point is 1
n times the sum of the heights of all the rectangles that

cover the point. By increasing h one increases the width of each rectangle and thereby increases

the degree of smoothing.

Instead of rectangles, other weighting functions can be used, e.g. triangles:

w(t, h) =


1
h(1− |t|h ), for |t| < h

0, otherwise

Using triangles in A.3 once again makes f̂(x) a pdf, and increasing h increases the degree of

smoothing here too.

Another weighting function is the Gaussian:

w(t, h) =
1√
2π
e−t

2/2h2 , −∞ < t <∞

In this case as well, increasing h implies a more regular f̂(x).

All the weighting functions w(t, h) are of the form

w(t, h) =
1

h
K(

t

h
), (A.4)

where K is a function of the variable t and is called kernel. A kernel is a standardized weighting

function, namely the weighting function with h = 1. The kernel determines the shape of

the weighting function. The parameter h is called the bandwidth or smoothing constant. It

determines the amount of smoothing applied in estimating f(x), i.e. the wider h is, the smoother

the estimate f̂(x). For h→ 0, the kernel approaches a Dirac delta function, and f̂(x) approaches
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the true density. However, in practice we have a finite number of points, so h cannot be made

arbitrarily small, since the density estimate f̂(x) would then degenerate to a set of impulses

located at the training data points.

In general any function having the following properties can be used as a kernel:

(a) ∫
K(z)dz = 1

(b) ∫
zK(z)dz = 0

(c) ∫
z2K(z)dz := k2 <∞

It follows that any symmetric pdf is a kernel. However, non-pdf kernels can also be used,

e.g. kernels for which K(z) < 0 for some values of z. The latter type of kernels have the

disadvantage that f̂(x) may be negative for some values of x.

Kernel estimation of pdfs is charactized by the kernel, K, which determines the shape of the

weighting function, and the bandwidth, h, which determines the width of the weighting function

and hence the amount of smoothing. The two components determine the properties of f̂(x).
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Figure B.1 Simulated losses of sensitivity with the model. The yellow area highlights the

confidence interval, the blue line represents the isolated failure from the real CGM data, the

green line is the result with the best estimation of the parameters p̂.
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